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Abstract
Well placement and control optimization in oil field de-
velopment are commonly performed in a sequential man-
ner. In this work we propose a joint approach that embeds
well control optimization within the search for optimum
well placement configurations. We solve for well place-
ment using derivative-free methods based on pattern-
search. Control optimization is solved by sequential
quadratic programming using gradients efficiently com-
puted through adjoints. Joint optimization yields a signif-
icant increase, of up to 20% in net present value, when
compared to reasonable sequential approaches. The joint
approach does, however, require about an order of mag-
nitude increase in the number of objective function eval-
uations compared to sequential procedures. This increase
is somewhat mitigated by the parallel implementation of
some of the pattern-search algorithms used in this work.
Two pattern-search algorithms using eight and 20 com-
puting cores yield speedup factors of 4.1 and 6.4, respec-
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tively. A third pattern-search procedure based on a se-
rial evaluation of the objective function is less efficient in
terms of clock time, but the optimized cost function value
obtained with this scheme is marginally better.

1 Introduction
The development of new fields for oil and gas production
is increasingly complicated and expensive. Sustaining
profitable production in mature fields, where water pro-
duction rates are often high, also poses a challenge. For
both sets of problems, it may be difficult to achieve ad-
equate returns on investment using traditional (heuristic)
production management techniques. There is, therefore,
a growing interest in the development of efficient and ef-
fective simulation-based optimization procedures for well
planning and operation.

This work focuses on maximizing revenue from oil
production using water-flooding by optimizing medium-
to-long-term (i.e., multi-year time frame) field manage-
ment operations such as well placement and well con-
trol scheduling. Water-flooding, where the oil in the sub-
surface formation (reservoir) is driven towards produc-
tion wells by a moving waterfront created by water in-
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jection wells, is a common procedure for oil production.
Substantial oil volumes are often bypassed during water-
flooding due to the existence of complicated geological
conditions, such as high-flow regions and faults, in the
reservoir. Thus, for water-flooding to be effective, the lo-
cations and control schedules of injectors and producers
must be selected in an optimal manner (by control sched-
ule we mean the well rates or bottom-hole pressures as
a function of time). Here our objective function is the
net present value of the asset, though other cost functions
such as total oil recovered could also be used. In either
case the cost function is computed by means of the numer-
ical solution of the system of partial differential equations
that describes fluid flow in the reservoir. The required
simulations are very often computationally demanding,
which poses challenges for optimization.

Under current procedures, the determination of well
placement and well control is generally treated in a se-
quential manner. This means an optimal well placement
configuration is first determined using a given (and thus,
not optimal) strategy for handling the well controls. These
controls are then optimized at the well locations found in
the first step. A relatively popular (and heuristic) control
strategy, which is often referred to as ‘reactive control,’
entails closing (‘shutting in’) production wells according
to an economic threshold that depends on the oil price
and the water production cost. This economic threshold is
translated into a water-cut limit which, once reached, trig-
gers the closure of the corresponding well for the rest of
the production time frame. A reactive control strategy can
be reasonably effective but is clearly suboptimal as it does
not impact injection well settings and handles production
wells as either fully open or closed. Any approach that
does not consider well location and control jointly cannot
be expected to yield optimal solutions, since it does not
capture the interdependency between the well configura-
tion and the associated controls.

In this paper we propose a joint approach for optimiza-
tion of well position and control settings. In our approach
the two different optimizations are considered in a nested
fashion. The outer loop involves a well location optimiza-
tion, while the inner loop is based on optimizing well
controls for fixed well positioning. The objective func-
tion at the outer loop (for given well locations) is an op-
timized value of the cost function considered in the inner
optimization of the well controls. This scheme results in

the solution of the outer optimization satisfying optimal-
ity conditions not only for the well placement problem but
also for the well control part, because the optimal nature
of the solution with respect to the controls is intrinsically
inherited in the algorithm. Hence, this joint approach can
be used to compute solutions that improve upon those
achieved using sequential methodologies. The computa-
tional cost associated with the joint approach is, however,
much higher since every upper-level function evaluation
requires the optimization (not necessarily to full accuracy)
of the lower-level problem.

The nested approach has been devised as a combi-
nation of methodologies that separately solve the two
different types of problems, well placement and con-
trol, that constitute the joint optimization. Well con-
trol optimization is commonly stated in terms of con-
tinuous variables (well flow rates or pressures), and in
some cases (bound-constrained optimization problems)
has been observed to present smooth optimization land-
scapes with multiple optima but similar cost function val-
ues (see e.g., Jansen et al, 2005 and Echeverría Ciaurri
et al, 2011a). This observation is for problems with lin-
ear constraints (which have been studied the most), and
its validity is unclear for more general cases. On the other
hand, well placement optimization is often formulated as
an integer optimization problem (where integers corre-
spond to specific grid blocks) with non-smooth objective
functions (see e.g., Onwunalu and Durlofsky, 2010) con-
taining multiple optima with significantly different cost
function values. This non-smooth character is generally
related to the strong variability (heterogeneity) in subsur-
face flow properties. Therefore, many of the existing well
placement optimization procedures attempt a more global
search. Consistent with these observations, well control
optimization is often addressed using gradient-based tech-
niques (where gradients are computed rapidly via adjoint
procedures; see e.g., Jansen et al, 2005, or Sarma et al,
2006), while well placement optimizations usually use
derivative-free algorithms or stochastic search procedures
(see e.g., Yeten et al, 2003; Onwunalu and Durlofsky,
2010). Derivative-free and stochastic optimization ap-
proaches ordinarily require parallel computing implemen-
tations for efficiency. We note, however, that gradient-
based techniques have been applied for well placement
(e.g., Sarma and Chen, 2008; Zandvliet et al, 2008), and
stochastic search has been used for well control (e.g.,
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Echeverría Ciaurri et al, 2011a), so our observations here
should not be viewed as absolute.

To our knowledge, no research has been published ad-
dressing in detail the joint optimization of oil well place-
ment and control. There have, however, been approaches
that use the reactive control strategy described above in
well placement optimizations (e.g., Zandvliet et al, 2008).
The work introduced in Wang et al (2007), and later en-
hanced in Zhang et al (2010) and Forouzanfar et al (2010),
aims primarily at well placement, and integrates indirect
mechanisms for optimizing well controls. The method de-
scribed in that work provides a comprehensive optimiza-
tion framework, but it involves a number of heuristics and
does not treat explicitly location and control as optimiza-
tion variables. The approach presented in this paper at-
tempts to address the complicated joint well placement
and control optimization problem from a mathematically
sound perspective.

Other variables besides the location and controls for
each well, such as the number of wells and the length of
the water-flooding process, could also be included in the
optimization. These variables are much more difficult to
treat, however, since the number of variables in the corre-
sponding optimization problem depends on these param-
eters. For example, optimizing the number of wells could
be performed by adding a new set of categorical optimiza-
tion variables that allow for the activation/deactivation of
each well (Echeverría Ciaurri et al, 2012). The inclusion
of variables of this type would significantly increase the
complexity of the optimization problem. Another impor-
tant effect not included in this work is uncertainty in the
reservoir model; i.e., the optimization approaches stud-
ied here do not involve stochastic programming consider-
ations. A general method for optimizing well location un-
der uncertainty has been developed by Wang et al (2012),
and this approach could be extended in a straightforward
manner to also include well controls.

This paper is structured as follows. The governing
equations for the flow of oil and water in subsurface reser-
voirs are given in Section 2. This section then introduces
the general problem statement and the specific formula-
tions for the well control and the well placement parts of
the optimization procedure. Next, the joint and sequen-
tial approaches used to solve the coupled system are de-
scribed in Section 3. These approaches are applied to two
example cases in Section 4. The first case addresses the

control optimization of one injector and four producers,
and the optimal positioning of the injector. For this case
we are able to perform exhaustive computations, which
enable clear assessments of the various optimization pro-
cedures. In the second case the well position and con-
trols for three producers and two injectors are optimized.
Section 5 provides a summary and some suggestions for
future research.

2 Problem Statement
In this section we briefly describe the flow simulations
used to evaluate well location and control scenarios. The
general optimization problem treated in this work is then
presented in detail.

2.1 Governing equations for reservoir pro-
duction

Hydrocarbons such as oil and gas are found within porous
rock in subsurface formations. The equations that de-
scribe fluid flow in the reservoir are derived by combining
expressions of mass conservation with constitutive and
thermodynamic relationships. For clarity, our brief de-
scription here entails several simplifications (such as the
assumption of incompressible flow), though in the prob-
lems considered later compressibility and other effects are
included. See, e.g., Aziz and Settari (1979) or Ertekin
et al (2001) for details on the flow equations and numeri-
cal discretizations.

We consider two-phase immiscible systems containing
oil (o) and water (w). Mass conservation for each fluid i
(where i = o, w) is given by:

∇ ·ui +qi =−
∂

∂ t
(φSi) , (1)

where ui is the Darcy velocity of phase i, qi is the
source/sink term, φ is porosity (volume fraction of the
rock that can be occupied by fluids), Si is the saturation
of phase i, and t is time. Darcy velocity is expressed as:

ui =−k
kri

µi
∇p, i = o, w, (2)

where p is pressure (here assumed the same for both
phases), µi is the viscosity of phase i, k is the absolute
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(rock) permeability tensor, and kri(Si) is the relative per-
meability of phase i.

Combining (1) and (2) yields:

∇ ·
[

k
kri

µi
∇p
]
−qi =

∂

∂ t
(φSi) , i = o, w. (3)

Eq. (3), written for i = o, w, along with the saturation
constraint (So +Sw = 1), define the flow problem. Model
sizes for the numerical solution of (3) usually range from
tens of thousands of grid blocks for small models, to sev-
eral hundred thousand or millions of grid blocks for large
models. A typical model might require several hundred
time steps.

Reservoir models are coupled to well models (via the
source term qi) to enable the computation of the volumes
of fluids produced and injected at each time step. See
Peaceman (1978) or Ertekin et al (2001) for details on this
coupling. Current well designs may involve vertical, hori-
zontal, deviated and multilateral wells. These wells can be
controlled by specifying either rates or bottom-hole pres-
sures (BHPs). In this work, we will consider only vertical
wells and use BHPs at various time intervals for the well
control optimization parameters. The simulator used in
this work is Stanford’s General Purpose Research Simu-
lator (GPRS; Cao, 2002).

2.2 Optimization problem

In our examples we consider oil-water systems with pro-
duction driven by water injection. We seek to determine
the optimal locations and BHP controls for a specified
number of production and water injection wells using an
optimization procedure based on a joint, rather than a se-
quential, approach.

The optimization problem studied here is defined as
follows:

min
x∈Zn1 ,u∈Rn2

−NPV(x,u) subject to
{

xd ≤ x≤ xu
ud ≤ u≤ uu

,

(4)
where x denotes the discrete well placement variables
and u are the continuous well control variables. Well
placement variables are intrinsically real but are often
treated as integers, since reservoir simulators require
wells to be assigned to discrete grid blocks in the model.

Consequently, in many cases, and in this work, x is de-
fined as discrete-valued. All wells in this work are as-
sumed to be vertical, hence well positions can be stated
in terms of discrete areal coordinates (x,y) only. Thus
n1 = 2(Np +Ni), where Np and Ni are the number of pro-
duction and injection wells in the placement optimization,
respectively (we could also optimize a subset of wells as
in Example 1). In more general cases, additional variables
would be needed to describe well locations. For example,
the optimization variables might include the perforation
interval for vertical wells (if wells are not open to flow
over their entire length), or the actual trajectory for de-
viated wells. The controls over time for each well are
represented by a piecewise constant function with Nt time
intervals (i.e., well controls are held constant during an
interval and then jump to their value for the next inter-
val). Hence, n2 = Nt(Np +Ni), assuming Np and Ni are
the number of production and injection wells in the con-
trol optimization.

In this work, we deal with bound constraints only. In
order to simplify notation we introduce the well position
feasible set X = {x ∈ Zn1 ; xd ≤ x≤ xu} and the well con-
trol feasible set U = {u ∈ Rn2 ; ud ≤ u ≤ uu}. Nonlinear
constraints, which could include rate or water-cut specifi-
cations, can be handled using different techniques such as
penalty functions or filter methods, as described in Echev-
erría Ciaurri et al (2011a).

The objective function considered here is the undis-
counted net present value (NPV) of the asset. This NPV
accounts for revenue associated with the oil produced as
well as for the water-handling costs incurred during pro-
duction (water costs are incurred as a result of pumping
and separation requirements). NPV is defined as follows:

NPV(x,u) =
Ns

∑
k=1

(
Np

∑
j=1

poq j,k
o (u,x)∆tk

−
Np

∑
j=1

cwpq j,k
wp(u,x)∆tk−

Ni

∑
j=1

cwiq
j,k
wi (u,x)∆tk

)
,

(5)

where q j,k
o , q j,k

wp and q j,k
wi are the flow rates of the oil, water

produced and water injected for well j at the output inter-
val k, respectively (expressed in stock tank barrels or STB
per day, where 1 STB = 0.1590m3), and ∆tk represents the
length (in days) of each of the Ns time steps in the simu-
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lation. (Note that Ns does not in general coincide with
the number of controls per well, Nt .) The oil price and the
cost of water produced and injected are denoted by po, cwp
and cwi, respectively. Though the problem in (4) is stated
jointly for x and u, it has traditionally been addressed in
practice in a decoupled manner (i.e., the well placement
part is solved prior to, and independently of, the control
optimization). In the next section we discuss some decou-
pled approaches and propose a methodology for address-
ing the problem jointly.

3 Optimization Methodology
This section describes two sequential approaches and in-
troduces a joint approach for solving the well placement
and control problem given in (4). Both sequential ap-
proaches first seek optimal well placements using a pre-
determined control strategy, and then they optimize the
controls for the wells determined in the first stage. Since
the control and the well placement optimization problems
possess clearly distinct characteristics, it is reasonable to
address these two problems using different methodolo-
gies. Sections 3.1 and 3.2 describe the separate opti-
mization problems and approaches corresponding to the
continuous (controls) and discrete (well placement) parts
of (4). Some of the methods presented in these sections
will be combined in Section 3.4, where we define our ap-
proach for the joint problem.

3.1 Well control optimization
The production optimization part of the general problem
in (4) is obtained by fixing the well placement variable to
x0 ∈ Zn1 :

min
u∈U
−NPV(x0,u) , (6)

and corresponds to a problem with continuous vari-
ables. The well controls u ∈U ⊂ Rn2 in this work rep-
resent BHPs. For each well, the controls are defined
by piecewise constant functions over Nt intervals. The
optimization bounds define upper and lower BHP lim-
its for both injectors and producers. Other operational
constraints (e.g., minimum oil and/or maximum water
production over all wells) can be addressed in an effi-
cient manner by the filter method (Nocedal and Wright,

2006; Echeverría Ciaurri et al, 2011a). The filter method
is really an add-on that can be combined with most
(derivative-based and gradient-free) optimization algo-
rithms. This technique borrows concepts from multi-
objective optimization, and has been observed as a very
efficient means for dealing with nonlinear constraints
(Nocedal and Wright, 2006; Fletcher et al, 2006).

Production optimization problems can be readily
solved by gradient-based techniques (Nocedal and
Wright, 2006). For example, the gradient-based optimiza-
tion approach used in this work to solve (6) is sequen-
tial quadratic programming (SQP; Nocedal and Wright,
2006). The SQP solver used in this work is SNOPT (Gill
et al, 2005). Approximating gradients by, e.g., finite dif-
ferences, typically requires a number of function evalu-
ations on the order of the number of optimization vari-
ables. In addition, the quality of the approximation may
depend strongly on the simulator settings. Adjoint for-
mulations allow for efficient (though simulator-invasive)
computations of gradients (Pironneau, 1974). By means
of an adjoint-based procedure, gradients can be computed
with a total cost of roughly one solution of a linearized
system of ordinary differential equations. Adjoint-based
gradient estimations have recently been implemented
for optimization problems in the petroleum industry
(Brouwer and Jansen, 2004; Sarma et al, 2006). In this
work, we use the adjoint formulation in Stanford’s Gen-
eral Purpose Research Simulator (GPRS).

Derivative-free methods (Kolda et al, 2003; Conn et al,
2009) have also been shown to perform satisfactorily
for the control optimization problem (Echeverría Ciau-
rri et al, 2011a,b). These methods are applicable for
problems with less than a few hundred optimization vari-
ables, and they perform fairly efficiently if implemented
in a distributed computing environment. We will consider
derivative-free methods for the well-positioning part of
the general problem introduced in (4) in the next section.

It has been observed in previous work (Jansen et al,
2005; Echeverría Ciaurri et al, 2011a) that well control
problems similar to (6) commonly display multiple local
optima having similar cost function values (i.e., the cost
function appears to be close to convex in u). This sug-
gests (though it does not prove) that local optimization ap-
proaches, such as gradient-based techniques, for (6) may
yield solutions that are acceptable from a global optimal-
ity point of view.
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Finally, as discussed in the Introduction, reactive con-
trol can be applied, as a heuristic alternative to optimiza-
tion, to address the issue of excessive water production.
Under this approach, a production well is kept open (at
its lower BHP limit in our implementation) until the rev-
enue from the oil it produces no longer exceeds the cost
associated with the water produced; i.e., the well is closed
when

po q j,k
o < q j,k

wp cwp , (7)

where all variables are as defined previously. This rela-
tionship is used to determine a corresponding water-cut
limit. A producer is permanently shut in once this limit
is reached. In practice this treatment often provides satis-
factory results (and this approach is inexpensive since no
optimization is required), though it is clearly suboptimal
since it is based on a simple rule involving only produc-
ers. It should also be noted that even though the produc-
tion strategies obtained by means of reactive control can
in some cases be represented by piecewise constant func-
tions, the lengths of the control intervals are not known a
priori. Thus, reactive control strategies cannot in general
be identified with elements in Rn2 .

3.2 Well placement optimization
The well placement optimization part of the general prob-
lem originally given in (4) is obtained by fixing the well
control variable to u0 ∈ Rn2 :

min
x∈X
−NPV(x,u0) , (8)

and corresponds to a problem with discrete variables. In
general u0 ∈ Rn2 , but as noted above, if u0 corresponds to
a reactive control strategy, it will not necessarily have n2
components.

Well placement problems are in a sense more chal-
lenging than well control optimization problems because
reservoir heterogeneity leads to highly non-smooth objec-
tive functions containing multiple optima (see e.g., Onwu-
nalu and Durlofsky, 2010). Therefore, the well placement
optimization problem does not appear to be as amenable
to solution using gradient-based methods because these
approaches can get trapped in local minima. There have,
however, been procedures presented for (8) that use gradi-
ents (see e.g., Sarma and Chen, 2008, and Zandvliet et al,
2008). These methods replace the problem with a related

(though not necessarily equivalent) problem that has con-
tinuous variables.

Most of the derivative-free methods that have been
used to date for the solution of (8) are based on stochas-
tic search procedures. Examples include genetic algo-
rithms (Goldberg, 1989; Güyagüler et al, 2000; Yeten
et al, 2003), stochastic perturbation methods (Bangerth
et al, 2006), and particle swarm optimization (Clerc,
2006; Onwunalu and Durlofsky, 2010; Echeverría Ciau-
rri et al, 2011b). Due to their random component, these
search procedures can avoid being trapped in some unsat-
isfactory local optima. Most of these methods, however,
are not supported by solid convergence theory, and con-
sequently they contain tuning parameters that are often
difficult to determine.

In this work we propose derivative-free optimization
methodologies based on pattern-search (Torczon, 1997,
Kolda et al, 2003; Conn et al, 2009) as a more mathemat-
ically sound alternative for well placement optimization.
These methods rely on (local) convergence theory appli-
cable to sufficiently smooth functions of continuous vari-
ables. These local convergence results can furthermore be
extended to problems with discrete variables (Audet and
Dennis, 2000). Examples of these techniques are Hooke-
Jeeves direct search (HJDS; Hooke and Jeeves, 1961),
generalized pattern search (GPS; Torczon, 1997, Audet
and Dennis, 2002), mesh adaptive direct search (MADS;
Audet and Dennis, 2006), and bound optimization by
quadratic approximation (BOBYQA; Powell, 2009).

Pattern-search methods operate primarily through
a polling procedure. Polling is accomplished
by computing cost function values at points in
the search space determined by a stencil which
is centered at the current solution. The stencil
is normally arranged along the coordinate axes,
which results in a coordinate or compass search. In
MADS, the stencil orientation is randomly modified after
each polling. Pattern-search techniques are supported by
local convergence theory, but if the initial stencil size is
comparable to the size of the search space (which means
that, during the first iterations of the optimization, the
search involves points that are distant from the initial
guess), they can incorporate some global exploration
features. We emphasize that global convergence is
not achieved using these or other practical procedures.
However, in many well placement problems, finding a
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reasonable local optimum following some amount of
global exploration is often sufficient.

In this work, the well placement problem is solved
using HJDS, GPS, and a hybrid optimization par-
allel search package (HOPSPACK; Plantenga, 2009).
HOPSPACK is a distributed computing implementa-
tion of GPS which can be run in a so-called asyn-
chronous mode to balance the computational load of
each node in the cluster (Plantenga, 2009). In asyn-
chronous mode, HOPSPACK avoids ‘idle’ cores by con-
tinuously sending new polling points for evaluation.
HOPSPACK dedicates a single core to handle the asyn-
chronous assignment of polling points to each computing
core. Hence, if, for example, 21 cores are available for
HOPSPACK, one of these cores will not be used to evalu-
ate polling points. HJDS is a serial computing procedure
that was identified in Echeverría Ciaurri et al (2011a) as
a fairly efficient optimization procedure for oil field prob-
lems when distributed computing resources are limited or
unavailable.

3.3 Sequential approaches for well place-
ment and control optimization

As noted earlier, sequential procedures are commonly
used for joint well location and well control optimization.
Well placement is optimized first using some ‘reasonable’
control scheme. In this work we will consider two such
strategies – fixed and reactive controls. The controls are
then optimized for the wells positioned in the first stage. It
should be noted, however, that well placement optimiza-
tion results have been observed to depend to a large degree
on the control scheme used (Zandvliet et al, 2008).

Fixed control strategies belong to U ⊂ Rn2 , i.e., the
same space explored in the control optimization stage. In
our approach these fixed controls correspond to the up-
per pressure bound uu for injectors, and the lower pres-
sure bound ud for producers. This strategy provides max-
imum injection and fluid production rates at all times. It
is important to emphasize that, although fluid production
is maximized, oil production is in general not maximized
by this strategy if water is also being produced (as it typi-
cally is). This fixed control strategy is in general subopti-
mal because the water front is allowed to proceed without
any ‘steering’ (which is achieved when BHPs are varied

in time). In addition, it is possible that some wells may
be producing essentially all water at full capacity. The
reactive control strategy operates with the same pressure
settings as the fixed strategy, but it includes the capacity to
shut a producer in once it is no longer profitable. In this
way, the reactive control approach considers production
economics, though it still does not address the efficient
injection of water. The reactive control approach is often
preferable to the use of fixed controls, but as we will see
does not perform as well as the joint optimization proce-
dure.

Algorithm 1 below shows the two basic steps in the se-
quential approaches. Here we use x∗s and u∗s to designate
the optima obtained from the sequential approach. We re-
iterate that x∗s and u∗s do not in general coincide with the
optimum of (4).

Algorithm 1 Sequential approach for well placement and
control optimization

Input: initial locations x0 and spec-
ified control strategy (fixed or
reactive) u0 for Np +Ni wells

Output: improved locations x∗s and control strategy u∗s
1: Solve x∗s = argmin

x∈X
−NPV(x,u0) using pattern-

search optimizer
2: Solve u∗s = argmin

u∈U
−NPV(x∗s ,u) using gradient-

based optimizer

3.4 Joint approach for well placement and
control optimization

We address the joint well placement and control problem
using the following nested optimization

min
x∈X

min
u∈U
−NPV(x,u) . (9)

In this bound-constrained optimization problem, it is rela-
tively simple to see that the formulations in (4) and (9) are
equivalent regarding the first-order optimality conditions.
In accordance with the methods presented in the previous
section, the outer well placement optimization in (9) is
solved here by means of pattern-search optimization algo-
rithms, while the inner control optimization is addressed
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through a sequential quadratic programming implementa-
tion with gradients computed efficiently using an adjoint-
based scheme.

The approach in (9) may seem impractical since it
requires solving a complete optimization for every cost
function evaluation of the outer (upper-level) optimiza-
tion problem. However, in our application a nested pro-
cedure is reasonable because of the following two obser-
vations. First, as discussed in detail earlier, the two op-
timizations are of different character and it is reasonable
to address them using different procedures. And second,
in the control optimization we will make use of a very
efficient adjoint-based gradient computation within the
GPRS simulator. As noted above, the bound-constrained
well control optimization problem displays multiple local
solutions, but very frequently with similar cost function
values. Thus, there is little if any benefit from running
this optimization from multiple starting points.

We note that the nested optimization in (9)
could also be analyzed from a bilevel pro-
gramming perspective (Dempe, 2002). How-
ever, bilevel optimization problems are often
more complicated to study than the problem consid-
ered here since the two optimization levels are in general
associated with different objective functions.

Using the formulation in (9) and the specific choice
of methods for the two components of the optimization,
our intent is to perform some amount of global explo-
ration (via the use of large initial stencil size in the pat-
tern search) in a space of dimension n1, and not for a
search in a space of dimension n1 +n2. This is an impor-
tant aspect of our procedure since the computational cost
associated with the global exploration of a space of di-
mension n = n1+n2 grows exponentially with n (curse of
dimensionality). Moreover, as we will see in Section 4.1,
the function optimized in the outer optimization in (9)

−NPV∗ (x) = min
u∈U
−NPV(x,u) , (10)

is much smoother in x, and as a consequence, easier
to explore globally, than NPV(x,u0), with u0 being a
fixed control strategy. The smoothing of the optimiza-
tion surface with respect to the well placement vari-
able x occurs because the performance of wells in less
promising locations can be improved, sometimes sig-
nificantly, by optimizing the well controls. The func-

tion NPV∗ (x) in (10) is well defined since there exists
an NPV∗ (x) for every feasible x. We do not, how-
ever, expect there to be a unique u associated with
NPV∗ (x).

Hence the joint optimization approach proposed in this
work can be interpreted as a well placement problem
where the cost function is an optimized NPV

min
x∈X
−NPV∗ (x) , (11)

with NPV∗ as defined in (10).
The well control optimization required for each compu-

tation of NPV∗ (x) is not solved completely in our imple-
mentation. This is motivated by the difficulty of obtain-
ing robust stopping criteria in practical optimization prob-
lems, and by the fact that an unnecessarily tight stopping
criterion may result in an excessive number of cost func-
tion evaluations. In a preliminary study involving a prob-
lem of similar complexity to those studied in this work (in
terms of the well control optimization), we determined
that a moderate number of iterations for the gradient-
based optimizer yields an acceptable approximation of the
optimal control strategy. Thus, during the course of the
joint optimization, we typically use eight iterations for the
well control problems (we also consider the use of four
major iterations). Then, once the optimal well locations
are determined, we again run the control solution but this
time with a tighter stopping criterion, which leads to a
slightly improved NPV∗.

It should be stressed that the optimization in (11) is
fully parallelizable, and indeed in this work we take full
advantage of this. However, the parallel runs involve
control optimizations and not simply single simulations.
Therefore, the computational load in each of the nodes
can be very different, because in general, two calls to
NPV∗ (with different well placements) will not require the
same number of simulations (even using the same num-
ber of iterations in the gradient-based optimizer). This
issue can be alleviated to some extent by means of asyn-
chronous distributed computing approaches (see Griffin
and Kolda, 2007, or Griffin et al, 2008, for an example
within the context of pattern search).

In the remainder of the paper, the sequential optimiza-
tion methodologies with fixed and reactive control strate-
gies, and the joint technique, are denoted as sequential
fixed, sequential reactive and joint approaches, respec-
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Figure 1: Permeability field (mD) used for the two cases
in Section 4 (logarithm of permeability is displayed).
Geological heterogeneity is clearly evident. Production
wells corresponding to the first example are represented
as red circles.

tively.

4 Example Cases
In this section we apply the methodologies de-
scribed in Section 3 to two examples. As indi-
cated above, each control optimization problem is
solved by means of a gradient-based optimizer, and
the well placement part of the optimizations is han-
dled using three different pattern-search algorithms,
namely, Hooke-Jeeves direct search (HJDS), generalized
pattern search (GPS), and the hybrid optimization paral-
lel search package (HOPSPACK). GPS and HOPSPACK
were implemented within a distributed computing frame-
work consisting of eight and 20+1 computing cores, re-
spectively (in HOPSPACK one of the cores is used for co-
ordination tasks). We reiterate that, in the parallel imple-
mentations, each processor handles the full well control
optimization, not just a single simulation run.

The two cases considered are based on a reservoir dis-
cretized on a 60×60 two-dimensional grid. The perme-

ability and porosity fields are portions of layer 21 of the
SPE 10 model (Christie and Blunt, 2001). These fields
display strong variability in properties, as can be seen for
permeability in Figure 1. In both examples there are five
wells (one injector and four producers in the first case,
and two injectors and three producers in the second case).
The controls for all five wells are optimized in the two
cases. In the first example, only one well (the injector)
location is optimized, while in the second case all well
locations are optimized. The key model and optimization
parameters for both cases are shown in Table 1.

The gradient-based optimizer used for well con-
trol optimization is SNOPT (Gill et al, 2005), which
is based on sequential quadratic programming. The
initial guess in all situations is obtained by set-
ting the injector and producer BHPs at their up-
per and lower bounds, respectively. This configura-
tion provides maximum flow rates. Since the bound-
constrained control optimization problem displays multi-
ple optima, but quite often with similar cost function val-
ues, the selection of the starting point is not expected to
impact the quality of the optimized solution. The stopping
criteria selected for the control optimization are based on
the major optimality tolerance (a value of 10−6 in all sit-
uations) and on the maximum number of major iterations
allowed. We note that during a major iteration in SNOPT,
a quadratic programming subproblem is solved to find
a search direction that is used to compute the next se-
quential quadratic programming iterate. The solution of
the quadratic programming subproblem usually requires
several cost function evaluations (reservoir simulations).
For more details on these stopping criteria, see Gill et al
(2007). In most cases it is the maximum number of major
iterations that terminates the optimization.

As explained in Section 3.4, the control optimization
required for finding NPV∗, when called from the outer
well placement loop, is not solved to full accuracy. The
maximum number of major iterations is equal to eight (a
relatively small number) in most cases, though in Sec-
tion 4.2 results are also presented using a value of four.
The control optimizations performed at the last iteration
of both the sequential and joint approaches aim at a more
precise solution. For these optimizations the maximum
number of major iterations is increased to 16 and 32 for
the first and second example, respectively.

The optimizations for the well placement problem are
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Table 1: Model and optimization parameters for the two examples.

Parameter Example 1 (Section 4.1) Example 2 (Section 4.2)

Cell size 130ft×130ft×20ft 50ft×50ft×50ft
Production time frame 2190 days 2920 days
Oil price (po) 80 $/bbl 80 $/bbl
Water production cost (cwp) 10 $/bbl 20 $/bbl
Water injection cost (cwi) 10 $/bbl 20 $/bbl
Injector BHP upper and lower bounds 5200 and 4100 psia 6000 and 4100 psia
Producer BHP upper and lower bounds 3500 and 1000 psia 3500 and 1000 psia

expected to depend on the initial guess, since in general
these problems are markedly nonconvex (unlike the con-
trol optimization problem when only bound constraints
are present). For this reason, we perform optimization
runs starting from different points. The initial stencil size
in all cases is 16, which is a significant fraction of the
feasible search space (41×41 and 50×50 grid blocks for
the first and second examples, respectively). A stencil of
this size thus leads to some amount of global exploration
since regions far from the stencil center are evaluated.
All pattern-search algorithms terminate the optimization
when the stencil size is equal to one, and the cost function
value corresponding to the stencil center is lower than the
cost function value associated with any other stencil point.
This termination condition defines the notion of local op-
timality that will be considered for the discrete variables.

4.1 Optimization of injector location and
control of five wells

4.1.1 Case description

In this case we consider four producers, fixed at the cor-
ners of a square, along with one injector. The four pro-
ducers (designated by red circles) are located as shown
in Figure 1. The production wells are placed somewhat
away from the reservoir boundaries, which are prescribed
to honor no-flow conditions. The injector can be posi-
tioned anywhere inside of the square (41×41 grid blocks)
defined by the producers. The control strategies for all five
wells and the location of the injector will be optimized.
These strategies refer to a production time frame of six
years, and except for reactive control, the strategies are

divided into ten intervals of 219 days each (during each
time interval the BHPs are held constant). Hence, for this
problem, n1 = 2 and n2 = 50.

In the next section we will perform an approximation
of the exhaustive search of the optimization spaces corre-
sponding to the sequential and joint approaches described
in Sections 3.3 and 3.4, respectively. Thereafter, we will
use this example to compare some of the optimization
techniques discussed above.

4.1.2 Exhaustive search results

Due to the low value of n1 in this example, it is feasible
to exhaustively explore the discrete space X both for
NPV(x,u0), with u0 being a fixed or a re-
active control strategy, and for NPV∗ (x)
(where the controls are determined from op-
timization). This exhaustive search requires
41×41 = 1681 simulations for the sequential cases, and
1681 control optimizations for the joint approach. We
note that, since the cost function appears to be close to
convex in u, we expect the exhaustive exploration of
NPV∗ (x) to be a reasonable approximation of a global
exhaustive search for the complete optimization space
in (4). This type of exhaustive search is already impracti-
cal for the example in Section 4.2, where n1 = 10.

In Figure 2 we present results for the three exhaus-
tive explorations corresponding to a fixed control strat-
egy (injectors at maximum BHP, producers at minimum
BHP), the reactive control strategy, and the optimized
control strategy. It is clear that the surface associated
with the fixed control strategy is much rougher than the
surfaces obtained with the other strategies. This demon-
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Figure 2: Exhaustive search results for (a) NPV(x,u0) with u0 a fixed control strategy (with BHPs set to provide
maximum flow rates), (b) NPV(x,u0) with u0 a reactive control strategy, and (c) NPV∗ (x). Production and injection
wells are represented as red and blue circles, respectively. The dark blue region near the boundaries is infeasible. The
scale indicates 106 $.
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strates that it is possible to somewhat compensate for less
promising well locations with a proper control strategy
(in terms of net present value). As a consequence, the
associated optimization landscape NPV∗ (x) can be ex-
pected to be smoother than the landscape corresponding
to NPV(x,u0), for u0 a fixed strategy. This suggests,
consistent with our earlier discussion, that the joint op-
timization landscape may be somewhat easier to explore
globally.

The well locations with the highest net present value
resulting from the three exhaustive explorations are given

in Table 2. The ‘fixed’ and ‘reactive’ results are for the
best well locations in Figure 2(a) and 2(b). The ‘sequen-
tial fixed*’ and ‘sequential reactive*’ results additionally
apply gradient-based optimization for the well controls
using the positions found in the exhaustive search. This
optimization is performed with a tight tolerance (a maxi-
mum number of major iterations of 16), which is why we
include the * designation. For the joint optimization, in
the exhaustive search we use a maximum number of ma-
jor iterations of 8 (these results are designated ‘joint’ in
the table). Using the best well location found during the
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Table 2: Injector well location and NPV for the best solu-
tion obtained for the exhaustive explorations. The * indi-
cates that an additional gradient-based control optimiza-
tion is performed.

Approach Location [x,y] NPV [106 $]

fixed
[18,26]

0976
sequential fixed∗ 1091
reactive

[17,42]
1061

sequential reactive∗ 1074
joint

[12,36]
1135

joint∗ 1137

exhaustive search, we again run the control optimization,
this time using 16 major iterations. These results are des-
ignated ‘joint*’.

As expected, the joint scheme outperforms the sequen-
tial methodologies, even after the additional control op-
timization step. The joint approach yields an increase
of 4.2% and 5.9% in NPV with respect to the sequential
fixed and reactive approaches. In this simple example,
these improvements correspond to $46 million and $63
million. These amounts, as will be seen in the next ex-
ample, can be even greater in larger and more realistic
problems. It is interesting to note that while the reactive
approach obtains a better solution than the fixed scheme
before the final control optimization, the situation changes
after the control optimization. This reiterates that the con-
trol optimization can somewhat compensate for well loca-
tions that are suboptimal in terms of NPV. Furthermore,
the sequential reactive approach may in some cases serve
as a good approximation of the joint approach.

In Figure 3 we show, for the three exhaustive explo-
rations performed (plus the additional well control opti-
mization), the cumulative injection and production pro-
files for the configurations with the highest NPV. From
these plots, it is evident that the joint optimization pro-
vides more cumulative oil than the other two procedures.
The joint optimization scenario also involves more water
injection than the other scenarios, but this is more than
compensated for by the increase (of about 5.1%) in cu-
mulative oil. Figure 4 displays the oil saturation distribu-
tions at the end of the production time frame for the three

optimizations. These plots illustrate how the different ap-
proaches perform in terms of reservoir ‘sweep’ efficiency.
It is evident that there is less bypassed oil in the joint ap-
proach than in the sequential approaches.

The well controls (BHPs) corresponding to the highest
NPV solutions are shown in Figure 5. The BHPs for the
injectors (blue lines) for the various optimizations are in
the top row and the next four rows (red lines) represent the
producers. Upper and lower BHP bounds are indicated
by dashed lines. The time axes span the entire produc-
tion period (2190 days). Note that the BHPs for Produc-
ers 1 and 4 stay at the minimum BHP limit in all cases,
presumably because these wells are outside of the large
(diagonally-oriented) high-permeability region evident in
Figure 1. The BHPs for Producers 2 and 3 are, by contrast,
away from the lower BHP limit, for at least some part of
the simulation, for all three optimization schemes. This is
likely due to the fact that these wells, along with the injec-
tor, fall within the high-permeability region. If these two
wells produced at their lower limits for the full simula-
tion, significant water production would result. In order to
avoid this, the optimizations reduce the flow rates (which
leads to water breakthrough at later times) for these two
wells.

4.1.3 Optimization solutions

The results in Table 2 required an exhaustive search,
which is not feasible in practical situations. In this sec-
tion, rather than search exhaustively, we apply pattern-
search optimization for the well location part of the
problem. The control optimization is again handled via
gradient-based optimization, with all derivatives com-
puted efficiently using adjoint-based procedures.

We reiterate that most derivative-free optimization
techniques (such as pattern-search algorithms) can be
readily applied to problems with discrete optimization
variables, and that these methodologies have been ob-
served to perform satisfactorily on relatively non-smooth
cost functions such as that in Figure 2(a). Although
the sequential reactive and joint strategies displayed rel-
atively smooth cost functions (see Figures 2(b) and (c)),
the degree of smoothness observed for high-dimensional
searches may differ from that for these low-dimensional
(n1 = 2) cases. In any event, as we will see below, all of
the derivative-free algorithms considered yield solutions
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Table 3: Average NPV (over 12 runs, expressed in 106 $) for the optimal location of one injector and control of five
wells. For the sequential approaches, nps is equivalent to the average number of reservoir simulations needed in the
entire optimization process. For the joint approach, nps indicates the average number of control optimizations required
in the complete search.

Approach
HJDS GPS HOPSPACK Exhaustive

NPV σ nps NPV σ nps NPV σ nps NPV

fixed 0901 42 0883 29 0891 23 0976
sequential fixed∗ 1015 60 0994 50 1002 45 1091
reactive 1003 33 1015 25 1004 21 1061
sequential reactive∗ 1034 44 1053 44 1044 39 1074
joint 1117 47 1109 32 1093 25 1135
joint∗ 1118 32 1110 33 1094 42 1137

that are on average relatively close, in terms of NPV, to
the results from the exhaustive explorations.

As mentioned earlier, the pattern-search algorithms
considered here are Hooke-Jeeves direct search (HJDS),
generalized pattern search (GPS) and the hybrid optimiza-
tion parallel search package (HOPSPACK). These algo-
rithms (all of which are supported by local convergence
theory; see e.g., Torczon, 1997) rely on the same princi-
ples, and this facilitates meaningful comparisons. Pattern-
search optimization is based on evaluating a stencil whose
size decreases along iterations (the reduction in the stencil
size is performed when all the stencil points have a higher
cost function than the stencil center). The stencil used in
all cases here has 2n1 points distributed along the coordi-
nate axes from the stencil center (as in a compass). The
initial stencil size is always equal to 16, and this value
allows a rough exploration of the search space (for any
initial guess) since the lower and upper bounds for x are
10 and 50 for this example, and 6 and 55 for the second
example. The sequence of stencil sizes {16,8,4,2,1} is
consistent with the optimization variables being discrete.
Hence, all the algorithms stop when the stencil size is
equal to 1, and the stencil center cost function value im-
proves on every stencil point. Upon termination, the so-
lution obtained is a (discrete) local optimizer for the 2n1-
point (compass) neighborhood.

Hooke-Jeeves direct search does not compute the
cost function for all 2n1 stencil points. As soon as
a point in the current stencil improves on the cost

function value for the stencil center point, the sten-
cil is moved to a new center (this strategy is known
as opportunistic polling). This makes HJDS a serial
strategy that can be attractive when distributed com-
putational resources are scarce, or when commercial
software licensing issues limit massive parallelization.
Since both GPS and HOPSPACK evaluate the 2n1
points for every stencil, the use of distributing computing
is very beneficial for these algorithms.

In this example the three cost functions, NPV∗ (x) and
NPV(x,u0), with u0 corresponding to all wells at their
BHP limits, and to a reactive strategy, are based on a
lookup table constructed with the results from the ex-
haustive explorations. Therefore, for this case, GPS and
HOPSPACK do not take real advantage of being imple-
mented in parallel. In the example in Section 4.2, this
feature will be effectively exploited.

Separately, and this is applicable to pattern-search
methods in general where the stencil only changes its size
along iterations, some points in the optimization are re-
visited at different times. The cost function computation
in these cases can be avoided if all (or just a number of)
evaluations are stored in a cache. In this work caches are
implemented for the three pattern-search algorithms con-
sidered.

The results from the three approaches, together with the
NPVs obtained in the exhaustive explorations, are sum-
marized in Table 3. The NPVs for the exhaustive explo-
rations are taken from Table 2. Because different initial
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Figure 3: Cumulative production and injection profiles for the well location and controls (after the additional control
optimization) corresponding to the highest NPV solution: (a) sequential fixed, (b) sequential reactive, and (c) joint
approach.
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guesses result in different locally optimal solutions, we
run each optimization 12 times, starting at different initial
points. Each pattern-search run is followed by a gradient-
based control optimization with tight tolerances (as above,
* denotes the use of a maximum of 16 major iterations).
The NPVs, expressed in 106 $, are averaged over the 12
runs. Standard deviation of the NPV (σ ) over the 12 runs
is also reported for each case. The average number of
iterations nps for each pattern-search procedure is also re-
ported. It is important to note that for the sequential fixed
and reactive approaches this number is equivalent to the
average number of reservoir simulations needed for the
entire optimization process. However, for the joint ap-

proach it indicates the (average) number of control op-
timizations required in the complete search. In this ex-
ample, each control optimization requires on average 14
reservoir simulations.

The differences (in terms of NPV) between the results
obtained by the sequential and joint approaches before
performing the additional control optimization are some-
what larger than the corresponding results for the exhaus-
tive explorations (shown in Table 2). This may be be-
cause the cost function for the joint approach is globally
smoother, which makes it easier to optimize. The ad-
ditional control optimization to some extent reduces the
discrepancies in the results. Before the control optimiza-
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Figure 4: Oil saturation distribution (blue indicates water and red indicates oil) at the end of the production time frame
for the well location and controls (after the additional control optimization) corresponding to the highest NPV solution:
(a) sequential fixed, (b) sequential reactive, and (c) joint approach. Injection and production wells are represented as
blue and red circles, respectively.
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tion step, the average optimized NPV by the joint ap-
proach is 24.1% and 9.8% larger than the average opti-
mized NPVs from the fixed and reactive approaches, re-
spectively. After the additional optimization, these per-
centages decrease to 10.3% and 6.1%.

It is not clear from the results in Table 3 if one pattern-
search algorithm is preferable over the other two. GPS
and HOPSPACK are slightly faster than HJDS, but they
yield lower average cost function values. As noted ear-
lier, however, GPS and HOPSPACK can be accelerated,

in terms of clock time, if a cluster is available (and in this
situation, they will outperform HJDS). In this relatively
simple case (n1 = 2, and cost function computed via a
lookup table) the performance of GPS and HOPSPACK
seems to be comparable. Differences between the vari-
ous approaches and algorithms will be more evident in the
next example, which is more realistic and more complex.
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Figure 5: Injection and production well controls (BHPs) corresponding to the highest NPV solution: sequential fixed
(left), sequential reactive (center), and joint approach (right). Top graph corresponds to injector and next four graphs
to the producers.
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Table 4: Results for NPV (expressed in 106 $) and total number of simulations nsim for the optimal location and control
of five wells. GPS is used for the well location optimization. The highest NPV for the nine runs for each approach is
underlined.

Run seq. fixed∗GPS seq. reactive∗GPS joint∗4,GPS joint∗8,GPS
# NPV nsim NPV nsim NPV nsim NPV nsim

1 336.6 321 334.5 295 347.4 1075 385.1 2683
2 300.5 505 354.8 422 353.0 2021 355.2 3276
3 328.9 426 314.7 310 329.1 1770 346.7 3327
4 328.0 511 192.7 240 325.8 1922 372.3 2481
5 326.7 477 240.9 377 355.2 1936 354.8 5003
6 294.9 468 253.3 361 336.6 2741 336.0 3278
7 263.4 423 345.4 329 344.7 2031 360.0 3941
8 256.8 644 279.6 420 339.5 2602 357.2 4187
9 293.7 587 358.8 447 330.6 1938 358.0 4855

Mean 303.3 485 297.2 356 340.2 2004 358.4 3670
σ 029.2 094 058.6 068 010.6 0479 014.0 0890

4.2 Optimal location and control of five
wells

4.2.1 Case description

In this example we optimize both the location and con-
trol of two injectors and three producers. Some of the
reservoir parameters are different than those used in Sec-
tion 4.1. Specifically, the reservoir area is reduced, the

production time frame is longer, and the costs for injected
and produced water are doubled (the corresponding model
and optimization parameters are given in Table 1). A
water-flooding configuration with two injection wells is
richer in terms of variety of sweeping strategies than an
arrangement with only one injector (as considered previ-
ously). Thus we aim at increasing the diversity of pro-
duction scenarios, which renders the search more chal-
lenging. In addition, our reactive control strategy (which

16



addresses only producers) is now less appealing because
water injection is costly.

The number of grid blocks in the reservoir model, and
the permeability and porosity values for each grid block,
are the same as before (see Figure 1). Because all five
well locations are optimized we now have n1 = 10. The
production time frame is again divided into ten inter-
vals (hence, n2 = 50). As in the previous example, the
gradient-based optimization algorithm embedded in the
joint approach is SNOPT, and the pattern-search meth-
ods considered for the well placement search are HJDS,
GPS, and HOPSPACK. Both GPS and HOPSPACK are
implemented within a distributed computing framework.
While HOPSPACK uses 21 cores (one core is dedicated
to the coordination of the concurrent jobs, leaving effec-
tively 20 computing cores), GPS, due to a limited number
of licenses, is applied only on eight cores. The markedly
non-convex character of the well placement optimization
is dealt with by running the optimizations nine times with
different initial guesses. These initial guesses were not
randomly selected – rather, they correspond to well place-
ments that are reasonable from a reservoir engineering
perspective.

4.2.2 Optimization solutions

In these optimization runs, the parameters for GPS are
the same as in Section 4.1, i.e., the sequence of stencil
sizes is {16,8,4,2,1}. The control optimization in the
joint approach is solved with two different values (four
and eight) for the maximum number of major iterations.
In all cases, one supplementary control optimization is
performed with a maximum number of major iterations
of 32 (one optimization for the sequential fixed approach
needed 64 iterations because convergence was not ob-
tained after 32 iterations).

The results using GPS in the well placement optimiza-
tion part for all of the approaches and each of the nine dif-
ferent well location initial guesses are presented in Table 4
(joint∗4,GPS and joint∗8,GPS refer to the joint approach with
the maximum number of major iterations in the gradient-
based control optimization equal to four and eight, re-
spectively). The total number of simulations performed
in each of the runs is denoted by nsim. The final control
optimization is performed in all cases, and the simulations
required for this step are included in nsim.

We observe that the average (maximum) NPV for
joint∗8,GPS over the nine runs is 5.3% (8.4%) higher
than for joint∗4,GPS. This observation is consistent with
the much larger number of simulations performed in
joint∗8,GPS, and indicates that a maximum number of ma-
jor iterations of four tends to terminate the optimization
prematurely. An insufficient maximum number of major
iterations may yield a clearly suboptimal solution, and an
excessively large value could lead to prohibitive compu-
tational requirements. Therefore, a tuning process for this
parameter might be beneficial when applying the joint ap-
proach. For the remainder of this section, our remarks on
the joint approach will refer to the case with maximum
number of major iterations equal to eight.

In terms of NPV, the sequential fixed and reac-
tive strategies clearly underperform the joint approach.
The average (maximum) NPV over all of the runs
obtained with the joint approach is 18.2% (14.4%)
and 20.6% (7.3%) higher than with the sequential fixed
and reactive schemes, respectively. The average number
of simulations required by joint∗8,GPS is, however, about
one order of magnitude higher than that needed by the
sequential methodologies. Along these lines, it is impor-
tant to realize that the maximum NPVs reported in Ta-
ble 4 for the sequential strategies are based on a fraction of
the computational effort dedicated to the joint approach.
Thus, in order to complement the results in the table, we
tested the sequential reactive scheme (with supplementary
control optimization) for 100 new random initial well lo-
cations (in that manner, the associated total computational
cost is comparable to that for joint∗8,GPS). The average
and maximum NPV over these 100 runs are $288.0 mil-
lion and $353.8 million, respectively. These values are
lower than the corresponding values in Table 4 ($297.2
million and $358.8 million), which is in accordance with
the fact that the nine initial well placements were not se-
lected randomly but rather based on engineering judge-
ment. The key observation, however, is that, even when
we compare based on the same number of total simulation
runs, joint∗8,GPS still outperforms the sequential reactive
scheme.

As can be seen in Table 4, an advantage of the joint ap-
proach is that it results in smaller standard deviation σ of
the NPV than the sequential methodologies. This fact is
consistent with the smoothing of the well placement opti-
mization landscape observed for the joint strategy (which
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Figure 6: Evolution of the objective function (NPV) for all nine runs versus number of simulations: (a) sequential
fixed and reactive approaches, (b) joint approach. Corresponding averages over the nine runs for each approach are
represented by thick solid lines. All runs include the supplementary control optimization.
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was illustrated earlier in Figure 2). Note further that the
results for the sequential reactive approach are not in this
case as close to those for the joint strategy as in the pre-
vious example (indeed, here they are more comparable to
those for the sequential fixed approach). This may be ex-
plained by the increased complexity of this problem and
by the elevated cost of injected water.

The optimization results for the sequential and joint ap-
proaches are further illustrated in Figures 6(a) and (b),
where the evolution of the objective function (NPV) ver-
sus the number of forward simulations is represented for
each of the runs. The corresponding averages over the
nine runs are plotted as thick solid lines. In order to enable
clear comparisons, all figures use the same vertical scale.
We note that, prior to the supplementary (final) control
optimization, all solutions for the sequential fixed scheme
have NPVs lower than $200 million. From Figure 6(a)
it is clear that the additional control optimization is cru-
cial in the sequential approaches. We reiterate that in both
the fixed and reactive strategies the water injectors oper-
ate at maximum BHP, and this may negatively impact the
objective function. Hence, the supplementary control op-
timization can again be seen as a means to compensate for

suboptimal well locations. The lower standard deviation
in the joint approach compared to the sequential strategies
is also evident in Figure 6.

The oil saturation distributions corresponding to the so-
lutions with maximum NPV, at the end of the simula-
tion time frame, are presented in Figure 7 (injection and
production wells appear as blue and red circles, respec-
tively). The amount of bypassed oil is noticeably less for
the joint approach than for the sequential strategies. The
well locations obtained generally tend to be toward the
boundaries of the domain. In a few cases, some wells
are placed very close to each other, as can be seen e.g.,
in Figure 7(b) for the sequential reactive approach. This
type of solution might not be acceptable in practice, and
can be prevented in the optimization by including (nonlin-
ear) constraints that ensure a minimum distance between
wells. The computation of these constraints does not in-
volve time-consuming function evaluations, and for that
reason, they are not as complicated to handle as other
simulation-based constraints that may be present.

The results obtained for HJDS, GPS and HOPSPACK
are shown in Table 5 for the same nine initial well loca-
tions considered in Table 4. The settings and stopping
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criteria for these derivative-free optimizers are the same
as were used for GPS. In all cases the maximum number
of major iterations in the gradient-based control optimiza-
tion is equal to eight (and again all runs include an addi-
tional control optimization with a maximum number of
major iterations of 32). The total number of control opti-
mizations solved (nps) coincides with the number of times
the function NPV∗ is called within each pattern-search al-
gorithm, and can also be assumed to be roughly propor-
tional to the total computing cost. Each call to NPV∗ in-
volves approximately 12-15 forward simulations, so the
total number of simulations is around 4000 for the dif-
ferent approaches (consistent with the 3670 value given
in Table 4). It is useful to express the results in terms of
nps (rather than in terms of the total number of simulations
nsim) when the optimizations are parallelized, and because
all the algorithms compared are pattern-search algorithms
of the same type.

Table 5: Results for NPV (expressed in 106 $) and total
number of control optimizations solved (nps) for the sec-
ond example using Hooke-Jeeves direct search (HJDS),
generalized pattern search (GPS) and a hybrid optimiza-
tion parallel search package (HOPSPACK). The highest
NPV for the nine runs for each approach is underlined.

Run joint∗HJDS joint∗GPS joint∗HOPS
# NPV nps NPV nps NPV nps

1 386.6 331 385.1 188 386.6 222
2 380.8 391 355.2 225 388.0 333
3 327.6 216 346.7 225 358.5 375
4 386.4 316 372.3 175 380.0 358
5 377.5 321 354.8 331 343.1 361
6 344.9 456 336.0 244 333.9 286
7 377.9 556 360.0 285 353.9 331
8 313.8 441 357.2 311 350.6 344
9 371.9 306 358.0 332 358.0 468

Mean 363.0 370 358.4 257 361.4 342
σ 027.3 101 014.0 060 019.3 066

In the absence of distributed computing resources,
HJDS performs marginally better than GPS and
HOPSPACK. However, these two algorithms are prefer-
able to HJDS once they are implemented in parallel. The

effect of distributed computing on GPS and HOPSPACK
is shown in Figure 8. In that figure the vertical axis
represents the evolution of NPV averaged over all nine
runs, and the horizontal axis corresponds to the equivalent
number of control optimizations solved for each pattern-
search optimization algorithm. The number of equivalent
control optimizations solved is defined as the total num-
ber of optimizations divided by an estimate of the speedup
obtained through parallelization. We note that HJDS is
inherently serial, and for that reason the number of equiv-
alent optimizations coincides with the total number of
optimizations solved. For all algorithms, the horizontal
axis in Figure 8 is roughly proportional to total clock
time. Though GPS and HOPSPACK are parallelized on
eight and 20 computing cores, respectively, the speedup
factors estimated for these procedures are 4.1 and 6.4,
respectively. Consequently, as can be seen in Figure 8,
HOPSPACK outperforms GPS in terms of total elapsed
time.

It is worth noting that the ratio of the two speedup fac-
tors is different than the ratio of the numbers of comput-
ing cores used for the two algorithms. This discrepancy is
related to an observed increase in the reservoir flow sim-
ulation clock time with the number of nodes used. This
may be explained by the concurrent sharing of common
libraries by the parallelized simulations or by excessive
input/output data traffic within the cluster. Thus, in some
practical applications there might be an optimal number
of nodes to use in a distributed computing framework
(in other words, a larger number of nodes does not al-
ways provide a higher speedup factor). In this example,
for HOPSPACK, we do not observe clear effects associ-
ated with the asynchronous parallelization mode, but it
is reasonable to expect an increase in performance for
more complicated cases. From Figure 8 it can also be
concluded that HJDS could be an alternative to the other
two derivative-free methods if distributed computing re-
sources are limited or unavailable, particularly if the opti-
mization algorithm need not be run to full convergence.

5 Concluding Remarks
In this work we considered the joint optimization of oil
well placement and well controls. These two problems,
though clearly coupled, have been treated as separate op-
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timizations in most previous studies. We devised a nested
optimization approach where the outer (high-level) opti-
mization addresses the well placement problem. For each
well configuration, the optimization cost function is de-
fined as the optimal objective function value after per-
forming a well control optimization for the particular well
arrangement. Since well control optimization often dis-
plays a more convex character than well placement op-
timization, the former optimization can be approached
from a more local, and thus efficient, perspective than the
latter optimization. Therefore, in the well control opti-
mization we apply a gradient-based procedure, with gra-
dients provided by an adjoint solution. For the well place-
ment part of the optimization, several pattern-search al-
gorithms were considered. Although these are local op-
timizers, by using a large initial stencil size we achieve
some amount of global search.

We considered two optimization problems involving
different numbers of optimization variables. Three ba-
sic optimization strategies were considered – two of these
were sequential schemes that involved particular assump-
tions regarding the well controls (specifically, fixed and
reactive controls) used during the well location optimiza-
tions, and the third was the joint optimization procedure.
In all cases, after the basic optimization had converged,
we performed an additional well control optimization (for
the optimized well locations) using the gradient-based
procedure with a large number of iterations (i.e., a tighter
stopping criterion tolerance). In the first example, the lo-
cation of only one well was optimized, so we were able
to perform an exhaustive search. This enabled a clear as-
sessment of the performance of the different optimization
methods. The exhaustive search results showed that the
optimization landscape corresponding to the well loca-
tion in the joint approach was smoother (suggesting that
global exploration can be more readily accomplished in
this case) than the optimization landscape for the sequen-
tial fixed strategy.

The joint procedure was shown to consistently outper-
form the sequential schemes in terms of the optimized
cost function (net present value in our examples). For
the second (more challenging and more realistic) exam-
ple, the increase in net present value obtained by the
joint approach exceeded that achieved by the sequen-
tial methodologies by around 20% on average. The
joint approach does, however, require around an order

of magnitude more reservoir simulations than are re-
quired for the sequential approaches. This high compu-
tational demand can be mitigated through use of parallel
implementations of the pattern-search algorithms. Two
of the algorithms considered, generalized pattern search
(GPS) and hybrid optimization parallel search package
(HOPSPACK), parallelize naturally and such implemen-
tations were in fact applied.

The control optimization in the joint approach can be
interpreted as an effective means to compensate for well
placements that are suboptimal from the objective func-
tion perspective. This reasoning can be extended to opti-
mizations that include variables in addition to those con-
sidered here. For example, the negative effects result-
ing from using too short of a production time frame, or
from an insufficient number of wells, could be alleviated
to some extent by the optimization of well locations and
controls. We reiterate, however, that the ‘smoothing’ of
the optimization landscape typically entails a significant
increase in computational cost.

The joint optimization procedure presented here can
be extended in several interesting directions. For prob-
lems involving more general (nonlinear) production con-
straints, it is not clear if multiple optima with very sim-
ilar cost function values will continue to be observed in
the well control optimizations, as they are for bound-
constrained problems. If this is not the case, then this
issue must be addressed in some way; e.g., by perform-
ing multiple control optimizations using different initial
guesses. Another useful direction for future research is
to consider the use of surrogate models to accelerate the
optimizations. Specifically, in some of the computations,
the optimized net present value could be estimated using
a sequential reactive strategy. This approach would be
most effective if the particular reactive strategy is ‘tuned’
(including some treatment for injection wells) based on
the joint optimization results. Further effort should
also be expended toward including inter-well distance
constraints and nonlinear simulation-based production
constraints (such as maximum water cut in production
wells), possibly through use of a filter method (see e.g.,
Echeverría Ciaurri et al, 2011a). It will also be useful
to consider global exploration techniques such as particle
swarm optimization (Eberhart et al, 2001) or genetic algo-
rithms (Goldberg, 1989) for the well placement part of the
optimization. Uncertainty in the reservoir model should
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also be included in the optimization using, for example,
the stochastic procedure recently presented by Wang et al
(2012). Developments along some of these lines are cur-
rently underway and will be the subject of future publica-
tions.
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Figure 7: Oil saturation distribution at the end of the production time frame for the well controls and locations cor-
responding to the run from Table 4 with maximum NPV: (a) sequential fixed, (b) sequential reactive, and (c) joint
approach. Injection and production wells are represented as blue and red circles, respectively.
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Figure 8: Evolution of NPV averaged over nine runs ver-
sus the equivalent number of control optimizations for the
three pattern-search optimization algorithms considered.
The number of equivalent control optimizations solved is
the total number of optimizations divided by an estimate
of the speedup. The speedup factors estimated for GPS
and HOPSPACK are 4.1 and 6.4, respectively.
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