
Stabilization of Brachiation Locomotion in
a Monkey Robot

Stian Hjellvik Askeland

Master of Science in Engineering Cybernetics

Supervisor: Anton Shiriaev, ITK
Co-supervisor: Uwe Mettin, ITK

Department of Engineering Cybernetics

Submission date: June 2012

Norwegian University of Science and Technology

Problem Description

Consider a 24-degrees-of-freedom monkey robot that is supposed to perform
brachiating locomotion, i.e. swinging from one row of a horizontal ladder
to the next one using the arms. The robot hand is constructed as a planar
hook so that the contact point about which the robot swings is a passive
hinge and the mechanical system is underactuated in single-support phase.
Assume that a suitable hybrid dynamical model of the robot exists and that
feasible coordination patterns (virtual constraints) and periodic trajectories
of the joints are known so that the dynamic constraints associated with the
passive degree of freedom are satisfied. The task is to design a controller that
is able to stabilize such a feasible brachiating motion. As a step in doing so
a toolbox aiding the process of controller design should be developed, tested
and verified.

Abstract

Achieving robotic locomotion is in general a difficult task. When the system
of concern is underactuated, i.e. it has more degrees of freedom than the
number of control inputs available, dynamic constraints are imposed, further
complicating the task. This is the case for the brachiation motion observed in
the lesser apes, i.e. gibbons and siamangs, as the gait involves periods of time
at which the ape is suspended by one arm with limited torques available to
influence the rotation about the handhold. Earlier work has been concerned
with modeling of a 24-degrees-of-freedom monkey robot and the design of a
brachiation gait. In this thesis we develop a toolbox to facilitate the design
of a controller based on transverse linearization for this brachiation gait. The
main focus is to stabilize the single-support part of the gait, i.e. the part
that is subjected to dynamic constraints due to the lack of torque about
the handhold, as traditional control theory is unable to stabilize the desired
motion in this case. The developed toolbox is used in designing a controller
that orbitally stabilizes an inverted pendulum system. As an initial step in
achieving orbital stabilization of the brachiating gait, asymptotic convergence
to the virtual holonomic constraints is demonstrated for a simplified model
of the 24 degrees-of-freedom monkey robot.

Sammendrag

Å realisere en ønsket bevegelse i en robot er generelt en vanskelig oppgave.
N̊ar systemet i tillegg er underaktuert, dvs. at det har flere frihetsgrader enn
antall tilgjengelige aktuatorer, blir systemet p̊atvinget dynamiske begrens-
ninger og oppgaven kompliseres ytterligere. Dette er tilfellet for fremkomst-
metoden som er observert n̊ar de langarmede apene slenger seg etter armene.
Denne fremkomstmetoden innebærer perioder hvor apen henger etter en arm
med begrenset dreiemoment tilgjengelig rundt punktet den griper. Tidligere
arbeid har utviklet en forenklet modell for en ape-robot med 24 frihetsgrader
og koordinatbaner er funnet slik at en bevegelse inspirert av disse langarmede
apene kan realiseres. I denne avhandlingen er målet å utvikle en kontroller
som stabiliserer disse planlagte koordinatbanene. For å lette utviklingen av
en slik kontroller utvikles ogs̊a en verktøykasse for å utføre noen av de tunge
beregningene som kreves i prosessen. Denne verktøykassen demonstreres s̊a
p̊a et system best̊aende av en underaktuert invertert pendel, og konvergens
til de ønskede periodiske banene oppn̊as. Som et første skritt mot å oppn̊a
stabilisering av den ønskede fremkomstmetoden for aperoboten demonstre-
res det at de aktuerte frihetsgradene relativt enkelt kan stabiliseres til de
ønskede koordinatbanene.

Contents

1 Introduction 1

2 Problem Formulation 3
2.1 System Description . 3
2.2 Brachiation . 5
2.3 Why Controlling the Monkey Robot is Difficult 6
2.4 Orbital Stabilization . 7

3 Theory 9
3.1 Virtual Holonomic Constraints 9

3.1.1 Trajectory Design . 11
3.2 Transverse Linearization . 13

3.2.1 Coordinate Transformation 14
3.2.2 Partial Feedback Linearization 16
3.2.3 Solving the Zero Dynamics 17
3.2.4 Controlling the Transverse Error 20

3.3 Linear Time-Varying Systems 20

4 Steps in Orbital Stabilization 23
4.1 Illustration of Concepts . 23

4.1.1 Modeling . 23
4.1.2 Trajectory Planning 26
4.1.3 Feedback Linearization 27
4.1.4 Scalar dynamics . 29

4.2 Implementation . 31
4.2.1 Transverse Error Calculation 32
4.2.2 Indexing the Moving Poincaré Section 34
4.2.3 Controlling the Transverse Error 35
4.2.4 Partial Feedback Linearization 36

4.3 Dynamics of the Monkey Robot 37

III

4.3.1 Single-support Phase 37
4.3.2 Double-support Phase 39
4.3.3 Phase Switching . 41

4.4 Stabilization of Preplanned Motion 42

5 Results and Discussion 45
5.1 Inverted Pendulum . 46

5.1.1 Feedback Linearization 47
5.1.2 Enforcing the Virtual Holonomic Constraints 51
5.1.3 Transverse Dynamics Controller 54

5.2 Monkey Robot . 60
5.2.1 Partial Feedback Linearization 60
5.2.2 Enforcing the Virtual Holonomic Constraints 65
5.2.3 Transverse Dynamics Controller 68

6 Conclusion and Further Work 69
6.1 Further Work . 69

A Appendix 71
A.1 Solving the Reduced Dynamics 71
A.2 Differentiating the Integral Function 74

Chapter 1

Introduction

Brachiation is the locomotion observed in the lesser apes (i.e. siamangs and
gibbons), and is described as a specialized form of arboreal locomotion in
which movement is accomplished by swinging from one hold to another by
the arms [7]. These primates are capable of energy efficient locomotion by
swinging from one arm to the next, allowing them to travel at high speeds
through the treetops.

The great apes, (chimpanzees, gorillas, orangutans and humans), are also
capable of brachiation. However, in the great apes, brachiation is not the
primary form of locomotion, but one that might be used alongside other lo-
comotion styles, such as bipedal and quadrupedal locomotion. This allows
great versatility as a change of locomotion style can be made for better adap-
tion to a change in the environments. For instance might bipedal walking be
used in tight spaces, quadrupedal walking on rough terrain and brachiation
to overcome obstacles.

Anthropomorphic (human-like) robots often aim to replace people in dan-
gerous environments. The versatility of the great apes would clearly be an
advantage in this case. A multi-locomotion robot has been developed in an
attempt to mimic these charactersistics of the greater apes [5]. The proposed
multi-locomotion robot aims to achieve biped locomotion, quadruped loco-
motion and brachiation while being able to switch between locomotion styles
to best adapt to the environment.

The problem of achieving brachiation in a physical robot can be considered
dividable into three main parts: modeling, trajectory design and controller
design. Earlier work [1] has been concerned with modeling and trajectory
design for this brachiating robot, and a robust and energy-efficient brachiat-

1

2 CHAPTER 1. INTRODUCTION

ing gait was found. In this thesis we aim to design a controller that stabilizes
this brachiation gait. As an aid in doing so a MATLAB toolbox is developed
to perform parts of the computations that need to be done before arriving
at a stabilizing controller.

Chapter 2

Problem Formulation

Earlier work [1] has been concerned with modeling and planning a feasible
trajectory for the gorilla robot and both models and feasible trajectories
were found. However, in order to achieve the planned brachiating motion in
an actual physical gorilla robot, a controller is needed. Several controllers
have been implemented on various types of brachiating robots (e.g. [11],
[6], [10], [5]) with fairly good results. In this work an attempt is made
to use the concept of transverse linearization in order to find a controller
that stabilizes the desired trajectory. This concept is described in e.g. [14]
and [15], and demonstrations of the concept to a variety of systems are made.
Transverse linearization has, to the authors knowledge, not yet been used to
stabilize a brachiation locomotion. This is the primary goal of this work; to
demonstrate successful stabilization of a brachiating motion using transverse
linearization.

2.1 System Description

The robot in question is a humanoid robot with 24 degrees of freedom built
at Professor Fukuda’s lab, Nagoya University, Japan. A schematic of the
robot is shown in Figure 2.1.

This robot can be modeled as an Euler-Lagrange system with n states and
m inputs.

d
dt

(
∂L(q, q̇)
∂q̇

)
− ∂L(q, q̇)

∂q
= B(q)u (2.1)

3

4 CHAPTER 2. PROBLEM FORMULATION

Figure 2.1: Schematic of the 24 DOF robot built at Professor Fukuda’s Lab,
Nagoya University, Japan

where q ∈ Rn is a vector of generalized coordinates and u ∈ Rm is a vector of
control inputs. During the swing-part of the brachiating motion, the system
is underactuated, i.e. the number of independent control inputs is smaller
than the number of generalized coordinates. This can be written as

n = m+ p (2.2)

where p > 0 is the degree of underactuation.

It is well-known that this system can be rewritten as [16]

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u (2.3)

Where M is a symmetric, positive definite inertia matrix, C contains the
centrifugal and Coriolis terms, G contains the partial derivative of the po-
tential energy of the system with respect to each generalized coordinates. B
is a matrix function of constant rank m describing how the control inputs
influence the dynamics.

Due to the complexity of modeling and designing a trajectory for all 24
degrees of freedom of the robot, only the 6 degrees of freedom believed to
be the most relevant for the brachiating gait is considered when a model is
derived. Of these, 5 corresponds to actual joint angles on the robot, while
one is the angle about the handhold from which the robot is suspended. The

2.2. BRACHIATION 5

gripping hand is modeled as a planar hook, and there is no torque available
about the handhold. This coordinate is therefore considered unactuated and
the system as a whole is underactuated of degree one, i.e. we have n = 6
generalized coordinates, and m = 5 control inputs.

2.2 Brachiation

The brachiation motion consists of successive single-support and double-
support phases. The single-support phase refers to the parts of the gait in
which the robot is suspended from one arm, while the double-support phase
refers to the part where both arms are firmly gripping individual handholds.
Because of the pendulum-like motion of the center of mass observed during
the single-support phase, this will also be referred to as the swing-phase.
During the double-support phase, gaits observed in nature involve moving
the center of mass backwards [17]. For this reason the double-support phase
will also be referred to as the swing-back-phase or the loop-phase.

Based on analysis of the actual brachiation motion observed in nature [17],
a brachiation motion consisting of the following phases is proposed [1].

Initial swing phase The robot is assumed to be initialized in a position
where it is holding on to two successive handholds with zero joint ve-
locities. From this initial position, an initial swing phase is entered.
This phase is similar to the single-support phase, except that it is ini-
tialized with zero joint velocities (opposed to the single-support phase
which is initialized with non-zero joint velocities).

Double-support phase This phase starts when the robot grips the front
handhold with the free hand. The goal of this phase is to move the
center of mass backward and align it with the desired initial conditions
for the swing phase. During this phase the system is fully actuated,
as the available actuators are able to move the gorilla to any desired
configuration, given that enough torque is available. The proposed
double-support phase does indeed keep the required torques within
reasonable levels.

Single-support phase This phase starts when the robot releases its rear
handhold and starts moving the rear hand forward to reach the front
handhold. During this phase the system is underactuated due to the
lack of torque about the handhold from which the gorilla is suspended.

6 CHAPTER 2. PROBLEM FORMULATION

Snapshots of the proposed gait is shown in Figure 2.2.

The gait is designed in such a way that transitions between the various phases
does not result in any impact forces, i.e. the velocities of each joint at the
end of one phase equals the initial velocities at the start of the next phase.
This ensures minimal collision loss and allows the impact map to be written
as simply a relabeling of the coordinates [1].

Figure 2.2: Snapshots of the time-evolution of the full gait. The red line is
the trajectory traced by the center of mass. The emphasized configurations
shows where phase transitions occur.

2.3 Why Controlling the Monkey Robot is
Difficult

Achieving brachiation is in general a difficult task. This is because the brachi-
ation motion is naturally under-actuated. From the moment the monkey
(or robot) releases the rear handhold, the single-support phase is initiated.
Due to the limited torque available for gripping, the angle about the front
handhold is considered passive, and the single-support phase is governed by
passive, pendulum-like dynamics. These passive dynamics impose dynamic

2.4. ORBITAL STABILIZATION 7

constraints on the motion, complicating gait synthesis and control. Because
of the highly limited torque available about the handhold this motion one
can not simply apply the required torque about the handhold in order to
swing the body forward. Locomotion must be achieved in some other man-
ner, namely by applying the torques that are available about the actuated
joints in such a way that the body of the robot does indeed end up in some
desired position in front of the handhold allowing the free hand to grip this
handhold

2.4 Orbital Stabilization

The brachiation gait consists of two continuous motions that are connected
by discrete jumps. The gait is designed to be periodic such that the state
at the end of one period equals the initial state for the next period. The
motion thus constitutes closed periodic hybrid orbits, consisting of two con-
tinuous parts and two jumps. The problem of stabilizing a brachiating gait is
thus equivalent to orbital stabilization of the desired periodic hybrid orbits.
The concept of transverse linearization described in e.g. [14] [15] [9], can be
used to asymptotically stabilize such periodic orbits. This is the approach
taken in this thesis; to stabilize the desired periodic orbits using transverse
linearization.

Using transverse linearization for orbital stabilization requires numerous com-
plex computations. To facilitate controller synthesis we therefore aim to de-
velop a MATLAB toolbox aiding the process. Such a toolbox could take as
input a model of the system as well as some description of the periodic orbit
to be stabilized, and then automate parts of the controller synthesis process.
To the authors knowledge, no such toolbox exist at present date and the
development of this is one of the main contributions of this work.

As the monkey robot is a fairly complex system, even when the system is
reduced to the 6 most relevant degrees of freedom, testing and verifying the
various parts of the controller design may prove challenging. For this rea-
son, the inverted pendulum system will be used for this purpose. Initially
performing the controller synthesis process on the inverted pendulum sys-
tem first will allow manual verification of the various parts of the controller,
significantly simplifying the detection of possible implementation errors.

8 CHAPTER 2. PROBLEM FORMULATION

Chapter 3

Theory

In this chapter we will introduce some underlying theoretical concepts that
are needed when designing a controller for the brachiating motion using trans-
verse linearization.

3.1 Virtual Holonomic Constraints

Both the gorilla robot and the inverted pendulum are underactuated systems.
This means that not all generalized coordinates can be controlled with re-
spect to time; one or more coordinates have dynamics which are not directly
controllable through the control inputs. Controllers used on fully actuated
systems typically aims to stabilize some pre-defined reference trajectory with
respect to time. When the system in question is underactuated, this can no
longer be done. It is certainly possible to define the desired trajectory as a
function of time, but attempting to stabilize this would cause the controller
to play ”catch-up” with time if the system states were to lag behind the
trajectory reference for some reason [4]. For this reason it is desirable to
express the desired trajectory not as a function of time, but as a function
of the states. This is what virtual holonomic constraints accomplish. The
concept of virtual holonomic constraints were first introduced as an aid in
achieving underactuated legged locomotion in the dynamic walking testbed,
RABBIT [4].

To introduce virtual holonomic constraints, consider the two-link piston sys-
tem depicted in Figure 3.1a. The position of the piston is in this case given

9

10 CHAPTER 3. THEORY

(a) Unconstrained. (b) Physically constrained.

Figure 3.1: Double-linked pistons.

by the angles θ1 through θ3 and the lengths of the links, L1 and L2. Consider
the physically constrained piston depicted in Figure 3.1b. In this case the
x-coordinate of the piston center is fixed1 to x = 0 and the following relations
are imposed by the physical constraints

L1 cos(θ1) + L2 cos(θ1 + θ2) = 0
θ1 + θ2 + θ3 − π = 0

These relations hold as a result of d’Alambert’s principle, i.e. any virtual
displacement of the piston would cause a force to be exerted from the physical
constraint such that the displacement remain zero.

Suppose that the two joints θ2 and θ3 are actuated, while the crank angle, θ1
is unactuated. It becomes evident that the same constraints can be imposed
asymptotically by zeroing the two error functions

y1 = L1 cos(θ1) + L2 cos(θ1 + θ2) (3.1a)
y2 = θ1 + θ2 + θ3 − π (3.1b)

If this is done by some control law rather than by some physical construction,
the constraints are called virtual holonomic constraints.

1We could choose to constrain the piston to an arbitrary value x = a as long as
|a| ≤ L1 + L2, but for simplicity we assume a = 0 in this example.

3.1. VIRTUAL HOLONOMIC CONSTRAINTS 11

The equations (3.1) can be rewritten by first solving (3.1a) for θ2 and θ3, and
then inserting into (3.1), leading to the alternate output functions

y1 = θ2 −
(
π − θ1 − arccos

(
L1

L2
cos(θ1)

))
(3.2a)

y2 = θ3 − arccos
(
L1

L2
cos(θ1)

)
(3.2b)

Rewriting to vector functions this can be written as 2

y = h0(q) − Φ(θ(q)) (3.3)

where

h0(q) =
[
θ2
θ3

]

Φ(θ) =

π − θ − arccos
(

L1
L2

cos(θ)
)

arccos
(

L1
L2

cos(θ)
) 

θ(q) = θ1 (3.4)

In general h0(q) is some mapping from the generalized coordinates to inde-
pendent quantities to be controlled, θ(q) is a scalar function of the coordi-
nates that is monotonically increasing along the desired trajectory and Φ(θ)
specifies the virtual holonomic constraints.

Throughout the rest of this work it is assumed that h0(q) = q, i.e. the
quantities to be controlled are the generalized coordinates themselves.

3.1.1 Trajectory Design

By using the virtual holonomic constraints, it is possible to describe the
desired trajectory of the coordinates q as a function of the monotonically
increasing scalar function θ. We do this by specifying that the quantities to
be controlled are the coordinates themselves3, and assuming that the output
function (3.3) is kept at zero, i.e.

h0(q) = q (3.5)
y = 0 (3.6)

2In [4] the notation hd(θ) is used for the virtual holonomic constraints. In this thesis a
notation that is consistent with the one in e.g. [14] is used.

3This is not necessarily the case, but is true for the systems considered in this thesis

12 CHAPTER 3. THEORY

so that (3.3) can be rewritten to express the desired trajectories of q

q = Φ(θ) (3.7)

Differentiating this leads to

q̇ = Φ′(θ)θ̇
q̈ = Φ′′(θ)θ̇2 + Φ′(θ)θ̈

This eliminates the explicit time-dependency in the desired trajectories and
by designing a controller that asymptotically zeros the difference between
the generalized coordinates and the virtual holonomic constraints, the prob-
lem where the controller plays ”catch-up” with the time-varying trajectory
reference is avoided. However, time is not completely eliminated from the
system as the unactuated coordinate, θ is still a function of time. Consider
the case where the virtual holonomic constraints are exactly satisfied . Then
the system (2.3) can be rewritten as 4

M(Φ)
(
Φ′′θ̇2 + Φ′θ̈

)
+ C(Φ,Φ′)Φ′θ̇2 +G(Φ) = B(Φ)u (3.8)

Here the fact that C(q, q̇) is linear in q̇ is used. This can be seen from the
derivations of C(q, q̇) shown in e.g. [16].

Because the system is underactuated, the rank of the n × (n − 1) matrix
function B(q) is (n − 1). Hence there exists a 1 × n matrix function B⊥(q)
such that B⊥(q)B(q) = 0, ∀ q [14]. Premultiplying (3.8) by B⊥(Φ(θ)) then
eliminates the right hand side such that

0 = B⊥(Φ)M(Φ)
(
Φ′′θ̇2 + Φ′θ̈

)
+B⊥(Φ)C(Φ,Φ′)Φθ̇2 +B⊥(Φ)G(Φ)

= B⊥(Φ)M(Φ)Φ′θ̈ +B⊥(Φ)
(
M(Φ)Φ′′ + C(Φ,Φ′)Φ

)
θ̇2 +B⊥(Φ)G(Φ)

(3.9)

by introducing the scalar functions

α(θ) = B⊥
(
Φ(θ)

)
M
(
Φ(θ)

)
Φ′(θ) (3.10a)

β(θ) = B⊥
(
Φ(θ)

)[
C
(
Φ(θ),Φ′(θ)

)
Φ′(θ) +M

(
Φ(θ)

)
Φ′′(θ)

]
(3.10b)

γ(θ) = B⊥
(
Φ(θ)

)
G
(
Φ(θ)

)
(3.10c)

4Arguments to the synchronization functions have been omitted for readability

3.2. TRANSVERSE LINEARIZATION 13

the equation (3.9) can be written compactly as

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0 (3.11)

This equation is referred to as the zero dynamics of the system, as it con-
stitutes the time-evolution of the system given that the virtual holonomic
constraints are satisfied, i.e. when the errors are zeroed.

This means that the unactuated part of the system cannot be controlled di-
rectly with respect to time, but rather evolves according to the zero dynamics
(3.11).

3.2 Transverse Linearization

Having the desired trajectory described in the form of the virtual holonomic
constraints

q⋆ = Φ(θ⋆) (3.12)

allows us to describe the closed periodic orbit of the desired trajectory as [15]

O⋆(q⋆) = {[q; q̇] ∈ R2n : q = q⋆(τ), q̇ = q̇⋆(τ), τ ∈ [0, T]} (3.13)

It is also useful to define the tubular neighborhood of the desired orbit as
the set of all points a distance no larger than ε from the desired orbit, i.e.

Oε(q⋆) = {[q; q̇] ∈ R2n : min
τ∈[0,T]

∥[q − q⋆(τ); q̇ − q̇⋆(τ)]∥ ≤ ε} (3.14)

A moving Poincaré surface assisiated with the solution q⋆(t), t ∈ [0, T] is
defined as a family of (2n − 1)-dimensional C1-smooth surfaces, {S(t), t ∈
[0, T]} satisfying the following criteria [15]

1. The surfaces S(·) are locally disjoint, i.e. ∃ ε > 0:

S(τ1) ∩ S(τ2) ∩ Oε(q⋆) = ∅

2. Each of the surfaces S(·) locally intersects the orbit only in one point,
i.e. for each τ ∈ [0, T], ∃ ε > 0:

S(τ) ∩ {[q⋆(t); q̇⋆(t)], |t− τ | < ε} ∩ Oε(q⋆) = {[q⋆(t); q̇⋆(t)]}

14 CHAPTER 3. THEORY

3. The surfaces S(·) are smoothly parametrized by time, i.e. ∃ fs ∈
C1(Rn,Rn,R):

S(t) ∩ Oε(q⋆) = {[q; q̇] ∈ R2n : fs(q, q̇, t) = 0} ∩ Oε(q⋆)

4. The surfaces S(·) are transversal to the orbit i.e. ∀t ∈ [0, T]: ∂fs

∂q

∣∣∣∣∣q=q⋆(t)
q̇=q̇⋆(t)


T

q̇⋆(t) +

 ∂fs

∂q̇

∣∣∣∣∣q=q⋆(t)
q̇=q̇⋆(t)


T

q̈⋆(t) ̸= 0

As this family of moving Poincaré surfaces is generally difficult to compute,
it is convenient to define the family of tangential planes along the vector field
of the desired orbit [9]:

TS(t) :=

[q(t); q̇(t)] ∈ R2n :
[
q − q⋆(t)
q̇ − q̇⋆(t)

]T [
q̇⋆(t)
q̈⋆(t)

]
= 0

 (3.15)

The problem of controlling an underactuated system boils down to having the
curve traced by the system in phase space, [q, q̇] converge to the orbit of the
desired trajectory, O⋆. The state coordinates, [q, q̇] can be locally changed
into the coordinates [ψ, x⊥], where ψ is a scalar variable that parametrizes
the position along the orbit of the desired trajectory, while x⊥ is a (2n− 1)-
dimensional vector defining the location on a particular leaf of the moving
Poincaré surface parametrized by ψ. The vector x⊥ is known as the transverse
coordinates, while the dynamics of x⊥ are called transverse [15]. As a step
in controlling the states such that the trajectory converges to the desired
orbit, the transverse coordinates are linearized along the desired solution,
q⋆(t). This is called transverse linearization. The procedure for computing
the transverse linearization is described in the remaining of this section.

3.2.1 Coordinate Transformation

In general the virtual holonomic constraints are not perfectly satisfied and
we can introduce n new coordinates as the difference between the generalized
coordinates and the virtual holonomic constraints.

yi = qi − ϕi(θ) for i = 1, . . . , n (3.16)

Together with the monotonic variable θ this constitutes a set of excessive
generalized coordinates. As there are now n + 1 equations describing the

3.2. TRANSVERSE LINEARIZATION 15

motion of n coordinates, the excessive generalized coordinates are not linearly
independent, and one may be expressed as a function of the others [14].
Without loss of generality, assume that this is the case for yn. qn can then
be written as

qn = ϕn(θ) + h(y, θ) (3.17)

The new generalized coordinates are then given by

y = [y1, . . . , yn−1] ∈ Rn−1 and θ (3.18)

The previous generalized coordinates, as well as its first and second deriva-
tives, can now be written as functions of (θ, y) and their derivatives.

q =
[

y
h(y, θ)

]
+ Φ(θ) (3.19a)

q̇ = L(θ, y)
[
ẏ

θ̇

]
(3.19b)

q̈ = L(θ, y)
[
ÿ

θ̈

]
+ L̇(θ, y)

[
ẏ

θ̇

]
(3.19c)

where

L(θ, y) =
[
I(n−1) 0(n−1)×1

∂h
∂y

∂h
∂θ

]
+

 0n×(n−1)

ϕ′
1(θ)
...

ϕ′
n(θ)

 (3.20)

The zero dynamics described in Section 3.1.1 are only valid when the virtual
holonomic constraints are exactly satisfied. This is generally not the case
and when the generalized coordinates are described as in (3.19) then some
contribution from y, ẏ and ÿ show up in (3.11). In this case the dynamics of
θ can be written as [15]

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = g(θ, θ̇, θ̈, y, ẏ, v) (3.21)

where g(θ, θ̇, θ̈, y, ẏ, v) is a smooth function that evaluates to zero along the
desired solution, i.e.

g(θ⋆, θ̇⋆, θ̈⋆, 0, 0, 0) = 0 (3.22)

16 CHAPTER 3. THEORY

3.2.2 Partial Feedback Linearization

As the system in question is underactuated it is not feedback linearizable .
It is, however, possible to use feedback linearization of parts of the system.
To do this a change of coordinates is needed.

Assuming that M(q) is invertible allows (2.3) to be solved for q̈

q̈ = M−1(q)
(
B(q)u− C(q, q̇)q̇ −G(q)

)
(3.23)

Inserting (3.19c) and assuming that L(θ, y) is invertible, an expression for ÿ
is obtained as follows

L(θ, y)
[
ÿ

θ̈

]
+ L̇(θ, y)

[
ẏ

θ̇

]
= M−1(q)

[
− C(q̇, q)q̇ −G(q) + B(q)u

]
[
ÿ

θ̈

]
= L−1(θ, y)

(
M−1(q) [−C(q̇, q)q̇ −G(q) + B(q)u] − L̇(θ, y)

[
ẏ

θ̇

])
ÿ =

[
I(n−1), 0(n−1)×1

]
L−1(θ, y)

×
(
M−1(q) [−C(q̇, q)q̇ −G(q) + B(q)u] − L̇(θ, y)

[
ẏ

θ̇

])
ÿ = R(θ, θ̇, y, ẏ) +N(θ, y)u (3.24)

where

N(θ, y) =
[
I(n−1), 0(n−1)×1

]
L−1(θ, y)M−1(q)B(q) (3.25)

R(θ, θ̇, y, ẏ) =
[
I(n−1), 0(n−1)×1

]
L−1(θ, y)

×
(
M−1(q)[−C(q̇, q)q̇ −G(q)] − L̇(θ, y)

[
ẏ

θ̇

])
(3.26)

where q and q̇ are defined in (3.19a) and (3.19b)

By defining the control transform from u to v as follows

u = v + U(θ, θ̇, y, ẏ) (3.27)

where U(·) is a smooth function that coincides with the nominal input
u⋆(t) ∀ t ∈ [0, T], i.e.

U(θ⋆(t), θ̇⋆(t), 0, 0) ≡ u⋆(t) (3.28)

3.2. TRANSVERSE LINEARIZATION 17

Then (3.27) can be inserted into (3.24) to yield

ÿ = F (θ, θ̇, y, ẏ) +N(θ, y)v (3.29)
F (θ, θ̇, y, ẏ) = R(θ, θ̇, y, ẏ) +N(θ, y)U(θ, θ̇, y, ẏ)

If the system in question is underactuated of degree one, in general N(θ, y)
is invertible. By defining the control transformation

u = N−1(θ, y)
(
v −R(θ, θ̇, y, ẏ)

)
(3.30)

and inserting into (3.24) this reduces to

ÿ = R(θ, θ̇, y, ẏ) +N(θ, y)u
= R(θ, θ̇, y, ẏ) +N(θ, y)N−1(θ, y)

(
v −R(θ, θ̇, y, ẏ)

)
= v (3.31)

Under this control transformation the dynamics of the error-states can be
described as the linear time-invariant system 5

[
ẏ
ÿ

]
=
[
0 I
0 0

] [
y
y

]
+
[
0
I

]
v (3.32)

This system only describes the dynamics of the 2n− 2 states associated with
the errors of the virtual holonomic constraints, i.e. the errors of the actuated
coordinates. The dynamics of the unactuated coordinate is still non-linear
and will be treated later in this text.

3.2.3 Solving the Zero Dynamics

When the system satisfies the virtual holonomic constraints perfectly, it has
been shown that the dynamics of the scalar variable, θ can be written as

α(θ)θ̈ + β(θ)θ̇ + γ(θ) = 0 (3.33)

However, as the pair [θ; θ̇] is not controllable, it is desirable to rewrite these
[θ; θ̇] into a controllable and an uncontrollable part, i.e. partitioning it into
one scalar variable determining the position along the desired trajectory

5This is only the case if the degree of underactuation is one; if the degree of underac-
tuation is greater than one, some non-linear terms would show up.

18 CHAPTER 3. THEORY

[θ⋆; θ̇⋆] and another scalar variable describing the distance from the desired
trajectory. As a step in achieving this, the scalar dynamics (3.33) is solved
for [θ; θ̇]. This is shown in Appendix A.1 and the result is that if a solution
from the initial conditions [θ0, θ̇0] exist, then the function

I(θ, θ̇, θ0, θ̇0) = θ̇2 − Ψh(θ, θ0)θ̇2
0 + Ψp(θ, θ0) (3.34)

Ψh(θ, θ0) = exp
{

−2
∫ θ

θ0

β(τ)
α(τ)

dτ

}

Ψp(θ, θ0) =
∫ θ

θ0
Ψh(θ, s)2γ(s)

α(s)
ds

preserves its value along the solution [13]. Further, I(θ, θ̇, θ0, θ̇0) is identically
zero along the solution. The function I(θ, θ̇, θ0, θ̇0) can then be seen as the
distance from the measured [θ; θ̇] to the desired trajectory [θ⋆; θ̇⋆]. As the
function I arises form integrating the zero dynamics, it will be referred to as
the integral function henceforth.

Differentiating the integral function I with respect to time along the solution
of the system (3.21) yields

d
dt
I(θ, θ̇, θ0, θ̇0) = 2θ̇

α(θ)

[
g(θ, θ̇, θ̈, y, ẏ, v) − β(θ)I(θ, θ̇, θ0, θ̇0)

]
(3.35)

where g(θ, θ̇, θ̈, y, ẏ, v) is the smooth function from (3.21). g(θ, θ̇, θ̈, y, ẏ, v)
can be found from.

g(θ, θ̇, θ̈, y, ẏ, v) = B⊥(q) [M(q)q̈ + C(q, q̇)q̇ +G(q)]
− α(θ)θ̈ − β(θ)θ̇2 − γ(θ) (3.36)

In order to control the integral function it is first noted that by linearizing
(3.35) in the direction transverse to the desired trajectory one obtains

d

dτ
I• = κ1(τ)I• + κ2(τ)Y1• + κ3(τ)Y2• + p(τ)V• (3.37)

3.2. TRANSVERSE LINEARIZATION 19

where the coefficient functions are defined as

κ1(τ) = 2θ̇⋆(τ)
α(θ⋆(τ))

(
gI

(
θ⋆(τ), θ̇⋆(τ), θ̈⋆(τ), 0, 0

)
− β

(
θ⋆(τ)

))
(3.38a)

κ2(τ) = 2θ̇⋆(τ)
α(θ⋆(τ))

(
gy

(
θ⋆(τ), θ̇⋆(τ), θ̈⋆(τ), 0, 0

))
(3.38b)

κ3(τ) = 2θ̇⋆(τ)
α(θ⋆(τ))

(
gẏ

(
θ⋆(τ), θ̇⋆(τ), θ̈⋆(τ), 0, 0

))
(3.38c)

p(τ) = 2θ̇⋆(τ)
α(θ⋆(τ))

(
gv

(
θ⋆(τ), θ̇⋆(τ), θ̈⋆(τ), 0, 0

))
(3.38d)

the g-functions corresponds to the first-order terms in the Taylor expansion
of g(θ, θ̇, θ̈, y, ẏ, v) [9], i.e.

[
gI , gy, gẏ, gv

]
=
[

θ̇ ∂g

∂θ̇
−θ̈ ∂g

∂θ

2(θ̇2+θ̈2) ,
∂g
∂y
, ∂g

∂ẏ
, ∂g

∂v

]
θ=θ⋆(τ)
θ̇=θ̇⋆(τ)
θ̈=θ̈⋆(τ)

y=ẏ=v=0

(3.39)

Combining this with the dynamics of [y; ẏ], which are already linearized
through the partial feedback linearization, and defining z :=

[
I•, Y1•, Y2•

]
the

linearized error transversal to the orbit can be written compactly as

d

dτ
z = A(τ)z(τ) +B(τ)V•(τ) (3.40)

where

A(τ) =

 κ1(τ) κ2(τ) κ3(τ)
0(n−1)×1 0(n−1)×(n−1) I(n−1)×(n−1)
0(n−1)×1 0(n−1)×(n−1) 0(n−1)×(n−1)

 (3.41a)

B(τ) =

 p(τ)
0(n−1)×1
I(n−1)×1

 (3.41b)

This means that designing a controller that asymptotically satisfies the vir-
tual holonomic constraints and also converges to the desired scalar dynamics
[θ; θ̇] is equivalent to finding a control law V (τ) that stabilizes the origin of
the linear time-varying system (3.40).

20 CHAPTER 3. THEORY

3.2.4 Controlling the Transverse Error

The problem of finding a controller that stabilizes the transverse linearized
errors reduces to finding a control gain matrix such that the control law

V• = −K(τ)z, K(τ) = K(τ + t) (3.42)

stabilizes the origin of the linear time-varying system (3.40).

In [14] it is further shown that a possible choice of control law that stabilizes
the origin of (3.40) is

V• = −Γ−1bT (τ)R(τ)z(τ) (3.43)

where R(τ) is a (2n−1)×(2n−1) matrix-function satisfying R(τ) = R(τ+T),
R(τ) = R(τ)T and the Riccati equation

Ṙ(τ) + AT (τ)R(τ) +R(τ)A(τ) +G = R(τ)b(τ)Γ−1bT (τ)R(τ) (3.44)

∀τ ∈ [0, T], successfully stabilizes the origin of (3.40). However, any choice of
K(τ) that stabilizes the origin of (3.40) could be used to stabilize the desired
periodic solution. As computing a periodic solution to the Riccati equations
is in itself a challenging task (see e.g. [2,12]), in this work a different approach
is taken to stabilizing the system (3.40).

3.3 Linear Time-Varying Systems

A linear time-varying (LTV) system can be written as [3] 6

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0 (3.45)

The solution, x(t) to this system can be written as

x(t) = Φ(t, t0)x0 +
∫ t

t0
Φ(t, τ)B(τ)u(τ)dτ (3.46)

where the state transition matrix, Φ(t, t0) is defined as the unique solution
of

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0) (3.47)

with initial condition Φ(t0, t0) = I.
6Only the case where all states are measured is considered, i.e. y(t)=x(t)

3.3. LINEAR TIME-VARYING SYSTEMS 21

Now, consider the case where the system is subjected to the feedback law

u(t) = −K(t)x(t) (3.48)

Then the system can be written as

ẋ(t) =
(
A(t) −B(t)K(t)

)
x(t) (3.49)

and a new state transition matrix can be defined as the solution of
∂

∂t
Φ̃(t, t0) =

(
A(t) −B(t)K(t)

)
Φ̃(t, t0) (3.50)

and the solution of (3.49) can be written as

x(t) = Φ̃(t, t0)x0

Using the definition of the induced p-norm of a matrix A (from e.g. [8])

∥A∥p = sup
x̸=0

∥Ax∥p

∥x∥p

(3.51)

an upper bound on the p-norm of the state vector x(t) is found to be

∥x(t)∥ = ∥Φ(t, t0)x0∥ ≤ ∥Φ(t, t0)∥∥x0∥ (3.52)

Using this, (3.45) can be shown to be marginally stable if ∀ t and t0 with t ≥
t0 there exist a finite constant M such that [3]

∥Φ(t, t0)∥ ≤ M < ∞. (3.53)

If, in addition
∥Φ(t, t0)∥ → 0 as t → ∞ (3.54)

then the system (3.45) is asymptotically stable.

A more strict stability condition can also be found; it can be shown that the
system (3.45) is asymptotic exponentially stable if [8]

∥Φ(t, t0)∥ ≤ ke−λ(t−t0), ∀ t ≥ t0 ≥ 0 (3.55)

for some positive constants k and λ.

This will be utilized when searching for a controller to stabilize the transverse
dynamics.

22 CHAPTER 3. THEORY

Chapter 4

Steps in Orbital Stabilization

4.1 Illustration of Concepts on the Inverted
Pendulum

This paper aims to stabilize a pre-planned periodic brachiating trajectory in
a 24-degrees-of-freedom humanoid robot. The model is greatly simplified,
and only the 6 degrees of freedom believed to be the most important for a
brachiating motion are modeled. However, the system is still fairly complex
and the system matrices are too large for any calculations to be verified by
hand. For this reason the inverted pendulum system is introduced. Both in
order to allow for verification of the concepts described in this text, and to
serve as a reference when discussing the various concepts.

4.1.1 Modeling

The inverted pendulum consists of a point-mass attached to a rod which is
again attached to a moving cart through a revolute joint. The cart is assumed
to be able to move frictionless in the horizontal direction and is driven by
a force, F⃗ applied in the horizontal direction. The cart-pendulum system is
depicted in Figure 4.1, where M is the mass of the cart, m is the mass of
the point-mass at the end of the rod and L is the length of the rod. For
simplicity, we assume that L = 1 in the following.

23

24 CHAPTER 4. STEPS IN ORBITAL STABILIZATION

Figure 4.1: Inverted pendulum

For this system the generalized coordinates are chosen as

q =
[
x
θ

]
(4.1)

The cartesian coordinates of the two masses are given by

pm =
[
x− sin(θ)

cos(θ)

]

pM =
[
x
0

]
(4.2)

and the velocities

vm =
[
ẋ− cos(θ)θ̇
− sin(θ)θ̇

]

vM =
[
ẋ
0

]
(4.3)

4.1. ILLUSTRATION OF CONCEPTS 25

The kinetic energy is then given by

T = 1
2
(
mvT

mvm +MvT
MvM

)
= 1

2
(
mẋ2 − 2mẋθ̇ cos(θ) + (cos2(θ) + sin2(θ))θ̇2 +Mẋ2

)
= 1

2
(m+M)ẋ2 −mẋθ̇ cos(θ) + 1

2
m2θ̇2 (4.4)

The potential energy of the system can be seen to be

V = mg cos(θ) (4.5)

The Lagrangian is then

L = T − V

= 1
2

(m+M)ẋ2 −mẋθ̇ cos(θ) + 1
2
m2θ̇2 −mg cos(θ) (4.6)

The two equations of motion can now be found from

d
dt

(
∂L
∂ẋ

)
− ∂L
∂x

= F

d
dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= 0 (4.7)

Inserting (4.6) leads to

d
dt

(
∂L
∂ẋ

)
= d

dt
(
(m+M)ẋ−mθ̇ cos(θ)

)
= (m+M)ẍ−mθ̈ cos(θ) +mθ̇2 sin(θ)

d
dt

(
∂L
∂θ̇

)
= d

dt
(
−mẋ cos(θ) +mθ̇

)
= − cos(θ)ẍ+ Lθ̈ − g sin(θ)

∂L
∂x

= 0

∂L
∂θ

= mẋθ̇ sin(θ) +mg sin(θ) (4.8)

By rewriting this to matrix form, the system in matrix form is obtained

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)F (4.9)

26 CHAPTER 4. STEPS IN ORBITAL STABILIZATION

where

M(q) =
[
M +m −m cos θ
− cos θ 1

]
(4.10a)

C(q, q̇) =
[
0 mθ̇ sin θ
0 0

]
(4.10b)

G(q) =
[

0
−g sin θ

]
(4.10c)

B(q) =
[
1
0

]
(4.10d)

4.1.2 Trajectory Planning

The inverted pendulum system has one unstable equilibrium at the upright
position (θ = 0). Say we would like a periodic solution such that a point a
distance L along the rod always moves in a vertical line, i.e. we have the
virtual holonomic constraint

x = a+ L sin θ (4.11)

where a is some point along the x-axis. The syncronization functions Φ(θ)
can then be written as

Φ(θ) =
[
a+ L sin θ

θ

]
(4.12)

The first and second derivatives of the synchronization functions are com-
puted as

Φ′(θ) =
[
L cos θ

1

]

Φ′′(θ) =
[
−L sin θ

0

]

The desired trajectory can now be written as

q = Φ(θ) (4.13a)
q̇ = Φ′(θ)θ̇ (4.13b)
q̈ = Φ′′(θ)θ̇2 + Φ′(θ)θ̈ (4.13c)

4.1. ILLUSTRATION OF CONCEPTS 27

Inserting this into (4.9) and premultiplying by B⊥ = [0, 1], the zero dynamics
in the form given in (3.11) is obtained

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0 (4.14)

where α(θ), β(θ) and γ(θ) are computed according to (3.10)

α(θ) = B⊥M
(
Φ(θ)

)
Φ′(θ)

=
[
0 1

] [M +m −m cos θ
− cos θ 1

] [
L cos θ

1

]
= 1 − L cos2(θ) (4.15a)

β(θ) = B⊥

[
C
(
Φ(θ),Φ′(θ)

)
Φ′(θ) +M

(
Φ(θ)

)
Φ′′(θ)

]
=
[
0 1

] ([0 mθ̇ sin θ
0 0

] [
−L sin θ

0

]
+
[
M +m −m cos θ
− cos θ 1

] [
−L sin θ

0

])
= L sin(θ) cos(θ) (4.15b)

γ(θ) = B⊥G
(
Φ(θ)

)
=
[
0 1

] [0
−g sin θ

]
= −g sin θ (4.15c)

This means that if the virtual holonomic constraints are perfectly satisfied,
i.e. (4.13) holds, then the time-evolution of θ(t) and θ̇(t) are uniquely defined
given the initial conditions θ(0) = θ0 and θ̇(0) = θ̇0. This can be used to
define the desired trajectory θ⋆(t). Say we would like to stabilize the periodic
orbit in which the pendulum swings periodic between θmin = −0.1 and θmax =
0.1. This trajectory can then be defined by providing the synchronization
functions Φ(θ) and initial conditions for (4.14). In this case initial conditions
that lead to the desired motion is θ⋆(0) = θmin = −0.1 and θ̇⋆(0) = 0, and
the desired trajectory is given as the solution of (4.14) given these initial
conditions.

4.1.3 Feedback Linearization

The error for the x-coordinate can be written as

y = x− a− L sin θ.

28 CHAPTER 4. STEPS IN ORBITAL STABILIZATION

Hence, the generalized coordinates, q, can now be written as the sum of their
desired value, Φ(θ) and the error1.

q =
[
x
θ

]
=
[
y
0

]
+
[
a+ L sin θ

θ

]
︸ ︷︷ ︸

Φ(θ)

. (4.16)

and it’s first and second derivatives

q̇ =
[
1 L cos θ
0 1

]
︸ ︷︷ ︸

L(θ,y)

[
ẏ

θ̇

]

= Φ′(θ)θ̇ +
[
ẏ
0

]

q̈ =
[
1 L cos θ
0 1

]
︸ ︷︷ ︸

L(θ,y)

[
ÿ

θ̈

]
+
[
−Lθ̇2 sin θ

0

]
︸ ︷︷ ︸

N(θ,θ̇,y,ẏ)

= Φ′(θ)θ̈ + Φ′′(θ)θ̇2 +
[
ÿ
0

]
. (4.17)

Using the theory from Section 3.2.2 we then have that a control law of the
form

u = N−1(θ, y)
(
v −R(θ, θ̇, y, ẏ)

)
(4.18)

where N(θ, y) and R(θ, θ̇, y, ẏ) are computed as follows

N(θ, y) =
[
I(n−1), 0(n−1)×1

]
L−1(θ, y)M−1(q)B(q) (4.19)

=
[
I(n−1), 0(n−1)×1

]
L−1(θ, y)M−1(q)B(q) (4.20)

R(θ, θ̇, y, ẏ) =
[
I(n−1), 0(n−1)×1

]
L−1(θ, y)

×
(
M−1(q)[−C(q̇, q)q̇ −G(q)] − L̇(θ, y)

[
ẏ

θ̇

])
(4.21)

will cancel the non-linear terms of the y-dynamics, such that we can write

ÿ = v. (4.22)

The matrix functions N(θ, y) and R(θ, θ̇, y, ẏ) are implemented as functions
calling the appropriate system matrix functions, and the explicit forms of
these matrices are therefore omitted.

1The error in the θ-coordinate is identically zero as θ is the quantity that parametrizes
the motion.

4.1. ILLUSTRATION OF CONCEPTS 29

4.1.4 Scalar dynamics

Premultiplying the equations of motion by B⊥ and inserting the above rela-
tions yields

B⊥(q)
[
M(q)

(
Φ′(θ)θ̈ + Φ′′(θ)θ̇2 +

[
v
0

])
+ C(q, q̇)

(
Φ(θ)θ̇ +

[
ẏ
0

])
+G(q)

]
= 0

B⊥(q)M(q)Φ′(θ)θ̈ +B⊥(q) (M(q)Φ′′(θ) + C(q, q̇)Φ(θ)) θ̇2 +G(q)

= −B⊥(q)M(q)
[
v
0

]
−B⊥(q)C(q, q̇)

[
ẏ
0

]
(4.23)

Noting that the system matrices are in fact only functions of θ, we can write

M(q) = M(Φ(θ))
C(q, q̇) = C(Φ(θ),Φ′(θ))θ̇
G(q) = G(Φ(θ))

Hence, (4.23) can be written as

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = g(θ, θ̇, θ̈, y, ẏ, v) (4.24)

where α, β and γ are given in (4.15), and g is the right hand side of the
equation (4.23), i.e.

g(θ, θ̇, θ̈, y, ẏ, v) = −B⊥(q)
(
M(q)

[
v
0

]
+ C(q, q̇)

[
ẏ
0

])

= −
[
0 1

] ([M +m −mL cos θ
− cos θ L

] [
v
0

]
+
[
0 mLθ̇ sin θ
0 0

] [
ẏ
0

])
= v cos(θ) (4.25)

The partial derivatives of g are

∂g

∂θ
= −v sin(θ)

∂g

∂v
= cos(θ)

∂g

∂θ̇
= ∂g

∂θ̈
= ∂g

∂y
= ∂g

∂ẏ
= 0.

From (3.40) we have that the linearized transverse dynamics are given by

d

dτ
z = A(τ)z(τ) +B(τ)V•(τ)

30 CHAPTER 4. STEPS IN ORBITAL STABILIZATION

where

A(τ) =

 κ1(τ) κ2(τ) κ3(τ)
0(n−1)×1 0(n−1)×(n−1) I(n−1)×(n−1)
0(n−1)×1 0(n−1)×(n−1) 0(n−1)×(n−1)



B(τ) =

 p(τ)
0(n−1)×1
I(n−1)×1


and κ1(τ), κ2(τ), κ3(τ) and p(τ) are defined in (3.38). Inserting the partial
derivatives of g into (3.39) we obtain[

gI , gy, gẏ, gv

]
=
[

θ̇ ∂g

∂θ̇
−θ̈ ∂g

∂θ

2(θ̇2+θ̈2) ,
∂g
∂y
, ∂g

∂ẏ
, ∂g

∂v

]
θ=θ⋆(τ)
θ̇=θ̇⋆(τ)
θ̈=θ̈⋆(τ)

y=ẏ=v=0

=
[
0, 0, 0, cos (θ⋆(τ))

]
inserting this into the equations (3.38), along with the explicit expressions
for α(θ) and β(θ) from (4.15) we obtain explicit expressions for the elements
of the time-varying system matrices A(τ) and B(τ).

κ1(τ) = 2θ̇⋆(τ)
α(θ⋆(τ))

(
gI

(
θ⋆(τ), θ̇⋆(τ), θ̈⋆(τ), 0, 0

)
− β

(
θ⋆(τ)

))
= −2Lθ̇⋆(τ) sin (θ⋆(τ)) cos (θ⋆(τ))

1 − L cos2 (θ⋆(τ))

κ2(τ) = 2θ̇⋆(τ)
α(θ⋆(τ))

gy

(
θ⋆(τ), θ̇⋆(τ), θ̈⋆(τ), 0, 0

)
= 0

κ3(τ) = 2θ̇⋆(τ)
α(θ⋆(τ))

gẏ

(
θ⋆(τ), θ̇⋆(τ), θ̈⋆(τ), 0, 0

)
= 0

p(τ) = 2θ̇⋆(τ)
α(θ⋆(τ))

gv

(
θ⋆(τ), θ̇⋆(τ), θ̈⋆(τ), 0, 0

)
= 2θ̇⋆(τ) cos (θ⋆(τ))

1 − L cos2 (θ⋆(τ))
This constitutes the linearized transverse dynamics, and a controller for this
system can now be found. The search for a stabilizing controller is performed
by the MATLAB toolbox described shortly and details of this is omitted from
this section.

4.2. IMPLEMENTATION 31

4.2 Implementation

A controller based on the previously discussed concepts has been designed
and implemented using a combination of MATLAB and Simulink. The
Simulink diagram of the complete feedback-system is depicted in Figure 4.2
and consists of the following two main components

System is a module taking the control variable u as input, and providing
measurements of the states, [q; q̇] as outputs. In this thesis the system
block is simply a simulation of the system dynamics, based on the
derived equations of motion. Rewriting the equations of motion, the
double derivative of the coordinates, q, can be written as

q̈ = M−1(q)
(
B(q)u− C(q, q̇)q̇ −G(q)

)
(4.26)

The system block then integrates this twice to obtain the state vec-
tor [q; q̇]. When implemented on a physical robot, the system module
would be replaced by some I/O-module communicating with the robot.

Control implements the controller, i.e. computes the desired control input
u, given some measurement of the states [q; q̇]. This module is further
divided into submodules implementing the various parts of the control
problem. A more thorough description of how this is done will follow
in the remaining of this chapter.

Figure 4.2: Simulink model of the system

The controller module is shown in Figure 4.3 and consists of the four sub-
modules

32 CHAPTER 4. STEPS IN ORBITAL STABILIZATION

Transverse Error Calculation calculates the error in the transverse di-
rection, x⊥.

Indexing the Moving Poincaré Section computes the scalar variable ψ
that indexes the distance along the desired orbit.

Controlling the Transverse Error computes the auxilary control input,
v.

Partial Feedback Linearization computes the full control input based on
partial feedback linearization and the auxilary control input.

Each of these modules will be described in more detail in the following sec-
tions.

Figure 4.3: Simulink model of the control system

4.2.1 Transverse Error Calculation

The transverse error can be written as

x⊥ =

Iy
ẏ

 (4.27)

where I is the integral function, and y and ẏ are the errors in the actu-
ated coordinates and their derivatives, respectively. These can be computed

4.2. IMPLEMENTATION 33

according to

I = θ̇2 − Ψh(θ, θ0)θ̇2
0 + Ψp(θ, θ0)

y =
[
I 0

] (
q − Φ(θ)

)
ẏ =

[
I 0

] (
q̇ − Φ′(θ)θ̇

)
the y and ẏ variables are easily computed on-line. However, computing
I(θ, θ̇, θ0, θ̇0) requires solving a double-integral where the integration variable
of the outer integral is the lower limit of the inner integral. This becomes
evident when studying (3.34).

I(θ, θ̇, θ0, θ̇0) = θ̇2 − Ψh(θ, θ0)θ̇2
0 + Ψp(θ, θ0) (4.28)

Ψh(θ, θ0) = exp
{

−2
∫ θ

θ0

β(τ)
α(τ)

dτ

}

Ψp(θ, θ0) =
∫ θ

θ0
Ψh(θ, s)2γ(s)

α(s)
ds

Solving this on-line is therefore hard to do. However, as I can be written as

I(θ, θ̇) = θ̇2 + Ψ(θ) (4.29)

where
Ψ(θ) = Ψh(θ)θ̇2

0 − Ψp(θ) (4.30)

and the desired trajectory [θ⋆; θ̇⋆] is known offline from solving

α(θ⋆)θ̈⋆ + β(θ⋆)θ̇2
⋆ + γ(θ⋆) = 0

from initial conditions θ⋆(0) = θ⋆0, θ̇⋆(0) = θ̇⋆0, it is possible to compute the
double integral off-line for a range of values for θ that slightly exceeds that
of θ⋆, say

θ ∈ [θ⋆(0) − δ1, θ⋆(T) + δ2] (4.31)

where δ1 and δ2 are some positive constants. A simple look-up-table can then
be used to obtain the value for the function Ψ(θ) given a specific measurement
of θ. The remainder of I(θ, θ̇) is then easily computed on-line by squaring the
measured θ̇ and adding the value of Ψ(θ) obtained from the look-up-table.
The Simulink implementation of this is shown in Figure 4.4.

34 CHAPTER 4. STEPS IN ORBITAL STABILIZATION

Figure 4.4: Simulink model of the error calculation module

4.2.2 Indexing the Moving Poincaré Section

From e.g. [15] we have that if a control law, of the form

V• = K(τ)
[
I•;Y1•;Y2•

]
, K(τ) = K(τ + t) (4.32)

stabilizes the system of linearized transverse errors, (3.40), then there exist
a control law, v(t) of the form

v(t) = K(τ)x⊥(t) (4.33)

that renders the T-periodic solution of the system expononentially orbitally
stable. This problem can thus be split into two parts:

1. Finding a matrix of control gains K(τ) such that V• stabilizes the
transverse linearized dynamics, (3.40).

2. Finding τ such that [q(t); q̇(t)] ∈ S(τ) ∩ Oε(q⋆) where Oε is defined in
(3.14).

Searching for control gains K(τ) that stabilizes the transverse linearized er-
rors can be done off-line. The method that were used to find this K in
this work will be described shortly. However, finding τ = {s : [q(t); q̇(t)] ∈
S(s) ∩ Oε(q⋆)} must be done on-line, and is in general a difficult task as it
involves a non-linear optimization problem [9]. However, this problem can
be simplified by utilizing the family of planes that are tangential to the flow
of a solution [q; q̇].

TS(t) =

[q(t); q̇(t)] ∈ R2n :
[
q − q⋆(t)
q̇ − q̇⋆(t)

]T [
q̇⋆(t)
q̈⋆(t)

]
= 0

 (4.34)

4.2. IMPLEMENTATION 35

such that τ can be written as

τ = {s : [q(t); q̇(t)] ∈ TS(s) ∩ Oε(q⋆)} (4.35)

Finding this is considerably easier, as it no longer involves explicit knowing
the generally Poincaré surface S(t).

Further, if θ = θ⋆(t) is a monotonic function, then the index τ = ψ(θ, θ̇) can
be found as the inverse of ψ(θ) for θ⋆(t), such that ψ(θ⋆(t)) = t. This is the
approach taken when considering both the gorilla system and the inverted
pendulum system. In the gorilla case, θ = θ⋆(t) is indeed a monotonic func-
tion, and τ can then be found simply as τ = {s : θ⋆(s) = θ}. In the case of
the inverted pendulum, θ = θ⋆(t) is not a monotonic function. However, a
function that is monotonic over a period is the two-argument arctan-function
(atan2 in MATLAB) ψ(θ, θ̇) = arctan 2(θ̇, θ). This can therefore be used to
find τ in the inverted pendulum case.

4.2.3 Controlling the Transverse Error

This module aims to find a matrix of T-periodic gains, K(τ), that stabilizes
the transverse linearized dynamics, (3.40). As mentioned in Chapter 3, one
way of doing this is to compute the solution to the periodic Riccati equation

Ṙ(τ) + AT (τ)R(τ) +R(τ)A(τ) +G = R(τ)b(τ)Γ−1bT (τ)R(τ) (4.36)

and then choose the matrix of control gains as

K(τ) = −Γ−1bT (τ)R(τ) (4.37)

In this work, a different approach is taken. As any periodic time-varying ma-
trix function of control gains K(τ) that stabilizes the transverse linearized
error dynamics, we simply search for matrix functions doing this. To do this,
we first reformulate the problem as an optimization problem. This can be
done by first parametrizing the control gains by some vector of optimiza-
tion coefficients c = [c1, c2, . . . , cp] where p is the number of optimization
coefficients. The gain matrix function can now be written as

K = K(τ, c) (4.38)

Next, a cost function f depending on the optimization coefficients must be
defined. From the discussion on stability of linear time-varying systems in

36 CHAPTER 4. STEPS IN ORBITAL STABILIZATION

Section 3.3 we observe that the criterion for marginal stability, asymptotic
stability and asymptotic exponential stability, all depend on the norm of the
state transition matrix Φ(t, t0). For this reason we propose a cost function
that also depend on the norm of Φ(t, t0), namely the cost function

f(c) =
∫ T

t0
w(τ)∥Φ(τ, t0)∥dτ (4.39)

where w(t) is some window function and Φ(τ, t0) is the state transition matrix
for the closed-loop linear time-varying system (3.40)

d

dτ
z =

(
A(τ) −B(τ)K(τ, c)

)
z(τ) (4.40)

where A(τ) and B(τ) are defined in (3.41).

We note that this choice of cost function is highly configurable due to the
presence of the weight function w(t). Placing high weights on values on
∥Φ(t, t0)∥ when t is close to T , will cause the optimization to favor control
gains that lead to aggressive behavior, i.e. the control gains will allow large
errors initially in order to achieve a slightly smaller value for ∥Ψ(t, t0)∥ to-
wards the end of the period. Equivalently, placing high weights on values
when t is close to 0 will cause large errors to be possible at the end of the
period. The weight function should favor the norm towards the end of the
period, but without allowing too large errors at the start. A weight function
that lead to good results in simulations is

w(τ) = eτ − et0

eT − et0
(4.41)

This is an exponentially increasing weight function, starting at 0 and ending
up at 1 the end of the period.

4.2.4 Partial Feedback Linearization

The partial feedback linearization module is a straightforward implementa-
tion of the concepts described in Section 3.2.2. The output of the module, u
is computed according to (3.30), i.e.

u = N−1(θ, y)
(
v −R(θ, θ̇, y, ẏ)

)
(4.42)

4.3. DYNAMICS OF THE MONKEY ROBOT 37

where

N(θ, y) =
[
I(n−1), 0(n−1)×1

]
L−1(θ, y)M−1(q)B(q) (4.43)

R(θ, θ̇, y, ẏ) =
[
I(n−1), 0(n−1)×1

]
L−1(θ, y)

×
(
M−1(q)[−C(q̇, q)q̇ −G(q)] − L̇(θ, y)

[
ẏ

θ̇

])

L(θ, y) =
[
I(n−1) 0(n−1)×1

01×(n−1) 0

]
+
[
0n×(n−1) Φ′(θ)

]
(4.44)

As the system matrix functions M(q), C(q, q̇), G(q) and B(q), as well as
the synchronization functions, Φ(θ) are all known, this control law can be
implemented directly.

4.3 Dynamics of the Monkey Robot

The proposed brachiating motion consists of two distinct phases with dis-
tinct dynamical models. During the single-support phase an underactuated
6-degrees-of-freedom model is used. This model is underactuated due to the
lack of torque about the handhold. During double-support the robot be-
comes fully actuated as it is now able to move to any desired configuration
as long as the required amount of torques are available. If this is not the
case, some dynamic constraints would show up. However, in the following
it is assumed that the preplanned desired trajectory stays well within the
bounds of available torques such that the assumption that enough torque is
available is valid. The following sections presents briefly how to compute the
appropriate models for single-support and double-support phases.

4.3.1 Single-support Phase

During single support, as mentioned, the system is naturally underactuated
due to the lack of torque about the handhold. To arrive at a model for
this phase, the kinetic energy for each link in the robot is considered. The
procedure can be sumarized as follows

1. For each of the links constituting the robot, compute the Jacobian
relating the velocities in the local link frame to the velocities in the
inertial frame, i.e. compute Jωi

(q) and Jvi
such that the rotational and

38 CHAPTER 4. STEPS IN ORBITAL STABILIZATION

linear velocities in the inertia frame, ωI and vi, can be expressed as

ωi = Jωi
(q)q̇

vi = Jvi
q̇ (4.45)

where q is the vector of generalized coordinates and q̇ contains the
time-derivatives of the generalized coordinates.

2. Find the total kinetic and potential energy of the system by summing
the contributions from each link. This can be done using [16]

K = 1
2

n∑
i=1

(
mi(Jvi

(q)q̇)TJvi
(q)q̇ + Jωi

(q)q̇)T IiJωi
(q)q̇

)

= 1
2
q̇TM(q)q̇

and
P =

n∑
i=1

Pi =
n∑

i=1
gT rimi

where m is the mass I is the inertia tensor, g is the gravity vector, r
is the vector from the origin of the inertia frame to the center of mass
expressed in the inertia frame. The subscript i denotes the link.

3. Compute the system matrix functions as follows [16]. M(q) can be read
directly from the expression for kinetic energy:

M(q) =
n∑

i=1

(
miJ

T
vi

(q)Jvi
(q) + (JT

ωi
(q)IiJωi

(q)
)

G(q) is a vector function whos k-th element is given by

Gk(q) = ∂P (q)
∂qk

and C(q, q̇) is a matrix function where the (j, k)-th element is defined
as

ckj =
n∑

i=1

1
2

(
∂Mkj

∂qi

+ ∂Mki

∂qj

− ∂Mij

∂qk

)
where Mij is the (i, j)-th element of M(q). B(q) is a matrix function
describing how the control inputs influence the dynamics. In the gorilla
robot only the last (n − 1) coordinates are actuated, leading to the
constant matrix

B(q) = B =
[

0
I(n−1)

]

4.3. DYNAMICS OF THE MONKEY ROBOT 39

This leads to equations of motion of the form

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u

4.3.2 Double-support Phase

The transition between single-support and double-support occurs the mo-
ment the free hand of the robot grips the target handhold. From this mo-
ment and throughout the double-support phase, the robot is firmly holding
on to two subsequent handholds. Some previously unmodeled contact forces
from the front handhold will now impact the system dynamics. To include
these, the model valid for the single-support phase must be modified. How
this is done is shown in [1] and the main mechanics are described here for
convenience.

The configuration of the robot during the double-support phase is shown in
Figure 4.5. From geometric limits on the configuration during the double-
support phase, it is clear that gripping the target handhold introduces some
physical holonomic constraints to the system

θ3 = fθ3(θ1, θ2) (4.46a)
θ4 = fθ4(θ1, θ2) (4.46b)

where fθ3(q) and fθ4(q) are some (fairly complex) geometric functions defin-
ing the values of θ3 and θ4 during the loop phase2.

The model derived for the single-support phase becomes valid for the double-
support phase when the contact forces are included. This can be written as

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u− JT (q)λ (4.47)

where λ a vector of contact forces resulting from the physical constraint.

The generalized coordinates are split into one part representing the minimum
set of coordinates needed during the loop phase, qm, and one part represent-
ing the redundant coordinates qr. In the case of the monkey robot this can
be written as

qm =
[
θ1 θ2 θ5 θ6

]T
qr =

[
θ3 θ4

]T
2For explicit expressions for these functions the reader is referred to [1]

40 CHAPTER 4. STEPS IN ORBITAL STABILIZATION

Figure 4.5: Robot configuration during loop phase

4.3. DYNAMICS OF THE MONKEY ROBOT 41

As qr ∈ R2 is now written as a function of qm ∈ R4, the equations of motion
contains 4 unknown coordinates and 2 unknown constraint forces. As the
rank of the dimension of the system matrix functions is 6, we are able to
eliminate qr and λ from the equations, leaving the reduced equations of
motion that are valid for the double-support phase.

Mr(qr)q̈r + Cr(qr, q̇r)q̇r +Gr(qr) = Br(qr)u (4.48)

where Mr and Cr are 4-by-4 matrix functions, Gr is a 4-by-1 vector function
and Br is a 4-by-5 matrix function. Hence the reduced system is actually
overactuated by degree 1.

4.3.3 Phase Switching

The desired trajectory proposed in [1] is designed such that the transitions
between phases are C1-smooth, i.e. there are no discontinuities in neither the
angles nor angular velocities of the physical joints. Note that this only applies
to the angles of the joints. Due to the hybrid nature of the proposed motion,
jumps in the generalized coordinates will and should occur as a relabeling
of the coordinates is needed in order to choose one of the coordinates as the
monotonic quantity θ.

Transitions between the two phases occur when certain switching conditions
have been met. One obvious condition is that the target handhold must
be reachable. However, as discussed in [1], it is not desirable to switch
immediately when the front handhold becomes reachable, as this would leave
the system vulnerable to disturbances. In addition, switching as soon as the
target handhold becomes reachable necessarily requires the front arm to be
completely stretched out, causing a singularity in the elbow joint. For this
reason it is desirable to perform a switch when the angle about the handhold
from which the robot is suspended, becomes slightly larger than the minimum
angle from which the front handhold can be reached. The minimal angle
from which the front handhold can be reached, θmin can be computed using
geometric relations. It is intuitively clear that this angle is found when both
the rear and front arms are completely stretched out, i.e. θ2 = θ4 = 0. If the
point PG = [xG; yG] is the position of the target handhold, and P0 = [x0; y0]
is the position of the current handhold, then the minimum switching angle
is found as follows

θmin = arcsin


√

(xG − x0)2 + (yG − y0)2

2(l7 + l8)

+ arctan
(
yG − y0

xG − x0

)
(4.49)

42 CHAPTER 4. STEPS IN ORBITAL STABILIZATION

where l7 is the length of the upper arm of the robot and l8 is the length of
the lower arm.

Because of the aforementioned problems with singularities and robustness,
the switching condition for θ is chosen as

θ = θmin + ε (4.50)

for some small ε defining the desired amount of overswing.

However, this is not a sufficient condition for a phase switch to be physically
possible. For the robot to actually be in a position where it is able to grip
the front handhold, the physical constraints (4.46) that are present in the
double-support model must be respected. This is an interesting case, as it
requires constraints that are enforced physically in the double-support phase
to be enforced virtually at the end of the single-support phase in order for
the switching conditions to be met. This presents a challenge when designing
a controller that stabilizes the hybrid desired trajectory.

4.4 Stabilization of Preplanned Brachiating
Motion

The proposed brachiation motion consists of two continuous phases connected
by discrete jumps. In the ideal case, when the virtual holonomic constraints
are perfectly satisfied, the jump simply consists of a relabeling of the gener-
alized coordinates. It is worth mentioning a few characteristics of this hybrid
motion.

• During the single-support phase, the system is underactuated of degree
one, and the concept of transverse linearization may be applied. How-
ever as transverse linearization in the continuous case is concerned with
asymptotic stability, it remains unclear whether a controller designed
based on transverse linearization can guarantee that the switching con-
ditions are satisfied.

• When in double-support phase, the system is overactuated of degree
one. It is then possible to move the robot to any desired configuration
(given that the amount of torque available is sufficient) and conven-
tional non-linear control techniques may be applied in order to achieve
convergence to the desired trajectory. For instance the full state feed-
back linearization described in e.g. [16] may be used.

4.4. STABILIZATION OF PREPLANNED MOTION 43

• If the virtual holonomic constraints are perfectly satisfied, no impact
forces effect the system as the phase switches ensures smooth tran-
sitions between the different continuous states. However, in an actual
robot this will not be the case and impact forces will impact the dynam-
ics to some extent. The controller should therefore be robust enough to
stabilize the desired trajectory even when influenced by impact forces.

It becomes evident that the control problem can be split into two parts that
can be designed independent of each other:

1. During the single-support phase, the motion is subject to dynamic con-
straints on the motion of [θ; θ̇]. In this phase a controller should be de-
signed with a focus towards satisfying the switching conditions. The er-
ror throughout the motion should be kept at a minimum, but the main
priority should be to reach a configuration where a phase transition is
indeed possible. As an error at the end of the phase could cause the
robot to miss the target handhold this would obviously have a greater
negative impact on the system than not being perfectly aligned with
the target trajectory throughout the entire motion. It might be benefi-
cial to divide the swing-controller into a set of different controllers with
the switching between controllers to be determined by e.g. the distance
traveled along the trajectory. This would allow a ”swing”-controller to
ensure sufficient proximity to the desired orbit throughout the first part
of the swing, while a ”grasping”-controller might be used to ensure the
successful grasping of the target handhold when the distance to the
target handhold is less than some threshold. This approach is taken in
e.g. [11] where it was applied to a two-link brachiating robot.

2. During the double-support phase a controller based on feedback lin-
earization is proposed. How to compute such a controller is well-
documented (see e.g. [8] [16]), and the desired trajectory during the
double-support phase should be possible to stabilize with relative ease.

The focus of this thesis is to achieve the first part, i.e. to find a controller
that successfully brings the states during the single-support phase to a set
in the state-space where the switching conditions are met and a jump to
the double-support phase can be performed without violating any physical
constraints.

As a relaxation of this problem, one can consider the continued single-support
phase. We define the continued single-support phase as the trajectory the
system exert if no phase switch is performed at the end of the swing phase
while the virtual holonomic constraints are perfectly satisfied. This gives rise

44 CHAPTER 4. STEPS IN ORBITAL STABILIZATION

−1.5 −1 −0.5 0 0.5 1 1.5
−4

−3

−2

−1

0

1

2

3

4

θ

dθ
/d

t

Sngle−support phase
Continued single−support phase

Initial position

End of single−support phase

Figure 4.6: Phase plot of the θ during swing phase. The blue line shows the
single-support phase while the green line shows the continued single-support
phase.

to a continuous, pendulum-like motion in which the robot swings back and
forth while suspended from one arm. This continued single-support phase
is shown as the green line in Figure 4.6. Stabilizing the continued single-
support phase can be done asymptotically and is considerably easier than
stabilizing the regular single-support phase in finite time. As an initial step
in stabilizing the full motion we therefore propose to stabilize the continued
single-support phase, as this is a necessary condition for stabilizing the reg-
ular single-support phase. If the continued single-support phase can not be
stabilized, there is no hope to stabilize the regular single-support phase.

Chapter 5

Results and Discussion

In this chapter simulation results for both the monkey robot and the inverted
pendulum are presented and discussed for a number of cases.

First, the correctness of the partial feedback linearization will be verified by
running simulations with only this part of the controller engaged, i.e. with
the auxiliary control input, v(t) set to zero. The systems will be simulated
for a number of initial conditions and the behavior will be asserted. In this
case, the system control variable, u(t) is given by

u(t) = N−1(θ, y)R(θ, θ̇, y, ẏ) (5.1)

and the dynamics of y is given by

v(t) = 0
ÿ(t) = v(t) = 0

ẏ(t) = ẏ(0) +
∫ t

0
ÿ(τ)dτ = ẏ(0) = ẏ0

y(t) = y(0) +
∫ t

0
ẏ(τ)dτ = y0 + ẏ0t (5.2)

Next, a simple controller that will asymptotically zero the error [y; ẏ] in the
actuated states will be tested. The control law is in the form

v(t) = −Ky

[
y
ẏ

]
(5.3)

= −
[
0 Ky

]
x⊥(t) (5.4)

45

46 CHAPTER 5. RESULTS AND DISCUSSION

for some appropriate constant matrix Ky. By noting that the dynamics of
y(t) can be written as the linear time-invariant system

[
ẏ
ÿ

]
=
[
0 I
0 0

] [
y
ẏ

]
+
[
0
I

]
v (5.5)

it becomes evident that such a stabilizing Ky can be found with the use of
well-established linear system theory. The approach taken in this work is
simply to place the poles of the system (5.5) such that the real value of all
poles is less than zero.

Finally, simulations will be run on the systems with a controller for the full
transverse dynamics engaged, i.e. with a control law

v(t) = −K(τ)x⊥(t) (5.6)

Finding such a controller is considerably more challenging than in the previ-
ous case as it involves controlling the linear time-varying system of transverse
linearized dynamics.

5.1 Inverted Pendulum

The inverted pendulum system were simulated for initial conditions of the
form

θ0 = θ⋆(0) + δθ (5.7a)
θ̇0 = θ̇⋆(0) + δθ̇ (5.7b)

q0 = Φ(θ0) +
[
y0
0

]
(5.7c)

q̇0 = Φ′(θ0)θ̇0 +
[
ẏ0
0

]
(5.7d)

These initial conditions are chosen such that if the systems are initialized
with [θ; θ̇] away from the desired orbit, the rest of the states [q; q̇] satisfy the
virtual holonomic constraints as long as y0 = ẏ0 = 0. This is consistent with
the notation used previously, where y and ẏ specifies the amount of error in
the actuated coordinates with respect to the virtual holonomic constraints.

5.1. INVERTED PENDULUM 47

5.1.1 Feedback Linearization

In this case only the partial feedback linearization is active. As the auxiliary
control input, v(t) is set to identically zero, the control input to the system
becomes

u(t) = N−1(θ, y)R(θ, θ̇, y, ẏ) (5.8)

First, the system is simulated starting exactly from the desired starting po-
sition, i.e. the initial conditions are given by (5.7) with

δθ = δθ̇ = y0 = ẏ0 = 0 (5.9)

Figure 5.1a shows the phase plot of both [θ; θ̇] and [x; ẋ]. Figure 5.1b shows
the time-evolution of x⊥(t). As expected, the actual orbit coincides with
the desired orbit, and the errors x⊥ are identically zero, indicating that the
partial feedback linearization works as intended.

Next, the system is simulated from the initial conditions (5.7) with

δθ = −0.1
δθ̇ = 0.1
y0 = ẏ0 = 0

i.e. the virtual holonomic constraints are perfectly satisfied, but [θ, θ̇] is
initialized away from the desired orbit. The resulting phase plots are shown
in Figure 5.2a and x⊥(t) is shown in Figure 5.2b. From the plots we see that
the result is a closed periodic orbit, but not the desired one.

It is also interesting to see how the system responds when initialized such
that [θ; θ̇] is on the desired orbit, while [x, ẋ] is away from the desired orbit.
This is done by choosing

δθ = δθ̇ = 0
y0 = −0.1
ẏ0 = 0.1

This is shown in Figure 5.3. The expected result is that ẏ(t) = y0 is constant,
while y(t) is a ramp function with slope ẏ0 and initial value y0. This is exactly
what is seen in Figure 5.3b. The result is also verified by Figure 5.3a where
we see that the x-coordinate drifts away from the desired orbit.

48 CHAPTER 5. RESULTS AND DISCUSSION

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Phase plots

x/theta

dx
/d

th
et

a

(x, dx)
(x*, dx*)
(θ, dθ)
(θ*, dθ*)
(x

0
,dx

0
)

(θ
0
, dθ

0
)

(a) Phase plots. The desired orbits are perfectly overlapped by
the orbit experienced by the system.

0 1 2 3 4 5 6 7
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

x
perp

time [s]

I
y
dy

(b) Time-evolution of x⊥.

Figure 5.1: Phase plots and time-evolution of error when initialized with
δθ = δθ̇ = y0 = ẏ0 = 0.

5.1. INVERTED PENDULUM 49

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−1.5

−1

−0.5

0

0.5

1

1.5
Phase plots

x/theta

dx
/d

th
et

a

(x, dx)
(x*, dx*)
(θ, dθ)
(θ*, dθ*)
(x

0
,dx

0
)

(θ
0
, dθ

0
)

(a) Phase plot.

0 1 2 3 4 5 6 7
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
perp

time [s]

I
y
dy

(b) Time-evolution of x⊥.

Figure 5.2: Phase plots and time-evolution of error when initialized with
δθ = −0.1, δθ̇ = 0.1 and y0 = ẏ0 = 0.

50 CHAPTER 5. RESULTS AND DISCUSSION

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x/theta

dx
/d

th
et

a

(x, dx)
(x*, dx*)
(θ, dθ)
(θ*, dθ*)
(x

0
,dx

0
)

(θ
0
, dθ

0
)

(a) Phase plot.

0 1 2 3 4 5 6 7 8
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time [s]

E
rr

or

I
y
dy

(b) Time-evolution of x⊥.

Figure 5.3: Phase plots and time-evolution of error when initialized with
δθ = δθ̇ = 0, y0 = −0.1 and ẏ0 = 0.1.

5.1. INVERTED PENDULUM 51

5.1.2 Enforcing the Virtual Holonomic Constraints

As an initial attempt to stabilize the the desired orbit, one might attempt
to bring the errors [y; ẏ] to zero. This is not difficult to do as [y; ẏ] evolves
according to the linear time-invariant system (5.5). As mentioned, standard
control theory for LTI systems is applicable, and a stabilizing control law on
the form

v(t) = −Ky

[
y
ẏ

]
(5.10)

can be found e.g. by using the built-in MATLAB function place. In this case
the linear system has two states y and ẏ and thus has two poles. By placing
these in the left half plane (with real value less than zero) the closed-loop
system [

ẏ
ÿ

]
=
([

0 1
0 0

]
−
[
0
1

]
Ky

)[
y
ẏ

]
(5.11)

is asymptotically stable [3]. We choose to place the poles in [−2,−5] by using
the MATLAB command

>> K = place(A,B,[-2 , -5])

The output of this is the vector of control gains Ky

Ky =
[
10 7

]
.

This stabilizes the y-dynamics, such that the control law

v(t) = −
[
0 Ky

]
x⊥(t) (5.12)

stabilizes the y and ẏ parts of x⊥. The system is simulated with an initial
error to both [x; ẋ] and [y; ẏ], specifically

δθ = −0.1 (5.13a)
δθ̇ = 0.1 (5.13b)
y0 = −0.1 (5.13c)
ẏ0 = 0.1. (5.13d)

The resulting phase plots and x⊥ are shown in Figure 5.4. It is clear that this
controller asymptotically enforces the virtual holonomic constraints. How-
ever, as there is still an error in [θ, θ̇], the orbit of [x; ẋ] is not the desired

52 CHAPTER 5. RESULTS AND DISCUSSION

orbit [x⋆; ẋ⋆]. This is because [
θ(t)
θ̇(t)

]
̸=
[
θ⋆(t)
θ̇⋆(t)

]

so that [
x(t)
ẋ(t)

]
=
[

ϕ(θ(t))
ϕ′(θ(t))θ̇(t)

]
̸=
[

ϕ(θ⋆(t))
ϕ′(θ⋆(t))θ̇⋆(t)

]
=
[
x⋆(t)
ẋ⋆(t)

]

Hence, simply enforcing the virtual holonomic constraints does not, in gen-
eral, stabilize the desired periodic orbit.

5.1. INVERTED PENDULUM 53

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−1.5

−1

−0.5

0

0.5

1

1.5
Phase plots

x/theta

dx
/d

th
et

a

(x, dx)
(x*, dx*)
(θ, dθ)
(θ*, dθ*)
(x

0
,dx

0
)

(θ
0
, dθ

0
)

(a) Phase plot.

0 1 2 3 4 5 6 7
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
perp

Time [s]

E
rr

or

I
y
dy

(b) Time-evolution of x⊥.

Figure 5.4: Phase plot and time-evolution of error when initialized with
δθ = −0.1, δθ̇ = 0.1, y0 = −0.1 and ẏ0 = 0.1.

54 CHAPTER 5. RESULTS AND DISCUSSION

5.1.3 Transverse Dynamics Controller

In the previous section an approach to asymptotically zeroing the dynamics
[y; ẏ] was demonstrated. As noted, this is however not sufficient for sta-
bilization of a the desired periodic orbit, as the orbit [θ; θ̇] does not con-
verge to that of [θ⋆; θ̇⋆]. To do this the origin of the transverse dynamics,
x⊥ = [I(θ, θ̇, θ0, θ̇0), y, ẏ]T must be stabilized. In order to do so, the system
of linearized transverse dynamics, given by (3.40) and (3.41) is considered.

d

dτ
z = A(τ)z(τ) + B(τ)V•(τ) (5.14)

where z is the linearized transverse dynamics z = [I•;Y•; Ẏ•]. It is not sur-
prising that the control law derived in the previous section does not stabilize
this dynamics as it does not include feedback from the state I•.

In order to stabilize the transverse dynamics, a stabilizing controller should
be found for the linear periodic time-varying system (5.14). This is a con-
siderably more challenging task than stabilizing the time-invariant system
(5.5). A common approach is to compute the solution to the periodic Riccati
equation and use this solution in the control law [14]. This is in general a
challenging task and instead of doing this we perform the numerical search
described in Section 4.2.3. The search is done for a periodic matrix of control
gains

K(τ) = K(τ + T) (5.15)

where the elements are Beziér curves parametrized by the optimization co-
efficients. In the inverted pendulum case there are one actuated state and
3 transverse errors. A search is thus made for three control gains K(τ, c) =
[k1(τ, c), k2(τ, c), k3(τ, c)] that minimizes the cost function

f(c) =
∫ T

t0
w(τ)∥Φ(τ, t0)∥dτ (5.16)

where the weight function w(τ) is chosen as

w(τ) = eτ − et0

eT − et0
(5.17)

This weight function and the resulting time-evolution of the norm of the
state transition matrix for (5.14) is shown in Figure 5.5. The control gains
resulting from the optimization are shown in Figure 5.6.

5.1. INVERTED PENDULUM 55

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

t

||
Φ

(t
,t 0)

||
Norm of State Transition Matrix

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

t

w
(t

)

Weight Function

Figure 5.5: The time evolution of the norm of the state transition matrix
(top) and the weight (bottom) for the resulting controller.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−6

−4

−2

0

2

4

6

t

C
on

tr
ol

 G
ai

n

k
1

k
2

k
3

Figure 5.6: Time evolution of each element in the control gain matrix function
K(τ) = [k1(τ), k2(τ), k3(τ)]

56 CHAPTER 5. RESULTS AND DISCUSSION

Note that this system is clearly not asymptotic exponentially stable as there
does not exist constants k and λ such that the condition from Section 3.3
holds.

∥Φ(t, t0)∥ ≤ ke−λ(t−t0), ∀ t ≥ t0 ≥ 0 (5.18)

However, as the norm is clearly bounded above and the norm at the end of
the period is less than one, ∥Φ(T, t0)∥ < 1, we have that

∥Φ(nT, t0)∥ = ∥Φ
(
nT, (n− 1)T

)
Φ
(
(n− 1)T, (n− 2)T

)
. . .Φ

(
T, t0

)
∥

≤ ∥Φ
(
nT, (n− 1)T

)
∥∥Φ

(
(n− 1)T, (n− 2)T

)
∥ . . . ∥Φ

(
T, t0

)
∥

→ 0 as n → ∞

Where we have used that Φ(t, t0) = Φ(t, t1)Φ(t1, t0) (from [3]) and well-known
properties of the norm of square matrices, ∥AB∥ ≤ ∥A∥∥B∥ for A,B square.
Thus the closed-loop system is asymptotically stable, but not asymptotic
exponentially stable.

The system is now simulated from the same initial position as in the case
where only the y-dynamics were attempted controlled, i.e. the initial condi-
tions (5.7) with the initial errors given in (5.13). The phase plot and time
evolution of x⊥ are shown in Figure 5.7. It is evident that using this controller
does in fact render the system asymptotically stable.

In order to test the stability for more challenging initial conditions, the sys-
tem is simulated again. This time initialized with larger errors. Specifically,
we choose

δθ = −0.1 (5.19a)
δθ̇ = −0.2 (5.19b)
y0 = 2.0 (5.19c)
ẏ0 = 0.5. (5.19d)

The resulting phase plots and x⊥(t) are shown in Figure 5.8a and Figure
5.8b, respectively. In addition, the control inputs and the control gains are
shown in Figure 5.9 and the time evolution of the states are shown in Figure
5.10.

5.1. INVERTED PENDULUM 57

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1

1.5
Phase plots

x/theta

dx
/d

th
et

a

(x, dx)
(x*, dx*)
(θ, dθ)
(θ*, dθ*)
(x

0
,dx

0
)

(θ
0
, dθ

0
)

(a) Phase plot.

0 1 2 3 4 5 6 7
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time [s]

I
y
dy

(b) Time-evolution of x⊥.

Figure 5.7: Phase plot and time-evolution of error with transverse dynamics
controller engaged, initialized with δθ = y0 = −0.1 and δθ̇ = ẏ0 = 0.1.

58 CHAPTER 5. RESULTS AND DISCUSSION

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Phase plots

x/theta

dx
/d

th
et

a

(x, dx)
(x*, dx*)

(θ, dθ)

(θ*, dθ*)
(x

0
,dx

0
)

(θ
0
, dθ

0
)

(a) Phase plots

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
perp

time [s]

I
y
dy

(b) Time-evolution of x⊥.

Figure 5.8: Phase plot and time-evolution of error with scalar controller
engaged, initialized with δθ = −0.1, δθ̇ = −0.2, y0 = 2 and ẏ0 = 0.5.

5.1. INVERTED PENDULUM 59

0 1 2 3 4 5 6 7
−10

0

10

20
System Control

u(
t)

0 1 2 3 4 5 6 7
−6

−4

−2

0

2
Auxiliary Control

v(
t)

0 1 2 3 4 5 6 7
−10

−5

0

5
Control Gains

K
(t

)

Time [s]

k

1

k
2

k
3

Figure 5.9: Control input and control gains initialized with large errors.

0 1 2 3 4 5 6 7
−0.5

0

0.5

1

1.5

2

2.5

3
states

x
theta

0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

time [s]

dx
dtheta

Figure 5.10: Time evolution of states, initialized with large errors.

60 CHAPTER 5. RESULTS AND DISCUSSION

5.2 Monkey Robot

The monkey robot was simulated over two periods from initial conditions of
the form

θ0 = θ⋆(0) + δθ (5.20a)
θ̇0 = θ̇⋆(0) + δθ̇ (5.20b)

q0 = Φ(θ0) +
[

0
y0

]
(5.20c)

q̇0 = Φ′(θ0)θ̇0 +
[

0
ẏ0

]
(5.20d)

This differs slightly from the ones used on the inverted pendulum, in that
the errors y0 and ẏ0 are now on the last (n−1) generalized cordinates instead
of the first. This is because in the monkey robot case the θ variable is chosen
to be the first generalized coordiate instead of the last. For simplicity we
further limit the choices of y0 and ẏ0 to errors on the coordinate q2, i.e.

y0 =
[
y02 0 0 0 0

]T
ẏ0 =

[
ẏ02 0 0 0 0

]T

The obtained results are still valid for errors on the remaining coordinates.

5.2.1 Partial Feedback Linearization

To verify the partial feedback linearization module, the auxiliary control
input v is set to zero and the system is simulated for various initial conditions.

First, the system is simulated from the ideal initial conditions, i.e. (5.20)
with

δθ = δθ̇ = y02 = ẏ02 = 0. (5.21)

The resulting phase portrait for θ(t) and q2(t) are shown in Figure 5.11. We
note that there is a small misalignment in between the actual and desired
phase portrait of q2. This is because the desired trajectory for q2(t) is given
by

q2 = ϕ2(θ) ̸= ϕ2(θ⋆) = q2⋆ (5.22)

5.2. MONKEY ROBOT 61

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

θ

dθ
/d

t

Phase Portrait for θ(t)

Actual orbit
Desired orbit
Initial position

−0.04 −0.02 0 0.02 0.04
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

q
2

dq
2/d

t
Phase Portrait for q

2
(t)

Actual orbit
Desired orbit
Initial position

Figure 5.11: Phase plots of θ and q2. Initialized without errors

62 CHAPTER 5. RESULTS AND DISCUSSION

when there are small numerical errors in θ(t). This is confirmed when plotting
the orbit [ϕ2(θ);ϕ′

2(θ)θ̇)], as this perfectly overlaps the orbit [q2(t); q̇2(t)].

Next, the system is simulated from an error in [θ; θ̇].

δθ = 0.1
δθ̇ = −0.1
y20 = ẏ20 = 0

The resulting phase portraits are shown in Figure 5.12a. We see that the
phase portraits converge to periodic orbits, but these orbits are not the de-
sired ones. This is expected when no controller is engaged. From Figure
5.12b we see that the errors [y2; ẏ2] remain zero, indicating that the virtual
holonomic constraints are satisfied.

Finally, the system is simulated from an error in [q; q̇], but not in [θ; θ̇]. The
initial conditions are

δθ = δθ̇ = 0
y20 = −0.1
ẏ20 = 0.1.

As expected, we see that the system drifts away from the desired orbit, with
y linearly increasing with time, while ẏ is constant.

From the above results, we conclude that the expected behavior from the par-
tial feedback linearization module is in fact the behavior seen in the results,
and we conclude that this part of the controller works well.

5.2. MONKEY ROBOT 63

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

θ

dθ
/d

t

Phase Portrait for θ(t)

Actual orbit
Desired orbit
Initial position

−0.05 0 0.05 0.1 0.15
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

q
2

dq
2/d

t

Phase Portrait for q
2
(t)

Actual orbit
Desired orbit
Initial position

(a) Phase portraits.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.5

0

0.5

1

1.5

2

Time [s]

I
y

2

(b) Time evolution of x⊥.

Figure 5.12: Simulation with an initial error δθ = −0.1, δθ̇ = 0.1, y02 = ẏ02 =
0.

64 CHAPTER 5. RESULTS AND DISCUSSION

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

θ

dθ
/d

t

Phase Portrait for θ(t)

Actual orbit
Desired orbit
Initial position

−0.1 0 0.1 0.2 0.3 0.4
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

q
2

dq
2/d

t

Phase Portrait for q
2
(t)

Actual orbit
Desired orbit
Initial position

(a) Phase portraits.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

5

6

Time [s]

I
y

2

dy
2

(b) Time evolution of the x⊥.

Figure 5.13: Simulation with an initial error δθ = δθ̇ = 0, y02 = −0.1,
ẏ02 = 0.1.

5.2. MONKEY ROBOT 65

5.2.2 Enforcing the Virtual Holonomic Constraints

Equivalent to the inverted pendulum system, we now aim to utilize the partial
feedback linearization in order to asymptotically satisfy the virtual holonomic
constraints. As mentioned, the y-dynamics evolves according to the linear
time-invariant system (5.5), and a stabilizing controller can be found with
the following MATLAB command

>> K = place(A,B , -1: -1: -10)

This computes the matrix of control gains

K =


90 0 0 0 0 19 0 0 0 0
0 20 0 0 0 0 9 0 0 0
0 0 24 0 0 0 0 11 0 0
0 0 0 14 0 0 0 0 9 0
0 0 0 0 6 0 0 0 0 7


The system is then simulated for initial errors

δθ = −0.1 (5.23)
δθ̇ = 0.1 (5.24)
y02 = −0.1 (5.25)
ẏ02 = 0.1. (5.26)

The resulting phase portrait and the time-evolution of x⊥ are shown in Figure
5.14. A plot of the time-evolution of q2 is shown in Figure 5.15. We see that
the error in the coordinate q2 is asymptotically zeroed and q2 converges to
a periodic orbit, but I remains uncontrolled and the phase portrait of [θ; θ̇]
remain away from the desired orbit.

66 CHAPTER 5. RESULTS AND DISCUSSION

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

θ

dθ
/d

t

Phase Portrait for θ(t)

Actual orbit
Desired orbit
Initial position

−0.2 −0.1 0 0.1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

q
2

dq
2/d

t

Phase Portrait for q
2
(t)

Actual orbit
Desired orbit
Initial position

(a) Phase plots of θ and q2.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x
perp

time [s]

I
y

2

dy
2

(b) Time evolution of x⊥.

Figure 5.14: Simulations with an initial error to both y and ẏ.

5.2. MONKEY ROBOT 67

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

A
ng

le
 [r

ad
]

q

2
 (measured)

q
2
 (desired)

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

Time [s]

A
ng

ul
ar

 V
el

oc
ity

 [r
ad

/s
]

dq

2
 (measured)

dq
2
 (desired)

Figure 5.15: Time evolution of q2 and q̇2.

68 CHAPTER 5. RESULTS AND DISCUSSION

5.2.3 Transverse Dynamics Controller

As in the inverted pendulum case, an attempt was made to find a controller
that stabilizes the transverse dynamics. To do this a search for a controller
that successfully stabilizes the linearized transverse dynamics was performed.
However, no such controller was found. This might be due to a number of
reasons.

• The number of optimization coefficients is very large. The matrix of
control gains, K(τ) is a (2n − 1) × (n − 1) time-varying matrix func-
tion. If each of the elements in this matrix if chosen as a C1-smooth
Bézier curve with p control points, the total number of optimization
coefficients is (2n − 1) × (n − 1) × (p − 2)1. In our case the number
of coordinates n equals 6, while we search for Bézier curves with 4
control points, causing the total number of optimization coefficients to
be 11 × 5 × 2 = 110. This is a huge search space, and it is expected
that better results would be obtained by computing the matrix of con-
trol gains K(τ) in some way requiring less control points. One could
attempt to restrict the possible choices of K(τ) in some way. A differ-
ent approach would be to solve the periodic Riccati equation, as done
in [14].

• The implemented controller is quite complex and consists of several
modules. Any of these modules might contain some implementing error,
small enough that it does not impact the stabilization of the inverted
pendulum system, but large enough that the stabilization of the more
complex monkey robot system fails.

1A Bézier curve with p control points that is C1-smooth, requires that 2 control points
are set as a function of the others, thus reducing the number of ”free” control points for
the curve to p − 2.

Chapter 6

Conclusion and Further Work

In this thesis a MATLAB toolbox aiding the computation of a controller that
stabilizes closed periodic orbits has been described. The partial feedback
linearization module of the toolbox has been demonstrated, both through
simulations where the auxiliary control input, v(t) have been set to zero, and
for cases where it is chosen such that the virtual holonomic constraints are
asymptotically enforced.

Further, a controller stabilizing the full transverse dynamics has been demon-
strated on the inverted pendulum system. Simulations from various chal-
lenging initial conditions show that the controller is indeed able to enforce
convergence to the desired closed periodic orbit, even when the initial errors
are large.

Further work is needed in order to show orbital stabilization of the desired
brachiating trajectory in the monkey robot. A controller that enforces the
virtual holonomic constraints have been demonstrated, but a but a controller
that stabilizes the full transverse dynamics was not found. This might be
due to the large amount of optimization coefficients used in the search for a
stabilizing controller, and it is expected that better results might be obtained
by reducing the number of optimization coefficients in some reasonable way.

6.1 Further Work

As we were unable to find a controller that stabilized the linear time-varying
system of linearized transverse dynamics, this should be done in further work.
Such a controller was found for the simpler inverted pendulum system, and

69

70 CHAPTER 6. CONCLUSION AND FURTHER WORK

combining this with the rest of the system lead to successful stabilization
of the desired orbit. It is expected that the same will be the case for the
monkey robot if a controller for the linearzied transverse dynamics is found.
In order to find this one should attempt to reduce the number of optimization
coefficients in the optimization problem.

This thesis have only been concerned with stabilizing a simplified brachiating
motion, in which the monkey robot swings back and forth from one hand-
hold. When a controller that successfully stabilizes this motion is found, it is
suggested that the full brachiating motion, involving both the single-support
phase and the double-support phase and the jumps that connect the two,
should be stabilized. This is a more challenging task than stabilizing the
continued single-support phase, as the full brachiating motion is a hybrid
motion, thus requiring that the jumps between the phases are included in
the linearization of the transverse dynamics.

Appendix A

Appendix

A.1 Solving the Reduced Dynamics

The reduced dynamics can be written as

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0 (A.1)

rearranging leads to
θ̈ + β(θ)

α(θ)
θ̇2 + γ(θ)

α(θ)
= 0 (A.2)

By defining Y = θ̇2 and differentiating w.r.t. time we obtain

dY

dt
= 2θ̇θ̈ = dY

dθ
θ̇

⇒ θ̈ = 1
2
dY

dθ
(A.3)

substituting into (A.2) yields

dY

dθ
+ p(θ)Y = q(θ) (A.4)

where

p(θ) = 2β(θ)
α(θ)

q(θ) = −2γ(θ)
α(θ)

(A.5)

71

72 APPENDIX A. APPENDIX

The homogeneous part of the solution is then found as follows

dY

dθ
+ p(θ)Y = 0

1
Yh

dYh

dθ
= −p(θ)

ln |Yh| − ln |Y0| = −
∫ θ

θ0
p(τ)dτ

Yh = exp
{

−
∫ θ

θ0
p(τ)dτ

}
Y0

= Ψh(θ, θ0)Y0 (A.6)

The particular solution, Yp can then be found by varying the constant Y0,
i.e.

Yp = Ψh(θ, θ0)z(θ) (A.7)

Differentiating with respect to θ yields

dYp

dθ
= −p(θ)Ψh(θ, θ0)z(θ) + Ψh(θ, θ0)

dz

dθ
(A.8)

where we have used that

dΨh

dθ
= −p(θ)Ψh(θ, θ0). (A.9)

Inserting (A.7) and (A.8) into (A.4) we obtain

Ψh(θ, θ0)
dz

dθ
+ p(θ)Ψh(θ, θ0)z(θ) − p(θ)Ψh(θ0, θ)z(θ) = q(θ) (A.10)

which simplifies to
dz

dθ
= q(θ)

Ψh(θ, θ0)
(A.11)

which can be integrated to obtain an expression for z(θ)

z(θ) =
∫ θ

θ0

q(s)
Ψh(s, θ0)

ds (A.12)

A.1. SOLVING THE REDUCED DYNAMICS 73

The particular solution is then obtained by substituting this into (A.7)

Yp = Ψh(θ, θ0)z(θ)

= Ψh(θ, θ0)
∫ θ

θ0

q(s)
Ψh(s, θ0)

ds

=
∫ θ

θ0

Ψh(θ, θ0)
Ψh(s, θ0)

q(s)ds

=
∫ θ

θ0

exp
{
−
∫ θ

θ0
p(τ)dτ

}
exp

{
−
∫ s

θ0
p(τ)dτ

}q(s)ds
=
∫ θ

θ0
exp

{∫ s

θ0
p(τ)dτ −

∫ θ

θ0
p(τ)dτ

}
q(s)ds

=
∫ θ

θ0
exp

{
−
∫ θ

s
p(τ)dτ

}
q(s)ds

=
∫ θ

θ0
Ψh(θ, s)q(s)ds

= −
∫ θ

θ0
Ψh(θ, s)2γ(s)

α(s)
ds

= −Ψp(θ, θ0) (A.13)

The solution of (A.4) can then be found by summing of the homogeneous
and particular solutions

Y = Yh + Yp

= Ψh(θ, θ0)Y0 − Ψp(θ, θ0)

= exp
{

−
∫ θ

θ0
p(τ)dτ

}
Y0 +

∫ θ

θ0
exp

{
−
∫ θ

s
p(τ)dτ

}
q(s)ds

= exp
{

−2
∫ θ

θ0

β(τ)
α(τ)

dτ

}
Y0 −

∫ θ

θ0
exp

{
−2

∫ θ

s

β(τ)
α(τ)

dτ

}
2γ(θ)
α(θ)

ds (A.14)

Now, by substituting Y = θ̇2 and Y0 = θ̇2
0 we obtain the integral function

I(θ, θ̇, θ0, θ̇0) = θ̇2 − exp
{

−2
∫ θ

θ0

β(τ)
α(τ)

dτ

}
θ̇2

0

+
∫ θ

θ0
exp

{
−2

∫ θ

s

β(τ)
α(τ)

dτ

}
2γ(θ)
α(θ)

ds

= θ̇2 − Ψh(θ, θ0)θ̇2
0 + Ψp(θ, θ0) (A.15)

74 APPENDIX A. APPENDIX

A.2 Differentiating the Integral Function

This integral function can be differentiated with respect to time as follows.
d
dt
I(θ, θ̇, θ0, θ̇0) = ∂I

∂θ
θ̇ + ∂I

∂θ̇
θ̈ (A.16)

where
∂I

∂θ̇
= 2θ̇

∂I

∂θ
= − ∂

∂θ
Ψh(θ, θ0)θ̇2

0 + ∂

∂θ
Ψp(θ, θ0) (A.17)

∂Ψh

∂θ
= −2β(θ)

α(θ)
Ψh(θ, θ0) (A.18)

∂Ψp

∂θ
= Ψh(θ, θ)2γ(θ)

α(θ)
+
∫ θ

θ0

∂

∂θ
Ψh(θ, s)2γ(s)

α(s)
ds

= 2γ(θ)
α(θ)

− 2β(θ)
α(θ)

∫ θ

θ0
Ψh(θ, s)2γ(s)

α(s)
ds

= 2
α(θ)

(
γ(θ) − β(θ)Ψp(θ, θ0)

)
(A.19)

inserting (A.18) and (A.19) into (A.17) leads to
∂I

∂θ
= 2β(θ)

α(θ)
Ψh(θ, θ0)θ̇2

0 + 2γ(θ)
α(θ)

− 2β(θ)
α(θ)

Ψp(θ, θ0)

= 2
α(θ)

[
γ(θ) + β(θ)

(
Ψh(θ, θ0)θ̇2

0 − Ψp(θ, θ0)
)]

= 2
α(θ)

[
γ(θ) + β(θ)

(
θ̇2 − I(θ, θ̇, θ0, θ̇0)

)]
(A.20)

and the time-derivative of the integral function is
d
dt
I(θ, θ̇, θ0, θ̇0) = ∂I

∂θ
θ̇ + ∂I

∂θ̇
θ̈

= 2
α(θ)

[
γ(θ) + β(θ)

(
θ̇2 − I(θ, θ̇, θ0, θ̇0)

)]
θ̇ + 2θ̇θ̈

= 2θ̇
α(θ)

[
γ(θ) + β(θ)

(
θ̇2 − I(θ, θ̇, θ0, θ̇0)

)]

+ 2θ̇
[
g(θ, θ̇, y, ẏ, v) − β(θ)θ̇2 − γ(θ)

α(θ)

]

= 2θ̇
α(θ)

[
g(θ, θ̇, θ̈, y, ẏ, v) − β(θ)I(θ, θ̇, θ0, θ̇0)

]
(A.21)

Bibliography

[1] Stian H. Askeland. Elements of trajectory generation in brachiation of
a monkey robot. Project Report, December 2011.

[2] S. Bittanti, P. Colaneri, and G. Guardabassi. Periodic solutions of
periodic riccati equations. Automatic Control, IEEE Transactions on,
29(7):665 – 667, jul 1984.

[3] C.T. Chen. Linear System Theory and Design. The Oxford Series In
Electrical And Computer Engineering. Oxford University Press, 1999.

[4] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E.R. Westervelt,
C. Canudas-De-Wit, and J.W. Grizzle. Rabbit: a testbed for advanced
control theory. Control Systems, IEEE, 23(5):57 – 79, oct. 2003.

[5] T. Fukuda, Y. Hasegawa, M. Doi, and Y. Asano. Multi-locomotion robot
- energy-based motion control for dexterous brachiation -. In Robotics
and Biomimetics (ROBIO). 2005 IEEE International Conference on,
pages 4 –9, 0-0 2005.

[6] T. Fukuda, F. Saito, and F. Arai. A study on the brachiation type
of mobile robot (heuristic creation of driving input and control using
cmac). In Intelligent Robots and Systems ’91. ’Intelligence for Mechani-
cal Systems, Proceedings IROS ’91. IEEE/RSJ International Workshop
on, pages 478 –483 vol.2, nov 1991.

[7] Encyclopedia Britannica Inc. Brachiation, December 2011. http://
www.britannica.com/EBchecked/topic/76645/brachiation.

[8] H.K. Khalil. Nonlinear Systems. Prentice Hall, 2002.

[9] Uwe Mettin. Principles for planning and analyzing motions of under-
actuated mechanical systems and redundant manipulators. PhD thesis,
Ume University, Department of Applied Physics and Electronics, 2009.

75

76 BIBLIOGRAPHY

[10] J. Nakanishi, T. Fukuda, and D.E. Koditschek. A brachiating robot
controller. Robotics and Automation, IEEE Transactions on, 16(2):109
–123, apr 2000.

[11] F. Saito, T. Fukuda, and F. Arai. Swing and locomotion control for two-
link brachiation robot. In Robotics and Automation, 1993. Proceedings.,
1993 IEEE International Conference on, pages 719 –724 vol.2, may 1993.

[12] T. Sasagawa. A necessary and sufficient condition for the solution of the
riccati equation to be periodic. Automatic Control, IEEE Transactions
on, 25(3):564 – 566, jun 1980.

[13] A. Shiriaev, J. Perram, A. Robertsson, and A. Sandberg. Explicit for-
mulas for general integrals of motion for a class of mechanical systems
subject to virtual constraints. In Decision and Control, 2004. CDC. 43rd
IEEE Conference on, volume 2, pages 1158 – 1163 Vol.2, dec. 2004.

[14] A. Shiriaev, J.W. Perram, and C. Canudas-de Wit. Constructive
tool for orbital stabilization of underactuated nonlinear systems: Vir-
tual constraints approach. Automatic Control, IEEE Transactions on,
50(8):1164 – 1176, aug. 2005.

[15] A.S. Shiriaev, L.B. Freidovich, and S.V. Gusev. Transverse linearization
for controlled mechanical systems with several passive degrees of free-
dom. Automatic Control, IEEE Transactions on, 55(4):893 –906, april
2010.

[16] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and
control. John Wiley & Sons, 2006.

[17] James R. Usherwood and John E. A. Bertram. Understanding brachi-
ation: insight from a collisional perspective. Journal of Experimental
Biology, 206(10):1631–1642, 2003.

	Title Page
	masteroppgave.pdf

