
lable at ScienceDirect

Digital Investigation 28 (2019) S30eS39
Contents lists avai
Digital Investigation

journal homepage: www.elsevier .com/locate/di in
Using the object ID index as an investigative approach for NTFS file
systems

Rune Nordvik a, b, *, Fergus Toolan b, Stefan Axelsson a, c

a Norwegian University of Science and Technology, Norway
b Norwegian Police University College, Norway
c Halmstad University, Sweden
a r t i c l e i n f o

Article history:

Keywords:
User activity
NTFS
Object ID
* Corresponding author. Norwegian University o
Norway.

E-mail address: rune.nordvik@phs.no (R. Nordvik)

https://doi.org/10.1016/j.diin.2019.01.013
1742-2876/© 2019 The Author(s). Published by Elsevie
licenses/by-nc-nd/4.0/).
a b s t r a c t

When investigating an incident it is important to document user activity, and to document which storage
device was connected to which computer. We present a new approach to documenting user activity in
computer systems using the NTFS file system by using the $ObjId Index to document user activity, and to
correlate this index with the corresponding records in the MFT table. This may be the only possible
approach when investigating external NTFS storage devices, and is hence a valuable addition to the
storage forensics toolbox.
© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Users interact with the file system by navigating, creating,
moving, renaming, copying or deleting files, or directories. Digital
forensic investigators normally use digital forensic tools to inves-
tigate criminal cases (Garfinkel, 2010; Gl and Kugu, 2017). When
digital forensic tools parse the NTFS file system they often show
only selected parts of each MFT record. In order to validate the
results of the tools it would be necessary for digital forensic in-
vestigators to use hex viewers, or tools such as mftrcrd (Schicht,
2018) to manually interpret the MFT records. In NTFS, metadata
about files is mainly found in the system file $MFT (master file
table) [2, p.353], but metadata might exist in other system files
including $ObjId, $LogFile, $UsnJrnl, $Secure, etc. Typically, file
metadata could include timestamps, file names, block allocations
(data runs or extents), Object IDs, different indexes, etc [2, chap.13].

This paper will focus on Object Identifers (OIDs). The Object ID
index found in the $ObjId system file can help the investigator to
find all allocated files that have an Object ID, which will assist in
event reconstruction of user activity. OIDs are created based on
typical user activity and are used by Windows in order to track an
object (file, directory or link) even if the object changes location or
name (Microsoft, 2016). OIDs will be created when a file is opened
f Science and Technology,

.

r Ltd on behalf of DFRWS. This is a
by the user in Windows File Explorer, or when the file is opened or
saved by some applications (Parsonage, 2008). A user can also use
the command line tool fsutil objectid to create, delete or set OIDs.
If a user moves a file to another volume the Object IDmight change,
however, the Birth Object ID and the Birth Volume Object ID should
be preserved (Microsoft, 2016). A volume is a collection of
addressable sectors that can be used for storage, and a volume can
also be a partition [2, p.70]. In the context of this paper, the volume
is a partition using the NTFS file system. According to Microsoft the
Windows OS uses OIDs in order to track files (Microsoft, 2016).

A digital forensic tool might show OIDs connected to a file, but
different digital forensic tools deviate in how OIDs connected to a
file are presented. We performed an experiment to determine if
forensic tools display OIDs. Thus we tried X-Ways Forensics and
Autopsy on a file which was known to have connected OIDs. The
results were that X-Ways Forensics showed only the Object ID key,
and Autopsy (Sleuthkit) failed to show any information relating to
OIDs. EnCase shows Object IDs and parses the Object ID timestamp,
sequence number and the MAC address (Habben, 2018). If a file,
directory or link is assigned OIDs, the following will be assigned:

� Object ID (used as a key in the index)
� Birth Volume Object ID (special identifier equal to the Object ID
of the $Volume system file from the volume the OIDs were
created)

� Birth Object ID (equal to the first Object ID assigned and should
not change)

� Domain Object ID (always zeros, reserved)
n open access article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rune.nordvik@phs.no
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2019.01.013&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2019.01.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2019.01.013
https://doi.org/10.1016/j.diin.2019.01.013

R. Nordvik et al. / Digital Investigation 28 (2019) S30eS39 S31
It is not enough to just display an artifact, the investigators need
to understand what it means. The authors consider OIDs to be
important for digital forensics for the following reasons:

� OIDs will show which boot session a file with OIDs belongs too
(Leachi et al., 2005), which can assist in timeline creation.

� OIDs can show the node (MAC-address) used by the computer
that created the OIDs (Leachi et al., 2005). This means wewill be
able to determine to which computers the external storage
medium has been attached, as long as the user has accessed files
and created new OIDs.

� OIDs can show in which sequence files have been assigned OIDs
within a boot session. This might assist in detecting manipula-
tion of timestamps and in building timelines.

� The $ObjId index can be used as a triage tool in order to identify
files or directories the user has accessed.

� The Birth Volume Object ID might be used to identify the file
system volume used when the file was first assigned OIDs.

The Object ID is a unique 16 byte identifier used to identify files
on a NTFS volume (Microsoft, 2016). Any file that obtains an Object
ID, will also have a Birth Volume Object ID, a Birth Object ID and a
Domain ID (Microsoft, 2016). The Birth Volume Object ID (16 bytes)
is used for identifying the volume the file was located on when it
first obtained an OID (Microsoft, 2016). The Birth Object ID (16
bytes) is the first Object ID assigned to the file. The Object ID may
change if the file is moved, but the Birth Object ID should remain
constant (Microsoft, 2016). The Domain ID is a 16 byte structure
reserved for identifying a domain, and must be 16 bytes of zeros
(Microsoft, 2016). Our experiments attempt to observe and assess if
the description of fsutil by Microsoft is still true in Windows 10.

OIDs are 16 bytes in size and contain a 60 bit timestamp, which
is the number of 100 ns intervals since 15th of October 1582 (Leachi
et al., 2005; Parsonage, 2008). This timestamp is found in the first
60 bits of the OID and is related to the start of the boot session in
which the OID was created (Leachi et al., 2005). The two least
significant bytes of this timestamp, when interpreted as Little
Endian, are also used as a counter showing the order of OID creation
within the specific boot session (Parsonage, 2008). The counter is
the only two bytes that separates Object IDs assigned in the same
boot session. The timestamp can be converted to FILETIME by
subtracting the hex value 0x146BF33E42C000, allowing tools that
interpret FILETIME to convert it. The OIDs have a clock sequence
which will be identical for all OIDs created in a particular boot
session. Finally the last 6 bytes of the OID will normally include the
MAC address of the default Network adapter. If no NIC is available
this will contain a random number (Leachi et al., 2005). A graphical
illustration is shown in Fig. 1.
Fig. 1. Structure of an Obje
The Object ID is used as an index key in the $ObjId$O file and
this Object ID is also located in the Object ID Attribute (type 0x40)
in the corresponding MFT record. We can also find the MFT record
number in the $ObjId$O index entry [2, p.335]. This way it is easy to
find the correct record in the index, knowing the Object ID key from
the MFT record, but also to find all Master File Table (MFT) records
that have an Object ID by examining the $ObjId$O index entries. It
is the latter approach that is presented in this paper. A prototype
tool has been developed which implements this approach and was
used during the course of these experiments.

The remainder of this paper is organized as follows. Section 2
describes related work. Section 3 illustrates the research goals.
Section 4 describes the methodology and details about our exper-
imental setup. Section 5 presents the results of our experiment.
Section 6 presents the evaluation methodology and results of
assessing the feasibility and reliability of the approach. Section 7
discusses and interprets the results. Finally, Section 8 concludes
and provides recommendations for future work.
Related work and contributions

Previous work on Object IDs has focused on interpreting the
meaning of OIDs found in link files (shortcut files), or OIDs from link
files found in the NTFS journal. In this section we describe this
previous related work and finally we describe our contributions.
Related work

Carrier provided a description of the $OBJECT_ID structure [2,
p.367] and the index $ObjId structure [2, pp.386e387]. Carrier
describes OIDs as an alternate method of addressing files, which
allows for locating the file even if the name and location have
changed [2, p.335]. Carrier does not describe the format the OIDs
are using or their exact meaning.

In Windows, users can create shortcut files that point to other
files. The Windows OS often creates these shortcut files automati-
cally based on user activity. These shortcut files normally have the
extension lnk and are called link files (Parsonage, 2008). Parsonage
describes which OIDs can be found within link files and compares
them to the output of the fsutil command. Within link files the
following OIDs might be stored:

� New VolumeID (corresponds to the Volume Object ID of the
$Volume system file, but not found in the $ObjId index if this is
from another NTFS volume)

� New File ObjectID (should be identical with the Object ID found
in the $ObjId index)
ct ID UUID version 1.

R. Nordvik et al. / Digital Investigation 28 (2019) S30eS39S32
� Birth VolumeID (should be identical with the Birth Volume
Object ID found in the $ObjId index entry, but themove bit is not
set)

� Birth File ObjectID (should be identical with the Birth Object ID
found in the $ObjId index entry)

Parsonage (2008) describes the importance of Link Files, and
mentions that there exists an index of Object IDs, however, little use
is made of this. This research is based on the description of OIDs
from this article, but does not focus on the binary content of link
files. Parsonage claims that the OIDs are not preserved on remov-
able media. This paper attempts to determine the veracity of this
claim. We will use the $ObjId index as an approach to find all
allocated files on a volume which would indicate user activity. The
OID structure, described in (Leachi et al., 2005; Parsonage, 2008),
can be used to connect the device to one or multiple computer
system(s) using the MAC address included in the OID.

In Windows, jump lists are used for saving recently used items
for an application or for the OS itself. For instance, the list of
recently opened documents is made possible using a jump list.
Singh & Singh (Singh and Singh, 2016) describe jump lists, and
show how to interpret these for Windows 10, which is different
from Windows 7 and 8. Their work shows that OIDs are used in
DestList and LNK streams, which includes embedded shortcut files.
Within these shortcut files/streams both the new Volume Object ID
and the Birth Volume Object ID might be shown, which is helpful
for tracking purposes. However, an investigator may have no access
to the system volume, meaning they would have no access to the
jump lists. In these cases the investigator only has the $ObjId index,
the MFT table or other system files to investigate. In this index we
find the Object ID, the Birth Volume Object ID, the Birth Object ID,
the Domain ID (unused) and the reference to the MFT record [2,
pp.386e387].

McGrath & Gladyshev (McGrath and Gladyshev, 2013) describe
how to use the NTFS $logfile to find cleartext files after encryption.
The authors use fsutil to determine the Birth Volume Object ID
from the known ciphertext file. They state that the ciphertext file
and the fact that the Birth Volume Object ID was found inside the
$logfile and conclude that the encryption took place on that vol-
ume. They also do the same for the cleartext file found in the
$logfile. Even if the file was deleted, the previous dataruns, used by
the cleartext file, might still be present within $logfile. In our
experience not all encryption software creates Object IDs or link
files, and not all cleartext files have OIDs. Some encryption software
will create OIDs both for the cleartext file selected and the
ciphertext file created.

Cowen (2018a) has performed a few experiments regarding
Object IDs. The results of his experiments are not published in a
peer-reviewed paper. He is using a python script parsing every MFT
record for the OBJECT_ID attribute. He suggests that the last 6 bytes
of the Object ID is the MAC address, even for the $Volume. His
testing also shows that he does not find validMAC addresses for the
Object ID connected to the $Volume. Further, his script source code
shows he has based his parsing on the knowledge from Parsonage
(Cowen, 2018b). Cowen's testing shows that there are Object IDs
even for some of the files installed on the system, and that their
MAC addresses have been preserved. He concludes that there are
less Object IDs for pre-installed files on Windows 10 compared to
Windows 7. Cowen does not use the system file $ObjId in his ex-
periments, and therefore he only finds the main Object ID key.

Yamazaki (2015) has published a closed source tool, fte, that
should be able to parse the $MFT, $ObjId system file and other NTFS
indexes. When we tested this tool on Windows 10, it was only able
to parse the $ObjId system file when selecting a live volume, and
only if the Index Allocation Attribute existed. The tool shows
correctly the date from the Object ID, but the column describes
ctime which easily could be interpreted incorrectly as change time.
The tool detected correctly if a file has been moved from another
NTFS volume. The fte tool does not parse the Index Root Attribute,
when there are just a few files with OIDs on a volume.

Contributions

None of the above related work address the meaning of the
Object IDs saved in the $ObjId index. As can be seen, no-one has
previously identified what kind of operations update the $ObjId
index. Hence, our contributions include novel investigation
methods for:

� Event reconstruction of user activity using the Object ID index
correlated with the $MFT table.

� Documentation of computer devices to which an external hard
drive has been attached.

� Finding the boot times of a computer by investigating the Object
ID index of attached NTFS volumes, which could be correlated
with external NTFS storage devices that have been attached.

� Creating timelines.
� Detection of manipulation of timestamps by analyzing Object
IDs.

Research goals

This research focuses on the feasibility and reliability of using
$ObjId$O index to document user activity.

� Feasibility: The selected approach should be feasible for use
with new versions of Windows, and therefore we have selected
Windows 7 and 10 as our test systems.

� Reliability: The selected approach should reliably detect user
activity.
Research questions

This paper aims to determine if user activity can be documented
from non-OS NTFS volumes using FS metadata from the NTFS file
system. It also aims to determine if it is possible to discover what
machine(s) a device was connected to by using artifacts present on
the device.

When the NTFS system volume is unavailable, investigators can
no longer rely upon jump lists, recent link files, registry, event logs
and prefetch files in order to determine user activity. Only the ar-
tifacts found in the NTFS file system can be relied upon, hence, it is
the opinion of the authors that this approach may be the only
means of recreating user activity for external NTFS media.

Automation

Forensic tools have basic support for parsing the MFT record
attributes, but to the authors’ knowledge only two tools, mftrcrd
(Schicht, 2018) and fte (Yamazaki, 2015), show all the timestamps
from all the File Name attributes (FNAs) within the MFT record.
Furthermore, only the fte tool is able to parse the $ObjId index to
list all OIDs in the system under investigation. As part of this work
an open source tool has been developed that automates the parsing
of $ObjId and correlation with the pertinent attributes in the MFT
record. The prototype tool, NTFSObjIDParser (Nordvik, 2019), was
developed in Cþþ using the graphical QT Libraries. The target users
are computer forensic investigators. Users need to export the $MFT
table and the $ObjId$O Index Allocation Attribute (type 0xA0) or

R. Nordvik et al. / Digital Investigation 28 (2019) S30eS39 S33
the Index Root Attribute (type 0x90), as shown in Fig. 2 and Fig. 4.
Using these inputs, the prototype tool will correlate each index
entry with the corresponding MFT record.

In NTFS indexes are used for storing $MFT attributes in a sorted
order, and a B-tree is used [2, p.290]. The root node is always
located in the resident Index Root Attribute [2, p.294]. If all the
nodes can not fit resident (7 or more entries) in the Index Root
attribute, a non-resident Index Allocation Attribute is used [2,
p.294]. The $MFT record of the $ObjId system file contains these
two attributes (Index Root and/or Index Allocation), and the
indexed attribute is in this case the $MFT $OBJECT_ID Attribute
(type 0x40).

Methodology

The NTFSObjIDParser prototype tool was used in our experi-
ments. The output was verified using the xxd hex viewer and the
forensic suite Sleuthkit (Carrier, 2017).

Object ID creation

The purpose of this experiment is to determine when an Object
ID is created. Multiple tools were evaluated. These included: the
command prompt; File Explorer; Notepad; VeraCrypt; and
LibreOffice. The scenarios tested on the NTFS filesystem were:

� File creation: Using a tool to create a new file.
� Opening a file: Using a tool to open an existing file, with or
without an Object ID, and test if rebooting impacts the result.

� Copying a file (same volume):Using a tool to copy a file, with or
without an Object ID, to the same volume, and test if rebooting
impacts the result.

� Copying a file (other volume): Using a tool to copy a file, with
or without an Object ID, to another NTFS volume, and test if
rebooting impacts the result.

� Moving a file (same volume): Using a tool to move a file, with
or without an Object ID, to another directory on the same vol-
ume, and test if rebooting impacts the result.

� Moving a file (other volume): Using a tool to move a file, with
or without an Object ID, to a directory on another volume, and
test if rebooting impacts the result.

� Deleting a file: Using a tool to delete a file.

The reboot means that after the test, the machine is rebooted,
and the test repeated. The reboot was performed to see if the 60 bit
timestampswithin the OIDs were updated to the last timestamp for
the most recent boot time. This was tested for all scenarios where
files have an existing OID.

After each test, and after the reboots, the MFT table and the
clusters found in the Index Allocation Attribute data runs were
exported. Simple Sleuthkit commands (Carrier, 2017) were used for
extraction of the MFT, but during the experiments we thought it
was necessary to use dd to gather the clusters from the Index
Allocation Attribute. Sleuthkit v. 4.4.1 to v. 4.6.2 did not show the
Index Allocation Attribute, only showing the Index Root Attribute.
Fig. 2. Exporting the MFT table, and MFT record number 25.
However, it is possible to extract an existing Index Allocation
Attribute using Sleuthkit by combining the MFT record number and
the attribute type. The USB device was unmounted fromWindows,
and mounted in MacOS where Sleuthkit was installed.

The mmls command in Fig. 2 was used to show the partition
tables, and to find the correct volume. Using this information the
MFT table was exported. From the extracted MFT table the $ObjId
MFT record (25) was shown in the hex viewer. It should be noted
that the 25th MFT record is not always used for the $ObjId file.

Fig. 3 shows the Index Allocation Attribute which commences at
offset 0x158 (type 0xA0). Skipping 0�48 bytes, and examining the
value at offset 0�1A0, the bytes 0x110123 are seen. This provides
the data run for the attribute in question. Interpreting this shows
that the contents start at cluster 0x23 and occupy a single cluster.
The test disk has 8 sectors per cluster, therefore the data content of
the $ObjId$O index is located at sector 280 relative to the start of
the volume. Allowing for the 32 sectors before the volume, sectors
312e319 are extracted as shown in the first command in Fig. 4.

The last command skips the index file header (64 bytes) within
this file and shows an object ID index entry. The result of this is
shown in Fig. 5. We observed that when it was less than 7 entries,
therewas no Index Allocation Attribute, and all the indexes were, in
this case, stored resident in the Index Root Attribute. If there are 7
or more entries, it is necessary to extract the Index Allocation
Attribute, and to skip the file header (32 bytes) in order to find the
first Object ID index entry.

The structure of an Object ID index entry is shown in Fig. 6. The
basic parsing of this index structure is defined by Carrier [2, p.387].
The 8 bytes at offset 0x20 provide a reference to the MFT table. The
16 most significant bits (in this case all multibyte data fields are
stored in Little Endian format) are for the sequence number and the
remainder is for the MFT record number (0x25). There are a total of
4 universally unique identifiers (UUIDs), but the Domain UUID al-
ways has a zero value. The Object ID UUID will also be found in the
MFT record Object ID Attribute, but none of the other UUIDs will be
present. Both the Object ID and the Birth Object IDwill have a 60 bit
timestamp, as described in Section 1. The two least significant bytes
represent the Object ID order, in other words the order in which
OIDs were created. In bytes 8 and 9 of the UUID the clock sequence
number is found. Remember to set the two variant bits to 0. Then
we read the two bytes in Big Endian order. This sequence number is
equal for all UUIDs that were created/updatedwithin the same boot
session. The last 6 bytes, when read as an array of bytes rather than
a multibyte field, will show the MAC address of the standard NIC
used. If no NIC was used a random number appears at this location
(Parsonage, 2008). More details on how to parse an Object ID entry
are shown in Table 1 and in Fig. 6.

Manually parsing each Object ID entry is too time consuming
when every index entry must be parsed, and therefore the proto-
type tool, NTFSObjIDParser, is used for automation. The prototype
correlates Object ID entries with the MFT record found in the entry
reference by parsing the MFT record's Standard Information
Fig. 3. Hex dump of the Index Allocation Attribute.

Fig. 5. Hex dump of an Object Index Entry.

Table 1
Offet table index entry, based on [2, pp.386e387].

Offset Length Meaning

0x00 0x02 Offset to data
0x02 0x02 Size of data
0x04 0x04 Padding (Unused)
0x08 0x02 Size of Index Entry
0x0A 0x02 Size of Index Key (Object ID)
0x0C 0x04 Flags
0x10 0x10 Object ID UUID (the key)
0x20 0x08 Reference to MFT record
0x28 0x10 Birth Volume Object ID UUID
0x38 0x10 Birth Object ID UUID
0x48 0x10 Domain ID UUIDFig. 4. Exporting the Object ID Index Allocation non resident data, and show one

Object ID Index Entry.

R. Nordvik et al. / Digital Investigation 28 (2019) S30eS39S34
Attribute (SIA), all File Name Attributes (FNAs) and the Object
Identifier Attribute (OIA). The first column in Fig. 7a shows the MFT
record reference for each row. This showswhich rows represent the
same item. Then the byte offset to the entry or to the MFT record is
shown, and the relative offset from each entry where the MFT
attribute or Object ID type can be found. Knowing the offsets will
allow verification of results by computer forensic investigators.

Next theMFT Header flags are shown if the entry is aMFT record
or the Object ID entry flags are shown if the entry is an OID. The
MFT header flags will show if the file or directory is allocated or
unallocated. It is unlikely that unallocated files or directories will be
found, this is due to the fact that deleted files will be removed from
the index, however it will be present in the MFT table as long as the
record has not been reused. An attempt was made to find patterns
describing what actions created the OID: creation; opening;
copying; moving; deleting. This is not fully implemented in the
prototype. In the Name column we show the OIDs or File Names.
The SIA does not have a File Name or an OID, so it is left empty.

For Object ID, Birth Object ID and the MFT OIA attribute the
Created timestamps are shown. It should be noted that the time is
the system boot time before creating the OIDs. For SIA or FNA the
Fig. 6. C structure of an Object ID index entry.
Created, Modified, Record Modified and Accessed timestamps are
shown, as can be seen from Fig. 7b. Note that these timestamps are
approximately real time, but that the Accessed timestamp does not
get updated all the time. Then the MAC address computed from the
last 6 bytes of the OIDs is shown. In the field Object ID Order the
decimal value of the two least significant bytes of the 60 bit time-
stamp in the OIDs is shown. This is not shown for the Birth Volume
Object ID, since this OID does not have a timestamp. The last col-
umn shows the clock sequence, which shows which OID entries
were created within a boot session.

We used Virtual Box v. 5.1 to virtualize Windows 7 Home Pre-
mium SP1 (32bit) and Windows 10 Pro (64bit). The attached SATA
USB3 disks were of the type Lacie Porsche Mobile (1 TiB), each
using one volume and formatted as NTFS. For Windows 7 we
needed to install USB3 drivers. Since we were using virtual ma-
chines, the USB disks were automatically released to the host
(MacOS High Sierra v 10.13) OS when rebooted. This was also why
we observed that the $Volume Object ID was not always set. In the
final stages of preparing this paper, we found that we could add the
USB device to the USB device filters in the Settings, Ports, USB in
Virtual Box. This waywe could restart the virtual machinewhile the
USB disk was attached during the reboot. The internal NTFS vol-
umes were created by adding a vmdk disk device using Virtual Box,
and then formatting it in Windows. We also tested using different
USB thumb drives, however rebooting with the USB thumb drives
attached did not assign a $Volume Object ID.
Results

We observed that for the Index Allocation Attribute (type 0xA0)
to be used as an attribute in the $ObjIdMFT record, it is necessary to
Fig. 7. NTFSObjIDParser output. Results are split between (a) and (b).

R. Nordvik et al. / Digital Investigation 28 (2019) S30eS39 S35
have more than 6 entries on a newly NTFS formatted volume. This
might also depend on the number and size of the attributes within
the $ObjId MFT record. If we have less entries, the indexes will be
found in the Index Root Attribute (type 0x90). In the experiment a
NTFS formatted USB disk was used. Since MFT record 3 ($Volume)
did not get an Object ID attribute, the value used for Birth Volume
Object ID UUID was zero. This result was unexpected, as all docu-
mentation consulted described that the Birth Volume Object ID
should be assigned a unique value identifying the volume
(Microsoft, 2016; McGrath and Gladyshev, 2013; Singh and Singh,
2016; Parsonage, 2008). The missing Birth Volume Object ID
UUID was also observed when using Windows 7. In these cases the
$Volume Object ID attribute was also not present in the MFT table.
This was observed on recently created volumes on internal disks,
and on removable disks. Whenever the $Volume Object ID attribute
was available in theMFT table, then a non-zero Birth Volume Object
ID UUID was present in the $ObjId index. We were only successful
in creating an Object ID for the $Volume system file if we per-
formed formatting of an internal or external disk using Windows 7
or 10. We also observed that a reboot might be necessary after the
formatting in order for the $Volume Object ID to be assigned, and
that the disk must be attached during the boot process. When this
internal or external disk was quick reformatted again, the Object ID
for the $Volume system file was normally preserved.

In the following tables (2e8) the tests that were performed are
summarized. The following abbreviations have been used: W7
(Windows 7); W10 (Windows 10); OID (Object ID); BOID (Birth
Object ID); and BVOID (Birth Volume Object ID). The OS column
contains the operating system used. Impact contains the different
OIDs that the action might impact. Existing OID has the value Yes if
the file had existing OIDs before the operation was performed,
Preserved OID contains Yes if previous OIDs from the source file
were preserved after the operation. New OID has the value Yes if
the action created a new Object ID. Tool describes the tool used for
the operation.
File creation

Table 2 shows that creating a file makes an entry in the $ObjId$O
index if File Explorer is used on Windows 10, but not when using
Windows 7. If LibreOffice is used to create a new file a new entry is
created in the $ObjId$O index on both versions of Windows. If the
command prompt is used and the output is redirected to a file, no
entry is made in the Object ID index. When using Notepad to create
a file, no entry is made in the Object ID index. If File Explorer is used
to extract a zip container (including a directory and a file), this
creates the directory with an Object ID entry in Windows 10, but
not in Windows 7. However, the file that was extracted did not get
any entry in the Object ID index. A 100 MiB container, created using
VeraCrypt, did not result in any OIDs.
Table 2
Experiment 1 - Test 1: File creation.

OS Impact Reboot Existing OID Pr

W7, W10 OID, BOID, BVOID No No e

W7 OID, BOID, BVOID No No e

W10 OID, BOID, BVOID No No e

W7 OID, BOID, BVOID No No e

W10 OID, BOID, BVOID No No e

W7, W10 OID, BOID, BVOID No No e

W7, W10 OID, BOID, BVOID No No e

W7, W10 OID, BOID, BVOID No No e
Opening a file

Table 3 shows that if a file with no Object ID entry was opened
by double clicking on it in File Explorer, then it received an Object
ID entry. Identical UUIDs for Object ID and Birth Object ID were
created. When double clicking a file with existing OIDs in File Ex-
plorer, the OIDs were preserved. This was also the case if we
rebooted the system first. If LibreOffice was used to open a file
without OIDs, a new entry was added to the Object ID Index. Using
Libreoffice to open a file with existing OIDs preserved the OIDs. The
same behavior was observed when rebooting the system first. No
deviations were observed between Windows 7 and 10 when
opening files. Both Notepad and the Command Prompt failed to
create an OID after opening a file. They did, however, preserve
existing OIDs.
Copying a file (same volume)

In Table 4 File Explorer is used to drag and drop a file while
holding CTRL (this ensures the file is copied) (Microsoft, 2001). The
original file did not have any Object ID before the operation. Both
the original and the copy did not get any entry in the Object ID
index after this operation. If the source file had OIDs before, these
are preserved for the source file, but no OIDs were found for the
new copy. Using LibreOffice Save As created new OIDs for the copy.
If the copy terminal command was used to copy a file to the same
volume, it did not create new OIDs for the copy. Notepad was used
to create a copy using Save As. In Windows 7 OIDs were created for
the copy, but not in Windows 10. Copying a file also is creation of a
file based on an existing file. A new entry will be created in the MFT
table, and therefore this is also a part of the copy operation.
Copying a file (other volume)

Table 5 shows the results of copying a file to another volume
using File Explorer's drag and drop functionality while holding the
CTRL key. The results, regarding OIDs, were the same as when the
file is copied to the same volume. We also show the result when
using LibreOffice's Save As feature, which created new OIDs for the
target file. When using Notepad's Save As feature only Windows 7
created new OIDs for the target file. Using the command prompt
copy command did not create OIDs for the target file.
Moving a file (same volume)

In Table 6 File Explorer's drag and drop functionality is used
while holding the SHIFT key (to ensure the file was moved)
(Microsoft, 2001). The file did not get an entry in the Object ID
index after this operation. If the file had existing OIDs, then these
were preserved. The same was observed when using the move
command from the CMD prompt.
eserved OID New OID Tool

Yes LibreOffice
No File Explorer (File or Directory)
Yes File Explorer (File or Directory)
No Extract directory from zip (File Explorer)
Yes Extract directory from zip (File Explorer)
No Extract file from zip (File Explorer)
No CMD prompt, Notepad
No Veracrypt

Table 3
Experiment 1 - Test 2: Opening a file.

OS
Impact Reboot Existing OID Preserved OID New OID Tool

W7, W10 OID, BOID, BVOID No No e Yes File Explorer (double click)
W7, W10 OID, BOID, BVOID No Yes Yes No File Explorer (double click)
W7, W10 OID, BOID, BVOID Yes Yes Yes No File Explorer (double click)
W7, W10 OID, BOID, BVOID No No e Yes LibreOffice (File Open)
W7, W10 OID, BOID, BVOID No Yes Yes No LibreOffice (File Open)
W7, W10 OID, BOID, BVOID Yes Yes Yes No LibreOffice (File Open)
W7, W10 OID, BOID, BVOID No No e No CMD prompt, Notepad (File Open)
W7, W10 OID, BOID, BVOID No Yes Yes No CMD prompt, Notepad (File Open)
W7, W10 OID, BOID, BVOID Yes Yes Yes No CMD prompt, Notepad (File Open)

Table 4
Experiment 1 - Test 3: Copying file to the same volume.

OS Impact Reboot Existing OID Preserved OID New OID Tool

W7, W10 OID, BOID, BVOID No No e No File Explorer (CTRL drag)
W7, W10 OID, BOID, BVOID No Yes No No File Explorer (CTRL drag)
W7, W10 OID, BOID, BVOID Yes Yes No No File Explorer (CTRL drag)
W7, W10 OID, BOID, BVOID No Yes No Yes LibreOffice (Save As)
W7, W10 OID, BOID, BVOID Yes Yes No Yes LibreOffice (Save As)
W7, W10 OID, BOID, BVOID No Yes No No CMD prompt (copy)
W7, W10 OID, BOID, BVOID Yes Yes No No CMD prompt (copy)
W7 OID, BOID, BVOID No Yes No Yes Notepad (Save As)
W7 OID, BOID, BVOID Yes Yes No Yes Notepad (Save As)
W10 OID, BOID, BVOID No Yes No No Notepad (Save As)
W10 OID, BOID, BVOID Yes Yes No No Notepad (Save As)

Table 5
Experiment 1 - Test 4: Copying file to another volume.

OS Impact Reboot Existing OID Preserved OID New OID Tool

W7, W10 OID, BOID, BVOID No No e No File Explorer (CTRL drag)
W7, W10 OID, BOID, BVOID No Yes No No File Explorer (CTRL drag)
W7, W10 OID, BOID, BVOID Yes Yes No No File Explorer (CTRL drag)
W7, W10 OID, BOID, BVOID No Yes No Yes LibreOffice (Save As)
W7, W10 OID, BOID, BVOID Yes Yes No Yes LibreOffice (Save As)
W7, W10 OID, BOID, BVOID No Yes No No CMD prompt (copy)
W7, W10 OID, BOID, BVOID Yes Yes No No CMD prompt (copy)
W7 OID, BOID, BVOID No Yes No Yes Notepad (Save As)
W7 OID, BOID, BVOID Yes Yes No Yes Notepad (Save As)
W10 OID, BOID, BVOID No Yes No No Notepad (Save As)
W10 OID, BOID, BVOID Yes Yes No No Notepad (Save As)

Table 6
Experiment 1 - Test 5: Moving file to the same volume.

OS Impact Reboot Existing OID Preserved OID New OID Tool

W7,W10 OID, BOID, BVOID No No e No File Explorer (SHIFT drag)
W7, W10 OID, BOID, BVOID No Yes Yes No File Explorer (SHIFT drag)
W7, W10 OID, BOID, BVOID Yes Yes Yes No File Explorer (SHIFT drag)
W7, W10 OID, BOID, BVOID No No e No CMD prompt (move)
W7, W10 OID, BOID, BVOID No Yes Yes No CMD prompt (move)
W7, W10 OID, BOID, BVOID Yes Yes Yes No CMD prompt (move)

R. Nordvik et al. / Digital Investigation 28 (2019) S30eS39S36
Moving a file (other volume)

The behaviour when moving a file from one NTFS volume to
another depends on the OS used, and if the volume is an internal
volume or an external volume. All our observations show that
external disks have an Object ID equal to zero for the $Volume
system file when these external disks have not been connected
during reboot. This was observed for both Windows 7 and 10,
regardless of the format method. However, internal disks when
formatted normally (not quick) will have an Object ID for the
$Volume file. If the same internal or external drive is reformatted,
then the Object ID for the $Volume system file is preserved.
Table 7 shows File Explorer's drag and drop, while holding the

SHIFT key, being used to move a file to a different volume. The file
did get an entry in the Object ID index after this operation. The least
significant bit, when reading the timestamp location as Little
Endian, was set in the Birth Volume Object ID (the move bit). The
Object ID and the Birth Object ID were preserved in this new index
entry. We also observed an exception if the volume was an NTFS
volume without an Object ID Attribute in the $Volume system file
(external disk). In this case we observed that the moved file got a
new Object ID and Birth Object ID inWindows 10, but no Object IDs

Table 7
Experiment 1 - Test 6: Moving file to another volume.

OS Impact Reboot Existing OID Preserved OID New OID Tool

W7, W10 OID, BOID, BVOID No No e No File Explorer (SHIFT drag)
W7,W10 OID, BOID, BVOID No Yes OID, BOID BVOID LSb ¼ 1 File Explorer (SHIFT drag)
W7 OID, BOID, BVOID No Yes No No File Explorer (SHIFT drag). Target BVOID ¼ 0
W10 OID, BOID, BVOID No Yes No Yes þ (BVOID ¼ 0) File Explorer (SHIFT drag). Target BVOID ¼ 0
W7, W10 OID, BOID, BVOID Yes Yes OID, BOID BVOID LSb ¼ 1 File Explorer (SHIFT drag)
W7, W10 OID, BOID, BVOID No No e No CMD prompt (move)
W7, W10 OID, BOID, BVOID No Yes OID, BOID BVOID LSb ¼ 1 CMD prompt (move)
W7, W10 OID, BOID, BVOID Yes Yes OID, BOID BVOID LSb ¼ 1 CMD prompt (move)
W7, 10 OID, BOID, BVOID No Yes No No CMD Prompt (move). Target BVOID ¼ 0
W7, 10 OID, BOID, BVOID Yes Yes No No CMD Prompt (move). Target BVOID ¼ 0

R. Nordvik et al. / Digital Investigation 28 (2019) S30eS39 S37
were created in Windows 7. For Windows 10 the Birth Volume
Object ID was also set to 0.

For internal disks with an Object ID in the $Volume system file
using the command prompt and the move command will preserve
the Object ID and the Birth Object ID. The Birth Volume Object ID is
also preserved, but the least significant bit is set to 1. If this bit is
already set, then the Birth Volume Object ID is preserved. If the
Object ID of the $Volume of the target volume was zero (external
disk), then the OIDs were not preserved and no new OIDs were
created even if the move command was used.
Deleting a file

If a file is deleted that has an entry in the $ObjId index, then the
B-tree index will re-organize, and the result is often that the pre-
vious entry will be overwritten. The same was observed when us-
ing the del command in the CMD prompt. This is also shown in
Table 8.
Evaluation

To evaluate the results, we focus on the two research goals
described in section 3, Feasibility and Reliability.
Feasibility

Is it feasible to use the file $ObjId to document User Activity?
Only the operations that actually create OIDs will be detected.
Creating a new file (W10) or opening a file from File Explorer (W7
and W10), LibreOffice or other applications using the same API will
be detected. We will not detect all user activity on the NTFS File
System by only scrutinizing the Object ID index and the MFT re-
cords. However, it is feasible to assume that files with an entry in
the Object ID index are there because of user activity. In many real
cases, when the investigator only has access to a removable disk,
this approach might be the only method of documenting user ac-
tivity. It can also be used to map possible hosts to which the
removable device has been attached.
Table 8
Experiment 1 - Test 7: Deleting a file.

OS Impact Reboot Existing OID

W7, W10 No No
W7, W10 No Yes
W7, W10 Yes Yes
W7, W10 No No
W7, W10 No Yes
Reliability

To answer the question of the reliability of this approach it is
necessary to focus onwhat it does not detect.When a file is deleted,
the B-tree $ObjId index is re-organized, and the previous content in
the object index is normally overwritten. However, the Object ID in
the MFT record can still be found, as long as the MFT record is not
reused. This is an indication that the file has been opened, created
or saved by the user or a software tool. Using the command line
shell will normally go undetected, except when moving a file to
another NTFS volume that has an Object ID assigned to the $Vol-
ume system file. However, if the $Volume Object ID is zero, moving
a file to this volume will go undetected. When copying a file from
one NTFS volume to another, the target file will not get OIDs.
Creating an encrypted container will not generate OIDs when
VeraCrypt is used.

It seems that all applications that use theWindows API FileOpen
or FileSave dialogs will create OIDs. We tested this by creating a
very simple tool that used the IFileOpenDialog interface, and OIDs
were created whenwe used it to open a file that did not have OIDs.
Normal users tend to use graphical user interfaces when using
Windows, and therefore it is possible to detect a significant portion
of user activity by utilizing the OIDs.
Discussion

Since OIDs are created based on typical user activities on NTFS
volumes, using the $ObjId index will be a very efficient way to
detect which files were accessed by the user. Not all Object IDs will
have a LNK (shortcut) file in its Recent folder or as a LNK stream in a
Jumplist. The user can even create their own LNK files, which could
be stored in a selected directory. We do not claim that the Object ID
index will find all user activity, but users using the File Explorer or
other Graphical User Interface (GUI) tools have little control over
index entry creation. Windows tool developers often use the
Windows API instead of creating their own FileOpen or FileSave
dialogs, meaning that Object ID creation will be enabled regardless
of the programmer's awareness.

As observations show, normal user activity will create entries in
the $ObjId index file. The $ObjId file is not directly accessible by the
normal user, as it is a system file. This makes it more difficult to hide
Preserved OID New OID Tool

e No File Explorer (SHIFT delete)
No No File Explorer (SHIFT delete)
No No File Explorer (SHIFT delete)
e No CMD prompt (del)
No No CMD prompt (del)

R. Nordvik et al. / Digital Investigation 28 (2019) S30eS39S38
the traces. It is easy to hide traces by deleting LNK files or eventlog
entries or by using a tool to clear UserAssist and RecentDocs in the
Registry. It is possible to delete entries in the $ObjId index by using
the fsutil tool, or by deleting files. The latter will still preserve the
Object ID attribute in the MFT record, as long as the MFT record is
not reused. This is because only a flag in the corresponding MFT
record header is changed when deleting a file (Carrier, 2005). It is
currently possible to change the $ObjId index file from user space
by using fsutil inWindows 10 (not inWindows 7) or by utilizing the
correct API when developing new anti-forensic tools. It is not
possible to set new OIDs using fsutil if there exists a set of OIDs for
the particular file. In order to set new OIDs it is necessary to delete
the existing OIDs first, then create new ones. In NTFS there are other
system files that will be updated when using fsutil to change the
OIDs, for instance the $UsnJrnl have entries that describe the type
of change [2, p.394]. Manipulation of OIDs can easily be detected if
they do not follow the same format as Windows. If the MFT record
SIA created timestamp is manipulated to a future date within
another Object ID session, analyzing the previously assigned Object
ID will normally detect this manipulation. This because the Object
ID identify the boot session it belongs to, and therefore the MFT SIA
created date should not be in the time range of a later Object ID
boot session.

An interesting question is if all OIDs are only created based on
User Activity? The answer depends on how we define user activity.
In this study any process that behaves on behalf of a user, as a user
agent or a chain of user agents, is user activity (Buchholz and
Spafford, 2004). For instance a process is normally executed by a
user or the OS. Even though the user started the OS, we do not
count automatic OS activity not initiated by the user as user activity.
A malicious program is started somehow by a user, not necessarily
the local user, and we consider this user activity.

The Object ID index can be used to find all allocated files that
have an Object ID. The Object ID keys found in the $ObjId file can
also be compared with the unallocated entries in the MFT table
which contain an OID. This will indicate that the user didmore than
just delete the file, and the file should therefore be recovered for
further investigation.

Even if users wipe their system drive, the computer used can be
discovered by analyzing a previously attached removable NTFS
volume. This is because the MAC address is usually contained
within the OIDs. If OIDs are created during multiple sessions on
different computers, the removable NTFS volume can also yield
different boot times for the computers to which it has been
attached.

We can not depend on the move flag (least significant bit in the
timestamp when read as LE (Parsonage, 2008)) of the Birth Volume
Object ID when the target Birth Volume Object ID is 0. In this case
other Object ID and Birth Object ID are created, whichmakes it look
as if the file was not moved. In these cases the file can only be
connected to a computer using the MAC address found in the Ob-
ject ID and the Birth Object ID. When a user moves a file from one
volume to another, the move flag will only be set if the target Birth
Volume Object ID is not zero.

Conclusions and future work

Users will use File Explorer or other software tools to create,
open, copy, move and delete files. In the cases in which OIDs are
created, it will yield user activity. Even if the system volume is not
available, we know that the OIDs are artifacts from some form of
user activity. On external drives the $ObjId is one of the very few
artifacts found that can yield user activity.

Our experiments using Windows 7 and 10 show that a Birth
Volume Object ID is not always created, even if Birth Object ID and
Object ID are created. Previous research has documented that Birth
Volume Object IDs are created or updated (Parsonage, 2008), but
our results show Birth Volume Object IDs with only zeros. This
means that we are evenmore dependent on theMAC address found
within the Birth Object ID to connect the computer used to create
the OIDs. If an external disk with a NTFS volume is attached while
rebooting, our experiments show that $Volume system file is
assigned a new Object ID if the existing one is not set. However, we
have observed exceptions to this when using USB thumb drives.

Analyzing the $ObjId index is important in order to:

� create timelines
� connect NTFS volumes to one or more computers by using the
MAC address found within the Object ID

� select which files to analyze (data reduction or triage)
� detect boot sessions and the order of OIDs creation
� detect MFT created date manipulation

For further work we suggest to determine if correlation with
other system files can be used to validate the interpretation of the
$ObjId system file. In this context, $UsnJrnl system file [2, p.343]
and the $logfile [2, p.340] is known to be useful for event recon-
struction. However, the $logfile is normally very small (64 MiB) and
the transactions will start overwriting the oldest transactions when
necessary (Zareen and Aslam, 2014). This means the NTFS $logfile
journal transactions are very volatile and will only document file
activity for a particular time range, with that range dependent on
the degree of volume activity. It would also be interesting to expand
this study by correlating the $ObjId index with other system files in
order to see if it is possible to reliably detect what kind of operation
created the Object IDs.

More research could be performed on which APIs implement
the use of $ObjId system file. We have documented that the IFi-
leOpenDialog API will create OIDs. Even if our work shows simi-
larities between Windows 7 and 10, it also shows differences. This
was expected, since programmers change their software tools
regularly, and they decide which APIs they want to use in each
release. The APIs themselves could also change in the future.

More experiments should be performed to determine what a
change of the $Volume Object ID can have on existing OIDs in the
$ObjId index. Further experiments should be performed in order to
see if adding a partitioning scheme on USB thumb drives will
impact the creation of $Volume Object ID.
References

Buchholz, F., Spafford, E., 2004. On the role of file system metadata in digital fo-
rensics. Digit. Invest. 1, 298e309. http://www.sciencedirect.com/science/article/
pii/S1742287604000829. https://doi.org/10.1016/j.diin.2004.10.002.

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional.
Carrier, B., 2017. The Sleuth Kit (TSK) is a library and collection of command line

tools that allow you to investigate disk images. Available at: https://www.
sleuthkit.org/sleuthkit/. . (Accessed 30 August 2018).

Cowen, D., 2018a. Forensic lunch test kitchen 9/13/18. Available at: https://www.
hecfblog.com/2018/09/daily-blog-491-test-kitchen-92718.html. https://www.
hecfblog.com/2018/09/daily-blog-491-test-kitchen-92718.html. (Accessed 1
January 2019).

Cowen, D., 2018b. Objectidscannerv2. Available at: https://github.com/dlcowen/
TestKitchen/blob/master/OBjectIDScannerV2.py. https://github.com/dlcowen/
TestKitchen/blob/master/OBjectIDScannerV2.py. (Accessed 1 January 2019).

Garfinkel, S.L., 2010. Digital forensics research: The next 10 years. Digit. Invest. 7,
S64eS73. http://www.sciencedirect.com/science/article/pii/
S1742287610000368. https://doi.org/10.1016/j.diin.2010.05.009 (the Pro-
ceedings of the Tenth Annual DFRWS Conference).

Gl, M., Kugu, E., 2017. A survey on anti-forensics techniques. In: 2017 International
Artificial Intelligence and Data Processing Symposium. IDAP), pp. 1e6. https://
doi.org/10.1109/IDAP.2017.8090341.

Habben, J., 2018. Ntfs object ids in encase. Available at: https://4n6ir.com/2018/09/
20/ntfs-object-ids-in-encase/. (Accessed 18 January 2019).

Leachi, P., Mealing, M., Salz, R., 2005. A Universally Unique Identifier (UUID) URN

http://www.sciencedirect.com/science/article/pii/S1742287604000829
http://www.sciencedirect.com/science/article/pii/S1742287604000829
https://doi.org/10.1016/j.diin.2004.10.002
http://refhub.elsevier.com/S1742-2876(19)30023-4/sref2
https://www.sleuthkit.org/sleuthkit/
https://www.sleuthkit.org/sleuthkit/
https://www.hecfblog.com/2018/09/daily-blog-491-test-kitchen-92718.html
https://www.hecfblog.com/2018/09/daily-blog-491-test-kitchen-92718.html
https://www.hecfblog.com/2018/09/daily-blog-491-test-kitchen-92718.html
https://www.hecfblog.com/2018/09/daily-blog-491-test-kitchen-92718.html
https://github.com/dlcowen/TestKitchen/blob/master/OBjectIDScannerV2.py
https://github.com/dlcowen/TestKitchen/blob/master/OBjectIDScannerV2.py
https://github.com/dlcowen/TestKitchen/blob/master/OBjectIDScannerV2.py
https://github.com/dlcowen/TestKitchen/blob/master/OBjectIDScannerV2.py
http://www.sciencedirect.com/science/article/pii/S1742287610000368
http://www.sciencedirect.com/science/article/pii/S1742287610000368
https://doi.org/10.1016/j.diin.2010.05.009
https://doi.org/10.1109/IDAP.2017.8090341
https://doi.org/10.1109/IDAP.2017.8090341
https://4n6ir.com/2018/09/20/ntfs-object-ids-in-encase/
https://4n6ir.com/2018/09/20/ntfs-object-ids-in-encase/

R. Nordvik et al. / Digital Investigation 28 (2019) S30eS39 S39
Namespace. Available at: https://www.ietf.org/rfc/rfc4122.txt. (Accessed 30
August 2018).

McGrath, N., Gladyshev, P., 2013. Investigating File Encrypted Material Using NTFS
$logfile. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 183e203. https://
doi.org/10.1007/978-3-642-39891-9_12. https://doi.org/10.1007/978-3-642-
39891-9%5c%5f12.

Microsoft, 2001. Will dragging a file result in a move or a copy? Available at: https://
blogs.msdn.microsoft.com/oldnewthing/20041112-00/?p¼37323. (Accessed 30
August 2018).

Microsoft, 2016. Fsutil objectid. Available at: https://docs.microsoft.com/en-us/
previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/
cc788098(v¼ws.11. (Accessed 30 August 2018).

Nordvik, R., 2019. Ntfs object id parser. Available at: https://github.com/RuneN007/
NTFSObjectIDParser. . (Accessed 7 January 2019).
Parsonage, H., 2008. The meaning of linkfiles in forensic examinations. http://

computerforensics.parsonage.co.uk/linkfiles/linkfiles.htm. (Accessed 1 June
2017).

Schicht, J., 2018. Command line $mft record decoder. https://github.com/jschicht/
MftRcrd. (Accessed 27 September 2018).

Singh, B., Singh, U., 2016. A forensic insight into Windows 10 Jump Lists, vol. 17.
Elsevier - Digital Investigation, pp. 1e13.

Yamazaki, T., 2015. Filetime extractor. Available at: http://www.kazamiya.net/en/fte.
. (Accessed 8 January 2019).

Zareen, M.S., Aslam, B., 2014. $logfile of ntfs: A blueprint of activities. In: 17th IEEE
International Multi Topic Conference 2014, pp. 305e310. https://doi.org/
10.1109/INMIC.2014.7097356.

https://www.ietf.org/rfc/rfc4122.txt
https://doi.org/10.1007/978-3-642-39891-9\_12
https://doi.org/10.1007/978-3-642-39891-9\_12
https://doi.org/10.1007/978-3-642-39891-9\_12
https://doi.org/10.1007/978-3-642-39891-9%5c%5f12
https://doi.org/10.1007/978-3-642-39891-9%5c%5f12
https://blogs.msdn.microsoft.com/oldnewthing/20041112-00/?p=37323
https://blogs.msdn.microsoft.com/oldnewthing/20041112-00/?p=37323
https://blogs.msdn.microsoft.com/oldnewthing/20041112-00/?p=37323
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc788098(v=ws.11
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc788098(v=ws.11
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc788098(v=ws.11
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc788098(v=ws.11
https://github.com/RuneN007/NTFSObjectIDParser
https://github.com/RuneN007/NTFSObjectIDParser
http://computerforensics.parsonage.co.uk/linkfiles/linkfiles.htm
http://computerforensics.parsonage.co.uk/linkfiles/linkfiles.htm
https://github.com/jschicht/MftRcrd
https://github.com/jschicht/MftRcrd
http://refhub.elsevier.com/S1742-2876(19)30023-4/sref16
http://refhub.elsevier.com/S1742-2876(19)30023-4/sref16
http://refhub.elsevier.com/S1742-2876(19)30023-4/sref16
http://www.kazamiya.net/en/fte
https://doi.org/10.1109/INMIC.2014.7097356
https://doi.org/10.1109/INMIC.2014.7097356

	Using the object ID index as an investigative approach for NTFS file systems
	Introduction
	Related work and contributions
	Related work
	Contributions

	Research goals
	Research questions
	Automation

	Methodology
	Object ID creation

	Results
	File creation
	Opening a file
	Copying a file (same volume)
	Copying a file (other volume)
	Moving a file (same volume)
	Moving a file (other volume)
	Deleting a file

	Evaluation
	Feasibility
	Reliability

	Discussion
	Conclusions and future work
	References

