
Design, Implementation and Testing of
Low-level Layers of the PDCP for the AVR
Platform

Andrzej Zamojski

Master of Science in Engineering Cybernetics

Supervisor: Øyvind Stavdahl, ITK
Co-supervisor: Kamil Grabowski, DMCS at TU of Lodz (POLAND)

Department of Engineering Cybernetics

Submission date: June 2012

Norwegian University of Science and Technology

NTNU Faculty of Information Technology,
Norwegian University of Mathematics and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

Master’s Thesis

Student’s name: Andrzej Zamojski

Field: Engineering Cybernetics

Title (Norwegian): Design, realisering og testing av nedre lag i PDCP på AVR-platformen

Title (English): Design, Implementation and Testing of Low-level Layers of the PDCP
 for the AVR Platform

Description:
The prosthetics industry is dominated by companies that primarily use their own proprietary
standards. This is an increasing hindrance to interoperability of components from different vendors.
Following an initiative by NTNU in 2005, international actors have started the development of a
standardized bus interface that will enable such interoperability. The protocol is mainly developed at
the University of New Brunswick, Canada, and currently only implemented on the PIC (Microchip)
controller platform. This implementation is proprietary. We now want to implement the protocol on
the Atmel AVR platform and release the code so that all vendors and researchers can use it. The
software will be implemented for the ITK AVR controller card.
This assignment primarily concerns the lower levels of the protocol stack, while the upper layers will
be developed in a parallel activity.

1. Give a concise description the CAN bus standard in relation to the ISO OSI model.
2. Familiarize yourself with the present PDCP draft standard. Provide a brief overview of its

main features related to the OSI model. Point out properties that relate explicitly or implicitly
to hardware resources and that is relevant for the implementation’s portability to other HW
platforms primarily based on the AVR controller family and secondarily on other controller
architectures.

3. Suggest a suitable software architecture for the implementation of the protocol stack, and
provide a detailed description of the interface between the lower and the higher levels of the
software stack, respectively. This task should be carried out in close cooperation with the
student responsible for the higher levels to ensure compatibility between the two.

4. Perform a detailed design and implementation of the lower level software on the given
hardware.

5. As far as the time permits, test the results with the higher-level AVR implementation and with
a node based on the Canadian implementation.

Advisor(s): Associate Professor Øyvind Stavdahl, NTNU

Trondheim, January 2012

Øyvind Stavdahl
Supervisor

iii

Abstract

The industry engaged in prostheses production is dominated by companies that

offer products using their own propriety standards. This results in either impossible

or significantly impeded cooperation between modules from different manufacturers

within one device. Looking for solutions to this problem in 2005 engineers started

working on standardization of communication interface. Outcome of the University of

New Brunswick (UNB) Hand Project, founded by Atlantic Innovation Fund (AIF), is

still improved interface Prosthetic Device Communication Protocol for internal

communication of prosthesis hand modules.

This paper has been devoted to the matter of design and implementation of the

lower layers of PDCP on AVR Platform, hugely popular in systems of prostheses. An

important aspect was to maximize software portability between different models of

AVR family microcontrollers and as far as possible between microcontrollers from

different manufactures. Software should be well documented and understandable for

engineers enabling further development.

Hardware layer used in this project was based on AT90USB1287 Atmel

microcontroller, external CAN controller MCP2515 and CAN transceiver MCP2551

(both manufactured by Microchip). A part of the project was to design Printed Circuit

Board giving a visualization of the software portability.

The software was designed in close cooperation with the student responsible for

the higher layers of the interface, therefore corresponding interface had to be

designed. Lower layers of PDCP are based on interrupt generated by the CAN

controller chip. Thanks to this solution maximum capacity was ensured while

providing CPU time for upper layers of interface and application-specific tasks.

v

Streszczenie (Abstract in Polish)

Gałąź przemysłu zajmująca się produkcją protez jest zdominowana przez firmy,

które w oferowanych produktach stosują własne, prawnie zastrzeżone, standardy.

Wskutek tego, współpraca modułów różnych producentów w obrębie jednej protezy

często jest niemożliwa lub znacząco utrudniona. Szukając rozwiązań tego problemu

inżynierowie w 2005 roku rozpoczęli prace nad standaryzacją interfejsu

komunikacyjnego. Owocem projektu AIF UNB Hand Project (Atlantic Innovation Fund

University of New Brunswick) koordynowanego przez wspomniany uniwersytet

w Kanadzie jest wciąż udoskonalany interfejs PDCP (z ang. Prosthetic Device

Communication Protocol), służący komunikacji modułów wewnętrznych protez ręki.

Niniejsza praca została poświęcona projektowi i implementacji niższych warstw

w/w protokołu w oparciu o kontrolery firmy Atmel cieszące się dużą popularnością

w układach protez. Ważnym aspektem była maksymalizacja przenośności kodu

między różnymi modelami mikrokontrolerów z rodziny AVR i na ile to możliwe

między mikrokontrolerami różnych producentów. Opracowane oprogramowanie

powinno zostać szczegółowo udokumentowane aby umożliwić dalszy rozwój

interfejsu.

Wykorzystywana w projekcie warstwa sprzętowa została oparta na

mikrokontrolerze AT90USB1287 firmy Atmel, układzie kontrolera magistrali CAN

MCP2515 oraz kontrolera warstwy fizycznej oznaczonego symbolem MCP2551,

których producentem jest firma Microchip. Częścią projektu było wykonanie płytki

drukowanej, za pomocą której zaprezentowana została przenośność

oprogramowania, dzięki zastosowaniu innego mikrokontrolera.

Oprogramowanie zostało zaprojektowane w ścisłej współpracy z innym

studentem (Andreasem Nordalem) odpowiedzialnym za wyższą warstwę interfejsu,

w oparciu o przerwania generowane przez układ kontrolera CAN. Dzięki takiemu

rozwiązaniu została uzyskana maksymalna przepustowość interfejsu przy

maksymalizacji czasu pracy procesora dla wyższych warstw interfejsu oraz aplikacji

specyficznych dla poszczególnych modułów systemu.

vii

Preface

This thesis is submitted in fulfillment of the degree of Master of Science at the

Norwegian University of Science and Technology, Department of Engineering

Cybernetics.

Working on this project occurred a really challenging experience. I hope that end

effect will be useful for students and cybernetic engineers in the future work on the

standardized communication protocol for prostheses. As I have heard from

a physically challenged man: “Engineers, you are our future”. I believe that this

sentence somehow shows us how important our work is in fact.

Taking the opportunity I would like to express my gratitude to Øyvind Stavdahl

for being my enthusiastic and excellent supervisor, as well as Kamil Grabowski for

being my very helpful co-supervisor from my home university in Łódź, Poland.

ix

Table of Contents

1 Introduction ... 1

2 Low-level protocols .. 5

3 CAN interface .. 7

3.1 Physical layer ... 7

3.2 Data frame .. 8

3.3 Layer model .. 9

4 Prosthetic Device Communication Protocol .. 11

4.1 Identifier field ... 11

4.2 Protocol functions ... 13

5 PDCP interface layout ... 17

5.1 HAL – HLL interface ... 17

5.2 Software layout .. 19

5.2.1 Hardware architecture ... 19

5.2.2 Programming language and software platform ... 21

5.2.3 CAN controller – initialization ... 22

5.2.4 Microcontroller resources .. 24

5.2.5 Overall system structure ... 24

5.2.6 Messages sending ... 26

5.2.7 Messages receiving .. 29

5.2.8 Additional functionalities .. 30

5.2.9 File structure .. 32

5.2.10 Code structure ... 34

5.2.11 Name convention ... 37

5.3 New hardware platform ... 39

6 Testing .. 43

6.1 Introduction .. 43

6.2 Code portability – testing ... 44

6.3 Mechanism of message sending and receiving – testing 46

6.3.1 Impact of SPI speed on the HAL interface capacity – testing 49

x

6.3.2 Impact of CAN speed for HAL interface capacity – testing51

6.3.3 Impact of size of data field on HAL interface capacity – testing52

6.4 Data lossless transmission – testing ... 52

6.5 HAL – HLL interface testing ... 53

6.6 Canadian implementation – compliance testing ... 56

7 Suggested future work ..57

8 Conclusions ..59

9 Bibliography ..63

10 Attachments ..65

10.1 Printed Circuit Board – electric schematic .. 66

10.2 Printed Circuit Board – layers .. 68

10.3 Printed Circuit Board – Bill Of Materials (BOM) .. 69

11 Appendix A ...71

12 Appendix B ...73

13 Appendix C ...75

1

1 Introduction

The best way to experience how important in human life are hands is to ask

physically challenged people a question about comfort of their life. Only a few parts of

human body are as complex and important as our hands. Handling everyday tasks is

feasible thanks to splendid interplay of the nervous system, tendons, over 20 bones,

muscles and joints. Despite technological progress recreation of hand functions is still

a great challenge, both medical and mechanical, electronic and control.

One of the most important aspect that this master project concerns is prostheses

modularity and communication between its modules. Many previous and current

designs of the commercial arm prostheses do not support the modular approach,

which can influence degree of adaptation to user’s needs and disability. Frequently

whole device consists of 2 modules: the integrated palm and EMG electrode module.

The division in case of any part failure leads to the necessity of whole module

replacement. Therefore over years researchers have still been trying to customize the

prosthesis to user’s needs by developing the idea of modularity. Some of past project

are worth noticing.

The background for many subsequent solutions was SVEN hand project developed

during the 1970s in Sweden. Apart from a mechanical aspect the most significant

contribution was control system, which used EMG recordings from six electrodes

located on the residual limb while the patient performed basic hand movements like

finger flexion or wrist extension. EMG signals could then be used to control the

prosthesis by pattern-recognition technique implemented in analog EMG processor

system. Another solution was Edinburgh Arm System that introduced a new

Chapter 1 Introduction

2

mechanical solution, but also was controlled with conventional analog electronic

controllers.

A name that is often mentioned in discussion about upper-limb prostheses is Otto

Bock. In 2000 the group of 2 people (R. Obermaisser, A. Kanitsar) together with

O. Bock presented implementation of TTP protocol for master-slave application,

which could be treated as a basis for the modular system.

Time-Triggered Architecture (TTP) is a real-time protocol using Time-Division

Multiple Access (TDMA) scheme to provide collision-free transmission. Data

communication is organized in TDMA rounds, which layout is defined a priori and

known to all nodes in the system. Every round is divided into time slots associated

with individual system nodes that are obliged to send frames in every round. A few

rounds (usually with different messages inside) are combined into one cluster cycle,

which is repeated over time. Data protection is provided by CRC sum. To proper

operation system needs clock synchronization, which is done by each node by

measuring the difference between known expected and observed arrival time of a

correct message to compute the difference between sender`s and receiver`s clocks.

This information about time shift is indispensible to keep node clock in synchrony

with time frame in cluster. Previously mentioned authors have attempted to

implement this protocol to the system consisting of one master and up to 7 slave

devices, which was first industrial application of TTP/A. To fulfill time restrictions

required by motor control some more sophisticated designs of rounds and cluster

had to be performed. That project proved that TTP/A protocol is suitable for time-

critical industrial applications providing efficient data transmission and error

handling. More details about the aforementioned implementation can be found in the

literature [2].

Chapter 1 Introduction

3

Another important step in upper-limb prosthetics was “Totally Modular Prosthetics

Arm with high Workability” (ToMPAW) consortium founded by the European Union in

2007. The major concern in the provision of each limb prosthesis is to design and

produce a solution that is most appropriate to the user needs. Such properties as level

of losses, the strength and the needs and abilities of the user must be taken into

account. All these factors complicates prosthesis design and makes prosthesis as

individual as its wearer. Therefore, to simplify this process, modular approach should

be adopted, which involves necessity of interchangeability and interoperability

between modules provided by commercial suppliers. With the development of

microprocessor-based controllers researchers received tool that enabled selecting

suitable control strategy and enabling fast, secure and easy way to test it on patients.

ToMPAW consortium addressed all these problems presented above.

The result of that project was total arm system providing function separation

(modularity) and simplified way of upgrades and modifications. The distributed

system ensured that single failure did not stop the whole device. Moreover, the

system could be assembled from the set of standardized components (both from the

electronic and mechanical points of view), which was undoubtedly an advantage. The

design of control system took into account reliability and modularity, which was

made by a decreasing amount of interconnections (Fieldbus has built-in network

communication support and data protection mechanism). The design of ToMPAW

system enables simple adding of additional joints and functional units with decreased

amount of changes in the system.

As can be easily noticed, the development in prosthetics technology goes in the

direction of increased modularity, number of motors and controlled joints, which

involves more sophisticated control algorithms and communication requirements. To

meet these expectations researchers more often think about standardization and first

results of this process are already visible.

Under the name of consortium, which has long sought to standardize prosthetic

control system, the Standard Control Interface for Prosthetics (SCIP), Yves Losier from

Chapter 1 Introduction

4

University of New Brunswick, Canada, has posted a draft of CAN-based standard

for AIF UNB Hand Project. After some time the designed interface has gained a name:

Prosthetics Device Communication Protocol (PDCP). To date (as far as it is known to

author of this thesis) only one implementation on PIC (Microchip) controller platform

was performed. The designed draft protocol is based on CAN messages transmission.

This standard, established for automotive communication, increases modularity

possibilities of prosthesis with protection mechanism against data corruption and

simple electronic structure. It should be noted that with development of prosthetics

more and more sophisticated prostheses are available for researchers. The effective

control of joints within the device is both clinical goal as well as the challenging

research, because of an increasing number of physical connections and data flow. The

designed interface should therefore facilitate this process providing fast, reliable and

simple transmission medium.

Researchers do hope that manufacturer or researcher group will in the future benefit

from published standard and related API or source code to ensure compatibility with

any arm joint, hand or intrinsic hand joint.

5

2 Low-level protocols

There are numerous commercial off-the-shelf low-level protocols providing basic

mechanisms for transmission and robustness. Designing completely new protocol

from scratch could not make sense when existing protocols are proven and give good

results in many industrial applications. Instead of that a complete protocol for

prostheses could be built on top of one of technologies like I2C, CAN or ZigBee.

However, some features specified below should be achieved.

Reduced wiring – simpler connections and less interference into external

environment, also reduced production cost and failure rate;

Availability – immediate availability of hardware and software components.

Standardized interface should be made out of components widely available

on the market;

Reduced risk – technology proven in many previous applications. It reduces

probable problems at start-up;

Reduced complexity – only higher-level functionality should be included in

protocol specification. The majority of hardware issues could be acquired

by low-level protocol software.

High capacity of the system – prostheses systems desire dense data exchange,

which should be provided firstly by low-level protocol, secondly by

software basing on that.

Chapter 2 Low-level protocols

6

The comparison of the mentioned technologies was presented in Table 1.

Table 1 Comparison of commercial low-level protocols

Property CAN I2C ZigBee

Differential
transmission

YES NO NO

Wiring 1-2 wires 2 wires wireless

Bit rate 0-1 Mbps 0-3.4 Mbps 20-250 kbps

Range 40 m Not defined 10-70 m

Power
consumption

10 mA
(transmission)

Extremely low
To 30 mA

(transmission)

Required external
components

Transceiver chip None Transceiver chip

From above interesting conclusions can be drawn. Every technology provides

advantages. Some of them like wireless communication seem to be very good from

prosthesis point of view. However, it follows slower data transmission and higher

sensitivity to interference from other devices. The tendency to wiring reducing leads

to focusing on CAN bus, which provides differential transmission using only two

wires and relatively high bit rate. A range aspect in case of prosthesis does not play a

significant role because of rather small distances between communication nodes.

There is no doubt that I2C protocol wins in the category of required external

components. Almost every microcontroller provides support for this protocol,

decreasing cost of production and size of electronic circuits.

Taking into account all above factors for the purpose of the PDCP CAN interface was

chosen.

7

3 CAN interface

Controller Area Network (CAN) was designed by Robert Bosch in the mid-1980s

for automotive applications as a response to the increasing need for more reliable,

safe and fuel-efficient automobiles while decreasing complexity and wiring weights.

CAN protocol gained widespread popularity in many areas of industry like medical

engineering, automotive electronics, engine control units, sensors or mobiles

machines.

3.1 Physical layer

Physical layer of CAN interface was presented in Fig. 1.

Fig. 1 CAN interface - physical layer

CAN standard uses differential transmission on 2 wires (signed CAN+ and CAN-).

Additionally, all interface in the bus should have the same ground potential therefore

at least ground line (GND) should be also provided. Moreover, noise immunity is

achieved by maintaining impedance on the bus with low-value resistors 120 Ω at each

end of the bus.

NODE
1

NODE
2

NODE
3

NODE
N

CAN+

CAN-

Chapter 3 CAN interface

8

To reduce susceptibility to interference and minimize RF emission CAN bus wires

should be carried in twisted pair wires – this aspect might be very important for

reliable prosthesis operation in a noisy environment (mobile phones, computers and

all other electric and electronic equipment).

3.2 Data frame

CAN protocol is a message-based protocol. Every node in the system receives

every message and compares arbitration field with node identifier, filters and mask

determines if message should be discarded or kept to be processed. CAN is often

described as CSMA/CD protocol. Carrier Sense Multiple Access means that every node

within the system must monitor the system bus for periods of no activity before

trying to send any message. Moreover, multiple access means that every node on the

bus has the same opportunity of message transfer in case of bus non-activity.

Structure of CAN Message Data Frame was presented in Table 2.

Table 2 CAN Message Data Frame

SOF
Arbitration

Field
Control

Field
Data Field CRC Field Ack Field EOF

1b 12b or 32b 6b 0-8B 16b 2b 7b

Data frame consists of fields that provide information about transferred message and

enable correct arbitration. Start of Frame marks the beginning of data frame by single

dominant bit. Next time slot is Arbitration Field consisting of 12 or 32 bits depending

on whether Standard or Extended Frames (Standard or Extended Identifier Field) are

being utilized (for purpose of this project only Standard Frames are used). The value

of arbitration field defines the priority of the message. Arbitration in CAN protocol

uses logic bit 0 as a dominant bit state that wins over recessive bit state. This implies

the lower the value in the Message Identifier, the higher the priority of the message. In

case of arbitration node trying to transmit message with lower priority it is forced to

wait for the next period of no activity on the bus. Thanks to this solution risk of data

loss is significantly reduced. Next time slot takes Control Field that contains

Chapter 3 CAN interface

9

knowledge about the size of Data Field (from 0 up to 8 bytes). The CRC Field consists

of a 15-bit CRC field and delimiter. This field is used by the recipient to determine if

transmission errors have occurred. The Acknowledge Field is utilized to indicate

correctness of message reception – the recipient after correct message reception puts

a dominant bit on the bus in ACK slot time. End of Frame is marked with 7 recessive

bits.

3.3 Layer model

CAN is a serial communication protocol that implements most of the lower two

layers of ISO Open Systems Interconnection (OSI) Network Layering Reference Model

was presented in Table 3 and Table 4.

Table 3 ISO OSI model

Layer Description

Application (7) Network process for application

Presentation (6) Data representation, encryption and decryption

Session (5) Interhost communication

Transport (4) Reliability, flow control

Network (3) Logical addressing

Data link (2) Physical addressing

Physical (1) Electrical and physical specification

This model gives the prescription of characterizing and standardizing the

functions of communication systems in terms of abstraction layers. Functionalities,

which play a similar role in the system, are grouped together into logical layers.

Particular layers serve one another being responsible for individual tasks within the

system in the order of abstraction.

Chapter 3 CAN interface

10

Table 4 CAN specification in relation to ISO OSI model (literature[6])

Layer Detailed description

Data link Logical Link Control (LLC):

 Acceptance Filtering;

 Overload Notification;

 Recovery Management;

Medium Access Control (MAC):

 Data Encapsulation/Decapsulation;

 Frame Coding (Stuffing/Destuffing);

 Error Detection;

 Serialization/Deserialization;

Physical Physical Signaling (PLC)

 Bit Encoding/Decoding

 Bit Timing/Synchronization

Physical Medium Attachment (PMA)

 Driver/Receiver Characteristics

Medium Dependant Interface (MDI)

 Connectors

To optimize the communication protocol on multiple media and increase

possibilities of adaptation to certain conditions BOSCH company did not specified the

CAN protocol in a very strict way. International Standard Organization with Society of

Automotive Engineers has defined protocols based on CAN containing specified

features which should be fulfilled like: differential signal transmission and speed of

transmission (up to 1Mbps). Moreover, issues of coding and timing bound with

synchronization were included there. All of them are related to the physical layer of

the OSI model. The CAN specification also contains issues associated with

serialization, error detection, frame coding and data capsulation which are definitely

related to the data link layer of ISO/OSI model. Message filtering was also described

within the CAN specification. The rest of the layers of the ISO/OSI model are left to be

implemented by the software designer – this might include distribution of node id`s,

determination of messages structure and/or providing error handling routines.

11

4 Prosthetic Device Communication
Protocol

The aim of this chapter is to give some overview of Prosthetics Device

Communication Protocol features that is based on CAN bus described in the previous

section. Firstly, some specification of identifier field were presented. Secondly,

message exchange system with functions description were outlined.

4.1 Identifier field

One of the most significant elements of the CAN message frame from the PDCP

point of view are the identifier field together with the data field. Message addressing

and prioritization is executed thanks to Standard Identifier Field that for the purpose

of this protocol was divided into 3 subsections. A short description was presented in

Fig. 2.

Fig. 2 Division of Arbitration Field for PDCP

b
11

b
10

b
9

b
11

b
11

b
11

b
11

b
8

b
7

b
6

b
5

b
4

b
3

b
11

b
11

b
11

b
11

b
2

b
1

b
0

NODE ID
MESSAGE MODE

MESSAGE PRIORITY

0

RTR

Chapter 4 Prosthetic Device Communication Protocol

12

Message Priority Field – these 2 bits of Standard Identifier Field are used to

assign a priority to an outgoing message. The lower value, the higher

priority message has (0 = High Priority, 1 = Normal Priority and 2 = Low

Priority). The last value (3) is used by the device while attempting to bind

itself to the bus. While more than one device is trying to send message at

the same time, arbitration logic will give the bus access to device with

higher priority. In case of the same priority level, the message arbitration

will decide about control basing on field described below;

Message Mode Field – this field determines a source of message and takes the

value of 1, when message originates from Bus Arbitrator (Bus Arbitrator

Message Mode) or 0, when from some other device (Standard Message

Mode). The result is the fact that in case of attempt of simultaneous

transmissions of two or more messages (with identical Message Priority

Fields) arbitration logic will give bus control to device with lower value of

Message Mode Field, so to the message with Standard Message Mode. In case

of the same priority level and message mode value decision about bus

control is made basing on node identifier value;

Node Identifier Field – the value of this field depends on the Message Mode

Field value. If bus arbitrator is going to send a message, then this field is

assigned the NodeId of intended recipient. Otherwise, if the sender is

a normal device, then this field is assigned with NodeId of the transmitting

device.

It is worth noticing that the capacity of the system reaches value of 255. Node ID

value 0 was reserved for broadcast messages within entire bus system. Message

filtering is done using masks and filters available to control by internal registers of

CAN controller. Therefore, different nodes within one system may work as arbitrators

and receive all messages, while others are specified to accept only messages

addressed to themselves.

Chapter 4 Prosthetic Device Communication Protocol

13

4.2 Protocol functions

Message transmission implemented in the designed Prosthetic Device

Communication Protocol is based on request-response message exchange model. The

system module, which sends a message, expects to receive a response unless this

functionality does not expect a response to be returned (Device Beacon function).

PDCP contains 15 function code (with 4 deprecated) so far and code left for future

system commands and module-specific commands. Table with function codes was

presented in Table 5.

Table 5 List of function codes of PDCP (* - deprecated functions)

Function
Code

Function Code Description Sender Recipient
ISO/OSI

layer

0x01 Bind Device Request Device Bus Arb 3,4

0x02 Get Device Info (*) Bus Arb Device *

0x03 Get Device Parameter Bus Arb Device 3

0x04 Set Device Parameter Bus Arb Device 3

0x05 IntGetDeviceParameter (*) Device Bus Arb *

0x06 IntSetDeviceParameter (*) Device Bus Arb *

0x07 SetNodeId (*) Bus Arb Device *

0x08 Suspend Device Bus Arb Device 6,7

0x09 Release Device Bus Arb Device 6,7

0x0A Device Beacon Dev or Arb Arb or Dev 5 or 3/4

0x0B Reset Device Bus Arb Device 2,3,4,6,7

0x0C Configure Get Bulk Data Transfer Bus Arb Device 3,4

0x0D Configure Set Bulk Data Transfer Bus Arb Device 3,4

0x0E Bulk Data Transfer
Device or
Arbitrator

Arbitrator
or Device

3

0x0F Update Data Channel Device Bus Arb 3

Chapter 4 Prosthetic Device Communication Protocol

14

For better understanding of request-response model, some details of one function

code were presented in Table 6. For this purpose Bind Device Request function was

chosen.

Table 6 Parameters of Bind Device Request function code

Parameter Value

Function code 0x01

Response function
code

0x81

Description

Function is sent just after power-on or reset. The bus arbitrator

respond consists of available NodeId that has not been allocated

to another device within the system. The device is successfully

bound with the system if NodeId used by the device and received

NodeId are identical. Otherwise, the device is obliged to send new

Bind Device Request using received NodeId.

Sender Any device

Recipient Bus Arbitrator

Data bytes (request) 7

Data bytes (response) 8

In Table 7 and Table 8 the structure of CAN messages data field for Bind Device

Request was presented.

Table 7 Request message format (data field) - Bind Device Request function

BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7

0x01 Device Vendor ID Device Product ID
Device Serial

Number
(empty)

Table 8 Response message format (data field) - Bind Device Request function

BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7

0x81 NodeId Device Vendor ID Device Product ID
Device Serial

Number

Chapter 4 Prosthetic Device Communication Protocol

15

In Table 9 and Table 10 one example of binding message transfer was presented.

More details and explanation were placed below tables.

Table 9 Bind Device Request - example

Standard Identifier Field

Priority Message Mode Node ID DLC

3 0 6 7

BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7

0x01 0x03 0x00 0xA9 0x00 0x17 0x00 -

Table 10 Bind Device Request response - example

Standard Identifier Field

Priority Message Mode Node ID DLC

1 0 1 8

BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7

0x81 0x06 0x03 0x00 0xA9 0x00 0x17 0x00

To illustrate mechanism of message exchange between 2 modules of prosthetic

system Bind Device Request function has been chosen. As can be easily noticed,

response code for every code function is logical sum of function code and value 0x80.

In case of binding request function, data field consists of device vendor id, device

product id and device serial number. Inside of the identifier and beside of priority and

message mode, one of the most important part is NodeId (in this example bold value

0x06). If this NodeId is not assigned to any other device within the system, the bus

arbitrator in response message sends back this particular value of NodeID (in this

case 0x06). Otherwise, arbitrator sends back another NodeId and the procedure has

to be repeated. It is worth noting that this functionality may be assigned both to link

and transport layer of the ISO/OSI model because it concerns matters of logical

addressing and flow control as well.

Chapter 4 Prosthetic Device Communication Protocol

16

The last column of the table presenting description of the functions contains the

attempt to assign particular functionalities into layers of the ISO/OSI model. So far

there has been little discussion about it, probably because of the early stage of

development and first software implementations of designed interface. Such division

might help in protocol standardization in the future.

Protocol functions implement mainly 3 and 4 layer of ISO/OSI model, network and

transport layer accordingly. While determining function attributes, an emphasis was

placed on feature distribution in ISO/OSI model. However, one has to realize that it is

often quite hard, if not impossible, to give strict information which functionalities

should be assigned to which model layer. Functions, which are not related to setting

parameters within a system node (Get Device Parameter or Set Device Parameter,

Update Data Channel), may be assigned to third layer of ISO/OSI model (link layer).

The functions that are responsible for more than setting or getting some parameters

but also trigger some logical connection between nodes were assigned both to the

link layer and the transport layer. This applies mainly to Bind Device Request

described in the previous section that establishes the connection between system

nodes and enables bus configuration. Device Beacon is the function that provides

control over nodes in the system by checking their connection to the system. If the

node does not send Beacon messages to Arbitrator in specified time intervals, might

be reset. There has been a big discussion to which layer this function should be

assigned. One, which seems to be accurate, is the session layer (interhost

communication, session managing between applications, which may be understood as

session maintaining between one node and other system nodes). From another point

of view this functionality could be ascribed to link and especially the transport layer,

as e.g. Bind Device Request, because of flow control mechanism maintaining features.

Very similar problem refers to functions responsible for device suspending and

releasing. Depending on whole application and interface layout, this function may

concern higher or lower layers of ISO/OSI model. Reset Device function, which follows

from the idea of reset, was assigned both to the data link layer (while reset also CAN

controller should be reset) and higher model layers – software reconfiguration.

17

5 PDCP interface layout

This section begins with the description of the Prosthetics Device Communication

Protocol division into two parts carried out parallel with another student. Next, the

broadest subsection is devoted to software layout of the low level part of the

interface, which is the main topic of this work. Finally, hardware aspects and design

of PCB board have been outlined.

5.1 HAL – HLL interface

The PDCP implementation was divided into 2 parts called as follows:

 HLL – High Level Interface

 HAL – Hardware Abstraction Layer

Acronyms mentioned above are consequently used in the next part of this

dissertation.

High Level Layer contains implementation of binding and interface functions

without any consideration about hardware issues. As mentioned above, this software

was designed by Andreas Nordal [master thesis on Design, Implementation and

Testing of High-Level Layers of PDCP for AVR, under publication], but interface

between HLL and HAL was carried out with strong cooperation between two

designers of the PDCP for AVR implementation.

Chapter 5 PDCP interface layout

18

The interface between HLL and HAL consists of following data structures and

functions:

struct can_msg – contains following fields: identifier, number of data bytes of

message frame and data bytes;

#define CONFIG_BUS_MODE – pre-processor directive defining node type

(ARBITRATOR or DEVICE);

void hal_set_mask (uint8_t id) – sets mask configuration of CAN controller

providing message reception conditions;

void hal_set_filter (uint8_t id) – sets filter configuration of CAN controller

providing message reception conditions;

void hal_msg_poll () – retries fetching an incoming message left in CAN

controller in case of no memory to assign message to pointer for HLL;

struct can_msg* hll_msg_alloc() – reserves unused memory for incoming CAN

message. Pointer to can_msg structure should be returned to caller (HAL);

void hll_msg_commit (struct can_msg* msg) – invokes HLL`s processing of

CAN message referenced by msg pointer, function called by HAL after

message reception;

struct can_msg* hll_msg_get() – looks for messages to send in HLL and if

found, return can_msg structure to caller. Otherwise, returns NULL;

void hll_msg_free (struct can_msg* msg) – marks the memory used for CAN

message as unused, additionally after message sending checks whether any

message is waiting for reception from CAN controller.

As can be easily noticed, some name convention was used. Explanation was

presented in chapter 5.2.11 Name convention. Function usage was described precisely

in chapters treating about message sending and receiving 5.2.6 Messages sending and

5.2.7 Messages receiving, respectively.

Chapter 5 PDCP interface layout

19

5.2 Software layout

This chapter precisely describes design and implementation of the Hardware

Abstraction Layer pointing out information about factors influencing modularity,

portability capabilities between microcontrollers from AVR family and as far as

possible between microcontrollers from different microcontroller vendors. Firstly, an

introduction and hardware resources used in the project have been described.

Secondly, aspects of message sending and receiving have been outlined. Then, other

functionalities implemented within the HAL have been described and at the end, the

project file and code structure have been presented.

5.2.1 Hardware architecture

In Fig. 3 NIMRON board, used for protocol implementation, was presented.

Fig. 3 NIMRON board layout

Chapter 5 PDCP interface layout

20

Printed Circuit Board from Fig. 3 was designed by Ole Johnny Borgersen and

Marius Lind Volstad as USB Multifunction Board – NIMRON. Now it is used in

programming courses by students of Cybernetic Engineering at NTNU. Thanks to

many external peripherals it is very useful providing platform for code startup and

programming learning. From PDCP point of view hardware listed below and placed

on the board is essential.

Microcontroller: AT90USB1287 – High Performance, Low-Power AVR 8-bit

Microcontroller with 128kB of ISP Flash and USB controller;

CAN controller: MCP2515 (Microchip) – Stand-Alone CAN controller with SPI

Interface;

CAN transmitter: MCP2551 (Microchip) – High-Speed CAN transceiver.

Undoubted benefit of using this particular board was almost complete platform

for code testing. Using wires connection firstly between microcontroller and CAN

transceiver and secondly between 2 nodes could be easily reached. Board is also

equipped in RS232 junction, which may be used in communication with PC. However,

increasingly smaller amount of computers is equipped with this interface. USB gains

in popularity since a couple of years. For more comfortable usage (without a need of

binding CAN controller with microcontroller, debugging diodes or other chips with

single wires) and further interface development new hardware platform was

proposed in chapter 5.3 New hardware platform.

More information about NIMRON board can be found in literature[10] or in the

Internet1.

1http://www.nimron.no/P1000/

Chapter 5 PDCP interface layout

21

5.2.2 Programming language and software platform

Microcontroller programming in case of AVR processors may be done using

different programming languages like: Assembler, Bascom or C. Definitely the most

efficient is low-level Assembler. However, complex application desires expanded code

structure, which implies rather big code volume. Therefore, one of the most user-

friendly and common programming language for this purpose is C. Implementation of

the PDCP was programmed using that C language.

One of the most common software platforms for programming of AVR

microcontrollers are Eclipse and AVR Studio. Because Eclipse does not contain build-

in plug for AVR, some additional one has to be installed. For this reason, AVR Studio

4.0 dedicated to AVR controllers has been chosen.

Moreover, in the software development AVR LIBc2 library has been used. It provides

a high quality C library for use with GCC compiler on AVR microcontrollers, while

licensing under so-called modified Berkeley license compatible for example with GPL.

That, thanks to code structure described in the next subchapters, allowed to avoid

tedious process of coding of input-output port addresses or other essential low

hardware issues while maintaining high level of portability between microcontrollers

from the same and similar families.

2 Source: http://www.nongnu.org/avr-libc/

Chapter 5 PDCP interface layout

22

5.2.3 CAN controller – initialization

MCP2515 stand-alone CAN bus controller implements standard CAN2.0B with

transmission speed up to 1Mb/s. Communication with host is executed through

4-wires SPI interface with speed up to 10Mb/s. Mechanism of message reception

bases on two acceptance masks and six acceptance filters that are used to filter out

unwanted messages, reducing microcontroller overhead.

Fig. 4 MCP2515 simplified block diagram

The diagram presented in Fig. 4 shows elements of CAN controller mediating in

the mechanism of data transfer. Before any CAN message transmission, initialization

has to be performed. This process concerns setting mentioned flags and masks

depending on whether node is supposed to a DEVICE or an ARBITRATOR.

The controller contains also registers responsible for the bit rate. Because the CAN

protocol uses Non Return to Zero coding, which does not encode a clock within the

data stream, therefore the clock of receiver node has to be synchronized to the

transmitter`s clock.

An experiment showed that with default speed of transmission all registers

associated with bit timing can have default (unchanged) value. However,

with increased speed of transmission (up to 1Mbps) CAN bus stops operating or

CAN
Protocol
Engine

RXCAN

TXCAN

TX and RX buffers

Masks and Filters

SPI
control

logic

4

Control logic
Timing

unit

SPI

Control & Interrupt
Registers

INT

CAN MODULE

RST

Chapter 5 PDCP interface layout

23

operation is dependent of inexplicable plexus case. In a word, the system becomes

unpredictable, which is undesired.

The second aspect is the possibility of different clock frequencies of individual nodes,

which should not damage the system. Therefore, following a documentation of

MCP2515[8]: “the bit rate has to be adjusted by appropriately setting the baud rate

prescaler and number of time quanta in each segment”.

Because of technological barriers or oscillator mismatch phase shifts may occur

during transmission. To prevent transmission errors each CAN controller within

a system must be able to synchronize to the relevant signal edge of the incoming

message.

Taking into account all above factors, to provide the best performance registers

containing relevant data for bit timing and synchronization should be well adjusted to

each other. For this purpose CAN bus timing calculator available in the Internet3 has

been used. The highest speed together with high level of reliability was achieved at

speed of 1 Mb/s and SPI transmission at the level of 4MHz (literature does not

recommend speed faster than 0.25 * frequency of microcontroller operation because

of the risk of instability).

3http://www.kvaser.com/en/support/bit-timing-calculator.html

Chapter 5 PDCP interface layout

24

5.2.4 Microcontroller resources

The Hardware Abstraction Layer should provide quick and reliable data

transmission between upper software layers and hardware while minimum use of

microcontroller operation time and its resources. The latter might be needed for

other purpose of either the PDCP or application not necessarily known right now, but

may be used in the future. Moreover, simpler microcontrollers contain poorer

peripheral resources, however protocol operation together with even simple

application should still be possible.

The designed HAL benefits from the following microcontroller resources:

1 external interrupt – event indication from the external CAN controller;

2 external interrupts – playing role of software interrupts for message sending

and receiving;

SPI interface – for communication between microcontroller and CAN

controller;

USART interface –for debugging purposes.

All other resources have been left for the upper layers of the PDCP protocol and

application designer.

5.2.5 Overall system structure

In Fig. 5 overall software design of the Hardware Abstraction Layer was depicted

on UML sequence diagram. All diagrams concerning code structure in this paper were

generated in Visual Paradigm for UML. For readability only main calling between

interrupts and functions were presented. The procedure of sending and receiving

(including references between the HLL and the HAL) was described in details in next

chapters.

Chapter 5 PDCP interface layout

25

The HAL beside microcontroller and CAN controller initialization provides

mechanism of message sending and receiving and error indicating in the form of

message structure which is readable from level of the HLL or the application.

Fig. 5 Overall HAL program structure – UML diagram

Chapter 5 PDCP interface layout

26

5.2.6 Messages sending

The procedure of messages transfer from the HAL point of view is closely related

to upper layers of interface (HLL). The CAN controller (MCP2515) exchanges data

with microcontroller using SPI interface. Choice of implementation of the PDCP using

AVR microcontroller without built-in CAN controller has its advantages. One of them

is the fact that some information about bus capacity and speed of transmission for

system with external CAN controller may be obtained. Any medium between two

electronic circuits slows down speed of transmission of overall system. Firstly,

because some computations indispensible for proper communication between

circuits has to be performed and secondly, because of data exchange between

controller and microcontroller which is definitely more time-consuming than

updating internal registers.

Such information can be useful because even taking into account miniaturization and

integrated peripherals in many simple prosthesis modules some very simple and

cheap microcontrollers will be used.

On the other hand, the proposed software structure should be very simple for

adaptation to microcontrollers with internal CAN controller, much simpler than in the

opposite direction. Also time needed for computation and preparing data to

transmission (indirectly also overall transmission time) between modules should be

shortened.

To illustrate the mechanism of messages sending UML diagram was presented in

Fig. 6.

Chapter 5 PDCP interface layout

27

Fig. 6 Sending procedure - UML diagram

As follows from Fig. 6 sending has to be initiated by the High Level Layer by

calling a function: hal_msg_take() which calls function triggerSoftwareInterrupt() with

an argument TRIGGER_SENDING. As the name suggests, this function implemented

inside of the HAL software is responsible for triggering software interrupt.

After triggering software interrupt, a pointer to the message is received from HLL by

one of designed methods called hll_msg_get(). Afterwards, depending on which

transmitting buffer is ready (which should be done by CAN controller before

transmission by triggering external interrupt and setting appropriate flag), the

software calls sendCanMsg(). This function is responsible for decoding message

structure and sending all essential parameters like the message id, the number of

transmitted data bytes and data bytes itself to the CAN controller. After that software

should clear flags of empty transmitting buffers. For better memory usage

hll_msg_free() function should be called with the pointer as the argument to mark

memory containing CAN message as unused.

Mentioned hll_msg_free() function should also check whether any message is ready to

reception and, if necessary, use declared pointer to this purpose (more details about

this aspect may be found in the chapter concerning message receiving).

The mechanism of messages sending is relatively less important in priority than

receiving. Node can wait with sending messages without significant losses, while

Chapter 5 PDCP interface layout

28

receiving should be handled as soon as possible in order not to overflow receiving

buffers. Therefore, interrupt handling message sending should have lower priority

than interrupt of message reception. In case of only one interrupt devoted to the

whole transmission mechanism priority will be the same, of course.

The whole mechanism of the Hardware Abstraction Layer is event-triggered and

uses external interrupts both for communication with CAN controller (event

indication) and also for triggering software interrupts by changing one of

microcontroller pins. In this way, the triggered interrupt has a priority of one of

external interrupts – lower only from reset interrupt, which might be desired in case

of important message transmission. This mechanism has been used instead of Pin

Change Interrupt (delivered by microcontroller AT90USB1287) because simpler

microcontrollers do not support such interrupts. Electronic circuits market review

showed that typical amount of external interrupts supported by AVR

microcontrollers reaches 2 in case of small ones, and 8 in case of bigger ones. Taking

into account the designed interface uses one external interrupt for CAN controller

and 2 interrupts for sending and receiving, code may be simply adopted to only two

external interrupt (one for controller and one for interface).

Chapter 5 PDCP interface layout

29

5.2.7 Messages receiving

Procedure of message receiving was presented in Fig. 7.

Fig. 7 Message reception mechanism (UML diagram)

Chapter 5 PDCP interface layout

30

Message receiving is triggered by the CAN controller whenever the valid message

is received. External interrupt handler checks the source of interrupt and sets

appropriate flags (full receiving buffer flag, in case of received message). Just after

that suitable software interrupt is triggered by calling function

triggerSoftwareInterrupt(TRIGGER_RECEIVING). Basing on the saved number of full

receiving bufferreceiveCanMsg() function with appropriate parameters is called. The

mentioned function calls hll_msg_alloc() which allocates memory for received

message in the HLL. If allocation is not succeeded (internal stack is full), the message

is left in the controller with remaining receiving the flag set. Also, the flag of interrupt

inside of controller is not cleared (which preserves against message overwrite) –

edge triggered interrupt allows to go out of interrupt routine, process some other

data, release memory for waiting message(s) and retry message reading. This is

executed thanks to the mechanism of sending – function hll_msg_free() called from

sending routing should check, whether any messages are ready to fetch from

controller.

If allocation has been succeeded, program executes the block of transmissions with

CAN controller to read message id, number of data length and data itself and assigns

them to pointer reached from allocation. Afterwards, interrupt flag clearing is

executed by calling a function clearInterruptFlag() with an appropriate flag of

interrupt inside of the internal flag register CANINTF. Then the pointer is committed

to the HLL by calling a function hll_msg_commit() and the receiving mechanism in the

HAL is completed. Message is then processed inside of the HLL.

5.2.8 Additional functionalities

The designed software contains additional functionalities, which either provide

resources handling, increase code portability or help in software debugging while

startup at different AVR platform or further software development. The implemented

functions were shortly described in the next part.

Chapter 5 PDCP interface layout

31

EEPROM handling - nodes of prosthesis system contain much information

about their vendor, serial number, transmission channels and other

relevant parameters. Some of them are used only during program operation

and there is no need to keep them in memory. However, some of them have

to be saved in the non-volatile memory either external or internal one.

Because the used microcontroller is equipped with internal EEPROM (2kB)

functions for EEPROM handling have been implemented. For some

microcontrollers internal memory might not be big enough and external

memory is needed – in this case good solution could be memory with SPI

interface (SPI transmitting function is implemented for communication

with the CAN controller). Functions for EEPROM handling are:

void writeEEPROM (uint8_t address, uint8_t data)

uint8_t readEEPROM (uint8_t address)

Error handling – although message sending in MCP2515 is retried up to 255

times, sometimes transmission errors may occur. Application working with

the PDCP should be informed that error(s)happened, therefore error

structure was implemented. Every error indicated by interrupt from

controller increments the value of specified elements of this structure. The

application can read the whole error structure by calling function:

checkTransmissionErrors(struct errorStr*).

USART debugging – inside of the HAL USART handling was included, which

occurred a very useful tool while debugging because it enabled printing text

messages in the form of strings on serial port. In conjunction with designed

PCB board (which uses simple USB port and integrated circuit FT232RL

emulating RS232 port) and serial terminal program installed in the

computer, application designer is able to print both text and variable values

on the screen. The latter is possible thanks to itoa() or sprintf() function

provided by stdlib library of AVRLIBc. Function for string printing is:

printUsart(uint8_t*).

Chapter 5 PDCP interface layout

32

5.2.9 File structure

Project implementation was physically divided into several files, which structure

was presented in Fig. 8.

Fig. 8 Files structure

The Hardware Abstraction Layer software was separated into 3 groups of files:

Hardware configuration files: uCmaskFile.h, MCP2515control.h

uCmaskFile.h – contains preprocessor directives which are used to mask

AVR LIBc library.

Example: #define EXT_INT_PCIFR PCIFR

At a glance, such solution might seem to be useless. However,

microcontroller exchange desires only replacement of its header file and

refreshing hardware configuration directives (located in config.h) without

a need to touch “sensible software body”, which (without knowledge how

the interface is designed or simply by accident) could be real danger for

interface operation.

This solution increases portability of designed software by the decreased

number of changes in the software in case of hardware exchange.

/PROJECT

irqHandlers.c
irqHandlers.h

functions.c
functions.h

uCmaskFile.h
MCP2515control.h

config.h socket.c
socket.h

hll_arbitrator.c
hll_arbitrator.h

types.h
pdcp.h

HAL HLL

hll_device.c
hll_device.h

trie.c
trie.h

Chapter 5 PDCP interface layout

33

MCP2515control.h – contains library for MCP2515 CAN controller.

All essential register addresses and enumerated types facilitating

controller handling have been contained.

Interface implementation (HAL):

irqHandlers.c, irqHandlers.h, functions.c, functions.h

The above files contain external and software interrupt handlers and

function declarations responsible for providing the mechanism of message

sending and receiving by communication with CAN controller. All software

responsible for microcontroller input-output port initialization,

peripherals configuration and handling may be found within functions.c

file. Within irqHandlers.c interrupt routines were defined together with

functions responsible for message transmission.

Software configuration file:

config.h

This file contains all software configuration code for setting bus mode for

particular node, enabling debugging modes or defining important

parameters of the HLL.

It should be strongly emphasized that content of this file should be kept

under control every time software is compiled and uploaded to

microcontroller. Its content is shared between both the HAL and the HLL of

the designed PDCP.

Chapter 5 PDCP interface layout

34

5.2.10 Code structure

To show modularity and portability capabilities code structure is shortly

described. Firstly, the designed software has been divided into the blocks of functions

which enable simple redesign in case of hardware change. Adjusting software to

hardware change thanks to structural approach is relatively easy and not time-

consuming. To handle the lowest hardware issues (like port or SPI peripherals

initialization), the specified functions are implemented and only these ones have to be

redesigned in case of hardware exchange. That division provides also transparency of

lower layers in the relation to upper layers of the PDCP protocol and application

designer. Definitely, it is desirable that designers of all layers above the HAL do not

have to and cannot directly handle hardware issues. Function blocks have been

presented below.

Microcontroller hardware – block of functions responsible for microcontroller

hardware initialization. It consists of following implemented functions:

void initIntPorts(void) – the function responsible for initialization of ports

responsible for external interrupt triggering;

void initSPIPorts(void) – the function responsible for initialization of SPI

ports;

void initIO_appDesigner(void) – the empty function left for the application

designer for I/O ports initialization;

void initIOPort (void) – the calling functions: void initIO_appDesigner(void),

initSPIPorts() and initIntPorts();

void initInterrupts_appDesigner(void) – the empty function left for the

application designer for interrupt initialization (timers, external

interrupts or others);

void initInterrupts(void) –the function setting HAL interrupts and calling

initInterrupts_appDesigner () function;

Chapter 5 PDCP interface layout

35

SPI_INIT_STATUS initSpi(void) –the function initializing SPI interface of

microcontroller.

CAN controller communication – the block of methods that specify

communication with external CAN controller:

CAN_INIT_STATUS initCan (void) – the function responsible for CAN

initialization;

uint8_t mcp2515TransmitData (uint8_t mode, uint8_t reg, uint8_t val, uint8_t

setClearFlag) – the function is responsible for transmitting data to

specified register within CAN controller. As arguments it takes

controller mode of operation, register, value and information about flag

clearing or setting (only Bit Change Mode);

void clearMCP2515InterruptFlag (uint8_t reg, uint8_t flag) – the function

that is used for clearing flag after external interrupt from CAN

controller. The arguments are register address and flag (bit) to clear.

Interface communication – this block contains function used in interrupt

handlers for message sending and receiving:

void receiveCanMsg (uint8_t regRec) – the function that fetches received

message from register pointed by regRec CAN controller and assign

value to pointer to can_msg struct which is committed to HLL;

void sendCanMsg (struct can_msg* msgToSend, uint8_t regToSend)–the

function that sends message (pointed by pointer msgToSend) to

register pointed by regToSend.

Chapter 5 PDCP interface layout

36

Other functions

void forceReset (void) – the function that triggers software reset;

void wdtDisable() – the function that disables watchdog timer;

void wdtEnable(uint8_t time) – the function that is responsible for watchdog

initialization.

Two functions implemented in the “Microcontroller hardware” block have been

left empty for application designer. This allows to avoid problems coming from

probable insufficient knowledge about interface. The application designer does not

need to know where some additional hardware initialization should be done so as not

to damage the PDCP. Instead, he/she is advised to fill blank functions, which are

called in places in the code proper and safe for the interface. This solution should

reduce the risk of unintentional errors.

The important aspect has been code documentation. One of the most popular and

common program supporting generation of documentation is Doxygen. It is

a standard that specifies style of code comments, on which generator builds ready-to-

use .html files. The performed documentation both the HAL and the HLL of the PDCP

is available on the CD attached to this dissertation

Chapter 5 PDCP interface layout

37

5.2.11 Name convention

In the agreement with the student responsible for the High Protocol Layer of the

PDCP name convention has been used. The short description was outlined below.

CONFIG_xxx

Both the HAL and the HLL contain part of software

dedicated to special functionalities, which either are used

only for debugging or for some configuration. To facilitate

the use of the software compilation and running of the

part of the code can be manually enables or disabled by

changing #define preprocessor directives.

All the directives which are related to bus device mode or

define debugging modes begin with the prefix CONFIG_.

Examples: CONFIG_BUS_MODE – ARBITRATOR/DEVICE

HW_xxx

Taking into account the above introduction, the lower

layers of interface, in contrast to the upper layers, contain

low level hardware initialization. To improve portability

all ports relevant for proper operation of HAL are signed

with HW_ prefix.

These directives should be absolutely refreshed after the

microcontroller exchange.

Example:

HW_MISO_MCP2515 – port MISO for SPI transmission

with CAN controller.

The second aspect that should be described concerns name convention within

interface between the HAL and the HLL of the PDCP. Naming, described in next part,

was established.

Chapter 5 PDCP interface layout

38

hll_x_y_z

The functions, implemented in the upper layers of the

PDCP, are called from lower layers (HAL) and have prefix

hll. Individual names are separated by “_”.

These functions are responsible for memory allocation

and messages handling.

Example:

hll_msg_alloc() – the function responsible for memory

allocation

hal_x_y_z

The functions that are implemented in the lower layers of

the PDCP and are called from upper layers (HLL) have

prefix hal. The individual names are separated by “_”.

These functions are responsible for module mask and

filter setting and message polling.

Example:

hal_set_mask() – the function responsible for module CAN

receiving configuration

Within Hardware Abstraction Layer of the PDCP CamelCase convention is used. It

is the practice of writing compound words, in which elements are joined together

without a space or underscore (“_”)character.

Chapter 5 PDCP interface layout

39

5.3 New hardware platform

Although the main idea of this project was the PDCP software implementation,

there is no other way to check portability than to try to implement code on different

microcontroller. Another reason for the new hardware design is a lack of AVR PCB

board projects dedicated to this particular interface. Board used during this

implementation described in chapter 5.2.1 Hardware architecture was very

comfortable solution especially at the project beginning, but necessity of continuous

wiring exchange was irritating. Taking into account above factors, a block diagram of

the new design was presented in Fig. 9.

Fig. 9 Designed PCB board - block diagram

Electronic circuits on the board are supplied with voltage from USB junction that

is converted to 3.3 V by Low Dropout voltage regulator – it is the most common and

sensible solution to have stable voltage supply from USB port with relatively the

lowest power loss. The board contains also external supply possibilities without using

USB by external junction (max. 5V).

MCU
ATMEGA128

CAN
CONTROLLER

MCP2515

CAN
TRANSCEIVER

MCP2551

USB-UART
CONVERTER

FT232RL

USB CONNECTOR

DATA

LDO VOLTAGE
REGULATOR

LM1117

POWER

SPI

4

UART

2

DATA

SPI

ADC

I2C JTAG CAN

2

Chapter 5 PDCP interface layout

40

Microcontroller benefits from USB and using FTDI circuit (which converts USB port

for UART)it is able to communicate directly with computer using installed terminal

program – there is no need of using RS-232 junction.

As mentioned before, the software has been enriched with functions handling USART

communication, so debugging process while components (e.g. microcontroller)

exchange should be much simplified.

The board is equipped also with CAN controller and CAN transceiver (the same IC as

hardware given to project). Analog-Digital Converter is very important from

prosthesis point of view, therefore together with other interface ports (like SPI, I2C)

have own junctions on the board. This solution simplifies connection of electrodes or

other sensors or actuators into the microcontroller and enables testing not only

interface itself, but almost the whole prosthesis system.

Fig. 10 Printed Circuit Board layout

In Fig. 10 layout of PCB board was presented. The double-sided board has a shape

of rectangle (88 x 45 mm) with USB-A connector which allows direct communication

with PC. On the connector side comfortable mild notches are placed. The board

contains also 2 buttons (one for reset, one for other purposes defined by the

programmer), JTAG junction. I/O ports, especially analog-to-digital converter and

interfaces like SPI and I2C are situated at the edge of board enabling simple

connection. The designed platform is dedicated for further development of the

standardized protocol for prosthesis.

Chapter 5 PDCP interface layout

41

Fig. 11 New hardware design - after assembling

Assembled card described in the previous part was presented in Fig. 11.

One can ask question, why new hardware design was proposed? Comparing

proposed new hardware together with NIMRON board undoubted advantage of the

new design is simplicity of connections on the board and avoidance of additional

wires desired for PDCP start-up. Board contains UART – USB converter and USB plug

which facilitate software development. Moreover, board was equipped with external

pins of the most essential interfaces and ports from prosthetic point of view, like ADC

or I2C. Thanks to this solution external components may be very easily connected to

the board and tested. On NIMRON board not all needed ports were delivered in form

of external pins. Additionally, amount of wires used for simple testing complicates

comfortable usage.

NIMRON board is great base for code start-up. New designed hardware gives

possibility of node assembling with reduced number of external wiring and simplicity

of connections.

43

6 Testing

6.1 Introduction

One of the most important part of this dissertation is the discussion of testing

results. Content of this chapter treats about code testing of the designed HAL and

interface between the HAL and the HLL.

As it was mentioned before implementation of the PDCP was divided into two

parts, what definitely improved modularity and portability. However, this solution

influenced also testing complexity at start-up, because part of codes designed by

different programmers are threatened with negative interference, what was the case

within this project and was described in the next parts.

The Hardware Abstraction Layer, which is described in this thesis, is to some

extent independent from the HLL, therefore testing only the HAL was definitely easier

than the HLL alone. The HAL was tested under following terms:

Assuring maximization of code portability and modularity – code structure

should maximize portability and decrease amount of changes in case of

hardware exchange;

Providing mechanism of message sending and reception – the designed HAL

should provide efficient mechanism of data exchange between software and

internal registers of CAN controller. This action should be executed in

tread-off between the least possible usage of hardware resources and

decreased time of operation;

Chapter 6 Testing

44

Providing data lossless transmission – designed software should fulfilled

assumption of lossless transmission between nodes of the system;

Providing error detection mechanism – because CAN controller, used in the

project, provides mechanism of error detection information about actual

bus state should be transferred to the HAL and/or application (because

architecture of application is not known in this stage of protocol

development, therefore and/or statement was used).

Main features pointed above were tested and described in the next parts.

6.2 Code portability – testing

The only way of testing code portability is a hardware change and objective

assessment of the effort made to adjust code to this new hardware. For testing code

portability new hardware design described in 5.3 New hardware platform with

ATmega128 working as the arbitrator and one NIMRON card, working as the device,

were used.

At the beginning, basing on configuration files (uCmaskFile.h and config.h) code

was adjusted to differences between microcontrollers (AT90USB1287 and

ATmega128). This process was not so trivial as expected, although both

microcontrollers were from the same AVR 8-bit family. Names of many registers or

even initialization of particular hardware resources differed slightly, what resulted in

a couple of hours spent for finding these differences. After software error elimination

many problems with hardware were encountered, which probably disabled proper

operation of the device. Tedious process of looking for nonconductive vias, checking

termination resistance at the nodes, physical connections between CAN transceivers

or transmission between chips on the board using oscilloscope didn`t help in finding

reasons of wrong transmission between arbitrator and device - message was not

delivered to the device, what was indicated by errors of transmission from CAN

controller.

Chapter 6 Testing

45

Aspects of code portability were presented in the chapter 5.2.10 Code structure,

because it is directly related to the way of coding, specifying functions and code

structures. However, after portability testing a few aspects, inadvisable in term of

portability, should be emphasized. These features were listed below.

Data types with not precisely specified size –data types like int should be

avoided and replaced with types uint8_t or uint16_t. Specified size allows

microcontroller to interpret data type correctly and avoid problems with

different meaning of the data type in different microcontrollers;

Usage of functions specified for particular model or family of

microcontrollers – code should be as far as possible independent from not

universal external libraries or implement solutions masking this library to

increase portability (in case of this project uCmaskFile.h is an example of

such masking file of libraries delivered with AVRLIBc);

Not clear code structure – if code is expected to be portable should be well

structured and documented. Complexity of the project increases time of

adjusting software to exchanged hardware.

Features impacting portability related to hardware:

Code part related strictly to hardware implemented within other code – in

case of any hardware exchange designer is forced to look for every code

snippets within project responsible for hardware handling. This activity

should be avoided;

Unpopular hardware resources or peripherals – software should as far as

possible use hardware resources (like SPI, timers, small amount of external

interrupts, efficient usage of built-in EEPROM memory etc.) common for

almost all microcontrollers from different families and vendors.

Chapter 6 Testing

46

6.3 Mechanism of message sending and receiving – testing

The only way for message exchange testing between two nodes is sending

a message from one node, receiving in another one and checking accordance of data

fields. This testing is somewhat associated with testing data lossless transmission

described in chapter 6.4 Data lossless transmission – testing, because message

exchange mechanism should work reliably.

CAN transmission may be easily previewed using an oscilloscope . Example of data

transfer in designed interface between two nodes was presented in Fig. 12 and Fig.

13. From physically point of view Arbitrator and Device (in the PDCP notation) are

almost identical. The only difference is hidden in the mask and filter configuration,

what cannot be observed in electric signal presented below. As it was observed after

change of Device Id and filter reconfiguration message, arbitration field had to be also

refreshed, otherwise message transmission stopped working. Therefore it`s

important for upper layers of the PDCP to bear in mind necessity of filter

reconfiguration every time NodeId has been changed (for example process of node

binding to system).

Fig. 12 Single data frame (oscilloscope)

Chapter 6 Testing

47

Fig. 13 Measurement of the delay between data frames (oscilloscope)

Using cursors of oscilloscope time and quantitative parameters of CAN bus signal

were measured.

CAN bus signal takes differential values 0 up to 1V. Time of transmission of single

data frame with 8 byte data field takes 95 μs while time distance between frames

equals 156 μs, what gives bus utilization at the level of 37%. Taking into account the

test involved only 2 nodes (only one sending) that situation was acceptable. Data

transmission between microcontroller and CAN controller takes time, which the

delays come from. From measurements can be concluded that majority of time bus is

inactive, but for real prosthesis system consisting of many nodes, working

independently from each other and exchanging messages in various time moment

through the same bus, utilization should increase.

Chapter 6 Testing

48

Simplified diagram of testing message transmission between 2 nodes was

presented in Fig. 14. Photo of simple system under tests was depicted in Fig. 15.

Fig. 14 Test of data exchange mechanism

Fig. 15 System consisting of one Arbitrator and one Device under tests

From one node (configured as a Device) benchmarking program sends messages

to second node (configured as an Arbitrator) one after another in while loop. To reach

the greatest possible accuracy and not introduce undesired delays just after

indication of empty transmitting register next message is shifted into CAN controller.

Control over timing is kept by timer overflow interrupt which increments counter

variable every 100 ms. This accuracy seems to be high enough for estimating average

time of transfer of certain amount of messages.

NODE
1

NODE
2

CAN+

CAN-

10000 msgs 10000 msgs?

Chapter 6 Testing

49

6.3.1 Impact of SPI speed on the HAL interface capacity – testing

AT90USB1287 contains SPI interface which may be configured to operate with

frequencies dependent of microcontroller frequency with following dividers from /2

up to /128. From stability point of view, it is advised to use dividers equal or higher

than /4 (more information can be found in literature[7]).

To illustrate result of testing UART-USB converter together with Terminal v1.9b4

was used. In the Fig. 16 screenshot from one the tests was presented.

Fig. 16 Testing output from RS232 terminal

4https://sites.google.com/site/terminalbpp/

Chapter 6 Testing

50

Short description of benchmarking parameters for testing impact of SPI interface

between microcontroller and CAN controller on interface capacity was presented in

Table 11.

Amount of messages – 10 000

Size of data field – 8 byte

SPI speed – variable

Table 11 Impact of SPI speed on HAL interface capacity

SPI
divider

/64 /32 /16 /8 /4 /2

Time [s] * * 5.9 4.1 3.1 3.1

One may read out from Table 12 that with decreased divider shorter time of

transmission is obtained. With the asterisk (*) two slowest frequencies were signed –

in the case of nodes working with this particular divider for these two divider values

testing under stress caused data loss. It was checked that transmission is successful if

sender operates with slower SPI than receiver. Slower SPI beside higher divider may

be result of slower microcontroller frequency of operation, what can be imposed by

lower voltage supply level. This property can be used for nodes which either mostly

send messages (for example electrodes, but from the other hand electrode nodes are

going to desire high density of data exchange) or rarely communicate with others

(e.g. supply node).

Having measured time of transmission of 10 000 messages short analyze of CAN

bus usage can be easily made. Taking into account that preferred dividers were equal

or higher than /4 and frames with 8 bytes data fields were transferred:

SPI divider: / 4 (CPU frequency – 16 MHz)

Amount of bits in single message: 108 (together with 8B data field, [Table 2

CAN Message Data Frame Table 2])

Amount of messages: 10 000

Chapter 6 Testing

51

Generated traffic:

Time of traffic generation: 3.1 s

CAN bus speed: 1 Mb/s

Average measured capacity:

Bus usage:

Measured bus usage differs only slightly from the one, measured in 6.3 Mechanism

of message sending and receiving – testing, what proves correctness of the

computation. Mentioned level of the bus usage may be considered as low. This is the

result of many data transfer between microcontroller and CAN controller before

complete message is shifted into the CAN bus – before any value may be loaded into

an internal register, special command deciding either writing, reading or bit set mode

must be sent. In case of bit set mode additional transfer of mask is desired. Taking into

account that for single CAN message average 20-25 (in the worst case up to 32) SPI

transfers have to be carried out, single SPI transmission is time-critical and

determines time of whole data transfer between nodes.

6.3.2 Impact of CAN speed for HAL interface capacity – testing

Second stage of testing was checking the extent to which CAN speed configuration

influences time of transmission between nodes. Result of testing (with method

described in chapter 6.3.1) was presented in Table 12.

Table 12 Impact of CAN speed on HAL interface capacity

CAN speed
[kbps]

250 500 1000

Time [s] 6.9 4.4 3.1

As it can be noticed with speed of SPI decreased 4 times in relation to maximum

speed, time of transfer increases 2.2 times. Definitely for providing high capacity of

the whole PDCP the highest possible CAN speed should be used.

Chapter 6 Testing

52

6.3.3 Impact of size of data field on HAL interface capacity – testing

Important aspect of data transmission is size of the data field of a single message.

The PDCP protocol specifies functions differing from each other with content,

therefore usually data field is smaller than 8 bytes. This should influence the time of

transmission. Result of testing in term of size of the data field was presented in

Table 13.

SPI divider: /4 (CPU frequency – 16 MHz)

CAN bus speed: 1 Mb/s

Amount of messages: 10 000

Table 13 Impact of size of data field on time of transmission

Amount of data
bytes of data

field
8 7 6 5 4 3 2 1

Time [s] 3.1 3 2.7 2.5 2.3 2.1 1.9 *

As expected time of transmission depends highly on message content. In case of

transfer of one data byte benchmarking program was too fast in comparison with

designed system and caused overflow – messages were sent too fast by while loop

and not received correctly by the second node. However, this was kind of a stress test.

In real such situations are not expected.

6.4 Data lossless transmission – testing

One of the way of testing of data lossless transmission between 2 nodes of

a system is sending specified number of data from one node and checking amount of

correct received messages by second node. The testing method was described in

chapter 6.3 Mechanism of message sending and receiving – testing. Results presented

there show, that system works without losses, otherwise time measure wouldn`t be

possible. In case of any problems with message delivering, CAN controller retries

sending procedure up to 255 times informing HAL about it by triggering external

interrupt and refreshing the designed error structure.

Chapter 6 Testing

53

6.5 HAL – HLL interface testing

Proper operation of the HAL – HLL interface is based on good cooperation

between these two separate parts of code. In brief, the HAL takes responsibility for

hardware resources and communication with CAN chip implementing all

configuration and data exchange functions, while the HLL deals with message

handling and data processing for the PDCP. Description in the chapter 5.1 HAL – HLL

interface and also in chapters 5.2.6 Messages sending and 5.2.7 Messages receiving

indicates that interface is pretty easy in operation. However, detection of problems

encountered during tests and described in the next part was really time-consuming.

The biggest problem, during first stage of combining the HAL and the HLL layer,

was microcontroller reset. Debugger (which proved to be indispensible device in

prototype testing and error debugging) indicated that a part of code located before

while loop of benchmarking program was executed infinitely many times, what

definitely was a sign of some mistake. First thoughts led to memory stack overflow,

but it was hard to prove the suspicion. Fortunately, AVR microcontrollers were

equipped with dedicated interrupt handler (called BADISR) called every time an

Interrupt Service Routine (ISR) fires with no accompanying ISR handler. Using

debugger and elimination of particular parts of the code, it managed to find wrong

function calling order which generated “vicious circle”, stack overflow and

microcontroller reset. The task of finding the source of described reset was hard,

because MCU status register (MCUSR) didn`t indicate any unforeseen watchdog reset

(which was used in software reset forcing), brown-out detection reset or other

common sources of reset, which firstly were considered.

Chapter 6 Testing

54

For interface testing similar method to these from previous chapters was used.

In Fig. 17 output terminal from one the tests was presented.

Fig. 17 HAL-HLL interface testing (terminal output)

Chapter 6 Testing

55

System consisting of one Arbitrator and one Device was configured to test proper

operation of designed interface between the HAL and the HLL. To make the test more

realistic arbitrator was designed to send one message with one byte of the data field

with value 0x1 (this corresponds to binding request function code). Device node was

expected to receive message correctly, toggle diode, read data byte and sum it

logically with value 0x80 (what corresponds to mechanism of response function code

generation). Afterwards, Device was intended to send message back to Arbitrator,

which checked received value and compared it with 0x81. Correctness of that

sequence of data exchange, which involved big part of the HLL mechanism and almost

all the HAL mechanism, was indicated by result of mentioned comparison.

The most important stages of data exchange within interface were commented and

presented in terminal output in Fig. 17. As it was expected procedures of sending and

receiving successfully cooperate with the HLL mechanism designed by Andreas

Nordal5. Message received by the Arbitrator was logic sum of data sent and value

0x80, which firstly indicated proper the HAL operation (filter, id settings etc.) and

secondly proved proper collaboration of these two layers of interface. Pointers

(mentioned in Fig. 17) were used to distribute access to memory containing message

fields between two separate HAL and HLL. As a result of that HAL is deprived of

buffers sacrificed for messages buffering, which probably would introduce undesired

delays and increase memory usage. Layers, using pointers, were able to exchange

data between each other in the most efficient way.

5 master thesis on Design, Implementation and Testing of High-Level Layers of PDCP for AVR, under
publication

Chapter 6 Testing

56

6.6 Canadian implementation – compliance testing

To check correctness of designed software, test based on two nodes, NIMRON card

working as the Arbitrator and Canadian board (presented in Fig. 18) as the Device

trying to bind itself to the system, was performed.

Fig. 18 Canadian PDCP board

Hardware implementation, presented above, consists of Microchip microcontroller on

DIP board and extension board designed by Yves Losier [1] for the use of the PDCP.

Main purpose of the conducted test was to check whether the HLL worked according

to assumptions, thus it was not directly related to the low-level layers of the PDCP.

Before testing compliance of PDCP implementation on AVR and on Canadian

Microchip node, binding procedure was checked between two NIMRON (AVR) cards.

Conducted tests showed, that the device (software implemented mainly in the HLL)

was successfully bound to the arbitrator. However, tests with Canadian

implementation gave bad results – many bind requests were received, but none of

them was handled properly by the arbitrator. Nevertheless, communication between

nodes with different PDCP implementation was provided. Received bind requests

were visible on terminal, what proved good hardware design, CAN controller

configuration and finally, mechanism of the data reception.

57

7 Suggested future work

The designed software (in cooperation with the HLL part of the PDCP) opens wide

possibilities for further development of communication protocol for prosthetics.

Some aspects that may indicate some progress directions were listed and described

below.

Increasing of interoperability – the main idea of standardization is to enable

using modules from different vendors within one prosthetic. The question

that should be asked is: in whose interest is the standardization? There is

no doubt that people who benefit from prosthetic would support this idea,

but it is hard to say if producers would be fans of that process (now the

user is left to replacement parts only of prosthesis producer). However,

interoperability together with modular approach may give great results.

Let`s imagine a situation when one module was broken, but the rest of hand

prosthesis works fine. If prosthesis does not support the modular approach

and any interoperability is not implemented, the user is forced to exchange

whole prosthesis module (palm or electrode module) for the new one from

the same producer. Firstly, this is associated with the increased cost

(definitely higher than single part of prosthesis module), secondly with

a strict desire of elements fit.

If interoperability mechanism along with modularity of prosthesis design

(both from electronically and mechanically point of view) were

implemented, a defect of one element would not dictate the need for the

whole big module exchange. Next, a great advantage could be system

reconfiguration after one module exchange. Within the system one special

module responsible for keeping all configuration data could be designed.

Chapter 7 Suggested future work

58

In case of some module replacement the bus arbitrator basing on

configuration data could assign new module to rule played by replaced

module. Using “this sort of external memory”, even the controller unit

(arbitrator) could be successfully replaced.

Following this idea, one example may be outlined: simple prosthesis

configuration could be used to adjust more sophisticated palm module to

old control and sensors units, which should make possible simple

prosthesis movement like palm flexion-extension. Similar situation could

be presented in the reversed order: sophisticated control and sensor

modules adjusted to a simple mechanical palm module;

Software optimization – definitely if possible effort should be done on

increased speed of protocol operation and higher system capacity. The

complex system desires dense data exchange, especially from sensors to

control unit and then from control to actuators unit. As far as possible, the

speed of data computation and transmission should be increased while

reliability maintaining;

Software implementation for another processor families – the software

could be implemented on more efficient 32-bits AVR microcontrollers or

processors from ARM family. Moreover, taking into account that prosthesis

is going to be battery supplied and time of operation is one of the most

relevant aspects of convenience for the user, all components used in

prosthesis should meet expectations both of processing- and energy-

efficiency. Always this is a trade-off between them, however time between

battery recharging or replacement should be overlong as far as possible;

Miniaturization – from electronic point of view miniaturization of PCB

components may be desired for nodes operation in terms of size and cost.

59

8 Conclusions

Through this dissertation low-level layers of the Prosthetic Device

Communication Protocol (PDCP) for AVR platform were designed, implemented and

tested. Moreover, it was made an attempt of assigning PDCP functions to particular

layers of ISO/OSI model (Table 5).

The PDCP implementation was divided into two parallel master projects and two

layers, which during implementation were called the Hardware Abstraction Layer

(HAL) and the High Level Layer (HLL). During start-up indispensible devices occurred

debugger (JTAGICE mkII) and UART – USB converter, that was used to display

variable values or messages on RS-232 terminal program. It is hard to imagine final

interface implementation without mentioned devices.

Design of the HAL was based on external interrupts generated by CAN controller and

two software interrupts triggering the message exchange. Communication with

mentioned chip was provided with 4-wired SPI interface. Only these hardware

resources (three external interrupt pins and SPI) were used to implement the HAL.

It can be concluded that system is event-based, what certainly decreases

computational load of microcontroller.

For providing the highest possible level of portability and modularity of designed the

HAL several steps have been taken. Firstly, file masking registers and ports, delivered

by microcontroller header file, was designed. Secondly, code snippets responsible for

hardware resources were collected into several functions which might be easily

modified if needed (designer is not forced to browse every project file and look for

code to refresh). Furthermore, all language and coding structure listed in 6.2 Code

portability – testing were avoided. Moreover, program structure gave desirable

hardware transparency for the HLL and application layers.

Chapter 8 Conclusions

60

Finally, the least possible amount of hardware resources was used for the HAL

implementation, what should increase software portability and open wide

possibilities for application designer.

To provide cooperation between codes implemented by two different authors the

HAL – HLL interface basing on callback functions was implemented. Thanks to

separation between layers related mainly to hardware and these implementing the

PDCP, in case of necessity of change of one of them (hardware exchange or refreshed

idea of communication protocol), only adequate layer had to be updated. This

solution definitely increased software both modularity and portability.

Results of conducted tests showed, that trial of AVR implementation of the PDCP

designed by Yves Losier was successful. Although not all functionalities were provided

and tested by the HLL, but tests both the HAL, interface between these two layers and

the HAL together with the HLL brought satisfactory results in the area of binding

(between nodes based on NIMRON boards), which probably in the near future might

be extended to full PDCP implementation. However, implementation of binding

procedure and other functions (HLL) delivered by the PDCP were not task of this

dissertation.

Fig. 19 Handle model - prosthesis designed at NTNU

Chapter 8 Conclusions

61

In Fig. 19 example of prosthesis designed at NTNU was presented. Great advantage of

the PDCP is versatility. It provides communication mechanism between parts of

prosthesis responsible for different activities like gathering data (EMG sensors),

control or supply. These parts may be almost identical for many prostheses from

communication point of view, what makes it universal. Handle model from Fig. 19 is

only an example of prosthesis which could benefit from designed communication

protocol.

It is obvious that designed interface creates possibilities of future development in

the area of hardware and software. From the hardware point of view several aspects

like trade-off between power- and energy-efficiency or components limitation and

miniaturization should be taken into account. Software could be developed to provide

protocol implementations for other hardware platform and chips to increase range of

applications. Moreover, as it was mentioned in chapter 7 Suggested future work

emphasis should be placed on prostheses modularity.

63

9 Bibliography

[1] Yves Losier - Prosthetic Device Communication Protocol for the AIF UNB

Hand Project (obtained from author) [pdf]

[2] Roman Obermaisser, Armin Kanitsar - Documentation version 1.2. TTP/A

Master Slave Application. Axon Bus (obtained from authors) [pdf]

[3] Øyvind Stavdahl, GeirMathisen – A Bus Protocol for Intercomponent

Communication in Advanced Upper-Limb Prosthesis [pdf]

[4] Øyvind Stavdahl, Heir Mathisen – An Intra-Prosthesis Communication Bus:

Now is the Time to Standarise![pdf]

[5] Peter J. Kyberd, Adrian S. Poulton, Leif Sandsjö, SteweJönsson, Ben Jones,

Dawid Cow – The ToMPAW Modular Prosthesis: A Platform for Research in

Upper-Limb ProstheticsJPO Journal of Prosthetics and Orthotics, Volume

19, Number 1, 2007

[6] AN713, Microchip – Controller Area Network (CAN) Basics [pdf]

(http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nod

eId=1824&appnote=en011694, date of download: 04.05.2012)

[7] AT90USB1287, datasheet [pdf] – product specification by Atmel

(http://www.atmel.com/devices/at90usb1287.aspx?tab=documents, date

of download 10.02.2012)

[8] MCP2515, datasheet [pdf] – product specification by Microchip

(http://www.microchip.com/wwwproducts/devices.aspx?dDocName=en

010406, date of download: 15.02.2012)

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en011694
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en011694
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en011694
http://www.atmel.com/devices/at90usb1287.aspx?tab=documents
http://www.microchip.com/wwwproducts/devices.aspx?dDocName=en010406
http://www.microchip.com/wwwproducts/devices.aspx?dDocName=en010406

Chapter 9 Bibliography

64

[9] MCP2551, datasheet [pdf] – product specification by Microchip

(http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en

010405, date of download: 10.02.2012)

[10] Ole Johnny Borgersen, Marius Lind Volstad – USB Multifunction Board

Users Guide [pdf]

(http://www.nimron.no/P1000/, date of download: 10.02.2012)

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010405
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010405
http://www.nimron.no/P1000/

65

10 Attachments

In this chapter electric schematics, layout of designed PCB and Bill of Materials

was presented. Files, which these figures were generated from, were recorded and

attached with CD.

Chapter 10 Attachments

66

10.1 Printed Circuit Board – electric schematic

Chapter 10 Attachments

67

Chapter 10 Attachments

68

10.2 Printed Circuit Board – layers

Top layer (without polygons)

Bottom layer (without polygons)

Top overlay layer

Bottom overlay layer

Chapter 10 Attachments

69

10.3 Printed Circuit Board – Bill Of Materials (BOM)

List of materials needed for PCB assembling was presented below.

71

11 Appendix A

For more convenient HAL handling the most important aspect were listed in

Appendix A.

Property Description File

Bus mode Node mode determination
(CONFIG_BUS_MODE): BUS_ARBITRATOR or
BUS_DEVICE

config.h

SPI transmission Properties of SPI determined in function
SPI_INIT_STATUS initSpi().

transmission - uint8_t transmitSpi(uint8_t
data).

functions.c

CAN transmission CAN initialization specified in function
CAN_INIT_STATUS initCan(uint8_t id)

functions.c

I/O configuration Function void initIOPort() calls functions:
void initIOPort_appDesigner(),
void initSPIPorts() and
void initINTPorts().

functions.c

Interrupt
initialization

All interrupt initialization is executed within
void initInterrupts().

Particular attention should be paid to
settings sources of external interrupt
(EICRA, EICRB and EICRC registers,
configuration is not made automatically
using prefixed CONFIG directives from
config.h.

Function initInterrupts_appDesigner() is
sacrificed for application designer. However,
queue of function calling causes, that
initialization improper from the PDCP point of
view will be overwritten by interface
initialization.

functions.c

Chapter 11 Appendix A

72

Property Description File

Software interrupt Software interrupts are based on external
interrupts. Default configuration of external
interrupt:
TRIGGERING: any edge of pin change,
PORT: specified by INT_SENDING_NUM and
INT_RECEIVING_NUM defined in config.h.

functions.c

irqHandlers.c

config.h

CAN controller Default ID:
Arbitrator – 0x01, Device – 0xFF

Default mask register settings:
Arbitrator – 0x00, Device – 0xFF

Default filter register settings:
Arbitrator – 0x00, Device – depending on ID
and 0x00 for broadcast messages (FILTER 2)

Default transmitting register settings:
TXB0 – highest priority, TXB1 and TXB2 -
intermediate

functions.c

EEPROM handling EEPROM reading -
uint8_t readEEPROM (uint8_t address)

EEPROM writing –
void writeEEPROM (uint8_t address, uint8_t
data).

functions.c

Watchdog void wdtEnable (uint8_t time)
void wdtDisable ()

For software reset following function is used:

void forceReset () – this function uses
watchdog timer. Program initialization should
disable manually watchdog timer, otherwise
reset is supposed to happen.

functions.c

Message sending void sendCanMsg (struct can_msg* msgToSend,
uint8_t regToSend)

Code responsible for sending triggering:
void hal_msg_poll()
ISR (CONFIG_INT_SENDING).

irqHandlers.c

Message receiving void receiveCanMsg (uint8_t regRec)

Code responsible for receiving triggering:
void hal_msg_take();
void triggerSoftwareInterrupt (uint8_t port)
and ISR (CONFIG_INT_RECEIVING).

irqHandlers.c

functions.c

73

12 Appendix B

Project was designed, compiled and tested using AVR Studio 4.0 together with

WinAVR library. Before code uploading it is very important to remember about

following aspects:

Correctness of frequency of microcontroller with project configuration

options: mentioned microcontroller frequency should be set in config.h file,

while project configuration options for AVR Studio 4.0 are easily available

in: Project->Configuration Options-> General;

Setting appropriate microcontroller model inside of AVR Studio (or other

development environment) – for AVR Studio: Project->Configuration

Options-> General

Refreshing microcontroller masking file – file uCmaskFile.h;

Setting all hardware pins signed with prefix HW_ - in file config.h;

Setting all configuration data signed with prefix CONFIG_ - in file config.h

Browsing code in case of problems – designing totally portable code for huge

diversity of microcontrollers is almost impossible task. Trial of uploading

code on the new card showed, that even very similar microcontroller

models differed from each other very slightly, what made code portability

not easy task.

75

13 Appendix C

As it was mentioned in the thesis for debugging and testing Terminal 1.9b6 was

used. For more comfortable usage main features of the program were shortly

described in the appendix.

6 https://sites.google.com/site/terminalbpp/

Chapter 13 Appendix C

76

After each! connection a device to USB port user should ReScan ports (yellow

“cloud”). Just after that in Com Port section all available ports should be displayed and

the one which is desired device should be chosen. After a port choosing, the Connect

button may be pressed and if device is supposed to send messages which should be

displayed in Receive section. It should be emphasized that designed PDCP software

was adjusted to default settings of the Terminal program (speed, data bits, parity and

stop bits). This results in statement, that if software is correctly configured, Terminal

should display messages both from arbitrator and device node without any special

additional effort made.

The program enables also logging, which may be very useful in case of the PDCP.

To logging process two buttons (marked with blue cloud) were created. For logging

start StartLog button should be pressed before any transmission from/to device.

When transfer is completed, StopLog button should be pressed and logging file will be

saved in localization pointed by the user.

77

List of figures

Fig. 1 CAN interface - physical layer ... 7

Fig. 2 Division of Arbitration Field for PDCP .. 11

Fig. 3 NIMRON board layout ... 19

Fig. 4 MCP2515 simplified block diagram ... 22

Fig. 5 Overall HAL program structure – UML diagram ... 25

Fig. 6 Sending procedure - UML diagram .. 27

Fig. 7 Message reception mechanism (UML diagram) ... 29

Fig. 8 Files structure .. 32

Fig. 9 Designed PCB board - block diagram .. 39

Fig. 10 Printed Circuit Board layout .. 40

Fig. 11 New hardware design - after assembling ... 41

Fig. 12 Single data frame (oscilloscope) .. 46

Fig. 13 Measurement of the delay between data frames (oscilloscope) 47

Fig. 14 Test of data exchange mechanism ... 48

Fig. 15 System consisting of one Arbitrator and one Device under tests 48

Fig. 16 Testing output from RS232 terminal .. 49

Fig. 17 HAL-HLL interface testing (terminal output) ... 54

Fig. 18 Canadian PDCP board ... 56

Fig. 19 Handle model - prosthesis designed at NTNU .. 60

List of tables

Table 1 Comparison of commercial low-level protocols .. 6

Table 2 CAN Message Data Frame ... 8

Table 3 ISO OSI model .. 9

Table 4 CAN specification in relation to ISO OSI model (literature[6]) 10

Table 5 List of function codes of PDCP (* - deprecated functions) 13

Table 6 Parameters of Bind Device Request function code .. 14

Table 7 Request message format (data field) - Bind Device Request function 14

Table 8 Response message format (data field) - Bind Device Request function 14

Table 9 Bind Device Request - example ... 15

Table 10 Bind Device Request response - example ... 15

Table 11 Impact of SPI speed on HAL interface capacity .. 50

Table 12 Impact of CAN speed on HAL interface capacity .. 51

Table 13 Impact of size of data field on time of transmission ... 52

79

CD description

Short description of CD content has been presented below.

\code\ - designed software

\!readme.txt

\HAL_testing_code\ - directory containing readme file, project files, .hex files
of arbitrator and device for only HAL testing

\HAL+HLL\ - directory containing project files, .hex and .elf files ready for
uploading for testing HAL together with HLL layer basing on BINDING
operation

\HAL_testing_code_new_hardware\ - directory containing project files for
new hardware platform – precise explanation of encountered problems
in txt files

\HAL+HLL\documentation\ - Doxygen documentation of the designed
software

\documents\ - contains pdf files, documentations

at90usb1287.pdf

axonBus.pdf

canPhysicalLayer.pdf

Kyberd2007-JPO-The_ToMPAW_Modular_Prosthesis__A_Platform_for.pdf

mcp2515.pdf

mcp2551.pdf

Obermeisser2000-Master Slave App for AxonBus.pdf

Stavdahl2005-MEC'05 POSTER-A Bus Protocol for Intercomponent
Communication in Advanced Upper-limb Prostheses.pdf

Stavdahl2005-MEC'05-A Bus Protocol for Intercomponent Communication in
Advanced Upper-limb Prostheses.pdf

P1000_user_guide-3.pdf

80

\pcbDesign\ - PCB projects designed in Altium Designer Winter 2009

\electric_schematics\ - directory containing electric schematics of designed
PCB boards in pdf format

!readme.txt

\pcb_converter_UART_USB\ – UART-USB converter project

\pcb_pdcpBoard\ - pdcp board project (ATmega 128, ext CAN controller)

\pcb_pdcpBoard_at90can128\ - pdcp board project (AT90CA128)

\pcb_converter_UART_USB_prof\ – UART-USB converter project (with
overlays)

\pdcpLibrary\ - library of components used in every following project

\thesis\ - thesis documents

masterAssignment_AZamojski.pdf

masterThesis_AZamojski.pdf

	Title Page
	Introduction
	Low-level protocols
	CAN interface
	Physical layer
	Data frame
	Layer model

	Prosthetic Device Communication Protocol
	Identifier field
	Protocol functions

	PDCP interface layout
	HAL – HLL interface
	Software layout
	Hardware architecture
	Programming language and software platform
	CAN controller – initialization
	Microcontroller resources
	Overall system structure
	Messages sending
	Messages receiving
	Additional functionalities
	File structure
	Code structure
	Name convention

	New hardware platform

	Testing
	Introduction
	Code portability – testing
	Mechanism of message sending and receiving – testing
	Impact of SPI speed on the HAL interface capacity – testing
	Impact of CAN speed for HAL interface capacity – testing
	Impact of size of data field on HAL interface capacity – testing

	Data lossless transmission – testing
	HAL – HLL interface testing
	Canadian implementation – compliance testing

	Suggested future work
	Conclusions
	Bibliography
	Attachments
	Printed Circuit Board – electric schematic
	Printed Circuit Board – layers
	Printed Circuit Board – Bill Of Materials (BOM)

	Appendix A
	Appendix B
	Appendix C

