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Abstract

This report studies the development of a Multiplicative Extended Kalman Fil-
ter in Matlab/Simulink, for orbit and attitude estimation for the 10 × 10 × 20
cm CubeSat at the Norwegian University of Science and Technology (NTNU).
The filter was developed in a tightly coupled manner with respect to the GPS
attitude solution, based on data from differential carrier phase measurements.
These measurements are aided by measurements from a three-axis magnetome-
ter, and inertial measurements from a gyroscope.

Four antennas are virtually mounted on the satellite to obtain three baselines
of 1 m each. The MEKF is complemented by an integer ambiguity resolution
method, which makes sure that the solution for a GPS signal is not accepted
until the integrity check value for all baselines is below the acceptance threshold.
Until the ambiguities are resolved, the Multiplicative EKF is reliant upon the
gyro measurements, and the magnetometer. The filter has been simulated with
various attitude maneuvers.

The MEKF performs orbit estimation based on measurements from GPS
position, velocity, and timing data, from which it estimates the Keplerian orbital
parameters to determine the orbit of the craft. It operates as an ordinary EKF
for this purpose.

Simulation shows that the filter is able to determine the attitude and orbit of
the spacecraft from the given measurements, and that it is robust to a temporary
loss of the GPS measurements. However, the orbit estimator assumes a circular
orbit. The quality of orbit estimates are therefore dependent on the eccentricity
of the orbit.
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Sammendrag

I denne mastergradsavhandlingen er det blitt utviklet et Muliplikativt Extended
Kalman Filter i Matlab/Simulink, for estimering av attityde og baneparametere
for en dobbel CubeSat, i forbindelse med studentsatellitprosjektet NUTS, ved
Norges Teknisk-Naturvitenskapelige Universitet (NTNU). Filteret ble utviklet
i tett kobling for å løse for GPS attityde løsningen, som er basert på data fra
differensielle fasemålinger fra GPS signal. Disse målingene er støttet av målinger
fra et tre-akse magnetometer, samt treghetsmålinger fra et gyroskop.

Fire antenner er virtuelt plassert på satellitten for å oppnå tre baselinjer på
èn meter hver. Filteret er komplementert med en metode for å løse tvetydigheten
i heltallsoppløsningene. Det garanterer at løsningen for et GPS signal ikke
aksepteres før kontrollverdien for heltall for alle baselinjer er under akseptert
terskel. Før tvetydigheten er løst, avhenger filteret av målinger fra gyro og
magnetometer. Flere forskjellige attitydemanøvrer ble utført.

Det Multiplikative filteret estimerer baneparametere basert på målinger fra
GPS posisjon, hastighet, og tid. For dette formålet virker filteret som et or-
dinært EKF.

Simuleringer viser at filteret er i stand til å bestemme attityden samt ba-
nen til satellitten, basert på de gitte målingene. Filteret er også robust overfor
midliertidig tap av GPS målinger. Estimering av baneparametere antar imi-
dlertid en sirkulær bane, og kvaliteten på disse estimatene avhenger derfor av
banens eksentrisitet.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Attitude Estimation
Attitude and attitude motion of a spacecraft describes the orientation and rota-
tional motion about its center of mass, and the computation of this orientation
relative to either an inertial reference or some object of interest is referred to
as attitude estimation. This process is necessary in order to provide a reference
for the attitude control system, enabling it to perform command engineering
functions. This could, for example, be directional pointing of antennas, solar
panels, and nadir control for Earth observing payloads.

A common technique is to use body measurements to estimate the vehicle’s
orientation, and then compare these measurements with known reference ob-
servations. An example of such measurement is the angle between the craft
and the Sun, measured with a Sun sensor, or line-of-sight measurements of the
position to the stars, provided by a star tracker. These measurements must
have a corresponding set of reference vectors in the reference frame, such as a
known Sun reference model, and maps of known observed stars. However, we
must keep in mind that the size and weight requirements of the satellite impose
strict limitations on the choice of sensors. A star tracker is a large sensor to the
extent that it is not feasible to implement in double CubeSat design such as the
Norwegian University of Science and Technology Test Satellite (NUTS). The
sensors of choice must be light weight, consume little power, and be of small
size.

Another issue which must be taken into consideration in estimation techniques
is the fact that vector measurements will in practice be contaminated with noise.
Measurement noise in particular contributes significantly factor at high frequen-
cies, and it is therefore essential to subsequently filter the noise by combining
the measurements with models.
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In essense, the key issues in attitude estimation avoiding singularities, and pro-
viding satisfactory bias estimation.

1.1.2 Orbit Estimation
Knowledge of the spacecraft’s orbit is in general required for space missions
to perform attitude determination and control functions. Orbit and attitude
determination are interdependent parameters, and for a craft in a low altitude
Earth orbit both the atmospheric density and the magnetic field strength are
determined based on the position of the spacecraft in the orbit. The atmospheric
density and the magnetic field strength will, in turn, affect the attitude. Orbit
data can be supplied by a process external to the attitude system, such as radar,
telemetry, optics, or the Global Positioning System (GPS) [36]. Deciding upon
which type of data to use for orbit estimation depends on the selected orbit, as
well as the accuracy requirements, and the weight restrictions on the spacecraft.

United States Strategic Command (USSTRATCOM)

Two-line elements (TLEs) containing the orbital parameters can be obtained
from the United States Strategic Command (USSTRATCOM), which tracks and
maintains a catalog of TLEs of all Earth-orbiting spacecrafts, rocket bodies, and
debris. Orbit parameters are estimated by USSTRATCOM from the moment
the spacecraft is detected by space surveillance radars. However, it usually
takes several days of tracking for USSTRATCOM to have enough radar data
to create accurate orbital parameters of the spacecraft. These data are most
critically needed at the early stages when they are the least accurate, such that
data published by USSTRATCOM should not be relied upon in this early stage.
However, they could become useful for on-ground post analysis of spacecraft
data.

1.2 Mission Analysis
There are many decisions and trade-offs to consider throughout a small satellite
mission, both at a program, project, and system level. This mission analysis is
mainly based on the results from the team project Small Satellites for Capacity
Building in Space Technology Development which was conducted during the
2011 Space Studies Program at the Inernational Space University, 11. July
to 9. September hosted by the Graz University of Technology. Supported
by the United Nations Office for Outer Space Affairs (UNOOSA) through the
Basic Space Technology Initiative, it is implemented through the United Nations
Program on Space Applicatoins. The resulting Guidebook on Small Satellite
Programs (GoSSP) was followed by a paper which condensed the results and
was presented at the International Astronautical Congress in Cape Town, 2011
[9].
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A small satellite design is, compared to a large-scale design, different in the
sense that they are built around tighter constraints in mass, volume, and bud-
get. This limits the possibility of adding complex spacecraft systems to the
design. It lower the costs, increase the risk and reliability tolerance, and in
addition a simpler system often allows for shorter development time. These
characteristics make small spacecraft projects attractive as an initial stage for
capacity building within educational, governmental, military, or other organiza-
tions. Successful space programs can contribute to increased security, increased
prestige, knowledge, enhanced cabability, and can also assist in social develop-
ment.

Regulation

Key regulators of small satellite programs are in particular the International
Telecommunication Union (ITU), space agencies, national administrations and
national import/export control organizations. The applicable legal framework
includes the five United Nation treaties and principles, as well as international
regulations and national laws. In particular, states are liable based on their
fault for any damage caused to the surface of the Earth, aircraft in flight, or
another object in outer space.

NTNU Test Satellite Project Background
The NTNU Test Satellite project is a part of the Norwegian Student Satellite
Program (ANSAT), the objective of which is to increase the overall societal
interest and awareness of technological studies, and to provide a platform for
cooperation with the industry and the educational institutions involved. Im-
portantly, the project provides hands-on experience in that it allows students to
gain experience from a real space project. At NTNU, the ANSAT program as
a whole includes the Norwegian University of Science and Technology, the Uni-
versity of Oslo and Narvik University College. The project at NTNU is funded
through the Norwegian Centre for Space-related Education (NAROM) and the
Norwegian Space Centre with a cost-specific budget of about 2.5 MNOK, not
counting the workforce.

This test satellite project is the third one of its kind at NTNU, for which a
double CubeSat design with the dimensions 10× 10× 20 cm was chosen. Small
satellite programs are well suited for technology demonstration, and the NTNU
Test Satellite platform is designed as a double CubeSat with this in mind.
The project eventually aims to build a platform on which new concepts can
be tested at a reasonable cost. Starting up in January 2010 and with a total
time span of 4 years, the planned launch date for the satellite is late 2014 or early
2015. Technically, the main goal for the project is to establish communication
with the satellite from the ground station in Trondheim, a goal which both
predecessors NCUBE-1 and NCUBE-2, each dimensioned 10 × 10 × 10 , failed
to achieve. NCUBE-1 was launched from Plesetsk MSC on 26th July 2006 but
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was destroyed due to a failure in the carrier rocket which caused the rocket to
explode. NCUBE-2 was successfully launched earlier, on 27th October 2005, but
confirmation signals from the satellite were never received at ground stations
at Svalbard or in Narvik, and the satellite therefore failed to operate. The
NCUBE-2 is listed as SSETI-Express space debris with Norad-number 28897
[28].

The planned payload for the test satellite includes an S-band radio and a small
infrared camera meant for scientific detection of airglow (also referred to as night
glow), a weak emission of light by the planetary atmosphere of the Earth. The
images from the IR camera will be transmitted via an S-band radio.

Challenges for Small Satellite Projects
As with most small satellites, the NTNU Test Satellite will be launched as a
secondary payload. This imposes further limitations on the mission design and
planning, as well as on post launch operations due to the associated uncertainty
and modest operations budget. For example, ne of the requirements for optimal
telemetry, tracking, and communications (TT&C) is enlistment of a sufficient
number of ground antennas, data providers and external tracking resources to
provide globally distributed redundant tracking coverage and augmented TT&C
access. This requirement is clearly not met by the NUTS mission, which has
so far been granted resources to operate a single ground station located in
Trondheim. This currently allows for approximately 10 minutes of downlink
time each time the satellite passes within broadband sight of the ground station.

A particularly critical stage of the mission will arise immediately after satellite
deployment, as orbit and attitude information will have most likely been esti-
mated pre-launch. It might be possible to obtain state vectors provided by the
launcher, but it is not yet known if this information will be available to the
mission control. The availability of state vectors, trajectories and uncertainty
metrics varies widely depending on the piggyback launch provider. However, it
can be expected that these data will be limited to pre-launch positional -and un-
certainty estimates of marginal accuracy, as it will most likely be an expendable
booster launch, as opposed to on-orbit launch. It is of utmost importance that
initial acquisition and commanding must function at a desired rate at this crit-
ical stage in order to avoid the risk of degradation of onboard batteries, which
could lead to mission failure if initial signal acquisition is not accomplished
within the life time of the battery. Another issue is the small bandwidth, which
is a direct result of the small sized transmitter onboard the satellite combined
with a relatively moderately sized receiving antenna on ground.

Some strategies can be implemented to minimize mission risk and optimize op-
erational capabilities of the small satellite, such as preflight planning and astro-
dynamics analyses, incorporation of automatic search and tracking capabilities,
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Figure 1.1: Debris in polar orbit around Earth. Graphics from Universe Today
(2008)

assembly or access to a globally distributed and geographically diverse set of
tracking stations using amateur networks, for example GENSO, to obtain health
data, external and internal organizational coordination, data management, and
modelling and propagation of satellite position uncertainty [11]. These issues
and strategies must be handled and managed at a project and program level,
keeping an eye on each subsystem.

Documented by Sundlisæter (2008) in an interview with the previous project
manager for a planned student satellite at NTNU, Lars Løge, it was revealed
that one of the greatest challenges regarding student satellite projects has proved
to be lack of continuity, as each student only works on the project for half a
year to a year. A countermeasure to this problem was applied to the project
in spring 2012 by the current project manager, Roger Birkeland, successfully
recruiting students at an earlier level of their education.

Space Debris and Reentry Hazards
Taking into consideration the end of life of the NUTS mission, we recognize that
a dead satellite is a typical item referred to as space debris. Other typical items
are rocket stages, small flecks of paint and other nonfunctioning human-made
items. This issue is a growing concern for operators of space systems. Figure
1.1 illustrates debris in polar orbit around Earth.
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Due to the very high velocities in orbit, even microscopic space debris can cause
great damage upon impact. Being small of size, the NTNU Test Satellite will be
of reduced threat to other spacecraft in terms of probability of impact, but as
such small satellites are of relatively low cost, more of them are being launched
into space. This causes the population of orbiting objects to increase, addition-
aly a single launch vehicle can carry and deploy several satellites, increasing
the probablility of collision in that launch-specific region of space. The U.S. Air
Force maintains a catalog known as the Resident Space Object catalog, in which
all objects larger than 10 centimeters are tracked and the inherent hazard they
pose to other objects is computed. However, most of this debris is composed of
fragments from more dramatic incidents like the explosion of a Pegasus stage in
1996 and the Chinese antisatellite test that destroyed the Feng Yung weather
satellite in 2007. The NTNU Test Satellite mission does not have any space
debris avoidance maneuvers for this purpose and in terms of risk and budget
the double CubeSat imposes more a threat as space debris as opposed to being
threatened by it. However, the probability of either is very small.

Disposal

Having the orbital altitude of the spacecraft ensure that the hazard posed to
other space objects ends due to natural decay within a 25 year span is an
accepted disposal technique for space hardware. The small spacecraft mission
budget has no room for incorporating an end-of-life disposal action plan, and
is therefore dependent upon this disposal technique. The double CubeSat will
decay in less than 25 years at a 95% atmosphere, given the deployment altitude
is 700 km or below [11], imposing this altitude as a strict altitude boundary.
The NUTS project is therefore currently looking for piggyback rides with a
deployment altitude of 600 km to meet this requirement.

Documentation

In order to capture lessons learned and informing all team members of a project’s
current status, documentation is imperative. The student project at NTNU
conveniently documents all work through project or master thesis reports.

1.3 Previous Work on Orbit and Attitude Esti-
mation

Attitude estimation is performed in several fields of science, such as in medical
science and navigation systems. At NTNU, Svartveit (2003) performed estima-
tion of attitude for the 1U CubeSat NCUBE mission. Using a discrete Kalman
Filter (KF) based on measurements from magnetometer and sun sensor (so-
lar panels used as crude sun sensor). This work indicated that the sun sensor
measurements were inaccurate due to the Earth’s albedo effect. Svartveit also
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designed an orbit propagator system based on knowledge of the Keplerian or-
bital elements at a single point in time with the same orbit assumpsions as the
ongoing satellite mission at NTNU. The enhanced version of the orbit propaga-
tor by Svartveit also takes secular perturbations into account.

Ose (2004) took the next step basead on Svartveit (2003) and implemented an
Extended Kalman Filter (EKF) in Matlab, and a Kalman filter on a microcon-
troller (due to the complexity of the EKF).

Rohde (2007) then described the implementation process of an EKF on a mi-
crocontroller, but did not manage to finish implementation and testing due to
time constraints.

Lindegård Jenssen and Huseby Yabar (2011), considering the previous chal-
lenges and with inspiration from an extended Kalman filter originally developed
by Sabatini (2006) for use in biomedical engineering, made a new approach to
the attitude estimation problem. The extended Kalman Filter developed by
Sabatini is based on accelerometer, gyroscope, and magnetometer, and Jenssen
and Yabar derived their EKF for the test satellite from the biomedical con-
cept. They further developed an extended QUEST (EQUEST) based on work
by Psiaki and Markley, focusing on the integration of nonvectorized gyrsocope
measurements.

1.4 Contribution and Thesis Organization
The purpose of this thesis is to develop a GPS/IMU (Inertial Measurement
Unit) integrated navigation system to be used on the NTNU Test Satellite
to provide estimates of the satellite’s attitude, position and velocity. Part I
presented a mission analysis of the NTNU Test Satellite mission and small
satellite missions in general to give an overview of the current project, and to
put it into perspective on a program level.

Part II contains information to remind the reader of essential theory, of which
Chapter 3 contains essential Kinematics theory and Chapter 4 gives a descrip-
tion of the motion of the spacecraft in low Earth orbit (LEO) modeled as a rigid
body. It also contains linearization of the model. Chapter 5 informs the reader
about the sensors and the International Geomagnetic Reference Model used in
the design. Chapter 6 explains GPS and inertial navigation system integration,
followed by an explaination of GPS attitude determination in Chapter 7. This
Chapter deals with attitude determination theory and solution method, includ-
ing an explanation and solution of the integer ambiguity resolution problem that
arises. This problem is solved usin the fast integer ambiguity resolution using
integer searches, proposed by Lightsey, Crassidis, and Markley (1999).
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The main contribution of this thesis is the design and simulation of the atti-
tude estimation system that applies the Multiplicative Extended Kalman Filter
(MEKF) to produce the heuristic approximation of the optimal estimate of the
spacecraft attitude, given the past measurements and the available dynamic
model of the spacecraft. The same filter is used to estimate the orbit param-
eters based on GPS measurements, for which purpose the MEKF functions as
an ordinary extended Kalman filter. The multiplicative extended Kalman filter
design is described in Chapter 8.

In Chapter 9 the Simulator design is described, followed by a presentation of
the results in Part III.

Closing remarks with conclusions including discussions and recommendations
for further work is given in Part IV.
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Chapter 2

Nomenclature

General
c : Speed of light.

Im×n ∈ Rm×n: The m-by-n identity matrix.

0m×n ∈ Rm×n: The m-by-n zero matrix.

S(·) ∈ SS(3) ⊂ R3×3: A skew-symmetric matrix representing the cross-product
in R3. S(x)y = x× y if x, y ∈ R3

t: The time.

t0: The initial time.

Rigid Body Dynamics
R ∈ SO(3) ⊂ R3×3: Rotation matrix representing the orientation of the b-frame
relative to the o-frame. If r is a vector in physical R3, then ro = Rrb.

O(3) ⊂ R3×3: All orthogonal matrices of order 3.

r ∈ R3 : The position of the spacecraft with respect to the center of the Earth.

v ∈ R3 : The velocity vector of the spacecraft.

i =
[
xi yi zi

]T ∈ R3 : The celestial coordinates of the Earth Center
Inertial (ECI) frame. e =

[
xe ye ze

]T ∈ R3 : The coordinates in the
Earth Center Earth Fixed frame.
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o =
[
xo yo zo

]T ∈ R3 : Orbit frame coordinates. xo = yo × zo.

b =
[
xb yb zb

]T ∈ R3: Body frame coordinates. Coincides with o =[
xo yo zo

]T ∈ R3 when the attitude of the spacecraft is 0o in roll, pitch,
and yaw.

ro = [ xob yob zob ]T ∈ R3: The position of the origin of the b-frame, described
in the o-frame. xio = Unit vector parallel with the x- axis of the orbit frame,
decomposed in the ECI frame.

q = [ η εT ]T ∈ R4: Quaternion describing the orientation of the b-frame
relative to the o-frame.

Φ = [ φ θ ψ ]R ∈ R3 :Vector of roll, pitch, and yaw angles.

vbb/o : The velocity of the b-frame relative to the o-frame, given in the b-frame.

ωbb/o : The angular velocity of the b-frame relative to the o-frame, given in the
b-frame.

v = [ voT ωbT ]T :Generalized velocity of the body frame.

τ
b: Sum of all torques acting on the rigid body, given in the b-frame.

T(q) ∈ R4×3: Transfomation matrix transforming q and ωto q̇.

Ω(ω) ∈ R4×4: Transformation matrix transforming q and ωto q̇.

The Environment
G: Universal empirical physical constant involved in the calculation(s) of grav-
itational force between two bodies.

M > 0 ∈ R: Mass of the Earth.

µg = GM : Gravitational constant.

aigrf : Mean radius of the Earth.

rigrf : Distance from the center of the Earth.

φigrf : Longitude east of Greenwich.
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θigrf : Colatitude (90o−latitude).

g > 0 ∈ R : The acceleration of gravity.

ωE > 0 ∈ R: The angular rate of the Earth.

1
f > 0 ∈ R: Reciprocal flatteing of the Earth.

Pmn cos(θ) : The Schmidt normalized associated Legendre functions of degree n
and order m.

gmn , hmn : Gauss coefficients associated with the Schmidt normalized Legendre
functions of degree n and order m.

γ: Vernal equinox. The point where the Sun passes on its way from south to
north. Used as origin of the celestial Eearth Center Inertial (ECI) coordinate
system.

Keplerian Orbital Parameters
a > 0 ∈ R : Semi-major axis.

e ∈ [0, 1 >: Eccentricity of a celestial body.

M ∈ [ 0, 2π ]: Mean anomaly.

ν ∈ [ 0, 2π ] : True anomaly

i ∈ [ 0, π ]: Inclination, the angle between the orbital plane and the equatorial
plane.

Ω ∈ [ 0, 2π ]: Right Ascension of the Ascending Node

ω ∈ [ 0, 2π ]: Argument of Perigee

The Spacecraft
m > 0 ∈ R :Mass of the spacecraft.

Isat = ITsat > 0 ∈ R3×3 :Spacecraft’s moment of inertia in the body frame.
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rbg = [ xbg ybg zbg ]T : Position of the spacecraft’s center of gravity, given in
the b-frame.

a > 0 ∈ R: Angular velocity of the orbit frame.

Sensors and Measurements
ωimu ∈ R3: The angular velocity measured by the IMU.

bg ∈ R3 : The gyro bias.

mimu ∈ R3 : The magnetometer measurement.

bm ∈ R3 : Local magnetic disturbance.

α ∈ R6 : Gyro misalignment angles.

κ ∈ R3 : Gyro scale factor error.

rij : Pseudorange to the satellite i at antenna j.

Nij : Ambiguity number of whole periods from satellite i to antenna j.

4∂ = ∂ri − ∂sj : ∂ri is the clock error in the receiver and ∂sj is the clock error in
the GPS SV.

eij : Errors on the signal.

ϕij : Measured phase of signal i at antenna j.
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Part II

Modeling
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Chapter 3

Kinematics

Introduction
The motion of a rigid spacecraft in orbit is specified by its position, velocity,
attitude, and attitude motion. The position and the velocity are the subject
of what is typically called celestial mechanics, orbit determination, or space
navigation, describing the translational motion of the center of mass of the
spacecraft [35]. To describe attitude, two coordinate systems are usually defined:
One is defined on the reference frame and one is defined on the vehicle body.

3.1 Reference Frames
The coordinate systems represented here have orthogonal unit vectors that fol-
low the right hand rule. This thesis uses the IGRF model of the magnetic field
together with line of sight (LOS) vectors between GPS Space Vehicles (GPS SVs)
and the satellite to calculate the needed reference vectors. This attitude deter-
mination solution is augmented by gyroscope measurements, also referred to as
inertial guidance. Given known reference vectors, an attitude sensor mounted
on the spacecraft body can measure the orientation of that vector (or some
function of the given vector) in the body reference frame of the craft.

Information on the satellite orbit is acquired by the GPS system which provides
the necessary navigation data to the system in order to estimate orbit and
attitude data.

Earth Center Inertial (ECI)
The Earth Center Inertial (ECI) reference frame is a system of celestial coordi-
nates i =

[
xi, yi zi

]T and is usually applied for orbital analysis of an Earth orbit-
ing satellite, for astronomy purposes, and for inertial motion analysis. In these
cases, the ECI frame is considered a sufficiently inertial and non-accelerating
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Figure 3.1: The current YUMA almanac from The U.S. Coast Guard Navigation
Center of Excellence includes 31 GPS SVs. They are here used to simulate GPS
line of sight vectors seen from the test satellite in a 600 km polar low Earth
orbit. This simulation shows that the altitude is not sufficient to be in field of
view of the complete GPS constellation. However, it does significantly enhance
the visibility compared to the visibility for terrestrial applications.
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reference frame in the sense that its acceleration due to the Earth orbiting the
Sun can be disregarded. The ECI x-axis is defined to point towards the point
where the sun crosses the Earth’s equatorial plane when it goes from south to
north, also known as the vernal equinoz, γ. The z-axis is aligned with the ro-
tation axis of the Earth, pointing towards the celestial North Pole. The y-axis
completes the right hand cartesian coordinate frame.

Earth Center Earth Fixed (ECEF)

The ECEF frame, e =
[
xe ye ze

]T has its origin located in the center
of the Earth. Its x -and y axes rotates with the Earth relative to the ECI
frame with rate ωE = 7.2921 ∗ 10−5 [rad/s], about the z -axis. The x -axis is
defined as pointing towards the intersection between the Greenwich meridian
and the Equator (0olongitude, 0olatitude), and the y -axis completes the right
hand orthogonal system.

Orbit Frame
The origin of the orbit frame is located in the center of mass of the satellite,
and is denoted o. The spacecraft’s center of mass, rbg = [ xbg ybg zbg ]T is
located in the origin of the body frame (see below), i.e. rbg = [ 0 0 0 ]T . The
orbit frame rotates with an angular velocity ωo relative to the ECI frame, and
it follows that for a circular orbit ωo will be constant. The orbit’s vector space
is spanned by the unit axis vectors xo, yo and zo, with the zo- axis defined to
always point in nadir direction (towards the Earth’s centroid) and the yo - axis
in the direction of the negative orbit normal. The xo-axis, xo = yo × zo, will
coincide along the linear velocity vector (i.e. direction of motion) if the satellite
if the orbit is perfectly circular. The orbit frame will rotate once and have two
flips for each orbit, completing a 360o turn.

Body Frame
The body coordinate system is fixed to the spacecraft and is the system in which
the attitude measurements are made. The origin of the body frame is defined
to coincide with the origin of the orbit frame, namely in the center of mass
of the satellite. The attitude of the satellite will be described relative to the
orbit frame, and the body frame xb = [ xb yb zb ]T axes coincide with the
orbit frame xo, yo and zo axes, respectively, when the attitude of the satellite
equals 0o in roll, pitch, and yaw. Note that this frame defines the orientation of
the attitude determination and control hardware, which should not be confused
with the location of the attitude sensing hardware within the spacecraft (it is the
orientation of the field of view of the hardware in the spacecraft body coordinate
system which is of importance).
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North East Down (NED)
The NED coordinate system is a system which is usually defined in the tangent
plane on the surface of the Earth, moving with the craft. It is defined relative to
the World Geodetic System, 1984 (WGS84), a mathematically defined surface
approximated to fit the shape of the Earth. The x-axis of the NED coordinate
system points towards north, the z-axis points downwards, perpendicular to
the WGS84 reference ellipsoid, while the y-axis completes the right handed
orthogonal coordinate system, pointing towards East.

3.2 Rotation Matrices
A rotation matrix, also referred to as an attitude matrix or a direction cosine
matrix, serves the purpose of describing the orientation of a frame b with respect
to another frame. Applying a rotation matrix to transform a vector from one
reference frame to another can also be interpreted as rotating the frame itself
whilst keeping the vector still. The rotation matrix belongs to SO(3), R ∈
SO(3), the special orthogonal group of order 3 for which:

SO(3) = {R|R∈ R3×3, R is orthogonal and det R=1} (3.1)

for which the group SO(3) is a subset of O(3) (all orthogonal matrices of order
3):

O(3) = {R|R∈ R3×3, RRT = RTR = I} (3.2)

where R satisfies:
RRT = RTR = I det R =1 (3.3)

and the inverse rotation matrix is consequently given by:

R−1 = RT (3.4)

Furthermore, a matrix R is a rotation matrix if and only if it is an element of
the set SO(3) [6].

3.2.1 Dynamics of the Rotation Matrix
Let us define skew-symmetry of a matrix, a property which is defined for a
matrix that belongs to the set of skew-symmetric matrices of order n. The off-
diagonal elements of S satisfy sij = −sji for i 6= j while the diagonal elements
are zero:

S = ST (3.5)
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By differentiating the equation [33]:

R(R)T = I (3.6)

with respect to time, the differential equation for the rotation matrix can be
found. The result:

Ṙ(R)T + R(Ṙ)T = 0, (3.7)

which can be written
S + ST = 0 (3.8)

The property in Equation (3.8) reflects that:

S = Ṙ(R)T (3.9)

is a skew-symmetric matrix. Moreover, for a skew-symmetric matrix exist a
vector:

ω =
[
ω1 ω2 ω3

]T
, (3.10)

such that:

S(ω) =

 0 -ω3 ω2

ω3 0 −ω1

ω2 ω1 0

 ∈ SS(3)

Postmultiplication of (3.9) with Rgives the following differential equation of the
rotation matrix:

Ṙ = S(ω)R, (3.11)

and using the similarity transform [33]:

RS(ω)S = SR(ω) = S(ω) (3.12)

Equation (3.11) can also be written:

Ṙ = −RS(ω) (3.13)

3.2.2 Rotation Matrix Parameterization
Euler Angles

The set of parameters most commonly used to describe the motion of a rigid,
freely moving body are the composite rotations using Euler angles, which are
physically intuitive compared to, for example, quaternions. Using Euler angles,
the rotation matrix may be described as a multiple of the three principal rotation
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(one-axis rotation) matrices, rotating an angle ψ about the z-axis (yaw), θ about
the y-axis (pitch), and ϕ about the x-axis (roll), respectively [8]:

Rx,f =

 1 0 0
0 cϕ −sϕ
0 sϕ cϕ

 (3.14)

Ry,j =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 (3.15)

Rz,y =

 cψ −sψ 0
sψ cψ 0
0 0 1

 (3.16)

Note that there are many possible combinations of these rotations, and that the
sequence of axial rotations is not arbitrary. Moreover, the rotation matrix R,
in this case

Rx,fRy,jRz,y =

 cθcψ sθsϕcψ-cϕsψ sθcϕcψ + sϕsψ
cθsψ sθsϕsψ+cϕcψ sθcϕsψ − sϕcψ
−sθ cθsϕ cθcϕ

 (3.17)

Due to its orthogonality, there are six constraints imposed on the elements of
this matrix and only three independent parameters are required to describe it.
Furthermore, it is evident from 3.17 that the rotation matrix becomes singular
for θ = ±90o, referred to as the gimbal lock. The singularity can not be avoided
if the Euler angles are used in the mathematical description of attitude.

Angle Axis Representation

An alternative tool to the Euler angle representation is the angle axis represen-
tation, a useful representation for developing equations of motion and kinematic
models for attitude estimation and control systems. Remembering the property
of skew symmetry, we can now can describe the rotation matrix corresponding
to a single rotation β about the single axis λ:

Rl,b = I3×3+sin(β)S(λ) + (1− cos(β))S2(λ), (3.18)

Recalling that the attitude mapping is applied from orbit to body, we get:

vbb/o=Rb
ov

o
b/o, Rb

o := Rl,b (3.19)

where vob/o is a vector fixed in the reference frame and vbb/o is a vector fixed in
the body-frame. The superscript denotes in which frame the coordinates are
given, and the subscript denotes which frame is relative to the other.
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Unit Quaternions

As previously mentioned, a minimal three-parameter set with mutually inde-
pendendent orientation parameters such as the rotation matrix is incapable of
representing an arbitrary orientation in space. Such minimal parameterizations
are therefore often avoided in practice. The attitude will therefore be repre-
sented by the four-dimensional singularity-free quaternion vector to avoid the
representation singularity, as quaternion theory has many analysis techniques
and tools which we can apply upon treating the Euler parameters as a unit
quaternion vector. For a locally non-singular representation of SO(3), the four-
component quaternion has the lowest dimensionality possible [18]. We have seen
that every rotation can be described by a unit-length rotation axis λ ∈ R3and
a rotation angle β. The corresponding quaternion q is defined as a complex
number with one real part η and three imaginary parts given by the vector ε
[8]:

q =

[
η

ε

]
(3.20)

where
η :=cos

(
β

2

)
∈ R (3.21)

and
ε =

[
ε1 ε2 ε3

]T
= λsin

(
β

2

)
∈ R3 (3.22)

λ =
[
λ1 λ2 λ3

]
T is the unit vector satisfying:

λ = ±
ε√
εT ε

;
√
εT ε 6= 0 (3.23)

and the unit quaternion is a quaternion of unit length, satisfying:

qTq = η2 + εT ε = 1 (3.24)

From this we can see that if η and ε are the Euler parameters, q is the unit
quaternion corresponding to the rotation matrix Rh,ε , and the unit quaternion
which corresponds to the identity matrix R1,0 = I is the identity quaternion qI
defined by:

qI =

[
1
0

]
(3.25)
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The quaternion with the norm of one, |q| = 1, is a unit quaternion. Note that
for a quaternion based Kalman filter design, the unit norm constraint which
the unit quaternion must obey causes a singular covariance matrix, P . This
problem is handled in Chapter 8 using the Multiplicative Extended Kalman
Filter design.

Quaternion Differential Equation

Given a body-fixed angular velocity vector ωbb/o =
[
ω1 ω2 ω3

]T , the differ-
ential equation for the quaternion can be expressed:

q̇ =

[
η̇
ε̇

]
=

1

2
T(q)ωbb/o (3.26)

T(q) =


−ε1 −ε2 −ε3
η −ε3 ε2
ε3 η −ε1
−ε2 ε1 η

 =

[
−εT

ηI3×3 + S(ε)

]
, (3.27)

or alternatively:

q̇ =
1

2
Ω(ωbb/o)q (3.28)

where:

Ω(ωbb/o) =


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 =

[
0 −(ωbb/o)

T

ωbb/o −S(ωbb/o)

]
, (3.29)

or, alternatively:

q̇ =
1

2
q⊕

[
0
ωbb/o

]
(3.30)
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3.3 Transformation Between Frames
These rotations are imperative for comparison of measurements and their re-
spective reference models.

ECEF to ECI
This rotation is about the z axis, ze ≡ zi , i.e. the ECEF and ECI z-axis
coincide. The rotation can be expressed as and angle α = ωet, where ωe is the
rotation rate of the Earth and t is the time passed since initial alignment of the
ECEF and the ECI frame. The rotation from ECEF to ECI is mathematically
given by

Ri
e = Rz,α =

 cosα sinα 0
−sinα cosα 0

0 0 1

 (3.31)

ECI to Orbit
Rotating from the Earth Center Inertial to the orbit frame is trivial. The rota-
tion matrix is found from the definition of the orbit frame, giving the following
result:

Ro
i =

[
xio yio zio

]T (3.32)

where yio = v×r
|v×r| , zio = − r

|r| , xio = yio×zio . yio is parallel with the orbit
anti-normal, which is found from the cross product of the velocity, v , and
position vector, r. zio is parallel with the negative of the position vector, and
xio completes the right handed coordinate system.

Body to Orbit
The rotation can be expressed using (3.18) and by substituting the Euler pa-
rameters λ = ε and β = η. From body to orbit this yields [22]:

Rε,η = Ro
b = 1+2ηS(ε)+2S2(ε) =

 1− 2(ε2
2 + ε2

3) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)
2(ε1ε2 + ε3η) 1− 2(ε2

1 + ε2
3) 2(ε2ε3 − ε1η)

2(ε1ε3 − ε2η) 2(ε2ε3 + ε1η) 1− 2(ε2
1 + ε2

2)


(3.33)

and the finite rotation is given by:

Rb
o = (Ro

b)
T (3.34)
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ECEF Cartesian to ECEF Ellipsoidal
The GPS system provides estimates of the antenna positions in the ECEF co-
ordinate system, and in order to describe the location of a point in the ECEF
frame, two different coordinate systems are commonly used. The cartesian ver-
sion is described in 3.1. However, it is often more desirable to represent the
ECEF coordinates using a geodetic system and the ellipsoidal longitude, lati-
tude, and height coordinates.

The longitude, l, is easily computed:

l = arctan

(
ye
xe

)
(3.35)

whereas the latitude and the height can be computed using the following algo-
rithm [8]:

1. Compute p =
√
x2
e + y2

e and e =
√

1− a
b

2. Compute the approximate value µ(0) from

tan(µ(0)) =
ze
p

(1− e2)−1 (3.36)

3. Compute an approximate value N(0) from

N(0) =
a2√

a2cos2(µ(0)) + b2sin2(µ(0))
(3.37)

4. Compute the ellipsoidal height by

h =
p

cos(µ(0))
−N(0) (3.38)

5. Compute an improved value for the latitude by

tan(µ) =
ze
p

(
1− e2 N(0)

N(0) + h

)−1

(3.39)

6. Check for another iteration step: if µ = µ(0) then the iteration is com-
pleted. Otherwise set µ(0) = µ and continue from step 3. and onwards.

This thesis will use the WGS84 geodetic system. The WGS84 defining param-
eters are listed in Table 3.1.
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Name Symbol Value Units
Equatorial radius (semi-major axis) a 6378137 m
Polar axis radius (semi-minor axis) b 6356752 m

Reciprocal flattening 1
f 298.257223563

Angular rate ωE 7.292115× 10−5 rad
s

Gravitational constant µg = GM 398600.5× 109 m3

s2

Eccentricity e 0.0818

Table 3.1: WGS84 defining parameters

ECEF Ellipsoidal to ECEF Cartesian
The Cartesian coordinates can be expressed as xe

ye
ze

 =

 (N + h)cos(µ)cos(l)
(N + h)cos(µ)sin(l)

( b
2

a2N + h)sin(µ)

 (3.40)

where N and N(0) in 3.3 and 3.3 is the radius of curvature in prime vertical. As
with N(0) in 3.37, N is here obtained by computing

N =
a2

√
a2cos2(µ)+b2sin2(µ)

(3.41)

Conversions between Cartiesian ECI coordinates and orbital parameters, and
vice versa, are explained in Chapter 4.
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Chapter 4

Motion for a Spacecraft in
Low Earth Orbit

4.1 Environmental forces and moments
In low Earth orbit, the major environmental torques that affect the attitude are
aerodynamic, magnetic, gravity gradient, and solar radiation.

In low Earth Orbit, the dominating force is the aerodynamic torque, whereas for
high altitude spacecrafts the magnetic and gravity-gradient torques will become
more important as the aerodynamic torque falls off exponentially with the dis-
tance from the Earth (see Table 4.1). Both the magnetic torque and the gravity
gradient torque have the same functional dependence on the distance, and the
structure of the spacecraft will impact on the relative strength between these
forces to decide which one is dominant. The solar radiation torque is dom-
inating for higher altitude orbits and throughout the interplanetary medium
for interplanetary missions and is therefore not significant in a low Earth or-
bit. However, the solar radiation will contribute both to somewhat radiation
pressure and differential heating of the spacecraft [35].

In a polar orbit special care must be taken because the longitude is not defined
at the poles. Another source of concern is that the magnetic field is highly

Source Dependence on distance from Earth Region of Space where dominant

Aerodynamic e−ar Altitudes below ~500 km

Magnetic 1
r3

~500 km to ~35000 km

Gravity gradient 1
r3

~500 km to ~35000 km

Solar radiation Independent Interplanetary Space above synchronous altitude

Table 4.1: Environmental parameters
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Figure 4.1: Keplerian Elements. Graphics by Lucas Snyder (2007)

fluctuating at the poles and has steep gradients in these areas.

4.2 Orbital Elements
In addition to representing an orbit using GPS position and velocity data, the
six Keplerian orbital elements, introduced by Johannes Kepler (1570-1630) are
more commonly used to represent the motion of a celestial body around its
central body. They are estimated in this thesis using GPS navigation data.
This is a problem which requires six quantities of integration in order to be
solved for. The six classical orbital elements determine the size, shape and
orientation of an orbit and are illusatrated in Figure 4.1 and described in this
chapter.

Semi-major axis, a, describes the size of the ellipse. More specifically, this
number represents half of the ellipses longest diameter. The semi-major axis
runs from the ellipse center, through a focus and to the ellipse edge. In this case
the orbit is circular, and the eccentricity represents the radius of the orbit, e = 0.
The semi-major axis can also be replaced by the average angular velocity, the
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mean motion, n, of the spacecraft, as these parameters are related via Keplers
third law.

Eccentricity, e, is the number that describes the orbit’s shape by indicating
how much the orbit deviates from being a perfect circle. For a perfect circle the
eccentricity is 0. In cases where the eccentricity reaches 1.0., the conic section
becomes a parabolic trajectory and is no longer a closed orbit. Thus for orbital
analysis we are only interested in eccentricity numbers between 0.0 and up to,
but not including, 1.0. In the present case, we are only considering the case
where e = 0.

Mean anomaly, M, describes the position of the satellite in the orbit. It is
expressed as an angle, representing the fraction of an orbital period which has
elapsed since perigee. In the case of a perfectly circular orbit, the mean anomaly
equals the true anomaly, ν.

Inclination, i, is the angle between the orbital plane and the equatorial plane,
by convention a number between 0 and 180 degrees.

Right ascension of the ascending node (RAAN), Ω, orients, together
with the inclination, the orbital plane in space. The RAAN is the angle from
the vernal equinox, where the RAAN is defined to be zero, to the ascending
node, the point where the satellite passes through the equatorial plane moving
from south to north. It is measured as a right-handed rotation about the Earth’s
pole, the ECI z-axis, and is by convention in the range 0 to 360 degrees. The
RAAN is undefined for equatorial orbits.

Argument of perigee, ω, is the angle between the orbit’s perigee (the point in
the orbit which is closest to Earth) and the orbit’s ascending node. This angle
is measured in the direction of motion of the satellite in the orbital plane, hence
orienting the orbit ellipse in the orbital plane. Its range of values is between 0
and 360 degrees, and it is undefined for equatorial and circular orbits.

4.2.1 Variations
Note that external forces acting on the satellite will induce variations in the
satellite’s orbital elements, causing the satellite to perturb away from the nomi-
nal Keplerian orbit due to which all the orbital elements will vary with time. The
following secular variations neglect the variation caused by the changing orien-
tation of the orbital plane with respect to the ecliptic plane and the Moon’s or-
bital plane. However they are sufficiently accurate and included in the Simulink
Chapter as perturbing forces [36]:

Ω̇Sun =
−0.00154cos(i)

orbits/day
, (4.1)
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Name of equation Equation
Vis viva energy integral V 2 = µ( 2

r −
1
a )

Angular momentum h = (µp)
1
2

Kepler’s equation M = E − esinE
Radius equation, magnitude r = a(1−e2)

1+ecos ν

Time rate of change of r dr
dt =

(
µ
p

) 1
2

esin ν

Conversion of eccentric anomaly (E) to true anomaly (ν) cos ν = cosE−e
1−ecosE , sin ν =

[
(1−e2)

1
2 sinE

]
1−ecosE

Conversion of true anomaly, ν, to eccentric anomaly (E) cosE = (cos ν+e)
1+ecos ν , sinE =

[
(1−e2)

1
2 sin ν

]
1+ecos ν

Half-angle relation tan
(
ν
2

)
=
[

1+e
1−e

] 1
2

tan
(
E
2

)
Flight-path angle, Υ tanΥ = esin ν

1+ecos ν

Mean anomaly at time, t M = M0 + n(t− t0)
Perigee altitude hp = a(1− e)−Re
Apogee altitude ha = a(1 + e)−Re

Table 4.2: Commonly Used Orbital Mechanics Equations

Ω̇Moon =
−0.00338cos(i)

orbits/day
, (4.2)

where i is the orbital inclination, set to 98o ∗ 2π
360 [rad].

Ω̇ is given in
[
deg
day

]
and converted to

[
rad

second

]
in the MATLAB code.

4.2.2 Conversion from Keplerian Orbital Parameters to
ECI Cartesian Coordinates

The following equations are used to accomplish the conversion of classic orbit
elements to ECI Cartesian coordinates [3]:

x = r(cos(Ω)cos(u)− sin (Ω) sin (u) cos (i)) (4.3)

y = r(sin (Ω) cos (u) + cos (Ω) sin (u) cos (i)) (4.4)

z = rsin (u) sin (i) (4.5)

and:

dx

dt
= V

[(x
r

)
sin(Υ)− cos(Υ)(cos (Ω) sin (u) + sin (Ω) cos (i) cos (u))

]
(4.6)
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dy

dt
= −V

[(y
r

)
sin(Υ) + cos(Υ)(sin (Ω) sin (u)− cos (Ω) cos (i) cos (u))

]
(4.7)

dz

dt
= V [

(z
r

)
sin(Υ) + cos(Υ) cos (u) sin (i))] (4.8)

where V is the magnitude of the velocity.

Assuming a circular orbit with the perigee not defined and virtually chosen to
be at the point of ascending node; M ≈ ν, e ≈ 0, ω := 0:

r = a

u = M

V =

√
GM

a
Υ = 0 (4.9)

xi = a (cos(Ω)cos(M)− sin(Ω)sin(M)cos(i))

yi = a (sin(Ω)cos(M) + cos(Ω)sin(M)cos(i))

zi = asin(M)sin(i)

ẋi = −V (cos(Ω)sin(M) + sin(Ω)cos(i)cos(M))

ẏi = −V (sin(Ω)sin(M)− cos(Ω)cos(i)cos(M)

żi = V cos(M)cos(i) (4.10)

These equations are linearized and used in the Multiplictive EKF.

4.2.3 Conversion from ECI Cartesian Coordinates to Ke-
plerian Orbital Parameters

To convert from ECI Cartesian coordinates to Keplerian orbital parameters we
must first find some auxiliary vectors:

h = r× v (4.11)

is a vector perpendicular to the orbital plane,

n = z× h, (4.12)

where n is a vector pointing towards the ascending node, z is a unit vector
parallel to the ECI z-axis,
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Using these auxiliary vectors we can compute the orbital parameters, which,
assuming a circular orbit, becomes:

a =
GM

2GM − |r|v2
|r|, (4.13)

e := 0 (4.14)

where v is the magnitude of the velocity vector,

i = arccos

(
hz
|h|

)
(4.15)

M = arccos

(
n · r
|n||r|

)
(if n · v > 0 , then M = 2π −M) (4.16)

Ω = arccos

(
nx
|n|

)
(if ny < 0 , then Ω = 2π − Ω) (4.17)

ω := 0 (4.18)

If the inclination is zero, i = 0 , then:

M = arccos

(
rx
|r|

)
(if vx > 0 , then M = 2π −M) (4.19)

Ω := 0 (4.20)

4.3 Equations of Motion for the Test Satellite

Satellite Dynamics
Modelling the satellite as a rigid body, the dynamics can be derived from Euler’s
moment equation as [21]:

Iω̇bb/i + ωbb/i × Iωbb/i = τ b (4.21)

where τ b is the sum of all torques acting on the satellite, ωbib is the angular
velocity of the body frame relative to the ECI frame expressed in the body frame
and I is the identity matrix representing the inertia of the satellite, expressed
in the body frame. ωbib can be expressed by:

ωbb/i = ωbo/i + ωbb/o = Rb
oω

o
o/i + ωbb/o, (4.22)
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and applying the skew-symmetric operator on the satellite dynamics gives:

Iω̇ + S(ωbb/i)Iω
b
b/i = τ b, (4.23)

and:
ωoo/i =

[
0 −ωo 0

]
(4.24)

is the known angular velocity of the orbit frame relative to the ECI frame,
expressed in the orbit frame. The angular velocity, ωo, a function of the altitude
of the orbit, can be calculated using:

ωo =

√
GM

r3
(4.25)

where G is the gravitational constant of the Earth, M is the mass of the Earth
and r is the distance from the satellite to the centre of the Earth. The spacecraft
will be nominally stabilized in an earth pointing attitude. The angular velocity
in the body frame relative to ECI can thus be expressed:

ωbb/i = ωbb/o − ω
o
o/i (4.26)

Furthermore, using 4.22 and 4.21 we can express ω̇bb/o, the angular velocity of
the body frame relative to the orbit frame:

ω̇bb/o = ω̇inertial + ω̇torque + ∨ωadd (4.27)

where:
ω̇inert = I−1

[
−(ωbb/o + Rb

oω
o
o/i)× (I(ωbb/o + Rb

oω
o
o/i))

]
(4.28)

ω̇torque = I−1τ b (4.29)

ω̇add = S(ωbb/o)R
b
oω

o
o/i (4.30)

Satellite Kinematics
As argued above, the attitude estimates will be represented by quaternions
to prevent the existence of singularities. The satellite kinematics differential
equations are given by [21]:

η̇ = −1

2
εTωbb/o (4.31)

and
ε̇ =

1

2
ηωbb/o −

1

2
ωbb/o × ε. (4.32)
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The latter can also be written as:

ε̇ =
1

2
[ηI−S (ε)]ωbb/o, (4.33)

when applying the skew-symmetric operator S.
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Chapter 5

Sensors and Reference Models

GPS
Mainly three reasons can be argued for installing a GPS receiver onboard this
double CubeSat. For once, the magnetometer measurements need to be com-
pared to the IGRF model in order to determine the attitude of the satellite,
hence the need for position data which can be obtained using GPS. It is im-
perative for the attitude determination system that the position is known when
using the magnetic field for this purpose. Second, using multiple GPS antennas
enables for attitude determination using GPS signals, which is designed and
simulated in this thesis. Third, the GPS receiver could be utilized as an ad-
ditional payload to measure occultations in the lower atmosphere. However,
utilization of a GPS receiver for this purpose would require a dual frequency re-
ceiver [29], which is not necessary for determining the orbit of the small satellite.
Scientific experiements on occulatations in the lower atmosphere was therefore
disregarded, as a dual frequency GPS receiver would cause the already tight
budgets of the project to exceed their limits, in the sense of volume, weight,
power, and cost.

There are some obstacles to be overcome in order to install a GPS receiver
onboard a satellite in orbit around Earth. These limitations were imposed by
the Coordinating Committee for Multilateral Export Controls (CoCom) in the
1960s, with the intention to avoid the use of GPS in intercontinental ballistic
missile-like applications, demanding all GPS devices disabled for any GPS de-
vice detected to be travelling at speeds higher than 1,900 km/h (527,78 m/s) at
altitudes higher than 18,000 m. (59,000 ft). Although CoCom ceased to func-
tion on March 31, 1994, most manufactureres still apply these limits to GPS
receivers, when either one or both limits are reached [29].
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5.1 Inertial Navigation Systems (INS)

Gyrocope
A gyroscope is an inertial sensor which measures the angular velocity about
the sensor axis of the object to which it is attached, relative to the inertial
frame. Gyroscopes can measure rapid changes in the attitude, and the satel-
lite’s orientation can be obtained by integrating the measured angular velocity.
A potential source of error could be incorrectly initialization of the gyroscope,
which is of great importance regarding the quality of the estimates. It is also
important that the gyro bias is not too large. Due to the gyro bias, which is
inherent within all gyroscopes, gyroscopes can never be used single handedly in
order to obtain attitude estimates, and they should always be used in conjunc-
tion with other sensors [12]. Furthermore, gyro biases are typically low-dynamic
or approximately constant, such that the gyro can track the subject body’s ori-
entation up to a certain point. However, the inherent bias of the gyro will cause
the attitude estimates to drift and the gyroscope needs to be calibrated accord-
ingly. The length of time a gyroscope will provide acceptable measurements
can vary. However, most modern gyroscopes provide high quality measurement
data at reasonable cost.

Gyro Measurement The gyroscope measurement is composed of a three
component vector:

ωbb/i = ωbo/i + ωbb/o (5.1)

where ωbo/i is the orbit frame rotation relative to ECI and ωbb/o is the rotational
velocity of the body frame relative to the orbit frame.

For an orbit of 600 km, one revolution about the Earth≈ 96.67minutes, giving
an orbit frame rotation of 0.062 degrees per second. Due to sensor noise this
rotation will be difficult to measure.

We consider the orbit frame to be the inertial frame for local navigation: ωbb/i ≈
ωbb/o

Gyro Error Model The gyro error model is [33]:

ωbb/i = [I + ∆(κ,α)]ωimu + bg + w1 (5.2)

where bg ∈ R3 represent gyro bias.
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w1 ∈ R3 is bounded unmodeled errors and measurement noise. ∆ = ∆(κ,α) = κx αxy αxz
αyx κy αyz
αzx αzy κz


κ =

[
κx κy κz

]T are three gyro scale factor errors, and,

α =
[
αxy αxz αyx αyz αzx αzy

]T are six small gyro misalignment an-
gles.

This error model is substituted into the following equations:

q̇ =
1

2

[
−εT

ηI3×3 + S(ε)

]
ωbb/i −

1

2

[
−εT

ηI3×3 + S(ε)

]
ωoo/i, (5.3)

which are the inertial navigation system attitude determination equations using
unit quaternions [33]. The substitution yields:

q̇ = Tq(q) [(I +4(κ,α))ωimu + bg + w1]− Ξ(q)ωoo/i, (5.4)

where:
Tq(q) =

1

2

[
−εT

ηI3×3 + S(ε)

]
(5.5)

Ξ(q) =
1

2

[
−εT

ηI3×3 + S(ε)

]
(5.6)

The gyro error models are described by the 1st-order models [33]:

ḃg = −T−1
1 bg + w2 (5.7)

κ̇ = −T−1
2 κ+ w3 (5.8)

α̇ = −T−1
3 α+ w4 (5.9)

where w2,w3 ∈ R3 and w4 ∈ R6 are Gaussian white noise signals, and,

T1,T2 ∈ R3×3 and T3 ∈ R6×6 are diagonal matrices of time constants.
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ωbb/o can be found from:

ωbb/o = ωbb/i − ω
b
o/i

= ωbb/i −Rb
oω

o
o/i (5.10)

where
ωoo/i =

[
0 ωo 0

]T (5.11)

and ωo =
√

GM
a3 for a circular orbit.

Accelerometer
Another sensor inherent in an inertial navigation system is the accelerometer,
which measures change in velocity. For a satellite in orbit the gravity force upon
the satellite can be found by:

Fg = G
Mm

r2
(5.12)

where:

G is the universal gravity constant defined in Table 3.1,

M is the mass of the Earth.

m is the mass of the satellite, and,

r is the distance between the center of mass of the two bodies.

In low Earth orbit the acceleration due to the Earth’s gravity is 8.19
[
m
s2

]
, and

due to third bodies are e.g. 6 · 10−4
[
m
s2

]
due to the Sun, 3 · 10−6

[
m
s2

]
due to the

Moon and 3 · 10−8
[
m
s2

]
due to Jupiter. The accelerations due to third bodies

are very small, and we therefore consider the isolated case of the spacecraft
orbiting Earth. The isolated resulting gravitational force is balanced out by
the centripetal force, causing a resultant acceleration of approximately 0 g [12].
In this thesis we consider the case where the satellite is in a stable circular
orbit around the Earth, meaning that the spacecraft is in continuous free fall
towards the Earth. The total acceleration experienced by the spacecraft in orbit
will be small and regular accelerometers can not be utilized for this purpose.
Accelerometers may be used for testing on ground but they are not sensible to
utilize in orbit.
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Magnetometer
A magnetometer can be used to obtain measurements of the flux density of
the local magnetic field at the current location of the satellite. By combining
measurements from three mutually perpendicular magnetometers the magnetic
field including two components of its direction will be given in the body frame.
This information can also be used as a check on the measurement accuracy of the
carrier phase measurements used by the GPS attitude determination solution
method (see 7.1.3) and vice versa.

There are various methods to gain knowledge of the real magnetic field of the
Earth. One way of doing this is by using a look-up table. This approach would
require data uploaded from ground in order for it not to be too extensive for
the storage capacity on-board. As the real magnetic field varies in magnitude
and direction with its location and altitude, in addition to slowly changing with
time, a stand-alone lookup table would have to compensate for with an infinite
amount of combinations. An option would be to update a smaller table through
ground communication with information about the magnetic field for a certain
range of satellite orbit positions, easing the workload of the onboard computer.
This would impose a need for continuous communication with ground stations, a
potential and probable source of attitude estimation drop-out in the case of com-
munication failure. A look-up table solution would also require communication
bandwidth, which already is a limited resource for a small student satellite. It
was therefore decided to use a mathematic model of the field; the International
Geomagnetic Reference Field (IGRF), see Section 5.2.

Magnetometer Error Model The magnetometer error model is [33]:

me
imu = me + bm + w5, (5.13)

where:

ḃm = −T−1
4 bm + w6 which is the local magnetic disturbance.

w5,w6 ∈ R3 are Gaussian white noise.

It is assumed that no residual magnetic field from the magnetic torquers are
significant in the magnetometer measurements and that the necessary navigation
data are provided for the IGRF model.
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5.2 The International Geomagnetic Reference Field
(IGRF)

The International Geomagnetic Reference Field is a mathematical model of the
Earth’s real magnetic field, which provides reference for the attitude estimator
[12]. The geomagnetic field of the Earth provides a reference vector that can
be obtained using a variety of mathematical models. The field is independent
of orbit characteristics and it is generated by several sources and composed by
several magnetic fields. The most important sources are the magnetosphere, the
ionospere, the deep fluid interior of the Earth, the Earth’s crust and its upper
mantel [30]. The resulting magnetic field is simulated using one of the available
models, the International Geomagnetic Reference Field model provided by the
International Association of Geomagnetism and Aeronomy (IAGA). This model
takes the form of a spherical harmonic equation:

V =

N∑
n=1

n∑
m=1

(
aigrf
rigrf

)n+1

(gmn cos(mφigrf ) + hmn cos(mφigrf ))Pmn cos(θigrf )

(5.14)

where:

gmn and hmn are Gauss coefficients.

aigrf is the mean radius of the Earth.

rigrf is the distance from the center of the Earth.

φigrf is the longitude east of Greenwich.

θigrf is the colatitude (90o−latitude).

The resulting IGRF model, V, is an empirical representation of direction and
magnitude of the Earth’s main composite magnetic field, predicted to within
approximately 100 nT. It holds maximum temporal variations of the field of
about 1% per year [2]. The model is updated every 5 years, the 11th generation
IGRF model is of order 13 with coefficients finalized in December 2009. Available
at IAGA V-MOD Geomagnetic Field Modeling, the IGRF 2010.0 coefficients are
downloaded and used in this thesis. The resulting field is illustrated in Figure
5.1, 5.2, and 5.3. The desired local magnetic field vector is found from this
model using positioning data acquired from the GPS system, and spacecraft
attitude is then obtained by rotating the IGRF vector from ECEF to the orbit
frame via ECI in the Kalman filter. Figure 5.4 shows the IGRF resulting Matlab
simulation.
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Figure 5.1: Declination D in degrees in 2010

Figure 5.2: Inclination I in degrees in 2010
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Figure 5.3: Total Intensity F in nT in 2010
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Figure 5.4: Matlab simulation the resulting International Geomagnetic Refer-
ence Field
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Chapter 6

GPS and Inertial Navigation
System Integration

6.1 Position, Velocity, and Attitude Aiding
In a strapdown inertial navigation system the sensors are rigidly attached to the
vehicle in the body frame, and as the vehicle moves, the gyros experience the
full rotational rate of the movement. Therefore the bias accuracy, as well as the
gyro scale factor accuracy, is important. By integrating GPS with rate gyro,
better calibration of gyro errors can be achieved. Integrating GPS with rate
gyro also enables using gyro attitude data to reduce the integer search space
for integer ambiguity resolution to shorten the time spent for reinitialization of
integer ambiguities in case of GPS loss of lock (See 7.1.4). Several architectures
may be used in the integration design, depending on the purpose and system
requirements, with respect to complexity, redundancy, and flexibility [33]. This
subchapter discusses the various integration methods, and concludes that the
preferred method for the small satellite GPS/INS design is the loosely coupled
design. Note that for any design, the instruments should be carefully placed in
the satellite to avoid interference from other components.

6.1.1 Uncoupled Integration
The uncoupled integration architecture is the simplest and fastest method. It
subtracts the estimated INS errors from the INS measurements in an open-loop
manner to give the output signal. It is also the potentially cheapest, as INS and
GPS sensors can be easily replaced. A high degree of tolerance to subsystems
failure is achieved, as well as a high degree of redundancy. However, the validity
of the filter models and their performance will degrade due to INS output drift
over time. This architecture is only applicable to short duration applications
and is therefore not a sufficiently robust method for a satellite in orbit.
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6.1.2 Loosely Coupled Integration
The loosely coupled configuration method operates in a closed-loop, feeding the
estimated INS errors back to the INS strapdown computation block. Several
possible variations of feedback exist for a loosely coupled configuration [33]. For
terrestrial use, acceleration information from the INS can be used to improve
the smoothing properties of the GPS Kalman filter, but applications to be used
in a low Earth orbit will not inherit this advantage, as the velocity is approxi-
mately constant throughout orbit lapses and the result acceleration is close to
zero. By using the loosely coupled integration design, the position and velocity
information is fed back to the GPS receiver. This helps to decrease the reacqui-
sition time after loss of lock of GPS signals. Error estimates of the GPS error
estimates and the INS error estimates are fed back from the integration filter to
the GPS Kalman filter and to the strapdown computation block, respectively,
serving to sustain small input values to the integration filter such that the va-
lidity of the models are maintained for a longer period of time. This feedback,
or reset, as it is often denoted in literature, also ensures continuous calibration
of the INS in case of GPS dropout. An example of loosely coupled integration
filter can be found in Grip, Fossen, Johansen, and Saberi (2012).

6.1.3 Tightly Coupled Integration
A tightly coupled integration scheme uses raw accelerometer, gyro, pseudorange,
and deltarange measurements from the sensors, instead of position, velocity,
and attitude data which require at least 4 GPS SV’s within line of sight. The
pseudoranges and deltaranges acquired from GPS SVs will provide information
to calibrate the INS during GPS dropout, even in the case where less than the
necessary amount of GPS SVs are avilable for a position, velocity, timing, and
attitude solution is available. As opposed to loosely coupled integration where
the inputs to the integration filter are correlated, injecting raw measurements
to the integration filter gives a better solution in terms of accuracy, as the raw
measurements are uncorrelated. Tight coupling also provides velocity aiding
of the GPS receiver loops, lowering the bandwidth of the GPS tracking loops
and hence increasing jamming resistance. A drawback, however, is that this
solution increases complexity and computational requirements, and a tightly
coupled integration scheme is not necessary in terms of GPS SV visibility in low
Earth orbit. Neither is it likely that the experimental student satellite will be
subject to targeted jamming.

6.1.4 Deeply Coupled Integration
The deeply coupled integration method allows for the most optimal use of raw
GPS and IMU data, as well as for control of all loop and filter bandwidths to
optimize filter and correlator bandwidths. Due to its complexity, this design
was not considered in this thesis.
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6.1.5 Direct and indirect Integration
The modeling of position, velocity, and attitude variables can also be separated
into direct and indirect integration methods:

Direct Integration

The direct integration approach estimates the states in the filter, and is a well
suited approach for tightly coupled integration (see 6.1.3). Direct integration
does not require implementation and calculation of error models, and hence less
computation need to be done compared to the indirect integration approach.
However, this argument does not hold if the integration filter is a Kalman filter,
as the covariance matrix in a Kalman filter must be updated at a high itera-
tion rate. Using a Kalman filter, the direct approach requires more computer
througput and higher iteration rate, as the dynamics of the states is significanly
larger than the dynamics of the error states. [33] The latter are used in the
indirect approach, as described in the following section.

Indirect Integration

Indirect integration filters feed error estimates back to the strapdown equations
in order to update the whole estimates, as opposed to estimates of the whole
estimates. As the dynamics of the error estimates are smaller and slower than
the dynamics of the whole states, a slower update rate can be used. This sig-
nificantly reduces the load on covariance matrix computation in the integration
filter when a Kalman filter is used for this purpose, see (6.1.5), which is imple-
mented in this thesis in the Multiplicative Extended Kalman Filter design.

6.1.6 Choice of Method
In this thesis, a loosely coupled system for position and velocity aiding was
chosen for convenience. A tightly coupled system for attitude aiding was chosen
based on its advantages in robustness and accuracy.

6.1.7 Lever Arm Compensation (Position, Velocity, Ac-
celeration)

The inertial navigation system of the craft should be mounted as close as possible
to the center of gravity of the platform, such as to minimize the error in level
arm compensation. This can be seen from the expressions [33]:

ro0 = ro1 + Ro
b4rb (6.1)

vo0 = ro1 + Ro
bS(ωbb/o)4ṙb (6.2)
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and:

ao0 = ao1 + Ro
bS

2(ωbb/o)4rb + Ro
bS(ω̇bb/o)4rb ≈ ao1 + Ro

bS
2(ωbb/o)4rb, (6.3)

which represents the constant lever arm 4rb relative to a point with position
ro0 , and the lever arm compensation for position, velocity, and acceleration,
respectively. When the platform of the spacecraft changes attitude, the GPS
receiver will measure a different position than the INS.

58



Chapter 7

Attitude Determination

7.1 GPS Attitude Determination
Signals from all the Global Navigation Satellite Systems (GNSSs), including
the Russian Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS)
at 19,140 km, the Chinese Beidou at 21,150 km, the European Galileo at 23,222
km and the U.S. GPS system at 20,200 km altitude may in theory be utilized
for attitude determination. For practical reasons, only the GPS system is con-
sidered in this thesis.

Attitude determination using GPS was first proposed by Spinney (1976), who
developed the basic idea of determining the attitude of a craft exploiting the
accuracy of differential range GPS carrier phase measurements, a function of
the vehicle attitude. The concept is illustrated in Figure 7.1. In his work,
Spinney also examined the basic performance of the solution in terms of differ-
ential carrier phase (DCP) measurement error, Geometric Dillution of Precision
(GDOP), Attitude Dillution of Precision (ADOP), antenna baseline length, and
antenna baseline knowledge accuracy. GPS attitude determination specifically
applied for spacecraft was first suggested by Ellis (1979), whereas the first real-
time experiments of GPS attitude determination was documented by Kruczyn-
ski (1989), based on experiments on the Ticonderoga-class missile cruiser in
1988. Following this, Van Graas and Braasch (1991) conducted the first air-
craft attitude tests on a Douglas DC3 at Ohio University. The first practical,
commercially available attitude receiver was produced as a result of research by
Cohen (1992) at Stanford University, and several demonstrations of attitude de-
termination based on GPS signals have been performed since the first spacecraft
GPS attitude experiment flown on the Air Force RADCAL satellite launched
in 1993 [1].

The direction of the incoming GPS signal is given by the unit length line-of-
sight vector, le, with respect to a baseline, b. The LOS vector le is known from
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Figure 7.1: Attitude Observation Geometry

the GPS almanac and the test satellite’s position and is always given in ECEF
coordinates, i.e. le = l. The baseline is known from the predetermined and
geometrical placement of the antennas illustrated in Figure 7.2. Figure 7.1 also
illustrates that the line of sight vector is always considered to be parallel for all
GPS antennas due to the comparatively large distance from the antennas to the
GPS SV. The attitude angle α can be found by observing the relation:

4rij = |bj |cos(αij) = lTi bej (7.1)

where we can see that finding the delta range, 4rij , is the only obstacle to
accessing α. The delta range can can not be measured directly, but the phase
difference between the two antennas a and b can be measured by comparing the
received signals.

This introduces the problem of finding the whole number of wavelengths, re-
ferred to as ambiguity parameter resolution, of the incoming GPS signal be-
tween the two antennas a and b. The ambiguity parameter is denoted Nij for
signal i and baseline j [33]:

Nij = round

(
4rij − λ4ϕij

λ

)
(7.2)

where λ is the wavelength of the GPS signal, for which we have used the GPS
L1 frequency corresponding to a wavelength of λL1

= 0.1903[m]. The function
round(•) finds the integer number closest to its argument. The integer ambigu-
ity resolution problem is explained in Chapter 7.1.4, for which the Fast Integer
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Ambiguity Resolution algorithm proposed in [16] by Lightsey, Crassidis, and
Markley (1999) is implemented.

As the integer ambiguity can be resolved we can now resolve the attitude accord-
ingly. The final GPS attitude determination equation for an arbitrary number
of satellites is more conveniently written in a matrix form:

λ(4Φ +N) = LTRe
bB

b, (7.3)

for which Re
b represents the rotation matrix representing the unknown attitude

we want to solve for.

The signal structure of relevance for this thesis is the L1 carrier frequency:

L1(t) = AL1p(t)d(t)cos(f1t) +AL1c(t)d(t)sin(f1t) (7.4)

where:

f1 = 1575.42 [MHz].

AL1 is the signal amplitude.

c(t) and p(t) are Pseudo Random Noise (PRN) sequences modulated onto L1

at10.23 [MHz].

d(t) is the data message containing information about satellite parameters, clock
and clock errors for calculation of user position and velocity. This structure
allows for distinguishment of signals sent from different satellites at the same
carrier frequency.

A common oscillator approach described by (Vik, 2011) and a single GPS re-
ceiver is used to attain information for attitude calculation. The line-of-sight
dependent, common mode carrier phase measurement disturbances can be re-
moved by differencing, which requires at least four GPS SVs in sight [1] In low
Earth orbit, the GPS signals are visible with an enhanced visibility of approxi-
mately 12-16 signals, compared to 6-8 for terrestrial applications[1]. Note that
due to high orbital speeds in low Earth orbit an increased signal Doppler shift
will be in the order of ±40KHz compared to ±5KHz on Earth, and that a
receiver in LEO will be subject to rapidly shifting transmitter line-of-sights to
the GPS satellites. A single GPS SV will be visible for ≈ 30 minutes compared
to ≈ 6 hours on the ground. Consequently, the time and demands for signal
acquisition will be higher.
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The GPS measurement observables are the pseudorange, the signal Doppler
shift, and the integrated carrier phase. During a cold start, the GPS receiver
may search for PRN codes which are not visible in the given moment. Note
also that spacecraft attitude motion can involve larger angles than will typically
occur for terrestrial applications.

7.1.1 GPS Attitude Determination Equations with Clock
Line Biases

The attitude information obtained from the differential phase measurements is
given by [33]:

4ϕ = NλL1 + β = (l)TRobb
b (7.5)

where

4ϕ is the scalar differential phase measurement from the receiver.

N is the integer ambiguity.

λL1 is the wavelength of the L1 carrier.

β is the line bias.

bbis the baseline vector decomposed in the body frame.

7.1.2 GPS Error Sources
There are several sources of error entering the carrier phase signal. The largest
error source for attitude applications is multipath, which are errors in the phase
measurement caused by reflections reaching the antennas. The only source of re-
flection in this case is the spacecraft itself, and the multipath effects are therefore
small. Other errors entering the carrier phase signal is ionosphere/troposphere
errors, which can be removed by differencing. There are also errors due to phase
center variation of the antennas, receiver noise, baseline length error, and line
and clock bias. These errors are combined to form one single error source in
Matlab/Simulink.

The goal is to achive continuous attitude solution maintainance over the entire
orbit of the spacecraft. An inertial navigation system is used as as an aid to
achieve this goal. Integrated GPS/INS provides calibration of gyro errors, in
addition to an increased observability of the states which significantly reduces
alignment time. INS attitude data can also be used to reduce the integer search
space, shortening the time spent for reinitialization of integer ambiguities after
GPS loss of lock [33]. As a dedicated GPS receiver approach is suggested, β
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here represents line bias. The line bias is the bias/error due to the electrical
lengths of each baselines. These electrical lengths will vary but can be mea-
sured. The errors can be predetermined together with the body frame baselines
using a static survey, but that may not be trivial, as temperature variations are
significant so that line biases will change significantly due to these temperature
differences between antenna cables. If so, this issue must be resolved and taken
into account for using line bias estimation techniques [4] and is not considered
further in this thesis.

7.1.3 Attitude Solution Method
A baseline, b, is the vector between two antennas, and one of the antennas are
selected as a master antenna. In this thesis a configuration of four antennas
has been simulated with A1 , given by the body-frame coordinates [-0.05, -0.05,
-0.10] m., as the master antenna. See Figure 7.2. This antenna is used as
a reference giving the three baselines A0 to A1 , A0 to A2 and A0 to A3, a
geometric configuration which avoids parallel baselines. Any parallell baselines
will be surplus as they do not provide any new information. The four antenna
configuration illustrated in Figure 7.2 has been implemented and provides a full
non-coplanar solution which increases the performance of the GPS receiver in
terms of reliability and accuracy [33]. Note that the baselines are not to scale
in the figure.

Since we are here using only the L1 frequency, the measurement is:

ϕ = n1ϕ1 (7.6)

where ϕ = ft and f = c
λ . The measurement of GPS SV i (sightline) from

antenna j (baseline) can be expressed as [33]:

ϕi,j = −Nij +
rij
λ

+
c

λ
(∂ri + ∂sj ) + eij (7.7)

where

rij is the pseudorange to the satellite i at antenna j

c is the speed of light

Nij is the ambiguity number of whole periods from satellite i to antenna j

4∂ = ∂ri − ∂sj , where ∂ri is the clock error in the receiver and ∂sj is the clock
error in the GPS SV

eij is the error on the signal
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Figure 7.2: NUTS Antenna Configuration
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ϕij is the measured phase of signal i at antenna j

In this differencing technique, the difference between the measurements is used
to eliminate noise and errors in the equations. Errors, such as the clock error
in the GPS SV and the atmospheric and ionospheric noise related to the GPS
signal are further reduced by differencing the signal with a reference antenna of
choice onboard the small spacecraft. The single differentiated version is obtained
[33]:

4ϕij = 4ϕij −4ϕ0j = −4Nij +4rij
λ

+
c

λ
4∂ri +4eij (7.8)

The error terms associated with the GPS receiver onboard the test satellite, such
as the receiver clock error, may also be removed. This further improvement of
the measurement is obtained by differentiating with a reference GPS SV of
choice, giving the following result:

∇4ϕij = 4ϕij −4ϕi0 = −∇4Nij +∇4rij
λ

+∇4eij (7.9)

When measurements for double differencing are given, error residuals and un-
correlated noise remain. The most significant contributor to this is usually
multipath, which is uncorrelated between the respective satellites as well as
between the antennas. The spacecraft is small of size and the only source of
reflection. Multipath noise is therefore simulated as part of the uncorrelated
noise in Matlab.

Eq. (7.9) may also be written on matrix form as [33]:

Aλ(4ϕ+N) = ALTbe (7.10)

where A represents the differencing matrix which transform the n single differ-
enced measurements into a n − 1 double differenced system. Since we want to
both keep the integer property of the ambiguity parameter N while exploiting
the advantage of having uncorrelated noise in the Kalman filter, we choose to
split A into one integer part and one scaling part:[33]:

A =


1√
2

0 0

0 1√
6

0

0 0 1√
12


 1 −1 0 0

1 1 −2 0
1 1 1 −3

 (7.11)
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The phase measurement are made up of the differential range measurements
between any baseline pair and a GPS SV. An indicator of the performance of a
GPS attitude determination system is given by the GPS satellite constellation
and baseline configuration dependent ADOP value:

ADOP =
[
trace

((
Lb
)T

AATLb
)
I2×2 −ATLb

(
Lb
)
TA
]−1

(7.12)

From Cohen (1996) it was found that ideal geometries for the baseline configu-
ration with the property:

BBT = lI3×3 (7.13)

results in the ADOP value:

ADOP =
√
trace(nI− LTL)−1 (7.14)

where n is the number of LOS vectors

L is a n× 3 matrix of LOS vectors.

Precision is dependent on the noise level on the measurements and the ADOP
value, whereas the most important factors determining the ADOP value are the
baseline configuration and the geometric properties of the GPS Space Vehicle
constellation. This thesis uses ADOP values to select four GPS satellites for
carrier phase measurements.

7.1.4 Integer Ambiguity Resolution
When phase differences are used to determine a vehicle’s attitude, it is necessary
to first resolve the integer ambiguity problem, finding the correct number of
integer wavelenghts between a given pair of antennas [16]. There are several
approaches to integer ambiguity resolving when determining the attitude in
an GPS/IMU manner. First it has been noted that the L1 GPS frequency of
1575.42 MHz corresponds to a wavelength, λL1, of 0,1903 [m] , approximately a
factor of five to the baseline of 1 [m]. This indicates that integer search methods
can get very computationally demanding, as it requires calculation throughout
all the solutions [33].

First, the complete set of ambiguity parameters must be determined. The fol-
lowing equation generates a boundary of the ambiguity parameters for each
baseline:

−‖b‖
λL1

< Nj <
‖b‖
λL1

(7.15)
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For baselines of one meter, Nj ∈ ±5. For this boundary of three baselines
measuring one meter each, the total number of solutions is 113 = 1331 for
each signal, as this boundary gives 11 possible solutions including Nj = 0.
Here we will solve for the ambiguity parameters first and subsequently perform
double differentiating. The double differentiated integer ambiguities will then
be utilized.

Fast Integer Ambiguity Resolution for GPS Attitude Determination

It is possible to reduce the subset from cubic to quadratic using normality
and geometric constraints. This approach is based on Lightsey, Markley, and
Crassidis (1999) where it is assumed that either three noncoplanar sightlines or
(preferably) three noncoplanar baselines are available. The latter is applied in
Matlab.

First, the set is sequencially reduced to two baselines and two sightlines. The
consequence to this approach is a significant reduction in the integer search space
from N3 ∈ O(N3) to 3N2 ∈ O(N2), a subset for which it can be geometrically
shown that the following inequality must be true for baselines b1 and b2 [16]:

‖b1‖2‖b2‖2 > (b1b2)2+‖b2‖2(4ϕi1−Ni1)2−2(4ϕi1−Ni1)(4ϕi2−Ni2)(b1b2)+‖b1‖2(4ϕ2j−N2j)
(7.16)

for which the same inequality can be applied using sightlines s1 and s2:

‖b1‖2 > ‖b1‖2(s1s2)2+(4ϕ1j−N1j)
2−2(4ϕ1j−N1j)(4ϕ2j−N2j)(s1s2)2+(4ϕ2j−N2j).

Both inequalities may be used, and as the baselines are better known, Equation
7.16 is applied in this thesis. In order to extract attitude information outside of
the b1,b2 plane, the following condition:[(

Rb
esi
)

(b1 × b2)
]2
> 0 (7.17)

must apply, down to which Eq. (7.16) has been reduced if the integers have
been properly resolved. This condition indicates that Rbesi, b1 and b2 must
not lie in the same plane, which is almost always satisfied if the integers pass
the test in Eq. (7.16) [16]. The parallelepiped is spanned by the vectors Rb

esi,
b1 and b2 in Eq. (7.17). This is illustrated in Figure 7.3; where the sign is
positive, if and only if, the vectors form a right-handed system [16]. Since only
two baselines are considered at a time, we use Equation 7.16 to significantly
reduce the search space. We then search through all remaining candidates to
directly determine the integers withouth pre-computing the sightline vector in
the body frame. This is done using:

J(ni) =
1

2

L∑
k=1

{
1

σ2
i (k)

[
||B−1

i Γi(Φi(k)− ni)||2 − ||si(k)||2 + trace
{
B−1
i

}]2
+ logσ2

i (k)

}
(7.18)
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Figure 7.3: Parallelepiped Spanned by Three Vectors. The volume is zero if
the three vectors are co-planar, meaning that by zero volume the non-coplanar
condition is not satisfied.

where ni =

 ni1
ni2
ni3

, Φi =

 4φi14φi2
4φi3

and:
σ2
i (k) = (Φi(k)− ni)TΓTi B−3

i Γi(Φi(k)− ni)− trace2
{
B−1
i

}
(7.19)

Now, a unique solution which minimizes Equation 7.19 can now be determined
with minimal vehicle motion since the solutions for the components of ni are
constrained to be integers. The loss function in Equation 7.18 involves a scalar
check on the norm vector residuals. The remaining integers that have passed the
inequality condition in Equation (7.16) are checked and the integer set which
minimizes the loss function for each signal is chosen.

In order to secure that the ambiguity solution we have found is the correct one,
an integrety check must be performed. This is done by calculating the estimate
error covariance:

Pi =

{
L∑
k=1

4

σ2
i (k)

[Φi(k)− ni] [Φi(k)− ni]
T

}−1

(7.20)

The ambiguity solution for each signal is accepted when the square root of every
diagonal element is real and less than some threshold, ζ:√

Pkk|k=1,2,3 < ζ (7.21)

The filter specific design parameter is chosen ζ = 0.1. This check makes sure
that any false ambiguity solutions are disregarded.
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Figure 7.4: This figure shows the integer ambiguity error, delta phi and the
integrity check value, respectively, simulated for a GPS signal which arbitrarily
chosen out of the GPS SVs visible to the test satellite. The GPS attitude data
(delta phi) are updated every 5 seconds. It was necessary to include the integrity
check in order to reject false solutions in the fast integer ambiguity resolution
method.

69



7.1.5 Time Measurements
There are two main categories of time measurements to be aware of when es-
timating the attitude of a spacecraft. It is for once necessary to measure the
time intervals between events, such as the length of time a sensor sees the Sun.
Second, there are absolute times of specific events such as at which calendar
time did some particular spacecraft sensing occur [35]. The uniformly adopted
solution to the fact that time zones are different throughout the world is to use
the local time corresponding to 0 degrees longitude, such as Coordinated Uni-
versal Time (UTC) or Greenwich Mean Time (GMT), as the standard absolute
time for events anywhere in the world or in space.
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Chapter 8

Kalman Filter Design

The Kalman Filter is a recursive algorithm which produces statistically optimal
estimates of unknown variables based on a series of noisy measurements observed
over time, under the assumption of Gaussian white noise on the measurements,
and that a linear observable system is available. These estimates are normally
more precise than estimates based on single measurements, and by using a
Kalman filter we can obtain a heuristic approximation of the optimal estimate
of the spacecraft attitude.

However, the strapdown inertial navigation equations are nonlinear. It is there-
fore desirable to utilize a nonlinear version of the Kalman filter, known as the
Extended Kalman Filter. The EKF solves nonlinear problems by linearizing
the nonlinear system about its currently best estimate and, based on past mea-
surements and the available dynamic model of the spacecraft, it can be used
to produce position, velocity, and attitude estimates. The EKF has become a
widely used filter in control systems in general, and for his work on co-invention
and development of the Kalman filter, U.S. President Barack Obama awarded
Rudolf E. Kálmán with the National Medal of Science on October 7, 2009.

Stability and convergence of the Extended Kalman Filter was proved by Jouf-
froy and Fossen (2010), under the assumption of a lower and upper bounded
covariance matrix.

8.1 Multiplicative Extended Kalman Filter (MEKF)
As outlined in this thesis, an attitude aiding sensor approach is implemented,
and a dynamic model of an inertial measurement unit is incorporated in the
Kalman filter to combine the GPS, gyro, and magnetometer attitude informa-
tion. Because the rigid body dynamics of a spacecraft is of predictable charac-
ter, this deterministic information about the vehicle dynamics is used to smooth
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the GPS attitude solution during degraded transmitter visibility or GPS-signal
drop-out.

The Multiplicative EKF is a version of the EKF which has been used on board
several NASA spacecraft for attitude estimation, for the first time in the Space
Precision Attitude Reference System (SPARS) in 1969 [6], and has been dis-
cussed in details in References [15] and [17]. The MEKF solves the singluar
covariance matrix problem that arises due to the constraints on the quaternions
(see Subchapter 3.2.2) by reducing the dimension of the covariance matrix. A
dilemma which is faced by the Kalman filter is namely that it uses an atti-
tude representation that is either singular (by using a minimal three-parameter
representation such as Euler angles and Rodrigues parameters) or redundant
(e.g. using the four-dimensional quaternion). One of the ways to implement an
extended Kalman filter and a preferred strategy to avoid this dilemma of repre-
sentation singularities is using a correctly normalized four-component globally
non-singular representation for a reference attitude and a three-parameter set,
δε, to represent the deviations from this reference. It is computed as an uncon-
strained estimate of the three-component [19]. The attitude is here represented
as the quaternion product:

q = qref ⊗ δq(δε), (8.1)

where qref is some unit reference quaternion, a correctly normalized four-
component vector which provides a globally non-singular attitude representa-
tion. The unit quaternion δq(δε) represents the rotation from qref to the true
attitude q , and the rotation is parameterised by δε, a three-parameter vec-
tor representing the deviations from the reference. Furthermore, if δε can be
estimated as δε̂ = E{δε} of δε, it results from Eq. 8.1 that:

qref ⊗ δq(δε̂) = q̂, (8.2)

the corresponding estimate of the true attitude quaternion q. For the MEKF
this estimate of the true quaternion is the same as qref , the reference quaternion
(the reference quaternion is the best estimate of the true quaternion). This
technique chooses the reference quaternion qref such that δε̂ is identically to
zero, δq(0) being the identity quaternion. By choosing δε indentically zero,
any singluarity or discontinuity of the three-component representation of δε is
avoided and the redundancy in the attitude representation is removed:

q̂ = qref (8.3)

resulting in the product

q = q̂⊗ δq(δε)

where q̂ is the unit estimated quaternion, δε−1 = −δε, and:

δq(δε) =

[ √
1− δεT δε
δε

]
(8.4)
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Design matrices Qk = E[wkw
T
k ] = cov(wk) ≈ σ2

wk

Rk = E[vkv
T
k ] = cov(vk) ≈ σ2

vk
I

Initial conditions
x̄0 = x0

P̄0 = P0 = E[(x0 − x̂0)(x0 − x̂0)T ]

b̂ = q0

Kalman gain matrix
State estimate update
Error covariance update

Hk = ∂hk

∂xk
|xk=x̄k

Kk = P̄kH
T
k [HkP̄kH

T
k + Rk]−1

x̂k = x̄k + Kk[y − h(x̄k)]

P̂k = [I−KkHk]P̄k[I−KkHk]T + KkRkK
T
k

Move error q̂k = q̂k−1 ⊗ δq(δε̂k)
δε̂k = 0

State estimation propagation
Error covariance propagation

Φk = ∂fk
∂xk
|xk=x̂k

x̄k+1 = fk(x̂k,uk)

P̄k+1 = ΦkP̂kΦTk + ΓkQkΓTk

Table 8.1: Discrete Multiplicative Extended Kalman Filter

where we here choose to denote
√

1− δεT δε = δη, giving the resulting attitude
error representation:

δq(δε) =

[
δη
δε

]
(8.5)

This provides a consistent treatment of the attitude error statistics, with the
covariance of the attitude error angles in the body frame (in radians squared)
represented by the covariance of δε [18]. The fundamental conceptual advantage
of the MEKF is that qref = q̂ is a unit quaternion by definition, and therefore
the three-vector δε will never approach a singularity [19]. Note that the refer-
ence quternion in the MEKF is not considered a random variable, and that its
estimate is not an expectation.

Theory and evaluation of the multiplicative EKF is found in various sources,
e.g. [6] and [16] - [19].

8.1.1 States of the Multiplicative EKF
The model of the MEKF is written:

ẋ = f(x,u) =
[
δε̇T ḃTg ȧ Ṁ i̇ Ω̇

]T
(8.6)

xk+1 = fk(xk,uk) + Γwk (8.7)

yk = hk(xk) + vk (8.8)
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where v and w are Gaussian white noise. Furthermore, we choose the state
variables:

x =
[
δωT bTg a M i Ω

]T (8.9)

and the measurements:

y =
[

(mb)T 4rT (ri)T (vi)T
]T (8.10)

8.1.2 Attitude Model
From Equation (8.1) we find the atttude representative [20]:

δq = q̂−1 ⊗ q (8.11)

Differentiating Equation (8.11) with respect to time yields

δq̇ =

[
δη̇
δε̇

]
= q̂−1 ⊗ q̇

=
1

2
q̂−1 ⊗ q⊗

[
0
ωbb/i

]
=

1

2
δq⊗

[
0
ωbb/i

]
=

1

2
Ω(ωbb/o)δq

=
1

2

[
0 −(ωbb/i)

T

ωbb/o −S(ωbb/i)

] [
δη
δε

]
(8.12)

This gives the following vector part:

δε̇ =
1

2

[
ωbb/iδη − S(ωbb/i)δε

]
=

1

2
[I3×3δη + S(δε)]ωbb/i (8.13)

And the gyro bias derivative:
ḃg = 03×1 (8.14)

Remark: The rotation has been implemented in Matlab representing the at-
titude from body to ECI. Subsequently multiplying q with qorbit will give the
attitude represented from body to orbit, where qorbit is the rotation from the
ECI frame to the orbit frame.
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8.1.3 Orbit Model
The orbit states xorbit subset is:

ẋorbit =
[

0 norbit 0 0
]T
, (8.15)

where norbit is the orbit mean motion:

norbit =

√
GM

a3
(8.16)

8.1.4 Measurement Equation
Assuming that the ambiguities are already resolved and recalling that only L1

is used, the measurement vector, Eq. (8.8) now becomes:

4rij =



4r11

...
4r1j

...
4rij

 (8.17)

=
[
4r11 ... 4rij

]T (8.18)

for i satellite observations. Furthermore, we get:

hk(x) =



mb

4rk11

...
4rk1j

...
4rkij

re

ve


(8.19)

where:

me is the magnetometer measurement in ECEF coordinates:

mb = Rb
b̂
(δε−1)Rb̂

i (q̂
−1)Ri

em
e (8.20)

= (I3×3 + 2S(δε−1))Rb̂
i (q̂
−1)Ri

em
e (8.21)

r is the position vector of the NUTS spacecraft,
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v is the velocity of the spacecraft and:

4rkij = lTi Re
b(qk)bbj (8.22)

Now the linearized observation matrix Hk becomes:

Hk =



∂(mb)
∂xT

∂(4rk11)
∂xT

...
∂(4rki1)
∂xT

...
∂(4rkij)
∂xT

∂(rek)
∂xT

∂(ve
k)

∂xT


(8.23)

The lever arm is 0,125 m., which does not exceed the precision of the GPS
measurement. The position and velocity contributions of the lever arm may
therefore be neglected, and the linearized orbital parameter measurement sen-
sitivity matrices become:

∂(re)

∂xT
= Rei

∂(ri)

∂xT
=
[

03×3 03×3
∂(ri)
∂a

∂(ri)
∂M

∂(ri)
∂i

∂(ri)
∂Ω

]
(8.24)

∂(ve)

∂xT
= Rei

∂(vi)

∂xT
=
[

03×3 03×3
∂(vi)
∂a

∂(vi)
∂M

∂(vi)
∂i

∂(vi)
∂Ω

]
(8.25)

∂(ri)

∂a
=

 cos(Ω)cos(M)− sin(Ω)sin(M)cos(i)
sin(Ω)cos(M) + cos(Ω)sin(M)cos(i)

sin(M)sin(i)

 (8.26)

∂(vi)

∂a
=


√

GM
a

2a cos(Ω)sin(M) + sin(Ω)cos(M)cos(i)√
GM
a

2a sin(Ω)sin(M)− cos(Ω)cos(M)cos(i)

−
√

GM
a

2a cos(M)sin(i)

 (8.27)

∂(ri)

∂M
=

 −a(cos(Ω)sin(M) + sin(Ω)cos(M)cos(i))
−a(sin(Ω)sin(M)− cos(Ω)cos(M)cos(i))

a(cos(M)sin(i))

 (8.28)

∂(vi)

∂M
=


−
√

GM
a (cos(Ω)cos(M)− sin(Ω)sin(M)cos(i))

−
√

GM
a (sin(Ω)cos(M) + cos(Ω)sin(M)cos(i))

−
√

GM
a (sin(M)sin(i))

 (8.29)
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∂(ri)

∂i
=

 a(sin(Ω)sin(M)sin(i))
−a(cos(Ω)sin(M)sin(i))

a(sin(M)cos(i))

 (8.30)

∂(vi)

∂i
=


√

GM
a (sin(Ω)cos(M)sin(i))

−
√

GM
a (cos(Ω)cos(M)sin(i))√
GM
a (cos(M)cos(i))

 (8.31)

∂(ri)

∂Ω
=

 −a(sin(Ω)cos(M) + cos(Ω)sin(M)cos(i))
a(cos(Ω)cos(M)− sin(Ω)sin(M)cos(i))

0

 (8.32)

∂(vi)

∂Ω
=


√

GM
a (sin(Ω)sin(M)− cos(Ω)cos(M)cos(i))

−
√

GM
a (cos(Ω)sin(M) + sin(Ω)cos(M)cos(i))

0

 (8.33)

∂(4rkij)
∂xT can be found from the relationship:

∂(4rkij)
∂xT

=
[

∂(4rkij)
∂(δεT )

03×9

]
(8.34)

4rk,ij = lTk,iR
e
iR

i
b(qk)bbj

= lTk,iR
e
iR

i
b̂
(q̂k)Rb̂

b(δεk)bbj

= lTk,iR
e
iR

i
b̂
(q̂k)(I3×3 + 2S(δεk))bbj (8.35)

∂4rkij

∂(δεT )
= −2

∂(lTkiR
e
iR

i
e(q̂k)S(bb)δεk)

∂(δεT )

= −2lTkiR
e
iR

i
b(q̂k)S(bb) (8.36)

The linearized magnetometer observation matrix becomes:

∂(mb)

∂(xT )
=
[

∂(mb)
∂(δεT )

03×9

]
(8.37)

where:
∂(mb)

∂(δεT )
= 2S(Rb̂

i (q̂
−1)Ri

em
e) (8.38)
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8.1.5 Linearized Propagation Matrix
The linearized propagation matrix becomes:

Φ = I10×10 + h
∂f

∂xT
=


∂(δε̇)
∂(δε)

∂(δε̇)
∂(δbg) 03×4

03×3 03×3 03×4

04×3 04×3
∂ẋorbit

∂xorbit

 (8.39)

where:
∂(δε̇)

∂(δε)
= −1

2
(S(ωbimu − b̂g)) (8.40)

∂(δε̇)

∂(δbg)
= −1

2
I3×3 (8.41)

∂ẋorbit
∂xorbit

=


0

− 3
2

√
GM
a5

0
0

04×3

 . (8.42)
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Chapter 9

Simulator

The equations of motion and kinematics of the satellite are implemented in
Simulink, as are the orbit dynamics. This generates position, velocity, and
attitude data, which are used to simulate sensor measurements.

9.1 Simulation of the Spacecraft in Low Earth
Orbit

Figure 9.1: Satellite subsystem

9.1.1 Attitude
The satellite simulation subsystem shown in Figure 9.1 accepts a vector of
torques, calculates and integrates the angular accelerations to give the angu-
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lar velocity. The angular velocity is then used in the quaternion differential
equation, which is subsequently integrated to give the attitude quaternion.

9.1.2 Orbit
The chosen Keplerian orbital elements with disturbances are propagated and
then transformed into velocity and position data, using Equations (4.3 - 4.8).

9.2 Simulated Instrumentation

9.2.1 Gyro

Figure 9.2: Gyro subsystem

The gyro subsystem accepts the actual angular velocity of the spacecraft, and
adds error terms due to gyro bias, scale factor, misalignment angles, and mea-
surement noise. These terms are modelled according to Equation (5.2).
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9.2.2 Magnetometer

Figure 9.3: Magnetometer subsystem

The magnetometer subsystem simulates the local magnetic field vector measure-
ment at the current position of the spacecraft. It accepts the actual position
and attitude of the spacecraft, from which it calculates the local magnetic field
vector using the IGRF model, and rotates it to the body frame. It then adds a
local magnetic disturbance and measurement noise using Equation (5.13).
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9.2.3 GPS Position and Velocity

Figure 9.4: GPS position and velocity subsystem

The GPS subsystem takes in actual position and velocity. It then adds mea-
surement noise, and the contribution from the GPS lever arm. Also generated
is a signal that is true when a new measurement is made, and false otherwise.
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9.2.4 GPS Attitude

Figure 9.5: GPS attitude subsystem

The GPS attitude subsystem must simulate a number of measurements. Most
important are the phase difference measurements, 4φ , but the subsystem must
also provide the positions and unique identifiers of the GPS Space Vehicles which
are used to obtain the respective 4φ measurements. To do this, the orbits of
the GPS SVs are retrieved from a GPS YUMA almanac. The GPS SVs orbits
are then simulated in the same manner as in the satellite subsystem to provide
the positions of the GPS SVs. Then the visibility of each GPS SV with respect
to the test satellite is evaluated, and only the position of the visible GPS SVs
are used to simulate 4φ measurements.

The 4φ measurements are now simulated by rotating the matrix of baseline
vectors to the ECEF frame by using the actual attitude, and then multiplying
the transposed matrix of line-of-sight vectors with the matrix of baseline vectors
in the ECEF frame, to obtain the delta range matrix,4r . 4r is then divided by
the wavelength of the GPS L1 signal, giving the range difference in wavelengths.
The fractional part, 4φ , is then found by subtracting the closest integer from
the range difference.

Also generated is a signal that is true when a new measurement is made, and
false otherwise.
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Part III

Results
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Chapter 10

Simulation Results

The filter was first simulated without any prior information, i.e. no initial values.
The filter is then required to estimate the initial values based on the first set
of measurements. The integer ambiguities must be resolved before the attitude
solution can be obtained, a process which takes several samples. The filter
therefore has to wait until the ambiguities are found, upon which it converges
to the actual attitude.

The filter was then simulated given initial attitude values close to the actual
attitude. Resolution of integer ambiguities must still be done, during which time
the attitude estimates drift off due to the unknown gyro bias. This approach
gave slightly better results.

Then the filter was tuned, and subsequently simulated under the conditions of
no prior information. The new tuning parameters gave better results concerning
initial attitude estimates and convergence of the filter.

The filter was also simulated with GPS outage, through which the attitude
estimates stayed close to the actual values. The filter was robust to the attitude
maneuvers which were performed.

Lastly, orbit simulations were performed for a perfectly circular orbit, as well as
for a slightly elliptic orbit, e = 0.0001. Both simulations were performed with
and without GPS outage.

Attitude maneuvers were performed for all simulations. The observations are
described in the figures in this Chapter.
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10.1 Attitude

No Initial Values

Figure 10.1: Here we see the quaternion attitude estimates with noise and no
initial values. The filter converges to the correct attitude with some overshoot.
After 140 seconds an attitude maneuver is simulated, applying torque of 0.01
Nm about the body y-axis for one second.86



Figure 10.2: We see that the large error in the estimated initial values causes
wind-up in the gyro bias during the first 40 seconds. This wind-up causes the
attitude overshoot seen in Figure 10.1.

87



Figure 10.3: The angular velocity estimate converges to the actual angular
velocity when the wind-up in gyro bias dissipates. We can also see how the
attitude maneuver after 140 seconds gives a rise in angular velocity and no rise
in the angular velocity error. The filter is able to follow the maneuver.
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Figure 10.4: The integer ambiguity resolution for a single GPS signal. The
correct integer ambiguity solution is found and kept locked through integer
changes due to delta phi crossing 0.5 or -0.5. The solution for a signal is not
accepted until the integrity check value for all baselines is below the acceptance
threshold ζ , which was set to 0.1.
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Good Initial Values

Figure 10.5: Until the ambiguities are resolved, the filter is reliant upon the
gyro measurement and the magnetometer. The magnetometer measurement
gives one vector, about which axis the attitude estimate can still rotate freely
and must therefore rely on gyro measurement. Gyro bias makes the estimates
drift away from the correct attitude. When the ambiguities are resolved, the
attitude estimate converges to the correct attitude. After 60 seconds we can
observe the effect of the applied torque of 0.01 Nm.
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Figure 10.6: We can still see some wind-up but once the integer ambiguities are
resolved and the correct attitude is found, the gyro bias estimate converges.
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Figure 10.7: The more rapid swing-in of the gyro bias results in a faster con-
vergence of the angular velocity estimates.
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10.1.1 No Initial Values and Better Tuning

Figure 10.8: Attitude quaternion. The Multiplicative EKF is subject to exten-
sive tuning of filter parameters. The filter parameters were tuned and another
simulation was performed. Here we have better tuning and the filter finds a bet-
ter initial value and converges to the correct attitude with less overshoot. There
are three step changes in estimated quaternion, one between 10 and 15 seconds
and two between 50 and 60 seconds. This is because the sign of the quaternion
in this graph is defined such that the sign of the estimated η follows the sign
of the actual η , which crosses zero at these points. These step changes do not
affect the actual attitude error, as seen in the lower graph. This is because the
quaternion +q represents the same rotation as -q. An attitude maneuver is
simulated for one second at 60 seconds, and for 100 seconds between 100-200
seconds, applying a torqe about all axis.
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Figure 10.9: A slowly time varying gyro bias is simulated. We see the same
wind-up during swing-in but of significantly smaller character than Figures 10.2
and 10.6.
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Figure 10.10: When the gyro bias is determined with sufficient accuracy, the
angular velocity estimates follows the actual values well. The high frequency
noise can be filtered out to improve the estimates. We can also see the attitude
maneuvers at 60 seconds and 100-200 seconds.
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10.1.2 No Initial Values, Better Tuning, and GPS Outage

Figure 10.11: GPS outage for both attitude, velocity and position data was
simulated from 50 to 150 seconds. We see the estimates stay close to the ac-
tual values through the attitude maneuvers. At 150 seconds the GPS data are
available and the ambiguities must be resolved again.
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Figure 10.12: The gyro bias estimates stay close to the actual value through
the GPS outage and attitude maneuvers. When the GPS data return, the
ambiguities are reset and the gyro bias experiences wind-up.
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Figure 10.13: Due to the good gyro bias estimates the angular velocity estimates
stay close to the actual value.
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10.1.2.1 Fast Integer Ambiguity Resolution with GPS Outage

Figure 10.14: When GPS data return, the integer ambiguity resolution must be
reset due to loss of lock of the ambiguity solution.
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10.2 Orbit Simulation Results

10.2.1 Circular Orbit

Figure 10.15: The estimate of semi-major axis, a, has a large initial error due to
its sensitivity to errors in the velocity and position measurements. It converges
step-wise to its actual value. The steps are due to the sampling time of the
velocity and position measurements, which is set to 3 seconds for this simulation.

100



Figure 10.16: The mean anomaly, M , has a very small initial error and this
error stays small, of the order 10−5 , throughout the simulation.

Figure 10.17: Similarly for the estimation of inclination, i, the error is very
small, of the order 10−4 , throughout the simulation.

101



Figure 10.18: The Right Ascension of the Ascending Node, Ω , has a very
small initial error and this error stays small, of the order 10−5 , throughout the
simulation.

Figure 10.19: The velocity estimates for a circular orbit has a small initial error
and the error stays small throughout the simulation period, in the range of 1

2
m
s

whereas the estimates are in the order of several kms .
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Figure 10.20: The position estimate is dependent on the orbital parameters,
and due to the large error in initial value of a , the position estimate also has a
large error in its simulated initial value. When a converges, so does the position
estimate.

10.2.1.1 Circular Orbit with GPS Outage

Figure 10.21: The filter keeps the estimated velocity error small during the
outage.
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Figure 10.22: The filter ensures that also the estimated position error is kept
small during the outage.

10.2.2 Elliptic Orbit, e = 0.0001

Figure 10.23: For a slightly elliptic orbit, we see that the estimated semi-major
axis, a , starts out with a large initial error. Due to the circular orbit assumption
in the model the estimated a does not converge to the actual value of a quickly,
if at all.
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Figure 10.24: The mean anomaly estimate has a small steady-state error due to
the eccentricity of the orbit, e 6= 0 .

Figure 10.25: The estimate of i also inherits a small steady-state error due to
the eccentricity.
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Figure 10.26: A small steady-state error is observed also in the estimate of the
Right Ascension of the Ascending Node, Ω.

Figure 10.27: The velocity estimates are also subject to the steady-state error
as they are functions of the Keplerian orbital elements.
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Figure 10.28: Position estimates are highly dependent on the estimate of the
semi-major axis, a , therefore it inherits the large initial error. After converging
to the actual values, the position estimates are highly dependent on continuous
GPS position updates to keep the estimates close to the actual value.
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10.2.2.1 Elliptic Orbit with GPS Outage

Figure 10.29: For this eccentricity, the velocity estimates do not suffer greatly
from the GPS outage, as the estimator can rely on the mathematical model of
the orbit.

Figure 10.30: The circular orbit assumption causes the position estimates to
diverge from the actual value in the absence of continuous GPS updates when
the orbit is eccentric.
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Part IV

Closing remarks
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Chapter 11

Conclusions

11.1 Discussion and Recommendations for Fur-
ther Work

A Multiplicative Extended Kalman Filter was developed in this thesis for the
purpose of orbit and attitude estimation. The filter was developed in a tightly
coupled manner with respect to the GPS attitude solution, and complemented
by a fast integer ambiguity resolution method. The orbit estimator is also
included in this design. Howeer, the MEKF now operates as an ordinary EKF,
inherent in the MEKF.

The MEKF serves as a very robust filter for attitude estimation. It can com-
bine measurements from multiple sensors in multiple reference frames, and it is
also fairly robust with respect to modelling errors. Another important remark
regarding the MEKF is its performance with respect to tuning of the filter pa-
rameters. The process of tuning the parameters of a (Multiplicative) Extended
Kalman Filter may not be intuitive, and this task can be time consuming. A
poorly tuned filter can cause overshoot and inaccuracy, or even instability. This
is shown in the results where the filter was simulated using two different sets of
tuning parameters.

It should also be noted that the MEKF is a computationally intensive algorithm,
as several matrix multiplications are performed. A countermeasure to this can
be found by noting that although the attitude estimator is reliant upon data
from the orbit estimator, the two estimators are not directly reliant on each
other computationally. Therefore an implementation of the estimators on a mi-
crocontroller in a small satellite could be split into a separate orbit estimator
of dimension 4× 4 (6× 6 for an elliptic estimator) and a separate attitude esti-
mator of dimension 6× 6 , to reduce computational demands from the current
10 × 10 dimensioned MEKF/EKF. Alternatively, and perhaps more advanta-
geously, the attitude estimator could be implemented as a nonlinear observer,
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such as the semiglobal stability proven nonlinear observer design presented by
Grip, Fossen, Johansen and Saberi (2012). The results from this work also
proves convergence for all initial attitudes. Based on Vandersteen, Diehl, Aerts,
and Swevers (2011), it is also concluded that optimization-based moving horizon
state estimation (MHE) could be further investigated.

The usefulness of the circular orbit estimator design can be questioned, since
it is accurate only for circular orbits. The actual orbit will never be perfectly
circular, and from Figures 10.29 and 10.30 we can see that for eccentric orbits,
frequent GPS updates are necessary in order to keep the position estimates close
to the actual position. The required frequency of these updates is dependent on
the degree of necessity of situational awareness in terms of position and veloc-
ity estimates, as well as on the required precision. If the NTNU Test Satellite
project is able to expand its downlink infrastructure on ground through for
example Kongsberg Satellite Services at Svalbard, as well as through global am-
ateur satellite networks such as GENSO, this could open up for more advanced
payloads and scientific experiments. It could then become a requirement that
the GPS position and velocity engineering function should always be switched
on during flight, meaning that it also should be switched on when the space-
craft is in the Earth shadow. It is therefore necessary to perform an analyses of
the power consumption of spaceborne GPS receivers followed by a selection of
hardware based on these analysis. The GPS receiver design could preferrably
be carried out as a thesis assigment in order to optimize the project outcome
in terms of educational benefits. However, an elliptic orbit estimator would
require less frequent GPS velocity and position updates in order to maintain
satisfactory estimates, and the circular orbit estimator design should therefore
be expanded to an elliptic orbit estimator design.

A potential source of error to the design in this thesis is the length of the
baselines. Longer baselines would reduce the effect of noise in the phase mea-
surements on the attitude solution, and examining the effect of baseline length
on the accuracy of the attitude estimates should be done in future work.

The integer ambiguity resolution could be improved by adding gyro -and mag-
netometer support to improve the performance of the fast integer ambiguity
resolution in terms of robustness and speed of convergence. Gyro- and magne-
tometer support and the current attitude estimate could also be used to improve
reacquisition after loss of lock due to GPS outage.

Another source of error is the uncertainties of the Gauss coefficients in the IGRF
model, which can be estimated. The uncertainties in the IGRF model arise do
the complicated dynamic nature of the geomagnetic field, a property which is
particularly dominant over the polar regions of the Earth, where the field is
highly dynamic. Induced residual magnetic fields within the spacecraft hard-
ware could become a problem, causing the electronics to behave in undesirable
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ways. The assumption regarding the magnetometer mesurements, that no resid-
ual magnetic field from the magnetic torquers would become significant, may
become invalid. It could be useful to map the dynamic magnetic signature of
the spacecraft.

The GPS signals could also contain errors which are not taken into account in
this thesis. Of these, known errors are the effect of GPS signal polarization,
antenna phase center variation, vehicle self-reflected multipath, and antenna
structure phase pattern interactions. It could also be useful to replace the
current naive ADOP search method with a more sophisticated way of selecting
the GPS satelitte signals.
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APPENDIX A Matlab Code
Multiplicative Extended Kalman Filter

function [q delta_eps gyro_b orbit pos vel N P_res ...
chosen_sat]= MEKF_ao(gyro, mag, gps_pos, gps_vel,...
gps_sat_pos,gps_delta_phi,new_att, new_posvel,...
sat_indices, init, time)

%-------------------------------------------------------------
% MEKF_ao - Multiplicative Extended Kalman Filter for attitude
% and orbit estimation.
%
% x = [delta_eps gyro_b orbit_a orbit_M orbit_i orbit_RAAN]
% u = [gyro]
% y = [mag delta_r gps_pos gps_vel]
%
% Input Description Unit Frame
% .................................................
% gyro gyro [rad/s] body
% mag magnetometer [nT] body
% gps_pos gps position [m] ecef
% gps_vel gps velocity [m/s] ecef
% gps_delta_phi phase difference [rad] n.a.
%
% Output Description Unit Frame
% ...........................................................
% q quaternion [ ] body_hat to eci
% delta_eps delta epsilon [ ] body to body_hat
% gyro_b gyro bias [rad/s] body
% pos position [m] eci
% vel velocity [m/s] eci
%
% Author: Tale Sundlisæter (based on AP_MEKF.m by Harald
% Nøkland
% Nonlinear Observer Design for GNSS and IMU
% Integration, 2011)
% Date: May 2012
% -------------------------------------------------------------
global filter_ts gps_att_ts gps_ts gps_lever_arm;
global wgs84_GM res_accept ADOP_tol;

n = 10;
% Number of states

h = filter_ts;
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% Sampling interval
global L1_lambda;

% GPS L1 signal wavelength
global baselines;

% Baselines for gps attitude determination
gps_arm = gps_lever_arm;

% GPS lever arm, position of antenna in BODY [m]
nLOS = 4;

% Number of GPS satellites to use for attitude estimation
nBL = size(baselines,2);

% Number of baselines available for attitude estimation

% Double differencing matrix A, fractional and integer parts
dd_A_frac = diag([1/sqrt(2) 1/sqrt(6) 1/sqrt(12)]);
dd_A_int = [1 -1 0 0 ;1 1 -2 0; 1 1 1 -3];
dd_A = dd_A_frac*dd_A_int;

% Design matrices:

% State variances
var_delta_eps = [1e-4 1e-4 1e-4]; % Gyro variance
var_gyro_b = [1e-5 1e-5 1e-5]; % Gyro bias variance

var_a = 5;
% Semimajor axis a variance

var_M = 1e-5;
% Mean anomaly M variance

var_i = 1e-5;
% Inclination i variance

var_RAAN = 1e-5;
% Right ascencion of the ascending node RAAN variance

var_orbit = [var_a var_M var_i var_RAAN];
% Orbit parameter variance

process = [var_delta_eps var_gyro_b var_orbit];
Q = diag(process); % Process noise

% Measurement variances
var_mag = [1e-4 1e-4 1e-4];

% Magnetometer variance [rad]
var_delta_r = (0.0004^2).*ones(1,nBL*nLOS);

% GPS deltarange variance [m]
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var_gps_pos = [5 5 5];
% GPS position variance [m]

var_gps_vel = [1e-1 1e-1 1e-1];
% GPS velocity variance [m]

meas = [var_mag var_delta_r var_gps_pos var_gps_vel];
R = diag(meas); % Measurement noise
% -------------------------------------------------------------

persistent q_hat delta_eps_bar gyro_b_bar orbit_bar P_bar...
N_bar Res resdiag prev_indices init_ADOP last_att_time...
last_posvel_time;

if(init == 1)
% First run, set up initial values, initialize integer
% ambiguity resolution and choose GPS SV to use for
% attitude estimation

delta_eps_bar = [0 0 0]’; % Initial delta epsilon
gyro_b_bar = [0 0 0]’; % Initial gyro bias

% Find rotation from ecef to eci
R_ecef2eci = ecef2eci(time);

% Convert GPS position and velocity to ECI
pos_bar = R_ecef2eci*gps_pos;
vel_bar = R_ecef2eci*gps_vel;

% Find magnetic field reference vector from IGRF
pos_sphere = cart2sphere(pos_bar);

% = [radius, elevation, azimuth]
IGRF_sphere = igrf11syn(2014, pos_sphere(1),...

pos_sphere(2),pos_sphere(3));
R_sph2ecef = Rsphere2ecef(pos_sphere(2), pos_sphere(3));
mag_bar_ecef = R_sph2ecef*IGRF_sphere;

% Normalize magnetic field reference vector for use in
% q-method
mag_bar_ecef = mag_bar_ecef/norm(mag_bar_ecef);

% Find LOS vectors for all satellites
LOS_all = gps_sat_pos - gps_pos*ones(1,size(gps_sat_pos,2));
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LOS_all = colnormalize(LOS_all);

% Select satellites
[LOS_index init_ADOP] = choose_sat(LOS_all,nLOS);
LOS_bar = LOS_all(:,LOS_index);

prev_indices = sat_indices(LOS_index);

gps_delta_phi = gps_delta_phi(LOS_index,:);

% Resolve integer ambiguities
[N_bar Res] = intambres(gps_delta_phi’,LOS_bar,...
[0 0 0 0],init);

N_bar = N_bar’;

% Find deltaranges and baselines in ECEF
gps_delta_r = L1_lambda*(gps_delta_phi + N_bar);
B_ecef_bar = (LOS_bar*LOS_bar’)\LOS_bar*gps_delta_r;

% Convert GPS position and velocity measurement in
% ECI to Kepler
% orbital elements
[a_bar e_bar M_bar i_bar RAAN_bar w_bar] =...
eci2koeC(pos_bar,vel_bar);

% Assuming circular orbit -> e = 0 and w := 0
orbit_bar = [a_bar M_bar i_bar RAAN_bar]’;

% Find initial attitude from magnetometer and baseline
%measurements using q-method

qm_weighting = [10000 1 1 1];
qm_weighting = qm_weighting/sum(qm_weighting);
q_hat = qmethod(qm_weighting,...

colnormalize([R_ecef2eci*mag_bar_ecef...
R_ecef2eci*B_ecef_bar]),...
colnormalize([mag baselines]));

if(q_hat(1) < 0)
q_hat = -q_hat;
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end

resdiag = zeros(3,4);

last_att_time = time;
last_posvel_time = time;

P_bar = diag([1e-7 1e-7 1e-7 1e-8 1e-8 1e-8 ...
10 1e-3 1e-4 1e-4]); % Initial error covariance

else
% Calculate estimated ECI position from orbit parameters
[pos_bar,vel_bar] = koe2eci(orbit_bar(1),0,orbit_bar(2),...
orbit_bar(3),orbit_bar(4),0);

end

if(new_att == 1 && init == 0)

rechoose = 0;
temp_ind = [0 0 0 0]’;
reset = zeros(1,nLOS);
% Check if chosen satellites are no longer visible
for i = 1:nLOS

ind = find(sat_indices == prev_indices(i), 1);
if(isempty(ind))

rechoose = 1;
break;

end
temp_ind(i) = ind;

end

rechoose = 1;

% % Check if ADOP has degraded
% if(~rechoose)
% LOS_bar = gps_sat_pos(:,temp_ind) -...
% pos_bar*ones(1,nLOS);
% LOS_bar = colnormalize(LOS_bar);
% curr_ADOP = adop(LOS_bar);
% if(curr_ADOP > init_ADOP + ADOP_tol)
% rechoose = 1;
% end
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% end

% If necessary, choose new satellites
if(rechoose)

%LOS vectors
LOS_all = gps_sat_pos -...
pos_bar*ones(1,size(gps_sat_pos,2));
LOS_all = colnormalize(LOS_all);

% Select satellites
[LOS_index init_ADOP] = choose_sat(LOS_all,nLOS);

LOS_bar = LOS_all(:,LOS_index);
new_indices = sat_indices(LOS_index);

% Check for satellite change

for i = 1:nLOS
if(new_indices(i) ~= prev_indices(i))

reset(i) = 1;
end

end
prev_indices = new_indices;
gps_delta_phi = gps_delta_phi(LOS_index,:);

else
gps_delta_phi = gps_delta_phi(temp_ind,:);

end

% Detect outage
if(time > last_att_time + gps_att_ts + filter_ts)

reset = ones(1,nLOS);
end

% Resolve integer ambiguities
[N_bar Res] = intambres(gps_delta_phi’,LOS_bar,reset,init);

N_bar = N_bar’;
%Find delta_r
gps_delta_r = L1_lambda*(gps_delta_phi + N_bar);
last_att_time = time;

end

% Predicted rotation matrices:
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delta_q_bar = qbuild(delta_eps_bar);
R_bar_body2eci = Rquat(qmult(delta_q_bar,q_hat));
R_bar_eci2body = R_bar_body2eci’;

R_ecef2eci = ecef2eci(time);
R_eci2ecef = R_ecef2eci’;

R_bar_ecef2body = R_bar_eci2body*R_ecef2eci;
R_bar_body2ecef = R_bar_ecef2body’;

%Magnetic field reference vector:
pos_sphere = cart2sphere(pos_bar);

% = [radius, elevation, azimuth]
IGRF_sphere = igrf11syn(2014, pos_sphere(1), pos_sphere(2),...
pos_sphere(3));
R_sph2ecef = Rsphere2ecef(pos_sphere(2), pos_sphere(3));
mag_bar_ecef = R_sph2ecef*IGRF_sphere;
mag_bar_body = R_bar_ecef2body*mag_bar_ecef;

if(new_att == 1)
%Predicted delta_r
Delta_r_bar = LOS_bar’*R_bar_body2ecef*baselines;

else
Delta_r_bar = zeros(4,3);
gps_delta_r = zeros(4,3);
LOS_bar = zeros(3,4);

end

%Estimated measurement:
y_bar = [mag_bar_body;

reshape(Delta_r_bar,nLOS*nBL,1);...
pos_bar;...
vel_bar]...

+ [meas_bias_mag(-delta_eps_bar,...
Rquat(qinv(q_hat))*R_ecef2eci*mag_bar_ecef,P_bar);...
meas_bias_dr(delta_eps_bar,baselines,LOS_bar,...
R_eci2ecef*Rquat(q_hat),P_bar);...

[0 0 0]’;...
[0 0 0]’];

% Real measurement:
y = [mag;...

reshape(gps_delta_r,nLOS*nBL,1);...
R_ecef2eci*gps_pos;...
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R_ecef2eci*gps_vel];

% Linearized observation matrix
H1 = [2*Smtrx(R_bar_ecef2body*mag_bar_ecef) zeros(3,7)];
if(new_att == 1)

H2 = [Hdelta_r(R_bar_body2ecef,baselines,LOS_bar)...
zeros(nBL*nLOS,7)];

else
H2 = zeros(nBL*nLOS,10);

end

if(new_posvel == 1)
H3 = [zeros(6) HorbitC(orbit_bar)];

else
H3 = zeros(6,10);

end

H = [H1;H2;H3];

% Kalman gain
K = P_bar’*H’/(H*P_bar*H’ + R);

% Dead-reckoning
if(new_att == 0)

% If there is no new attitude data, do not use
% attitude measurements
K(:,4:4+(nLOS*nBL)-1) = zeros(n,nLOS*nBL);

else
% If there is new attitude data, check the integrity of the
% ambiguity solution before using the measurements
for i = 1:nLOS

% Integer ambiguity solution integrity check:
% If three times the square root of the diagonals of
% the estimate error covariance matrix of the integer
% ambiguity solution is less than res_accept, then the
% solution is accepted and the measurement is used
resdiag(:,i) = 3*sqrt(diag(Res(:,:,i)));
if(any(resdiag(:,i) > res_accept) ||...

any(~isreal(resdiag(:,i))) ||...
any(isinf(resdiag(:,i))))

K(:,4+(i-1)) = 0;
K(:,4+(i-1)+nLOS) = 0;
K(:,4+(i-1)+2*nLOS) = 0;

end
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end
end

if(new_posvel == 0)
% If there is no new position and velocity data, do not
% use the position and velocity measurements
K(:,4+(nBL*nLOS):end) = 0;

end

% Update error state estimate with measurement
delta_eps_hat = delta_eps_bar + K(1:3,:)*(y - y_bar);
gyro_b_hat = gyro_b_bar + K(4:6,:)*(y - y_bar);
if norm(delta_eps_hat)>1, delta_eps_hat =...

0.999*delta_eps_hat/norm(delta_eps_hat); end

% Update orbit state estimate with measurement
orbit_hat = orbit_bar + K(7:10,:)*(y - y_bar);

% Sanity checks on output
orbit_hat(2) = mod(orbit_hat(2),2*pi);

% Mean anomaly defined from 0 to 2*pi
orbit_hat(3) = mod(orbit_hat(3),pi);

% Inclination defined from 0 to pi
orbit_hat(4) = mod(orbit_hat(4),2*pi);

% RAAN defined from 0 to 2*pi

% Calculate position and velocity from estimated orbit
[pos_hat,vel_hat] = koe2eci(orbit_hat(1),0,...

orbit_hat(2),orbit_hat(3),orbit_hat(4),0);

% Output:
dq_hat = qbuild(delta_eps_hat);
q_hat = qmult(q_hat,dq_hat);
q_hat = q_hat/norm(q_hat);
delta_eps = delta_eps_hat;
q = q_hat;
gyro_b = gyro_b_hat;
pos = pos_hat;
vel = vel_hat;
orbit = orbit_hat;
N = N_bar;
P_res = resdiag;
chosen_sat = prev_indices;
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% Reset error quaternion
delta_eps_hat = [0 0 0]’;

% Compute error covariance for updated estimate:
IKH = eye(n) - K*H;
P = IKH*P_bar*IKH’ + K*R*K’;

% Project ahead:
delta_eps_dot = 0.5*(gyro - gyro_b_hat) +...

prop_bias(delta_eps_hat,gyro,gyro_b_hat,P);
gyro_b_dot = [0 0 0]’;
orbit_n_hat = sqrt(wgs84_GM/orbit_hat(1)^3);
orbit_dot = [0 orbit_n_hat 0 0]’;

delta_eps_bar = delta_eps_hat + h*delta_eps_dot;
gyro_b_bar = gyro_b_hat + h*gyro_b_dot;
orbit_bar = orbit_hat + h*orbit_dot;
if norm(delta_eps_bar)>1, delta_eps_bar =...

0.999*delta_eps_bar/norm(delta_eps_bar); end

PHI1 = [-0.5*Smtrx(gyro - gyro_b_hat) -0.5*eye(3) zeros(3,4)];
PHI2 = zeros(3,10);

dM_da = -(3/2)*(wgs84_GM/orbit_hat(1)^5);
PHI3 = [zeros(4,6) [0 dM_da 0 0]’ zeros(4,3)];

PHI = eye(n) + h*[PHI1;PHI2;PHI3];
GAMMA = h*eye(n);
P_bar = PHI*P*PHI’ + GAMMA*Q*GAMMA’;
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Integer Ambiguity Resolution

function [N P] = intambres(delta_phi,LOS,reset,init)

% [N P] = intambres(delta_phi,LOS,reset,init) resolves the
% integer ambiguity problem that rises when calculating
% deltaranges from phasse differences and line-of-sight vectors.
%
% The algorithm is based on the Fast Integer Ambiguity
% Resolution algorithm by Lightsey, Crassidis and Markley in
% which the set of all possible candidates {n1,n2,n3} is first
% reduced by a geometric inequality before searching through the
% remaining candidates.
%
% Inputs:
% delta_phi: nBL x nLOS matrix of phase differences
% LOS: 3 x nLOS matrix of column LOS vectors
% reset: 1 x nLOS boolean vector. If element i is true,
% the integer ambiguity solution for LOS i is
% reset
% init: initialization boolean, set to true (or 1) for
% the first run, false (or 0) otherwise
%
% Outputs:
% N: nBL x nLOS integer matrix solving the ambiguity
% problem
% P: nBL x nBL x nLOS error covariance matrix used
%
% Author: Tale Sundlisæter (Based on Fast Integer Ambiguity
% Resolution for GPS Attitude Determination by
% Lightsey, Crassidis & Markley, 1999.)
% Date: May 2012
% ___________________________________________________________
%
% Copyright (C) 2012 Tale Sundlisæter
%
% This program is free software: you can redistribute it
% and/or modify it under the terms of the GNU General Public
% License as published by the Free Software Foundation,
% either version 3 of the License, or (at your option) any
% later version.
%
% This program is distributed in the hope that it will be
% useful, but WITHOUT ANY WARRANTY; without even the

123



% implied warranty of MERCHANTABILITY or FITNESS FOR A
% PARTICULAR PURPOSE. See the GNU General Public License
% for more details.
%
% You should have received a copy of the GNU General Public
% License along with this program. If not, see
% <http://www.gnu.org/licenses/>.
%
% E-mail: tale.sundlisater@gmail.com

persistent N_candidates candycount J P_inv prev_index;
persistent delta_phi_prev Gamma B B_inv B_inv_cubed GBG;

global baselines L1_lambda;

% Baselines given in wavelengths
b1 = baselines(:,1)/L1_lambda;
b2 = baselines(:,2)/L1_lambda;
b3 = baselines(:,3)/L1_lambda;

% Precompute for speed
sqnorm_b1 = norm(b1)^2;
sqnorm_b2 = norm(b2)^2;
sqnorm_b3 = norm(b3)^2;
b1b2 = dot(b1,b2);
b1b3 = dot(b1,b3);
b2b3 = dot(b2,b3);
upper = floor(norm(b1));
lower = -floor(norm(b1));

%measurement noise
w_ij = 0.0004/L1_lambda; %[wavelengths] typical phase noise

nLOS = size(LOS,2);
nBL = 3;

if(init)
% First run, preallocate and initialize,
% set reset to all true
N_candidates = -inf.*ones(3,nLOS,(upper-lower+1)^3);
J = inf.*ones(nLOS,(upper-lower+1)^3);
P_inv = inf.*ones(3,3,nLOS,(upper-lower+1)^3);
candycount = zeros(nLOS,3);
delta_phi_prev = inf*ones(3, nLOS);
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reset = ones(1,nLOS);
Gamma = (w_ij^-2).*[b1 b2 b3];
B = (w_ij^-2).*(b1*b1’+b2*b2’+b3*b3’);
B_inv = inv(B);
B_inv_cubed = B_inv * B_inv * B_inv;
GBG = Gamma’*B_inv_cubed*Gamma;

else
% Subsequent runs, check delta_phi to detect integer
% crossings, to keep
% the solution locked
for j = 1:nLOS

for i = 1:nBL
if(delta_phi(i, j) - delta_phi_prev(i, j) > 0.6)

% Integer crossing downwards
if(N_candidates(i,j,prev_index(j)) > lower)
% if previous integer is above the lowest
% possible, decrement it

N_candidates(i,j,prev_index(j)) =...
N_candidates(i,j,prev_index(j)) - 1;

else
% else, loop around to highest
N_candidates(i,j,prev_index(j)) = upper;

end
elseif(delta_phi(i,j) - delta_phi_prev(i,j) < -0.6)

% Integer crossing upwards
if(N_candidates(i,j,prev_index(j)) < upper)
% if current integer is below the lowest
% possible, increment it

N_candidates(i,j,prev_index(j)) =...
N_candidates(i,j,prev_index(j)) + 1;

else
% else, loop around to lowest
N_candidates(i,j,prev_index(j)) = lower;

end
end

end
end

end

% Check each GPS signal seperately
for j = 1:nLOS

% Check if the signal has been reset
if(reset(j))
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% The signal has been reset and we must find a new
% ambiguity solution {n1j,n2j,n3j}. First we reduce
% the search space by using a geometric inequality
% that must be satisfied for a candidate
% solution {n1j,n2j,n3j} to be accepted.

% Reset ambiguity solution for signal j
N_candidates(:,j,:) = -inf;
J(j,:) = inf;
P_inv(:,:,j,:) = inf;
candycount(j,:) = 0;

% Preallocate candidate storage 1 for speed
N_temp1 = -inf.*(ones(2, (upper-lower+1)^2));

% Search through n1 and n2
for N1=lower:upper,

for N2=lower:upper,

% Check geometric inequality to accept
% or reject current n1 and n2
if(sqnorm_b1*sqnorm_b2 > (b1b2^2 +...

sqnorm_b2*(delta_phi(1,j) + N1)^2 ...
- 2*(delta_phi(1,j)...
+ N1)*(delta_phi(2,j) + N2)*(b1b2) ...
+ sqnorm_b1*(delta_phi(2,j) + N2)^2))

% n1 and n2 accepted as candidates,
% increment candidate
% counter, add n1 and n2 to accepted
% candidates
candycount(j,1) = candycount(j,1) + 1;
N_temp1(:,candycount(j,1)) = [N1 N2]’;

end
end

end

% Preallocate candidate storage 2 for speed
N_temp2 = -inf.*(ones(3,...

candycount(j,1)*(upper-lower+1)));

% Iterate through accepted n1,n2 pairs to find matching
% n3 candidates
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for iter = 1:candycount(j,1)

N1 = N_temp1(1,iter);
N2 = N_temp1(2,iter);

if(N1 == -inf)
% If n1 is -inf we have searched through
% all candidates
break;

end

% Search for n3 candidates for the current n1 and n2
for N3=lower:upper,

% Check geometric inequality to accept or
% reject current n3
if(sqnorm_b1*sqnorm_b3 > b1b3^2 +...

sqnorm_b3*(delta_phi(1,j)+ N1)^2 ...
- 2*(delta_phi(1,j) + N1)*...
(delta_phi(3,j)+ N3)*(b1b3) ...
+ sqnorm_b1*(delta_phi(3,j) + N3)^2)

% n3 accepted as candidate, increment
% candidate counter, add n1, n2 and n3
% to accepted candidates
candycount(j,2) = candycount(j,2) + 1;
N_temp2(:,candycount(j,2)) = [N1 N2 N3]’;

end
end

end

% Preallocate candidate storage 3 for speed
N_temp3 = -inf.*(ones(3, candycount(j,2)));

for iter = 1:candycount(j,2)
N1 = N_temp2(1,iter);
N2 = N_temp2(2,iter);
N3 = N_temp2(3,iter);
if(N1 == -inf)

% If n1 is -inf we have searched through
% all candidates
break;

end
% Check geometric inequality to accept or reject
% current candidate set {n1,n2,n3}
if(sqnorm_b2*sqnorm_b3 > b2b3^2 +...
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sqnorm_b3*(delta_phi(2,j) + N2)^2 ...
- 2*(delta_phi(2,j) + N2)*(delta_phi(3,j)...
- N3)*(b2b3) ...
+ sqnorm_b2*(delta_phi(3,j) + N3)^2)

% Candidate set accepted, increment candidate
% counter and add set to candidates
candycount(j,3) = candycount(j,3) + 1;
N_temp3(:,candycount(j,3)) = [N1 N2 N3]’;

end
end
% Truncate candidate storage 3 to remove empty elements
N_temp3 = N_temp3(:,1:candycount(j,3));
% Move candidates to main candidate storage
N_candidates(:,j,1:candycount(j,3)) = N_temp3;

% Reset score for all candidates
J(j,1:candycount(j,3)) = 0;

% Reset estimate error covariances for all candidates
P_inv(:,:,j,1:candycount(j,3)) = 0;

end

% Compute loss function scores and estimate
% error covariances for all candidates
for candy = 1:candycount(j,3)

% Calculate sigma_j^2
sigma_sq = (delta_phi(:,j) + N_candidates...

(:,j,candy))’*GBG*(delta_phi(:,j) +...
N_candidates(:,j,candy)) -...
trace(B_inv)^2;

% Calculate loss function
J(j,candy) = J(j,candy) + 0.5.*((1/sigma_sq)...

*(norm((B_inv)*Gamma*(delta_phi(:,j) +...
N_candidates(:,j,candy)))^2 ...
- norm(LOS(:,j))^2 + trace(B_inv))^2 +...
log(sigma_sq));

% Calculate estimate error covariance P
P_inv(:,:,j,candy) = P_inv(:,:,j,candy) +...

(4/sigma_sq)*(delta_phi(:,j)+N_candidates...
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(:,j,candy))*(delta_phi(:,j)+...
N_candidates(:,j,candy))’;

end
end

% Preallocate outputs
N = inf*ones(3,nLOS);
P = inf*ones(3,3,nLOS);

% Select the best ambiguity solution {n1j,n2j,n3j} for
% each sightline j
for j = 1:nLOS

% Find the candidate that minimizes the loss function
[score index] = min(J(j,1:candycount(j,3)));

% Add the chosen candidate to the output
N(:,j) = N_candidates(:,j,index);

% Add the estimate error covariance matrix to the output
P(:,:,j) = inv(P_inv(:,:,j,index));

% Store the current measurement and solution
delta_phi_prev = delta_phi;
prev_index(j) = index;

end

129



 



Bibliography

[1] Adams, J. C., (2000) Robust GPS Attitude Determination for Spacecraft,
Ph.D thesis, Stanford University, Department of Aeronautics and Astro-
nautics.

[2] Bak, T. (1999) Spacecraft Attitude Determination - a Magnetomoter Ap-
proach, Ph.D Thesis, Aalborg University, Department of Control Engineer-
ing.

[3] Chao, C. C., (2005) Applied Orbit Perturbation and Maintenance, Ameri-
can Institute of Aeronautics and Astronautics, Inc.

[4] Cohen, C. E., (1992) Attitude Determination Using GPS, Ph.D. Disser-
tation, Stanford University, Dept. of Aeronautics and Astronautics, Dec.
1992.

[5] Cohen, C. E., (1996) Attitude Determination, Global Positioning System:
Theory and Applications Volume II, Parkinson, B. W. and Spilker Jr. J.
J., American Institute of Aeronautics and Astronautics Inc.

[6] Crassidis, J. L., Markley, F. L., Cheng, Y. (2007) Survey of Nonlinear
Attitude Estimation Methods, Journal of Guidancy, Control and Dynamics,
Vol. 30, No. 1, January-February 2007.

[7] Ellis, J. F., (1979) Interferometric Attitude Determination with the Global
Positioning System, Journal of Guidance and Control, colume 2, no. 6,
Nov-Dec 1979.

[8] Fossen, T. I. (2011) Handbook of Marine Craft Hydrodynamics and Motion
Control, John Wiley & Sons Ltd.

[9] Ghadaki, F., Alonsoperez, V., Sundlisæter, T., Romano, P., (2011) ISU
Space Studies Programme 2011: Team Project on Small Satellite for Ca-
pacity Building in Space Technology Development, International Astronau-
tical Federation International Astronautical Congress, October 2011.

[10] Grip, H.F., Fossen, T.I., Johansen, T.A., and Saberi, A., (2012) Atti-
tude Estimation Using Biased Gyro and Vector Measurements With Time-
Varying Reference Vectors, IEEE Transactions on Automatic Control, May
2012.

130



[11] Helvajian, H. and Janson, S. W., (2008) Small Satellites: Past, Present
and Future, The Aerospace Press, American Institute of Aeronautics and
Astronautics, Inc.

[12] Jenssen, K. L., Yabar, K., (2011) Development, Norwegian University of
Science and TechnologyImplementation and Testing of Two Attitude Esti-
mation Methods for Cube Satellites, Department of Engineering Cybernet-
ics.

[13] Jouffroy, J. and Fossen, T., (2010) A tutorial on incremental stability anal-
ysis using contraction theory, Modeling, Identification and Control 31(3):
pp 93-106.

[14] Kruczynski, L. R., Evans, A. G. and Hermann, B. R., (1989) Using GPS
to Determine Vehicle Attitude: USS Yorktown Test Results, Proceedings
of the Institute of Navigation ION GPS-89 Conference, Colorado Springs,
CO, Sept. 1989

[15] Lefferts, E. J., Markley, F. L., and Shuster, M. D., (1982) Kalman Filter-
ing for Spacecraft Attitude Estimation, Journal of Guidance, Control and
Dynamics, Vol. 5, No. 5, 1982.

[16] Lightsey, E. G., Markley, F. L., Crassidis, J. L., (1999) Fast Integer Am-
biguity Resolution for GPS Attitude Determination, American Institute of
Aeronautics and Astronautics, Inc.

[17] Markley, F. L., (2003) Attitude Error Representations for Kalman Filtering,
Journal of Guidance, Control and Dynamics, Vol. 63, No. 2, 2003.

[18] Markley, F. L., (2003) Attitude Estimation or Quaternion Estimation?,
The Journal of the Astronautical Sciences, Vol. 52, No. 1-2, January-June
2004.

[19] Markley, F. L., (2004) Multiplicative vs. Additive Filtering for Spacecraft
Attitude Determination, Proceedings, 6th Cranfield Conference on Dynam-
ics and Control of Systems and Structures in Space, Cranfield University
Press.

[20] Nøkland, H., (2011) Nonlinear Observer Design for GNSS and IMU Inte-
gration, M.Sc. thesis, NTNU, Department of Engineering Cybernetics.

[21] Ose, S. S., (2004) Attitude determination for the Norwegian student satel-
lite nCube, M.Sc. thesis, Norwegian University of Science and Technology,
Department of Engineering Cybernetics.

[22] Rohde, J., (2007) Kalman Filter for Attitude Determination of Student
Satellite, M.Sc. thesis, Norwegian University of Science and Technology,
Department of Engineering Cybernetics.

131



[23] Sabatini, A.M., (2006) Quaternion-Based Extended Kalman Filter for De-
termining Orientation by Inertial and Magnetic Sensing, IEEE Transaction
on Biomedical Engineering, Vol.53, No. 7, July 2006.

[24] Schwab, A. L., ( 2006) Quaternions, Finite Rotation and Euler Parameters,
Delft University of Technology, Laboratory for Engineering Mechanics.

[25] Schweiger, M., (2010) Orbiter User Manual, Space Flight Simulator, 2010
Edition, Copyright (c) 2000-2010 Martin Schweiger. www.orbitersim.com,
last accessed 30. June 2012.

[26] Spinney, V. W. (1976) Applications of Global Positioning System as an
Attitude Reference for Near Earth Users, ION National Aerospace Meeting,
Naval Air Development Center, Warminster PA, April 1976.

[27] Sundlisæter, T., (2008) Norsk Studentsatellittprosjekt, Romfart Magazine,
issue no. 2008-2, pp. 49-50.

[28] Sundlisæter, T., (2012) Literature Study for NTNUs Test Satellite, De-
partment of Engineering Cybernetics, Norwegian University of Science and
Technology.

[29] Svartveit, K., (2003) Attitude determination of the NCUBE satellite, M.Sc.
thesis, NTNU, Department of Engineering Cybernetics.

[30] Tohami, S., Brembo, E.M., (2005) Sensor Modeling, Attitude Determina-
tion and Control for Micro-Satellite, M.Sc. thesis, Norwegian University of
Science and Technology, Department of Engineering Cybernetics in coop-
eration with Kongsberg Defence and Aerospace.

[31] Vandersteen, J., Diehl, M., Aerts, C., and Swevers, J., (2011) A Novel
Attitude Estimation Filter for the PLATO Space Mission Based on Mov-
ing Horizon Esitmation, 8th International ESA Conference on Guidance,
Navigation and Control Systems, 5-10 June 2011.

[32] Van Graas, F. and Braasch, M., GPS Interferometric Attitude and Heading
Determination: Initial Flight Test Results, Navigation, volume 38, no. 4,
Winter 1991-1992.

[33] Vik, B., (2011) Integrated Satellite and Inertial Navigation Systems, Nor-
wegian University of Science and Technology, Department of Engineering
Cybernetics.

[34] Wahba, G., (1965) A Least Squares Estimate of Satellite Attitude, SIAM
Review 7(3): 409.

[35] Wertz, J. R., (1978) Spacecraft Attitude Determination and Control, Mi-
crocosm, Kluwer Academic Publishers.

[36] Wertz, J. R. and Larson, W. J., (199) Space Mission Analysis and Design,
3rd edition, Space Technology Library.

132


	Title Page
	AssignmentTaleSundlisæter.pdf
	MSC THESIS DESCRIPTION SHEET
	Name:    Tale Sundlisæter
	Start date:   2012-02-01


