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Sammendrag

I Utvidet Virkelighet, kan datagenerert informasjon bist̊a brukeren med

’usynlig’ informasjon om virkelige objekter. I denne avhandlingen, vil mu-

lighetene for utvidet virkelighet p̊a mobile enheter bli utforsket, og ob-

jekt følging er identifisert som en viktig funksjonalitet. I de eksisterende

løsningene, er posisjon- og orientering-basert følging mest vanlig, men dette

prosjektet vil derimot g̊a nærmere inn p̊a syns-basert følging, som er et

bredt forskningsfelt innen Datasyn. Objekt følgeren som er valgt, er den

prisvinnende algoritmen TLD, som sammen med det nylig lanserte FastCV

biblioteket, utgjør funksjonaliteten i den endelig presenterte Android ap-

plikasjonen. Applikasjonen er testet med hensyn til minnebruk og pros-

esseringstid, og det er observert fra forsøkene, at detektormodulen i TLD

dominerer prosesseringstiden. Uansett oppfører den endelige Objekt følgeren

seg etter hensikten, og god ytelse oppn̊as ved å redusere størrelsen p̊a de

prosesserte bilderammene fra mobilens kamera.

For det videre arbeidet, kan prosesseringstiden bli redusert enda mer, muli-

gens ved å lage lengre intervaller mellom hver kjøring med detektormod-

ulen. Ogs̊a muligheten for å lagre objektmodeller og bruke dem senere bør

utforskes. Dette vil være nyttig i en Utvidet Virkelighet applikasjon, der

objektene vanligvis er forh̊andsbestemte.



Abstract

In Augmented Reality, computer generated information can assist the user

with ’invisible’ information about real world objects. In this thesis, the

possibilities for Augmented Reality on mobile devices will be investigated,

and Object Tracking is identified as a vital functionality. In the existing so-

lutions, position- and orientation-based tracking is most common, however,

this project will approach vision-based tracking, which is a wide research

area in the field of Computer Vision. The chosen object tracker, is the prize-

awarded algorithm TLD, which together with the recently released FastCV

library, makes up the functionality in the final presented application. The

application is tested with regard to memory and processing time, and it is

observed from the experiments, that the Detector module in TLD domi-

nates the processing time. Nonetheless, the final Object Tracker performs

as intended and decent frame rates is obtained by reducing the size of the

camera image frame.

For further work, the processing time could be reduced even more, possibly

by making a longer interval between each run with the detector module.

Also the possibility to save object models and use them later on should be

explored. This would be useful in an Augmented Reality application, where

the objects usually is predetermined.
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Terminology

CV Computer Vision; a research field

aimed at methods for acquiring, pro-

cessing, analysing, and understand-

ing images.

AR Augmented Reality; Combines a

view of the real world with computer

generated graphics.

TLD Tracking-Learning-Detection; Long-

term tracking algorithm, developed

by Z. Kalal.

LK Lucas-Kanade; Short-term tracking

algorithm developed by B. D. Lucas

and T. Kanade.

NN Classifier Nearest Neighbor Classifier;

Classification method for supervised

learning.

JDK Java Development Kit; an SDK for

Java

SDK Software Development Kit; a collec-

tion of software development tools for

a certain platform or framework.

JNI Java Native Interface; a framework,

which enables Java to make calls to

native functionality, written in other

languages, such as C, C++ and as-

sembly.

NDK Native Development Kit; a SDK for

developing native code on a virtual

machine system.

ADT Android Development Tools; a plu-

gin for the Eclipse IDE.

IDE Integrated Development Environ-

ment; a software application, which

provides most of the functionality

needed for software development.
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Introduction

Augmented Reality is a technological concept which was introduced in 1968 [1], but

has been given more attention the last few years. As there is being released mobile de-

vices like smartphones and tablet computers, with increasing amount of computational

power, the demand for more intelligent applications is growing. Augmented Reality can

provide ’invisible’ informationon to a preview(or see-through) screen viewing the real

world, which means the technology can be utilized to assist the user in many real-life

situations. These situations could be;

• Navigation; where hints and directions could be applied directly to the field of

view. (find your car in the parking lot, navigate to the closest public bathroom,

get directions for the nearby restaurants)

• Visualisation of dynamic systems or structures; computer generated mod-

els could show up on top of physical objects. (could show how a historical struc-

ture were built, an engine’s dynamics in slow motion, future plans for a physical

area.)

• Medical surgery; the doctor could be able to see directly inside the patient.

• Operation of machinery; the pilot could see through the cockpit walls and see

relevant information directly.

While one would need head mounted diplays (HMD) for the most advance applications,

this is not yet commercially available for mobile platforms[2]. This project, however,

1



1. INTRODUCTION

will focus on applications that is realistic for the current mobile platforms and used

for, but not limited to, commercial use.

1.1 Thesis Structure

This thesis, which documents the solution from the project, is divided into three parts,

Background Information in Part I, Methodical Approach in Part II and System Evalu-

ation in Part III. The parts is there to group the chapters in a logical structure. There

are different approaches to make augmented reality applications, and this will be the

outline of Chapter 2. The chapter will present some of the commercially available

’apps’, before useful tools to create such software are described.

As the augmented reality is supposed to react with physical objects in the real world,

the targeted device must obtain location information about these objects. To address

this functionality, the possibilities in the field of computer vision is investigated, where

Object Tracking is a central topic. The object tracker chosen is the TLD algorithm,

which is described in Chapter 3. This algorithm got a lot of attention, when it was

published in 2010/2011 by Z. Kalal et al. The algorithm was released as an open

source project and the implementation in Matlab could be freely downloaded from the

project’s homepage.

Both Android and iOS were considered as target mobile platform, and Android was

chosen due to convenience and its open source policy. General information and useful

tools for developing Android applications can be found in Chapter 4

To develop this object tracker for the Android platform, there is a need for software

modules to interact with hardware, such as camera, screen display and touch screen.

This functionality and its communication with the TLD object tracker is documented

in the Part II about the Methodical Approach. This part contains the motivation for

the chosen software modules in Chapter 5, the system from the top abstraction layer

in Chapter 6, and a more detailed decription of the implementation in Chapter 7.

In Part III, the system performance is analysed with regard to memory usage and

run-time in chapter 8. The analyses is evaluated and discussed in Chapter 9, before

the thesis is concluded in Chapter 10. Suggestions for further work can be found in

Chapter 11.

2



1.2 Project objectives

1.2 Project objectives

Too sum up the preliminary objectives and the main goal of the project, the following

list is based on the project description:

• Objective 1: do a search for existing solutions and methods available, and

suitable for this application. (Part I)

• Objective 2: make an evaluation of the initial system from the preproject, and

comparison to the state-of-art. (Part II)

• Objective 3: present a documentation of the final system; conceptual and im-

plementation. (Part II)

• Objective 4: give an evaluation of the final system, where memory usage and

run-time should be considered as the critical factors. (Part III)

• Main goal: develop an application, which can follow selected objects on the

target mobile device’s screen, while graphical information follows the object’s

location in real-time.

3
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Background Information
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2

Augmented Reality

Augmented reality is a wide field of technology, combining multiple research areas,

where the goal is to merge the physical reality together with computer generated graph-

ics. A definition of Augmented Reality can be found in a survey by Azuma[3]:

This survey defines AR as systems that have the following three characteristics:

1. Combines real and virtual

2. Interactive in real time

3. Registered in 3-D

To make a computer able to do this, it needs to obtain knowledge about the real

world, and this makes sensors a very important part of what Augmented Reality can

be. Sensor technology is also a vast research field, but for the scope of this thesis, the

focus will be on sensors in the current mobile smart phones. A thorough article on

this can be found in [4], where the following sensors is described; Ambient light(ALS),

Proximity Sensor, Global Positioning System(GPS), Accelerometer, Compass, Gyro-

scope and Back-illuminated sensor(BSI). In addition, they possesses a high resolution

camera, most of them, have even two(front and back). These sensors can again be

divided into Position- and Orientation-Based and Vision-Based sensors. See Figure 2

below.

In section 2.1, a selection of the currently used Augmented Reality applications for

iOS and Android will be described, and categorized with respect to the sensors used.

7



2. AUGMENTED REALITY

Figure 2.1: Sensors in Smartphones - Can be found in most of the recently released

smartphones.

Last section in this chapter, Section 2.2, will discuss the common tools for making such

applications.

2.1 Existing Solutions

2.1.1 Wikitude

Wikitude was released as a free Android application in 2008 by a Austrian development

team from the company Mobilizy GmbH. This application gives the user information

about points of interests in the real world directly on the screen merged with the camera

preview. The user can point the mobile camera against the Statue of Liberty in New

York, and Wikitude will display information from Wikipedia about this well known

landmark. Wikitude is using position and orientation based sensors(GPS, accelerometer

and compass), to show the information on the correct screen location.

2.1.2 Golfscape

Golfscape is, similarly to Wikitude, an Augmented Reality application based on track-

ing of position and orientation. This iOS application is developed by the American

company Shotzoom LLC, and was released in July 2010 through the Apple App Store.

The application displays useful information, like distance to hole, bunkers, water etc,

8



2.1 Existing Solutions

Figure 2.2: Wikitude - in front of Statue of Liberty. Picture is taken from [5].

and will display these distances in the appropriate direction on the camera preview

screen.

Figure 2.3: Golfscape - Picture taken from [6].

2.1.3 Google Goggles

While Google Goggles actually is a image recognition application, it also contains a

possibility for continous video detection. This feature sends multiple frames to the the

recognition servers, and detects and tracks trivial information such as text, logos, land-

marks or other user submitted items. Google Goggles performs vision based tracking,

but it is only active for short amounts of time, as it stops when the target is recognized.

9



2. AUGMENTED REALITY

Figure 2.4: Google Goggles - A run in the office space.

2.2 Development Tools

Qualcomm has distributed a number of useful tools for developing mobile augmented

reality applications. In the following subsections, two of these tools will be described.

Subsection 2.2.1 reviews Qualcomm’s Augmented Reality SDK Vuforia, while 2.2.2

is about their recently released Computer Vision library FastCV. The widely used

Computer Vison library OpenCV is decribed in Subsection 2.2.3, and a small selection

of other development tools, can be found in Subsection 2.2.4.

2.2.1 Vuforia

Vuforia, previously known as QCAR, is an SDK for development of AR applications

on mobile devices, and is compatible with Android and iOS. Vuforia gives developers

the possibility to use 2D and 3D markers, which serves as reference points in the real

physical world. These markers is then tracked by the built-in tracking method, which

makes it easy to apply animations or other computer generated graphic responding

to the markers. The coordinate system will be centered at the marker, and rotated

according to the marker’s orientation in the 3D environment. The SDK was released in

february 2012 in its new brand, as it was updated from QCAR SDK 1.0 to Vuforia SDK

1.5. The system architecture is as following; The developer provide target images to the

Target Management Application, which loads the targets into the mobile application

10



2.2 Development Tools

as resources. The resources are used by the functionality in the QCAR Library, which

again is called upon by the developer.

Figure 2.5: Vuforia - System Overview. Figure is from [7].

Figure 2.6: House model - This is from an application, made with the Vuforia SDK. The

marker used can be found in the appendix, and the ’app’ can be downloaded from https:

//play.google.com/store/apps/details?id=org.monosock.shadowdemo&hl=en.

11
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2. AUGMENTED REALITY

Figure 2.7: House model - Close-up view of the model. The furnitures can be moved

and doors can be closed from the touch screen.

2.2.2 FastCV

The computer vision library FastCV was released for public use late October 2011 [8].

This library has earlier been used by Qualcomm as the center piece in their QCAR SDK,

but is now available for download at https://developer.qualcomm.com/develop/

mobile-technologies/computer-vision-fastcv. The following quotation describes

FastCV, from Qualcomm’s point of view:

“FastCV offers the most widely used, computationally intensive vision processing

APIs, with hardware acceleration and better performance on mobile devices. It

is designed for developers interested in creating sophisticated CV apps, as well as

CV middleware developers looking to build the frameworks necessary for everyday

developers to include computer vision functionality in their apps. FastCV is the

framework at the heart of our vision-based Augmented Reality (AR) SDK, because

AR is much more precise and useful when its based on camera input than on

location-based estimates.”

12
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2.2 Development Tools

- Sayeed Choudhury, director of product management in Qualcomm

The functionality in the FastCV[9] library can be divided into the following cate-

gories:

• Image Processing

• Image Transformation

• Feature Detection

• Object detection

• 3D reconstruction

• Color conversion

• Clustering and search

• Memory Management

2.2.3 OpenCV

OpenCV was originally developed by researchers in Intel, and was released to the

public in 2000 at the IEEE Conference on Computer Vision and Pattern Recognition.

OpenCV is a programmer library aimed at the computer vision community. The library

contains functions to support real time imaging and other vision related applications.

Since 2008, OpenCV is again actively being developed and maintained by the robotics

research lab Willow Garage, which also maintains ROS (Robot Operating System) and

PCL (Point Cloud Library). The vast amount of functionality in OpenCV[10], can be

categorized as following:

• Image Processing

• High-level GUI and Media I/O

• Video Analysis

• Camera Calibration and 3D Reconstruction

• 2D Features Framework

13



2. AUGMENTED REALITY

• Object Detection

• Machine Learning

• Clustering and Search in Multi-Dimensional Spaces

• GPU-accelerated Computer Vision

• Computational Photography

• Images stitching

OpenCV is compatible with Windows, Mac OS, Linux and there is recently released

versions suited for iOS and Android. The latest version 2.4 was released the 28th of

April 2012, however version 2.3.1 for Android is used in this project.

2.2.4 Others

Following is a selection of other tools for developing AR applications:

• ARToolKit - is a library of augmented reality functions, which includes func-

tionality such as marker tracking and graphical overlay with OpenGL. This has

been one of the most used tools for developing AR applications since the realease

in 1999. ARToolKit is available for Windows, Mac OS X and Linux, and has

recently been ported to mobile platforms (Symbian, iPhone(2008)[11], Android

and Windows phone). A number of extended versions and ports has also been

developed by third party development teams.

• PTAM - or Parallel Tracking and Mapping for Small AR Workspaces [12] is

a method for mapping the environments, as an alternative solution to problem

adressed by SLAM(Simultaneous localization and mapping)[13]. PTAM can map

the environment by estimating the camera pose from an unknown 3D scenery,

which is computed from tracked keypoints. The algorithm is not meant for large

scale mapping, but runs with the camera frame rate in a smaller office space.

• Metaio - is a distributor of Augmented Reality SDKs(Software Development

Kits). Their mobile SDK supports Android and iOS, and its full version is free

to download, in contrast to the other Metaio SDKs. The applications, however,

will get a Metaio watermark and splashscreen, if not paid for.
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3

Video Tracking with TLD

The TLD tracking algorithm [14] [15] was developed by Z. Kalal during his PhD thesis

at the University of Surrey. In 2011, he was awarded the ICT Pioneers Prize in the

’Technology Everywhere’ category for his work with this algorithm[16]. The algorithm

combines elements from tracking, learning and detection (TLD), to calculate the scale

and location of any selected object in the 2D image space. To make this a long-term

tracker, these elements is correcting each other; the tracking module feeds the learning

module with new data for a object model, while the detector module is using the learned

data to correct or reset the tracker. This way, it will be stable in the long run, even

though the object is disappearing, moving to fast, gets occluded or changes appearance.

Algorithm 1 and Figure 3.1 shows the different components in the tracker, which

will be explained in detail throughout this chapter.
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3. VIDEO TRACKING WITH TLD

Input: Previous image frame Ii−1
Input: Current image frame Ii
Input: Previous bounding box BBi−1

Output: Current bounding box BBi

while active input feed from camera do
Tracking
- Forward-Backward tracking

- Run Lucas-Kanade in two directions
- Compute median flow
Detection
- Variance Filter
- Ensemble Classifier
- Nearest Neighbor Classifier
Learning
- P-N Experts
Integrator
- Validation
- Evaluate BB candidates

end
Algorithm 1: The TLD tracking algorithm

Figure 3.1: TLD Overview - Diagram of the main components in TLD. ’Object state’

is the location and scale of the bounding box when object is tracked by TLD, and equals

’not visible’ when TLD can’t identify the object. Figure is taken from [14].
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3.1 Tracking: Median Flow

3.1 Tracking: Median Flow

The tracking solution is based on a previously released paper[15] by Kalal et al., and is

also extended with a failure detector. The tracking is performed on an input bounding

box, where the underlying patch is tracked from one camera frame and to the next.

This is done by computing the optical flow(pixel displacement from one frame to the

next) with the Lucas-Kanade(LK) algorithm on the pixels belonging to the patch(a 10

x 10 uniform grid of pixels is extracted from the patch). To ensure robustness, the

LK algorithm is performed in two directions (first frame → second frame && second

frame→ first frame), and a reliability measure is computed for each displacement. The

median displacement of 50 % of the most reliable displacements is considered as the

object’s motion from the first frame to the second frame. The Lucas-Kanade optical

flow calculations is decribed in the following subsection.

3.1.1 Lucas-Kanade

The Lucas-Kanade algorithm was proposed at the International Joint Conference of

Artificial Intelligence in 1981 [17], and has been widely used in the computer vision

community since then. This method is used to compute the image alignment between

a template image T (x) and an input image I(x), as explained in [18]. To compute the

optical flow or to track the template image T (x) from time t = 1 in the input image I(x)

from t = 2, the Lucas-Kanade algorithm calculates a warp matrix W (x;p). x = (x, y)T

is a column vector describing the pixel coordinates and p = (p1, · · · , pn)T is a vector

of parameters. For the 2D transformation, which is the case in optical flow, the warp

matrix W (x;p) can be equivalent to the translations:

W (x;p) =

(
x+ p1
y + p2

)
(3.1)

Here p1 and p2 can be considered as the optical flow along x and y respectively.

To find p = (p1,p2)T , the Lucas-Kanade algorithm will minimize the sum of

squared difference between the template T and the image I:

∑
x

[I(W (x;p))− T (x)]2 (3.2)
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3. VIDEO TRACKING WITH TLD

To optimize the computation, it is assumed that the current estimate of p is known,

hence it only needs to compute the incremental step ∆p which is searched for in a

local region with a Gauss-Newton approximation. Then the following expression is the

subject for minimization:

∑
x

[I(W (x;p + ∆p))− T (x)]2 (3.3)

The current parameters p is updated, and the Gauss-Newton approximation can

be performed with the new parameters.

p← p + ∆p (3.4)

These two steps is iterated until the estimated p converge.The test for convergence

is typically, to check if the norm of p is below a certain threshold ε.

‖∆p‖ ≤ ε (3.5)

To derive the solution of the non linear minimization problem from Equation 3.3, the

expression is linearized by applying a first order Taylor expansion to I (W (x;p+∆p)):

∑
x

[I(W (x;p)) +∇I ∂W
∂p

∆p− T (x)]2 (3.6)

The minimization problem can then be solved in the least square sense, where the

partial derivative of Equation 3.6 is:

2
∑
x

[
∇I ∂W

∂p

]T [
I(W (x;p)) +∇I ∂W

∂p
∆p− T (x)

]2
(3.7)

This expression is equal to zero in the minimum point, and can then be solved with

respect to ∆p:

∆p = H−1
∑
x

[
∇I ∂W

∂p

]T
[T (x)− I(W (x;p))] (3.8)

where H is the n× n Hessian matrix:

H =
∑
x

[
∇I ∂W

∂p

]T [
∇I ∂W

∂p

]
(3.9)
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3.1 Tracking: Median Flow

Input: Previous image frame Ii−1
Input: Previous bounding box BBi−1
Input: Current image frame Ii

Output: Current bounding box BBi

Output: Confidence map conf []
while ∆p > ε do

(1) Warp I with W (x;p) to compute I(W (x;p))

(2) Compute the error image T (x)− I(W (x;p))

(3) Warp the gradient ∇I with W (x;p)

(4) Evaluate Jacobian ∂W
∂p at (x;p)

(5) Compute the steepest descent images ∇I ∂W
∂p

(6) Compute the Hessian matrix using Equation 3.9

(7) Compute
∑

x[∇I ∂W
∂p ]T [T (x)− I(W (x;p))]

(8) Compute ∆p using Equation 3.8

(9) Update the parameters p← p + ∆p

end
Algorithm 2: The Lucas-Kanade algorithm, as in [18]
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3. VIDEO TRACKING WITH TLD

Figure 3.2: Lucas-Kanade Illustration - The figure follows the steps in Algorithm 2.

Figure is taken from [18].
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3.2 Detection: Cascaded Classifier

3.2 Detection: Cascaded Classifier

The Median Flow tracker assumes that the object will stay inside the screen view, and

will fail if the object moves outside or is occluded. From the nature of the Lucas-

Kanade algorithm it will also fail if the object moves to far from one frame to the next.

To enable long-term tracking also in these cases, a detector is needed to search for the

object when the tracker is lost.

The detector searches through the input frames with a scanning-window approach,

and decides for each window’s underlying patch if the object is visible or not. This scan

generates a number of bounding boxes which needs to be evaluated with a confidence

measure. This evaluation is done by a Cascaded Classifier, which can be divided into

3 stages:

1. Patch Variance Filter

2. Ensemble Classifier

3. Nearest Neighbor Classifier

Figure 3.3: The detector used in TLD - Figure is taken from [14].

Eatch patch is sent through these stages, and is either rejected or passed on to the

next stage. Following is a short description of the three stages:

3.2.1 Patch Variance

In this phase, the variance across the patch is computed. This is done by computing

the mean with integral images, and then the variance is computed with the formula:

σ = m2 − 1

N

∑
x2 (3.10)
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3. VIDEO TRACKING WITH TLD

where σ is the standard deviation, m is the mean, x is the pixel value and N is the

number of pixels inside the patch.

The result is then compared to the initial patch of the selected object. If the variance

is less than 50 % of the initial patch, the current patch is rejected. The patches with low

variance is typically not containing objects (e.g. the sky, part of a wall). This process

removes about 50 % of the patches in the original implementation, but a threshold can

be adjusted to change the amount of patches passing by.

3.2.2 Ensemble Classifier

The ensemble classifier consists of n base classifiers, and each classifier i computes a

posterior probability Pi(y|x). This posterior probability is calculated from a number of

pixel comparisons on the patch which is translated to a binary code. (see Figure 3.4)

The setup of pixel comparisons is generated offline and each base classifier is designed

to be independent of each other. In the original implementation there is generated 13

comparisons for each base classifier, and they will in total cover every pixel inside the

patch.

Figure 3.4: Conversion from patch to binary code - The input images is blurred

by a Gaussian kernel to make the pixel comparisons robust against shift and image noise.

Figure is taken from [14].

The posterior probability Pi(y|x) is then equal to the number of positive patches

with the same binary code as patch i, divided by the total number of negative and

positive patches (related to the learning phase explained in Section 3.3).

Pi(y|x) =
#p

#p+ #n
(3.11)
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3.3 Learning: P-N Learning

3.2.3 Nearest Neighbor Classifier

Finally, the resulting bounding box is chosen from the remaining patches with a Nearest

Neighbor Classifier. In the original implementation there is typically 50 patches left

after the two first stages of the Cascaded Classifier. To compare the patches to the

negative and positive sets in the object model M = (p+1 , p
+
2 , ..., p

+
m, p

−
1 , p

+
2 , ..., p

+
n ), a

number of similarity measures must be taken:

1. similarity with the positive nearest neighbor: S+(p,M) = maxp+i ∈M
S(p, p+i )

2. similarity with the negative nearest neighbor: S−(p,M) = maxp−i ∈M
S(p, p−i )

where the similarity between two patches is

S(pi, pj) = 0.5(NCC(pi, pj) + 1) (3.12)

and NCC is the Normalized Correlation Coefficient.

The patch is classified as the object if the relative similarity Sr(p,M) exceeds an

adjustable θNN :

Sr(p,M) > θNN where Sr =
S+

S+ + S−
(3.13)

θNN can be tuned to change the balance between precision and recall (see Section

3.4).

3.3 Learning: P-N Learning

The learning module maintains the base of positive and negative patches in the following

manner; first, a set of patches is initialized with respect to the user specified bounding

box. Patches inside the bounding box is assigned as positive and the surrounding

patches is assigned as negative. Then, during the online progress, the sets of negative

and positive patches is updated according to socalled P-N-experts. These experts is

described subsequently.
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3. VIDEO TRACKING WITH TLD

3.3.1 P-expert

The P-expert is supposed to detect new appearances of the object, and adds the cor-

responding patch to the positive set in the object model M . To locate these patches,

the P-expert is exploiting the fact that the object moves along a trajectory. However,

because the TLD algorithm is using both tracker, detector and an integrator to esti-

mate the trajectory, the trajectory will be discontinous and not always correct. The

task for the P-expert is then to find the reliable parts of the trajectory. The first step

to find the reliable trajectory is to compute the Conservative Similarity Sc with the

following expression:

Sc =
S+
50%

S+
50% + S−

(3.14)

where S+
50% is the similarity between the patch and 50 % of the first registered

positve patches (p+1 , p
+
2 , ..., p

+
m/2).

If Sc is larger than a certain threshold, the patch is added to the socalled core.

The core is used to identify reliable parts of the object trajectory, which is shown in

Figure 3.5. The trajectory is considered as reliable when it enters the core, but will be

marked as unreliable if it stays outside the core. For every input frame, the P-expert

decides if the current location is reliable or not. If the location is reliable a number of

patches is picked from the surroundings, and is sent to the Ensemble Classifier together

with warped versions of the same patches. In the original implementation, 10 patches

is selected and warped 10 times each. This result in 100 patches for the Ensemble

Classifier.

3.3.2 N-expert

The task for the N-expert is to label the negative patches of the training set. It can be

assumed that the object is only located at one place at any time, and the N-expert is

exploiting this. Every patch that is more than a distance threshold from the object is

labeled as negative. The N-expert does this update after the Variance Filter and the

Ensemble Classifier, and is only considering the remaining patches after these stages.

Finally, the integrator combines the bounding box found by the tracker, and the

one found with the detector. The confidence, measured by the Conservative Similarity
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3.4 Performance: Precision/Recall

Figure 3.5: P-expert - Red dots are positive patches, black dots are negative. a) - The

feature space with the core in shaded area. b) - unreliable and reliable trajectories, as

dotted and continous lines respectively. c) - the object model and the core after update.

Figure is taken from [14].

Sc, is evaluated for the two bounding boxes, and the box with the highest confidence

is selected as the output bounding box. If there is not proposed a candidate bounding

box from neither the detector nor the tracker, the object is considered as ’not visible’.

3.4 Performance: Precision/Recall

To measure the quality of the tracking, two entities is often used; Precision and recall.

Precision describes the fraction of the selected keypoints belonging to the object divided

by the total amount of selected keypoints. Recall is the fraction of the selected keypoints

divided by the total number of keypoints belonging to the object. An example is shown

in Figure 3.6. Sometimes, a combined measure of these two entities, called F-measure,

is used:

F = 2 · precision · recall
precision+ recall

(3.15)

In Figure 3.7 the precision and recall measures of TLD is compared against other

state-of-the-art object trackers.

25



3. VIDEO TRACKING WITH TLD

Figure 3.6: Example about precision and recall - Figure shows a number of sample

points from a video frame. Green points belongs to the object, while red points belongs to

the background. The bounding box is found by the tracker, and the performance on this

frame is evaluated as follows; number of samples inside bounding box = 8, green samples

inside = 5, total number of green samples = 7. Precision is then 5/8 = 0.63, Recall = 5/7

= 0.71

Figure 3.7: Performance of a selection of trackers - This table, presented in [14],

shows TLD’s performance(precision/recall/F-measure), compared to other trackers. The

trackers is runned on different video sequences which is commonly used for testing these

methods. The trackers in the test is; OB = Online Boosting[19], SB = Semi-Supervised

On-line Boosting for Robust Tracking[20], BS = Beyond semi-supervised tracking[21],

MIL = Multiple Instance Learning[22], CoGD = Co-trained Generative-Discriminative

tracking[23]
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4

Android

The Android platform were introduced to the market in 2007, and was pushed forward

by the Open Handset Alliance, a collaboration between 86 hardware, software and

telecom companies led by Google. The platform was launched to be an open mobile

standard, and the architecture is based on the Linux kernel modified by the Android

development team from Google. As of third quarter 2011, Android was estimated to

have 52,5 % of the worldwide smartphone market [24], followed by Symbian and iOS.

Figure 4.1: Smartphone Marketshare - graph over the last years from Gartners quar-

terly reports.
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4. ANDROID

To start writing your own Android applications, a wide amount of useful information

and tools can be found on the developers’ homepage developer.android.com. The

following sections will describe the tools and system configuration required to start

programming, and it will be given an introduction to terms and important concepts.

4.1 Development Tools

To set up a development environment for the Android platform, a number of software

components is required. The traditional and officially supported way to do this, is

through the Eclipse environment. The following list (details in [25]) describes the

necessary steps before starting an Android development project:

(1) Preparing Your Development Computer

• install Java Development Kit (JDK). (http://java.sun.com/javase/downloads/

index.jsp)

• install a suitable version of Eclipse, ’classic’ is recommended. (http://www.eclipse.

org/downloads/)

(2) Downloading the SDK Starter Package

• install the latest version of Android SDK. (http://developer.android.com/sdk/

index.html)

(3) Installing the ADT Plugin for Eclipse

(4) Adding Platforms and Other Packages

Additionally for native programming:

(5) Install Native Development Kit (NDK) [26].

• Download the appropriate package of the latest version of NDK. (http://developer.

android.com/sdk/ndk/index.html)

• Extract archive into your development folder.
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4.2 Terms and Concepts

4.1.1 Android SDK

The Android Software Development Kit (SDK) was released in 2007 shortly after the

Android platform was made public. The SDK was introduced to enable development of

applications (’apps’) to the new platform, and includes a debugger, software libraries,

a handset emulator, sample code and tutorials. The Android SDK can be downloaded

from http://developer.android.com/sdk/index.html, and is compatible with Win-

dows, Mac OS X, and Linux.

4.1.2 Android NDK

The Native Development Kit(NDK) allows developers to write their code in native

code(c/c++). This is not allways preferable, as development with the NDK always

adds complexity to the system, but does not always increase performance. The NDK

should be used when performing CPU intensive computations, such as signal processing,

physics simulations or other algorithms doing large scale matrix calculations.

4.2 Terms and Concepts

The Android application is defined by the AndroidManifest.xml file, where the system

stores which activities can be launched from the application, and which activity should

be launched when the application starts up. The Android activities is used throughout

the programming process to define separate events which the user can start. The

running activity is maintained by the activity manager and is driven by the activity

lifecycle described in Figure 4.2.

29

http://developer.android.com/sdk/index.html


4. ANDROID

Figure 4.2: The activity lifecycle - The diagram describes the possible states of the

activity, and which functions that trigger the next state.
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Methodical Approach
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5

Motivation

The main objective of this project was to make a long-term object tracker, to enable

development of augmented reality applications. Several approaches were considered,

and a large emphasis was laid on frame rate and robustness. Another factor which was

kept in mind, was the limitations of the mobile platform, where the processing power

and the memory available still is a significant gap from the regular work stations. This

chapter describes the solutions chosen, to construct this long-term tracking application

for the Android platform. The most important functionality can be grouped into three

software modules:

1. Image Acquisition - should be able to to grab image frames from the camera,

and convert to the appropriate image format.

2. Object Tracking - should be able to track an object’s position and scale from

the input image frame and the initial position of the object.

3. Rendering - should be able to construct the output image frame and bring it to

the screen.

A selection of existing methods is evaluated in the following sections, where the

motivation for choosing the object tracker and the two other modules is presented in

Section 5.1 and Section 5.2 respectively.
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5.1 Object Tracking

First of all, the video tracking problem is addressed. Obviously, this could be solved

by performing object recognition (previous work in [27]) on every frame, but there

is several refined methods which can do the job in a more elegant manner. The fol-

lowing methods were looked into: Rosten and Drummond’s tracking[28][29] based on

FAST feature points, Viola and Jones’ object detection framework[30], Wagner’s et

al. approach[31][32] for tracking natural features on mobile phones, Ozuysal’s et al.

method[33][34] based on random ferns and Kalal’s et al. ’Tracking-Learning-Detection’

(TLD) algorithm[14] explained in chapter 3. All these methods can do object tracking

with a reasonable frame rate, e.g compared to tracking with original SIFT or SURF

features (i.e. to use highly invariant features for object recognition on every frame will

be too computational expensive). Below, in Table 5.1, is the result from a test run

with most of the supported feature detectors in OpenCV (8/10 detectors, 2 did not run

properly). An alternative for a more thorough comparison, can be found in [35].

FAST STAR SIFT SURF ORB GFTT Harris DENSE

Computation Time(ms) 83 755 27577 5861 282 863 806 237

Number of Keypoints 2206 259 1228 1505 702 1000 502 10720

Theoretical fps(1/time) 12.05 1.33 0.036 0.17 3.55 1.16 1.24 4.22

Table 5.1: Test: OpenCV feature detectors - The test is performed on an arbitrary

frame, and the detectors is runned sequently on the frame with the default threshold values.

The frame size is 800 x 480, and the detectors is from OpenCV v2.3.1 for Android. The

test code can be found in workThread.cpp on the attached CD.

From this test, OpenCV’s FAST implementation has the lowest runtime, and could

possibly be a good basis for a real-time tracker, as proposed in [28]. Ozuysal et al.

presents a method where random ferns is used to recognize objects. The ferns is pixel

comparisons put through a binary test, where the pixel locations is randomly selected

in pairs to maintain statistical independence. A patch(subset of the frame) is then

classified by posteriori probabilities calculated from the tested ferns. In [31] it is in-

troduced a method which combines tracking of natural features using SIFT and fern

detection. In the modified SIFT algorithm Wagner is using a FAST feature detector in-

stead of the Difference of Gaussian(DoG) approach in SIFT[36], which greatly reduces
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5.1 Object Tracking

its computational cost.

The TLD approach, which was chosen as the solution for this project, takes some

elements from the methods above. TLD is also using ferns for detection, machine learn-

ing plays an important role, and tracking is done with a modification of the widely used

Lucas-Kanade algorithm. Several of the methods above could possibly be successfully

implemented for Android, however, there was a few significant reasons to choose TLD;

1. TLD’s claimed performance was convincing.

2. The project is open-source, so the method could easily be tested in Matlab.

3. An active open source community, where the solution was discussed and devel-

opers gathered for portation to C++.

4. A clean and effective C++ port(https://github.com/gnebehay/OpenTLD), by

G. Nebehay.

The community gathered at http://groups.google.com/group/opentld, and a

number of C++ ports were developed during fall 2011. In December, three ports

were announced by alantrrs, aonsquared and gnebehay (Nicknames). Alantrrs’ and

aonsquared’s ports were merged, but seemed to have some issues with the frame rate.

As the speed was critical for this project, gnebehay’s port was selected. This port,

by G. Nebehay can be built with CMake, thus the compability is not an issue with

most platforms. It was tested by the author on Ubuntu 11.10 and Windows 7, before

starting the application development for Android. Below, in Table 5.2 is the frame rate

measures, tested in [37].

OpenTLD(C++) ST OpenTLD(C++) MT TLD (Matlab)

Total Computation Time(ms) 18390 14120 38170

Computation Time per frame(ms) 58.75 45.11 121.95

Frames per second 17.02 22.04 8.20

Table 5.2: Test: Comparison of OpenTLD and original TLD. - This is a compari-

son of the C++ implementation OpenTLD and the original Matlab implementation. The

test is performed on a video sequence called ’Jumping’, which consists of 313 frames. ST

means single-threaded, and MT means multi-threaded. Data is taken from [37].
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5. MOTIVATION

5.2 Image Acquisition & Rendering

To make the application work as intended, it was necessary to; 1. bring the input

images from the Android camera and into the object tracker, and 2. bring the tracked

bounding box onto the preview screen. After testing with different solutions, FastCV’s

sample application ’FAST Corner sample’ stood out as the most promising framework

that could take care of these tasks(1 & 2). This sample application was intentionally

written by Qualcomm to demonstrate the performance of FastCV, and it is compared

in Table 5.3 with the author’s implementation of a feature detector using OpenCV.

FastCV detector OpenCV detector

Computation Time(ms) 14 46

Number of Keypoints 2361 2296

Theoretical fps(1/time) 71.43 12.05

Table 5.3: Test: Comparison of FastCV’s sample application and the initial

implementation using OpenCV - The OpenCV result is taken from Table 5.1, and

the FastCV result is taken from an arbitrary frame during runtime(Selected to match the

amount of keypoints in the OpenCV test). Both detectors is using the FAST algorithm for

detection.

Following, in Figure 5.1 and Figure 5.4, follows a complete analysis of the two sys-

tem’s run-time. The implementation is divided into modules, mainly covering Image

Aquisition, Object Detection and Rendering. Data conversion and decoding is also

included due to it’s significant amount of processing time. The remaining processing is

registered as Computational Overhead and is grouped together with the Image Acqusi-

tion module, which is difficult to measure accurately. The processing time is computed

from time intervals, defined by the System.nanoTime() function in Java(Interval =

endTime - startTime), which measures the time elapsed since first of January 1970 in

nanoseconds. The total processing time is computed with the same procedure, just by

setting a time when one frame arrives and compare it to the time when the next arrives.

To determine the time intervals in the C++ files, the function getTimeMicroSeconds()

is used, which further calls on clock gettime(CLOCK REALTIME, &t).

36



5.2 Image Acquisition & Rendering

Figure 5.1: Initial implementation - Number of keypoints

Figure 5.2: Initial implementation - Processing time analysis.
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Figure 5.3: FastCV Sample - Number of keypoints

Figure 5.4: FastCV Sample - Processing time analysis.
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From the run-time analysis it can be seen that the FastCV sample outperforms the

initial implementation for each of the defined modules. In the initial implementation,

the data conversions and rendering is written in Java, while the detector is called

through JNI. In the FastCV sample, all computational expensive modules is processed

through JNI, which seems advantageous. It also has an elegant rendering module,

where changes in the output image is stored in a buffer, which is sent to the screen

when it is ready to display a new frame.
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6

Technical Overview

In Chapter 5, the motivation for choosing OpenTLD and the FastCV Sample as solu-

tions was looked into. In this chapter, the structural overview of the final system will

be described and visualized. In Section 6.1, the system is described with respect to the

interaction with the user. In Section 6.2, an overview of the functionality is given from

the programmers point of view.
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6.1 User perspective

The progress in the application is defined by only a few events from the user perspective.

The following diagram, in Figure 6.1, shows these events through a typical run of the

application, from the user’s point of view:
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6.1 User perspective

Figure 6.1: Application from the user’s point of view - From the opening screen,

the user has 3 possibilities, ’Start’, ’Settings’, ’About’. The ’About’ view contains a short

summary about the application, ’Settings’ contains adjustable variables(such as image

scale, thresholds, on/off modules etc.), and ’Start’ triggers the preview screen. The user

then selects the object from the current freezed preview with the touch screen. TLD starts

after the second ’start’ button is pushed, and the user does not need to interact with the

system again, unless a new object is to be selected. This example used scale 4 image

frames.
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6. TECHNICAL OVERVIEW

6.2 Programmer perspective

This section contains two diagrams giving an overview of the software. The first diagram

in Figure 6.2, separates the software from the hardware of the targeted mobile device

and describes the purpose of the most important Software modules. As elaborated in

Chapter 5, the object tracking solution is performed with the OpenTLD implementation

by G. Nebehay, while Image Acquisition and Rendering is taken care of by a framework

based on the FastCV sample application. The second diagram describes the main

modules of the OpenTLD implementation and how they work together.
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6.2 Programmer perspective

Figure 6.2: System overview - This figure shows the main components of the system.

The image acquisition module takes the image data from the sensor, and sends it as an

appropriate datatype to the object tracking module. When the object tracker receives the

initial bounding box from the touch panel, it will compute the tracked bounding box in the

next input frame. The input frame and the tracked bounding box is sent to the rendering

module, which produces the output frame. If no initial bounding box has been set by the

user, the output frame will equal the input frame
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6. TECHNICAL OVERVIEW

Figure 6.3: OpenTLD overview - The TLD object tracker is launched when the user

selects a bounding box and clicks start on the preview screen. When this happens, the

TLD Initialisation step is started, which sends the initial input frame together with the

initial bounding box, into the Learning module. This step produces the first positive patch,

which is subject for comparison in the Detection module. Next, the Detection module and

the Tracking module is runned independently, before the Fusion module evaluates the

two results. A validation step is then deciding whether the patch, representing the tracked

bounding box, should be subject for learning or not. Diagram is from G. Nebehay’s Master

thesis(draft version)[37].
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7

Implementation

In Chapter 6, the system is described from the view of the user, and then from the top

level for the programmer with regard to the software modules used in the implemen-

tation. In this chapter, the implementation will be explained from a lower abstraction

layer. The application flow will be described with sequence diagrams, and relevant

function calls will be pointed out (arguments can be seen in source code, but is mostly

marked with ’...’ in functionCalls(...)). It is recommended to use this documentation,

when going through the source code for the first time. Section 7.1 walks through the

application flow in the framework used, which is based on the FastCV sample appli-

cation. Section 7.2 looks at the flow through the object tracker, which is the C++

implementation of OpenTLD, by G. Nebehay.
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7. IMPLEMENTATION

7.1 Application framework

When the application is launched, the SplashScreen activity starts up as defined in the

OpenTLD manifest file AndroidManifest.xml. The FastCVSample activity(see Figure

7.1) is then started in SplashScreen.java when the menu start button is pressed by the

user, and begins with the onCreate() call. The next step is the onResume() call where

the initialisation of the Java part takes place. ’Start’ and ’Stop’ buttons is defined here,

preview screen is activated, and there is a onTouch(...) listener as well.

When the user touches the screen, it should freeze the current preview frame, and

a green bounding box appears where the user touched the screen. The bounding box

can be dragged around and resized to the desired shape and size. This is done by regis-

tering different touch events with the MotionEvent functionality such as ACTION DOWN,

ACTION MOVE and ACTION UP. The first touch is registered as a fixed corner, and the

second corner follows when the touch moves across the screen. If an object is selected,

the user can press ’Start’ to start tracking with TLD. The onTouch(...) listener is

still active during tracking, which means that the user can reselect object from the

preview screen at any time.

When ’Start’ button is pressed, it sends a call to the JNI function initTLD(...),

where the selected bounding box and the freezed image is sent to the object tracker mod-

ule with the function selectObject(...). This step is initialising variables used by the

tracker. For every frame from the preview screen the function onPreviewFrame(...)

is processed, and calls the JNI function update(...) in FastCVSample.cpp. After

Initialisation, this module launches the OpenTLD implementation with a call to the

function processImage(Mat grey). The update(...) function is also converting the

raw image data to the OpenCV matrix format Mat, before it is sent in grayscale to the

object tracker. When the OpenTLD module has computed the tracked bounding box,

it is made available for the Rendering module and drawed onto the output buffer frame

with the function drawBB(...) in FastCVSample.cpp. As soon as the screen is ready

to display another frame, the buffer is rendered on the screen by the requestRender()

function in FastCVSample.java.
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7.1 Application framework

Figure 7.1: Implementation: Application framework - FastCVSample activity is

launched by SplashScreen.java and starts with the onCreate call(see the Activity lifecycle

in Section 4.2) when the menu start button is pressed by the user. To communicate

between the Java and C++ files, the Java native interface(JNI) is used, and the C++ files

is compiled with the Android NDK 4.1.2
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7. IMPLEMENTATION

7.2 Object Tracker

The object tracker is trigged from the file FastCVSample.cpp with a call to the function

processImage(Mat grey) in TLD.cpp. This function operates the modules; Track-

ing, Learning and Detection(see Figure 7.2. The Tracking module is launched with

the track(...) function, which again calls on forward-backward tracking with the

fbtrack(...) function. This function computes the Lucas-Kanade optical flow from

the previous frame to the current frame, and then the other way around. A proposed

candidate for the new bounding box is returned by the tracker.

Following, the Detection module is launched with the function detect(img=grey),

where foreground is calculated with the function foregroundDetector::nextIteration(img)

(from background subtraction), before the patches(windows) is sent through the Vari-

ance filter, Ensemble Classifier, and Nearest Neighbor Classifier as explained in Section

3.2. The detector returns another candidate for the new bounding box, and both candi-

dates is then sent to the fuseHypotheses() function. In this function, the candidates

are evaluated and the bounding box with the highest confidence is chosen.

If the trackers candidate is chosen, it is considered for validation. If the tracked

bounding box is valid, it is brought to the Learning module represented by the func-

tion learn(), where the bounding box’ underlying patch is stored as a positive patch

together with overlapping patches. Negative patches is computed in this function as

well. The positive patches is sent to the Ensemble Classifier while the negative patches

is sent to the Nearest Neighbor Classifier, for further use in the Detection module.
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7.2 Object Tracker

Figure 7.2: Implementation: OpenTLD - Sequence diagram of the OpenTLD imple-

mentation.
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Part III

System Evaluation
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8

Performance Analysis

As mentioned in the project description, the critical factors considered for the applica-

tion’s performance is memory usage and processing time, due to the limited computa-

tional power in mobile devices. The quality of the tracking, such as precision and recall

measures, is not evaluated in this thesis, as these measures is thoroughly evaluated in

[14] and [37]. In this chapter, there will be analysis of memory usage and run-time,

and how they depend on a selection of relevant variables. The selected variables is;

number of features from the Tracking module, size of the produced bounding box, and

number of patches that were registered as valid and stored in the Learning module.

Before testing, a few initial hypotheses were derived about dependencies between the

variables and the performance.

1. Amount of tracked feature points; would affect the Tracker module’s run-

time, due to more points to compare in the Lucas-Kanade algorithm. Also the

rendering could take longer.

2. Size of bounding box; would affect the Detector module’s run-time, due to

larger patches containing more pixels being sent for matching in the Cascaded

Classifier(see Section 3.2). Could also affect the memory usage.

3. Number of learned patches; would affect memory and run-time performance.

Run-time of the Learning module should be affected, due to processing needed

to learn new patches(extraction of patch, computing overlap, classifying patch).

Run-time of the Detector module should increase as there will be more patches
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8. PERFORMANCE ANALYSIS

to match. The memory usage should also be affected due to the growing amount

of stored patches.

Another factor which obviously would affect the performance, is the size of the

processed image frames. The default size is 800 x 480 on the used device, and in Figure

8.1, the quality of the different scales used can be observed.

Figure 8.1: Scales - Subimages from frames with the different scales. Scale 1: 800

x 480, Scale 2: 400 x 240, Scale 4: 200 x 120. The lower-resolution scales is obtained

by downsampling the original image with FastCV’s fcvScaleDownXX functions(XX equals

scale specifiaction). Visually the images becomes blurred.

In the following sections, the test results will be presented. Section 8.1 contains

analysis of the memory usage, while the processing time will be analysed in Section

8.2. Each of the analyses is supported by measures of the mentioned variables, for

evaluation of the listed hypotheses in Chapter 9.

8.1 Memory Usage

To measure memory usage, Android has several useful tools. In this project the classes

ActivityManager and Debug is used. The ActivityManager class contains overall func-

tionality to interact with the running activities, and for obtaining memory information,

the underclass MemoryInfo can be used. The functionality in this underclass is limited,

but is used in the following analysis to measure the available memory on the targeted

device. The class Debug, also contains a subclass called MemoryInfo(not to be confused

with the just mentioned subclass of ActivityManager). This MemoryInfo subclass has

more detailed memory measures, but is limited to the current application. To measure

the memory used by this application, there is several to choose from, however PSS and

Private Dirty seems sufficient for this project. PSS, or proportional set size, is a rela-

tive measure of the memory usage compared to the amount of other processes running.
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8.1 Memory Usage

Private Dirty is the memory inside the current process, which can not be paged to disc.

[38]. These two measures can be found together with the available memory in Figure

8.2.

Figure 8.2: OpenTLD: Memory Analysis (Scale 4) - The first phase is before

initialisation. The most drastic change is when initialisation occurs, where memory is

allocated for the TLD functions. Timespan = 87,8 s.

Figure 8.3: Learned patches (Scale 4) - Timespan = 87,8 s.

The extraction of memory data also affected the processing time significantly. Be-
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8. PERFORMANCE ANALYSIS

Figure 8.4: Tracked features (Scale 4) - Timespan = 87,8 s.

Figure 8.5: Bounding box size (Scale 4) - Timespan = 87,8 s.
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8.2 Processing Time

low, in Figure 8.6 the run time is parted up in the same categories as in the evaluation

of the initial systems’ in Chapter 5. In addition the time processed during run of mem-

ory functions, is labeled as ’Memory Evaluation’. The time intervals is measured with

the functions nanoTime() in Java and getTimeMicroSeconds() in C++ as before.

Figure 8.6: OpenTLD (Scale 4) - Processing time analysis.

8.2 Processing Time

The following analysis of the processing time is slightly different than the previously

presented. The categories presented as Image Acquisition, Conversion, Rendering and

Computational Overhead, which represents the functionality based on the FastCV sam-

ple, is now moved into one label. The focus for the analysis is the content of the proces-

sImage() function, which represent the OpenTLD functionality, grouped into the main

modules Tracking, Learning and Detection. The first part of the results is from the

system runned on scale 2 image frames, while in the second part, the system processed

scale 4 images.
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8. PERFORMANCE ANALYSIS

Figure 8.7: OpenTLD Processing Time (Scale 2) - The first phase until the first

peak, is runtime before bounding box is selected. It’s worth to notice that this phase

usually will stabilize around 33 ms, as the camera preview’s frame rate is 30 fps (this also

means that the processing in the FastCV framework finishes before the new frame arrives).

The first peak is the initialisation after the bounding box is selected(the peak usually ends

at 2000-3000 ms). The periods when the tracker is not running, is when the object is

lost(occluded, out of screen or just not detected by other reasons).
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8.2 Processing Time

Figure 8.8: Learned Patches (Scale 2) - Timespan = 79,8 s.

Figure 8.9: Bounding box size (Scale 2) - Timespan = 79,8 s.

Figure 8.10: Tracked Features (Scale 2) - Timespan = 79,8 s.
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8. PERFORMANCE ANALYSIS

Figure 8.11: OpenTLD Processing Time (Scale 4) - The first phase until the first

peak, is runtime before bounding box is selected. It’s worth to notice that this phase

usually will stabilize around 33 ms, as the camera preview’s frame rate is 30 fps (this also

means that the processing in the FastCV framework finishes before the new frame arrives).

The first peak is the initialisation after the bounding box is selected(the peak usually ends

at 2000-3000 ms). The periods when the tracker is not running, is when the object is

lost(occluded, out of screen or just not detected by other reasons). (Copied from Figure

8.7 for convenience)
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8.2 Processing Time

Figure 8.12: Learned Patches (Scale 4) - Timespan = 43,1 s.

Figure 8.13: Bounding box size (Scale 4) - Timespan = 43,1 s.

Figure 8.14: Tracked Features (Scale 4) - Timespan = 43,1 s.
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Discussion

This chapter will discuss the performance analysis from Chapter 8 and evaluate the ini-

tial hypotheses about the variable dependencies. Firstly, there will be some comments

about the memory usage, before processing time will be discussed. The hypotheses will

be evaluated for the relevant analysis, before other remarks will end this chapter.

The memory usage was thought to be a potential issue, because of the many subim-

ages, called patches, that should be stored in the Learning phase. From Kalal et al. ,

it was observed that the amount of stored patches stabilised on several hundred, and it

should not be a significant risk for memory shortage on regular computers. However,

with the more limited amount of memory on mobile devices, it made sense to investi-

gate the memory usage for TLD on the Android platform. From Figure 8.2 it can be

seen, when the object tracker begins(after about 25 samples), there is an increase in the

memory usage of the active process(PSS and Priv. Dirty), and a correspondent reduc-

tion in the available memory. After this point, there is a slight decrease in the available

memory, but does not come close to memory shortage. To adress the hypotheses; there

is no visible conection between the size of the bounding box and the memory analysis,

however there is possibly a significant dependency between number of patches learned

and memory usage. This test of memory usage was performed with the scale 4 images,

but it is performed a similar test with the scale 2 images (in Appendix 12.2), and no

significant difference was observed regarding memory usage.

The analysis of processing time can be divided in two parts; testing with scale 2

images and testing with scale 4 images. The cumulative processing time with scale

2 images and scale 4 images, can be seen in Figure 8.7 and Figure 8.11 respectively.
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9. DISCUSSION

The most evident change in the graphs is noticed when the Tracking module stops

(object is defined as lost by the tracker). This event drastically reduces the processing

time due to the following reasons; 1. the Tracking module’s processing is skipped, 2.

there is no learning without tracking and 3. less patches is going through the Nearest

Neighbor Classifier, because few patches, if any, lets through the Ensemble Classifier in

the Detection module. Following is a list, to address the initial hypotheses regarding

the variables:

1. Amount of tracked feature points; does not affect the Tracker module’s run-

time to a significant degree. The same is true for rendering(see Figure 8.6).

2. Size of bounding box; does not affect the Detector module’s run-time to a

significant degree, at least not in a consistent manner. The influence on memory

usage, is not noticeable either like already mentioned.

3. Number of learned patches; is affecting both memory and run-time. The

memory usage seems to be slightly influenced by this, but not to a critical level.

On the other hand, run-time is dependent on the amount of learned patches to a

larger extent. This can be seen for both scale 2 and scale 4, where the Detector

module’s processing time tends to grow in both cases, as the amount of patches

increases. The Learning module is also affected by the increase of patches (more

precisely, the gradient of the graph).

From testing with image scale 2 compared to image scale 4, it is experienced that

while image scale 4 is more than twice as fast, it also lets the bounding box drift slightly

more(see Figure 6.1 from the user perspective example, where there is a drift between

the initial and the tracked bounding box.). For scale 2, the detector will process images

with more details, which will make the detection more accurate, due to more unique

results from the Ensemble Classifier. On the other hand, the tracker will give about

half as many positive patches to the learning module, thus it will take longer to make

the classifiers robust.

Another remark experienced through testing, is that video cameras have a mecha-

nism to turn down its image acquisition speed during low light conditions. This may

affect test results from day to day, depending on the weather and time of the day. The
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test results presented in the performance analysis, however, is taken on the same day

and shouldn’t be affected too much from this.
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Conclusion

During this project a long-term tracker, based on the Tracking-Learning-Detection(TLD)

algorithm, has been ported to the Android platform. The resulting application is made

out of a C++ version of TLD, OpenTLD, which is integrated into a framework based

on the FastCV sample application. The performance, with regard to memory and pro-

cessing time, is analysed in Chapter 8. From this analysis, the system runs with a

frame-rate about 10 fps (with scale 4 images), and OpenTLD is observed to dominate

the processing time, which is desired. However, the processing time is increasing after

a period of time, especially the Detector module, due to a growing amount of patches

in the learning module. Suggested solution to this is mentioned in Further Work.

Nonetheless, the object tracker application works as intended on the Android platform

and could possibly be used for Augmented Reality (See videos on the attached CD, to

get another impression of how it performs).

The motivation for making this object tracker for Android, was to utilize it for

the Augmented Reality purpose. However, other technological concepts which is not

discussed, could also exploit the OpenTLD functionality. This could be system’s for

Human-Computer Interaction (HCI), Video Stabilization or as visual input for robotic

control.

69



10. CONCLUSION

70



11

Further work

For further work, the processing time could be reduced even more, possibly by making

a longer interval between each run with the detector module. The system response

is clearly becoming slower, as the amount of patches increases. As mentioned in [14],

when the amount reaches a threshold, the system starts to randomly remove patches.

This threshold could possibly be set lower for the Android version to limit the speed

reduction, but this has not been investigated yet.

G. Nebehay introduced functionality for loading a previously learned object model,

but this is not yet a feature for the Android version. This should be looked into though,

as it would be useful in many situations, such as in an Augmented Reality application,

where the objects usually is predetermined.

Like discussed by Wagner[31], it is possible to trade memory for speed and ro-

bustness in the Fern Classification (Ensemble classifier). In this project, however, the

memory usage was not the critical factor, and this could mean that it would make sense

to trade speed and robustness for memory instead.

It would also be interesting to see a analysis of the tracking quality (ie. preci-

sion/recall measures), when doing this tradeoff or when reducing the image resolution.
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12

Appendix

12.1 Device Used

Figure 12.1: Samsung Galaxy S II - Info is taken from http://en.wikipedia.org/

wiki/Samsung_Galaxy_S_II

• Model: GT-I9100

• Android version: 4.0.3 (Ice Cream Sandwich)

• SoC: Samsung Exynos 4 Dual 45nm

• CPU: 1.2 GHz dual-core ARM Cortex-A9

• GPU: ARM Mali-400 MP

• Memory: 1 GB RAM

• Display: 4.3 in (110 mm) AMOLED
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12. APPENDIX

12.2 Obsolete Test Results

Figure 12.2: OpenTLD: Memory Analysis (Scale 2) - The first phase is before

initialisation. The most drastic change is when initialisation occurs, where memory is

allocated for the TLD functions. Timespan = 57,1 s.

Figure 12.3: Learned patches (Scale 2) - Timespan = 57,1 s.
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12.2 Obsolete Test Results

Figure 12.4: Tracked features (Scale 2) - Timespan = 57,1 s.

Figure 12.5: Bounding box size (Scale 2) - Timespan = 57,1 s.
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12. APPENDIX

Figure 12.6: OpenTLD (Scale 2) - Processing time analysis.

12.3 Vuforia AR marker

To demonstrate the possibilities with the Vuforia SDK, this Appendix section con-

tains an AR maker, which is used by some AR applications. The House Model ap-

plication can be downloaded from https://play.google.com/store/apps/details?

id=org.monosock.shadowdemo&hl=en, and the billiard application ’3D Pool game’

can be downloaded from https://play.google.com/store/apps/details?id=com.

rrrstudio.billiards&hl=en
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12.3 Vuforia AR marker

Figure 12.7: Vuforia AR Marker -
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