
Implementasjon og testing av en åpen
bussprotokoll for armproteser

Andreas Nordal

Master i teknisk kybernetikk

Hovedveileder: Øyvind Stavdahl, ITK

Institutt for teknisk kybernetikk

Innlevert: Juni 2012

Norges teknisk-naturvitenskapelige universitet

Prosthetics Device Communication Protocol
for AVR – High-level Layer

by Andreas Nordal

June 25, 2012

ii

0.1 Preface
This is my master thesis in Engineering Cybernetics at Norwegian University
of Technology and Science (NTNU), Trondheim. I chose this subject because I
am interested in real-time programming and free/open source software. I hope
that my contribution to open source technology will change the world for the
long term benefit of humanity, if only changing a small part of it.

I would like to thank my supervisor, Øyvind Stavdahl, for advice and en-
thusiasm that kept me going, and Andrzej Zamojski, who I cooperated with on
this project, for his patience, especially in the final stressful days of testing.

0.2 Abstract
The prosthetics industry is shaped by incompatible products and manufactur-
ers that develop their own standards. At the same time, an international re-
search society (where NTNU is taking part) is in progress of developing an
open bus protocol for use among sensors, actuators and other prosthetics com-
ponents.

This thesis has looked at implementing this protocol on the AVR microcon-
troller architecture, with a goal to be compatible with a Canadian PIC based
implementation. Results were not entirely successful, but the basic functional-
ity is in place and has been shown to work.

0.3 Forord
Proteseindustrien preges av inkompatible produkter og produsenter som utvikler
sine egne standarder. Samtidig er et internasjonalt forskningsmiljø (der NTNU
er delaktig) i ferd med å utvikle en åpen bussprotokoll til bruk mellom sensorer,
aktuatorer og andre protesekomponenter.

Denne oppgaven har sett på implementation av denne protokollen på AVR-
prosessorarkitekturen, med et mål om kompatibilitet med en Canadisk PIC-
basert implementasjon. Resultatene har ikke vært utelukkende gode, men grunn-
leggende funksjonalitet er på plass og er vist å fungere.

Contents

0.1 Preface . ii
0.2 Abstract . ii
0.3 Forord . ii

1 Introduction 3

2 Theory 5
2.1 CAN protocol . 5

2.1.1 Arbitration . 5
2.1.2 Addressing . 6
2.1.3 Message filtering . 6

2.2 PDCP protocol . 7
2.2.1 Division of the Standard Identifier Field 7
2.2.2 Division of the Data Field 7

3 Design 9
3.1 Overall design . 10
3.2 Buffering . 11
3.3 Middle layer interface . 12

4 Implementation 17
4.1 Socket module . 17
4.2 HLL module . 18
4.3 Storing which nodes has bound to the arbitrator 19
4.4 Why there is no protocolHandler in the source code 20
4.5 Compilation switches . 23

iii

CONTENTS 1

5 Testing 25
5.1 Unit testing . 25

5.1.1 socktest.c . 25
5.1.2 offsetof.c . 26

5.2 Testing on proper hardware . 26

6 Test results 29
6.0.1 Bind sequence . 31
6.0.2 Reset sequence . 31
6.0.3 Bind sequence with Canadian device 31

7 Discussion 33
7.1 C versus C++ . 33

7.1.1 Reduce scope of constants 33
7.1.2 Parameterized datatypes 35

7.2 Protocol evaluation . 36
7.2.1 Node Id . 36
7.2.2 Byte order . 37
7.2.3 Channels . 37

7.3 Method evaluation . 37
7.3.1 Separate offices → not so easy collaboration 37
7.3.2 Simultaneous development of layered software 38
7.3.3 Flimsy AVR Studio → lack of testing 38

7.4 Implementation decisions . 38

8 Licensing 39
8.1 Purposes of licensing . 39
8.2 Applicability to own needs . 40
8.3 Verdict . 41

9 Conclusion 43

2 CONTENTS

Chapter 1

Introduction

The prosthetics industry is characterized by incompatible products and man-
ufacturers that develop their own standards. My supervisor, Øyvind Stavdahl
at NTNU, and Yves Losier, at University of New Brunswick, Canada are at the
forefront of research on an open bus protocol for use among sensors, actuators
and other prosthetics components, the so called Prosthetics Device Communi-
cation Protocol (PDCP) protocol.

Their first draft of the protocol was available in 2009, and more revisions are
underway as of 2012; it is intended that experience gained during this imple-
mentation work will be valuable for subsequent revisions of the protocol.

The idea for this project is to implement the PDCP protocol for the AVR
microcontroller architecture, which is already in wide use in the prosthetics
industry.

The project is a collaboration between Andrzej Zamojski, a Polish exchange
student, and me. We chose to split the task horizontally, meaning that he did a
low-level hardware abstraction layer, on which I implemented the protocol on
top of. These layers have been termed the Hardware Abstraction Layer (HAL)
and the High Level Layer (HLL) respectively.

Our source code will eventually be made available as free software. This,
and the fact that a (proprietary) implementation also exists for the PIC micro-
controller architecture, should hopefully make for a great incentive for the in-
dustry to adopt this open protocol that is PDCP.

3

4 CHAPTER 1. INTRODUCTION

Chapter 2

Theory

2.1 CAN protocol

Controller Area Network (CAN) is an industrial network protocol developed by
Bosch in the 1980s, implementing the two lowest layers of the ISO OSI model,
namely the physical layer and the link layer.[Catsoulis(2005)]

2.1.1 Arbitration

Nodes connect to the two wires of a CAN network in a wired-AND fashion. As
figure 2.1 shows, this makes it physically impossible to send a high bit on the
bus while a low bit is being sent by someone else.

This is the basis of the arbitration mechanism of the CAN network; the way
colliding messages are dealt with: the sender of the high bit is obliged to give
up sending the rest of the message, and may retry later. This contrasts Ethernet
style collision detection (CSMA/CD), where both nodes need to back out and
retry.

5

6 CHAPTER 2. THEORY

Node A sends Node B sends Bus value
0 0 0
0 1 0
1 0 0
1 1 1

Figure 2.1: Result of two nodes trying to send differing bits at once on a wired-
AND network: Low bit wins.

2.1.2 Addressing
The transmitted payload data is prepended by, among other things, the standard
identifier field of 11 bits 1. [Losier(2012b)] The CAN standard specifies no explicit
addressing of nodes, but the standard identifier field can be used cleverly for
this purpose:

• Unicast — the standard identifier field can be used as destination address.

• Multicast — the standard identifier field can be used as source address.

Together with its following RTR (remote transmission request) bit, the standard
identifier field makes up the arbitration field. Due to zero being the dominant
bit, the arbitration field is also the priority of the message. All fields in CAN are
transmitted in the order of more significant bits first, so numerically, the lower
the arbitration value, the higher the priority.

2.1.3 Message filtering
Contemporary CAN controllers commonly implement hardware filtering of
messages based on the standard identifier field. Although no standard spec-
ifies how, the way it's simply done™ is according to the equation of figure 2.2,
where filter and mask are the variables to configure. [Natale(2008)] This is
also true for the MCP2515 controller we have used. [mcp(2005)]

1 (arbitration_value & mask) == (filter & mask)

Figure 2.2: Boolean equation of the filter/mask mechanism, as expressed in C
1or 29 for the extended variant. Only the 11 bit variant will be considered in this report, since

that is what the PDCP protocol is based on

2.2. PDCP PROTOCOL 7

Hardware filtering is a power saving feature, as it avoids interrupting the
main microcontroller unnecessarily, possibly waking it from a deep sleep state.
Indeed, battery longevity is a major concern in prosthetics. [Losier(2009)]

2.2 PDCP protocol
PDCP is a networking protocol based on CAN developed by the University of
New Brunswick, Canada. [Losier(2012b)]

It further divides and defines the meaning of CAN message fields, specifi-
cally the standard identifier field and the 0–8 data bytes.

2.2.1 Division of the Standard Identifier Field
• Message Priority — 2 bits

• Message Mode — 1 bit

• Node Id — 8 bits

The PDCP protocol has similarities to the network layer in the OSI model; it
defines a top layer node addressing, and the arbitrator node performs the same
basic task as a DHCP server, in an operation called binding. Unlike the OSI
model however, PDCP is not a layer of addressing on top of CAN, it just specifies
one of many possible CAN addressing schemes.

2.2.2 Division of the Data Field
The first data (payload) byte is defined to be the Function Code. Other data bytes
are function specific — their interpretation depends on the function code.

8 CHAPTER 2. THEORY

9

10 CHAPTER 3. DESIGN

Chapter 3

Design

3.1 Overall design

HLL

postOffice

-canbuf: can_msg[]

-sock_push()

-sock_pull()

protocolHandler

+respond_bind()

+respond_reset()

+respond_bind()

HAL

hll

-canbuf: can_msg[]

+hll_msg_alloc()

+hll_msg_commit()

+hll_msg_get()

+hll_msg_free()

Figure 3.1: Class diagram of HLL. A possible source of confusion is the hll
class inside the HLL package.

3.2. BUFFERING 11

The idea is to divide the high level layer in two modules, postOffice and pro-
tocolHandler, with thin wrapper functions in hll, a class to encapsulate all
functionality in the HLL package. While the first provides routing of CAN mes-
sages between other software modules, the second takes care of certain commu-
nication mandated by the PDCP protocol that is possible to automate, in order
to relieve the application developer of this. The postOffice has no knowledge
of the PDCP protocol, but hooks into protocolHandler for sorting CAN mes-
sages.

3.2 Buffering

FIFO buffered CAN transmission was found beneficial; the low level layer needs
buffer space to read/write into, and this need to be handed asynchronously to
the application. Three designs were considered. They are listed in figure 3.2
along with their advantages and disadvantages.

Concept Advantages Disadvantages
Chunked
ring buffer

Stores variable length
chunks compactly,
exploiting that CAN
messages know their
own length. Requires
no dynamic memory
allocation.

The possibility of a chunk
being wrapped around
the ring's discontinuity
point necessitates en-
capsulation of chunk
memory access, involving
extra copying (if a leaky
interface is to be avoided).

Linked list Avoid copying data by
linking nodes into and out
of the list.

Exposes the linked list
container. Requires dy-
namic memory allocation.

Linked list of
pooled con-
tainers

Abstracts away the linked
list container. Memory
pool(s) can be statically or
dynamically allocated.

Must provide special allo-
cators and deallocators.

Figure 3.2: 3 buffer designs, with advantages & disadvantages

Judging by the table of advantages and disadvantages in figure 3.2, the last

12 CHAPTER 3. DESIGN

option seems the most flexible, and has the smallest disadvantages. 1 Thus, it
is decided to go for «linked list of pooled containers». In figure 3.1, this func-
tionality is planned to be implemented in the postOffice class.

The postOffice hands some messages to protocolHandler, the rest to the
application, as shown in figure 3.3.

Figure 3.3: Flow of CAN messages between modules. Thick gray arrows are
FIFO buffers, thin black arrows are function calls.

3.3 Middle layer interface

In order for Andrzej and I to split the task between us, we developed an interface
between our parts; the high and the low layer, also known as HLL and HAL.
We reached consensus on this interface before any implementation was done.
The final interface was made in the form of an illustration by Andrzej and a
description by me. These are reproduced below, in figure 3.4 and the following
three pages.

1The last option was actually invented to overcome inconveniences of the first two.

3.3. MIDDLE LAYER INTERFACE 13

The names of header files to declare this interface was left unspecified, but in
retrospect, it should suffice to include hll.h, functions.h and irqHandlers.h.

Figure 3.4: Illustration of the middle layer interface

PDCP for AVR –
middle layer interface
OVERVIEW
This document describes an implementation of the Prosthetic
Device Communication Protocol (PDCP) consisting of 2 layers:

hll high level layer1.
hal hardware abstraction layer2.

The purpose of this document is to detail the interface
between these layers.

SYNOPSIS
struct can_msg;

void hal_set_filter(uint8_t filter);

void hal_set_mask(uint8_t mask);

void hal_msg_poll();

struct can_msg* hll_msg_alloc();

void hll_msg_commit(struct can_msg* msg);

struct can_msg* hll_msg_get();

void hll_msg_free(struct can_msg* msg);

DESCRIPTION
hal_set_filter shall set the filter configuration of the CAN
controller to that specified in filter.

hal_set_mask shall set the mask configuration of the CAN
controller. The bits in filter masked by mask must match the
corresponding bits in the incoming message's Node Id for it to
be received by the CAN controller.

hal_msg_poll shall retry fetching any incoming CAN
messages left in the CAN controller by simulating an interrupt
from the CAN controller.

hll_msg_alloc shall reserve unused memory in the high level
layer for an incoming CAN message. This memory shall
contain a can_msg structure, to which a pointer shall be
returned to the caller. The caller must initialze the structure
and send it back by calling hll_msg_commit.

hll_msg_commit shall pass the CAN message referenced by
msg to the high level layer's input queue.

hll_msg_get shall look for an outgoing CAN message, and if
found, return the contained can_msg structure. Otherwise, it
shall return NULL. The caller must signify when it is finished
with the pointed-to memory by calling hll_msg_free.

hll_msg_free shall mark the memory in use by the CAN
message containing msg as unused.

FAILURE MODES
If no memory for an incoming CAN message is found,
hll_msg_alloc shall return NULL.

If no outgoing CAN message is found, hll_msg_get shall
return NULL.

These functions shall not fail:
hll_msg_commit
hll_msg_free

NOTE
The hardware abstraction layer may leave CAN
messages in the CAN controller in the event of failure of
hll_msg_alloc. Therefore, the high level layer must call
hal_msg_poll when it expects hll_msg_alloc to
become possible.
Incoming CAN messages may only be lost due to full
receive buffers in the CAN controller. Assuming the high
level layer calls hal_msg_poll whenever its internal
«receive buffer» is no longer full, this situation only
arises when the latter buffer is already full, and is still
filled faster than emptied.
Outgoing CAN messages are not lost. The high level

layer may be temporarily unable to handle outgoing
CAN messages only when its internal «send buffer» is
full.
The high level layer's «send» and «receive» buffers may
be implemented as a shared memory pool, with no
space reserved for any direction. Thus, the capacity of
one buffer may be zero due to the other buffer being
full.

Chapter 4

Implementation

4.1 Socket module
The socket module provides basically what channels do in the Go programming
language; [go(2012)] asynchronous message passing between software compo-
nents that may be running concurrently. Interrupt handlers are the source of
concurrency in our microcontroller.

There is, however, some specialization in the socket module and associated
infrastructure that distinguishes it from a standard message passing channel:

• The datatype being transported is a can msg. The content of the data does
not matter, but it must be preceded by a linked list header, as found in the
containing canel structure.

• The HLL module contains a few preconnected sockets accessible by socket
numbers, akin to file descriptors in UNIX, thereby the name socket. 1 Two
of these sockets, numbered as SOCK STDIN and SOCK STDOUT, are hooked
into the physical CAN bus via HAL.

• A configuarble receive hook function is invoked whenever something is in-
serted into a socket, in the context of the insertor.

• To maintain FIFO behavior among interrupts that interrupt each other,
the interrupting interrupt must not call the callback function while it is

1File descriptors are used for accessing sockets in UNIX.

17

18 CHAPTER 4. IMPLEMENTATION

already running in another context, and the interrupted interrupt must
check for additional messages left by that interrupting interrupt, to run its
callback in the context of itself. These checks are enabled by configuring
CONFIG SERIALIZE CALLBACKS to nonzero. This would not be an issue if
concurrency was in the form of threads.

Figure 4.1: Each socket is a FIFO queue, implemented as a singly-linked list.

4.2 HLL module

The HLL module is what its name implies — an encapsulation of everything
that is in the High Level Layer. It sets up socket communication channels be-
tween the hardware abstraction layer (HAL), the application layer (APP), and
its own protocol housekeeper, pdcphandler.

4.3. STORING WHICH NODES HAS BOUND TO THE ARBITRATOR 19

Figure 4.2: The «canel» elements are statically allocated in «canbuf».

4.3 Storing which nodes has bound to the arbitrator
A datastructure has been implemented to index node information by Node Id.
Only the arbitrator has this datastructure. When binding, the arbitrator looks
it up to see which keys are available. When binding is successful, a nodeinfo
object is stored on this key, marking it as taken. For now, the nodeinfo ob-
ject contains the identifiers sent from the newly bound device, which I, for the
purpose of this discussion, will call «Device Personality». Storing the Device
Personality enables later recognition of it — if for some reason a device asks for
the same Node Id it already has, the arbitrator will detect this and respond by
sending the same Node Id back.

A trie was initially chosen for this datastructure, for the reason that tries
store leading common key subsequences compactly. As discussed in section
7.2.1, a sensible use of the Node Id bits would be as encoding of a decison tree
that can group devices in several ways. As I think this is the smartest use, this is
what I want to optimize for. Assuming bits are used this way, it can be expected
that entropy is concentrated in certain bits, which makes a (surprise) decision
tree suitable for storing the encoded decision tree. However, decision trees do
not support insertion, due to not storing the whole key. A decision tree that
stores the whole key in a predictable order is a trie. If assigning the bits in
the order of higher entropy to the lesser significant bits, the longest common

20 CHAPTER 4. IMPLEMENTATION

subsequences would be at the front, and my dumb trie would do mostly the
same as a smartly constructed decision tree.

My trie implementation has a configurable node size, and as it turns out, the
address space is small enough that only one node suffices, making it effectively
an array. Indeed, it seemed when debugging like large parts of this code was
optimized away, as it was impossible to put a breakpoint in large parts of it.

If the reverse mapping was needed, from Device Personality to Node Id,
the key would be much bigger, and a trie, or even a decision tree, would make
more sense. This would be needed if Node Ids were to be pre-configured in the
arbitrator.

4.4 Why there is no protocolHandler in the source
code

There is! At least, its functions (see figure 3.1) exist. They were put in files
named hll arbitrator.c and hll device.c, depending on whether they should
be compiled exclusively for the arbitrator or device, respectively.

For the sake of the don't repeat yourself [rep(2012)] principle, the function that
was supposed to be named protocolHandler was merged with postOffice.
Consequently, the planned flow of CAN messages (figure 3.3) was simplified to
that of figure 4.3.

4.4. WHY THERE IS NO PROTOCOLHANDLER IN THE SOURCE CODE 21

Figure 4.3: Flow of CAN messages between modules, as it finally became.
Thick gray arrows are instances of my socket class, thin black arrows are func-
tion calls.

To see why the don't repeat yourself alarm was triggered by the planned de-
sign, and how it lead to this simplification, consider how the Function Code
switch logic currently found in postOfficewould need to be replicated in pro-
tocolHandler too:

22 CHAPTER 4. IMPLEMENTATION

1 /∗∗
2 ∗ Handles some messages, sorts rest into SOCK APPLICATION.
3 ∗/
4 void
5 post office(struct socket ∗so){
6 ⎟ struct can msg ∗msg = sock pull(so);
7 ⎟
8 ⎟ switch(msg->function code){
9 ⎟ ⎟ case REQUEST BIND:

10 ⎟ ⎟ ⎟ respond bind(msg);
11 ⎟ ⎟ ⎟ break;
12 ⎟ ⎟ case RESPONS SUSPEND:
13 ⎟ ⎟ case REQUEST BEACON:
14 ⎟ ⎟ case RESPONS RESET:
15 ⎟ ⎟ ⎟ //TODO
16 ⎟ ⎟ default:
17 ⎟ ⎟ ⎟ hll msg push(msg, SOCK APPLICATION);
18 ⎟ ⎟ ⎟ return;
19 ⎟ }
20 ⎟ hll global.notify(msg->function code);
21 }

Figure 4.4: Arbitrator's postOffice

1 /∗∗
2 ∗ Handles some messages, sorts rest into SOCK APPLICATION.
3 ∗/
4 void
5 post office(struct socket ∗so){
6 ⎟ struct can msg ∗msg = sock pull(so);
7 ⎟
8 ⎟ switch(msg->function code){
9 ⎟ ⎟ case RESPONS BIND:

10 ⎟ ⎟ ⎟ respond bind(msg);
11 ⎟ ⎟ ⎟ break;
12 ⎟ ⎟ case REQUEST RESET:
13 ⎟ ⎟ ⎟ respond reset(msg);
14 ⎟ ⎟ ⎟ // should not return
15 ⎟ ⎟ default:
16 ⎟ ⎟ ⎟ hll msg push(msg, SOCK APPLICATION);
17 ⎟ ⎟ ⎟ return;
18 ⎟ }
19 ⎟ hll global.notify(msg->function code);
20 }

Figure 4.5: Device's postOffice

4.5. COMPILATION SWITCHES 23

The postOffice would need to know which function codes are to be han-
dled by the protocolHandler. These would need to be separated out and sent
to the protocolHandler through a socket. Then, at the protocolHandler, the
same function codes would need to be further sorted.

The design plan 3.1 specifies that «The postOffice has no knowledge of the
PDCP protocol, but hooks into protocolHandler for sorting CAN messages.»
However, separate modules or not, a method of sharing such ontology between
functionally different pieces of code was not found. 2 It is easier and less error
prone (especially with unfinished code) to have one switch statement do all
sorting, as in figures 4.4 and 4.5.

4.5 Compilation switches
Constants that are tweakable, or enable optional features, are named with the
prefix CONFIG and placed in a separate file (config.h). This was decided early
in the implementation phase, after the need first arose.

This is similar to the way the Linux kernel is configured, except its .config
file is integrated into the build system instead of being directly included. In
order to not depend on a particular build system, and specifically to compile
our codebase with AVR Studio, our config file is included in the source files
that need it.

Unfortunately, in order to compile both the arbitrator and device images,
one has to manually edit the CONFIG BUS MODE setting in between. For this rea-
son, this setting can be overridden, as done by my Makefile, which compiles
both images in parallel. It is nevertheless voluntary to use the makefile build
system.

2I believe this is what custom code generators and preprocessors are for; the switch in postOf-
fice could be generated from the switch in protocolHandler.

24 CHAPTER 4. IMPLEMENTATION

Chapter 5

Testing

5.1 Unit testing

Besides the src (source) directory in our code repository, there is a test direc-
tory containing small programs that are made to exercise individual software
modules. These are not meant for use on the AVR, but can be run on the build
host. As a replacement for interrupts, and synchronization by disabling thereof,
POSIX threads and mutexes have been used.

POSIX threads and mutexes are available natively in Linux 2.6 and newer,
and with limited functionality as a library for Windows. Only Linux was used
in this testing.

5.1.1 socktest.c

This is for testing the socket module (socket.c). The socket module is all about
asynchronous message passing. It implements a minimal HLL interface and
application layer. The latter runs in its own thread. The program reads from
standard input into CAN messages, sends them asynchronously to the appli-
cation thread, which prints them to standard output.

The application thread has a 1-second sleep in its loop, so to make it easy to
test all the corner cases of FIFO buffering (full/empty) when run interactively.
In no event shall its output differ from its input, in order for the test to pass.
The makefile of the directory verifies this with random input.

25

26 CHAPTER 5. TESTING

Although the program exposes FIFO logic and concurrency, it does unfor-
tunately not expose the need for serializing callbacks.

5.1.2 offsetof.c
This is a silly test of the offsetofmacro, specifically testing it on relevant datas-
tructures in the socket module.

5.2 Testing on proper hardware
The Nimron P1000 [nim(2012)] was developed for the course TTK4155 «Indus-
trial and Embedded Computer Systems Design» at NTNU, 1 featuring:

• AVR at90usb1287 microcontroller

• MCP2515 CAN controller

• MCP2551 CAN transceiver

Figure 5.1: A Nimron P1000 running its default firmware. This was our pri-
mary development board.

1better known as «byggern»

5.2. TESTING ON PROPER HARDWARE 27

Figure 5.2: The Canadian implementation — a PIC microcontroller board. This
was our black box test.

28 CHAPTER 5. TESTING

29

30 CHAPTER 6. TEST RESULTS

Chapter 6

Test results

Figure 6.1: Test setup — two Nimrons in connection. The rat's nest wiring is
for UART and LEDs.

31

In the main setup, two Nimron cards were connected, one acting as arbitrator,
the other as device. It was also tested to replace the device with the Canadian
equivalent.

6.0.1 Bind sequence

Binding was found to work:

1 PROGRAM START
2
3 PID = 1, VID = 2, SID = 3
4 Want Device ID ff
5 Arbitration field of sent msg: 1ff
6 NodeID of sent msg: 1
7
8 PID = 1, VID = 2, SID = 3
9 Want Device ID 1

10 Arbitration field of sent msg: 101
11 NodeID of sent msg: 1
12 Node number 1: PID = 1, VID = 2, SID = 3

Figure 6.2: Debug output of binding sequence captured by UART. The device
first asks for the illegal value 0xff, but gets 1 instead. After asking anew with
this value of 1, binding is complete. The last line was output after finding node
number 1 in the trie datastructure, and its associated info was printed.

6.0.2 Reset sequence

The arbitrator was found able to send reset requests, which the device responded
to, but no reset response was sent by the device. The reason was not pursued,
due to lack of time. It is possible that the CAN controller did not have time to
send it before it got reset.

6.0.3 Bind sequence with Canadian device

Our arbitrator unfortunately reset itself for unknown reasons after having filled
the CAN message buffer. There was no indication of an unhandled interrupt.

32 CHAPTER 6. TEST RESULTS

1 When our buffer had capacity of 2 messages, we received 2 bind requests
before resetting, and when our buffer had capacity of 8 messages, we received
8 requests before resetting. This behavior does not necessarily mean that the
buffer logic is wrong, as our buffer should never overflow anyway.

One difference between our device and the Canadian, is that the latter was
sending several bind requests in quick succession, while we had previously
only tested with sending one, and then wait for the response. The PDCP spec-
ification [Losier(2012b)] includes a flow chart of a device node during binding,
and it has a timeout (which is not specified elsewhere). When reaching the time-
out, the diagram specifies to resend the request. In relation to this diagram, our
timeout was infinite, while the Canadian was short, seemingly too short for our
arbitrator to handle. How long the timeout should be, is unspecified.

1 We have implemented the BADISR vect default interrupt handler, as suggested by [avr(2012)],
to make it print «Default handler fired!» whenever an otherwise unhandled interrupt triggers. We
know from previous debugging that this function works.

Chapter 7

Discussion

7.1 C versus C++

Some parts were found tempting to write in C++ rather than C. The avr-gcc
toolchain has a C++ compiler, so this is possible. However, it was deemed that
something as untraditional as C++ for microcontroller programming would re-
duces immediate ease of use and portability. Some possibilities were neverthe-
less explored.

7.1.1 Reduce scope of constants

Problem: Make the function code constants belong to their associated message
structures.

Each function in the PDCP protocol has a function code constant and an as-
sociated message data structure. In order to match the spec more closely, C++
would provide a more fitting abstraction.

In C, constants can not be defined in structs 1.

1constants can be declared in structs, but that is useless for our purpose of defining its value

33

34 CHAPTER 7. DISCUSSION

1 #include <stdio.h>
2
3 typedef unsigned char u8;
4 typedef unsigned short u16;
5
6 struct request bind{
7 ⎟ static const int FUNCTION CODE = 0x01;
8 ⎟ u16 vendor id;
9 ⎟ u16 product id;

10 ⎟ u16 serial number;
11 };
12
13 struct respons bind{
14 ⎟ static const int FUNCTION CODE = 0x81;
15 ⎟ u8 node id;
16 ⎟ u16 vendor id;
17 ⎟ u16 product id;
18 ⎟ u16 serial number;
19 };
20
21 #define printtype(T) \
22 printf(#T "::FUNCTION CODE = 0x%02x, ", T::FUNCTION CODE); \
23 printf("sizeof(" #T ") = %lu\n", sizeof(T));
24
25 int main(){
26 ⎟ printtype(request bind)
27 ⎟ printtype(respons bind)
28 ⎟ return 0;
29 }
30

Figure 7.1: Program demonstrating how function codes could have scope local
to their own message structure. This syntactic sugar is valid C++, but not C.

1 request_bind::FUNCTION_CODE = 0x01, sizeof(request_bind) = 6
2 respons_bind::FUNCTION_CODE = 0x81, sizeof(respons_bind) = 8

Figure 7.2: Output of the above program. The constants are not contained in
their message structures, as ruled out by the structures' sizes. Uncareful com-
pilation (without the -fpack-struct gcc option) allowed the compiler to align
the 2-byte fields on 2-byte boundaries here.

7.1. C VERSUS C++ 35

7.1.2 Parameterized datatypes
While templated functions are probably the most widely known use of C++ tem-
plates, the feature I find priceless, is templated classes. 2 Whenever there is an
array in a structure, that when used for different purposes need different sizes,
one better be programming in C++ rather than C. Examples from this project
include struct hll and the trie datastructure. Luckily, these are not used more
than one place, but suppose one wants to use the trie datastructure for two dif-
ferent things, e.g. not only mapping the Node Id to Device Personality, but also
vice versa — two keys of different length… To overcome this in C, one has to
manually calculate sizes and offsets in one's structures.

1 #include <stdio.h>
2
3 template <unsigned s>
4 struct class with buffer{
5 ⎟ static const unsigned size = s;
6 ⎟ char data[s];
7 };
8
9 #define printtype(T) \

10 printf(#T "::size = %u, ", T::size); \
11 printf("sizeof(" #T ") = %lu\n", sizeof(T));
12
13 #define STRINGIFY(EXP) #EXP
14 #define TOSTRING(EXP) STRINGIFY(EXP)
15 template <class T>
16 void accessor(T ∗obj){
17 ⎟ printf(TOSTRING(T) "::size = %u, ", T::size); \
18 ⎟ printf("sizeof(" TOSTRING(T) ") = %lu\n", sizeof(T));
19 }
20
21 int main(){
22 ⎟ printtype(class with buffer<0>);
23 ⎟ printtype(class with buffer<3>);
24 ⎟ class with buffer<0> a;
25 ⎟ class with buffer<3> b;
26 ⎟ accessor(&a);
27 ⎟ accessor(&b);
28 }
29

Figure 7.3: C++ program demonstrating a datatype with a parameter.

2Functions can always take an extra argument, which in presence of link time optimization and
inlining, hopefully gets optimized away.

36 CHAPTER 7. DISCUSSION

1 class_with_buffer<0>::size = 0, sizeof(class_with_buffer<0>) = 0
2 class_with_buffer<3>::size = 3, sizeof(class_with_buffer<3>) = 3
3 T::size = 0, sizeof(T) = 0
4 T::size = 3, sizeof(T) = 3

Figure 7.4: Output of the above program.

7.2 Protocol evaluation

7.2.1 Node Id
Due to the mask/filter method of filtering Node Ids (figure 2.2), there has to be
a common bit pattern between Node Ids that a device is supposed to receive.
Otherwise, this type of hardware filtering is not sufficient; the device will have
to mask fewer bits, receive more messages, and additionally do software filter-
ing (which we have not implemented).

Ideally, Node Ids should be assigned more like they were memory addresses
of memory mapped devices, so that their bit sequences form encoded decision
trees indexing the recipent. However, unlike memory mapped devices, there
may be more than one recipent, and whenever that occurs, we need to severely
waste address space to ensure that a unique bit pattern identifies the group of
recipents. At its most extreme, the 8-bit Node Id would become the hot-one
encoding of the numbers 0–7. With only one set bit per address, these 8 nodes
could be set up to mask each other's addresses arbitrarily.

It is the arbitrator that ultimately decides the Node Id of devices, however
as part of the Bind sequence, the device effectively suggests its own Node Id: It
is inherent to the protocol that all messages originating from a device contains
a Node Id, since this is baked into the standard identifier field of messages, and
it is specified that the Bind sequence terminates iff this value equals the explicit
Node Id field of the Bind response. This opens the question of who ``prefers''
Node Ids, if any. There are 3 alternatives:

1. Neither devices, nor the arbitrator has preferences for Node Ids in the
system. The binding procedure is a race to determine Node Ids.

2. Devices have a preference of Node Id, communicated to the arbitrator
upon Bind. The arbitrator approves if possible. If not possible, the arbi-
trator must inform of a value that is available, and the device is specified

7.3. METHOD EVALUATION 37

to retry with this, eliminating further preferences it may have. However,
such a permissive arbitrator will respect further preferences, if the device
(by violation of the protocol) tries other values in order of preference.

3. The arbitrator fully determines Node Ids, without regard to devices' sug-
gestions.

Only in case 2 can the suggested Node Ids be expected to be unique.
The arbitrator effectively has no Node Id, since the Node Id used in the stan-

dard identifier field is always that of the device (when the arbitrator is involved
anyway). Furthermore, the Message Mode field only tells the node type of the
originating node, not whether the message is destined for the arbitrator. There-
fore, the arbitrator has no opportunity for masking away messages not meant
for itself. Assuming that the majority of messages are not destined for the arbi-
trator during operation, this can be expected to be detrimental to power usage.

7.2.2 Byte order
The PDCP spec does not specify whether multibyte fields are big or little en-
dian. Unlike many OSI network protocols, it is in fact little endian, as is evident
from data captures provided by the protocol author. [Losier(2012a)] This suits
our AVR architecture well.

7.2.3 Channels
The PDCP spec mentions channels, e.g. as content of the Node Identifier field
from messages sent from device nodes, without explaining what they are.

7.3 Method evaluation

7.3.1 Separate offices → not so easy collaboration
Being a Norwegian student, I had an office at NTNU from before, while An-
drzej, who is Polish, got another one. Although not far away, I knew from the
start that this might be a bummer. 3 Although Andrzej and I had frequent
meetings at the start and end of this project, that is, when we really needed to, I

3The situation resembled a student project at a summerjob I had, involving 3 students dis-
tributed on 2 offices. Lesson learnt: Collaboration is futile when on separate offices.

38 CHAPTER 7. DISCUSSION

don't think we met as often as we should; my supervisor even offered to spon-
sor a pizza lunch — the fact that we missed this opportunity to me says that we
failed despite good incentives.

7.3.2 Simultaneous development of layered software
Since my layer was supposed to run on top of Andrzej's layer, I could not real-
istically test my part before the lower layer was fairly functional (except doing
unit tests). Fortunately, this did not take long, and most of my work turned out
to be more or less based on things I had done before (and was confident about),
so this was actually not a big problem in the end.

7.3.3 Flimsy AVR Studio → lack of testing
In the final stressful days of testing, my AVR Studio was incidentally broken.
4 This meant that, as in the early phase, I was also unable to debug my code
in the final phase of testing, when connecting to the Canadian node was at-
tempted. Consequently, only Andrzej was able to test our work at this stage. I
was present, and I fixed problems in my code that we found together. Progress
was unnecessarily slow because I would certainly have found a couple of those
errors myself by regular integration testing. Fortunately, I had created a Make-
file for compiling with avr-gcc, so at least I was able to make sure it compiled.

7.4 Implementation decisions
One implementation decision I had long forgot at the time of testing with the
Candadian node, 6.0.3 that may explain the observed accumulation of incoming
messages, might be the elimination of the intermediate socket buffer between
postOffice and protocolHandler. The socket class is responsible for serializ-
ing callbacks, and without it, messages will stack up like that if the callback, in
this case respond bind takes a long time (it calls malloc, so probably does) and
incoming messages come in too fast.

This does still not explain the crash, however. When the buffer is full, sock push
returns NULL. Something like a missing test for such a condition could in the-
ory cause a reset.

4In a desperate attempt to debug why AVR Studio didn't want to communicate with my Nimron
card, I uninstalled the wrong driver, after which AVR Studio was permanently unable to commu-
nicate with my Nimron card.

Chapter 8

Licensing

When releasing source code publicly, even though everyone can see it, copy-
right laws of many countries 1 still require people to ask for permission in or-
der to use it.[Atwood(2007)] To explain in advance how people can reuse one's
work, the standard practice is to apply a license to it. One part of my assignment
was thus to suggest a suitable licensing of the source code.

8.1 Purposes of licensing
Attribution

It is very typical (to my knowledge, universal) of open source licenses
to demand attribution notices in source code to be retained. Common
additions to this rule include:

– contributors' names may not be misused to promote other products
(as in 3-clause BSD)

– subsequent contributors must add their name to the list of contribu-
tors (as in GPL)

– attribution notices in program output must be retained (as in GPL)

Disclaimer
Once contributors have got their attribution, it is time to disclaim all re-
sponsibility. To be fair, I don't know of a country where giving permission

1In Norway, that would be Åndsverkloven.

39

40 CHAPTER 8. LICENSING

to use one's copyrighted work makes one responsible, as if selling it, but
who wants to take that risk… If not treated collectively with attribution,
the disclaimer tends to follow closely the same rules for preservation as
attribution. The disclaimer is often strikingly similar between licenses,
even in wording. 2

Copyleft
Copyleft is a form of copyright that permits derivative works to be made,
provided that these are distributed under the same requirements as the
original. In practice, the work will be perpetually tied to that exact li-
cense, except where licenses are designed or agreeed to be compatible. 3

However, compatibility goes mostly one way, from permissive to less per-
missive licenses. The scope of copyleft can apply to changes and additions
to the original work, which a few licenses distinguish.[epl(2004)]

8.2 Applicability to own needs

If I understand the enthusiasm of my supervisor right, it is important for NTNU
to harvest all possible prestige from this project. If NTNU, as well as Andrzej
and me, wants our attribution notices to be respected, we should rule out re-
leasing the project to public domain. Disclaiming responsibility is probably a
good idea too, by analogy to how others have done open source licensing be-
fore. So far, a BSD-style license would fit well, without being more restrictive
than needed. If we also want to protect our names from misuse, why not specif-
ically take the 3-clause BSD license.[3bs(2012)]

However, the final criterion of copyleft will be decisive and difficult: First off,
our creation is supposed to be suitable for inclusion in proprietary products of
capitalistic companies in fierce competition. Given no incentive to cooperate,
said companies can be expected to want to keep their own code secret. Some
of it, I presume, very secret. Thus, a strong copyleft license like GPL would be
totally unacceptible to them. 4 On the other hand, a too permissive license like
BSD would not require them to share improvements to our creation.

2A particularly legalese wording, that is: redundant wording with Caps-Lock on.
3Even translating a license is nontrivial due a to risk of infringement no one wants to

take.[gpl(2012)]
4GPL requires combined works containing GPL-licensed code to also be licensed under GPL

terms, including other constituents. This positive feedback loop is what critics call viral.[vir(2012)]

8.3. VERDICT 41

8.3 Verdict
Of the not-so strong copyleft licenses:

• LGPL seems unfitting due to its requirement of runtime linking in order
not to fall back to GPL mode.

• Eclipse Public License[epl(2004)] is supposedly «business friendly», but
is still in the «permissive» category. [Atwood(2007)] Minus point for not
being GPL compatible.

• Mozilla Public License[mpl(2012)] distinguishes changes from additions
on a per-file basis. Changes to MPL-licensed files fall under the MPL,
whereas additions of other source files do not. I see no problem with this.

If it was up to me, I would without doubt go for Mozilla Public License. But
my decision is only suggestive.

42 CHAPTER 8. LICENSING

Chapter 9

Conclusion

A framework around the PDCP protocol has been implemented for the AVR
microcontroller architecture, and basic protocol features work between our own
nodes. Binding with the Canadian node was not successful, but we have no
reason to believe this isn't just a minor fault of our own. Specifically, an untested
theory might explain the accumulation of messages observed, but this does still
not explain the crash.

The Canadian protocol specification is somewhat lacking, but not to the
point of being a compatibility problem. In some ways, it seems not entirety
thought through, but this should not limit further refinement and development.

43

44 CHAPTER 9. CONCLUSION

Glossary

Andrzej Andrzej Zamojski; creator of the low level part of PDCP for AVR. 12,
37, 38, 40

CAN Controller Area Network. 5, 7

Device Personality the combination of what the PDCP protocol refers to as
Vendor Id and Product Id and Serial Number. 19, 20, 35

FIFO datastructure with the first in, first out property; queue. 11, 17, 25, 26

HAL Hardware Abstraction Layer. 3, 12, 17

HLL High Level Layer. 3, 12, 17

my supervisor Øyvind Stavdahl; associate professor at department of engi-
neering cybernetics at NTNU. 38, 40

NTNU Norwegian University of Technology and Science. ii, 26, 40

PDCP Prosthetics Device Communication Protocol. 3, 7

UNIX a class of operating systems identified by commonality in file APIs among
other things. 17

45

46 Glossary

Bibliography

[epl(2004)] Eclipse Public License. 2004. URL http://www.eclipse.org/legal/
epl-v10.html.

[mcp(2005)] MCP2515 CAN controller datasheet. 2005. URL http://ww1.
microchip.com/downloads/en/devicedoc/21801d.pdf.

[3bs(2012)] 3-clause BSD license. 2012. URL http://www.opensource.org/
licenses/BSD-3-Clause.

[avr(2012)] avrlibc. 2012. URL http://www.nongnu.org/avr-libc/
user-manual/group__avr__interrupts.html.

[go(2012)] go. 2012. URL http://golang.org/doc/effective_go.html#
channels.

[gpl(2012)] Unofficial translations of GPL. 2012. URL http://www.gnu.org/
licenses/translations.html.

[mpl(2012)] Mozilla Public License. 2012. URL http://www.mozilla.org/MPL/
2.0/FAQ.html.

[nim(2012)] Nimron. 2012. URL http://www.nimron.no/P1000/.

[rep(2012)] repeat. 2012. URL http://en.wikipedia.org/wiki/Don't_
repeat_yourself.

[vir(2012)] 2012. URL http://en.wikipedia.org/wiki/Viral_license.

[Atwood(2007)] Jeff Atwood. 2007. URL http://www.codinghorror.com/
blog/2007/04/pick-a-license-any-license.html.

[Catsoulis(2005)] John Catsoulis. Embedded Hardware (Second Edition). 2005.

47

http://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/legal/epl-v10.html
http://ww1.microchip.com/downloads/en/devicedoc/21801d.pdf
http://ww1.microchip.com/downloads/en/devicedoc/21801d.pdf
http://www.opensource.org/licenses/BSD-3-Clause
http://www.opensource.org/licenses/BSD-3-Clause
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html
http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html
http://golang.org/doc/effective_go.html#channels
http://golang.org/doc/effective_go.html#channels
http://www.gnu.org/licenses/translations.html
http://www.gnu.org/licenses/translations.html
http://www.mozilla.org/MPL/2.0/FAQ.html
http://www.mozilla.org/MPL/2.0/FAQ.html
http://www.nimron.no/P1000/
http://en.wikipedia.org/wiki/Don't_repeat_yourself
http://en.wikipedia.org/wiki/Don't_repeat_yourself
http://en.wikipedia.org/wiki/Viral_license
http://www.codinghorror.com/blog/2007/04/pick-a-license-any-license.html
http://www.codinghorror.com/blog/2007/04/pick-a-license-any-license.html

48 BIBLIOGRAPHY

[Losier(2009)] Yves Losier. Moving Towards an Open Standard: The UNB Pros-
thetic Device Communication Protocol. 2009.

[Losier(2012a)] Yves Losier. AIF2 System Data Capture (Formatted). 2012a.

[Losier(2012b)] Yves Losier. Prosthetic Device Communication Protocol for the AIF
UNB Hand Project. 2012b.

[Natale(2008)] Marco Di Natale. Understanding and using the Controller Area Net-
work. 2008. URL www-inst.eecs.berkeley.edu/~ee249/fa08/Lectures/
handout_canbus2.pdf.

www-inst.eecs.berkeley.edu/~ee249/fa08/Lectures/handout_canbus2.pdf
www-inst.eecs.berkeley.edu/~ee249/fa08/Lectures/handout_canbus2.pdf

	Tittelside
	Preface
	Abstract
	Forord
	Introduction
	Theory
	CAN protocol
	Arbitration
	Addressing
	Message filtering

	PDCP protocol
	Division of the Standard Identifier Field
	Division of the Data Field

	Design
	Overall design
	Buffering
	Middle layer interface

	Implementation
	Socket module
	HLL module
	Storing which nodes has bound to the arbitrator
	Why there is no protocolHandler in the source code
	Compilation switches

	Testing
	Unit testing
	socktest.c
	offsetof.c

	Testing on proper hardware

	Test results
	Bind sequence
	Reset sequence
	Bind sequence with Canadian device

	Discussion
	C versus C++
	Reduce scope of constants
	Parameterized datatypes

	Protocol evaluation
	Node Id
	Byte order
	Channels

	Method evaluation
	Separate offices → not so easy collaboration
	Simultaneous development of layered software
	Flimsy AVR Studio → lack of testing

	Implementation decisions

	Licensing
	Purposes of licensing
	Applicability to own needs
	Verdict

	Conclusion

