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Abstract

A novel well placement gradient approximation
methodology is developed based on performing finite
difference approximations of augmented Lagrangian
derivatives within the adjoint formulation. The
methodology is efficient because it requires only
a pair of (forward and backward) simulations to
yield a cost function sensitivity with respect to well
placement coordinates. The approximated derivative
is used within a Sequential Quadratic Programming
(SQP) solver ensuring fast convergence and efficient
constraint-handling. An extensive error analysis is
performed to identify the gradient approximation
errors associated with different perturbation ranges.
This analysis provides information regarding the
appropriate perturbation step size range needed to
maintain a consistent gradient approximation while
reducing errors associated with the simulation and
the discretized nature of the reservoir. We validate
the efficiency of the approach by solving for optimal
well placement and comparing the results against
two major gradient-based well placement approaches
from the literature. For these cases, the methodology
developed in this work delivers higher or similar final
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objective values while providing better performance
in terms of fewer cost function evaluations. Finally,
the methodology is used to find the optimal con-
figuration of multiple deviated producers both in a
binary channelized case and in a case based on the
Brugge reservoir. These applications show that the
proposed methodology can handle cases with more
complex grid and production scenarios that require
derivative information for the location of deviated
wellbores in continuous space.

1 Introduction

In this work, we present a novel and efficient way
to approximate derivative information with respect
to well location. The proposed approach relies on
an augmented Lagrangian approximation of the cost5

function provided by an adjoint formulation. Within
the adjoint framework, the approach evaluates the
gradient of the objective using finite differences. This
yields an inexpensive gradient assembly procedure
that produces a well placement gradient after only10

two simulations, i.e., one forward- and one backward-
in-time. Specifically, this approach extends the ap-
plication of the adjoint gradient framework to well
location variables, which typically lack a continuous
representation within the reservoir model. Crucially,15
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the ability to estimate the sensitivity with respect
to wellbore location in an efficient manner enables
the use of gradient-based routines for optimization of
complex wellbore designs and configurations.

Despite being local, gradient-based techniques are20

efficient, rely on well-established convergence the-
ory, and can be implemented in a straightforward
manner by making use of a variety of off-the-shelf
solvers. These techniques are therefore attractive to
use for the well placement problem. In this work, we25

couple the approximated gradient with a Sequential
Quadratic Programming (SQP) method.

The gradients obtained by the proposed method-
ology depend on the accuracy of the finite difference
approximation of the adjoint partial derivative terms.30

Clearly, to perform an efficient well placement local
search, it is important that these gradients are con-
sistent and sufficiently accurate. For this reason, we
perform an extensive analysis to investigate the in-
fluence of different sources of error on the accuracy35

of the approximation.
This paper is structured as follows: Section 2,

Background, describes the general problem of deriv-
ing well placement gradients and classifies the differ-
ent gradient approximation approaches found in the40

literature based on their primary mode of approxi-
mation. Section 3, Methodology, explains in detail,
including pseudocode, how the adjoint solution ap-
proach is enhanced to approximate the well place-
ment gradient. Furthermore, this section identifies45

and performs an extensive study of the different er-
ror sources associated with this type of gradient ap-
proximation. Following this, we select an appropri-
ate perturbation size range based on maintaining the
highest possible consistency in the finite difference50

expression. Section 4, Application, tests the method-
ology against two cases from the literature. These
first two cases serve to validate and compare the per-
formance of the proposed approach against existing
methodologies. The methodology is then applied to55

two more advanced test cases: a case involving a bi-
nary channelized system and a case derived from the
Brugge reservoir. These last two cases demonstrate
the versatility of the approach in terms of dealing
with horizontal or deviated wellbores within chan-60

nelized geologies and in realistic grids, respectively.

In Section 5, Summary, we summarize the method-
ology and results presented in this work and provide
ideas for further studies.

2 Background65

Various procedures relying on gradient-based or
derivative-free algorithms have been proposed for
the well placement problem. Since this work targets
well placement gradient approximation, the following
review addresses gradient-based procedures only.70

See, e.g., Forouzanfar and Reynolds [6] for references
to multiple procedures concerning derivative-free
algorithms.

Gradient-based procedures are difficult to imple-
ment for the well placement problem due to the gen-75

eral lack of derivatives. Reservoir fluid flow is typ-
ically modeled using mass balance equations com-
monly discretized by finite volumes. In this com-
putational model, a well is defined as a collection of
source/sink terms that correspond to those reservoir80

blocks where the well is completed. Well placement
derivatives are difficult to derive analytically from
this formulation since well position coordinates en-
ter implicitly as discrete variables in the governing
equations.85

This section provides an overview of multiple
approaches proposed in the literature to derive well
placement derivatives. Different well placement
gradient-approximation approaches are categorized
based on whether authors (1) reinstate a continuous90

well model, (2) perform a direct estimation of the
gradient by approximating the gradient through a
difference scheme, or (3) perform an indirect esti-
mation using adjoint-based gradients corresponding
to (necessarily continuous) variables associated with95

production, i.e., well controls. These categories
are broad and non-exclusive, in the sense that
a particular approach may have attributes that
extend beyond its designated category; however,
the various approaches are categorized according to100

what is seen as their main mode of operation. The
classification thus helps to organize and explain, in
general terms, the different methodologies proposed
in the literature. These outlined categories serve
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as background for the adjoint-based well placement105

gradient approximation method presented in this
work, and are further described below.

2.1 Gradient derivation through con-
tinuous well model approximation

In [23], a cost function gradient with respect to110

well coordinates is obtained by formulating a con-
tinuous approximation of the originally discrete well
placement problem. The approximation is achieved
by first defining the well source/sink terms in the
mass balance partial differential equations as depend-115

ing explicitly on continuous well location variables.
These modified (still discontinuous) well source/sink
terms are then approximated by a Gaussian type
function (other functions are possible) that is a con-
tinuous expression with respect to the defined well120

coordinates. This results in a set of PDEs with con-
tinuous source/sink terms dependent on continuous
well location coordinates. The discretization of this
set of equations yields (additional) nonzero well terms
beyond the original well blocks. The extent and total125

number of these additional terms are determined by
the size of the base of the approximating Gaussian
function. In practice, the set of additional well terms
is truncated to constitute a neighborhood of pseudo-
well blocks surrounding the original well block. No-130

tice that the use of pseudo-wells created during the
later stages of this method is an attribute shared with
an indirect type of approach (discussed below). Re-
gardless of that, the primary goal of this method is to
enable the use of the adjoint framework for gradient135

computation by introducing a continuous representa-
tion of the discrete problem. This method, therefore,
falls within the continuous approximation category.

Finally, the cost function within this approach is
modified to include the additional well terms, and140

the system is solved within an adjoint formulation to
yield a well placement gradient. Since all well terms
are now established as continuous functions depen-
dent on continuous well location variables, the ad-
joint gradient with respect to these variables can be145

solved for in a straightforward manner.
The approach proposed by Sarma and Chen [23]

was developed for a two-dimensional (x, y) coordi-

nate well placement problem on a regular grid. It
is not obvious how this gradient approximation ap-150

proach can be extended to the deviated (multi-block)
well placement case. For such a case, one would
need to specify at least two (x, y, z)-points (heel and
toe) to define a horizontal well trajectory. For each
well block traversed by this trajectory, this approach155

would specify a particular distribution of pseudo-
wells, which would, at the very least, yield over-
lapping issues between pseudo-well distributions that
would have to be resolved.

A related approach, in terms of establishing a dis-160

tribution of completions surrounding a well trajec-
tory, is described in [6]. Analogously to the lat-
ter part of the procedure given in Sarma and Chen,
in this approach, the well rate associated with the
original well trajectory is allocated among the sur-165

rounding perforations according to a logic that al-
locates a higher portion of the rate to perforations
close to the original trajectory. In Forouzanfar and
Reynolds, however, the main objective behind this
distribution is not to approximate gradients (nei-170

ther through adjoints or in any other way), but
rather to smoothen the cost function to enable the
applicability and further improve the efficiency of
a model-based derivative-free algorithm. Taken to-
gether, both these approaches yield a considerable175

set of additional source/sink terms in the govern-
ing system of equations (even after removing com-
pletions with very low connection factors), thus in-
creasing overall complexity and possibly making the
simulation less stable and harder to converge.180

2.2 Direct well placement gradient
approximation

In this work, we categorize as a direct approach a
type of methodology that relies fundamentally on a
certain perturbation of the well coordinate vector to185

derive sensitivity information. For the most part,
approaches within this category rely on a stochastic
perturbation of the parameter vector, i.e., they per-
turb the vector only along a random direction, thus
avoiding the high computational cost associated with190

proper finite difference schemes that require perform-
ing a function call for each vector component. More
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sophisticated implementations, e.g., EnOpt, extend
this technique to perform stochastic perturbation of
the optimization vector over an ensemble of geologi-195

cal realizations, thus yielding an approximate gradi-
ent averaged over the uncertainty set [see 15].

Within the direct approach category, Bangerth
et al. [1] were the first to apply an integer variant of
the Simultaneous Perturbation Stochastic Approxi-200

mation (SPSA) method to well placement optimiza-
tion, while in [11] and later [16], SPSA was used not
only to derive well placement sensitivities but also to
jointly optimize for well placement and control. Fi-
nally, Jesmani et al. [12] optimized well trajectories205

(vertical, horizontal, and deviated) using a continu-
ous variant of the SPSA algorithm.

The stochastic nature and underlying sampling
property of SPSA offers certain robustness against
moderate cost function noise. In [17] and [13], this210

property is used to handle the increased noise in the
expected objective caused by using only a random
subset of realizations during well placement optimiza-
tion under uncertainty.

The SPSA methodology effectively reduces the215

computational cost associated with approximating
the gradient. However, the gain in computational
cost might be offset by the stochastic procedure pro-
ducing a sufficiently poor gradient estimate that in
turn reduces the overall performance of the optimiza-220

tion routine. Issues regarding how to retain computa-
tional gain and assure reasonable conditional conver-
gence when using this gradient are linked to proper
selection of perturbation vector and to tuning pa-
rameters of the algorithm. These issues are further225

discussed by Li et al. [17] and Jesmani et al. [13].

2.3 Indirect gradient approximation

Finally, an indirect approach refers to the third type
of approach that derives well placement sensitivity by
using associated (most commonly adjoint) well con-230

trol gradients. One main branch of this type of ap-
proach considers a well surrounded by an array of
pseudo-wells, and then uses the well control gradi-
ent associated with each of the surrounding wells to
determine a direction for well re-location that im-235

proves the objective. Commonly, this direction is

determined using the magnitude of the pseudo-well
control gradients and their relative position with re-
spect to the original wellbore location. Another main
branch within this category uses associated control240

gradients for well placement optimization while also
(implicitly) being able to optimize on the number of
wells. This type of approach performs control op-
timization starting with an artificially large number
of wells (subject to a total rate constraint) and im-245

proves iteratively on the objective by removing low-
performing wells. These two main branches and sim-
ilar approaches within the indirect approach category
are further discussed below.

The adjoint-based technique of placing an array250

of low-producing pseudo-wells surrounding a vertical
wellbore was first developed by Zandvliet et al. [29].
Zandvliet et al. [29] placed pseudo-wells at each of
the blocks neighboring the well whose vertical, dis-
crete, (i, j)-position is to be optimized. Importantly,255

these pseudo-wells are set to produce at a very low
rate compared to the rate of the main wellbore, so as
not to significantly disturb the overall reservoir flow
pattern. The existence of the pseudo-wells introduces
additional source/sink terms within the reservoir sim-260

ulation equations, which increases the complexity of
the adjoint-gradient computation for the controls of
these wells. The control rate derivatives for each of
the pseudo-wells are summed, and the original well
is moved to the location of the pseudo-well with the265

largest derivative. An iterative procedure for well lo-
cation optimization is then applied, but only for a
two-dimensional well configuration in a relative sim-
ple reservoir. The method was later extended by
Castineira and Alpak [4] and Vlemmix et al. [26].270

The former introduced a double ring of pseudo-wells
to speed convergence and extend the search capacity
to a two-grid-block neighborhood. The latter applied
the method to optimize the trajectory of a deviated
well subject to a curvature constraint within three-275

dimensional reservoir space. In that work, a number
of trajectory points defining the well path are each
surrounded by pseudo-sidetracks which extend to all
the grid blocks adjacent each of these points. The
sidetracks have a very little perforation so that their280

production accounts only for an insignificant fraction
of the production through the main wellbore. An at-
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tractor point is constructed for each trajectory point
by assembling the sensitivities of the surrounding side
tracks. Then, analogous to the vertical well applica-285

tion, each attractor point is used to reposition its cor-
responding trajectory point in a direction of higher
NPV. Since this implementation modifies only the
positioning of the trajectory points, it is limited to
optimizing only the shape and not the overall loca-290

tion of the wellbore.
Another type of indirect method solving an alter-

nate continuous control problem is described in [28]
and Zhang et al. [30]. In those works, the problem
is initialized as a well control problem with a well in295

every grid block, and the optimization subject to a
total rate distributed over the number of wells ex-
isting at any point of the procedure. The procedure
optimizes production and decreases drilling costs by
shutting-in, and thus eliminating, wells (ultimately300

determining their number and position). Forouzan-
far and Reynolds [7] proposed a two-stage variant of
this indirect method that introduces an initialization
step to determine an appropriate total rate for the
given production time frame, thus decreasing the de-305

pendence of the solution on the a priori specification
of the total rate constraint. A general benefit of this
type of indirect method is that, in addition to well
rates, well number and location are implicitly subject
to optimization. The implementation of this type of310

indirect method for three-dimensional deviated tra-
jectories, however, would be limited by the capacity
of the simulator to handle a potentially large increase
in the number of pseudo-well equations in the govern-
ing system.315

2.4 Adjoint-based gradient approxi-
mation

Within this classifications scheme, the gradient ap-
proximation method presented in this work can be
referred to as a direct approach. However, the main320

distinction of this methodology is that the direct ap-
proximation effort, based on finite differences, oper-
ates on key partial derivative terms within the ad-
joint solution procedure itself, and not at the cost
function level. The main advantage then is that our325

method inherits the efficiency of the adjoint frame-

work to compute the desired sensitivity. The next
section explains the methodology in detail and pro-
vides extensive error analysis.

3 Methodology330

This section presents the general well placement op-
timization problem, and main features of gradient-
based iterative solution procedures. It then briefly
describes the adjoint framework, and explains in
detail the algorithm for developing the well place-335

ment gradients. Three sources of error affecting the
gradient-approximation procedure are identified, and
an in-depth analysis of their relative influence is per-
formed.

3.1 Optimization problem and solu-340

tion procedure

The general well placement optimization problem is
defined as

û = argmax
u

J (x,u), (1a)

s.t. g(x,u) = 0, (1b)

u ∈ D. (1c)

J represents the problem cost function which quan-
tifies the objective for the optimization. J when rep-
resenting the Net Present Value (NPV) is usually ex-
pressed in the general form

J (x,u) =

Nw∑
i=1

Cl lengthi(u)+

N∑
n=1

( Nw∑
i=1

Np∑
p=1

Cp,i qp,i(x,u)

)∣∣∣∣∣
t=tn

∆tn, (2)

where Nw is the number of wells, Np is the num-
ber of phases, tn is the time discretized into N steps
required by the simulation. qp,i and Cp,i denote, re-
spectively, the production/injection phase flow rate345

and the discounted price/cost of the phase p, in the
i-th well. Finally, Cl lengthi(u) defines the cost of
extending the i-th well to its current length.
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J depends on both state variables x and well con-
trol and configuration parameters u. x is composed350

of pressure and saturation states at each of the reser-
voir grid blocks and at each time step, while u con-
sist of time-dependent well controls, such as bottom-
hole pressure and liquid rates, in addition to vari-
ables that determine the general configuration of the355

wellbore within the reservoir grid. In this work,
only wells consisting of a single segment are consid-
ered. The single-segment wellbore is parametrized
in three-dimensional space by six values, i.e., the co-
ordinates of the heel and toe for the i-th wellbore360

[ xheel yheel zheel xtoe ytoe ztoe ]i ∈ R6. In the case
of vertical wells, this parametrization is modified by
constraining some of the degrees of freedom, i.e., we
set xtoe = xheel, ytoe = yheel, while the z coordinates
of the heel and toe are kept constant. In general, one365

completion is defined at each grid cell traversed by
the well trajectory. Thus, for vertical wells, comple-
tions are defined in those grid cells intersected by the
line between zheel and ztoe. For deviated wellbores,
completions are defined only in those grid cells tra-370

versed by the specified well segment while any preced-
ing section of the well is assumed non-producing. Fu-
ture work will likely extend this overall parametriza-
tion, e.g., use wells consisting of multiple segments,
to approximate more complex trajectories.375

(1b) defines the mass balance equations discretized
in space using finite volume formulation and in time
using an implicit Euler scheme. In this formulation,
the equations are thought of as a set of constraints
that determine the state given by the controls [22],380

i.e. x = x(u). The system of equations is solved
numerically with respect to x. This computation is
performed by the reservoir simulator.

Time-dependent well controls enter explicitly into
the reservoir simulation equations g through the385

well model defined at each source/sink reservoir grid
block. On the other hand, variables that deter-
mine the configuration of the well, e.g., well place-
ment coordinates, do not typically have an explicit
representation within the reservoir simulation solu-390

tion scheme. Rather, these variables exert their in-
fluence implicitly by determining the number and,
through the well connection factor, the magnitude of
the reservoir source/sink terms.

Well variables u are constrained by simple upper395

and lower bounds. However, these variables can, and
are usually, also constrained by more sophisticated
types of restrictions. Restrictions on u range from
various input and output nonlinear production con-
straints on the controls, to various forms of well place-400

ment constraints that limit the overall configuration
of the wellbores, e.g., in terms of length, orientation,
curvature and/or inter-well distance [14]. The vari-
ous types of constraints that may apply to u form a
feasible region designated by D.405

(1) is commonly solved for û by using iterative pro-
cedures. A nonlinear programming solution approach
is to sequentially approximate the nonlinear J using
linear or quadratic functions or using other functions
whose optima are readily available. The local approx-410

imations are used to find current best points, and the
iterative procedure yields a sequence of optima ulti-
mately leading to the optimum of J . Both linear
and quadratic approximations rely on the first order
sensitivities of J with respect to u.415

3.2 Adjoint framework

Considering J continuously differentiable at point u,
the sensitivities of J can be computed exactly follow-
ing the mathematical definition of a Gâteaux differen-
tial. When x(u) is an explicit function, the Gâteaux
differential of J is defined as

dJ (x(u),u; δu) =

lim
ε→0

J (x(u + εδu),u + εδu)− J (x(u),u)

ε
.

(3)

The following gradient definition relies on the Riesz
Representation theorem given below (here 〈·, ·〉 des-
ignates the inner product).

Theorem (Berger 1977, p.30) Let X be a Hilbert420

space. Then any bounded linear functional h(x) de-
fined on X can be uniquely written as h(x) = 〈x, y〉
for some y ∈ X.

According to this theorem, if dJ (x(u),u; δu) is a
bounded linear functional of δu, then there exist a
unique vector, ∇uJ , called the gradient, such that
for every δu we have

dJ (x(u),u; δu) =
〈
∇uJ , δu

〉
. (4)
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In contrast to dJ (x(u),u; δu), the term∇uJ is inde-
pendent of the perturbation direction δu, and there-425

fore the sought sensitivities of J are expressed en-
tirely by this term. When the explicit form of x(u)
is unknown, an efficient way to derive ∇uJ in (4) is
to reformulate the problem into an augmented form,
and apply the first order optimality conditions to this430

formulation.
In the following, we refer to the adjoint gradient

derivation outlined in [21]. According to Plessix, the
augmented Lagrangian is an extension of the origi-
nal cost function definition that includes the equal-
ity constraint functions g(x,u) as additional terms.
Note that in this derivation, x is kept independent of
u. Furthermore, each term added to the original cost
function is weighted by a Lagrange multiplier. Such
multipliers form a vector denoted here by λ, which,
as a part of the Lagrangian, is also kept independent
of u. The augmented Lagrangian formulation for the
problem stated above is thus given as

L(x,u,λ) = J (x,u) +
〈
λ, g(x,u)

〉
, (5)

with x and λ both being kept independent of u by
definition.

Notice that L is a continuously differentiable func-
tion of λ and x. Applying the first order optimality
conditions with respect to those variables yields the
following expressions:

∂L(x,u,λ)

∂λ
=0→ g(x,u) = 0; (6a)

∂L(x,u,λ)

∂x
=0→

(
∂g(x,u)

∂x

)T
λ = −∂J (x,u)

∂x
. (6b)

(6a) is satisfied as x is determined to be the solution
of (1b) by numerical simulation. (6b) is solved as a435

system of equations with λ being the unknown (in
this computation, (6b) is referred to as the adjoint
variable system while λ is called the adjoint variable).

Given a solution to (6), here denoted as (x̃, λ̃),
[21] formulates the expression for the adjoint-based
gradient of J as

∇uJ =
∂L(x̃,u, λ̃)

∂u
, (7)

where x̃ and λ̃, are kept independent of u when the
derivative of L with respect to u is computed. From
(5) and (7) we obtain

∇uJ =
∂J (x̃,u)

∂u
+

(
∂g(x̃,u)

∂u

)T
λ̃, (8)

where, as in (7), the partial derivatives on the right-
hand side take into account only the explicit depen-440

dence of J and g with respect to u.
An important conclusion based on (8) is that the

gradient ∇uJ may be approximated by replacing the
operator ∂/∂u in (8) by a finite difference operation.
This conclusion is central in the proposed derivation445

of well placement gradients described next.

3.3 Adjoint-based well placement gra-
dient approximation procedure

In the previous section, the sensitivities of J with re-
spect to u are computed under the assumption that450

L and J are continuously differentiable functions of
u. However, time/space-discretizations are often ap-
plied to fundamental parts of the overall problem,
e.g., to solve g(x,u) = 0, and for well control vari-
ables in u. Therefore, continuous differentiability of455

L and J cannot automatically be asserted for all
cases. In the following, we inspect whether this as-
sumption holds for the given discretizations of time
and space. For the case of time discretization, contin-
uous differentiability, both with respect to well con-460

figuration variables and with respect to piecewise lin-
ear constant-in-time well controls, can be confirmed.
The former is valid because well configuration pa-
rameters, e.g., well placement coordinates, are inde-
pendent of time, while the latter is valid because well465

controls are shown to be consistent with the standard
adjoint formulation described in Section 3.2; for fur-
ther explanation, see [27]. However, for the case of
space discretization, the assumption of differentiabil-
ity still holds for well control type of variables, but470

is no longer valid with respect to well configuration
variables.

Following this, (7) can only be applied in a straight-
forward manner to well control variables. Crucially,
however, (7) may still be applied to well configuration
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variables if the partial derivatives in (8) are approxi-
mated, e.g., by finite differences, as indicated at the
end of Section 3.2. Following this reasoning, we first
consider a particular point u and obtain x̃ and λ̃ as
the solution of (6) to be used in the approximation
of (7). Because the derivatives with respect to u in
(8) are partial derivatives, we take into account only
the explicit variation of J (x̃,u) and g(x̃,u) as func-
tions of u with respect to some small perturbations
u ± εδu. Here ε denotes a perturbation size and δu
is a perturbation direction. Next, we apply a central
difference scheme to evaluate the terms of (8) for the
direction δu. The approximation of the adjoint gra-
dient along this direction thus becomes

∇̃δuJ =
L(x̃,u + εδu)− L(x̃,u− εδu)

2 ε
=

J (x̃,u + εδu)− J (x̃,u− εδu)

2 ε
+(

g(x̃,u + εδu)− g(x̃,u− εδu)

2 ε

)T
λ̃.

(9)

To approximate the full gradient, (9) is repeated us-
ing perturbations δu for all 6Nw well location compo-
nents of u, i.e., δu is defined as a unit vector ej in the475

jth component of u. Finally, we stress that, when-
ever applying (9), both x̃ and λ̃ at all times conform
with the conditions stated for (8). Therefore, as in
(8), the approximated adjoint gradient requires only
one solution of (6). Approximation (9) is used in the480

context of an adjoint framework summarized in Al-
gorithm 1. The steps of this algorithm are described
in detail below.

All components of the gradient vector ∇uJ are as-
sembled with the use of two runs only. In the first485

(forward-in-time) run, we perform a reservoir simula-
tion and save the state variables into a binary backup
(lines 2 through 5 in Algorithm 1). Recall N is the
number of steps required by the simulation. In the
second (backward-in-time) run, the state variables490

are read from the backup for each time step start-
ing from the last time step. The state data is used
to assemble the adjoint system (lines 7 through 30).
At each step of the backward-in-time procedure, the
adjoint system is solved with respect to the corre-495

sponding adjoint variable λ̃ (lines 9 and 10). At this

point, the vector of optimization variables u is sepa-
rated into two groups:

1. well control variables denoted vj ;500

2. well configuration variables denoted wj .

The gradient components corresponding to vj
are evaluated directly according to (7), (lines 11
through 13). The gradient components correspond-505

ing to the well configuration variables are obtained
by perturbing the variables wj individually by ±ε
(lines 15 through 21). The residual and cost function
terms corresponding to wj ± ε are computed and
used in (9) to approximate the gradient component510

at that time step (lines 22 through 27).
Perturbing slightly the variables defining a well

configuration will yield blocks with slightly different
well connection factors.

Recall that well configuration variables wj have a515

set of reservoir grid blocks associated with it. De-
pending both on the perturbation size and on the ge-
ometry of the well traversing the grid, the perturbed
variables may also yield a slight change in the cardi-
nality of the set of well blocks. Lines 15 through 21 in520

Algorithm 1 compute the perturbed well trajectories,
i.e., this part of the algorithm finds the (altered) sets
of traversed grid blocks and calculates the appropri-
ate connection factors for these well blocks (line 19
in Algorithm 1).525

For perturbation sizes significantly smaller than
the mean grid block size, applying the standard
Peaceman model [19] does not provide an adequate
measure of production change due to the underlying
model assumption that the wellbore runs through the530

axis of the block. Since production changes from this
type of perturbations are linked to wellbore length
and/or geometry changes to the well section travers-
ing the grid block, we introduce a flexible (approxi-
mate) calculation of the well connection factor. This535

calculation, presented by Shu [25] and Magnusson
[18], relies on first projecting the deviated well tra-
jectory onto the cell faces before using the Peaceman
model independently on each component of the tra-
jectory. Finally, the l2-norm of the components is540

taken to obtain an appropriate connection factor rep-
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Algorithm 1 Procedure to obtain well placement sensitivities from adjoint framework.

1: u = {vj , wj} ← input from SQP (request of cost function and gradient)

2: for n = 1, . . . , N (forward-in-time run) do

3: solve (6a) for state variables x̃|t=tn
4: store x̃|t=tn
5: end for

6: evaluate cost function value to be returned to SQP

7: for n = N, . . . , 1 (backward-in-time run) do

8: load stored x̃|t=tn
9: assemble adjoint variable system (6b)

10: solve for adjoint variables λ̃|t=tn
11: for each well control variable vj do

12: compute ∇vjJ |t=tn according to (7)

13: end for

14: for each well configuration variable wj do

15: if n = N (first backward-in-time step) then

16: perturb wj by ±ε and define well as a line segment

17: find grid cells intersected by the segment

18: gather intersected cells (well blocks) Iwj±ε = {i1, . . . , iNg
}

19: compute well connection factors

20: store Iwj±ε and connection factors

21: end if

22: for each well block ik in stored Iwj±ε do

23: assemble source/sink terms of gik
24: form gik(x̃, wj + ε)− gik(x̃, wj − ε)
25: end for

26: form qp,i(x̃, wj + ε)− qp,i(x̃, wj − ε)
27: approximate ∇wjJ |t=tn using (9)

28: end for

29: add ∇uJ |t=tn to gradient

30: end for

resenting the deviated well trajectory. The decom-
position performed by this calculation enhances the
ability of the well connection factor to consistently
capture production differences caused by small-scale545

geometric changes to the trajectory. Moreover, by

taking into account the three-dimensional geometry
of slanted wellbores within grid blocks, this calcu-
lation contributes to smoothening the cost function
objective with respect to well coordinates, and thus550

ultimately helps increase the accuracy of the gradient
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approximation.
We reiterate that the adjoint gradient computa-

tion described in Algorithm 1 encompasses only two
runs: a forward-in-time run performed by a stan-555

dard reservoir simulator with the capacity to store
the state variables, and a backward-in-time run per-
formed by a customized adjoint framework with the
capability of assembling the flow rates of the residual
source/sink terms. This yields an efficient gradient560

approximation approach compared to a straightfor-
ward function-level application of a finite difference
scheme that would otherwise require a standalone
reservoir simulation for each of its stencil points. Fur-
thermore, the process of assembling the adjoint gradi-565

ent components (lines 11 through 28 in Algorithm 1)
is independent for each variable vj and wj . This fea-
ture enables potential parallelization, making the ad-
joint approach efficient vis-a-vis a parallelized finite
difference gradient computation.570

However, as for any approximation, the gradient
estimate obtained through this procedure is subject
to various types of error, e.g., truncation errors linked
to the central difference scheme in (9). Therefore, to
corroborate the overall gradient approximation pro-575

cedure, it is important to identify and quantify the
influence of pertinent error sources. The main goal
is to determine, if possible, a perturbation size range
within which sufficient accuracy can be obtained to
efficiently drive the well placement search. Such error580

analysis is performed in the next section.

3.4 Consistency of gradient approxi-
mation

Finite differences are commonly used within engi-
neering disciplines to approximate the sensitivity of585

functions. Unlike analytical derivatives, though, fi-
nite differences do not take into account the proper-
ties of the function in the interval between the current
and perturbed point. This can often be considered
an advantage, e.g., in the case of function noise or590

discontinuities, the finite difference gradient may be
able to capture the coarse-scale slope of the function.
However, a clear shortcoming is that the approxi-
mated gradient may not be able to come close to,
or may even miss, a local optimum between the two595

points. In this work, we regard the approximate gra-
dient as containing sufficiently accurate information
about the slope of the function to assure convergence
since the SQP method used for well placement op-
timization requires building no more than a coarse600

approximation of the objective function to find a line
search direction. For context, see work by [3] con-
tending an SQP method permits relative gradient er-
rors of 50%, or more. Further details regarding the
solver used in this work are given in Section 3.5.605

Notwithstanding the above argumentation, a mea-
sure of gradient accuracy is important for the perfor-
mance of the nonlinear programming method used
in this work. This section therefore seeks to pro-
vide a measure of the quality of the approximated610

gradient by determining a perturbation range within
which the gradient estimate is valid, i.e., consistent.
Since exogenous errors may influence the gradient es-
timate, determining the range of perturbation sizes,
within which the error explicitly associated with the615

approximation is dominant, is a practical way of es-
tablishing when the approximation is consistent. In
our case, this means finding the perturbation range
within which the truncation error is dominant. To
find this range, one has to identify the major sources620

of error that influence the overall estimate and eval-
uate how each error source varies with respect to the
perturbation size. Finding this range can be done, for
example, by equating the analytical estimates of the
errors and then solving for perturbation size. Such625

an analysis, based on balancing the simulation and
truncation error, is performed by Iott et al. [10] for
a data-fitting problem and a wing design simulation.
Due to the complexity of the reservoir system, how-
ever, a theoretical analysis of this kind cannot be630

easily done in our case. Instead, to find the range of
perturbation sizes within which the truncation error
is dominant, we first establish the main error sources,
then compare numerically the relevant error orders
determined using an extensive sampling of the well635

placement solution space.

3.4.1 Analysis of error sources

The following three error sources are considered the
main components of the total error associated with
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the finite difference gradient approximation presented
in (9)

∇uJ = ∇̃δuJ + Ecancel + Etrunc + Ediscr. (10)

The first error source (Ecancel) is related to the can-
cellation error caused by subtracting two very simi-
lar computed values: As ε goes to zero, the computed640

values L(x̃,u+εδu) and L(x̃,u−εδu) approach each
other; and for small enough ε, round-off errors be-
gin dominating the numerator of (9). The second
error source (Etrunc) refers to the truncation error
associated with the neglected terms from the Taylor645

series expansion used to approximate the gradient.
The third error source, termed discretization error
(Ediscr), is the error associated with the discontinu-
ities originating from the discrete nature of the grid
and its components, e.g., the different rock properties650

for each grid block. These errors are mutually inde-
pendent, however, their relative contribution to the
total error vary according to the perturbation size ε.
To determine their relative error contribution, below
we establish how the individual errors Ecancel, Etrunc655

and Ediscr depend on ε.

Cancellation error As defined, the cancellation
error originates from round-off error and is caused
by the subtractions in the numerator of (9). This
error is proportional to εmach ε

−1, where εmach is the660

machine epsilon.

Truncation error The truncation error originates
from the Taylor expansion underlying the central fi-
nite difference approximation (9) and is therefore ex-
pected to be of order O(ε2).665

Discretization error The discretization error is
zero for a well and its associated ε-neighborhood en-
closed entirely by a zone of homogeneous rock proper-
ties (e.g., a grid cell). However, this error materializes
as soon as the well trajectory leaves the homogeneous670

zone and continues to grow as additional cell inter-
faces are traversed in a heterogeneous field. Note
that any point on the well trajectory may contribute
to the discretization error. Specifically, perturbing
the heel or toe within their respective endpoint grid675

cells only, does not guarantee (in fact, is often not the
case) that other well trajectory points will stay within
their respective grid cells and thus not contribute to
the error. The magnitude of the discretization error,
considering a particular point u ± εδu, does not de-680

pend explicitly on ε itself. Rather, it depends on ε in-
directly through the number of grid blocks traversed
by the well and on the heterogeneity of the grid block
parameters. For this reason, a unique power law can
not be expressed for this error in the same manner as685

for the other two error types. This renders a study of
its dependence on ε beyond the scope of this work.

Having established how the individual error types
are expected to vary with respect to ε, we now con-
sider the properties of their linear combination. In690

such a combination, depending on the magnitude of
ε, the following three scenarios are possible: either
one of the three error types prevails predominantly
over the others; or, the total error is controlled by
some combination of both the truncation and cancel-695

lation errors; or, the total error is controlled by some
combination of both the truncation and discretization
errors. A goal of the error order experiment next is
to quantify the relative contribution of each of these
error types.700

3.4.2 Error order experiment

The following experiment is devised to infer the ex-
pected order of the total error, Ecancel + Etrunc +
Ediscr, as a function of ε. The experiment is per-
formed by perturbing the x, y, z coordinates of the
heel of a wellbore (the toe remains fixed) and com-
puting the gradient approximations (9) for three per-
turbation sizes {ε, 2ε, 4ε}. The following quantities
(later referred to as order estimator) are then com-
puted numerically

R =
∇̃4δuJ−∇̃2δuJ

∇̃2δuJ−∇̃δuJ
. (11)

Following definition (10), a positive R is interpreted
using the formula

R ≈
O
(
4nεn

)
−O

(
2nεn

)
O
(
2nεn

)
−O

(
εn
) ≈ 2n. (12)

11



R provides the order of the total error n ≈ log2(R).
For a given u, (11) yields values Rx, Ry, Rz corre-
sponding to the three perturbation directions x, y, z.
To sample different configurations of the well, this705

procedure is repeated for several random locations of
the heel. Following this, the sampled values of Rx, Ry
are combined, and the quartiles (median, P25 and
P75) of R for perturbations in the horizontal direc-
tion are computed from the distribution. Similarly,710

the sampled values of Rz are used to deduce the same
quartiles of R for perturbations in the vertical direc-
tion. Finally, the above procedure is repeated for
varying ε within (0, εmax] to obtain the sensitivity
with respect to the perturbation size. Figure 1 shows715

the statistical distributions of R as functions of ε.
The order estimator statistics for perturbations per-
formed in the horizontal and vertical directions are
shown in figures 1(a) and 1(b), respectively. We treat
the horizontal and vertical dimensions separately be-720

cause of their different scaling in the reservoir grid.
The statistical metrics shown in Figure 1 are obtained
by evaluating Case 4, described in Section 4, using
150 uniformly-distributed random well endpoint lo-
cations.725

At this point, we focus this experiment to study
the role of the truncation error. This means we con-
centrate on the scenarios where either the truncation
error is dominant, or both the truncation and the dis-
cretization error contribute in some measure to the730

total error. The order of the total error is computed
using different perturbation sizes ε ranging from 0.18
to 29 meters for the horizontal direction and from
0.0075 to 1.5 meters for the vertical direction. To
avoid a contribution from the cancellation error, the735

lower bounds of ε above are selected to be appro-
priately large. Furthermore, the upper bounds of ε
are chosen significantly smaller than the character-
istic grid cell size of ∆x ≈ ∆y ≈ 125 meters and
∆z ≈ 5 meters. Recall that even though the selected740

perturbation range is limited, the discretization error
still contributes since points along the modified tra-
jectories cross multiple cell boundaries for the various
ε.

Figure 1 allows us to statistically study the influ-745

ence of the truncation error on the total approxima-
tion error. Importantly, in each plot, we are able to

identify a plateau of medians corresponding to O(ε2)
which is the order associated with the truncation er-
ror. For very small ε the box plot is almost invisible,750

i.e., only a tiny distance between lower and upper
quartiles, which means the well samples at this per-
turbation range do not generate discretization error.
In the following ε range, the box plots demonstrate a
skewed distribution, i.e., only a tiny distance is seen755

from median to the upper quartile. This indicates
that the well samples still cluster largely around the
gradient approximation free of discretization error.
As ε increases in size, the number of well samples
experiencing discretization errors increases and the760

distribution becomes less skewed. As the median ap-
proaches the lower quartile, the truncation error has
an inferior relative role within the total error, which
is reasonable and implies a greater relative influence
by the discretization error. In Figure 1(a) we ob-765

serve that, for horizontal perturbations, this occurs
for ε larger than 3 meters. In Figure 1(b), on the
other hand, we see that for vertical perturbations,
the plateau of the median ends at ε = 0.12 meters.

It should be stressed that a total error dominated770

by the truncation error is preferred because under
this condition the gradient ∇uJ is guaranteed to be
consistent with the established approximation ∇̃δuJ .
Furthermore, recall that the main objective is to de-
termine the bounds of perturbation size ε for which775

the gradient approximation is still consistent. Given
this objective, maintaining the above condition is im-
portant because it specifies the range of ε within
which we have the greatest control over the gradi-
ent error, i.e., within this range we are assured that,780

by directly varying ε, the accuracy of the gradient
can be consistently increased/decreased in an exact,
consequent manner as given by (9).

As outlined at the start of this section, the main
goal of this analysis is to determine a perturbation785

size range within which sufficient accuracy can be
obtained for the well placement gradient approxima-
tion. This analysis is a helpful preprocessing step
to obtain useful tuning parameters for the proposed
gradient methodology. However, the acquired infor-790

mation is case-dependent, which means the analysis
has to performed for each different reservoir model
considered. Moreover, the analysis entitles a signifi-
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cant computational load since producing a figure such
as Figure 1 requires a large sampling of gradient ap-795

proximations, e.g., the analysis in this section takes
150 pairs of forward- and backward-in-time simula-
tions. In this regard, future applications are expected
to decrease computational load significantly through
parallelization of Algorithm 1. Finally, a main as-800

sumption behind this analysis is that the obtained
ranges remain valid for all feasible well configura-
tions explored by the optimization procedure. Fu-
ture work will further explore this assumption, and,
through further analysis involving more case study805

data, also attempt to develop general rules that can
apply across different reservoir models.

3.5 SQP and constraint handling

In our work, the well placement optimization prob-
lem (1) is solved using SQP code implemented in the810

sparse nonlinear optimizer (SNOPT) library. A de-
tailed description of this library can be found in [9].
This code, through a sequence of ∇uJ , constructs
and updates a quadratic model of J . This quadratic
model is solved as a QP-subproblem and contributes815

to the update of u through a line search procedure.
Additionally, the quadratic model of J may be sup-
plemented with linear models of the nonlinear con-
straint functions.

An important feature of the SQP solver is that it820

deals with the various constraints in a proactive man-
ner, i.e., solution candidates are maintained largely
feasible throughout the optimization. In our work,
this strategy is instrumental in satisfying the well
placement constraints such as restrictions on the well825

length, angle of inclination, direction, inter-well dis-
tance, and signed well-to-boundary distance. Cru-
cially, these constraint functions are independent of
the state variables x and therefore do not rely on the
adjoint framework. The linearization of these func-830

tions is done either using analytical derivatives or ap-
proximations with a central difference scheme.

Several of the constraints mentioned earlier have
been implemented, as necessary, for the various cases
tested in this work. As described in Section 3.1, both835

vertical and deviated wellbores are parametrized as
line segments in three-dimensional space. Given

this parametrization, practically all well placement
constraint-handling computations entitle solving a se-
ries of, often standard, geometric problems dealing840

with the relative positioning of lines and points in
three dimensional space, e.g., finding the minimum
distance between a line segment and a point in space.
Because of this, most constraint enforcement in this
work is implemented using readily available, efficient845

geometric algorithms [5].

Still, some specific algorithmic developments, have
been necessary to deal with the inter-well distance
constraint (implemented for all study cases in Sec-
tion 4) and the signed well-to-boundary distance con-850

straint featured in cases 2 and 4. Next we explain
some of the main features of this constraint-handling
methodology.

Inter-well distance In the R6-parameterization of
wellbores, the inter-well distance metric used in this855

work between two wells is the shortest distance be-
tween two line segments. In this study, we imple-
ment an efficient algorithm adapted from [5] to com-
pute this metric. The distance to a group of wells is
then defined as the distance to the nearest well in the860

group.

Signed well-to-boundary distance In this work,
a boundary constraint that maintains a wellbore
within the reservoir grid is implemented by comput-
ing a signed well-to-boundary distance. Since the865

well-to-boundary distance has to be computed fre-
quently during optimization, in this work, we use a
discrete analog of the boundary consisting of a set of
three-dimensional points (this analog is later referred
to as discretized boundary). For example, the reser-870

voir boundary may be represented by the outermost
grid cell vertices of the boundary cells. At each con-
straint function evaluation, the Euclidean distance to
the boundary point closest to the wellbore segment
is computed; see Algorithm 2 for pseudo-code of this875

computation. The computation is based on a point-
to-segment algorithm (lines 6 through 19) found in [5]
and a sign-guessing procedure (lines 21 through 26)
introduced ad-hoc by the authors. The latter classi-
fies the distance as positive if the wellbore is inside880
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the boundary and negative if outside. Future work
will involve region constraints that can enclose wells
within promising reservoir areas and/or sands delim-
ited by geological features such as faults.

Algorithm 2 Procedure for estimating signed well-
to-boundary distance for a single well

1: ~O ← centroid of discretized boundary

2: ~r ← ~Ptoe − ~Pheel

3: R = 〈~r, ~r 〉+ εmach

4: d←∞
5: for each point ~Qi of discretized boundary do

6: s←
〈
~r, ~Qi − ~Pheel

〉
7: if s 6 0 (near heel) then

8: ~P ← ~Pheel

9: else if s > R (near toe) then

10: ~P ← ~Ptoe

11: else

12: ~P ← ~Pheel + ~r s /R

13: end if

14: dold ← d

15: d← min(d,
〈
~Pi − ~P , ~Pi − ~P

〉
)

16: if d < dold then

17: ~Qmin ← ~Qi

18: ~Pmin ← ~P

19: end if

20: end for

21: for i ∈ x, y, z do

22: αi ← min(Pi,min, Qi,min, Oi,min)

23: Ai ← max(Pi,min, Qi,min, Oi,min)

24: scale Pi,min, Qi,min, Oi,min by (Ai − αi)−1

25: end for

26: distance ← sign
〈
~Pmin − ~Qmin, ~O − ~Qmin

〉√
d

The sensitivities of both the inter-well and well-885

to-boundary distance functions are calculated using
finite differences. These sensitivities, in addition to
constraint violation function values, are passed to the
SQP solver which uses linearized forms of the con-

straints within its internal constraint-handling logic.890

This logic restricts iterates to lie within a feasible re-
gion D up to a given tolerance. It should be noted
that feasibility in the SQP solver is influenced by
the accuracy of the linear approximation of the con-
straints. Thus, original constraints that are highly895

nonlinear may generate infeasible iterates. Details
regarding how the SQP deals with constraints can be
found in [9].

3.6 Gradient-based termination crite-
ria900

The following termination criteria (in order of ver-
ification order) are enforced on the gradient-based
procedure in this work:

1. maximal number of solver iterations;

2. first-order optimality condition;905

3. stationary point.

The first criterion is straightforward. The practical
implications of the second and third criteria are de-
scribed next.

The first-order optimality criterion is used by the910

SQP solver to determine convergence to a local opti-
mum at which point the optimization is terminated.
In practice, this criterion is satisfied when the mag-
nitude of the gradient is less than a given tolerance.
As discussed in Section 3.4, the accuracy of the well915

placement gradient is dependent on the perturbation
size ε. If ε has a lower bound, then the trunca-
tion error corresponding to the smallest nontrivial
ε may be larger than the specified optimality toler-
ance. This problem arises, e.g., in a discrete well920

placement problem where a cost function change is
obtained only for a perturbation εδu large enough to
displace the wellbore to a different grid block. The
truncation error for such an ε would render the first-
order optimality criterion inoperable which is likely925

to reduce algorithmic performance by wasting SQP
iterations trying in vain to satisfy the condition. For
this reason, the implementation in this work has, for
each case, matched gradient accuracy (by modifying
ε) to the scale of the tolerance, or vice-versa, adjusted930
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the solver tolerance according to the possible lower-
bound gradient accuracy attainable by the particular
problem.

The third criterion considers the stationary point
of the problem. The stationary point is defined as935

a subsequent repetition of the gradient norms over
multiple iterations without convergence. In practice,
the condition verifies, within a specified tolerance,
whether the sequence of gradient norm values con-
sisting of the last three solver iterations has already940

occurred. If this condition is true, the optimization
process is terminated, and the current solution is ac-
cepted as an optimal solution.

Next, we apply the methodology to four cases. The
first two cases test the validity and performance of945

the methodology against other approaches in the lit-
erature. The last two cases study the performance
of the methodology given strict heterogeneity and a
more complex grid, respectively.

4 Application950

Four cases are presented to both compare the adjoint-
based well placement gradient method against cur-
rent approaches in the literature, and to test the
methodology on more complex cases involving devi-
ated wellbores. In Case 1 and 2, we test the method-955

ology against results from a direct and an indirect ap-
proach, presented by Li and Jafarpour [16] and Zand-
vliet et al. [29], respectively. Notice that these proof-
of-concept cases contain only vertical wells. The
main goal behind these tests is to show that the cou-960

pling of the gradient approximation approach with
the SQP solver presented in this work yields an effi-
cient method that competes against state-of-the-art
gradient-based methods on their terms. The other
two cases optimize the placement of horizontal and965

deviated wellbores and are based, respectively, on a
binary channelized system (Case 3) and the Brugge
reservoir (Case 4).

Since joint optimization of well placement and con-
trols is not the main focus of this work, control opti-970

mization is only considered in one of the two bench-
mark cases (i.e., Case 1 includes the allocation of well
rates) primarily to compare results with Li and Jafar-

pour [16]. For all other cases, well control parameters
are kept fixed.975

None of the following case studies implement eco-
nomic limits in the underlying simulations. A recent
study by [27] demonstrates that economic limits can
significantly influence the consistency of the adjoint
gradients with respect to well controls. Future work980

will extend this study to the development of adjoint-
based well placement gradients.

Reservoir simulations in this work are performed
using Stanford’s Automatic-Differentiation-based
General Purpose Research Simulator (AD-GPRS)985

[see 8]. One of the distinctive features of AD-
GPRS is the capacity to store state variables and
reassemble, on demand, the constitutive parts of
the residual g and cost functional J . This feature
is illustrated in lines 4, 8 and 9 of Algorithm 1.990

AD-GPRS therefore serves as a well-suited and
highly-flexible platform for the development of
adjoint-based gradient methodology. The different
comparisons against literature cases, in terms of final
results and performance, are described next.995

4.1 Case 1: SPE10 layer.

In Case 1, we implement the optimization case study
corresponding to ”Example 4: SPE10 top layer”
in [16]. This means that we use the exact same reser-
voir model, production and well settings to reproduce1000

the results presented in that paper. In the SQP, all
optimization variables are continuous including wj ,
which here are vertical well (x, y)-plane coordinates
relative to a corner of the grid. However, to be consis-
tent with [16], well connection factors for intersected1005

grid cells are evaluated using Peaceman’s formula for
vertical wells and the horizontal perturbation size ε
is set to ∆x.

Li and Jafarpour [16] solved two problems: (1)
they optimized single well placement and (2) they1010

jointly optimized well placement and rate allocation,
using gradients derived from an SPSA procedure. In
our study, the same two problems are solved using
the adjoint-based gradient approximation methodol-
ogy presented in Section 3.1015

Case 1 comprises a two-dimensional isothermal in-
compressible oil-water reservoir model with a 60 ×
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220 × 1 grid (13200 blocks) with cell dimensions
∆x = ∆y = 10m, ∆z = 1m. The geological distri-
bution, shown in Figure 2(a) is taken from the first1020

layer of the SPE10 model. A constant porosity of 0.2
is used. Optimization variables are the allocation of
well fluid rates and location of fifteen vertical wells:
five injectors and ten producers. As in [16], we inject
and produce the fluid mass equivalent of one reservoir1025

pore volume.
Figures 2(b) and 2(c) show the oil saturations at

the end of reservoir life observed for the optimal well
location and rates obtained using the adjoint-based
well-placement-gradient procedure. The two results1030

are analogous to the ones presented by Li and Jafar-
pour [16]. Figure 2(b) shows the oil saturation after
optimizing only for well placement, while Figure 2(c)
shows the saturation after performing optimization
on both well location and rates. In both cases, min-1035

imum inter-well distance for all wells is set to 150m.
In [16], the SPSA-based routine applied to well place-
ment optimization yields an NPV increase of 43.7%
after more than 500 iterations. The solution to the
same problem using the adjoint-based routine pre-1040

sented in this paper yields an NPV increase of 57.1%
after 141 function and 46 gradient evaluations, i.e., a
total computational cost equivalent to 187 reservoir
simulations. Qualitatively, Figure 2(b), compared to
its analog figure in [16] (Figure 7b1), shows two pro-1045

ducers moving away from the bounds, and a marked
decrease in oil saturation in the western and northern
regions of the layer.

Similarly, in [16], the SPSA-based routine opti-
mizing well placement and controls jointly (as men-1050

tioned, using an alternate solution procedure) yields
a 78.5% NPV increase after approximately 2000 it-
erations. The solution to the same problem using
the adjoint-based procedure from this work yields an
NPV increase of 79.5% after a total of 332 equivalent1055

function evaluations (252 forward simulations and 80
gradient calculations). In combination, these results
validate the well placement gradient approximation
method proposed in this work, and they demonstrate
the efficiency of the overall procedure, in terms of fi-1060

nal result and performance, by arriving at improved
or close-to equivalent solutions at less computational
cost. This efficiency is seen as due to a combination of

crucial improvements by the proposed procedure at
both the gradient-approximation and algorithm lev-1065

els. The former due to the effectiveness of the adjoint
framework in deriving the gradient, while the latter
due to the more accurate search direction provided
by this gradient.

4.2 Case 2: Egg model.1070

Case 2 compares results obtained using the method-
ology proposed in this work against results from [29]
where an indirect gradient-approximation approach
based on pseudo-wells is used to optimize the lo-
cation of a set of vertical wells. Here we have re-1075

implemented the case corresponding to ”Example 3”
in [29] which consists of optimizing the location of
eight injectors and four producers. The optimization
is run from two initial well configurations, referred
to as ”standard” and ”mini” configurations; these1080

configurations are illustrated in Figure 3(a) and Fig-
ure 4(a), respectively.

Figure 3(a) and Figure 4(a) also show the log-
permeability distribution of the reservoir model. The
reservoir consists of a 60 × 60 × 7 grid (with 185531085

active cells) with cell dimensions ∆x = ∆y = ∆z =
20m. Further details about the model can be found
in [29].

Notice that in this model the vertical wells are
completed through all 7 layers. Here, the standard1090

Peaceman model is used for the well connection factor
computation of the vertical wells, while optimization
variables are the well location coordinates in (x, y)-
plane determined relative to one of the corners of
the grid. For consistency with the Peaceman model,1095

the horizontal perturbation size ε is set to ∆x. In
our implementation, we supply the following nonlin-
ear well placement constraints to the SQP solver to
regularize the solution. These constraints, inter-well
and signed well-to-boundary distance constraints, re-1100

spectively, consist of keeping the wells two grid blocks
apart from each other and within the region of the
active (x, y)-plane of grid blocks. Optimizations runs
are started using the two initial configurations and
the same control and economic constraint (reactive1105

shut-in based on water-cut) settings as the original
work have been implemented.
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Figure 3(b) and Figure 4(b) show the final oil sat-
uration and well configurations obtained using the
methodology presented in this work. In Figure 5, we1110

show the NPV evolution curves from the original pub-
lication as black lines, i.e., the values of these curves
have been copied from Figure 11 in [29]. In Figure 5,
red lines correspond to NPV curves obtained using
the methodology proposed in this work.1115

Comparing the final well configurations against
those obtained by Zandvliet et al. [29], we observe
that, for both optimization runs, i.e., starting using
either the standard or the mini initial points, the re-
sulting well locations are qualitatively a close match.1120

For the standard initial point, the optimal well con-
figuration ends in a local optimum with essentially
the same features as the original five-spot pattern.
For the mini initial point, the well locations evolve
into a linear well configuration pattern with the pro-1125

ducers aligned in the middle and injectors sitting on
the west and east flanks.

The curves shown in Figure 5 demonstrate that, in
terms of the NPV and equivalent number of function
evaluations, the methodology presented in this work1130

yields close-to equal results to the ones presented by
Zandvliet et al. [29]. Compared to these results, the
methodology proposed here yields NPV differences
of 0.4% and −0.8%, when starting from the standard
and mini initial positions, respectively.1135

In Figure 5, the function evolution curves for the
standard initial configuration follow similar paths,
i.e., these curves start from a high function value
and obtain only a modest increase. This progression
is indicative of an initial point close to a local op-1140

timum. On the other hand, the function evolution
curves corresponding to the mini initial configura-
tion start from a clearly suboptimal point. Here the
curves for each of the methods take distinct paths,
in particular in the beginning, e.g., the methodology1145

presented in this work shows a steeper increase at the
start, and eventually converges to a slightly lower op-
timum. Overall, this comparison demonstrates that
the gradient-approximation method presented in this
work yields a sufficiently accurate direction of cost1150

function increase and that this direction can be used
to efficiently drive a gradient-based algorithm.

Next, the versatility and performance of the

methodology are tested on two more advanced
production cases in terms of well configuration:1155

the third case in this work includes four horizontal
wellbores and a vertical injector within a heavily
channelized geology, while the fourth case con-
sists of two deviated wellbores within a realistic
three-dimensional grid.1160

4.3 Case 3: Two-dimensional case in
channelized permeability field.

Case 3 involves a binary channelized permeability
field mapped onto a two-dimensional uniform 60×60
grid with ∆x = ∆y = ∆z = 24m. The permeability1165

is taken from a set of realizations generated in [24].
The sand permeability is 500mD, while the shale per-
meability is 10mD. The field, along with the initial
well locations, is shown in Figure 6. Notice the four
producers have short initial well lengths that range1170

over two grid blocks only, while the injector in the
middle is forced to remain vertical throughout the
optimization. Initially, the reservoir is at equilibrium
with an average pressure of 146bar. The well controls
are fixed and set to ensure uninterrupted production1175

during the production time frame of 500 days. The
bottom-hole pressures of the producers and the in-
jector are respectively 20 and 200bar. The horizontal
length of the producers is constrained to a maximum
of 350m, whereas the minimum inter-well distance1180

for all wells is set to be 350m. Despite the relatively
simple channelized structure, this case poses a chal-
lenging well placement problem because the abrupt
changes in the permeability field yield a nonsmooth
solution space. The objective for this case is NPV1185

with only oil production with oil price set to 75$/bbl
and cost of horizontal producer trajectory 500$/feet.
The discount factor is set to 10%. The statistical dis-
tribution of total error orders with respect to the hor-
izontal perturbation size is given in Figure 7. Based1190

on this figure, two sizes of ε are selected for testing,
i.e., 15m and 24m. Figure 7 shows that the former ε
marks the end of the range where the truncation error
(R = 4) is present within the upper quartile, while
the latter ε (corresponding to grid dimension ∆x for1195

this case) is associated with predominantly the dis-
cretization error, (see the analysis in Section 3.4.2).
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Results for this case are presented in figures 8
and 9. Figure 8 shows the initial and final well config-
urations, and the resulting saturation maps for each1200

configuration, while Figure 9 shows the correspond-
ing function evolution graph. For ε = 24m, the in-
crease of cost function after 280 evaluations is from
4.061·108 to 6.285·108, i.e., an increase of 54.8%. For
ε = 15m, however, the NPV increased to 6.319 · 1081205

after only 97 evaluations, i.e., an increase of 55.6%.
These results are a clear demonstration of how a more
accurate gradient approximation, i.e., using ε = 15m,
increases the effectiveness of the gradient-based pro-
cedure.1210

Comparing the initial position against the final so-
lution we observe a significant change in well configu-
ration, both in terms of length and orientation, while
both well length and inter-well distance constraints
are satisfied. In Figure 8 we see the injector moving1215

from a location at the border of a high-permeability
channel to the middle of the high permeability area
at the intersection of two main channels. This repo-
sitioning seems reasonable as it ensures the oil in
this area is effectively pushed towards the surround-1220

ing wells. As expected, the producers extended their
lengths to increase their drainage area, and two pro-
ducers have orientation closely aligned with the direc-
tion of the channels. We also observe that the heels of
three of the wells cross areas of low permeability (due1225

to shale facies) to reach into a neighboring channel.

4.4 Case 4: Three-dimensional pro-
duction case with deviated well-
bores and realistic constraints.

Case 4 has been built using model data from the1230

Brugge benchmark case [20]. Its purpose is to pro-
vide a more realistic grid and production scenario
to test the performance of the proposed methodol-
ogy. The same grid geometry and static cell data as
the realization #73 of Brugge benchmark have been1235

used, while modifications have been made such as a
slight rotation of the grid, shallower oil-water and
gas-oil contacts (now at 1610m and 1518m, respec-
tively). In this case, the original fluid formulation
(two phase dead oil) has been replaced with a three1240

phase black oil formulation thus allowing free gas to
form at the top of reservoir. The intention is to create
a more challenging three-way trade-off between oil,
gas and water production in the cost function which
comprises a non-discounted NPV with oil price, wa-1245

ter production cost and gas production cost equal to
47.7$/bbl, 0.79$/bbl and 5.3$/MMscf, respectively.
In this setup, e.g., wellbores have to avoid both high
gas and/or water saturation areas. The new relative
permeability data is shown in Figure 10. Well length1250

penalization is not included in the cost.

Case 4 includes two deviated production wells and
two vertical injectors. The well placement problem
consists of optimizing the spatial configuration of the
two producers. The injectors are placed at the out-1255

skirt of the reservoir for pressure support, and their
location is fixed, i.e., these well are not part of the op-
timization. All wells are controlled using fixed BHP
pressure, injectors are set at 170bar, while produc-
ers are set at 70bar. Production time frame for the1260

case is 6 years. Figure 10 shows the permeability of
the sector of the reservoir model that includes the
producers (this sector is large enough to study the
relevant saturation changes and provides an appro-
priate close-up of the resulting well configurations,1265

and is therefore used in all remaining figures).

The production wellbores are represented as
straight segments within the reservoir volume.
As stated in Section 3.1, each horizontal well is
parametrized using the spatial heel-toe endpoint1270

coordinates. Thus, Case 4 has in total twelve
optimization variables. Initially, the reservoir is
produced by two very short wells traversing the
upper part of the oil rim, see Figure 12(a). These
short wells do not supply sufficient drainage capacity1275

for this production scenario. Instead, this starting
point is chosen to provide the optimization with
ample improvement potential. The main goal of this
setup is to study the efficiency of the gradient-based,
constrained, local-search algorithm.1280

In Case 4, the following three types of nonlinear
constraints are imposed on possible well configura-
tions:

1. well length constraint: wellbores cannot be
longer than 1500m;1285
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2. inter-well distance constraint: any point along
a wellbore cannot be closer than 400m to any
point along any other wellbore;

3. reservoir boundary constraint: wellbores are kept
within the reservoir grid by measuring the dis-1290

tance between any given well endpoint and the
outer vertices of the reservoir grid.

The implementation of these three constraints is de-
scribed in Section 3.5. In addition to these con-
straints, the upper and lower bounds on the well vari-1295

ables serve as a secondary boundary constraint delim-
iting a (cubic) volume of the reservoir. The x, y-sides
of this box constraint are shown as white borders in
figures 10, 12(c) and 12(d).

The results from this case are discussed in the fol-
lowing. Figures 12(a) and 12(b) show the initial and
final well configurations, respectively. Comparing the
optimal positioning of the wells in Figure 12(b) to the
initial configuration in Figure 12(a), we observe that
the final wellbores have remained at the top of the oil
rim and that their lengths have expectedly increased
from initial values of about 130m to well lengths of
1343m and 1395m. Note, however, that these wells
did not reach their maximum allowed value of 1500m.
Instead, this local maximum is the result of the trade-
off between oil, gas, and water production. Overall,
the final well configuration covers a large part of the
allotted feasible area, which is a reasonable solution
to maximize oil production, with the heel of one of the
wells touching the boundary of the box constraint.
Well coordinate changes (in meters) from initial to
final configuration are

producer #1

∆~Pheel = {−376.9, −147.8, −9.5},

∆~Ptoe = {817.3, 13.7, 37.7};
producer #2

∆~Pheel = {−1014.3, 79.1, 21.8},

∆~Ptoe = {236.8, −98.7, 13.9}.

For reference, the size of the horizontal bounding box1300

(white) (shown Figure 12) is (4400m, 1350m). This
result signifies a substantial development of the initial
solution by the search procedure.

The distribution of oil, gas and water saturations
at end of production time corresponding to the initial1305

well configuration is shown in Figure 12(c), while the
distribution corresponding to the optimal well con-
figuration is shown in Figure 12(d). Comparing Fig-
ure 12(d) with 12(c) we see a clear decrease in oil sat-
uration for the whole segment corresponding to the1310

longer wellbores. Figure 13 shows the progression
of the cost function where the NPV increases from
2.591 · 109 to 1.106 · 1010 using 333 forward reservoir
simulations and 333 backward gradient evaluations.
From this progression we see that the customized con-1315

vergence criteria described in Section 3.6 are efficient
in the sense that they allow the algorithm to proceed
without stopping it too early, allowing step-increases
throughout.

5 Summary1320

This paper presents an efficient approach for approx-
imating the well placement gradient through the ad-
joint framework. Three main categories: continuous,
direct and indirect, have been defined to describe
the multiple well placement gradient-approximation1325

approaches proposed in the literature, and to pro-
vide context to the adjoint-based approach presented
in this work. Common for these approaches is the
goal of deriving well placement sensitivities to enable
the use of local-search optimization procedures. This1330

work implements an SQP-based procedure coupled
with efficient well placement constraint enforcement.
A core advantage of this methodology compared to
the other approaches is the efficiency of the sensitiv-
ity estimation inherited by performing the approxi-1335

mation within the adjoint solution framework. Addi-
tionally, the flexibility of the adjoint-based approach
enables the straightforward computation of gradients
of associated functionals which facilitates the imple-
mentation of efficient constraint-handling.1340

Furthermore, this paper elaborates on three impor-
tant implementation aspects: (1) the accuracy of the
approximate gradient, (2) termination criteria and
(3) boundary constraint-handling. In terms of gra-
dient accuracy, this work performs an extensive er-1345

ror analysis to determine the limits within which the
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approximation is consistent. Moreover, concerning
termination criteria, this work presents a hierarchy
of reasonable conditions suitable for the SQP imple-
mentation and discusses their practical implications.1350

Finally, a low-cost algorithm for evaluating signed
well-to-boundary distance is introduced to deal with
realistic reservoir boundaries.

Finally, the adjoint-based gradient approximation
approach has been tested against indirect and direct1355

gradient computation approaches from the literature.
Compared to a direct approach based on stochastic
approximation the adjoint-based approach is shown
to be substantially more efficient in terms of the total
number of required function evaluations. Compared1360

to an indirect approach that relies on pseudo-wells,
the adjoint-based approach demonstrates similar per-
formance in terms of final result and the total number
of function evaluations. However, the adjoint-based
approach has a clear advantage in terms of general1365

applicability, i.e., the proposed approach can in a
straightforward manner be used to solve for complex
configurations involving deviated wellbores. This ad-
vantage is demonstrated through a realistic optimiza-
tion case featuring two horizontal wellbores subject1370

to multiple well placement constraints. In this case,
the approach arrives at a practical solution following
a reasonable cost function progression and termina-
tion.

The ability to derive constraint derivatives is a sig-1375

nificant advantage of the methodology presented in
this work because it allows us to use state-of-the-art
gradient-based constraint-handling techniques. In
general, an efficient constraint-handling capability is
critical to retain search efficiency and avoid poor so-1380

lution sampling. This is particularly pertinent for
the well placement problem since this problem typ-
ically involves computationally expensive cost func-
tions and nonconvex solution spaces caused by non-
linear geological and engineering restrictions. In1385

terms of further work, additional tests of the adjoint-
based gradient approximation methodology can be
performed both using models with economic produc-
tion constraints and in the joint solution of problems
involving well placement, control, type (i.e., injector,1390

producer, or shut), and/or completion design. The
further study and testing of the proposed method-

ology in several of these research areas is the sub-
ject of ongoing work, in addition to work involving
benchmarking the adjoint-based procedure against1395

derivative-free methodologies and the development of
hybrid algorithms.
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(a)

(b)

Figure 1: Statistical distribution of order estimator
values as functions of perturbation size ε for pertur-
bations performed in (a) horizontal and (b) vertical
directions. The median (blue line), and quartiles P25
and P75 (gray box plots) are based on Case 4 using
150 well location samples.
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Figure 2: Case 1 results using layer from SPE10
model. (a) Model log-permeability in x- and y-
directions with initial well configuration; injectors
(blue dots), producers (red dots). (b) Oil satura-
tion and optimal well placement configuration after
optimization of well location. (c) Oil saturation and
optimal well placement configuration after optimiza-
tion of both well placement and rate controls.
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Figure 3: Case 2: (a) Log-permeability and well location for standard initial configuration. (b) Corresponding
well placement solution. Production and injector wells drawn as red and blue circles, respectively.
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Figure 4: Case 2: (a) Log-permeability and well location for mini initial configuration. (b) Corresponding
well placement solution. Production and injector wells drawn as red and blue circles, respectively.
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Figure 5: Case 2 results (Egg model): NPV function
evolution curves as a function of (equivalent) number
of function evaluations (reservoir simulations). Black
curves correspond to values reported by Zandvliet
et al. [29]. Red curves correspond to values obtain
using the methodology described in this paper.
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Figure 6: Case 3: Permeability field with orange rep-
resenting sand facies (500mD) and blue representing
shale facies (10mD). The initial well configuration is
shown with a vertical injector (in the middle) and
two-block trajectories of four horizontal producers.

Figure 7: Case 3: Statistical distributions of values
of the order estimator R as functions of perturbation
size ε for perturbations performed in horizontal di-
rections. The median (blue line), and quartiles P25
and P75 (gray box plots) are obtained using 80 well
location samples.
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Figure 8: Case 3: Oil (green) and water (blue) satu-
rations at the end of production time corresponding
to (a) initial well configuration and final well config-
uration for (b) ε = 15m and (c) ε = 24m. The well
locations are marked by pink trajectories.
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Figure 9: Case 3: Cost function evolution including
the function evaluations during line search. Circles
mark the gradient evaluations requested by the SQP
solver for ε = 15m (blue line) and ε = 24m (black
line).
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Figure 11: Relative permeability for (a) gas-oil and
(b) water-oil systems in Case 3.
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Figure 12: Case 4: (a) Initial well configuration. (b) Final well configuration. Oil (green), gas (red) and
water (blue) saturations at end of production time corresponding to (c) initial well configuration and (d)
final well configuration. The location of the two horizontal wells subject to optimization are marked by pink
wellheads and trajectories. Upper and lower bounds for x and y well coordinates are shown as white border.
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Figure 13: Case 4: Cost function evolution including
the function evaluations during line search. Circles
mark the gradient evaluations requested by the SQP
solver.
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