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Problem text

Consider nonholonomic mechanical systems such as unicycle and car-like
vehicles. Theoretical difficulties arise from non integrable constraints on
their velocities so that trajectory generation and stabilization are challenging
tasks. Analyze the system by deriving the standard kinematic control system
and the corresponding Euler-Lagrange system in which the external forces
are introduced. Given a smooth path (preferably composed of joined line
and circular segments) and a feasible trajectory along the path, compute a
transverse linearization of the Euler-Lagrange system parameterized for the
path segments. Compare some properties of the system dynamics of both a
four- and a five- degree of freedom nonholonomic system.



Abstract

Two configurations for a unicycle, a class of nonholonomic systems, is looked
into. The first configuration is the case where the generalized coordinates
consists of four parameters, while the other configurations consists of five.
For both systems the equations of motion are calculated. Then a method
for parameterizing a desired path for the systems using a synchronization
function among all degrees of freedom is shown. A set of equations to find
feasible trajectories keeping the desired path virtually constrained is calcu-
lated. It is then shown for the four degree of freedom system how to compute
the transverse linearization, which can be used for orbital stabilization of a
desired motion consisting of circular orbits or straight paths. A way to com-
pute a periodic controller for a linear time varying system is derived, and a
set of controllers are tried out on the four degree of freedom unicycle with
negative result.



Sammendrag

To konfigurasjoner for en ett-hjuling, tilhørende de ikke-holonomiske syste-
mer, er sett nærmere p̊a. I den første konfigurasjonen best̊ar de generaliserte
koordinatene av fire parametere, mens i den andre konfigurasjonen best̊ar
koordinatene av fem parametere. For begge systemene blir bevegelsesliknin-
gene beregnet. S̊a blir en metode for å parametrisere en ønsket bane for
systemene, ved hjelp av en synkroniseringsfunksjon blant alle frihetsgradene,
vist. Deretter beregnes et sett av ligninger for å finne gjennomførbare ba-
ner som holder p̊a ønsket bane ved hjelp av virtuelle begrensninger. Videre
blir det vist for systemet best̊aende av fire frihetsgrader hvordan en trans-
vers linearisering, som kan brukes for orbital stabilisering av en ønsket bane
best̊aende av sirkulære og rette segmenter, kan beregnes. En måte å beregne
en periodisk kontroller for et lineært tidsvarierende system er utledet, og et
sett av kontrollere har blitt testet ut p̊a etthjulingssystemet best̊aende av fire
frihetsgrader med negativt resultat.
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Chapter 1

Introduction

The last decades there has been an extensive development of different type
of robots. Many of them are stationary factory workers doing painting jobs,
welding jobs and other assembly line work, but lately there has also been
developed more and more mobile robots with wheels, belts and other methods
of locomotion. Some of them even have got legs, and move in a human-like
way. Different type of robots raise different type of challenges to be solved
and the main challenge of mobile robots with wheels and belts is the presence
of nonholonomic motion constraints. The directions in which those systems
can move are therefore constrained, which makes maneuvering complicated.

The reason why it is important to look at these types of robot locomotion
is because their range of use is rapidly increasing. Today automated mobile
robots do simple jobs at factories and work places carrying around things
from one place to another. At printing plants they carry paper around, at
hospitals they carry laundry and at big warehouses they drive around and
pick and stack goods. All of these applications involve a supervisory central
that always knows where the robots are and what they do. The paths they
have to follow are often precomputed and the environment they work in is
known, but this is about to change.

More and more robotics work involve autonomous mobile robots being able to
find their own way through an environment that may or may not be known.
This could be mobile carebots (helping robots at peoples home or at elder’s
centers), autonomous cars, exploring robots at other planets, surveillance
robots and etc. All of these robots need to be able to navigate safely and
efficiently to be able to work autonomous in a non-restricted environment.

This report will mainly focus on analysis of motion for a unicycle, which is a
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2 CHAPTER 1. INTRODUCTION

nonholonomic system resembling a class of wheeled robots. The unicycle can
be modeled with different complexity depending on consideration of center
of mass being able to move out of the vertical plane. In the following anal-
ysis the focus will mainly be on the simplest case, namely the four degree
of freedom system for which the potential energy is assumed constant. A
brief comparison to the five-DOF case will be provided revealing interesting
observations about principle motions that can be obtained.



Chapter 2

Problem Description

2.1 Definition of Nonholonomic Constraints

Nonholonomy was briefly mentioned in the introduction as something related
to a certain type of constraints. These constraints are often related to vehicles
and other mobile devices with steerable wheels or belts. The constraints are
known for restricting the velocity vector of the vehicle, i.e. it cannot move
sideways, as the wheels cannot roll that way unless the vehicle turns around
first. The following definition is based on [1]. The smallest set of quantities
defining the configuration of a mechanical system are called the generalized
coordinates. They are denoted as q = [q1, q2, · · · qn]T where n denotes the
number of generalized coordinates. Sometimes some of the configuration
variables are redundant, but they have constraints on possible configurations,
such that their dynamics can be expressed by the generalized coordinates. If
a given set of k < n constraints on the configuration by smooth functions

hi(q1, ..., qn) = 0, i = 1, ..., k, (2.1)

they are called holonomic. The motion of the system lies on an m = (n−k)-
dimensional hypersurface (integral manifold) defined by hi(q(t)) for all t > 0.
A set of p < n constraints on the velocity

< ωi(q), q̇ >= 0, i = 1, ..., p (2.2)

is called Pfaffian, where ωi(q) are covectors. All constraints on the form of
Eq. (2.2) are holonomic if there exists p smooth functions hi(q) such that

ωi(q) = dhi(q), i = 1, ..., p. (2.3)

3
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Figure 2.1: The URANUS robot with omni directional wheels.

Otherwise they are nonholonomic, that is, no such functions, hi(q), exists.
The reason why so many mobile robots have got nonholonomic constraints
is because they are built with traditional wheels with steering, similar to
how a car works. Some of the problems with nonholonomic constraints are
maneuvering and path planning. Maneuvering a car can be tricky, especially
parallel parking and navigation in small places. This is because of the dif-
ferential constraints making it impossible to move sideways. A workaround
for this problem is omni directional wheels, which are wheels with rollers
which basically can roll in any direction by varying the speed at each wheel
on the robot. Fig. 2.1 shows a robot with omni directional wheels. The
downside with those kind of wheels is that they are more expensive and is
hard to implement on larger vehicles as the diameter needs to be larger and
they cause a phenomena called fish-tailing, which increases with the speed.
Fish-tailing is basically when the traction gets too low and during a turn the
rear end of the vehicle starts to skid. This is also related to another problem
with the wheels, namely that because of the rollers the vehicle can be pushed
around by external forces when standing still. Also this kind of wheels would
cause vibrations and non smooth driving at greater speeds as they would not
be perfectly balanced. All in all we see that we cannot throw away the old
wheels yet, and we need good ways for planning a motion for such type of
vehicles.

2.2 The Unicycle; a Nonholonimic System

This report will as mentioned in the introduction, look at a particular type
of nonholonomic system called the unicycle. The unicycle is shown in two
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Figure 2.2: Parallel parking can sometimes be a challenge.

different ways in Fig. 2.3 where in Fig. 2.3a the unicycle is represented with
four degrees of freedom (DOF) because it is assumed that gravity has no
effect. In practice this means that the unicycle will always be in a stable ver-
tical condition and will never fall over. This practical simplification makes
the unicycle a system similar to a car-like system where nonholonomic con-
straints are present, but when standing still the system is stable. Fig. 2.3b
introduces a new degree of freedom and gravity is now present. A small tilt
will now change the center of gravity (COG) and unless external forces are
applied the unicycle will fall over, just like a coin. The five DOF case of the
unicycle is very closely related to a real unicycle, which is very agile, highly
dynamic and not as representative for vehicles with significant roll dynamics
about longitudinal axis.
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φ

(a) The 4 DOF unicycle case
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z

θ

ψ

φ
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(b) The 5 DOF unicycle case

Figure 2.3: Comparison of the two different unicycle cases.
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2.3 Path Planning and Control

As many people know how do drive a car, the task of making the car move
cannot be said to be a difficult task. Parallel parking the car is somewhat
more complicated and a survey made on behalf of Elephant car insurance in
UK [2] shows that 21% of motorists can rarely or never parallel park while
58% will give up and park another place because they aren’t able to manou-
vre their car into a space. This gives an idea of the restrictions nonholonomic
constraints enforces a system, especially when it comes to path planning and
manoeuvrability. This shows us that to manouvere a vehicle with nonholo-
nomic constraints raises some challanges regarding path planning and vehicle
movement in small and/or obstacle crowded spaces. The task of planning
a path for nonholonomic systems was considered by the author during a
project work reported in [3] , but the next step, making the vehicle follow
the planned path, was not explored. This task is not straight forward, as the
motion control can be quite complicated. Given a framework where a path
planner gives a fesible, with respect to nonholonomic constraints, obstacle
free path composed of straight lines and quadrants as described in Sec. 3.2.3.
One of the challanges is also to find out whether the velocity along the path is
constrained by the dynamics, also keeping in mind that the constraint forces
must be satisfyed by the friction forces as the oposite will result in sliding.
Also the nonholonomic constraints imply that there exists an uncontrollable
subspace, with dimension of the nonholonomic constraints, for any control
system kinematics or Lagrangian. This also complicates control tasks fur-
ther. The same framework will be used to look at the system’s closed loop
solution and check if it would converge given an orbit. This is interesting be-
cause the nonholonomic constraints restricts the directions allowed to move
in. Using transverse coordinates is a good way to analyze such a solution
because they give a good indication of how far away from a desired orbit the
system is.



Chapter 3

Theory and Previous Work

3.1 Equations of Motions for a Nonholonomic
System

The calculation of the equations of motion (EOM) of a system can be done
using the Euler-Lagrange [1]. To do this, the dynamics of the system first
needs to be summarized to what is called the Lagrangian, L = T −V , where
T and V are the kinetic and the potential energy of a system, respectively.
Further on the Euler-Lagrange equations are calculated using the following
relation:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= Ξi, (3.1)

where q ∈ Rn are the generalized coordinates, q̇ ∈ Rn are the respective
velocities and Ξ represents the non-conservative forces of the system such as
damping and control inputs. Normally a general systems dynamics can be
written on the form

M(q)q̈+C(q, q̇)q̇+G(q) = B(q)u, (3.2)

where M(q) ∈ Rn×n is a positive definite matrix of inertia, C(q, q̇) ∈ Rn×n

describes the Coriolis and the generalized centrifugal forces, G(q) ∈ Rn is
where the forces due to gravitational terms are collected and B(q) ∈ Rn×m

describes the relationship between the states, q, and the inputs, u ∈ Rm.

In [4] it is shown that introducing nonholonomic constraints yields the fol-
lowing system

7
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M(q)q̈+C(q, q̇)q̇+G(q) = J(q)Tλ+B(q)u,
J(q)q̇ = 0, (3.3)

where J(q) ∈ Rk×n is a constant full rank matrix, k < n, and the multiplier
λ is a vector of amplitudes of the constraint forces needed to keep the k
not integrable relations J(q)q̇ = 0 invariant along the solutions. In other
words constraint forces due to the nonholonomic constraints shows up as non-
conservative forces and react to the system with a magnitude determined by
a factor λ.

3.2 Typical Control Methods of Nonholonomic
Car-Like Systems

To be able to move an arbitrary system, a trajectory or path needs to be
designed, and a controller needs to calculate some inputs for the system. In
addition errors need to be calculated and corrected for. For car-like systems
there have been designed some kinematic controllers, i.e controllers where the
kinematics are directly controlled. As an example, for a car that would be the
same as instantly changing the speed and ignore the fact that it would cause
an extremely high acceleration. Some of these controllers were investigated
in the project report [3] and shall be reviewed briefly in the following sections.
Observations will show that the most popular trajectory generation strategies
result from kinematic control laws, in which the path taken is unspecified.
However, in general it is interesting to plan a feasible obstacle-free path and
generate the trajectory including a stabilizing controller afterwards. One
promising way of doing so is to parameterize the motion in terms of so-called
virtual constraints that are thought of being enforced on the system. This
approach allows to analytically introduce coordinates transversal to the flow
of the dynamics and eventually analyze the resulting transverse dynamics for
convergence to the prescribed orbit.

3.2.1 Trajectory Generation Using Kinematic Control

In Ch. 3 in [5] there is described a method using a feedback control to generate
motion and a trajectory for a three-wheel differential type robot, which is
represented in Fig. 3.1. The robot consists of two wheels at the rear end with
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nonholonomic constraints, and a wheel in the front which can roll in every
direction. The two inputs for the system are divided into one that controls
the rotation around the back axis, ω, and another control that drives the
robot at a straight line, i.e. constant speed at both back wheels, v.

ω 

α

ρ

β

Δ x

y

X

Y
G

R

v 

θ

^

G

Y
RX

x

goal

Δ

Figure 3.1: Robot reference frame compared to global frame with goal posi-
tion for the robot as the origin.

The method consider a robot with an arbitrary position and orientation and
a predefined goal position and orientation. Using trigonometry and polar
coordinates the deviation from certain angle and position measurements are
calculated and the inputs are found based on that. The equations used for
calculating the errors and states are as follows:

ẋẏ
θ̇


G

=

cos θ 0
sin θ 0

0 1

 [ν(t)
ω(t)

]
, (3.4)

ρ̇α̇
β̇

 =

 cosα 0
1
ρ

sinα −1
1
ρ

sinα 0

 [ν(t)
ω(t)

]
. (3.5)
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Figure 3.2: Trials with different initial positions and goal in origo.

Then a proportional controller is used to calculate the inputs:

ν = kρρ

ω = kαα + kββ (3.6)

Through some simulations the method was tested and the results are shown in
Fig. 3.2. Here it is shown that the vehicle can be controlled to go from start to
stop, but the controller still directly controls the speed which is only possible
in simulations as inertia and forces are present in the real world. Another
problem with the method is in the presence of obstacles which cannot be
avoided in a simple way as the trajectory is planned automatically only based
on position and goal coordinates. Due to these problems other methods were
investigated.

3.2.2 Motion for a Kinematic Car Using One-Chained
Form

The method described in Ch. 8 in [6] uses sine and cosine inputs to control the
states of a car individually. By first controlling the directly controlled states
to their goal position, integrally related sinusoids are used to control the rest
of the states one by one. This method holds the property of not moving the
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final position of the earlier controlled states because of the integrally related
control inputs. In Fig. 3.3 a sketch of the car is shown, and the generalized
coordinates are denoted q = [x, y, θ, φ]T . As mentioned the kinematic car
is also a nonholonomic system and the similarities with the rolling disk can
be seen.

x

y

l
θ

ϕ

Figure 3.3: An overview of the kinematic car model.

The derivatives of the cars states, i.e the speed vectors and angular velocities,
are shown to be

ẋ = cos(θ)u1 (3.7a)
ẏ = sin(θ)u1 (3.7b)

θ̇ = 1
l

tan(φ)u1 (3.7c)

φ̇ = u2, (3.7d)

where the x, y coordinate defines the position in the middle between the back
wheels, φ is the angle between the x-axis and the car, and θ is describing the
angle of the front wheels related to the cars heading. For modeling purposes
the rear wheels are considered as one in the midpoint between them. The
same applies for the front wheels. Chained form, which is used to design the
controller in this case, is a way of representing a system such that it holds
certain properties. This is explained in more detail in [7, 8, 6]. From these
books it is also shown that many nonholonomical systems can be transformed
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into a one-chained form that looks like this:

ẋ1 = v1

ẋ2 = v2

ẋ3 = x2v1
...

ẋn = xn−1v1. (3.8)

The main characteristic of such a system is as mentioned above, it can be
controlled one state at a time using sinusoids at integrally related frequencies,
i.e a sin(2πkt), where a and k are constants.

To get the system on a chained form, change of coordinates are done. The
changes are done such that z1 = x, z2 = φ, z3 = sin(θ), z4 = y and the inputs
v1 = cos(θ)u1, v2 = u2. This then yields

ż1 = v1 (3.9a)
ż2 = v2 (3.9b)

ż3 = 1
l

tan(z2)v1 (3.9c)

ż4 = z3√
1− z2

3

v1. (3.9d)

Several trials were done in the project [3], but only one is repeated here. The
results are shown in Fig. 3.4.

From the results it is possible to see that the method works, but again the
kinematics are not realistic. The inputs and thus the velocities are changed
suddenly and would not be possible to implement on a real system. Second
of all Fig. 3.4b shows how the transients are quite extensive and generally
clumsy. It is also hard to calculate paths such that a vehicle can avoid and
go around obstacles.

3.2.3 The RRT Approach

In addition to exploring some existing methods, another one was developed
using path segments and a rapidly exploring random tree (RRT) approach.
An RRT is a data structure and an algorithm developed by Steven M. Lavalle
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Figure 3.4: Run of trial 1 and the results.

[9] which uses random points in the configuration space to build itself. The
RRT can efficiently explore a non-convex high dimensional space and by so
making a connection from a given start point to a goal point. By randomly
selecting points in the configuration space it searches through its vertices to
find the one that minimizes the distance to the new one and connects it to
the tree with a vertex. An advantage with RRT is that it does not tend to
have a higher density around its starting point like many other algorithms,
but instead it tends to reach for non discovered space. This makes it an
efficient algorithm for searching through a space and find a path from an
initial position to a goal. The algorithm for RRT can be found in [9].

Combining RRT with predefined path segments, typically straight lines and
quadrants, a workspace can be explored with feasible motions for a vehicle.
This way all paths found can be used to design a trajectory and implemented
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for a vehicle to follow. The workspace was implemented with some walls
acting as obstacles and the algorithms job was so find a feasible path that
did not violate the obstacles. The path segments used was a predefined
straight line, i.e drive forward, and predefined turns, 90o turn left or right.
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(a) No obstacles are present.
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(b) With obstacles.

Figure 3.5: Two trials where the modified RRT algorithm finds feasible paths.
No optimization was done.

Fig. 3.5 shows how the modified RRT algorithm manages to find feasible
obstacle-free paths in an environment without and with the presence of ob-
stacles. This is done using two classes of curves;

• line segments of different lengths

• quadrants of different radius

This method was tested more extensively in [3], and more results are shown
there. Overall the algorithm performed well and the results led to this thesis
which goal was to look into how to analyze and control a unicycle given a
path.

3.3 Virtual Holonomic Constraints Approach

To use such a path as described in the previous chapter, the mechanical
system needs to be analyzed and this will be done using some already devel-
oped methods described in [10, 4, 11]. The concept is in [11] called the virtual
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holonomic constraints approach and refers to the use of virtual nonholonomic
constraints to enforce a certain pre-calculated path.

3.3.1 Virtual Holonomic Constraints, VHC

Virtual holonomic constraints can be regarded as imaginary constraints, im-
posed through feedback control and not physically present in the system.
The reason why they are called holonomic is because they can be described
as a function of one of the states directly and they are not dependent on
their derivatives as opposed to nonholonomic constraints, see Sec. 2.1. An
example from [12] is reproduced in Fig. 3.6. This shows us how a 3 de-
grees of freedom (DOF) model, Fig. 3.6a, with help from two walls becomes
a 1 DOF model, Fig. 3.6b. In this case it is an actual constraint, but if
the virtual constraints are implemented correctly the effect is the same.
From the figure it can be seen that the x-coordinate of the center of the

θ

θ

θ
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2

3

1

(a) (b)

L 1

2L

L 1

2L

(0,0) (0,0)

x

y

x

y

Figure 3.6: Example of how virtual holonomic constraints work.

load (i.e the black dot in the box) relative to the base can be described as
x3 = L1 cos(θ1) + L2 cos(θ1 + θ2). With the physical constraints it is easy to
see that x3 is forced to be zero. The virtual holonomic constraint in this case
would be L1 cos(θ1) = −L2 cos(θ1 + θ2). The constraints are also forcing the
angle θtot = θ1 + θ2 + θ3 to be a total of 180◦, as the load is parallel with
the horizontal axis. Assuming that there are controllable actuators in the
joints(i.e the black dots in Fig. 3.6) it can by introducing control variables be
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possible to set the angles, i.e a VHC where θ1 +θ2 +θ3 = 180. By saying that
y1 and y2 are a controllers input and if it is further assumed that y1 = x3
and y2 = θtot − 180◦ (the reference), it can be seen that the angles are con-
trollable. This means that through feedback control one can asymptotically
drive y1 and y2 to zero imposing the constraints virtually. Doing this the 3
DOF model from Fig. 3.6 will get the same kinematic behavior as the 1 DOF
model.

It will later be shown how VHCs are used to impose certain behavior on
the unicycle. It is also important that the constraints among the general-
ized coordinates are consistent with the nonholonomic constraints present
in the system. But for a VHC to be enforced a reference needs to be set.
In the papers listed in the intro to this section a synchronization function,
called Φ is used as a reference. For each state of the system a reference is
calculated based on a monotonically increasing parameter, θ(t) through this
synchronization function.

Given a desired trajectory described by q∗(t) = Φ(θ∗(t)) it is now possible
to use VHC and arrange the development of the states such that

q∗ =


q1∗
q2∗
...
qn∗

 =


Φ1(θ)
Φ2(θ)

...
Φn(θ)

 = Φ(θ), θ = θ∗(t), t ∈ [0, T ], (3.10)

where the star represent the desired case. The desired trajectory will also
have the property of being an orbit, i.e. it will finish at the point it starts
at. This way stability of the motion can easily be checked as the time can
evolve for infinite.

3.3.2 Transverse Linearization

Once the VHCs are defined it is easy to calculate an error based on the states
and the desired motion. Following the method described in [11] the errors,
z, can be calculated as


z1
z2
...
zn

 =


q1
q2
...
qn

−

q∗1
q∗2
...
q∗n

 =


q1
q2
...
qn

−


Φ1(θ∗(t))
Φ2(θ∗(t))

...
Φn(θ∗(t))

 (3.11)
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in addition to θ, which means that there are now n + 1 coordinates. Given
at least one excessive coordinate, one of those can be expressed as a smooth
scalar function of the other ones, call the function h(z, θ), and without loss of
generality it can also be assumed that this is zn such that the new coordinate
set becomes 

q1
q2
...

qn−1
qn

 =



Φ1(θ)
Φ2(θ)

...
Φn−1(θ)
Φn(θ)

+



z1
z2
...

zn−1
h(z, θ)

 . (3.12)

The generalized velocities of the above mentioned system can be calculated
as1

q̇ = L(θ, z)
[
ż

θ̇

]
(3.13)

where

L(θ, z) =
[
I(n−1)×(n−1) 0(n−1)×1

∂h
∂z

∂h
∂θ

]
+

0n×(n−1)

Φ′1(θ)
...

Φ′n(θ)

 . (3.14)

Eq. (3.12) and (3.13) now describe a coordinate transformation from (q, q̇)→
(z, ż, θ, θ̇) which is important in order to derive the 2n − 1 coordinates
transversal to the prescribed orbit, that is transversal to the desired flow
of the dynamics. Since [z; ż]T already are good candidates, the only trans-
formation that needs to be worked out is the one for [θ, θ̇] that yields the
last transverse coordinate, merely called I(θ, θ̇). This scalar quantity must
measure the orthogonal distance to the desired curve in the phase plane [θ, θ̇].
The coordinates transversal to the orbit is given as

x⊥ =

Iz
ż

 , (3.15)

and it can be seen that the vector x⊥ ∈ R2n−1. The transverse coordinates
can now be used to compute how far from a desired trajectory a current state
is and the dynamics of the transverse coordinates can be used to calculate
the system’s behavior in the vicinity, and eventually to design a controller

1Note that z now has dimension n-1 and that I means the identity matrix
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that makes the trajectories converge to the desired orbit. To be able to do
that, the system dynamics in transverse coordinates needs to be linearized
and obtain the following linear time-varying control system, the so-called
transverse linearization [10]:

d

dτ

∆I
∆z
∆ż

 = A(τ)

∆I
∆z
∆ż

+ B(τ)∆V (τ). (3.16)

Here the input variable ∆V (τ) is the result of a transformation from u to
∆V (τ) such that ∆V (τ) is equal to zero along the desired orbit.

3.3.3 Orbital Stabilization of a Periodic Target Motion

Until now a motion for a system has been set, the error has been calculated
in transverse coordinates and the dynamics of the error has been found using
transverse linearization. To be able to stabilize a motion over time, it is for
now assumed that the motion generated is periodic, i.e. q∗(t) = q∗(t + T ),
where T is the time to complete one period of the motion. Then to stabilize a
periodic motion, a periodic controller with the same time dependency needs
to be designed. One way could be to use feedback control and design the

input such that ∆V (τ) = K(τ)

∆I
∆z
∆ż

, where K(τ) = K(τ + T )

3.4 Controller Design Challenges

3.4.1 Controllability

Given the system

ẋ = Ax+Bu (3.17)

where the matrix A ∈ Rn×n and the matrix B ∈ Rn× p describes the sys-
tem dynamics. It is often interesting to know if the system is controllable.
According to [13] a system, is said to be controllable if for any initial state
x0 and any final state x1, there exists an input, u, that transfers x0 to x1
in finite time.
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Controllability Matrix

For a linear time invariant (LTI) system the controllability of the system can
be checked by looking at the rank of the controllability matrix

C =
[
B AB A2B · · · AnB

]
. (3.18)

If the rank is of dimension n, it is said to be controllable, as every state can be
controlled. Otherwise it is said to be uncontrollable, and the uncontrollable
states needs to be stable for the system to be stabilizable. Stability is checked
by looking at the eigenvalues of the closed loop system, i.e eig(Ã) = eig(A−
BK) if the controlled input u = Kx. If the eigenvalues have negative or
zero real parts, and all poles with zero real value are simple roots, the system
is said to be marginally stable. It is said to be asymptotically stable if the real
part of the poles all are negative. For a discrete-time case, x[k + 1] = Ã[k],
the eigenvalues need to have a magnitude less than or equal to one to be
marginally stable and less than one to be asymptotically stable. A marginally
stable system is a system that, if given an finite impulse as input it will not
blow up and give unbounded outputs. An asymptotically stable system will
in the case of every finite initial state have a bounded output and approach
0 as time approaches infinity.

The Controllability Gramian

For a system that is not time invariant, the above mentioned method may
not work, and other approaches exists, one of them called the controllability
gramian. The gramian, Wc(t), consist of an integral over the state transition
matrix, Φ(t, t0) 2, and the state input matrix, B(t) as stated at [14]. Given

ẋ(t) = A(t)x(t) +B(t)u(t), (3.19)

Wc(t) =
∫ t

t0
Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ) dτ (3.20)

where the state transition matrix, Φ(t, t0), is calculated such that

Φ(t0, t0) = I ,
dΦ(t, t0)

dt
= A(t)Φ(t0, t). (3.21)

The most useful property of the state transition matrix is the relation

x(t) = Φ(t0, t)x(t0), (3.22)
2Note that this is not the same as the synchronization function from Sec. 3.3.1
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which means that the evolution of any initial condition can be calculated in
an easy way. For a periodic system it is of interest to see if it is stable and
controllable over a period as the subsequent periods also will be of the same
condition. For the periodic system the controllability gramian needs to be
non-singular over a period, i.e the eigenvalues are different from zero.



Chapter 4

System Analysis

This part of the report will focus on the unicycle system and analyze mainly
the four degree of freedom (DOF) case, see Fig. 4.1, but a comparison to the
five DOF case reveal interesting features at the end.

4.1 EOM for the Unicycle

Continuing with the unicycle example from Sec. 2.2 it can be seen that the
general coordinates are q = [x, y, φ, θ]T , which represents position in the
x − y plane, the rotational angle of the unicycle with respect to a fixed
point on the coin and the angular turning angle with respect to the x-axis
respectively, see Fig. 4.1.

The kinetic and potential energy can be expressed like this:

T = 1
2mv

2 + 1
2Iφφ̇

2 + 1
2Jθ̇

2 = 1
2m(ẋ2 + ẏ2) + 1

2Iφφ̇
2 + 1

2Iθθ̇
2 , V = 0.

(4.1)

The velocity in x and y direction will be directly related to the angular wheel
velocity, φ̇, along the heading angle, θ, and the rolling unicycle will also be
subject to the following non-holonomic constraints [15] :

ẋ− rcφ̇ cos θ = 0 (4.2)
ẏ − rcφ̇ sin θ = 0, (4.3)

21
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x
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(x,y)
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Figure 4.1: The coin described with four degrees of freedom

which can be written on a matrix form as[
1 0 −rc cos θ 0
0 1 −rc sin θ 0

]
q̇ = 0, (4.4)

where the matrix can be recognized as J(q). Using the formula provided in
Sec. 3.1 the Lagrangian is calculated

L = T − V = 1
2m(ẋ2 + ẏ2) + 1

2Iφφ̇
2 + 1

2Iθθ̇
2 − 0. (4.5)

Applying Eq. (3.1) to the Lagrangian:

d

dt

(
∂L
∂ẋ

)
− ∂L
∂x

= mẍ− 0. (4.6a)

d

dt

(
∂L
∂ẏ

)
− ∂L
∂y

= mÿ − 0. (4.6b)

d

dt

(
∂L
∂φ̇

)
− ∂L
∂φ

= Iφφ̈− 0. (4.6c)

d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= Iθθ̈ − 0. (4.6d)
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Eq. (3.3) helps identify the following relations:
m 0 0 0
0 m 0 0
0 0 Iφ 0
0 0 0 Iθ


︸ ︷︷ ︸

M(q)


ẍ
ÿ

φ̈

θ̈


︸︷︷︸
q̈

+ 0︸︷︷︸
C(q,q̇)


ẋ
ẏ

φ̇

θ̇


︸︷︷︸
q̇

+ 0︸︷︷︸
G(q)

=


1 0
0 1

−rc cos θ −rc sin θ
0 0


︸ ︷︷ ︸

J(q)T

[
λc1
λc2

]
︸ ︷︷ ︸
λ

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸
B(q)

[
u1
u2

]
︸ ︷︷ ︸
u

,

(4.7)

which describes the full dynamics of the four DOF case of the unicycle. Here
the inputs are given by u which controls the angular acceleration, φ̈ and
θ̈. Further on it can be seen that the matrix containing the nonholonomic
constraints is multiplied with a vector λ as explained in Sec. 3.1. Following
method 11.4 in [4] it is possible to make the following relation:

d

dt
[J(q)q̇] = J̇(q)q̇ + J(q)q̈ = 0, (4.8)

which in this case gives

d

dt
[J(q)q̇] =

[
0 0 rc sin(θ) θ̇ 0
0 0 −rc cos(θ) θ̇ 0

]
q̇ +

[
1 0 −rc cos θ 0
0 1 −rc sin θ 0

]
q̈ = 0. (4.9)

For the convenience of the readers matrix notation will be simplified, i.e
C(q, q̇)q̇ → Cq̇. Following through with the example, since M is non-

singular Eq. (4.7) can be rearranged such that

q̈ = −M−1(Cq̇+G− JTλ−Bu). (4.10)

The idea is now to replace the reaction forces λ, and from Eq. (4.8) it can
be seen that

J̇ q̇ = −Jq̈ (4.11)
= JM−1(Cq̇+G− JTλ−Bu) (4.12)

JM−1JTλ+ J̇ q̇ = JM−1(Cq̇+G−Bu) (4.13)
λ = (JM−1JT )−1︸ ︷︷ ︸

JM

(JM−1

︸ ︷︷ ︸
J∗

(Cq̇+G−Bu)− J̇ q̇). (4.14)

Please note that since J is not square and can not be inverted, the notation
JM will be used to simplify. Now, this can be combined with Eq. (4.7), hence

Mq̈+Cq̇+G = JTJ∗(Cq̇+G−Bu)− JTJM J̇ q̇+Bu (4.15)
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which yields

Mq̈ + (C + JTJM J̇ − JTJ∗C)︸ ︷︷ ︸
Cλ

q̇ + (I − JTJ∗)G︸ ︷︷ ︸
Gλ

= (I − JTJ∗)B︸ ︷︷ ︸
Bλ

u,

(4.16)

which is a rewritten form of Eq.(1) in [4] where λ is eliminated. This implies
that any magnitude of constraint forces can be assumed feasible since this
equation is true provided that the nonholonomic constraint is held.

4.2 Parametrization of Motion by VHC

To follow the approach described in Sec. 3.3, a synchronization function needs
to be designed. To do this a monotonically increasing parameter needs to be
chosen. From the modified RRT algorithm described in Sec. 3.2.3 it would be
preferable if the trajectory described by the synchronization function would
be a straight line or a quadrant. In Sec. 3.3.3 it was stated that the motion
needed to be periodic in order to be stabilized over time. Therefore a full
circle will be used as a synchronization function as a quadrant is insufficient
to create a periodic motion. Given a circle as represented in Fig. 4.2a, the
object will be to try to represent a segment given one parameter. Preferably
this parameter is one of the generalized coordinates and given the motion
being a circle and the parameter being monotonically increasing it is obvious
that this parameter must be either φ or θ. As φ doesn’t say anything about
where on a circle an object is, θ seems like a good choice. In Fig. 4.2 four
configurations for θ are shown, and given an arbitrary but known initial
configuration, q0 = [x0, y0, θ0, φ0], one can track the configuration of the
coin all over the path as long as one knows the radius of the unicycle, rc, and
the path, rp, and θ.

Given a circle the synchronization function looks like:

q∗ =


x∗
y∗
φ∗
θ∗

 = Φ(θ) =


x0 + rp(− sin(θ0) + sin(θ))
y0 + rp(cos(θ0)− cos(θ))

φ0 + rp
rc

(θ − θ0)
θ

 (4.17)
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Figure 4.2: Configurations

which can be differentiated as

q̇∗ = Φ̇(θ) = Φ′(θ)θ̇ =


rp cos(θ)
rp sin(θ)

rp
rc

1

 θ̇ (4.18)

and the double derivative becomes

q̈∗ = Φ̈(θ) = Φ′′(θ)θ̇2 + Φ′(θ)θ̈ =


−rp sin(θ)
rp cos(θ)

0
0

 θ̇2 +


rp cos(θ)
rp sin(θ)

rp
rc

1

 θ̈ (4.19)

where θ = θ∗(t), θ̇ = θ̇∗(t), θ̈ = θ̈∗(t), t ∈ [0, T ]

4.2.1 Calculation of the α, β and γ Functions

To find a pair, θ and θ̇, [11, 10, 4] calculates the dynamics of the underactu-
ated states of the system through a set of equations called the ” alpha, beta
gamma” pairs. To do this first of all a matrix, B⊥, needs to be found. The
main property of B⊥ is that it annihilates Bλ, i.e B⊥Bλ = 0. Eq. (4.16)
showed us that

Bλ = (I − JTJ∗)B,
(4.20)
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where

J∗ = (JM−1JT )−1JM−1

(4.21)

The first part of J∗ is derived as

JM−1JT =
[
1 0 −rc cos θ 0
0 1 −rc sin θ 0

] 
1
m

0 0 0
0 1

m
0 0

0 0 1
Iφ

0
0 0 0 1

Iθ




1 0
0 1

−rc cos θ −rc sin θ
0 0



=
 1
m

+ r2
c

Iφ
cos2 θ r2

c

Iφ
cos θ sin θ

r2
c

Iφ
cos θ sin θ 1

m
+ r2

c

Iφ
sin2 θ

 (4.22)

Following through with the derivations

Bλ = (I − JTJ∗)B (4.23)

where

Bλ =


Bλ 1,1 0
Bλ 2,1 0
Bλ 3,1 0

0 1

 (4.24)

Bλ 1,1 = mrccos(θ)
mr2

c + Iφ
, Bλ 2,1 = mrcsin(θ)

mr2
c + Iφ

, Bλ 2,1 = Iφ
mr2

c + Iφ

To be able to find an expression that looks like Eq.(11.10) in [4]

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0, (4.25)

the matrix B⊥ that annihilates Bλ needs to be found. This is easily done in
MATLAB using the command null(B) which gives

B⊥ =
[
B⊥1,1 1 0 0
B⊥2,1 0 1 0

]
(4.26)

B⊥1,1 = −Bλ 2,1

Bλ 1,1
=− sin(θ)

cos(θ) , B⊥2,1 = −Bλ 3,1

Bλ 1,1
= −Iφ
mrc cos(θ)

B⊥Bλ =
−Bλ 2,1

Bλ 1,1
1 0 0

−Bλ 3,1
Bλ 1,1

0 1 0



Bλ 1,1 0
Bλ 2,1 0
Bλ 3,1 0

0 1

 = 0, (4.27)
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which seems to be a solution as the matrix product is 0.
Premultiplying the whole system with B⊥ gives

B⊥Mq̈+B⊥Cλq̇+B⊥Gλ = B⊥Bλ︸ ︷︷ ︸
=0

u

(4.28)
B⊥Mq̈+B⊥( C︸︷︷︸

=0

+JTJM J̇ − JTJ∗ C︸︷︷︸
=0

)q̇+ (I − JTJ∗)B⊥ G︸︷︷︸
=0

= 0

(4.29)
B⊥Mq̈+B⊥JTJM J̇︸︷︷︸∑

i

∂J
∂qi

q̇i

q̇ = 0.

(4.30)

Since ∂J
∂x

= ∂J
∂y

= ∂J
∂φ

= 0 only ∂J
∂θ

makes a contribution. Then Eq. (4.17), (4.18)
and (4.19) is used to get an expression like Eq. (4.25). To see the whole pic-
ture old notation is used:

B⊥(q)M(q)q̈ +B⊥(q)JT (q)JM(q)∂J(q)
∂θ

θ̇ q̇ = 0. (4.31)

In this case B⊥(q), Bλ(q), J(q), JM(q) are only dependent on the vari-
able q4 = θ and not the other ones. Meanwhile M(q) is only a matrix
constructed by constants such that the equations can be continued as

B⊥(θ)M
(
Φ′′(θ)θ̇2 + Φ′(θ)θ̈

)
+B⊥(θ)JT (θ)JM(θ)∂J(θ)

∂θ
θ̇ Φ′(θ)θ̇ = 0,

(4.32)

which can be rearranged and recognized as

B⊥(θ)M Φ′(θ)︸ ︷︷ ︸
α(θ)

θ̈ +B⊥(θ)
(
M Φ′′(θ) + JT (θ)JM(θ)∂J(θ)

∂θ
Φ′(θ)

)
︸ ︷︷ ︸

β(θ)

θ̇2 = 0.

(4.33)

It can be seen that there is no γ(θ) part of the equation as a result of the
gravity term in Eq. (4.7) being zero.
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Finding the explicit expression of Eq. (4.33):

α(θ) = B⊥(θ)M Φ′(θ) = B⊥(θ)


mrp cos(θ)
mrp sin(θ)
Iφ

rp
rc

Iθ

 (4.34)

=
 − sin(θ)

cos(θ) 1 0 0
− Iφ
mrc cos(θ) 0 1 0



mrp cos(θ)
mrp sin(θ)
Iφ

rp
rc

Iθ

 = 0 (4.35)

β(θ) = B⊥(θ)
(
M Φ′′(θ) + JT (θ)JM(θ)∂J(θ)

∂θ
Φ′(θ)

)

= B⊥



−mrp sin(θ)
mrp cos(θ)

0
0

+


mrp sin(θ)
−mrp cos(θ)

0
0


 = B⊥ · 0, (4.36)

from which it can be seen that both α(θ) and β(θ) always will be equal to
zero for a circular path. Other B⊥(θ) has also been tried but they all yields
the same answer. This observation tells that it is no restrictions on how the
pair θ, θ̇ can be chosen, that is, along these circular paths trajectories can be
arbitrarily but smoothly shaped.

4.3 Transverse Linearization and Orbital Sta-
bilization

Following the method from Sec. 3.3 the following calculations needs to be
done in order to analyze the motion of the system.
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4.3.1 Introducing the New Coordinates

As the motion already has been designed, virtual holonomic constraints will
be used as in Eq. (3.10) to introduce a new set of coordinates as:

x = z1 + Φ1(θ) = z1 + (x0 + rp(− sin(θ0) + sin(θ))) (4.37a)
y = z2 + Φ2(θ) = z2 + (y0 + rp(cos(θ0)− cos(θ))) (4.37b)

φ = z3 + Φ3(θ) = z3 +
(
φ0 + rp

rc
(θ − θ0)

)
(4.37c)

θ = z4 + Φ4(θ) = 0 + θ = θ , (4.37d)

which is similar to Eq. (3.12). The goal is now to produce transverse co-
ordinates z, ż and I(θ, θ̇) and linearize the resulting system dynamics as in
Eq. (3.16) :

d

dτ

∆I
∆z
∆ż

 = A(τ)

∆I
∆z
∆ż

+ B(τ)∆V (τ).

First of all the dynamics of z̈ needs to be found and to do that, the first step
is to differentiate Eq. (4.37):

q̇ =


q̇1
q̇2
q̇3
q̇4

 =


ż1 + Φ′1(θ)θ̇
ż2 + Φ′2(θ)θ̇
ż3 + Φ′3(θ)θ̇
0 + Φ′4(θ)θ̇

 = L(θ, z)
[
ż

θ̇

]
, (4.38)

where

L(θ, z) =
[
I3x3 03x1

01x4

]
+


Φ′1(θ)

04x3
...

Φ′4(θ)

 . (4.39)

The double derivative is found:

q̈ = L̇(θ, z)
[
ż

θ̇

]
+L(θ, z)

[
z̈

θ̈

]
, (4.40)

where

L̇(θ, z) =


Φ′′1(θ)θ̇

04x3
...

Φ′′4(θ)θ̇

 . (4.41)
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The vectors q, q̇ and q̈ can now be substituted into Eq. (4.16)

M

(
L̇(θ, z)

[
ż

θ̇

]
+L(θ, z)

[
z̈

θ̈

])
+Cλ L(θ, z)

[
ż

θ̇

]
+ Gλ︸︷︷︸

=0

= Bλ u. (4.42)

Rearranging the expression:

M L(θ, z)
[
z̈

θ̈

]
= Bλ u−Cλ L(θ, z)

[
ż

θ̇

]
−M L̇(θ, z)

[
ż

θ̇

]
(4.43)[

z̈

θ̈

]
= −L−1(θ, z)

[
M−1Cλ L(θ, z) + L̇(θ, z)

] [ż
θ̇

]
+L−1(θ, z) M−1Bλ u,

(4.44)

where the following relation can be found

z̈ = R(θ, θ̇, z, ż) +N (θ, z)u, (4.45)

with

R(θ, θ̇, z, ż) =
[
I3 03x1

]
L−1(θ, z)

[
−M−1Cλ L(θ, z)− L̇(θ, z)

] [ż
θ̇

]
(4.46)

N (θ, z) =
[
I3 03x1

]
L−1(θ, z) M−1Bλ. (4.47)

Doing the calculations Eq. (4.45) can be written as:

z̈1(θ, θ̇, z, ż, u) = −rc sin(θ)θ̇ż3 + rc cos(θ)
mr2

c + Iφ
u1 −

rp cos(θ)
Iθ

u2 (4.48a)

z̈2(θ, θ̇, z, ż, u) = rc cos(θ)θ̇ż3 + rc sin(θ)
mr2

c + Iφ
u1 −

rp sin(θ)
Iθ

u2 (4.48b)

z̈3(θ, θ̇, z, ż, u) = 1
mr2

c + Iφ
u1 −

rp
Iθrc

u2, (4.48c)

and in addition

θ̈ = 1
Iθ
u2. (4.49)

The system dynamics with the change of coordinates from [q, q̇]→ [z, ż, θ, θ̇]
has now been done. A desired trajectory [q∗(t); q̇∗(t)] then takes the form[
z∗(t) = 0, ż∗(t) = 0, θ∗(t), θ̇∗(t)

]
, meaning that the motions are now de-

scribed by the virtual holonomic constraints given in Eq. (3.10) and the
desired curve in the phase plane of the path coordinate [θ, θ̇].
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4.3.2 Calculating the Control Transformation

In order to analyze the motion of the system in the vicinity of a desired orbit
traced out by [z∗(t) = 0, ż∗(t) = 0, θ∗(t), θ̇∗(t)] in new coordinates, consider
a control transformation in the form of

u = U (θ, θ̇, z, ż) + v (4.50)

in which U(·) corresponds to the nominal control at any point on the orbit
such that the interpolation condition u∗(t) = U(θ∗(t), θ̇∗(t), 0, 0) holds. The
new control variable v is zero on the desired orbit v∗(t) = 0 and shall be
used to force the system towards the orbit by control action. To compute
U(·), Eq. (4.37),(4.38) and (4.40) are inserted into Eq. (4.16) such that:

M(q)q̈ +Cλ(q, q̇)q̇ = Bλ(q)U
∣∣∣∣∣ q = Φ(θ) + z

q̇ = L(θ, z)
[
ż

θ̇

]

q̈ = L̇(θ, z)
[
ż

θ̇

]
+L(θ, z)

[
z̈

θ̈

]
(4.51)

which yields
m(z̈1 + rp cos(θ)θ̈ − rp sin(θ)θ̇2) + θ̇mrc sin(θ)(ż3 + θ̇rp

rc
)

m(z̈2 + rp sin(θ)θ̈ + rp cos(θ)θ̇2)− θ̇mrc cos(θ)(ż3 + θ̇rp
rc

)
Iφ(z̈3 + θ̈rp

rc
)

Iθθ̈

 =


mrc cos(θ)
mr2

c+Iφ
U1 + v1

mrc sin(θ)
mr2

c+Iφ
U1 + v1

Iφ
mr2

c+Iφ
U1 + v1

U2 + v2

 .
(4.52)

Concentrating on the two bottom rows and setting z, ż, z̈, v = 0, the ex-
pression for U1 and U2 are found to be

U1(θ̈) = rp
rc
θ̈(mr2

c + Iφ)

U2(θ̈) = Iθθ̈. (4.53)

4.3.3 Finding I(θ, θ̇) and its Derivatives

In [11] I(θ, θ̇) is found using the ”alpha-beta-gamma” equations, but in this
case they turned out to be zero. First off all lets check if the nonholonomic
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constraints are invariant along the motion as expected. This fact clearly
disqualifies those quantities as transverse coordinates. Eq. (4.2) is given as

I(q, q̇) =ẋ− rcφ̇ cos(θ)

and its derivative can be calculated as

İ(q, q̇, q̈) = ẍ− rcφ̈ cos(θ) + rcφ̇θ̇ sin(θ). (4.54)

Performing a coordinate transformation by replacing (q, q̇, q̈) gives

İ(θ, θ̇, θ̈, z, ż, z̈) = z̈1 + Φ̈1(θ)− rc cos(θ)(z̈3 + Φ̈3(θ)) + rcθ̇ sin(θ)(ż3 + Φ̇3(θ)).
(4.55)

By substituting Φ̇(θ) and Φ̈(θ)

İ(θ, θ̇, θ̈, z, ż, z̈) = z̈1 + (−rp sin(θ)θ̇2 + rp cos(θ)θ̈)

− rc cos(θ)(z̈3 + rp
rc
θ̈) + rcθ̇ sin(θ)(ż3 + rp

rc
θ̇)

= z̈1 −����
��

rp sin(θ)θ̇2 +XXXXXXrp cos(θ)θ̈ − rc cos(θ)z̈3

−XXXXXXrp cos(θ)θ̈ + rcθ̇ sin(θ)ż3 +����
��

rp sin(θ)θ̇2. (4.56)

Continuing using Eq. (4.48) as a substitution for z̈:

İ(θ, θ̇, θ̈, ż, v) =z̈1 − z̈3rc cos(θ) + rc sin(θ)θ̇ż3

=− rc sin(θ)θ̇ż3 + rc cos(θ)
mr2

c + Iφ
u1 −

rp cos(θ)
Iθ

u2

−
(

1
mr2

c + Iφ
u1 −

rp
Iθrc

u2

)
rc cos(θ) + ż3θ̇rc sin(θ)

= rc cos(θ)
mr2

c + Iφ
u1 −

rp cos(θ)
Iθ

u2 −
rc cos(θ)
mr2

c + Iφ
u1 + rprc cos(θ)

Iθrc
u2

=0, (4.57)

which is as expected. The same can also be observed in the y-direction, but
the calculations are very similar so it will be left out. An expression for
I still needs to be found and by implementing a constant angular velocity,
ω =const, I can be constructed such that

I(θ̇) = θ̇2 − ω2 = 0
İ(θ̇, θ̈) = 2θ̇θ̈ − 0

(4.58)
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With Eq. (4.49) in mind, θ̈ can be substituted

İ(θ̇,u) = 2θ̇
Iθ
u2 (4.59)

It is known from Eq. (4.50) that u will be divided into two parts; the nominal
input U (θ̈) and the control input v such that

İ(θ̇,u) = 2θ̇
Iθ

(U2 + v2) = 2θ̇θ̈ + 2θ̇
Iθ
v2 (4.60)

∆İ(θ̇,v) = 2θ̇
Iθ
v2 (4.61)

4.3.4 State Space Representation

Until now a trajectory has been designed and the dynamics for the transverse
coordinates has been calculated as a function of z̈ and I. The next step in
analysis and control design is to compute the transverse linearization in the
form of Eq. (3.16).

d

dτ

∆I
∆z
∆ż

 = A(τ)

∆I
∆z
∆ż

+ B(τ)∆V (τ).

Rewriting Eq. (4.48) into matrix form it looks like

z̈1
z̈2
z̈3

 =

0 0 0 0 0 0 −rc sin(θ)θ̇
0 0 0 0 0 0 rc cos(θ)θ̇
0 0 0 0 0 0 0


ż1
ż2
ż3

+


rc cos(θ)
mr2

c+Iφ
− rp cos(θ)

Iθ
rc sin(θ)
mr2

c+Iφ
− rp sin(θ)

Iθ
1

mr2
c+Iφ

− rp
rcIθ


[
u1
u2

]
.

(4.62)

From this it can be seen that the system is already linear in the transverse
coordinates, z, ż, and no further linearization is necessary. The only thing
left is to switch the input to the controller input and use the linear system
notation. As for ∆I it can be seen from Eq. (4.61). Changing notation and
putting it into a system it can be seen that
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∆İ
∆ż1
∆ż2
∆ż3
∆z̈1
∆z̈2
∆z̈3


=



0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 −rc sin(θ)θ̇
0 0 0 0 0 0 rc cos(θ)θ̇
0 0 0 0 0 0 0


︸ ︷︷ ︸

A(τ)



∆I
∆z1
∆z2
∆z3
∆ż1
∆ż2
∆ż3


+



0 2θ̇
Iθ

0 0
0 0
0 0

rc cos(θ)
mr2

c+Iφ
− rp cos(θ)

Iθ
rc sin(θ)
mr2

c+Iφ
− rp sin(θ)

Iθ
1

mr2
c+Iφ

− rp
rcIθ


︸ ︷︷ ︸

B(τ)

[
∆V1
∆V2

]

(4.63)

4.3.5 The Control Law

Making a controller for a nonlinear time varying system is an active research
field on itself. In the lack of good controllers simplifications are many times
made, such as linearization, which is what is done in the previous chapters.
For linear time varying (LTV) system, different control strategies does exist,
but are known to be difficult to implement and use. The system to be
controlled now looks like Eq. (3.19)

ẋ(t) = A(t)x(t) +B(t)u(t).

Controllability

First of all the controllability of the system needs to be checked. One method
that will be tested is to use the controllability matrix described in Sec. 3.4.1.
Because that method is designed for LTI systems, it is not possible to check
whether or not the system is controllable over a whole period. Instead it will
be used to check a selection of time instances spread out over the period and
give an indication of how many of the states that are controllable. By using
the ctrb(A,B) command in MATLAB for some evenly distributed samples
of time over the period for the orbit, the results yielded a rank of 4 on every
pair of A(τ) and B(τ). An example of how the controllability matrix look
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like is given here:

0 3927
625 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1923
2500 −5 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4833
5000 −

3927
625 0 0 0 0 0 0 0 0

0 0 30769
10000 −20 0 0 0 0 0 0 0 0 0 0

1923
2500 −5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4833

5000 −3927
625 0 0 0 0 0 0 0 0 0 0

30769
10000 −20 0 0 0 0 0 0 0 0 0 0 0 0


,

(4.64)

where the values are examples at a time instant. The rest of the time the
structure is the same, only that the values of the non-zero elements alter. All
the zero elements stays at zero.
A method making use of the controllability gramian for LTV systems is
described in the same section as the controllability matrix mentioned above.
The controllability gramian method needed to be implemented as there is
no commonly known controllability gramian solvers for LTV systems similar
to Eq. (3.19). For the convenience of the reader the controllability gramian
equation for LTV systems given in Eq. (3.20) is reproduced here

Wc(t) =
∫ t

t0
Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ) dτ.

Calculating the controllability gramian on the system at time t = T , i.e.
after a full period the eigenvalues look like:

[19934; 1109; 662.1; 195.9; 4.182; 7.514; 0.5148] (4.65)

which yields a rank of 7, which is the same as the number of states in the
system. Because of the nonholonomic constraints a uncontrollable subspace
was expected, as stated in Sec. 2.3. With a rank of 7 and the gramian over
a period being non-singular it is expected for the system to be controllable
for all states. A periodic controller then needs to be designed.

The Bézier approach

The controller to be designed will be a periodic, time dependent feedback
controller where

v(τ) = K(τ)∆x⊥, (4.66)



36 CHAPTER 4. SYSTEM ANALYSIS

such that

∆ẋ⊥ = A(τ)∆x⊥(τ) + B(τ)K(τ)∆x⊥ (4.67)
=
(
A(τ) + B(τ)K(τ)︸ ︷︷ ︸

Ã

)
∆x⊥. (4.68)

This is as said earlier no trivial task as the periodic and time varying part
of the controller can be hard to achieve. One method that does exist is
one where an algebraic Riccati equation is solved, but the task of making it
periodic is very difficult and it is hard to make qualified initial guesses for the
different parameters. This led to another method where Bézier curves laid
the foundation for the time varying controller as they are cheap to compute
and has some favourable properties. The idea and the framework for this
method was made by Stian Askeland in [16]. The method was then adapted
to the problem given in this thesis.

Bézier Controller

A Bézier curve is a curve constructed in a specific way using a number of
points to define a curve. With reference to [17] and [18] the following de-
scribes the properties and how to construct such a curve. Given a set of
n+ 1 points P0, P1, P2, · · · , Pn the curve is associated with the advantageous
properties

• It starts at P0 and ends at Pn.

• When it starts from P0 it heads directly towards P1, and when it arrives
at Pn it is coming from the direction of Pn−1.

0 

1

2

3

4

P

P

P

P

P

Figure 4.3: A Bézier curve with 5 control points



4.4. STRAIGHT LINE PATH SEGMENT 37

Given the set of control points mentioned above, the corresponding curve is
given by

C(t) =
n∑
i=0

PiBi,n(t), (4.69)

where t ∈ [0, 1] and Bi,n(t) is a Bernstein polynomial defined by

Bi,n(t) =
(
n

i

)
ti(1− t)n−i (4.70)

Given the controller in Eq. (4.67), the trick is to find a K(t) such that the
system becomes stable. By using Bézier curves to design K(t) it is possible
to optimize on the controller with a cost function based on the closed loop
system over a period and with the Bézier points as the variable. By also
making certain restrictions like for instance that the first two points match
the last two points, i.e. the derivative and the state at the start and end are
equal, such that the controller also becomes periodic. The control design was
done specifying a set of initial points, and use those as input to the bézier
algorithm. Then each of the 14 (states x inputs) control gain variables in
K(t) would be represented as a bézier curve through time. This would as
mentioned above make them smooth and periodic if wanted. For each K(t)
found, the state transition matrix for Ã(t) = (A(t) −B(t)K(t)) would be
calculated. The norm of that will then tell if the system is stable or not. If
the norm is less that one, it means that given an initial condition with an
error in all states, the system will decrease the error in one period.

4.4 A Straight Line Path Segment Instead of
Circular

As mentioned in Sec. 3.2.3 the path provided by the modified RRT method
would consist of quadrants and straight line segments. The dynamics where
the path was orbital and circular was looked into in the previous chapter,
and now the dynamics where the path is given by straight line segments will
be looked into.

Given a straight line segment it can be assumed that θ will be kept constant,
but φ will increase along the path. The two other coordinates x and y will
depend on some initial configuration, φ and its derivatives. Given a line
segment the synchronization function can look like:
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q∗ =


x∗
y∗
φ∗
θ∗

 = Φ(φ) =


x0 + rcφ cos(θ0)
y0 + rcφ sin(θ0)

φ
θ0

 , (4.71)

which can be differentiated as

q̇∗ = Φ̇(φ) = Φ′(φ)φ̇ =


rc cos(θ0)
rc sin(θ0)

1
0

 φ̇, (4.72)

and

q̈∗ = Φ̈(φ) = Φ′′(φ)φ̇2 + Φ′(φ)φ̈ =


0
0
0
0

 φ̇2 +


rc cos(θ0)
rc sin(θ0)

1
0

 φ̈ (4.73)

where φ = φ∗(t), φ̇ = φ̇∗(t), φ̈ = φ̈∗(t), t ∈ [0, T ]

4.4.1 Calculation of the α, β and γ Functions

Following the same procedure as in Sec. 4.2.1:

α =
 mrc sin(θ0−θ)

cos(θ)

Iφ − Iφ cos(θ0)
cos(θ)

 (4.74)

β =
[
0
0

]
, (4.75)

were, in the ideal case, θ = θ0 such that

α =
[
0
0

]
(4.76)

β =
[
0
0

]
(4.77)

in which they both are zero. Again it can be seen that along the path the
trajectory can be arbitrarily but smoothly shaped.
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4.4.2 Transverse Linearization and Orbital Stabiliza-
tion

Introducing the New Coordinates

In this case q3 = Φ4(φ) = φ, such that

x = z1 + Φ1(φ) = z1 + (x0 + rcφ cos(θ0)) (4.78a)
y = z2 + Φ2(φ) = z2 + (y0 + rcφ sin(θ0)) (4.78b)
φ = 0 + Φ3(φ) = φ (4.78c)
θ = z3 + Φ4(φ) = z3 + θ0 (4.78d)

The main difference from the circle case, except from the shape of the path,
is that z3 now is associated with Φ4(φ). Continuing with the calculations,
the derivatives can be shown to be

q̇ =


q̇1
q̇2
q̇3
q̇4

 =


ż1 + Φ′1(φ)φ̇
ż2 + Φ′2(φ)φ̇
0 + Φ′3(φ)φ̇
ż3 + Φ′4(φ)φ̇

 = L(φ, z)
[
ż

φ̇

]
(4.79)

where

L(φ, z) =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0

+


Φ′1(φ)

04x3
...

Φ′4(φ)

 (4.80)

Furter on the double derivative is

q̈ = L̇(φ, z)
[
ż

φ̇

]
+ L(φ, z)

[
z̈

φ̈

]
(4.81)

where

L̇(φ, z) =


Φ′′1(φ)φ̇

04x3
...

Φ′′4(φ)φ̇

 = 0 (4.82)

Following the same method as for the circle, calculating the double derivative
for the error
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z̈ = R(φ, φ̇, z, ż) +N (φ, z)u, (4.83)
(4.84)

where

z̈1(φ, φ̇, z, ż, u) = −φ̇rc sin(θ0 + z3)ż3 −
rc(cos(θ0)− cos(θ0 + z3))

mr2
c + Iφ

u1

(4.85a)

z̈2(φ, φ̇, z, ż, u) = φ̇rc cos(θ0 + z3)ż3 −
rc(sin(θ0)− sin(θ0 + z3))

mr2
c + Iφ

u1 (4.85b)

z̈3(φ, φ̇, z, ż, u) = 1
Iθ
u2 (4.85c)

and in addition

φ̈ = 1
mr2

c + Iφ
u1 (4.86)

Calculating the Control Transformation

The control calculations can be done as in Sec. 4.3.2, inserting Eq. (4.78),(4.79)
and (4.81) into Eq. (4.16) and yield


m(z̈1 + φ̈rc cos(θ0)) + φ̇ż3mrc sin(θ0 + z3)
m(z̈2 + φ̈rc sin(θ0))− φ̇ż3mrc cos(θ0 + z3)

Iφφ̈
Iθz̈3

 =


mrc cos(θ)
mr2

c+Iφ
U1 + v1

mrc sin(θ)
mr2

c+Iφ
U1 + v1

Iφ
mr2

c+Iφ
U1 + v1

U2 + v2

 . (4.87)

And again concentrating on the two bottom rows and setting z, ż, z̈, v = 0,
the expression for U1 and U2 are found to be

U1 = φ̈(mr2
c + Iφ),

U2 = 0 (4.88)
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Linearizing z̈ Using Taylor Series Expansion

As seen earlier in the text, z̈ for the straight line segment is not linear in z, ż
and the expressions needs to be linearized. This is done using Taylor series
expansion which will be described shortly.

According to [19] a Taylor series is a series expansion of a function, f(x),
about a point, x = a,

f(x) = f(a) + f ′(a)(x− a) +O(x, a), (4.89)

where O(x, a) denotes higher order terms. To achieve a model as linear as
possible we can stick to the first two orders and ignore the rest. In the case
where the system is described using matrices we get:

f(x) ≈ f(a) +∇ f(x)|x=a (x− a) (4.90)

∇f =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

. . . · · · ∂f2
∂xn... ... . . . ...

∂fm
∂x1

· · · · · · ∂fm
∂xn

 (4.91)

Using Taylor series expansion on z̈ described in Eq. (4.85):

z̈(x) ≈ z̈(a) + ∂z̈(x)
∂x1

∣∣∣∣∣∣
x=a

(x1 − a1) + · · ·+ ∂z̈(x)
∂xn

∣∣∣∣∣∣
x=a

(xn − an) (4.92)

where x =
[
φ, φ̇, z, ż, u

]T
, a =

[
φ∗, φ̇∗,0,0,U

]T
and x− a = [0, 0, z, ż,v]T

and n = dim(q). Making use of the relationship from Eq. (4.50), where U(·)
is calculated in Eq. (4.88) the formula yields

z̈(φ, φ̇, z, ż, u) ≈z̈(φ∗, φ̇∗,0,0,U) +∇zz̈(φ, φ̇, z, ż, u)
∣∣∣∣
x=a
z

+∇żz̈(φ, φ̇, z, ż, u)
∣∣∣∣
x=a
ż +∇uz̈(φ, φ̇, z, ż, u)

∣∣∣∣
x=a
v,

(4.93)



42 CHAPTER 4. SYSTEM ANALYSIS

since φ− φ∗ = φ̇− φ̇∗ = 0. Continuing with the calculations

z̈(φ∗, φ̇∗,0,0,U) = 0 (4.94)

∇zz̈(φ, φ̇, z, ż, u)
∣∣∣∣
x=a

z =


0 0 − rc sin(θ0)

mr2
c+Iφ

U1

0 0 rc cos(θ0)
mr2

c+Iφ
U1

0 0 0


z1
z2
z3

 (4.95)

∇żz̈(φ, φ̇, z, ż, u)
∣∣∣∣
x=a

ż =

0 0 −φ̇rc sin(θ0)
0 0 φ̇rc cos(θ0)
0 0 0


ż1
ż2
ż3

 (4.96)

∇uz̈(φ, φ̇, z, ż, u)
∣∣∣∣
x=a

v =

0 0
0 0
0 1

Iθ

 [v1
v2

]
, (4.97)

where canceling terms and the terms containing zero are removed. Collecting
and rearranging the terms:

z̈1 = −rc sin(θ0)
mr2

c + Iφ
U1z3 − φ̇rc sin(θ0)ż3

= −rc sin(θ0)φ̈z3 − φ̇rc sin(θ0)ż3 (4.98a)

z̈2 = rc cos(θ0)
mr2

c + Iφ
U1z3 + φ̇rc cos(θ0)ż3

= rc cos(θ0)φ̈z3 + φ̇rc cos(θ0)ż3 (4.98b)

z̈3 = 1
Iθ
v2. (4.98c)

Finding I

Again, for the straight line segment the nonholonomic constraints needs to
be checked if they are invariant along the desired motion. By using the
relationship provided in Eq. (4.86) and replacing q, q̇ and q̈ the following
can be found

İx(q, q̇, q̈) =ẍ− rcφ̈ cos(θ) + rcφ̇θ̇ sin(θ)
İx(φ, φ̇, φ̈, z, ż, z̈) =z̈1 + Φ̈1(φ)− rc cos(Φ3(φ) + z3)φ̈+ rcφ̇ sin(Φ3(φ) + z3)(ż3 + Φ̇3(φ))

İx(φ, φ̇, φ̈, z, ż, z̈, u) =z̈1 + Φ̈1(φ)− rc cos(θ0 + z3)
mr2

c + Iφ
u1 + rcφ̇ż3 sin(θ0 + z3)

İx(φ, φ̇, z, ż, z̈, u) =z̈1 + rcφ̇ż3 sin(θ0 + z3)− rc(cos(θ0 + z3)− cos(θ0))
mr2

c + Iφ
u1

(4.99)
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Remembering that φ−φ∗ = φ̇− φ̇∗ = 0, performing the Taylor series expan-
sion gives

İx(φ∗, φ̇∗,0,0,0,U) =0 (4.100)

∇φİx(φ, φ̇, z, ż, z̈, u)
∣∣∣∣∣
x=a

(φ− φ∗) =0 (4.101)

∇φ̇İx(φ, φ̇, z, ż, z̈, u)
∣∣∣∣∣
x=a

(φ̇− φ̇∗) =0 (4.102)

∇z İx(φ, φ̇, z, ż, z̈, u)
∣∣∣∣∣
x=a

z =
[
0, 0, rc sin(θ0)

mr2
c + Iφ

U1

]
z (4.103)

∇ż İx(φ, φ̇, z, ż, z̈, u)
∣∣∣∣∣
x=a

ż =
[
0, 0, φ̇rc sin(θ0)

]
ż (4.104)

∇z̈ İx(φ, φ̇, z, ż, z̈, u)
∣∣∣∣∣
x=a

z̈ = [1, 0, 0] z̈ (4.105)

∇uİx(φ, φ̇, z, ż, z̈, u)
∣∣∣∣∣
x=a

v = [0, 0]v (4.106)

hence

İx(φ, φ̇,U,z, ż, z̈) =rc sin(θ0)
mr2

c + Iφ
U1z3 + φ̇rc sin(θ0)ż3 + z̈1

İx(φ, φ̇,U,z, ż, v) =rc sin(θ0)
mr2

c + Iφ
U1z3 + φ̇rc sin(θ0)ż3

− rc sin(θ0)
mr2

c + Iφ
U1z3 − φ̇rc sin(θ0)ż3 = 0 (4.107)

where z̈1 is replaced. The same is also observed in y−direction, but again
the calculations are very similar so they will be left out. This proves that
the constraints are held given the desired trajectory.
The same idea for I as for the circular path is tried in this case, namely

I(φ̇) = φ̇2 − ω2 = 0 (4.108)
İ(φ̇, φ̈) = 2φ̇φ̈− 0, (4.109)

where ω is representing a constant angular velocity for the wheel. This
seems to be a good candidate and will be used. Making use of the same
transformation as for the circle, Eq. (4.86) is used to transform I

İ(φ̇,u) = 2φ̇φ̈ = 2φ̇
mr2

c + Iφ
u1, (4.110)
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where

∆I(φ̇,v) = 2φ̇
mr2

c + Iφ
v1 (4.111)

State Space Representation

With basis in Eq. (4.98) and (4.107) the state space representation can be
expressed as



∆İ
∆ż1
∆ż2
∆ż3
∆z̈1
∆z̈2
∆z̈3


=



0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 −rc sin(θ0)φ̈ 0 0 −φ̇rc sin(θ0)
0 0 0 rc cos(θ0)φ̈ 0 0 φ̇rc cos(θ0)
0 0 0 0 0 0 0





∆I
∆z1
∆z2
∆z3
∆ż1
∆ż2
∆ż3


+



2φ̇
mr2

c+Iφ
0

0 0
0 0
0 0
0 0
0 0
0 1

Iθ



[
∆V1
∆V2

]

(4.112)

4.5 Short Review of the Five DOF Case

4.5.1 Initializing

As mentioned in Sec. 2.2, there are several ways to describe the unicycle.
The simple one contained only 4 DOF, as the unicycle was said to always
maintain a stable upright position vertically. The other option is a 5 DOF
case where gravity can affect the vertical position of the unicycle. This is
achieved by introducing a new coordinate ψ which represent the angle at
which the unicycle is positioned vertically (i.e relative to a z-axis) as shown
in Fig. 4.4.

The new generalized coordinates can be described as q = [x, y, φ, ψ, θ]T ,
where the four of them are recognized from before and a fifth one is added.
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z

θ

ψ

φ

(x,y)

Figure 4.4: Configuration 5 DOF



46 CHAPTER 4. SYSTEM ANALYSIS

4.5.2 The new EOM

In this section two different approaches for deriving the EOM for the 5 DOF
system will be showed. The first one is described in a book, while the other
one is derived by the author.

Method One

From [15] the Lagrangian for the system can be found as 1

L = m

2

[(
ξ − rc

(
θ̇ sin(ψ) + φ̇

))2
+ η2 sin2(ψ) +

(
η cos(ψ) + rcψ̇

)2
]

(4.113)

+ 1
2

[
Iθ
(
ψ̇2 + θ̇2 cos2(ψ)

)
+ Iφ

(
θ̇ sin(ψ) + φ̇

)2
]
−mgrc cos(ψ), (4.114)

where 2

ξ = ẋ cos(θ) + ẏ sin(θ) + rcφ̇ = 0 (4.115)
η = −ẋ sin(θ) + ẏ cos(θ) = 0 (4.116)

As always the nonholonomic constraints are

ẋ = −rc cos(θ)φ̇ (4.117)
ẏ = −rc sin(θ)φ̇. (4.118)

Leaving out η and ξ and rewriting the Lagrangian it looks like

L = m

2
[
r2
c θ̇

2 sin2(ψ) + 2r2
c θ̇ sin(ψ)φ̇+ φ̇2 + r2

c ψ̇
2
]

(4.119)

+ 1
2

[
Iθ
(
ψ̇2 + θ̇2 cos2(ψ)

)
+ Iφ

(
θ̇ sin(ψ) + φ̇

)2
]
−mgrc cos(ψ), (4.120)

1Changing the notation from the one in the book to using the variables already defined
here

2When the constraints are held
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Applying Eq. (3.1) on the 5 DOF system:

d

dt

(
∂L
∂ẋ

)
− ∂L
∂x

= 0. (4.121a)

d

dt

(
∂L
∂ẏ

)
− ∂L
∂y

= 0. (4.121b)

d

dt

(
∂L
∂φ̇

)
− ∂L
∂φ

=
(
mr2

c + Iφ
) (
φ̈+ θ̈ sin(ψ) + ψ̇θ̇ cos(ψ)

)
− 0. (4.121c)

d

dt

(
∂L
∂ψ̇

)
− ∂L
∂ψ

=
(
2r2

c + Iθ
)
ψ̈ − Iφθ̇ cos(ψ)

(
φ̇+ θ̇ sin(ψ)

)
(4.121d)

− Iθθ̇2 cos(ψ) sin(ψ) + gmrc sin(ψ)
+ θ̇mr2

c cos(ψ)
(
φ̇+ θ̇ sin(ψ)

)
d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= Iθθ̈ cos(ψ)2 + Iφθ̈ sin(ψ)2 + Iφφ̈ sin(ψ) (4.121e)

+ Iφφ̇ψ̇ cos(ψ) + θ̈mr2
c sin(ψ)2

+ φ̈mr2
c sin(ψ) + 2Iφψ̇θ̇ cos(ψ) sin(ψ)

− 2Iθψ̇θ̇ cos(ψ) sin(ψ) + φ̇ψ̇mr2
c cos(ψ)

+ 2ψ̇θ̇mr2
c cos(ψ) sin(ψ)− 0.
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In matrix form we get the matrices 3
0 0 0 0 0
0 0 0 0 0
0 0 mr2

c + Iφ 0 (mr2
c + Iφ) sin(ψ)

0 0 0 2r2
c + Iθ 0

0 0 sin(ψ)(Iφ +mr2
c ) 0 Iθ cos(ψ)2 + sin(ψ)2(Iφ +mr2

c )


︸ ︷︷ ︸

M(q)


ẍ
ÿ

φ̈

ψ̈

θ̈



+


0 0 0 0 0
0 0 0 0 0
0 0 0 0 (mr2

c + Iφ) cos(ψ)ψ̇
0 0 0 0 sin(2ψ)θ̇ (Iθ − Iφ −mr2

c )− cos(ψ)φ̇ (Iφ +mr2
c )

0 0 0 cos(ψ)φ̇ (Iφ +mr2
c ) sin(2ψ)ψ̇ (Iφ − Iθ +mr2

c )


︸ ︷︷ ︸

C(q,q̇)


ẋ
ẏ

φ̇

ψ̇

θ̇



+


0
0
0

gmrc sin(ψ)
0


︸ ︷︷ ︸

G(q)

As this representation does not contain all the dynamics due to shortenings
and simplifications the full dynamics will be calculated in the next section.

Method Two

In this section the full information, including ẋ and ẏ dynamics will be used
in the calculations Decomposing the generalized coordinates into a wheel
center frame:

xc = x− rc sin(ψ) sin(θ), (4.122a)
yc = y + rc sin(ψ) cos(θ), (4.122b)
zc = rc cos(ψ) (4.122c)

which can be differentiated
vx = ẋ− ψ̇rc cos(ψ) sin(θ)− θ̇rc cos(θ) sin(ψ), (4.123a)
vy = ẏ − θ̇rc sin(ψ) sin(θ) + ψ̇rc cos(ψ) cos(θ), (4.123b)
vz = −ψ̇rc sin(ψ) (4.123c)

3sin(2α) = sin(α) cos(α)
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Using the decomposed velocity vectors we find the velocity v2 = v2
x+v2

y +v2
z ,

and the rotational speed is the same as in [15].

L = m

2

[ (
ẋ− ψ̇rc cos(ψ) sin(θ)− θ̇rc cos(θ) sin(ψ)

)2
+

(
ẏ − θ̇rc sin(ψ) sin(θ) + ψ̇rc cos(ψ) cos(θ)

)2
+
(
−ψ̇rc sin(ψ)

)2
]

+ 1
2

[
Iθ
(
ψ̇2 + θ̇2 cos2(ψ)

)
+ Iφ

(
θ̇ sin(ψ) + φ̇

)2
]
−mgrc cos(ψ), (4.124)

d

dt

(
∂L
∂ẋ

)
− ∂L
∂x

= ẍm+ (ψ̇m(2ψ̇rc sin(ψ) sin(θ)− 2θ̇rc cos(ψ) cos(θ)))/2

+ (θ̇m(2θ̇rc sin(ψ) sin(θ)− 2ψ̇rc cos(ψ) cos(θ)))/2
− θ̈mrc cos(θ) sin(ψ)− ψ̈mrc cos(ψ) sin(θ).

= m
(
rc sin(ψ) sin(θ)ψ̇2 − 2rc cos(ψ) cos(θ)ψ̇θ̇ + rc sin(ψ) sin(θ)θ̇2

+ ẍ− θ̈rc cos(θ) sin(ψ)− ψ̈rc cos(ψ) sin(θ)
)

d

dt

(
∂L
∂ẏ

)
− ∂L
∂y

= −m
(
rc cos(θ) sin(ψ)ψ̇2 + 2rc cos(ψ) sin(θ)ψ̇θ̇ + rc cos(θ) sin(ψ)θ̇2

− ÿ + θ̈rc sin(ψ) sin(θ)− ψ̈rc cos(ψ) cos(θ)
)
.

d

dt

(
∂L
∂φ̇

)
− ∂L
∂φ

= Iφ
(
φ̈+ θ̈ sin(ψ) + ψ̇θ̇ cos(ψ)

)
.

d

dt

(
∂L
∂ψ̇

)
− ∂L
∂ψ

= Iθψ̈ + ψ̈mr2
c − gm sin(ψ) + ÿmrc cos(ψ) cos(θ)− ẍmrc cos(ψ) sin(θ)

− 2θ̇2mrc cos(ψ) sin(ψ)− 2φ̇θ̇mrc cos(ψ)− θ̇ẋmrc cos(ψ) cos(θ)
− ψ̇ẏmrc cos(θ) sin(ψ)− θ̇ẏmrc cos(ψ) sin(θ) + ψ̇ẋmrc sin(ψ) sin(θ)

d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= Iφθ̈ + θ̈mr2
c − Iφθ̈ cos(ψ)2 + Iθθ̈ cos(ψ)2 + Iφφ̈ sin(ψ)

− θ̈mr2
c cos(ψ)2 + Iφφ̇ψ̇ cos(ψ) + 2Iφψ̇θ̇ cos(ψ) sin(ψ)

− 2Iθψ̇θ̇ cos(ψ) sin(ψ)− ẍmrc cos(θ) sin(ψ)− ÿmrc sin(ψ) sin(θ)
+ 2ψ̇θ̇mr2

c cos(ψ) sin(ψ),

where on a shape as in Eq. (4.7) it looks like
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m

0
0

−
m
r c

co
s(
ψ

)s
in

(θ
)

−
m
r c

co
s(
θ)

sin
(ψ

)
0

m
0

m
r c

co
s(
ψ

)c
os

(θ
)

−
m
r c

sin
(θ

)s
in

(ψ
)

0
0

I φ
0

I φ
sin

(ψ
)

−
m
r c

co
s(
ψ

)s
in

(θ
)

m
r c

co
s(
ψ

)c
os

(θ
)

0
m
r2 c

+
I θ

0
−
m
r c

sin
(ψ

)c
os

(θ
)
−
m
r c

sin
(ψ

)s
in

(θ
)
I φ

sin
(ψ

)
0

I φ
+
m
r2 c
−
I φ

co
s(
ψ

)2
+
I θ

co
s(
ψ

)2
−
m
r2 c

co
s(
ψ

)2       
︸

︷︷
︸

M
(q

)

       ẍ ÿ φ̈ ψ̈ θ̈

       

+

        0
0

0
m
r c

(ψ̇
sin

(ψ
)s

in
(θ

)−
2θ̇

co
s(
ψ

)c
os

(θ
))

m
r c
θ̇

sin
(ψ

)s
in

(θ
)

0
0

0
−
m
r c

(ψ̇
co

s(
θ)

sin
(ψ

)+
2θ̇

co
s(
ψ

)s
in

(θ
))

−
m
r c
θ̇

co
s(
θ)

sin
(ψ

))
0

0
0

I φ
θ̇

co
s(
ψ

)
0

0
0
−
I φ
θ̇

co
s(
ψ

)
0

−
1 2

( θ̇
sin

(2
ψ

)(
m
r2 c

+
I φ
−
I θ

))
0

0
0

sin
(2
ψ

)θ̇
(m
r2 c

+
I φ
−
I θ

)+
I φ
φ̇

co
s(
ψ

)
0

        
︸

︷︷
︸

C
(q
,q̇

)

       ẋ ẏ φ̇ ψ̇ θ̇

       

+

       
0 0 0

−
g
m
r c

sin
(ψ

)
0

       
︸

︷︷
︸

G
(q

)
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By including the nonconservative forces and input forces at the right hand
side of the equation;

Mq̈+C(q, q̇)q̇+G =


1 0
0 1

−rc cos(θ) −rc sin(θ)
0 0
0 0


︸ ︷︷ ︸

JT (q)

[
λc1
λc2

]
︸ ︷︷ ︸
λ

+


0 0
0 0
1 0
0 0
0 1


︸ ︷︷ ︸

B

[
u1
u2

]
︸ ︷︷ ︸
u

(4.126)

To get the system in a format that is favorable for calculating theα(φ), β(φ), γ(φ)
equations the method from Sec. 4.2.1 is used.

B⊥(q)
[
M(q)q̈+

(
C(q, q̇) + JT (q)JM(q)J̇(q)− JT (q)J∗C(q, q̇)

)
q̇+(

I − JT (q)J∗(q)
)
G(q)

]
= B⊥(q)

(
I − JT (q)J∗(q)

)
B︸ ︷︷ ︸

Bλ

u, (4.127)

where B⊥ is a matrix that annihilates Bλ. Substituting such thatqq̇
q̈

 =

 Φ(s)
Φ′(s)ṡ

Φ′′(s)ṡ2 + Φ′(s)s̈

 ;

B⊥(Φ(s))
[
M(Φ(s))(Φ′′(s)ṡ2 + Φ′(s)s̈) +

(
C(Φ(s),Φ′(s)ṡ)

+ JT (Φ(s))JM(Φ(s))J̇(Φ(s))

− JT (Φ(s))J∗(Φ(s))C(Φ(s),Φ′(s)ṡ)
)
Φ′(s)ṡ−(

I − JT (Φ(s))J∗(Φ(s))
)
G(Φ(s))

]
= 0, (4.128)

where s is a general parameter for the synchronization function Φ(s) which
for now also is general and not path specific. Because C(q, q̇) is linear in q̇,
C(Φ(s),Φ′(s)ṡ) can be written as C(Φ(s),Φ′(s))ṡ . Eq. (4.30) shows that
J̇(q) = ∑

i

∂J
∂qi
q̇i, which can be rewritten with the substitution as J̇(Φ(s)) =
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∑
i

∂J
∂Φi(s)Φ

′
i(s)ṡ. That then yields

B⊥(Φ(s))
[
M(Φ(s))Φ′(s)s̈+

(
M(Φ(s))Φ′′(s) +

(
C(Φ(s),Φ′(s))

+ JT (Φ(s))JM(Φ(s))
(

n∑
i=1

∂J

∂Φi(s)
Φ′i(s)

)

− JT (Φ(s))J∗(Φ(s))C(Φ(s),Φ′(s))
)
Φ′(s)

)
ṡ2

−
(
I − JT (Φ(s))J∗(Φ(s))

)
G(Φ(s))

]
= 0, (4.129)

where J∗ and JM are constructed as in Eq. (4.14).

The following relation can then be made

α(s)s̈+ β(s)ṡ2 + γ(s) = 0, (4.130)

where

α(s) =B⊥(s)M (s)Φ′(s) (4.131)

β(s) =B⊥(s)
M(s)Φ′′(s) +

[
C(s) + JT (s)JM(s)

( n∑
i=1

∂J

∂Φi(s)
Φ′i(s)

)

− JT (s)J∗(s)C(s)
]
Φ′(s)

 (4.132)

γ(s) =−B⊥(s)
(
I − JT (s)J∗(s)

)
G(s). (4.133)

As can be seen from the equations above, the 5 DOF system is quite more
challenging to describe and it is even more challenging to control. As the
α,β, γ equations are non-zero it is expected that the parameter s, ṡ, s̈ must
be chosen in accordance to certain configurations of the system. This can be
shown by picking Φ(s) as in Sec. 4.2, where θ is chosen the parameter for
the synchronization function and the orbital circle is the path. The initial
parameters are

Iφ = 0.2, Iθ = 0.4, m = 2, g = 9.81,

rc = 0.25, rp = 2 ψ0 = 20π
180 (4.134)

Calculating α,β, γ it was seen that for a circular path, α were constant =
0. This means that

β(θ)θ̇2 + γ(θ) = 0→ θ̇ =

√√√√−γ(θ)
β(θ) (4.135)
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For the calculations θ was chosen to be a vector representing a full orbit,
i.e starting at θ = 0 and ending at θ = 2π. Using β(θ) and γ(θ), θ̇ was
calculated for different values of θ over the orbit. The results are shown in
Fig. 4.5, 4.6 and 4.7. Here it can be seen that α1(θ) = α3(θ) = 0, which also
is the case for α2(θ). Fig. 4.5 and 4.7 shows how β and γ evolves and how the
product βiθ̇2 + γi = 0, as expected. Fig. 4.6 shows that the velocity profile
for θ is constant for the circular orbit and a stationary ψ = ψ0. This led to
Fig. 4.8 where the same calculations have been done, but with different initial
values for ψ. It can be seen that as the initial tilt increases, the velocity, θ̇
also increases in order to keep the tilt constant. This correspond good with
the real world, as a coin rolling in a circle and falling further and further
down increase its speed.
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Figure 4.5: α1, β1, γ1 values.
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Figure 4.6: Turning velocity profile, θ̇(θ), for unicycle.
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Chapter 5

Implementation and Simulation
of the Four DOF system

5.1 Implementation in SIMULINK

A testbed for the system was implemented in MATLAB. The function of
this testbed was to run simulations of the system with various controllers
and initial conditions.

5.1.1 System

Fig. 5.1 shows the overall system implemented in SIMULINK. The system
consist of two subsystems; a part where the dynamics are calculated, see
Fig. 5.2, and a part where the nominal and the controller inputs are calcu-
lated, see Fig. 5.3. In Fig. 5.1 it can be seen that the dynamics are calculated
using the input u in addition to the states. The controllers input is sthe
states, and uses those to calculate the input.

In Fig. 5.2 it can be seen how the states are calculated. The function
d2q(q,dq,u) takes in the states q, q̇ and the input u and then it use Eq. (4.16)
to calculate q̈ based on the inputs. The other states, q, q̇ are then simply
integrals of q̈.

57
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Unicycle dynamics
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dq
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To Workspace

q_dq_d2q
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Figure 5.1: The overall SIMULINK system.
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Figure 5.2: The dynamics of the system.
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5.1.2 Controller

The controller part of the system is somewhat more extensive. The input
to the controller is the states and the output is the inputs to the system,
u = U + v. The function calc tau(q,dq,d2q) uses the parameter for the
synchronization function and interpolates to find the time reference, τ , that
corresponds best with the current state. This is then used to calculate the
optimal input at that specific state in get U(q,dq,u) and also to find the
optimal controller gain from the time varying controller using the function
controller from opt(t). The function x perp calc(q,dq,d2q) is used to
calculate the vector ∆x⊥ = [∆I; ∆z; ∆ż]. The controller gains, K, are
then multiplied with ∆x⊥ to form the control input v. Then U and v are
summed and used by the dynamics subsystem.
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Figure 5.3: The system controller.
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5.2 Running Simulations

This section will look into some simulations done with different controllers
and different initial conditions. This to better get an overview of how the
system reacts to different inputs and how the system evolves. All the sim-
ulations are done with the four DOF system and with Φ(θ) representing a
circular orbit as described in Sec. 4.2. The parameters used for the system
are

Iφ = 0.2, Iθ = 0.4, m = 2, g = 9.81 rc = 0.25, rp = 2.

All the simulations are done over a period of 3T , which is 15 seconds with 5
seconds periods.

5.2.1 No Controller

The natural dynamics of the system can be shown by simulating using no
controller and let the dynamics run for itself. This way makes it easier to
measure the performance of a controller, as this will act as a reference for
the rest.

No Initial Error

A simulation with no initial error was made. The initial path parameters
were set to be

x0 = 0, y0 = 0, φ0 = 0, θ0 = 0,

θ̇0 = 2π
T

∣∣∣∣
T=5s

= 1.2566, φ̇0 = θ̇0
rp
rc
, ẋ0 = rcφ̇0 cos(θ0), ẏ0 = rcφ̇0 sin(θ0),

(5.1)

where the velocities are set such that they does not violate the nonholonomic
constraints. As there are no initial errors,

I = z = ż = 0. (5.2)
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Parameter Initial Error
I 0
z1 0.2
z2 -0.2
z3 0
ż1 0
ż2 0
ż3 0.2

Table 5.1: Initial errors, simulating with no controller.

With Initial Error

Initial error for the system are introduced. The path parameters are set as in
the previous chapter, only now there is introduced error as shown in Tab. 5.1.

5.2.2 Constant Gain Controller With Initial Error

The controller for the system is given by v = Kx⊥, K ∈ R2×7 which gives
14 different control parameters. All of the control parameters will have an
impact on the resulting gain, i.e it is not a trivial way to select some pa-
rameters to be weighted more than others. That is why the constant gain
controller matrix will consist of 14 equal gains.

5.2.3 Time Varying Controller With Initial Error

The controller found with the Bézier method from Sec. 4.3.5 is now used.
Many hours are spent trying to find an optimal time varying controller.
Different cost functions for the controller are used and an extensive set of
different initial controller points are tried, but no optimal controller were
found. The best one found will be used in this simulation and the initial
conditions are the same as before.
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Chapter 6

Simulation Results

6.1 Simulating with no controller

6.1.1 No initial error
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Figure 6.1: Simulation with no controller, no initial error, showing q vs. q̇.
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Figure 6.3: Simulation with no controller, no initial error, showing ∆x⊥.
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Fig. 6.1, 6.2 and 6.3 shows the simulation results when no initial errors are
present and no controllers are influencing the system.. It can be seen from
Fig. 6.3 that the error in I, z3 and ż3 start and remain at zero the whole time.
ż1 and ż2 start at zero but oscillates, with no trend to drift. z1 and z2 also
starts at zero and oscillates, but have a slight drift. The drift is measured as
seen in Fig. 6.4 and the drift for z2 is measured to be 0.8 · 10−6 and for z1 it
is 0.5 · 10−7. This can be interpreted as ż1 and ż2 not oscillating around zero
but some positive offset which yield a drift in z1 and z2. The phase plots in
Fig. 6.1 looks ok, but some of the errors can be seen in Fig. 6.2 where the
red line represents the desired path and the blue is the actual one.
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Figure 6.4: How the drift is measured and the offset can be seen.

6.1.2 With initial error

An initial error, seen in Tab. 5.1, is now present. The results can be seen in
Fig. 6.5, 6.6 and 6.7. Fig. 6.5 shows that still I starts and stays at zero, as
expected, ż3 starts and stays at its initial error causing z3 to drift away from
its starting point at 0. ż1 starts at zero but oscillates around -0.05 causing
z1 to drift in a negative direction. It can also be seen that ż2 starts in and
oscillates around 0, causing no drift in z2 which only has got an offset. The
offsets in and drifts can be seen in Fig. 6.6 as a mismatch between the blue
and the red circle. As all the plots take a lot of space and can be hard to
read these plots will show examples of the link between the plots. The plots
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with the most information is the ones showing the error in I,z, ż, and those
will be used in the next sections.
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Figure 6.5: Simulation with no controller, initial error from Tab. 5.1, showing
∆x⊥.

6.2 Simulating Using Constant Gain Controller
With Initial Error

There was done trials with four different gain controllers. The results using
the different controllers were very much alike and therefore this section will
only present two of them. Fig. 6.8 shows the results using a constant gain
on all control variables equal to one, while Fig. 6.9 shows the result using a
gain equal to 100. As seen in the two figures, the errors are very similar, but
in Fig. 6.9 the result of a more aggressive controller can be seen. The error
in I now starts at 0, but quickly rises and ends up oscillating around 0.05.
ż3 starts at zero, but also develops an oscillation around 0.08. This causes a
drift in z3 which starts at zero but drifts ∼ 0.8 in 3 periods. ż1 has an initial
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Figure 6.6: Simulation with no controller, initial error from Tab. 5.1, showing
x vs. y.
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value at 0, but quickly gets a stable oscillation around -0.05. This causes z1
to drift ∼ −0.8 in 3 periods from initial value as given in Tab. 5.1. ż2 starts
in zero and oscillates somewhere right below zero, which causes a drift in z2
at ∼ −0.03 in 3 periods.
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Figure 6.8: Simulation with controller gains = 1, initial error from Tab. 5.1,
showing ∆x⊥.

A small negative gain was also tried out, but caused the states to blow up in
under 0.1 seconds, and the results were therefore discarded.

6.3 Simulating Using Time Dependent Con-
troller With Initial Error

The best controller found in a lot of trials were used and the result can
be viewed in Fig. 6.10. There it can be seen how the error, despite some
ugly peaks, seems to converge. Neither of the states seems to blow up, they
actually seems to slowly decrease in magnitude. This led to another test
being done, using the same controller, but with no initial error present. The
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Figure 6.9: Simulation with controller gains = 100, initial error from Tab. 5.1,
showing ∆x⊥.

simulation results for 20 periods can be seen in Fig. 6.11. This clearly shows
how the states go from zero initial error, to a growing error for every period.
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Figure 6.10: Simulation with time dep. controller, initial error from Tab. 5.1,
showing ∆x⊥.
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Figure 6.11: Simulation with time dep. controller, no initial error, showing
∆x⊥.



Chapter 7

Discussion

7.1 Analysis of the nonholonomic system

It was shown in Ch. 4 that there are at least two different ways to calculate
the equations of motion for a unicycle. The one using four generalized coor-
dinates yield a much simpler dynamic that with the one using five. For the
four DOF system it was shown that both the circular and the straight path
could be parametrized as wanted. No constraints on the pair (θ, θ̇) and (φ, φ̇)
were given. This is probably because the potential energy due to gravity not
is present and the coin will never ”fall” no mater how fast it turns. On the
other would friction forces show up, causing the unicycle to skid if the veloc-
ity got too high in for instance a turn. This problem was looked into in the
project [3], and the path planner from there would generate feasible paths
when taking skidding into consideration.
For the five DOF system it was shown that for different tilt angles, the ve-
locity of the unicycle had to increase with the tilt in a non linear way. This
is due to the center of gravity that moves with the tilt. An increase in speed
would increase the forces due to centripetal acceleration, and thus keep the
unicycle from falling.

7.2 Simulations of the four DOF system

The results of the simulations performed in Sec. 5.2 was shown in Ch. 6.1.
When simulating with no initial errors it was seen in Fig. 6.3 that there was
a drift in some of the states and even though initialized in zero, some of the
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states ended up oscillating around non-zero values. Probably this is due to
simulation inaccuracies as a result of to big steps in the simulation, even
though they were regulated to not be so big (max step size were 0.2). The
drift was present in two states, z1 and z2, representing the error in x and y.
The error seemed to be increasing, but at a very small rate. Ideally the trial
where no controller and no initial errors were present, the system would have
been stable. But it can be seen that as time goes the states increases, which
is characterized as unstable.
When the system is initialized with errors and no controllers are present it
was seen in Fig. 6.5 that some of the states grew with time. As ż3 was ini-
tialized with an error it was expected that z3 grew unbounded. A slightly
less but still a significant error growth is the one in z1. Its derivative, ż1
has a negative offset in its oscillations, which explain why z1 is drifting. The
reason to the offset in ż1 has probably something to do with the initial error
in ż3 which has an impact on ż1 and ż2. Still, it does not explain why there
is no offset in ż2. It can be seen that the error of several states will grow
with time and the system will probably get unstable with time.
The simulation with the constant gain controllers was shown in Fig. 6.8 and
6.9. It could be seen, compared to the system with no controller, Fig. 6.5,
that all the velocity errors z had lower magnitude and looked stable. The
lower amplitude led to a slower drift in z1 and z3, but also led to drift in z2
and an offset in I. The introduction of an error in I is because of the con-
troller varying the speed of θ̇, which wasn’t possible without any controller.
Even though a small drift was introduced in z2, the drift in z1 and z3 was
decreased more, and the oscillations in ż2 and ż1 was damped more than
the introduction of oscillations in ż3 added. All together the controller with
constant gains performed slightly better then no controller, but the system
is still unstable.
When introducing the time varying controller described in Sec. 4.3.5 the er-
rors were in Fig. 6.10 shown to be decreasing or not increasing over time.
Such a behavior would yield a marginally stable system, as the output were
bounded. When the same controller was tested without any initial errors, it
failed and the errors were oscillating and increasing over time, see Fig. 6.11.
This indicates that the controller not stabilizes the system and that it is very
little robust. The fact that it was the best time dependent periodic controller
found imply that finding such a controller is not an easy task. Many hours
were used trying to find to find a good controller. Different techniques were
tried including different initial values for the bézier curve, different number
of control points for the curves, different cost functions varying from none
to ones where the norm of the transition matrix at the end was measured
and other ones where all the norms at each point in time were weighted dif-
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ferently and more. As also mentioned in the controller design section the
state transition of the closed loop system was measured in the making of the
controller. Observations made showed that no controller managed to bring
the last three eigenvalues of (A(t) − B(t)K(t)) under 1 (nor over). This
either indicates that the three last states are uncontrollable, even though the
controllability gramian in Sec. 4.3.5 told otherwise, or maybe they are very
hard to control. Initially, with the two nonholonomic constraints it would be
expected an uncontrollable subspace of dimension 2. The gramian showed
something else but experiments sort of confirmed parts of the initial guess.
Either way the task of designing a controller stabilizing the system seems to
be a master thesis on its own.
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Chapter 8

Conclusion and Further Work

8.1 Conclusion

The analysis of a four DOF and a somewhat smaller analysis of a five DOF
nonholonomic system was done in Ch. 4. First the equations of motions were
found for the nonholonomic system which was done in a similar way as the
traditional Euler-Lagrange method, except for some extra constraints that
showed up due to the nonholonomy. After deriving the EOM, virtual holo-
nomic constraints were used to parametrize a desired motion for the system.
This could then be used to show the relation between the monotonically in-
creasing path coordinate, θ, and its derivative, θ̇ with the help of α(θ), β(θ)
and γ(θ), which are second order differential equation parameters for θ. A
method for calculating the transverse linearization was shown for the non-
holonomic systems. It was done by calculating a set of transverse coordinates
and linearizing them. This could then be used to design a controller to sta-
bilize a desired orbital motion for the system.
It also was shown that the difference in the dynamics of the four DOF and
five DOF system is quite extensive because the potential energy not is con-
stant. The four DOF system showed, both with the circular path and the
straight line segment, no restrictions on the parametrization of the trajecto-
ries, (θ, θ̇) and (φ, φ̇). For the five DOF system, on the other hand, it was
showed that for a simple circular orbit a constant speed as a function of the
tilt was necessary to maintain the initial tilt angle. It was also shown two
different approaches to calculate the EOM for the five DOF system, where
the first one shortened out some of the dynamics of the system due to simpli-
fications by incorporating nonholonomic constraints in the Lagrangian. The
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other one described the full dynamics and was used further on.
Simulations of the four DOF system in Ch. 5.2 yielded instability even with
no initial errors due to simulation inaccuracies and maybe too big step size in
the solver. An attempt to design a control law for the system was done, but
with no good results. A constant gain controller was tried out making the
system less instable, but still not stable. A periodic and smooth controller
was also tried, and gave some promising results. These results were then
shown to be incidental as a trial with no initial errors resulted in an unstable
system. As much time and effort has been put into the task of finding such a
controller, it proves that controller deign for LTV systems is quite extensive
and not straight forward.

8.2 Further Work

Even though some controller strategies for the four DOF system were tried
out, no good ones were found. This report lays the foundation for the task to
design such a controller, both for the four DOF and the five DOF nonholo-
nomic system. The first step would naturally be to find a controller for the
circular orbit for a four DOF system and then a controller for the straight line
segments afterwards (which probably is easier). When a controller is found
it would be interesting to combine the system with the path planner found
in [3], and in that way found a base for an autonomous vehicle with non-
holonomic constraints present, navigating in an obstacle crowded workspace.
Combined with some sensors (camera based, ultra sound etc.) an algorithm
detecting obstacles and free paths could be implemented making the vehi-
cle fully automatic and autonomous. Such vehicles could be used in a wide
range of applications for example in hazardous environments, remotely op-
erated places and more.
An even more extensive work would be to find a controller for the 5 DOF
nonholonomic system and maybe use it to control a unicycle or something
similar. Some kind of an Euler’s Disk could be made with a built in motor
and by varying the angular speed of the disc, an endless spin mechanism
could be made. That is, initiate the spin at some tilt angle, and the built in
controller regulates the speed such that it spins ”forever”.
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