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Summary

In this thesis, the development of a web application for designing electronic

circuits has been initiated and documented. The application will feature some

unique features regarding the design process of electronic circuits. Among them

are interface based routing, a plugin-friendly environment and a collaborative

resource database.

At the start of working on this thesis, there were no known web-based EDA

software available. This provided an unique opportunity to fill this gap.

The application has been implemented using HTML5 and JavaScript for the

interactive front-end (The web browser), and Google Go and MongoDB for the

backend (The Server).

The basic building blocks of this application has been implemented, and together

serves as an tech demo, available under a GPL licence.



Sammendrag

I denne hovedoppgaven har har uviklingen av en nett-applikasjon for design av

elektronikk blitt startet og dokumentert. Programvaren vil inneha flere unike

egenskaper rundt design av elektroniske kretser. Blandt de er interface basert

routing, et plugin-vennlig miljø og samarbeidsdrevet ressursdatabase.

Ved p̊abegynnelse av oppgaven, var det ingen kjente web-basert EDA-programvare

tilgjengelig. Dette åpnet en unik mulighet for å fylle dette gapet.

Programvaren har blitt implementert ved å benytte HTML5 og JavaScript for

den interaktive frontapplikasjonen (Som kjører i nettleseren), og med Google

Go og MongoDB i bakapplikasjonen (Som kjører p̊a serveren).

De grunnleggende byggeklossene for programvaren har blitt implementert, og

fungerer sammen som en tech-demo. Programvaren er GPL lisensert.
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1 Introduction

1.1 Problem description

The objective of this thesis is to develop a GPL-licensed[2] web application for

rapid prototyping of electronic circuits. Important qualities for the application

includes ease of use, reusability and schematics readability.

Some of the tasks to be performed are listed below:

• Survey existing electronic design automation software (EDA).

• Describe essential and nice features for an EDA application.

• Study necessary background information to implement such an application

• Decide which tools and languages the software will be built upon, and

learn how to best utilize these within the project.

• Implement the essentioal features of the application, and a plugin-platform

which other features can built on top of.

• Evaluate the implementation.

1.2 Existing EDA solutions

Electronic Design Automation (EDA) software has been around since the early

days of computers. Printed circuit boards had, until that point, mostly been

drawn by hand, which imposes great difficulty when the complexity of the board
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increases. By the mid-80’s, many companies had been born which sole focus was

EDA software.

Today, many software solutions are available for design of printed circuit boards,

and they vary as much in quality as they do in pricing and functionality. The

cost for one licence vary from completely free (RS Components Design Spark,

gEDA, CadSoft EAGLE with limitations to board dimensions) to $9,995.00

(OrCAD PCB Designer Professional with PSpice). There is undoubtedly some

correleation between cost and quality, however, the cost of the high-end tools

render them unaffordable to the normal hobbyist.

The author has mainly used CadSoft EAGLE and Altium, and so, the observa-

tions below will mainly be based upon these editors. However, upon watching

other people use other editors (e.g. Proteus), it is easily observable that their

workflow is pretty similar.

1.2.1 Observations from using Altium and CadSoft EA-

GLE

The workflow in EDA tools today can be argued to be quite awkward. First, an

overview of what the overlaying system should look like, needs to be specified.

This often includes wiring together different abstract, functional modules by

means of communication interfaces. These interfaces may be implemented as

e.g. SPI, I2C or an analog signal wire.

After having specified the module topology of the project, the user will have to

create implementations of all the modules in the design. Circuit implementa-

tion is usually done on component level, and so, the components to be used in

the design must be decided upon now. Usually, even resistors and capacitors

have to be retrieved from a huge component library and chosen based on their

component value and package. Said in another way: The specific components
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(complete with it’s physical package) to be used has to be decided from the

start, regardless of how close they are to ideal components. Concequently, the

user can’t decide to use a NPN-type BJT transistor, he will have to choose be-

tween, among others, BC550C, 2N5551 and BC337. Although these transistors

have different characteristics, their schematic representation should still be the

same, and the user shouldn’t have to worry about choosing which one of these

to use until he knows what the requirements for his application are.

Next, all integrated circuits needs to be wired up to match the specifications in

the datasheet. This usually implies, among other things, that between each VCC

and GND pair, a decoupling capacitor of specified size needs to be connected.

These decoupling capacitors shouldn’t have to be represented graphically, they

are required by the IC.

1.2.2 Falstad Circuit Simulator

Although not strictly an EDA application, we find Falstad Circuit Simulator[3]

to be an inspiring piece of software. It is able to simulate circuits with a wide

range of components including: Resistors, capacitors, inductors, operational

amplifiers, a variety of transistors, diodes, and much more. Circuits are colored

based on voltage, and dots along wires and components illustrating charge move

in proportion to the currents. Figure 1.1 shows a picture of Falstad Circuit

Simulator in action.
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Figure 1.1: Screenshot of falstad
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1.3 A new approach to circuit design

1.3.1 Project goal

As shown in section 1.2, there are many circuit layout tools available today, and

although some new EDA tools has emerged and gained momentum in recent

years (i. e. RS Components’ Design Spark), the possibility of success by means

of a “me too”-application seems rather unlikely, as it would not be able to stand

out among the other editors. However, if the main focus of the project is instead

on creating a “different” EDA application, the program would hopefully gain

much more acknowledgement, and also a larger user base. In this section, the

main task will be to:

• Explain who the primary targeted user base for this application is

• Explain some of the core ideas for making the application stand out among

other EDA tools

• Explain the strategy for turning the application into a healthy open-source

project

The item list below is yet to be placed somewhere in this chapter.

• Top-down design

• Reduced schematic verbosity

• User-generated editors to create modules (filter design, etc)

• Collaborative component library

• Interface-level routing

• Built-in circuit simulator

5



In section 1.2, it was argued that the way in which circuit schematics are created

seems to have been established since the 80’s. Although all tools have their

variations and supplements to this method, the basics are still the same: The

schematics software offers little more than a graphical way of generating the

net- and component lists for the circuit layout. In other words, everything

on the printed circuit board is in one or another way created by the user in

the schematic editor, and although the principles behind many of the modules

used in the design are well known (e.g. low-order RLC filters), there is no

automated way to ease the process of applying and modifying the module. This

is also true for routing of interfaces. Indeed, most applications allow bundling

together wires into buses, but buses contain no extra information about how

the interconnection between the wires should be. Thus, components such as

termination resistors, pull-up resistors, etc. has to be appended to the schematic

editor by the user himself.

Scripted schematic modules

The example in figure 1.2 shows a band-pass filter created for use as a guitar

effect. The schematics in the figure are created in CadSoft Eagle. Although

the mathematics behind this circuit is fairly obvious for an electronics engineer,

it would still take some time to calculate the needed component values for the

desired input impedance and center frequency, choose which physical compo-

nents to use, place the components in the schematic editor and connect the

components together with wires. Some tools may let the user create third-party

scripts to allow for extra functionality, e.g. filter design scripts, however, these

scripts usually limit themselves to auto-placement and auto-wiring of filter com-

ponents. There are no EDA tools (to the author’s knowledge) that allow the

user to place modules in the schematic editor where the internals of the mod-

ule are defined, not necessarily by schematics, but rather by user-created dialog

windows, scripts, or whatever else the user decides. By having a band-pass filter

6



Figure 1.2: Band-pass filter created in CadSoft Eagle.

defined as an abstract module, the user would then be able to write his own filter

implementation, wherein the net- and component lists of the module would be

changed according to configurable parameters. The user could then share his

script with others through a object repository. The different signal processing

modules in section 1.3.2 explains scripted schematic modules rather well.

Less verbose circuit design

In subsection 1.2.1, it was argued that existing EDA software tend to be un-

ncessarily verbose, meaning that every net in the design needs to have graph-

ical components connected to it in order to work. Although some EDA tools

(e.g. Altium) support hierarchical schematics, which does indeed clean up the

schematic, the editor still has to explicitly place and connect together all com-
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ponents in the design on some level in the hierarchy.

The application to be developed should hide away unnecessary schematic in-

formation. As an example, decoupling capacitors between VCC and GND will

be omitted from the schematic, as their values are defined in the component’s

datasheet. Additionaly, when connecting an interface to the component, the

interface should connect to the correct pins, although only the interface name

should be visible.

The user should also be able to select which component will realize his compo-

nent based on which interfaces are used.

Figure 1.3: IO expander created in CadSoft Eagle, showing manual interface

routing [1]
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Interface-based routing

The example in figure 1.3 shows an IO expander accessed with an I2C-interface.

The schematics are created in CadSoft Eagle, but the way in which the com-

ponent is connected to the I2C-bus is the typical way to do it in most EDA

software. Although fairly readable for this application due to the low complex-

ity of the circuit, it is easy to see that schematics with higher complexity may

suffer from bad schematic readability, due to only parts of the interface displayed

at once. A better solution would be to show only one interface wire, called I2C,

as an input to the component. By knowing that this is an I2C-interface, it would

implicitly follow that there are pull-up resistors on both SCK and SDA, and the

component would know where to connect both SCK and SDA. There should

also be a way to show all endpoints connected to the interface, along with other

components necessary to implement the interface. The user should also be able

to define his own interfaces and share these through the object repository.

Plugin-based architecture

Many EDA tools have the ability for the user to write scripts or plugins to

extend the functionality of the software. However, these scripts are only granted

a subset of the software’s API; their typical use is for auto-generation of different

components, e.g. PCB footprints.

The architecture of the application to be developed in this thesis should be one

where most of the user interactivity should be done through plugins. The soft-

ware platform itself should contain only graphical building blocks and application-

and project control functions, and all editors should be able to utilize and extend

upon these as seen fit.
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Built-in circuit simulator

Electronic circuit simulation is a very useful tool for both design- and debug-

ging purposes. Many EDA tools have circuit simulation either built into the

application or available as an (often expensive) extension to the software.

The application to be developed throughout this thesis should be able to perform

circuit simulations in both time and frequency domains. The simulator should

also be able to mix analog and digital signals in a seamless manner.

Hardware and software modeling

Describe both layout and functionality of modules.

Centralized object database

For components, modules (schematic and layout), plugins, etc.

When using EDA software, it is very useful to have a way of sharing component

libraries with other users. Many companies do this by keeping a private revision

controlled folder with all the libraries the company uses in its designs.

A centralized database should be created for loading and storing component

libraries, plugins, schematic and circuit layout data, etc. This will greatly reduce

the workload for the user, such that he will be able to collaborate with others

on creating components.

1.3.2 Example: Analog audio processing

In this example, the goal is to create an analog audio processor to be used in the

effect chain of an electric guitar, etc. This example was chosen due to that many

10



musicians want to create their own guitar effects, but may be demotivated by

the amount of research needed to be done before starting out creating their own

effects. First, they will need to learn enough about electronic circuits to know

how to create the necessary filters and signal gain for their effect. Secondly,

they will need to learn how to use some EDA tool for creating the circuit board

for their guitar effect. As mentioned in subsection 1.2.1, using an EDA for the

first time can be quite overwhelming.

Starting out with a module chain for the effect processor, none of which has

been chosen implementations for yet. Double clicking on the DC bias module

should bring up a configuration dialog for choosing a way to implement the DC

offset, set the input cutoff frequency, and choosing bias voltage.

Figure 1.4: Starting out with an unimplemented module chain.
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Figure 1.5: Double click to bring up config dialog for gain stage.

Double clicking on the gain module should bring up a configuration dialog for

choosing a way to implement the gain stage, with parameters for maximum and

minimum gain.

Double clicking on the band pass filter module should bring up a band-pass filter

configuration dialog, with parameters for lower and upper cutoff frequencies.

Double clicking on the DC offset removal module should bring up a DC offset

removal configuration dialog, with a parameter control for setting the cutoff

frequency.

1.3.3 Example: Module interconnection with CAN

In this example, the goal is to connect separate modules together by a CAN

interface. CAN is a serial interface, consisting of two wires, CANH and CANL,

and terminating resistors of 120 Ω between these on both ends of the interface.
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Figure 1.6: Double click to bring up config dialog for the band-pass filter.
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Figure 1.7: Double click to bring up config dialog for DC offset removal.
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Usually when routing CAN interfaces, the user has to pay attention to placing

and routing the termination resistors as well, although they are part of the CAN

specification and the protocol simply won’t work without them. This example

demonstrates one of the main features of the application to be developed in this

thesis, in which the netlist and component list for the interface is part of the

interface itself and does not need to be manually routed in the schematic editor.
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Figure 1.8: Starting out with six unconnected modules.
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Figure 1.9: Creating an interface wire and connecting it to the first module.
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Figure 1.10: Connecting the interface wire to the rest of the modules.
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Figure 1.11: Double clicking on the interface will bring up either the interface

config dialog or interface selection dialog.
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Figure 1.12: Choosing interface type.
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Figure 1.13: Interface configuration dialog for CAN will pop up.
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Figure 1.14: Upon saving the interface configuration dialog, the name of the

interface will change in all modules.
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1.3.4 Example: Module interconnection with SPI

In this example, the goal is to connect two modules and a memory card together

on an SPI bus. The SPI bus consists of at least four lines called MISO, MOSI,

SCK and one or more CS. The bus master controls the data transfers by pulling

low the CS line connected to the module it wants to exchange data with. The bus

master usually controls the CS lines through GPIO pins controlled in software.

Although the connection of SPI modules doesn’t require any other external

components, it will still appear pretty messy in the schematic editor.

Figure 1.15: Starting out with two modules and a memory card, creating an

interface wire and connecting it to the first module.
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Figure 1.16: Connecting the interface wire to the other module and the memory

card, and double clicking on the interface to bring up the interface config dialog

or the interface selection dialog.
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Figure 1.17: Choosing SPI as interface type. Memory cards typically only

support SPI as secondary connection interface, so all the other interface types

shown here should be greyed out or omitted.
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Figure 1.18: Upon selecting SPI as interface type, the interface configuration

dialog for SPI will appear. The user will be able to configure, among other

things, which module to operate as SPI master. It should also be possible to

route other additional interfaces or wires in the interface, e.g. interrupt lines

from the slaves to SPI master.

26



Figure 1.19: Upon saving the interface configuration dialog, the name of the

interface will change in all modules.
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1.3.5 Example: Module interconnection with I2C

In this example, the goal is to connect six modules together on an I2C bus.

The I2C bus consists of two lines, SDA and SCK, both of which will have a

pull-up of 10 kΩ to VCC . Usually when connecting modules together with I2C

they have to make sure not to place several pull-up resistors on each line. This

example will show how to connect the modules together and how to choose how

the slave modules will be able to communicate back to their master modules.
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Figure 1.20: Starting out with six modules connected through a yet to be defined

interface type. Double clicking on the interface wire should bring up the interface

selection dialog.
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Figure 1.21: Choosing I2C as interface type.
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Figure 1.22: Upon selecting I2C as interface type, the interface configuration

dialog for I2C should appear. Additional settings for the interface should be

configurable here, for example choosing which modules to appear as I2C masters

and which to appear as slaves, as well as routing additional interfaces or wires

to be used in the interface, e.g. interrupt lines from the slaves to the masters.
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Figure 1.23: Upon saving the interface configuration dialog, the name of the

interface will change in all modules.
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2 Theory

2.1 Simulation

We consider to be a useful design tool, as it can give the designer immediate

feedback on how a system will perform. Falstad Circuit Simulator, as mentioned

in subsection 1.2.2 is a good example on how this can be done.

The state of an network of resistive components, voltage and current sources

can be solved using Kirchhoff’s current law: The sum of all currents emitting

from a node is 0.

Kirchoff’s current law can be applied to resistors, described by Ohm’s law:

V = R · I

When introducing reactive components, the equations become slightly more

complex, but are still valid.

Capacitor:

C
d

dt
V = I

Inductor:

L
d

dt
I = V

Modified Nodal Analysis is formalization of Kirchoff’s current law.
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2.1.1 Modified Nodal Analysis

Modified nodal analysis is a method for determine the mathematical relations

between different nodes and branches in a circuit. Resistors, capacitors, induc-

tors, voltage sources and current sources are considered. This section (subsec-

tion 2.1.1) is a summary of the method described by [4].

Each component is considered a branch, and the connections between them

nodes. Each component is given an orientation and for each component type

a incidence matrix describing which branches and nodes are connected. The

rows in the matrices represents nodes, and the columns branches. A value of

1 represents the branch starting in the specified node, and -1 ending in the

specified node. No connection is represented by a 0, and connections to ground

are omitted. The incidence matrix is split by component type into the fellowing

matrices:

• AR, representing resistors;

• AL, representing inductors;

• AC, representing capacitors;

• AV, representing voltage sources and

• AI, representing current sources.

In addition, the component values are represented by the fellowing diagonal

matrices.

• C, all capacitances.

• G, all conductances.

• L, all inductances.

The columns in the component value matrices corresponds to the columns in the

incidence matrices. The current sources and voltage sources are represented by
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the vectors I and E, respectively. The vectors e, iV iL represent node voltages,

current through voltage sources and current through inductors, respectively.

The fellowing matrix equation then describes the circuit.
ACCA′C 0 0

0 L 0

0 0 0

 d

dt


e

iL

iV

+


ARGA′R AL AV

−A′L 0 0

A′V 0 0



e

iL

iV

 =


−AII

0

E

 (2.1)

The article further does describe how to perform DC analysis to these equations,

and how to calculate impedances.

2.1.2 Numerical Simulation

The goal of simulation is to provide the user with some feedback on how a

circuit will perform. Providing a symbolic solution, and plotting this solution

neither feasible for all possible circuits, nor is it flexible when introducing new

non-linear components. Instead numerical simulation can provide a prediction

of the circuit’s behaviour.

Modified Nodal Analysis results in a system of differential algorithmic equations

on the form:

F1ẋ + F2x + k = 0 (2.2)

The matrix F1 usually contain some empty(zero) columns, and the system can

be transformed into the following form:

ẏ = Fyy + Fzz + fc,

0 = Gzz + Gyy + gc

(2.3)

Which is a semi-explicit differential algorithmic system. To simulate this system,

an implicit Runge-Kutta method can be used(see Discusion).
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xn+1 = xn + h[b1k1 + b2k2]

k1 = f(xn + h[a11k1 + a12k2], tn + c1h)

k2 = f(xn + h[a21k1 + a22k2], tn + c2h)

(2.4)

where [
a11 a12

a21 a22

]
,

[
b1

b2

]
,

[
c1

c2

]

are the parameters from the methods’ butcher tableau.

First we put the (continuous) system (Equation 2.3) on implicit form:

ẏ = f(y, t) = Ay + b (2.5)

where:

A = Fy − FzG
−1
z Gy

b = fc − FzG
−1
z gc

(2.6)

Combining the system (Equation 2.5) with an implicit Runge-Kutta method

(Equation 2.4) yields:

yn+1 = yn + h(b1k1 + b2k2)

k1 = A(yn + h[a11k1 + a12k2]) + b

k2 = A(yn + h[a21k1 + a22k2]) + b

(2.7)

Solving yn+1for yn (See Equation A.4 - Equation A.12) yields:

yn+1 = yn + h(b1k1 + b2k2)

k1 = M1yn + N1b

k2 = M2yn + N2b

(2.8)
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where:
M1 = (I − h2a12a21E1AE2A)−1E1A(I + ha12E2)

M2 = (I − h2a21a12E2AE1A)−1E2A(I + ha21E1)

N1 = (I − h2a12a21E1AE2A)−1E1(ha12AE2 + I)

N2 = (I − h2a21a12E2AE1A)−1E2(ha21AE1 + I)

E1 = (I − ha11A)−1

E2 = (I − ha22A)−1

(2.9)

2.1.3 Example System

+
− V1

iV R1

iR

L1

iL

C1

iC

e1 e2

Figure 2.1: A simple RLC circuit

To compare some different numerical methods, the system in Figure 2.1 is con-

sidered.

Using MNA, we get:

AR =

[
1

−1

]
,AC =

[
0

1

]
,AL =

[
0

1

]
,AV =

[
−1

0

]
G =

[
1
R1

]
,C =

[
C1

]
,L =

[
L1

]
,E =

[
V1

] (2.10)

Applying these values to the Equation 2.1, yield:
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
0 0 0 0

0 C1 0 0

0 0 L1 0

0 0 0 0

 d

dt


e1

e2

iL

iV

+


1
R1

−1
R1

0 −1
−1
R1

1
R1

1 0

0 −1 0 0

−1 0 0 0



e1

e2

iL

iV

 =


0

0

0

−V1

 (2.11)

This can be transformed into:

d

dt

[
e2

iL

]
=

[
−1

C1R1

−1
C1

1
L1

0

][
e2

iL

]
+

[
V1

C1R1

0

]
[
e1

iV

]
=

[
0 0
−1
R1

0

][
e2

iL

]
+

[
V1

V1

R1

] (2.12)

This system’s exact solution has been solved in subsection A.3.1. The system has

been simulated using a modified version of the application’s numerical solver.

Instructions on how to do this, and generate plots are in Chapter B.1: The

fellowing numerical methods [5, from pp. 528 & 539] has been implemented and

tested.

Explicit euler, Figure 2.2

0

1

Implicit euler, Figure 2.3

1 1

1
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LobattoIIIC, order 2 Figure 2.5
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Figure 2.2: Simulation of RLC circuit using the Euler’s method, with step size

= 0.001s
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Figure 2.3: Simulation of RLC circuit using the implicit Euler method, with

step size = 0.001s
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Figure 2.4: Simulation of RLC circuit using the Runge-Kutta method, with step

size = 0.001s
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Figure 2.5: Simulation of RLC circuit using Lobatto IIIC, with step size =

0.001s
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2.2 Web Applications

2.2.1 Interactivity

Since we have chosen to develop the EDA as a web-application, we will be

implementing parts of the application in JavaScript. JavaScript run in the user’s

web-browser, and allows use of mouse position and movement and key-presses

for interaction.

It is possible to build an web based application without using JavaScript, this

is however highly impractical. Web-pages contain links, that allows you to open

new pages, and the address of these pages can be interpreted by the server to

generate new pages. Such pages are hereby referred to as dynamic web-pages.

This technique is often used to build blogs and online newspapers, where the

server mixes some data from a database with html and returns this to the user.

Putting this to the extreme, one could build a web-application, where each web-

page is unique, and the interactive elements on the page are unique links. Each

these links are recognisable by the server, which has some action associated with

each of these links. When an URL is requested, the action is performed, and a

new web-page is generated for the user.

This approach is highly impractical for the following reasons: The server need

to keep track of all the possible actions of all the possible users, including simple

visual changes to the user interface. This requires a lot of resources. Each action

must be sent from the user’s web-browser to the server, where some appropriate

action is taken, a new web-page is generated and sent to the user web-browser,

where it must be rendered. This causes significant latency for all user actions,

and simply isn’t tolerable.

Instead of using JavaScript, one could choose to build the application using

some browser plug-in, such as Flash or Java.
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2.2.2 Rendering

The EDA will have a graphical interface to display what is currently being

worked on. This graphical interface must be able to display complex graphical

shapes. It is possible to draw the graphics on the server-side (in the backend),

but this would cause intolerable strain on the server and its network connection.

This would also result in significant latencies between a user action, and a

response on the user’s screen.

Our approach is to let the client’s web-browser draw the graphics. There are

several methods available:

SVG

Short for Scalable vector graphics. SVG is a XML based format for describing

vector graphics, and can be embedded using the <svg> tag since HTML5. The

shapes inside the SVG namespace are represented by XML tags, which can

be made interactive by associating javascript functions to their mouse event

properties. When shapes are clicked, the browser automatically triggers the

shape’s associated event function. The shapes can be modified, and are redrawn

automatically. This redrawing does however tend to be very resource heavy

when the shape complexity increases.

The most important advantages of SVG is:

• Build-in event detection.

• Only changes need to be updated.

• Recognised by other software.
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Canvas 2D

HTML 5 introduces the <canvas> tag, and a API for drawing inside this element.

Canvas appears to be better suited for dynamic content than SVG; it is quicker

at drawing shapes. The drawback is a lower level API. The canvas only contains

the rendered image, and figuring out what must be redrawn must be done by

the application. The application must also generate events using the mouse

position. Fortunately the canvas provides the option to draw an invisible path,

and test whether a coordinate is within this path.

2.2.3 Persistent Storage

A user must be able to recover his work each time he uses an application. In

traditional programs, running in the user’s operating system, this is usually

done by storing the user’s work in the file system. Web-applications do not

have direct access to the user’s file system, and must store the data in some

other way.

Copy-Paste

This is perhaps the simplest solution to implement. When the user is done

working on some data, the web-application dumps the data describing his work

in text form to the web page. This data can later be pasted into a textfield,

and allow the user to continue working. The user is responsible for extracting,

storing and retrieving the data. This method is clearly unacceptable from a

usability perspective.
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URL encoded data

Instead of the user copying and pasting the data, the web-application can gen-

erate a URL with the data structures describing the user’s work embedded in

the URL. This allows the user to download his work as if it was stored in a

file. Later this file can be uploaded in order to continue working on the data

described by the file. This method is similar to some applications running in the

operating system, but is also infeasible when operating of several interconnected

documents.

Web storage

The HTML5 specification adds Web Storage. Web Storage defines an API for

persistent data storage of key-value pair data in the user’s web browser. An

important advantage of using Web-storage, is its ease of use. Data is stored

with localStorage.setItem("name of item","data");, and retrieved with

localStorage.getItem("name of item");. There is an upper limit of 10

megabytes that can be stored for each web-site in this storage. Data stored

in the local storage is local to the user’s webbrowser, and is lost if the user

changes computers or deletes his browser history. Browsers are also free to

expire old data. These factors makes Web Storage a non-useful location for

persistent storage. It is however a very interesting caching location.

Server side storage

By storing the users data in the server, the user can access his data from any

internet-connected computer with a web-browser. Some user id can be asso-

ciated to the data each user generates. This is userful to determine who has

access to what. Important drawbacks of server side storage is the need for user
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accounts, the resposibility of the user’s data, and the increased network activity

between server and client.

Security

When storing user information, protecting the user’s data becomes an issue.

If some third-party with bad intentions get a hold of the users passwords and

usernames, he could potentially use this to compromise some of the users’ other

accounts, such as email. It is thus important to reduce the potential for a third

party to gain access to the user’s passwords.

An attacker on the same network as the client or server, or anywhere between,

can see the data transferred between the client or server. This is solved by using

HTTPS instead of HTTP. HTTPS encrypts the transmission between the client

and server using a technique known as public key cryptography. When used cor-

rectly, this ensures that only the intended recipient is able to read the encrypted

message. It is possible to break such an encryption, but the computational effort

required to do so is very high. When an HTTPS connection is established, com-

munication between server and client is secure; An attacker can pose as neither

the server nor the client. However, when establishing the connection an attacker

can pose as the server to the client, and as the client to the server; implementing

what is called an man in the middle attack. A man in the middle attacks are

avoided by using signed certificates. The certificate contains the public key of

the server, and a signature from a certificate authority. This signature can be

verified against the certificate authority’s public key, which is usually signed by

some other certificate authority. Although it is hypothetically possible to be

able to imitate several certificate authorities, it is highly impractical even when

controlling all data between the client and the internet.

An attacker able to gain control of the server could download information of all

the users. Sometimes this results in peoples credit card information becoming
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public, as well as passwords and email accounts. To reduce the harm of a third-

party acquiring the users’ information, passwords should not be stored. Instead

the passwords should be obfuscated using a cryptographic hashing algorithm

and a salt, and this hash and salt is stored instead. A cryptographic hashing

algorithm takes an arbitrary input and generates a fixed-size output. The input

of a hashing function should not be computable from the hash, and small changes

should cause large change in the output. By trying a lot of different inputs,

a brute-force attack, a input generating hash matching the original hash will

eventually be found. If the original input is short compared to the hash, the

found solution is very likely to be equal to the original input.

The salt is a sequence of random characters used to add entropy to the hash,

by e.g. prepending it to the password before generating the hash. A unique salt

should be generated for each user. If no salt is used a brute-force attack becomes

a lot more practical, as each generated hash can be tested against all users. List

of precomputed hashes for common passwords can also be used, given the same

hashing algorithm is used. When a salt is used, an attacker having gained

posession of both the users hashes and salts must attack each user’s password

independently For passwords with sufficient entropy, this becomes infeasible.

2.3 JavaScript

2.3.1 Object Model

JavaScript has quite a few features that can be considered odd from the per-

spective of other languages. Especially the objects can be seem a bit odd when

coming from C++ or Java; it does not have classes. It does however have

constructors and inheritance (prototype inheritance).

Objects in JavaScript are a collections of named values, or key value pairs. These
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named values can be strings, numbers, arrays, functions or objects. Strings,

numbers, arrays and functions are also objects, and can be assigned key-value

pairs. This is where the “Everything is an object” phrase stems from. Apart

from these special case objects, objects are created either using curly brackets

or using the new keyword.

Curly brackets notation

As demonstrated in Listing 2.1, objects can be created with or without initial

values. The names of the values and the values are separated with colons, and

the values separated with commas. It is possible create empty objects using an

empty pair of brackets. After an object is created it is still possible to add and

change it’s values.

1 var foo = {};

2 var bar = {

3 strVal: "Lorem Ipsum",

4 numVal: 42,

5 arrVal: [2,7,1,8,2,8,1,8,2,8],

6 objVal: { yo: "dawg" },

7 fncVal: function(arg1) {

8 return arg1 * numVal;

9 }

10 };

11 bar.postVal = 5;

Listing 2.1: Object creation with curly brackets

The curly bracket notation is very similar to JSON (JavaScript Object Nota-

tion). Listing 2.2 is a JSON document with the same values as in the object bar

in Listing 2.1. The value objVal has not been included since JSON does not

support function. Also note that the name of the values, the keys, are enclosed

in quotation marks.
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1 {

2 "strVal": "Lorem Ipsum",

3 "numVal": 42,

4 "arrVal": [2,7,1,8,2,1,8,2,8],

5 "objVal": {"yo": "dawg"}

6 }

Listing 2.2: Example of JSON

The new keyword

The new keyword creates a new object and sets the object’s prototype (__proto__)

to a reference of the constructors function’s prototype property. new then calls

the specified constructor on the newly created object. In the constructor this

refers to the newly created object.

1 var foo = new Object ();

2 var Bar = function () {

3 this.baz = 42;

4 };

5 var qux = new Bar();

6

7 console.log(foo.bar); // prints undefined

8 console.log(qux.bar); // prints 42

Listing 2.3: Object creation with new.

The special constructor function Object constructs an empty object, which is

equivalent to assigning a pair of empty curly brackets.

2.3.2 Prototype inheritance

JavaScript, as mentioned, has no classes, but it does have inheritance. What

this means is an object can inherit some other object’s properties. This is
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done by using the new keyword. After new has created a new object, it assigns

it an prototype (i.e. its ( proto ) property). The prototype is set to the

object pointed to by the constructor’s prototype property. By modifying an

constructor’s prototype property, all objects created by the constructor will

inherit it’s values. Note that the prototype is copied by reference, not value,

so a change to an object’s prototype will affect all other objects created by the

same constructor.

1 var Foo = function (){};

2 Foo.prototype.bar = 42;

3 var baz = new Foo();

4 var qux = new Foo();

5 console.log(baz.bar); // prints 42

6 console.log(qux.bar); // prints 42

7 Foo.prototype.bar = 2.718281828904590;

8 console.log(baz.bar); // prints 2.71828182890459

9 console.log(qux.bar); // prints 2.71828182890459

Listing 2.4: Example of prototype inheritance

In Listing 2.4 baz and qux has the same prototype, i.e. their (__proto__) refer

to the same object. This causes any change to this object to affect both baz and

qux. However, changing the Foo.prototype to a new object will affect neither

baz nor qux, since they will be referencing the old one. The relations of most

of the objects involved in Listing 2.4 is described in Figure 2.6.

What actually happens is: When some variable is referenced, the interpreter

first looks for the variable in the specified object. If the variable is not found,

the interpreter then looks for the variable in the object’s prototype. This is done

recursively until the default object, Object.prototype, has been searched. The

search will stop since the default object (Object.prototype) has no prototype

(Object.prototype.__proto__ is null). If the requested variable has not been

found, a reference error is thrown.
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Figure 2.6: The red arrows are references. Note: The value 42 of Foo.prototype

is actually an object too; it has the prototype Number.prototype.
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By adding values to the default object, all objects will inherit these values. This

can lead to slightly bizarre results, as demonstrated in Listing 2.5 Although any

function can be used as a constructor, and all functions have the prototype

property; if a function returns an object, the newly created object with an

assigned prototype will be discarded in favour of the returned object. Thus, if a

function returns an object, using the new keyword on this function only affects

the this keyword inside the function used as an constructor.

1 Object.prototype.foo = "bar";

2 var baz = 42;

3 //The fellowing lines all evaluates as true:

4 baz.foo == "bar"

5 Object.foo == "bar"

6 {}.foo == "bar"

7 false.foo.foo.foo.foo.foo == "bar"

Listing 2.5: Effects of manipulating the default object.

2.3.3 Scope

When a variable is defined, it is available by its defined name in some limited

part of the program. Where this variable is available is referred to as its scope.

In JavaScript the scope is defined by functions. A variable defined inside a

function, is only available inside the function. New function declarations inside

the function where the variable is defined are also part of the variable’s scope.

1 (function (){ // outer function

2 var foo = "bar";

3 (function (){ //inner function

4 var baz = "qux";

5 console.log(foo); // outputs "bar"

6 console.log(baz); // outputs "qux"

7 })();

8

9 console.log(foo); // outputs "bar"
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10 console.log(baz); // throws a ReferenceError.

11 })();

Listing 2.6: Demonstration of scope

In case Listing 2.6 is confusing: functions can be defined anonymously (with

no associated name). Functions are just objects just as all other values, and

can be passed as arguments and assigned to variables. It is also possible to

call functions in place as they are defined, which is exactly what happens in

Listing 2.6.

Note that it is possible to define functions referencing variables not yet defined,

as long as the function is executed after the variable has been defined. As demon-

strated in Listing 2.7, although foo is defined before baz, which it references,

since baz is defined before foo is called, no RefrenceError is thrown.

1 (function (){ //outer function

2 var foo = function (){ //inner function

3 var bar = 1;

4 console.log(bar); // outputs 1

5 console.log(baz); // outputs 2

6 };

7 var baz = 2;

8 foo();

9

10 console.log(baz); // outputs 2

11 console.log(bar); // throws a ReferenceError.

12 })();

Listing 2.7: Function definitions can preceed the variables it refrences

Unlike some languages such as C, JavaScript does not have block scope. Thus

control structures, i.e. conditional structures and loops, does affect the scope of

variables. Variables defined inside control structures does not go out of scope

when exiting the control structure.

1 for(var i = 0; i < 5; i++) {
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2 var foo = i;

3 }

4 console.log(foo); // outputs 4

2.3.4 Closures

A function’s Closure refer to the variables whose scope includes the aforemen-

tioned function. When function’s are passed around, their closures are not

affected.

1 var setbar;

2 var getbar;

3 (function (){

4 var foo;

5 setfoo = function(val) {

6 foo = val;

7 };

8 getfoo = function () {

9 return foo;

10 };

11 })();

12 setfoo (25);

13 console.log(getfoo ());// Outputs 25;

14 console.log(foo) // Throws an ReferenceError

Listing 2.8: Demonstration of closures

In Listing 2.8, foo is part of setfoo’s and getfoo’s closure. When the anony-

mous function in which setfoo and getfoo are defined returns, foo goes out of

scope, and is no longer defined anywhere but in setfoo’s and getfoo’s closures.

This provides a form of encapsulation, a hiding of inner variables from the outer

world. This is similar to the effect of the private keyword in languages such as

Java and C++.
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Variables that are not referenced anywhere when they go out of scope are

garbage collected. Using closures is thus a good way of keeping memory use

down when using a lot of temporary variables. Exploiting closures is thus a

useful design pattern, not only for the encapsulation it provides.

1 var fibclosure = function () {

2 var someValue = 1;

3 var someList = [0, 0];

4 var iterate = function () {

5 someValue += someList.shift();

6 someList.push(someValue);

7 return someValue;

8 };

9 var lastval = function () {

10 return someValue;

11 };

12 return {

13 iterate: iterate ,

14 lastval: lastval

15 };

16 }();

Listing 2.9: Fibonacci numbergenerator with hidden variables.

Listing 2.9 is an example of an design pattern exploring closures. It is a rather

stupid implementation of a Fibonacci number generator, but it demonstrates the

creation of an object with hidden variables. Public methods must be explicitly

added to the returned object, while private and temporary variables are kept in

generating function.

Example output:

1 console.log(fibclosure.iterate ()); // Returns 1

2 console.log(fibclosure.iterate ()); // Returns 1

3 console.log(fibclosure.iterate ()); // Returns 2

4 console.log(fibclosure.iterate ()); // Returns 3

5 console.log(fibclosure.iterate ()); // Returns 5
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6 console.log(fibclosure.lastval ()); // Returns 5

7 console.log(fibclosure.someValue); // Returns undefined

2.3.5 The this keyword

In C++ and Java, when this is encountered, it refers to the object which

contain the function. In JavaScript, this is not always the case, as this depend

on how a function is called. Any function call will change what this refers to.

When this is used inside a constructor, this refer to the object being initialized.

1 var Foo = function () {

2 this.bar = 1;

3 };

4 var foo = new Foo();

5 console.log(foo.bar);// outputs 1

When used as a member function of an object, this will refer to the object. var

foo = bar: function() console.log(this) ; foo.bar(); //outputs the object foo;

When function is called directly, this refer to the global object. In a web-

browser the global object is Window.

1 var foo = function () {

2 console.log(this);

3 };

4 foo(); // outputs the object Window;

Note that this in an outer function may not be the same as this in an inner

function; How the function is called, not how it is defined determines what this

is.

1 var Foo = function () {

2 var bar = function (){

3 console.log(this);

4 };
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5 bar(); //Will output the object Window

6 this.bar = bar;

7 };

8 var foo = new Foo();

9 var baz = foo.bar;

10 foo.bar(); //will output the object foo.

11 baz() //will output the object Window.

If the this value is needed inside an inner function, this can be assigned to a

variable. This is particularly useful when using callbacks, where this will refer

to the object calling the callback. In event-handlers for HTML, this will refer

to the element causing the event.

1 function foo(callback) {

2 callback("bar");

3 };

4

5 function Baz() {

6 var obj = this;

7 foo(function(res){

8 obj.text = res;

9 });

10 };

11 var baz = new Baz();

12 console.log(baz.text) // outputs "bar"

2.3.6 Third-party libraries for JavaScript

In web development, it is fairly common to use third-party libraries (e.g. Dojo,

JQuery or MooTools) to add functionality to the web page. There are several

reasons for this. First of all, many web developers come from a designer back-

ground and has a limited understanding of programming. These frameworks

allow the developer to add common functionality to the web site with as little

coding effort as possible. Examples of this is image galleries, etc. Secondly,
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these frameworks have (usually) put an effort into reducing (where possible)

the difference in functionality between platforms (i.e. web browsers) where they

deviate from the W3 standard. Thus, using a web framework will in general

reduce the development and debugging effort, due to only having to write one

base of code for all platforms. Thirdly, they tend to extend the JavaScript lan-

guage with additional functionality, both in the objects already in the JavaScript

standard (e.g. JQuery’s inArray(object) method addition to the array object)

as well as new objects and methods (e.g. MooTools’ Class() constructor).

Typically, the third-party libraries also have subframeworks for typical GUI

widgets for web applications. These include tree views, movable and resizable

in-browser windows, drop-down menus, tabs, sliders, buttons, etc. The features

of these frameworks vary, as does their intention and documentation.

2.3.7 Design Patterns: Asynchronous Module Definition

(AMD)

File loading in JavaScript is not as easy as writing ”include”, as you do in many

other languages. This is due to the fact that your web browser has to load every

file from a web server somewhere in the world, and so every include statement

has to prepare a http request packet, send it, and wait for a response. This is a

slow process, and halting the program flow to wait for a file to load may cause

your program to suffer from slow loading time. The solution for this is that

every http request is provided a callback function to be executed when the file

has finished loading, like below.

1 var client = new XMLHttpRequest ();

2 client.open(’GET’, ’/foo.txt’);

3 client.onreadystatechange = function () {

4 alert(client.responseText);

5 }
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6 client.send();

There are several issues with this way of loading external files. First of all, there

is no way of knowing if there is already a pending request for the file you want

to load, or if it is loaded already. Thus, you might end up slowing down your

program due to unnecessary file requests. Secondly, a program module is often

dependent on several files, and so all file request callbacks will have to check if

all other files are loaded, and if they are, execute the initialization code for the

module.

1 var scr1 , src2;

2 var init = function () {

3 // module initialization code

4 }

5 var req1 = new XMLHttpRequest ();

6 var req2 = new XMLHttpRequest ();

7 req1.open(’GET’, ’/foo.js’);

8 req1.onreadystatechange = function () {

9 scr1 = eval(req1.responseText);

10 if(scr1 && scr2) {

11 init();

12 }

13 }

14 req1.send();

15

16 req2.open(’GET’, ’/bar.js’);

17 req2.onreadystatechange = function () {

18 scr2 = eval(req2.responseText);

19 if(scr1 && scr2) {

20 init();

21 }

22 }

23 req2.send();

In Listing 2.3.7, the ”init” function will not be called before both scr1 and scr2

are loaded.
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The task described above is called Asynchronous Module Definition, or AMD

for short. The idea is to allow the user to load parts of the code during runtime,

allowing the developer to easily structure his application into modules, and load

these when needed. The AMD library also knows which modules are already

loaded, and if two modules requires the same dependency module, it is loaded

only the first time one of them requests it.

Considering the same application as in Listing 2.3.7, loading the same files

through the Dojo framework is done like this:

1 define("foo", [], function () {

2 return "Foo!";

3 });

4 define("bar", [], function () {

5 var printBar = function () {

6 console.log("Bar!");

7 }

8 return printBar;

9 });

10 define("myModule", ["foo", "bar"], function(Foo , Bar) {

11 // module initialization code;

12 // called when both foo.js and bar.js are loaded

13

14 console.log(Foo); // Will output "Foo!";

15 Bar(); // Calls the function printBar ,

16 // thus outputing "Bar!"

17 });

Dojo will then store a new key-value pair with ”myModule” as the key and the

return value from the callback function as the value. This return value will then

be easily accessable from another module by listing it in its dependency array.

Thus, one module can be a string of text; another, a JavaScript function; a

third, an block of application initiation code.
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2.3.8 Design Patterns: Mixins

As explained in 2.3.1, JavaScript’s object model is quite different from those in

traditional object-oriented programming languages (e.g. Java), and thus allows

for some unusual design patterns. One of these is the mixin pattern. The concept

is somewhat similar to multiple inheritance in C++, although the mixin pattern

is arguably more flexible in nature.

The concept of the mixin pattern is to mix in (hence the name) functionality,

properties, etc. into an already initiated object. This is different from inheri-

tance in the sense that it works on object level (and after initialization), rather

than on class level. This allows for an infinite number of different ”classes”, in

that two objects created with the same constructor can later be assigned with

different additional properties, such as interaction events, color, etc.

There are two ways to implement the mixin pattern, although they are just

different ways of doing the same thing, that is, assigning new properties to an

object during runtime. One way is to iterate through all the properties of the

parent and assigning these to the child as well. In JavaScript, all objects are

implemented as hash tables, and hence, writing ”object.property” is the same as

writing ”object[”property”]”, so assigning new properties to an object is easily

done like in 2.10.

1 function mixin(giver , taker) {

2 for(par in giver) {

3 taker[par] = giver[par];

4 }

5 }

6 function Car() {

7 this.drive = function () {

8 console.log("driving");

9 }
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10 }

11 function Red() {

12 this.color = "red";

13 }

14 function Blue() {

15 this.color = "blue";

16 }

17

18 var myRedCar = new Car();

19 mixin(Red , myRedCar);

20

21 var myBlueCar = new Car();

22 mixin(Blue , myBlueCar);

23

24 console.log(myRedCar.color); // Will output "red"

25 console.log("myBlueCar.color); // Will output "blue"

Listing 2.10: Mixin using a giver-taker function

Another way is to call a mixin function from inside of an object’s scope. This

is done by invoking the function’s ”call” function (JavaScript functions are also

objects), which takes the scope object as first parameter, followed by the func-

tion’s own parameters. By assigning a value to a variable preceded with the

”this” keyword within the function will then assign the variable to the object

in scope. Likewise, accessing a variable preceded with the ”this” keyword will

access the object’s member variable with that keyword.

1 function Car() {

2 this.drive = function () {

3 console.log("driving");

4 }

5 }

6 function Red() {

7 this.color = "red";

8 }

9 function Blue() {

10 this.color = "blue";
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11 }

12

13 var myRedCar = new Car();

14 Red.call(myRedCar);

15

16 var myBlueCar = new Car();

17 Blue.call(myBlueCar);

18

19 console.log(myRedCar.color); // Will output "red"

20 console.log(myBlueCar.color); // Will output "blue"

Listing 2.11: Mixin using the this keyword

2.3.9 Passing references of references

A particlar problem we encountered during development was the need to have

two objects sharing access to a string or number. The problem is: When either

objects change the string or value, the change only occur on one of the objects,

while what was needed was the change to occur in both.

1 var foo = { string: "foo’s string" };

2 var bar = { string: foo.value };

3 bar.string = "bar’s string";

4 console.log(foo.string); // outputs "foo’s string"

Strings and numbers are objects; they are also immutable objects, i.e they can-

not change. So foo.value and bar.value are references, both initially to the object

(”foo’s string”). When we try to change the value in bar, a new object(”bar’s

string”) is created, and bar.value’s is changed to a reference to the newly cre-

ated object.

The solution used in the application is to wrap the shared values in an object.

1 var foo = { string: { value: "foo’s string" } };

2 var bar = { string: foo.string };
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3 bar.string.value = "bar’s string";

4 console.log(foo.string); // outputs "bar’s string"

65



3 Implementation

3.1 Platform

In order to create an easily extendable software application, a software platform

needs to be established, and the application will then be built on top of this.

One of the main features of this application will be giving the user the ability

to extend the code base with new plugins and sharing these with others. The

platform will provide a set of tools, widgets, objects and functions with which the

application itself will be created. In fact, all editors provided in the application

(schematic editor, component editor, layout editor, etc.) will be implemented

as plugins, and such, the user will be able to develop his own set of tools for

creating his application.

3.2 Frontend

The frontend is the part of the application that runs in the user’s web browser,

and consists HTML files for graphical layout, and JavaScript files for adding

functionality to the application.

In this project, which framework to use, if any, had to be decided upon. Among

the frameworks considered were

• JQuery

• MooTools

• Dojo
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• Require.js

• Common.js

The choice eventually fell upon Dojo, due to two factors. First of all, Dojo comes

with a complete GUI package called Dijit, which would ease the development

of the graphical interface for the project to a great extent. Drop down menus,

tab areas and dialog windows were all needed for the project, and these are all

part of the Dijit package. Secondly, the need for a module management library

was stated early on during development. Several AMD-specific libraries, like

require.js and common.js, were considered, but Dojo was chosen due to having

many features valuable for this project bundled in one package.

Please note that this application is still early in development, and some of the

modules described below is planned for major refactoring.

3.2.1 Frontend building blocks

As explained in the beginning of this chapter, all the different editors will be built

as application plugins, and so, the application needs some highly customizable

building blocks in order to ease the coding effort as much as possible. In this

section, the building blocks which the frontend consists of, will be explained.

WidgetBase

This mixin provides the widget with basic GUI functionality. It is intended as

a middle-layer between the layout provider (i.e. Dojo) and the application. By

doing this, the application will not be heavily dependent on the chosen layout

provider to work properly, thus allowing for an easy switch to another layout

provider or writing one from scratch.
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Figure 3.1: Class diagram for the current implementation of the frontend.
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The WidgetBase mixin will provide the caller object with the functions

addEventListener and removeEventListener to add event listeners, as well

as providing the widget with event triggers for close, show and resize events,

and triggerEvent for triggering these events. If the event for the event listener

is not defined, it will be created while registering the event listener. For con-

sistency reasons, the addEventListener and removeEventListener functions

are identical to the JavaScript DOM Elements’ functions in usage. Listing 3.1

shows how to add a resize event listener to the widget, such that it will be called

every time the widget resizes.

1 // New resize event listener to be added to the widget

2 var newResizeEventListener = function(event) {

3 // Outputs new size of the widget to the console

4 console.log("new size: " + event.w + ", " + event.h);

5 }

6

7 // Attach newResizeEventListener to myWidget ’s "resize" event

8 myWidget.addEventListener("resize", newResizeEventListener , false);

Listing 3.1: Attaching a resize event listener to the widget

The WidgetBase mixin will also create and append to the widget the content

object, which is the HTML DOM element which operates as the base element

for the widget.

Additionaly, WidgetBase provides the widget with keypress event handlers,

which will only fire if the widget is currently focused and uses editor modes.

In the current state of the application, this module is implemented as a mixin.

In retrospect, this has been considered to be an unfortunate implementation;

it would make more sense to let a widget creation function create an instance

of this object, and then appending the desired additional functionality to this

object through mixins.

It would also make sense to let all the event-related content be its own mixin,
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and then mix in this functionality into the WidgetBase upon creation. By doing

this, other objects may mix in event handling functionality as well.

The keypress handler should get its own mixin, since not all widgets necessarily

needs keyboard input.

SurfaceView

This mixin provides the widget with functionality for creating and displaying

surface layers. It requires the widget to have a member DOM element called

content for it to work, as all new surface layers will be appended to this element

as HTML canvas elements. Listing 3.2.1 shows how to create a widget and mix

in SurfaceView functionality.

1

2 define("myWidget", ["widget/surfaceviewmixin"],

3 function(SurfaceView) {

4 // returns the constructor to the new widget

5 return function(parentNode) {

6 // parentNode needs to be set to a DOM element in order

7 // to work

8 this.parentNode = parentNode;

9

10 // Mix in SurfaceView functionality

11 SurfaceView.call(this);

12 }

13 });

The SurfaceView mixin provides the widget with a createLayer function,

which takes as parameters layer name and layer z-order, then creates and re-

turns the new surface layer, i.e. a canvas element. It also adds a resize event

to the widget so that the surface will be automatically resized too upon widget

resize.

70



The widget is also provided with functionality for drawing graphical objects.

To draw shapes to the screen, a low level drawing API, Canvas 2D, described

in Chapter 2.2.2 is used. Describing shapes with code is rather inconvenient, so

SurfaceView provides an internal data format and an interpreter of this format.

The interpreter is called “Mustache”, and objects used to describe shapes are

called “Mustache objects”.

New shapes can be added in one of two ways: Firstly, an object can be drawn

directly onto a layer by invoking the layer’s draw method. This method takes

the graphical object as a parameter. Secondly, one can store the object in the

layer’s objects array, which will then be drawn each time the canvas is cleared.

By invoking the layer’s redrawLayer method, the layer will first be cleared, and

then all objects in the array will be drawn upon the canvas sequencially. Listing

3.2 shows how to create a graphical layer in the widget, and create a graphical

object and draw it on the layer.

1

2 var myLayer = this.createLayer("myLayer", 1);

3

4 var Square = function(width) {

5 this.fillStyle = "red";

6 this.strokeStyle = "black";

7 this.path = [

8 {

9 type: "line",

10 points: [

11 {x: -width/2, y: -width/2},

12 {x: -width/2, y: width/2},

13 {x: width/2, y: width/2},

14 {x: width/2, y: -width /2}

15 ]

16 }

17 ];

18 }

19
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20 var mySquare = new Square (10);

21 myLayer.draw(mySquare);

Listing 3.2: Drawing a graphical object on a surface layer

CadView

This mixin provides the widget with functionality common for CAD editors,

such as multi-layer surfaces, mouse interactivity and editor modes. It is intended

as a base widget for the schematic and layout editors, among others. Listing

3.3 shows how to mix in CadView functionality to a widget.

1

2 define("myWidget", ["widget/cadviewmixin"],

3 function(CadView) {

4 // returns the constructor to the new widget

5 return function(parentNode) {

6 // parentNode needs to be set to a DOM element in order

7 // to work

8 this.parentNode = parentNode;

9

10 // Mix in SurfaceView functionality

11 CadView.call(this);

12 }

13 });

Listing 3.3: Creating a widget with CadView functionality

The CadView mixin creates a surface for mouse interactivity which has a high z-

index to ensure that it is always above all other surfaces, and thus is the surface

to catch the mouse events. It will capture both mouse movement and click,

and fire events for these. For mouse movement, CadView will translate the new

mouse coordinate on the screen to the current editor coordinate for the cursor.

If the member variable snapping is defined, the widget will fire the cursorMove

event; else, the event will fire every time the mouse moves.
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The editor is also keep control over all the graphical components, and will update

their positions every time they are moved, and it will also test if there are objects

under the cursor every time it moves. It will also trigger relevant mouse events

on objects, such as onmouseover, onmouseout, onmousedown, etc.

The CadView mixin also introduces the concept of action areas. These are areas

on the surface with which the user can interact in an editor-specified manner.

They can be attached to graphical components, to make these components in-

teractive. This is useful in e.g. the schematic editor, where the user can connect

two component pins together by clicking in the action areas of each pin while

in the place wire mode. Listing 3.4 shows how to create an action area.

1 // A basic component without any graphics , only

2 // a position and an angle , as well as an attachment

3 // point for the action area

4 var myComponent = {

5 pos: {x: 100, y: 100},

6 angle: 0,

7 somePoint = {

8 pos: {x: 0, y: 100}

9 }

10 };

11 myWidget.objects.push(myComponent);

12

13 // Updates the global position and angle of all component

14 // objects in the editor.

15 myWidget.updateGlobalPositions ();

16

17 // Creates a new action area and attach it to the

18 // global position of myComponent.somePoint ,

19 // as well as assigning some events to the action area.

20 var newActionArea = myWidget.createActionArea ({

21 type: "componentActionPoint",

22 shape: Circle ,

23 pos: myComponent.somePoint.globalPos ,

24 objects: [],
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25 onMouseOver: function(event) {

26 console.log("over area!");

27 },

28 onMouseOut: function(event) {

29 console.log("out from area!");

30 },

31 onMouseClick: function(event) {

32 console.log("clicked on object!");

33 }

34 });

Listing 3.4: Creating an action area in a CadView widget

The CadView mixin introduces the concept of editor modes, which is a modifiable

state machine, in which all the states have their own input handlers, entry and

exit events, etc. The state editor mode model is fully customizable, and a mode

can be entered by calling setEditorMode with the new mode as parameter. This

will invoke the current state’s exit event, and then, the new mode’s enter event.

An object for storing all editor states, called editorStates, is also provided

by the mixin, although using it is not strictly necessary in order to use custom

modes. Listing 3.5 shows how to create and use a custom editor mode.

1

2 var customEditorMode = function () {

3 // Event to be triggered when the mode is entered

4 this.onEnterMode = function () {

5 console.log("entering custom editor mode.");

6 }

7 // Event to be triggered when mouse is clicked while the editor

8 // is in this mode.

9 this.onMouseDown = function(event) {

10 console.log("mouse clicked while in custom editor mode.");

11 }

12 // Event to be triggered when leaving the mode

13 this.onLeaveMode = function () {

14 console.log("leaving custom editor mode.");

15 }
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16 // Event to be triggered when ’a’ is pressed on the keyboard

17 // while the editor is in this mode.

18 this.keyBindings["A".charCodeAt (0)] = function () {

19 console.log("a pressed in custom editor mode.");

20 }

21

22 // Store the mode in the editorMode object to make it reusable

23 myWidget.editorModes.customEditorMode = customEditorMode;

24

25 // Set the editor mode to customEditorMode.

26 myWidget.setEditorMode(customEditorMode);

27 }

Listing 3.5: Creating a custom editor mode and entering it

PlotView

This mixin provides the widget with multi-layered plotting functionality. It

provides the widget with the createPlot function, which takes a parameter

object as its only parameter. This function creates a new plot layer with content

as parent DOM element, and returns this new layer. The parameters.name

string decides the name of the plot.

The plot layer defines the addPoint function, which takes as parameter the

new point to be added to the plot, as an object consisting of one x and one y

parameter.

It should be noted that this widget is under construction and thus lacks most

of its intended functionality.

TextWidget

This mixin turns the widget content element’s surface area into a text editor,

complete with syntax highlighting, line numbering, etc. The current implemen-
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tation of this uses the MIT-like-licensed CodeMirror text editor.

3.3 Backend

Any web-application must be hosted by a web server. The server returns data

requested by the client (the user’s web browser). This server can also perform

additional task, such as providing persistent storage (see section 2.2.3). Any web

server can host files, but providing persistent storage and user authentication

requires some additional programming. During development lighttpd was used

to host files.

The backend refer to the parts of the application implemented on the server

side, as opposed to the frontend which refer to the code and content running in

the user’s web browser.

The programming language Go was chosen to implement the backend. Node.js

was also considered, but dismissed for lacking multi-threading and some diffi-

culties compiling it. Go has a few similarities to javascript, such as first class

functions and closures. This allows using some of the same design patterns in

both the backend and the frontend. Go has some very useful packages: The

net/http package allows for easy creation of web servers. It also contain a file

hosting function. The encoding/json is used to generate JSON containers.

JSON is easily interpreted in javascript, thus useful for backend-frontend data

exchange.

The backend relies on MongoDB, a document database for storing user data.

The package mgo provides an interface to the database.

Exchange of information between the frontend and backend was an important

consideration when choosing the language. JSON is used to wrap data. Data

from the backend to the client is sent as HTTP response messages with Content-
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Type set to application/json. The JSON encoded data is put into the message

body. Data from the frontend are sent to the backend as HTTP request mes-

sages, with the data encoded in the request body. The path field in the HTTP

header is used by the backend to determine what to do with the provided data.

The backend provides the options: login, logout and register for user accounts;

store, list and get for documents. In order to user the document function store,

the user must first have successfully performed the login function.

storage.js is used to communicate with the backend. In addition to the argu-

ments needed for the functions in the backend, it takes a callback function. It

encodes the arguments passed to its functions, and encode them as a field values

in a HTTP request form. When it receives a response, it converts the returned

JSON into a JavaScript object, and calls the callback function with the decoded

object.

3.3.1 Login

The function login in storage.js creates an HTTP request with username and

password encoded as form data. In the backend, the user with a matching

username is fetched from the database. The sha256 sum of the concatenation

of the salt from the database and the password from the HTTP request is

calculated. If no user is found, or the calculated sum does not match the one in

the user database, the fellowing JSON object is returned:

1 { "error": "Wrong username/password" }

If the sums match, the login is successful, and an unique session ID (USID) is

generated. The USID is stored in a session database along with the username.

To the user the fellowing JSON object is returned:

1 { "usid": <base64 encoded USID > }
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3.3.2 Register

Parameters passed as form data in the http request are: Username, email and

password. If the username provided is already taken, the fellowing JSON object

is returned:

1 { "error": "Username taken" }

And if no username was given, the following:

1 { "error": "No username given" }

If the username is not in use, a salt is generated. Then the sha256 hashing

algorithm is applied to the concatenation of the salt and password. This hash is

stored together with the username, email and salt of the user in the database.

A login operation is then performed.

3.3.3 Logout

A USID and username is provided from the client. If a record with both match-

ing username and USID is found, this record is removed. No value is returned.

3.3.4 Store

The fellowing arguments are stored when the operation is successful:

Name Used to refer to the item.

Implements Some other item that can be replaced by this item.

Published Whether the item is availibe to use by all users or only the owner

and the maintainers.

Owner Person with privileges to update the item and its metadata.
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Maintainers Users listed as maintainers are allowed to update the item’s data.

Readers A list of users that is allowed to use the item if it is unpublished.

Data The item’s data.

In addition the USID is used to obtain the username and verify if the user har

the required privilegies. If not an error is returned:

1 { "error": "Not authorized" }

3.3.5 Load

Arguments: Name, USID. This function searches the item database for the

provided name. If no objects are found, an error is returned:

1 { "error": "Not found" }

An item is marked as published will be returned along with its metadata. If

the item is not marked as published, the username is located from the provided

USID in the session database, and checked against the item’s owner, maintainer

list and reader list. Provided the user is listed in one of these groups, the item

is returned along with its metadata. If not, an error is returned:

1 { "error": "Not authorized" }

3.3.6 List

This function lists all objects the user can use. If no USID is provided, only

items with the published flag enabled are listed. The result is returned as a

JSON object of the fellowing form:

1 { "names": ["item1","item2","item3" ,...] }

If no items are found, an empty array is retured.
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3.4 Provided plugins

This section explains some of the plugins that has been developed or are intened

to be implemented in the near future.

3.4.1 Schematic editor

This plugin is a graphical widget that will manipulate the document’s net- and

component lists based on interaction from the user. It derives its functionality

from the CadView mixin, providing it with useful functionality, e.g. surface

layers and the editor modes state machine.

The plugin adds editor states for placement of components, wires and inter-

faces. All component placement modes (e.g. placeResistorMode) mix in the

placeComponentMode object, which provides it with an entry event, exit event,

component placement upon left click, component rotation upon right click, and

a component config dialog which pops up when the tab key is pressed. The

placeComponentMode function takes a component as an argument, which will

be the component to be placed by the mode.

The schematic editor plugin defines the createComponent function, which cre-

ates a surface component (see section 3.2.1), mixes in CAD component func-

tionality (selection, movability, etc), and appends the new component to the

objects array, which is inherited from SurfaceView. Listing 3.6 shows how to

create a basic schematic component.

1

2 define("myComponent", [], function () {

3 return function(parameters) {

4

5 // a pointer to the instance of the object currently called

6 var myComponent = this;
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7

8 if(parameters) {

9 parameters.pos = {x: 0, y: 0};

10 parameters.angle = 0;

11 if(parameters.pos) myComponent.pos = parameters.pos;

12 if(parameters.angle) myComponent.angle = parameters.angle;

13 if(parameters.view) myComponent.view = parameters.pos;

14 }

15 this.type = "myComponent";

16 this.boundingPath = [

17 {

18 type: "line",

19 points: [

20 {x: -50, y: -50},

21 {x: -50, y: 50},

22 {x: 50, y: 50},

23 {x: 50, y: -50}

24 ]

25 }

26 ];

27 var view = this.view;

28 this.pins = [

29 view.createPin ({angle: Math.PI, pos: {x:0, y:-50}, length:

25, parent: myComponent });

30 view.createPin ({angle: 0, pos: {x:0, y:50}, length: 25,

parent: myComponent });

31 ];

32 this.shape = {

33 this.pins ,

34 new function () {

35 this.fillStype = "red";

36 this.strokeStyle = "black";

37 this.closed = true;

38 this.path = [

39 {

40 type: "line",

41 points: [

81



42 {x: -50, y: -50},

43 {x: -50, y: 50},

44 {x: 50, y: 50},

45 {x: 50, y: -50}

46 ]

47 }

48 ]

49 }

50 }

51 }

52 });

Listing 3.6: Creating a new circuit component.

The plugin define modes for placing wires and interface wires, called placeWireMode

and placeInterfaceMode. These modes call createComponent with Wire and

Interface, respectively, as parameter. Upon creation, the Wire component will

append itself to the schematic editor’s wireList array (this has not yet been

implemented for Interface). The wireList array is currently the only rep-

resentation of the net list, although in the future, a net list controller will be

implemented, and so this part of the plugin will undergo some changes.

These modes have a lot in common, and for reusability reasons, the function-

ality of these will be moved into a mixin from which both modes will inherit

functionality. This mixin will also be used in the layout editor wire routing

mode.

The schematic editor also assigns idleMode key bindings for entering component

placement modes, e.g. entering placeResistorMode by pressing ’r’. In the

future, the user will be able to configure key bindings and store these in his user

profile.

Figure 3.2 shows how the class diagram for and around the schematic editor will

look like after some code cleanup.
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Figure 3.2: Future class diagram of the schematic editor, with factory methods

for creating the schematic editor and the schematic editor components
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Figure 3.3: Future class diagram of the layout editor, with factory methods for

creating the layout editor and the layout editor components

3.4.2 Layout editor

This plugin is used for generating the net- and component lists into printed

circuit board layout. Due to time limitations, this plugin has not been written

yet, because the schematic editor needs to be able to manipulate the net list

before this editor will actually serve a purpose.

The planned class diagram for and around the layout editor is shown in Fig-

ure 3.3.
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3.4.3 Simulator

The simulator implementation is incomplete, and the simulator plugin currently

only contains the numerical simulator, and a menu to run a hard-coded example

system.

Generation of the incidence matrix has been implemented, but is currently part

of the schematic editor.

Numerical Solver

The numerical solver is defined by the module simulator/solver, and solves

systems on the fellowing form:

ẏ = f(y, t) = Ay + b (3.1)

The module defines a function: function(h, A, b, y0), which returns a new

function for stepping forward in time. The arguments are: h, the step size for

the simulation; A, same as A from the system in Equation 3.1; b, same as b

from the system in Equation 3.1; and y0, (y0 = y(t0)), the initial state of the

system.

The function calculates the parameters given in Equation 2.9, which become part

of the returned function’s closure (discussed in 2.3.4). The returned function

calculates and returns yn+1 as defined in Equation 2.8.

3.4.4 Plotting tool

This plugin is for viewing simulator scope signals, and it mixes in the PlotView

mixin. Due to this tool currently being in development, it is currently only

drawing a red blob of noise.
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3.4.5 Text editor

This plugin is for creating and displaying text, and can be used for writing plug-

ins, creating component descriptions, and much more. It mixes in TextWidget,

and appends additional functionality for saving and loading text, change lan-

guage for syntax highlighting, etc. Due to time limitations, this extra function-

ality is not implemented yet.

3.4.6 Planned plugins

Not all the plugins needed for the application could be developed during the

timeframe given, and so some plugins

3.4.7 Interface editor

This plugin is for configuring connection interfaces, as described in section

FIXME. Due to time limitations, this plugin has not been written yet, although

it plays a vital role for getting the schematic editor to work correctly.

3.4.8 ComponentEditor

This plugin is for creating schematic and layout components. Due to time

limitations, it has not been implemented yet. Interface-pins
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Figure 3.4: Future class diagram of the component editor, with factory method

for creating the component editor, the schematic component editor and layout

editor
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4 Discussion, Conclusion and Further Work

4.1 Discussion

4.1.1 The Simulator

One of the first problems attacked during our work, was to find a way to simulate

circuits. The first attempt used the explicit Euler method, and a plotting tool

was implemented to debug the implementation. The explicit Euler method

proved to be very inaccurate, and the Runge-Kutta (explicit Runge-Kutta, order

4) method was implemented.

The Runge-Kutta method seemed to work well, until we tried simulation more

complex circuits. Actually, introducing a single inductor to a RC circuit caused

the simulation to fail. Significant time was spent trying to understand why this

did not work, and after a discussion with FIXME, an attempt was made using

the implicit Euler method.

While implicit euler worked, it was very inaccurate, and required very small time

steps. This in turn made simulation unacceptably slow, and an higher order

method was implemented. Lobatto IIIC provided a much better simulation as

demonstrated in Figure 2.5 compared to Figure 2.3.

When reimplementing explicit Runge-Kutta 4 to provide plots for the report,

explicit Runge-Kutta appeared to be very accurate for the RLC circuit, contrary

to earlier results. Since the simulator has many features yet to be implemented,

having a implicit Runge-Kutta method available may prove useful because of

it’s stability characteristics.
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The attached files contains code examples allowing the reader to test and plot

himself the differences between the different numerical methods. A description

on how to do this is provided in Appendix B.1.

The Simulator has one significant problem, which is that it relies on Sylvester.js.

Sylvester.js was chosen because it appeared to do what we needed, and it has

an efficient matrix inversion algorithm. Unfortunately Sylvester is unable to

handle 1-by-1 matrices properly. Specifically, it is unable to invert a 1-by-

1 matrix, which becomes rather inconvenient when extra code is needed for

testing the size of the matrix, and handling the special cases as scalar values.

It is also unable to us 0-by-anything matrices, which would have been neat.

Using Sylvester.js may not have been the wisest choice, as it must be replaced

or improved, but implementing a matrix library would have cost us significant

time.

In the current implementation analog simulation was prioritized, and we did not

have enough time to implement digital simulation. The digital simulation could

be performed with discrete event simulation. Behaviour could be described e.g.

using function blocks. A change in the input of a block could schedule an output

event, as described by the block. To interface analog and digital components

analog to digital converters could be used. These could be provided with a

sampling interval, and generate output events each sample, while Digital to

analog converters would modify the analog process’ matrices. We haven’t had

time to explore these ideas in more detail.

The choice to focus on analog simulation was influenced by the Falstad Circuit

Simulator, and the authors’ interest in audio and radio electronics. Choosing to

focus on analog simulation may have provided earlier results than focusing on

discrete event simulation would have. An discrete event simulator requires an

event scheduler, a time advancement algorithm, and some callback system. A

very simple analog simulator could use Euler’s method, yn+1 = yn +h(Ayn +b),

with hard coded values for A and b, running in a loop printing yn. One of the

89



disadvantages of focusing on analog simulation, is that it is not well suited for

simulating more abstract behaviour, such as software.

4.1.2 JavaScript

As reflected by section 2.3, a significant part of our time was used to familiarize

our self with JavaScript. Neither of the authors had any previous experience in

programming with JavaScript, and as a consequence, much of the code written in

the early stages of development have been refactored or rewritten. By choosing

to build a web-application, we had already accepted to code in JavaScript, and

we consider the time spent on “getting on terms” with JavaScript, to have been

necessary and useful.

4.1.3 Swapping of tasks

Early in development, Thomas was working on the simulator, and Tore Egil

on the GUI. In order to provide better feedback from the simulator, the first

component of the GUI to be implemented was the plotting tool. Mustache

was implemented as part of the plotting tool. With a simulator able to plot

the voltage curve of a RC-circuit in a web-browser, the speed of development

unfortunately came to a halt: Tore Egil found himself spending a lot of time

attempting to make event handling and Mustache work together. Thomas was

stuck in development of the simulator, having trouble finding a consistent way

of including inductors. Having spent too much time in this barely productive

phase, the tasks were switched: Tore Egil took over development of the simula-

tor, while Thomas took over the GUI development. This switch proved effective:

Thomas scratched Tore Egil’s low level approach, and used Dojo to provide a

framework for the GUI. Mustache was however kept, and is still used to draw

shapes to the canvas element. Tore Egil found a paper describing MNA[4] more
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properly than the sources Thomas had used earlier, which had been aimed at

resistive network analysis.

4.1.4 The Backend

The backend, as described in section 3.3 is implemented in go and provides

hosting of static files, user control, and persistent storage for users. It is closely

matched with the module storage.js, which communicate with the backend, and

presents an clean api for the rest of the application to use. MongoDB was

chosen rather arbitrarily, and ease of use was the main concern. The early idea

was to just push everything into a hashmap, and store and retrieve values from

this. While the idea was fairly easy to implement, providing functionality for

searching and filtering posts became too cumbersome. Thus the first solution

was ditched in favor of a simpler one using MongoDB. The implementation of

the backend is incomplete, as with many other parts of the application. User

registration, login and logout works, and users’ sessions can be remembered.

The document storage is however incomplete, mainly because we have not had

time to implement the testing facilities. The testing GUI is able to perform user

registration, login and logout, and the connection is made over HTTPS. Had

we chosen to use MongoDB at an earlier stage, we might have had a functional

version of the backend.
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4.2 Conclusion

The objective of this thesis was to develop a GPL-licensed web application for

rapid prototyping of electronic circuits. Listed as important qualities for the

application was ease of use, reusability and schematics readability.

4.2.1 The tasks performed

Survey existing electronic design automation software (EDA).

Some existing EDA programs are discussed in section 1.2. Inspiration has been

drawn for some of them, in particular Falstad Circuit Simulator and CadSoft

EAGLE. Lessons taken are the poor simulator usability, and schematic verbosity.

Describe essential and nice features for an EDA application

Essential and nice features of an EDA are described in chapter 1.3. One of

the most significant features for this application it is implemented as a web-

application. Other significant features are to delay the choice of components,

and interface based routing.

Study necessary background information to implement such an ap-

plication

Significant effort has been put to understanding JavaScript, and learning to

utilize it. This effort has mostly been practical, experimenting with the lan-

guage. Modified Nodal Analysis has been important in order to simulate analog

circuits.
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Decide which tools and languages the software will be built upon, and

learn how to best utilize these within the project.

We have chosen JavaScript to implement the frontend. Dojo provides mod-

ule loading, and a graphical user interface framework. Sylvester.js provides

addition, subtraction, multiplication and inversion of matrices. The backend

is implemented in Google Go, with the package mgo providing an interface to

MongoDB.

Implement the essential features of the application, and a plugin-

platform which other features can built on top of.

Several parts of the application has been implemented as plug-in modules. The

schematic editor, the numerical solver, the plotting tool and the text editor.

Evaluate the implementation.

Several of the application’s modules are only partially implemented; most of

them do however provide some functionality. The application can therefore be

considered a tech demo.
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4.3 Further Work

4.3.1 Refactoration of code

Parts of the application has not been fully integrated, while much of the required

implementation is in place.

4.3.2 Integrating persistant storage

While storage.js is able to perform user registrations, logins and logouts, as well

as storing and retrieving user data; it has not been integrated with other parts

of the frontend. The primary reason is that the rest of the application, has not

yet reached a maturity level where this functionality is needed.

4.3.3 Improving the simulator

Implement a new matrix library

Sylvester.js which is used by the Simulator is a third-party library. It lacks

proper support for 1-by-1 matrices, and has no support for smaller matri-

ces, which is unacceptable. Implementing a new matrix library, or patching

Sylvester.js should therefore be one of the first things to look at.

Integrating the simulator with the schematic editor

A working numerical solver has been implemented, and Schematic is able to

generate the incidence matrix. What needs to be done after a better matrix

library has been implemented, is to implement an algorithm to transform these
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values into a usable form for the numerical solver, and display the results in an

informative way.

4.3.4 Implementing discrete event simulation

Having the ability to simulate digital components is a rather important feature.

and using components using interfaces was one of the of the features that would

make this feasible.

The current parts of the simulator implementation does not include any code to

perform discrete event simulation. Discrete event simulation could provide sim-

ulation capabilities for the functional design of electronics. Analog and discrete

event simulation could be combined using adc and dac blocks.

96



A Analog Simulation

A.1 Implicit Methods

Implicit Runge-Kutta methods can be used to estimate the solutions of systems

on the form:

ẏ = f(y, t) = Ay + b (A.1)

A general 2nd order Implicit Runge-Kutta method has the form:

xn+1 = xn + h[b1k1 + b2k2]

k1 = f(xn + h[a11k1 + a12k2], tn + c1h)

k2 = f(xn + h[a21k1 + a22k2], tn + c2h)

(A.2)

Applying (A.2) to (A.1) yields:

yn+1 = yn + h(b1k1 + b2k2)

k1 = A(yn + h[a11k1 + a12k2]) + b

k2 = A(yn + h[a21k1 + a22k2]) + b

(A.3)

Solving (A.3) for yn+1:

k1 = Ayn + ha11Ak1 + ha12Ak2 + b

k2 = Ayn + ha21Ak1 + ha22Ak2 + b
(A.4)

k1 − ha11Ak1 = Ayn + ha12Ak2 + b

k2 − ha22Ak2 = Ayn + ha21Ak1 + b
(A.5)
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(I − ha11A)k1 = Ayn + ha12Ak2 + b

(I − ha22A)k2 = Ayn + ha21Ak1 + b
(A.6)

k1 = E1Ayn + E1ha12Ak2 + E1b

k2 = E2Ayn + E2ha21Ak1 + E2b
(A.7)

where:
E1 = (I − ha11A)−1

E2 = (I − ha22A)−1
(A.8)

k1 = E1Ayn + ha12E1A(E2yn + E2ha21Ak1 + E2b) + E1b

k2 = E2Ayn + ha21E2A(E1yn + E1ha12Ak2 + E1b) + E2b
(A.9)

(I − h2a12a21E1AE2A)k1 = E1A(I + ha12E2)yn + E1(ha12AE2 + I)b

(I − h2a21a12E2AE1A)k2 = E2A(I + ha21E1)yn + E2(ha21AE1 + I)b

(A.10)

yn+1 = yn + h(b1k1 + b2k2)

k1 = M1yn + N1b

k2 = M2yn + N2b

(A.11)

where:
M1 = (I − h2a12a21E1AE2A)−1E1A(I + ha12E2)

M2 = (I − h2a21a12E2AE1A)−1E2A(I + ha21E1)

N1 = (I − h2a12a21E1AE2A)−1E1(ha12AE2 + I)

N2 = (I − h2a21a12E2AE1A)−1E2(ha21AE1 + I)

E1 = (I − ha11A)−1

E2 = (I − ha22A)−1

(A.12)

98



A.2 Example: RC circuit

+
− V1

iV1
R1

iR1

C1

iC1

e1 e2

Figure A.1: A simple RC circuit

Using MNA, we get:

AR =

[
1

−1

]
,AC =

[
0

1

]
,AV =

[
1

0

]
G =

[
1
R1

]
,C =

[
C1

]
,E =

[
V1

] (A.13)


0 0 0

0 C1 0

0 0 0

 d

dt


e1

e2

iV1

+


1
R1

− 1
R1

1

− 1
R1

1
R1

0

1 0 0



e1

e2

iV1

 =


0

0

V1

 (A.14)

Splitting Equation A.14 into implicit and explicit parts yields:

[
C1

] d

dt

[
e2

]
+
[

1
R1

] [
e2

]
+
[
− 1

R1
0
] [ e1

iV1

]
=
[
0
]

(A.15)

[
1
R1

1

1 0

][
e1

iV1

]
+

[
− 1

R1

0

] [
e2

]
=

[
0

V1

]
(A.16)
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Solving the algebraic part for
[ e1
iV1

[
:[

1
R1

1

1 0

][
e1

iV1

]
=

[
1
R1

0

] [
e2

]
+

[
0

V1

]
(A.17)

[
e1

iV1

]
=

[
0 1

1 − 1
R1

][
1
R1

0

] [
e2

]
+

[
0 1

1 − 1
R1

][
0

V1

]
(A.18)

[
e1

iV1

]
=

[
0
1
R1

] [
e2

]
+

[
V1

− V1

R1

]
(A.19)

Inserting Equation A.19 into Equation A.15[
C1

] d

dt

[
e2

]
+
[

1
R1

] [
e2

]
+
[
− 1

R1
0
] ([ 0

1
R1

] [
e2

]
+

[
V1

− V1

R1

])
=
[
0
]

(A.20)

[
C1

] d

dt

[
e2

]
+
[

1
R1

] [
e2

]
+
[
0
] [

e2

]
+
[
− 1

R1
V1

]
=
[
0
]

(A.21)

d

dt

[
e2

]
=
[
− 1

R1C1

] [
e2

]
+
[

V1

R1C1

]
(A.22)

A.2.1 Exact Solution

Stripping the matrix notation as it is unneeded:

d

dt
e2 = − 1

R1C1
e2 +

V1

R1C1
(A.23)

d

dt
e2 = (e2 − V1)

−1

R1C1
(A.24)

de2
e2 − V1

=
−1

R1C1
dt (A.25)∫

de2
e2 − V1

=

∫
−1

R1C1
dt (A.26)
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Using integration rule from [6, 4, p. 133]:∫
dx

ax + b
=

1

a
lnC(ax + b)

lnK1(e2 − V1) =
−t

R1C1
+ K2 (A.27)

K1(e2 − V1) = K2e
−t

R1C1 (A.28)

e2 = V1 + Ke
−t

R1C1 (A.29)

Using the initial condition: e2(t = 0) = 0

e2(t = 0) = V1 + Ke
−0

R1C1 (A.30)

0 = V1 + K (A.31)

K = −V1 (A.32)

thus:

e2(t) = V1(1− e
−t

R1C1 )

A.2.2 Plots of numerical solutions
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Figure A.2: Simulation of RLC circuit using Euler’s method, with step size =

0.001s
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Figure A.3: Simulation of RLC circuit using the implicit Euler method, with

step size = 0.001s
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Figure A.4: Simulation of RLC circuit using the Runge-Kutta method, with

step size = 0.001s
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Figure A.5: Simulation of RLC circuit using Lobatto IIIC, with step size =

0.001s
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A.3 Example: RLC circuit

+
− V1

iV R1

iR

L1

iL

C1

iC

e1 e2

Figure A.6: Example circuit: R1 = 1000Ω,L1 = 10mH,C1 = 1mF and V1 = 5V

.

Using MNA, we get:

AR =

[
1

−1

]
,AC =

[
0

1

]
,AL =

[
0

1

]
,AV =

[
−1

0

]
G =

[
1
R1

]
,C =

[
C1

]
,L =

[
L1

]
,E =

[
V1

] (A.33)


0 0 0 0

0 C1 0 0

0 0 L1 0

0 0 0 0

 d

dt


e1

e2

iL

iV

+


1
R1

−1
R1

0 −1
−1
R1

1
R1

1 0

0 −1 0 0

−1 0 0 0



e1

e2

iL

iV

 =


0

0

0

−V1

 (A.34)

[
C1 0

0 L1

]
d

dt

[
e2

iL

]
+

[
−1
R1

0

0 0

][
e1

iV

]
+

[
1
R1

1

−1 0

][
e2

iL

]
=

[
0

0

]
[

1
R1

−1

−1 0

][
e1

iV

]
+

[
−1
R1

0

0 0

][
e2

iL

]
=

[
0

V1

] (A.35)
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d

dt

[
e2

iL

]
= −

[
1
C1

0

0 1
L1

][
−1
R1

0

0 0

][
e1

iV

]
−

[
1
C1

0

0 1
L1

][
1
R1

1

−1 0

][
e2

iL

]

0 =

[
1
R1

−1

−1 0

][
e1

iV

]
+

[
−1
R1

0

0 0

][
e2

iL

]
−

[
0

−V1

] (A.36)

d

dt

[
e2

iL

]
=

[
1

C1R1
0

0 0

][
e1

iV

]
+

[
−1

C1R1

−1
C1

1
L1

0

][
e2

iL

]

0 =

[
1
R1

−1

−1 0

][
e1

iV

]
+

[
−1
R1

0

0 0

][
e2

iL

]
−

[
0

−V1

] (A.37)

[
1
R1

−1

−1 0

][
e1

iV

]
= −

[
1
R1

0

0 0

][
e2

iL

]
+

[
0

−V1

]
(A.38)[

e1

iV

]
= −

[
0 −1

−1 −1
R1

][
−1
R1

0

0 0

][
e2

iL

]
+

[
0 −1

−1 −1
R1

][
0

−V1

]
(A.39)[

e1

iV

]
=

[
0 0
−1
R1

0

][
e2

iL

]
+

[
V1

V1

R1

]
(A.40)

d

dt

[
e2

iL

]
=

[
1

C1R1
0

0 0

]([
0 0
−1
R1

0

][
e2

iL

]
+

[
V1

V1

R1

])
+

[
−1

C1R1

−1
C1

1
L1

0

][
e2

iL

]
(A.41)

d

dt

[
e2

iL

]
=

[
−1

C1R1

−1
C1

1
L1

0

][
e2

iL

]
+

[
V1

C1R1

0

]
(A.42)
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A.3.1 Exact Solution

ė2 = − 1

C1R1
e2 −

1

C1
iL +

V1

C1R1
(A.43)

ë2 =
d

dt

(
− 1

C1R1
e2 −

1

C1
iL +

V1

C1R1

)
(A.44)

ë2 = − 1

C1R1
ė2 −

1

C1

˙iL (A.45)

ë2 = − 1

C1R1
ė2 −

1

C1L1
e2 (A.46)

ë2 +
1

C1R1
ė2 +

1

C1L1
e2 = 0 (A.47)

From [7, p. 56] we have for a system y′′ + ay′ + by = 0, where a2 − 4b < 0, the

solution is y = eax/2(A cosωx + B sinωx), where A and B are arbitrary.

We have: (
1

C1R1

)2

< 4 ·
(

1

C1L1

)
(A.48)

1 < 40 (A.49)

Thus, the solution is:

e2(t) = e−
1

C1R1

t
2

[
P sin

(√∣∣∣∣ 1

C1R1
− 4

1

C1L1

∣∣∣∣ t2
)

+ Q cos

(√∣∣∣∣ 1

C1R1
− 4

1

C1L1

∣∣∣∣ t2
)]

(A.50)

Using the initial conditions: [
e2(0)

iL(0)

]
=

[
0

0

]
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e2(0) = P sin (0) + Q cos (0) = 0 (A.51)

⇓ (A.52)

Q = 0 (A.53)

ė2(0) = − 1

C1R1
e2(0)− 1

C1
iL(0) +

V1

C1R1
=

V1

C1R1
(A.54)

d

dt

(
e−

1
C1R1

t
2P sin

(√∣∣∣∣ 1

C1R1
− 4

1

C1L1

∣∣∣∣ t2
))
|t=0 =

V1

C1R1
(A.55)

d

dt

e−
1

2C1R1
tP sin


√

4
C1L1

− 1
R1C1

2
t

 |t=0 =
V1

C1R1
(A.56)

=

(. . . ) sin((. . . )t) + e(... )tP


√

4
C1L1

− 1
R1C1

2

 cos ((. . . )t)

 |t=0 (A.57)

P


√

4
C1L1

− 1
R1C1

2

 =
V1

C1R1
(A.58)

P =
2√

4
C1L1

− 1
R1C1

V1

C1R1
(A.59)

P =
2V1

R1

√
4C1

L1
− C1

R1

(A.60)

e2 =
2V1

R1

√
4C1

L1
− C1

R1

e−
1

2C1R1
t sin


√

4
C1L1

− 1
R1C1

2
t

 (A.61)

e2 =
2V1

R1

√
4C1

L1
− C1

R1

e−
1

2C1R1
t sin


√

4
C1L1

− 1
R1C1

2
t

 (A.62)

d

dt
iL =

1

L1
e2 (A.63)
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d

dt
iL =

1

L1

2V1

R1

√
4C1

L1
− C1

R1

e−
1

2C1R1
t sin


√

4
C1L1

− 1
R1C1

2
t

 (A.64)

d

dt
iL =

1

L1

∫  2V1

R1

√
4C1

L1
− C1

R1

e−
1

2C1R1
t sin


√

4
C1L1

− 1
R1C1

2
t

 dt (A.65)

d

dt
iL =

1

L1

2V1

R1

√
4C1

L1
− C1

R1

∫ e−
1

2C1R1
t sin


√

4
C1L1

− 1
R1C1

2
t

 dt (A.66)

Using integration rule from [6, 132, p. 144]:

∫
eax sin bxdx =

eax

a2 + b2
(a sin bx− b cos bx) + C (A.67)

With the initial condition iL(t = 0) = 0 this becomes:

0 = k4e
k2t(k2 sin k3t− k3 cos k3t) + C

∣∣
t=0

(A.68)

0 = k4e
0(k2 sin 0− k3 cos 0) + C (A.69)

0 = −k4k3 + C (A.70)

C = k3k4 (A.71)
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
e1

e2

iL

iV

 =


5

k1e
k2t sin(k3t)

k4e
k2t(k2 sin k3t− k3 cos k3t) + k3k4

−k1

R1
ek2tsin(k3t)

 ,where: (A.72)

k1 =
2V1

R1

√
4C1

L1
− C1

R1

(A.73)

k2 = − 1

2C1R1
(A.74)

k3 =

√
4

C1L1
− 1

R1C1

2
(A.75)

k4 =
1

L1

k1
k22 + k23

(A.76)

When inserting values for R1,L1, C1 and V1, (A.72) becomes:
e1

e2

iL

iV

 =


5

1.58 · 10−2e−0.5t sin(316t)

1.58 · 10−5e−0.5t(−0.5 sin(316t)− 316 cos(316t)) + 0.005

−1.58 · 10−5e−0.5t sin(316t)

 (A.77)
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B Attached files

The attached archive file contains the source code for this report, some plot

generating functions and the latest revision of tissue.

B.1 Plot generation

Copy-pasting plot-data from the web-browser was too tiresome and error prone,

so the process of generating plots has been automated. By using a javascript

engine running on a GNU operating system, some slightly modified code from

the web-application can be run with out an web-browser. Tools used (tested

with): js (JavaScript-C 1.8.5), make (GNU Make 3.82) and gnuplot (gnuplot

4.6).

B.1.1 RC circuit

Files in location: plots/rc:

method Directory containing the numerical methods used; all share the same

interface.

bweuler.js Implicit Runge-Kutta, order 1, specifically The implicit/back-

wards Euler method.

erk4.js Explicit Runge-Kutta, order 4, specifically The Runge-Kutta method.

euler.js Explicit Runge-Kutta, order 1, specifically The Euler method.
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lobatto.js Implicit Runge-Kutta, order 2, specifically Lobatto IIIC, order

2.

exact.js Code generating the exact solution of the system in rlc. Note: it only

supports an underdamped system.

numerical.js Code generating an numerical solution of the same system, using

one of the numerical methods above.

plot Directory containing the plots after using the Makefile.

rc.js Defines the resitance, capacitance and source voltage for an RC system.

It also specifies the step-length for the numerical methods, sampling rate

for the exact solution, and length of simulation.

Makefile File for automatically generating plots for each of the numerical

methods, plotted along with the exact solution.

B.1.2 RLC circuit

Files in location: plots/rlc:

method Directory containing the numerical methods used; all share the same

interface.

bweuler.js Implicit Runge-Kutta, order 1, specifically The implicit/back-

wards Euler method.

erk4.js Explicit Runge-Kutta, order 4, specifically The Runge-Kutta method.

euler.js Explicit Runge-Kutta, order 1, specifically The Euler method.

lobatto.js Implicit Runge-Kutta, order 2, specifically Lobatto IIIC, order

2.

data Directory containing the results from the simulation and sampling.
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exact.js Code generating the exact solution of the system in rlc. Note: it only

supports an under damped system.

numerical.js Code generating an numerical solution of the same system, using

one of the numerical methods above.

plot Directory containing the plots after using the Makefile.

rlc.js Defines the resitance, inductance, capacitance and source voltage for an

RLC system. It also specifies the step-length for the numerical methods,

sampling rate for the exact solution, and length of simulation.

sylvester.js Library for matrix calculations.

Makefile File for automatically generating plots for each of the numerical

methods, plotted along with the exact solution.

B.1.3 Usage

Just type make in either of the aforementioned locations.

1 $ cd plot/rlc

2 $ make

This will generate plots in both pdf and png format in the plot subdirectory. It

is of course possible to generate the simulated values manually:

1 $ cd plot/rlc

2 $ cat sylvester.js method/erk4.js rlc.js numerical.js | js

3 $ cat rlc.js exact.js | js

The first line outputs the numerical solution, with a time and e2 voltage sepa-

rated by a comma on each line. The second line outputs the exact solution in

the same format.
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B.2 Tissue

This folder contains the latest revision of our application.

cert.pem Sample certificate for the application.

key.pem Sample encryption key for the application.

main.go The backend.

static Folder containing hosted files.

tissue The frontend.

storage Some test facilities for storage.js.

To run tissue, you’ll need MongoDB (2.0.5 or newer) and Google Go (1.0 or

newer) To try out the application, first start MongoDB, and run the backend

with:

1 $ cd tissue

2 $ go run main.go

This creates a https server running on localhost. By accessing https://localhost:4443/static/

you can either try out the schematic editor in tissue, or the user control system

in storage.
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