
Doctoral theses at NTNU, 2019:112

Doctoral theses at N
TN

U, 2019:112
M

athias H
auan Arbo

Mathias Hauan Arbo
On Robotic Assembly and
Optimization-Based Control of
Industrial Manipulators

ISBN 978-82-326-3822-2 (printed version)
ISBN 978-82-326-3823-9 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

an
d

El
ec

tr
ic

al
 E

ng
in

ee
rin

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Mathias Hauan Arbo

On Robotic Assembly and
Optimization-Based Control of
Industrial Manipulators

Trondheim, April 2019

Faculty of Information Technology
and Electrical Engineering
Department of Engineering Cybernetics

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

ISBN 978-82-326-3822-2 (printed version)
ISBN 978-82-326-3823-9 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2019:112

© Mathias Hauan Arbo

Faculty of Information Technology
and Electrical Engineering
Department of Engineering Cybernetics

Printed by Skipnes Kommunikasjon as

iii

Summary

Robotic manipulators are essential tools of industry. They are ubiquituous in
modern factories, and they are starting to become more commonplace every-
where else. The trend in robotic manipulators is to move towards allowing
for more human-robot collaboration, to allow for sensor-based tasks, and to
perform classical industrial tasks such as assembly in new and unforeseen
environments. These trends enable small and medium businesses to lower
the cost of automation by simplifying robot programming.

The core interest of this thesis is an idealized automatic assembly sys-
tem, capable of generating and executing robot programs based on CAD
models. Such a system is challenging to realize, as it is composed of many
subcomponents that are large research topics in and of themselves. From the
control-theoretic perspective, much of the work lies in task specification and
relating assembly of the parts to robot motions, as is the core discussion in
one of the papers.

The papers present control strategies intended for on-line control of an
industrial manipulator. As optimization techniques may have slow execution
time, the timings of the different control strategies are a recurring topic in
the papers. The communication and tracking latency of a KUKA robot system
is also investigated when developing an open-source control interface to the
KUKA system.

This thesis presents contributions in robotic assembly and optimization-
based control of industrial manipulators. The papers in this thesis aim to
address some shortcomings in the robotics literature that were found when
investigating the idealized system. The accompanying text gives a brief in-
troduction to the history of robotics, as well as an overview of some of the
robotics literature.

iv

Contents

Summary iii

1 Preface 1
1.1 Acknowledgement 3
1.2 Contributions 4

2 History and Motivation 7
2.1 History of Robotics 8
2.2 History of Automated Assembly 13
2.3 Why Research Automation? 18

3 Robot Control 23
3.1 Introduction 24
3.2 Low-Level Controller 25
3.3 Mid-Level Controller 27
3.4 Discussion and Future Work 34

4 Original Publications 39
Paper 1 On the Globally Exponentially Convergent Immersion and

Invariance Speed Observer for Mechanical Systems 41
Paper 2 On Model Predictive Path Following and Trajectory Track-

ing for Industrial Robots 49
Paper 3 Mid-LevelMPC and6DOFOutput Path Following forRobotic

Manipulators 57
Paper 4 A System Architecture for Constraint-Based Robotic As-

sembly with CAD Information 67
Paper 5 Stability of the Tracking Problem with Task-Priority In-

verse Kinematics 77
Paper 6 Interfacing KUKA Industrial Robots with ROS for Research

and Education 85
Paper 7 CASCLIK: CasADi-BasedClosed-Loop Inverse Kinematics 117

References 136

1

Chapter 1

Preface

2

This thesis is the result of my doctoral study at the Department of Engineering
Cybernetics at the Norwegian University of Science and Technology (NTNU)
under the supervision of Professor Jan Tommy Gravdahl (NTNU), and co-
supervisor Esten Ingar Grøtli, Ph.D., (SINTEF DIGITAL). The doctoral study
was a part of SFI Manufacturing1 and the project was funded by the Research
Council of Norway under contract number 237900.

SFI Manufacturing is a cross-disciplinary center for research-based inno-
vation2 focused on competitive, high-value manufacturing in Norway. The
center approaches this with three general research areas: multi-material
products and manufacturing processes, robust and flexible automation, and
sustainable and innovative organizations. The doctoral study was a part of
the robust and flexible automation area.

During the doctoral study, I have had the pleasure of being co-supervisor
to the master students: Ivar Eriksen, Lill Maria Gjerde Johannessen, Morten
Andre Astad, and Shahrukh Khan. I have also had a three month research
stay at the robotics research group of Production Engineering Machine De-
sign and Automation division of Katholieke Universiteit Leuven. During the
research stay I collaborated with Yudha P. Pane, under the supervision of
Erwin Aertbeliën, Ph.D.

This thesis contains a collection of articles from my research as well as a
presentation of theory to tie the research together. The thesis is an attempt at
mastication of the hard topic of control for robotic assembly such that certain
ideas and thoughts can be digested more easily. Robotics is a vast, discovered
landscape of crooks and crevices, nooks and crannies, with pockets of ideas
and implementations through which this thesis walks.

1http://www.sfimanufacturing.no/
2Senter for Forskningsbasert Innovasjon in Norwegian.

3

1.1 Acknowledgement

Three and a half years of a Ph.D. never pass in the blink of an eye; but
thanks to the support and encouragement of my friends, family, and fellow
colleagues, it has been a blast.

First and foremost, I wish to thank my supervisor, Jan Tommy Gravdahl,
both for this opportunity, and for our many discussions. His support has been
fundamental in getting through this. Secondly, I thank my co-supervisor and
contact to SINTEF, Esten Ingar Grøtli, who has been eager to help, and taken
an active role in my studies. My research would not exist if it were not for
the support of SFI Manufacturing, and the Research Council of Norway.

I consider it an honor to have had a research stay at Katholieke Univer-
siteit Leuven, and to have worked with Yudha P. Pane, Erwin Aertbeliën,
and Wilm Decré. Their insight and discussions exponentially increased my
robotics literacy. I am also grateful of Filippo Sanfilippo’s contributions and
discussions.

My Master students, both those who have finished and those who are
soon to finish, have invested many hours in the complicated projects we
have concocted. I am grateful for their many contributions to my work, both
explicitly from software development and hardware setup, and implicitly
from interesting discussions.

The thorough comments on my thesis by Jabir Ali Ouassou, Ingerid
Brænne Arbo, Øystein Wigum Arbo, and my father Peter Arbo, were essential
in ensuring its completion.

I am sincerely grateful for the wednesday presentation group and my
lunch compatriots, who have kept me sane and satiated during both the long
and short days. I would particularly like to thank my classmates who joined
me in the step from Master student to Ph.D. student: Bjørn-Olav Holtung
Eriksen, Erik Wilthil, Andreas Lindahl Flåten, Kristoffer Gryte, Håkon Hagen
Helgesen. I am forever grateful for the complementarity and similarity of me
and my office mate Bjørn-Olav, our companionship has been a cornerstone
of my time at the department.

The last winter months would have been dark and cold if not for Carina
Norvik, whose love and support has eased the burden of the thesis. Lastly, I
would like to thank my family for all their support: my parents for allowing
me to stray from the beaten path, my sisters for leading with example, and
my grandmother for her strength and delicious dinners.

4

1.2 Contributions

The doctoral research includes contributions in:

• a globally exponentially stable speed observer for mechanical systems,

• model predictive path-following control for industrial manipulators,

• constraint-based robot programming using CAD information,

• novel controller designs for constraint-based robot programming with
task-priority closed-loop inverse kinematics,

• and interfacing of KUKA robots with ROS.

The work is documented in the following articles:

1. M. H. Arbo, E. I. Grøtli, and J. T. Gravdahl, “On the globally exponentially
convergent immersion and invariance speed observer for mechanical systems,”
American Control Conference (ACC), Seattle, WA, 2017, pp. 3294-3299 [1],

2. M. H. Arbo, E. I. Grøtli, and J. T. Gravdahl, “On model predictive path follow-
ing and trajectory tracking for industrial robots,” 13th IEEE Conference on
Automation Science and Engineering (CASE), Xi’an, 2017, pp. 100-105 [2],

3. M. H. Arbo, E. I. Grøtli, and J. T. Gravdahl, “Mid-Level MPC and 6 DOF out-
put path following for robotic manipulators,” IEEE Conference on Control
Technology and Applications (CCTA), Mauna Lani, HI, 2017, pp. 450-456 [3],

4. M. H. Arbo, Y. P. Pane, E. Aertbeliën, and Wilm Decré, “A System Architecture
for Constraint-Based Robotic Assembly with CAD Information,” IEEE Interna-
tional Conference on Automation Science and Engineering (CASE), Munich,
2018, pp. 690-696 [4],

5. M. H. Arbo and J. T. Gravdahl, “Stability of the Tracking Problem with Task-
Priority Inverse Kinematics,” IFAC Symposium on Robotics and Control (SY-
ROCO), Budapest, 2018, pp. 121-125 [5],

6. M. H. Arbo, I. Eriksen, F. Sanfilippo, and J. T. Gravdahl, “Interfacing KUKA
Industrial Robots with ROS for Research and Education,” submitted to Elsevier
journal of Mechatronics January 2019, and

7. M. H. Arbo, E. I. Grøtli, and J. T. Gravdahl, “CASCLIK: CasADi-Based Closed-
Loop Inverse Kinematics,” submitted to IEEE journal of Transactions on Robotics
(T-RO) January 2019.

The work has resulted in the following free and open-source software:

CASCLIK [6]: a Python module for prototyping of closed-loop inverse kine-
matic controllers for multiple constraint-based tasks,

5

urdf2casadi [7]: a Python module for converting unified robot description
files or Denavit-Hartenberg parameters into symbolic functions for
CasADi [8],

Arbench [9]: a FreeCAD [10] workbench for annotation of geometric fea-
tures for robotic assembly,

kuka_kvp_hw_interface [11]: an alternative ROS hardware interface for
control of KUKA industrial manipulators, primarily developed by Ivar
Eriksen.

Other results during the doctoral studies not related to the thesis are:

a) H. H. Johnsen (artist), M. H. Arbo (technician), “Luminosity” (fiberoptic art
installation), Galleri Nord-Norge, 2016,

b) M. H. Arbo, T. Utstumo, E. F. Brekke, J. T. Gravdahl, “Unscented Multi-Point
Smoother for Fusion of Delayed Displacement Measurements: Application to
Agricultural Robots” Modeling, Identification and Control, vol. 38, no.1, 2017,
pp. 1-9 [12],

c) A. Busch, M. H. Arbo, S. A. Kasimba, K. Sripada, “PhD working conditions
at NTNU with a special focus on PhD candidates with kids” The Interest
Organization for Doctoral Candidates at NTNU (DION), 2017, and

d) H. H. Johnsen (artist), M. H. Arbo (technician), permanent fiberoptic art
installation at Jessheim Videregående Skole, 2017.

Fig. 1.1 illustrates how the different papers are related. Paper 1 was an
initial offshoot into the realm of nonlinear control theory before a course
correction led to more industrially applicable research. The model predictive
path following controller was first created for a two-link manipulator (Pa-
per 2), and later extended for use with a UR5 and a UR3 (Paper 3). The model
predictive approach was necessary for one of the controller formulations in
Paper 7. The dashed lines indicate that the work with Paper 4 and Paper 6 are
related to Paper 7. More specifically, the architecture and interface created
in those papers are potentially useful with the library created in Paper 7.
Paper 5 was a necessary step in furthering the theory used for one of the
controller formulations in Paper 7.

Paper 4 won a joint best student paper award at the CASE conference
and was the result of the three-month research stay at Katholieke Universiteit
Leuven.

6

Paper 2

Model predictive

path following

(CASE2017)

Paper 1

Nonlinear speed

observer

(ACC2017)

Paper 3

Model predictive

path following

(CCTA2017)

Paper 4

System

Architecture with

CAD information

(CASE2018)

Paper 5

Tracking stability

with task-priority

(SYROCO2018)

Paper 7

CasADi-based

Closed-loop

inverse kinematics

(T-RO)

Paper 6

Interfacing KUKA

robots with ROS

(Mechatronics)

Figure 1.1: Relation between the papers.

7

Chapter 2

History and Motivation

“ My story is a lot like yours, only more interesting ’cause it involves
robots. ”

Bender, Futurama – 30% Iron Chef [13], 2002

8

2.1 History of Robotics

As much of modern technology, robotics has its beginnings in myths, legends,
and science fiction. The term robot, from “robota”, meaning forced laborer,
was introduced to the world in the play Rossumovi Univerzální Roboti written
by the Czech author Karel Čapek in 1920. The robots were artificially cre-
ated biological servants, echoes of earlier folklore and fiction such as the the
myth of Galatea, the Golem of Prague, Leonardo Da Vinci’s mechanical knight,
and many more. Already by 1928, the term robot had become commonly
associated with these automata when “Eric the Robot”, a mechanical knight,
opened the exhibition of the Society of Model Engineers in London1.

In 1939, Isaac Asimov approached the idea of these mechanical men from
a different perspective. Instead of fearing them, or using them to “point a
moral” [14], he considered them as amicable or dangerous as any other equip-
ment. In his own words: “They were simply well-designed machines” [15].
He coined the term robotics and roboticist for the study and students of
robots as well as the three rules of robotics — the guidelines to minimize the
harm robots can do to humans. Asimov’s work often explored the interplay
between man and machine, taking the degrees of prediction and understand-
ing shared between the two to new extremes. These texts would later inspire
a young engineer named Joseph Engelberger.

As the story goes, in 1956 Joseph Engelberger met George C. Devol at a
cocktail party [15]; an inventor who two years prior had filed a patent for
the Programmed Article Transfer machine [16]. In cooperation, they realized
the industrial potential of automated manipulators and formed Unimation
Incorporated. Shortly thereafter, the Unimate (Fig. 2.1), the first industrial
robot, became commercially available in 1961. Installed at General Motors
in Trenton, NJ, it moved red-hot door handles and other die-cast parts to
a pool for quenching without pain or problems for years. It was simply a
well-designed machine. Robotics has since then exploded in popularity, and
entered a variety of fields other than industrial manufacturing. Robotics
now includes domestic service robots such as the Roomba [17], underwater
swimming manipulators such as the Eelume [18],Mars-exploring rovers such
as Curiosity [19], surgical robots such as the DaVinci [20], and a plethora
of industrial manipulators. Tab. 2.1 presents a timeline with a small subset
of the many interesting breakthroughs that have occurred in these 64 years
of robotics research. The timeline tries to focus on industrial manipulators
relevant for manufacturing and assembly and some of the tools surrounding
them.

1With R.U.R. printed on Eric’s chest, the reference to Karel Čapek’s play is unmistakeable.

9

Figure 2.1: A Unimate at the Automated Manufacturing Research Facility (ca. 1983) being
taught a new setpoint. Image courtesy of the National Institute of Standards and Technology
Digital Collections, Gaithersburg, MD 20899 [21].

The first Unimate was a heavy, pneumatically-driven manipulator with 5
degrees of freedom (DOF). The earliest versions had bang-bang control, and
programs could be taught to the robot by moving it to the desired positions
which were recorded on a rotary memory drum [16]. The Unimate would
sequentially move to the desired positions, allowing it to execute complex mo-
tions. In 1966, a Norwegian wheelbarrow company named Trallfa had diffi-
cultywith the labor-intensive and toxic spray-painting step in their production
line. As a result of this, they decided to construct a spray-painting robot, one
of the first exported programmable robots [22]. Robotics has been a turbulent
market, with few robot manufacturers and products surviving throughout the
times. ABB’s IRB 6 (1974) was not only the first microprocessor-controlled
robot, but also stayed in production for 17 years [23]. Another important
milestone is the development of additional tools such as the remote center
of compliance [24]. One can think of it as attaching a little spring to the
end-effector of the robot, which allows it to flex as our fingers do when we

10

Table 2.1: Timeline of selected events in the history of robotics

1954 Unimate patent filed by George C. Devol
1961 First Unimate robot sold to General Motors (5 DOF)
1965 The 6 DOF parallel-link Stewart platform was publicized
1966 Trallfa produces the first spray-painting robot in Norway
1969 Stanford arm, a 6 DOF electrically driven arm with

force/torque sensing was created
1973 KUKA’s 6 DOF FAMULUS robot enters the market
1974 ABB’s IRB 6, the first microprocessor-controlled robot, is

introduced
1976 Remote center of compliance device patent filed by Paul C.

Watson
1978 The first SCARA robot prototype was developed by Hiroshi

Makino
1981 Automatix introduces the first industrial robot with built-in

machine vision
1981 The first direct drive arm was designed by Takeo Kanade
1984 Variable Assembly Language (VAL) II is introduced
1985 First 4 DOF Delta robot patent filed by Reymond Clavel
1995 The first light-weight robot (LWR) is created at DLR
2002 OROCOS is introduced as a flexible robot programming

framework by Herman Bruyninckx
2007 The Robot Operating System (ROS) is created by Willow

Garage
2008 UR5 and KUKA LBR 4 are the first commercially available

cobots
2012 Rethink Robotics’ dual arm Baxter enters the market
2015 ABB’s dual armed Yumi enters the market

hit a surface, complying to the external forces acting on the end-effector. This
was an important breakthrough as it allowed robots to perform peg-in-hole
insertions. It is an example of the many tools that were developed both before
and after that can be attached to a robot platform to increase its versatility.

As offline robot programming and more complex behavior was desired
from the users, robot programming languages became an important topic
in robotics. The first generation of robot programming languages handled
simple learning of poses and motions, and executed these in the prescribed
sequence. They left robot systems “deaf, dumb, and blind” as Charles A. Rosen
put it in the first Handbook of Industrial Robots [14]. As computer proces-
sors were added to the robot controllers, it became possible to formulate

11

instruction sets for the robot. These formed the second-generation robot
programming languages, of which VAL II [25] is a notable example. VAL II
included functionality for offline programming, network communication, sen-
sor integration, and real-time path modification. One can consider the second
generation of robot programming languages to bring the robots senses and
speech, albeit in a rudimentary form. These advances were possible as the
instructions were handled by a microprocessor that was separate from the
servo controllers. Each joint had a separate microcontroller that handled
servo control, and the main microprocessor transmitted commands to the
servo controllers. This resulted in a cascaded control hierarchy.

Most of modern research on control of robotic manipulators use systems
that allow for control over network communication. The user is allowed to
use their own hardware and software to control the robots. OROCOS [26],
[27] and ROS [28], [29] are open-source frameworks that sprung up from
this around the turn of the century, and greatly simplified the integration
of existing works into new projects, as well as the validation and evaluation
of others’ work. The two frameworks may be used in conjunction with each
other, and both are still in active use with ROS being the more popular
platform. In May 2015, 9 million ROS packages were downloaded by over
70000 unique IP addresses [30], and the community of ROS users continues
to grow.

Another important highlight was the development of light-weight collab-
orative robots that came with the 7 DOF KUKA LBR [31] and the 6 DOF
robots of Universal Robots [32] in 2008. Before them, 6 DOF industrial ma-
nipulators were generally heavy, rigid machinery that required a large safety
zone. The reduced inertia of light-weight robots meant that they could work
in collaboration with humans without harming them. With advanced force-
control techniques and backdrivability, an operator can manipulate them into
desired poses by hand, quickly and easily. The additional joint on the KUKA
LBR increases manipulability, allowing it to achieve a desired pose while still
having an exploitable DOF.

With the Baxter [34] and ABB’s Yumi [35] (see Fig. 2.2), from 2012 and
2015 respectively, the overlap between collaborative robots, humanoid robots,
and service robots shifted. The dual-arm design allowed for easier handling
and manipulation of objects in an intuitive way for unskilled workers. And
although Baxter was well received when it came out, the company producing
them, Rethink Robotics, was another victim of the turbulent robotics market.
Rethink Robotics went out of business in October 2018, following a lack of
market success.

Although robotics is a relatively young field, the ingenuity and innovation
of its many inventors and researchers has made it a flourishing industry with

12

Figure 2.2: The collaborative, dual-armed Yumi. Image courtesy of ABB [33]. Photo: ABB.

multiple competing companies. In 2015, the worldwide robotics spending
was $71 billion, and projected to reach $135 billion in 2019 [36]. At the
risk of projecting my own desires and expectations onto the timeline, the re-
search seems to move from humanless factories to collaborative robots, from
dedicated programming languages and computers to control over network
and open interfaces, from a single form factor and set number of DOF to
multiple DOF and methods of mechanical linkage. These trends spell out an
opportunity for robots to be more customizable, potentially even modular,
for robot skills to be transferrable, and for the advancement of collaboration
between man and machine.

13

2.2 History of Automated Assembly

In 2015, programming and installation constituted 35% of the total cost of
a spot-welding robot according to Boston Consulting Group [37]. By 2020,
the portion is projected to constitute 33% of the total system cost. Although
the numbers do not describe assembly processes, it is reasonable to assume
that systems engineering for a set of assembly processes would exhibit a sim-
ilar or greater percentage as spot-welding generally involves point-to-point
motion whereas assembly requires both trajectory tracking and potentially
force-controlled motions. For high-volume product series, the relative cost
of programming is low with respect to the potential profit. For low volume,
individual customization of parts, or agile assembly scenarios, the cost of
programming is a significant portion of the total cost of automation — a
portion that may make robotic automation out of reach for small to medium
businesses.

In an ideal scenario, any design that could be dreamt up would be possible
to construct with automatically programmed robots. A fully automated assem-
bly system software would analyze the design, find potential pitfalls, generate
assembly sequence plans, select and tune the robot skills, and program the
appropriate robots. Fig. 2.3 illustrates a robot that has been automatically
programmed based on a CAD model, about to execute the assembly. A com-
plete version of such a software system does not yet exist, but some systems
have been created that attempt to address the issue. The purpose of this sec-
tion is to look at automatic robotic assembly for manufacturing on a system
level. The thesis has no opportunity to address all aspects of such a system,
but the work attempts to trace its shadow and cast light on some architectural
and control choices that may be desirable.

A fully automated assembly system consists of three core parts: analysis,
planning, and execution. Most assembly systems have been designed from
the motion-planning perspective. To be a true fully automated assembly
system, it must also consider the execution of the assembly plan. As finding
two-handed assembly sequences for arbitrary designs is NP-hard [38], it is
debatable whether a true fully automated assembly system is feasible or
reasonable to expect, but they describe at their core an object-level robot
programming. Investigating previous iterations of such systems gives insight
into how one may better look at object-level, also called task-level, robot
programming for assembly.

BUILD [39] from 1974 was one of the earliest model-based assembly
planning systems. It was capable of stacking simple cubic or triangular blocks
to a desired design. Coming from early artificial intelligence, it used heuristic
searches and a simple world model to analyze which stacks to construct first,

14

Figure 2.3: Automated assembly programming from CAD to real-life robots.

and whether the stacks would result in stable subassemblies. World models
are a common theme in fully automated assembly systems and they are
integral for model-based robot programming approaches. The world model
is a representation of the world that is used during planning and control
of the robot system. Limitations of the world model may inherently limit
model-based control approaches. For instance, with a world model where
link frames only have one parent frame, it will not be possible to represent
the closed-loop kinematic chains formed in certain contact situations.

In 1977, Lieberman and Wesley presented AUTOPASS [40], an “AUTO-
mated Parts ASsembly System” that attempted to put automation into the
realm of lower volume production with assembly-directed programming
of robots. Here assembly-directed means that the user provided an assem-
bly specification rather than manipulator motions when programming. AU-
TOPASS was a high-level programming system where English-like statements
were used to define the assembly, and a world model maintained the rela-
tive transformations between parts. The statements, in combination with
the world model, defined the manipulator-level motions that were required.
AUTOPASS contained various modules to execute the desired assembly tasks,
e.g. collision-free “pickup” trajectory generation, or collision-free “put-down”
trajectory generation. The modules calculated trajectories that were executed
by the robot, and the modules could account for sensor data to ensure that
the assembly had been achieved. Other notable automated assembly sys-
tems from the period are LAMA [41] by Lozano-Perez (1977), RAPT [42] by
Popplestone (1978), and TWAIN [43] by Lozano-Perez (1986).

15

In 1996, Kaufman et al. presented the Archimedes 2 [44], a “mechani-
cal assembly planning system” that allowed for CAD-level programming of
a robot workcell. The system used a pre-STEP model of parts, and a set of
files describing how the parts were joined, recommended subassemblies, and
suggested assembly directions. The file describing the method of part joining
was pertinent to the assembly planner as pressfits, snapfits, and threaded
contacts would result in overlap of the parts even though there are feasible
assembly directions. The system described three core assumptions: that all
parts behave like rigid bodies, that mating is achieved by trajectories that
are translations, rotations, or screw motions, and that the assembly could
be performed by mating or joining of the parts for which the necessary tool
was known. Mating was establishing a relative positioning of the part to be
assembled following a certain trajectory type along an assembly direction.
Joining was attaching the parts once in the correct relative positioning, e.g. to
weld or glue. The system had two assembly planners: the first considered the
part geometry and tool accessibility, and the second considered the assem-
bly sequence, subassembly reorientation, and tool changing. The resulting
sequence of actions were translated to Adept’s V+ [45] robot programming
language for execution. This means that the robot program was a joint po-
sition controlled sequence of poses and mating trajectories, but may have
allowed for sensor data to ensure that the assembly had been achieved.

HighLAP [46], [47] by Thomas et al. was a “HIGH-Level Assembly Plan-
ning” system developed in 2001. The system2 saw various improvements
[48]–[50], and we will consider its features from the 2010 presentation in
Robotic Systems for Handling and Assembly [51]. Thomas et al. presents a
system architecture similar to Archimedes 2 in that it takes a STEP file with
annotated part constraint information and uses a geometric engine to reason
about the assembly plan and mating directions. The constraints are used
to define the positioning of the objects, and the mating directions are used
to infer the ordering of the assembly operations. The assembly sequence is
described by a “net” of manipulation primitives. A manipulation primitive de-
scribes a continuous control mode of the manipulator, e.g. constant rotation
around a task frame. The “net” of manipulation primitives is a finite state
machine that switches between manipulation primitives based on sensor
information.

Recurring aspects in these systems are recurring problems in robotics. In
1983, Lozano-Perez, the creator of LAMA and TWAIN, summarized five core
requirements of robot programming [52]: sensing, world modeling, motion

2For simplicity, the works by Thomas et al. are referred to as HighLAP, but it may be a
misnomer. The later articles of the research group do not explicitly state that the work is a
part of a specific software solution called HighLAP.

16

specification, flow of control, and programming support. The specification
and standardization of these requirements have been the topic of many re-
search groups, and we see that they are echoed in the history of automated
assembly.

The systems presented generally consider CAD files annotated with aux-
iliary assembly information. This information contains geometric constraints
between part features, such as with RAPT, Archimedes 2, and HighLAP, and
information about necessary tools or type of assembly task to perform. To
the author’s knowledge, the first use of such features for positioning or de-
scribing the relative motion of the parts during assembly is from 1975 by
Ambler and Popplestone [53]. A formal part-mating model for a variety of ge-
ometric primitives was described in 1990 by Kim [54]. It included compliant
motion to compensate for part, environmental, or positioning uncertainty.
An example of features in a screw insertion task is shown in Fig. 2.4

Figure 2.4: Visualization of constraints between geometric features. The screw is described
by a reference frame f1, and its hole by f2, the hole and screw are aligned by aligning the
axis of the two reference frames. The assembly direction is along the axis.

17

As inferring assembly sequences from the full CAD model has long been
too computationally costly, representations of assembly sequences is another
cornerstone of automated assembly systems. The liaison graph [55] origi-
nally developed by Bourjault (1984), further developed by Fazio et al. [56]
(1987), describes assembly relations between parts as a graph with nodes
representing components of the assembly, and edges referred to as liaisons
describing an abstract assembly relation. The precedence graph is formed by
querying the user on which edge must be established before the other until
a description of the full set of assembly sequences is formed. The AND/OR
graph [57] by Homem de Mello and Sanderson (1990) is a more succinct
representation of all possible assembly sequences. The propagation of uncer-
tainty, and informing the planner about essential paths in the liaison graph
was introduced with the key characteristics [58] by Whitney (2004). This dis-
cussion barely scratches the surface of assembly representation and sequence
planning but is intended to give some reference points for the reader.

Early automated assembly systems seem to have sprung up from early ar-
tificial intelligence. Heuristic searches, a cornerstone of artificial intelligence
of the late 1970s, showed promising results in many robotics tasks, and it
had an intuitive connection to assembly. Artificial intelligence is also a core
component of model-free approaches in robotics, and has been applied to
assembly from the work of Ikeuchi and Kang [59] (19903) to the Horizon
2020 project Smart Assembly Robot with Advanced Functionalities [60]. As
this is a large topic in and of itself, and most of the artificial intelligence
approaches consider automated assembly from the production of the product
stage rather than the design stage, model-free approaches are considered
outside the scope of this thesis.

There have been many architectures proposed for the fully automated as-
sembly system. One may wonder if the differences between the architectures
are like a three-legged table versus a four-legged table. Neither of which is
incorrect, it is a matter of design, users, and taste. The recurring core con-
cepts that seem powerful are geometric constraints between parts, separation
of part or CAD-level planner and the robot planner, sensor integration (par-
ticularly force sensing), and using a mid-level controller that translates the
object-level tasks to commands that can be applied to the robot system.

3First reported by Carnegie Mellon University in either 1990 or 1993, depending on which
subsequent sources one reads.

18

2.3 Why Research Automation?

“ They have no loads to carry: the machine carries the load. They have
not to lift and push: the machine lifts and pushes. They have nothing
else to do but eternally one and the same thing, each in this place,
each at his machine. ”

Thea von Harbou, Metropolis, 1925

Automation has come, and automation is coming. Industrial robots are
cheaper, more reliable, and often better than human workers at many repeti-
tive tasks. Research in robotics has focused on allowing robots to gradually
take over a greater range of tasks, with intelligence, versatility, and small-
scale production in mind. Automation in its many forms, computerization
and robotization, affects a broad range of industries, and to reflect on ones
research should also include reflecting on its effect on society. This section
considers some of the concerns voiced regarding technological unemploy-
ment, and attempts to present my view on the matter.

In the introduction to Cybernetics [61], Norbert Wiener states “the first
industrial revolution, the revolution of the ‘dark satanic mills,’ was the deval-
uation of the human arm by the competition of machinery. [...] The modern
industrial revolution is similarly bound to devalue the human brain, at least
in its simpler and more routine decisions.”. This quote states the idea that
each industrial revolution, and technological advance in automation, brings
with it a devaluing of a human attribute in the manufacturing process. De-
valuing gives associations with a comparison of man and machine, where
machines are developed with attributes comparable to a human worker. This
then leads to the machine taking over the human’s job, which is referred
to as technological unemployment. If there is a limited number of jobs, this
will cause problems. But human workers are trainable, and can find other
occupations or create new ones. The problem occurs when it becomes dif-
ficult to know which areas are threatened. Many students nowadays fear
that their education may become obsolete shortly after completion, or that
whole occupations are threatened4. The fear of robots taking our jobs seems
to have gained more traction in popular culture in recent years. Possibly as a
result of the high media coverage of emergent technologies, as well as recent

4As evidenced by NRK’s 2018 article announcing the nationwide university application
deadline that was titled Her er de tryggeste utdanningsvalgene (translation: Here are the safest
educational choices) [62].

19

reports that identify and quantify automation’s effect on occupations. We
will take a look at two of these methods of identification and quantification
in particular.

In 2014, the Swedish Foundation for Strategic Research (SSF) presented
a report titled Vartannat jobb automatiseras inom 20 år5 [63]. The report
was a Swedish version of The Future of Employment [64]: a report by Carl
Benedikt Frey andMichael A. Osborne from 20136. The technique considered
the likelihood of jobs to be automated. In the report by SSF [63], this was
adapted to the Swedish job market, giving the estimate of 53% of jobs being
replaced by automation within 20 years.

The method of Frey and Osborne works by identifying professions in
terms of whether there is something stopping them from being automated
[64]. The bottlenecks of automation were grouped into three categories:
perception and manipulation, creative intelligence, and social intelligence.
These categories were further split into subcategories. In the article of Frey
and Osborne, 70 occupations were manually classified on a scale from 0 to
1 describing how closely they related to each of the subcategories, and a
classifier was trained on the data. The results of the manual classification
were assumed to be a noise-corrupted observation of the true classification
values. Given that their manual classification was sufficiently correct, and
their categorization was correct, the trained classifier would give an accurate
likelihood estimate. The classifier was then applied to 702 occupations in the
O*NET occupational classification database [66]. Resulting in an estimate of
47% of the US occupations being in the “high risk category”, jobs that Frey
and Osborne refer to as being automated “relatively soon, perhaps over the
next decade or two.” Both Frey and Osborne and SSF note that the method
only considers the technical bottlenecks of automation, not the economic
ones. Another limitation of this method is that it assumes that occupations
are directly described in terms of the bottlenecks, describing the likelihood
of the occupation itself being automated rather than activities within the
occupation.

The report A Future That Works: Automation, Employment, and Productiv-
ity from 2017 by McKinsey Global Institute [67] presents a more in-depth
analysis of the effect of automation on employment and productivity growth.
The key insight of the analysis is that activities in an occupation are not the oc-
cupation itself. The McKinsey analysis considers the likelihood that activities
of an occupation will be automated. This perspective differs fundamentally
in that it acknowledges that there will be a paradigm shift, but that the shift

5Translation: Every other job is automated within 20 years.
6The research results were made public in 2013 [64], but published in Technological

Forecasting and Social Change in 2017 [65].

20

introduces changes that affect aspects of occupations.
TheMcKinsey report describes a framework for evaluating the automation

potential of economies using 18 capabilities. The capabilities are divided into
5 main areas: sensory perception, cognitive capabilities, natural language
processing, social and emotional capabilities, and physical capabilities (e.g.
generating novel patterns is grouped as a cognitive automation capability).
The automation capabilities are evaluated by whether the estimated level of
performance of the current state of the art within the field is roughly below,
equal, or above the current median human level. This is a more granular
categorization and evaluation than used in the Frey and Osborne approach,
which handles a larger dataset of activities, and spans most of the world
economy. The McKinsey report also identifies factors affecting the pace and
extent of automation: technical feasibility, cost of deployment, labor market
dynamics, economic benefits, and regulatory and social acceptance. The re-
port estimates that the employee-weighted overall percentage of activities
that can be automated by adapting new technologies in Norway is 42% [68].

The result of these reports are daunting. They describe workers entering
a roller coaster ride without handlebars. Where twists and turns may throw
workers off, leaving them running to catch up with the future. Some of these
concerns were addressed in Second Machine Age by Brynjolfsson and McAfee
[69] from 2014. They described how digitization of information, exponential
growth of computing power, and the combinatorial nature of innovation im-
poses difficulties on technological innovation and can lead to greater income
inequality. They described how technology leads to a bounty of options and
methods, but a spread of growing differences in income, wealth, and other
circumstances of life. “Analog dollars are becoming digital pennies” [69]
as services and products are distributed instantaneously over the internet
and along other previously unforeseen avenues. In the field of information
technology, whose trends Brynjolfsson and McAfee leverage to describe their
predictions of the world economy, Marc Andreessen, co-founder of Netscape
which produced the first widely used web browser, has stated that “software
is eating the world” [70]. It has been expected that this also encompasses
manufacturing.

In 2011 the German government started a project named Industrie 4.0 [71]
that promotes computerization and data exchange in manufacturing systems.
They believe that we are on the cusp of the fourth industrial revolution, the
era of cyber-physical systems, Internet of Things, and cognitive computing.
Bahrin et al. describes it as “the next phase in a digitization of the manufac-
turing sector” [72]. The idea stems from observing the trends of information
technology and its effect on neighboring industries. As this inevitably ap-
proaches manufacturing, we can be aware of the next industrial revolution

21

before or as it is happening. The German government has approached this by
bringing forth the discussion of Industrie 4.0 in an attempt to preemptively
enact policies and foster projects to better handle the industrial revolution.
Similarly, the Norwegian government started the project named Digital21
[73] to promote digitization of Norwegian business sector. Whether these
projects will primarily benefit corporations or secure workers is yet to be
determined.

Knowing the potential pitfalls, why should we, as individuals, research au-
tomation? Jens Glad Balchen, the founder of the Department of Engineering
Cybernetics, stated that “Ingen mennesker er tjent med slavearbeid” 7 in an
interview with Aftenposten [74] in 1966. This mantra means that automa-
tion is the tool that removes tedious tasks and leaves the creative control
in the hands of man. This is the idea of automation as labor substitution,
gradually removing aspects of work which in turn may lead to technological
unemployment. However, as described in the McKinsey report, automation
and the current technological advances bring not only labor substitution, but
augmentation and optimization of current activities. This allows workers to
perform tasks with a higher productivity and accuracy than ever before as
we push the boundaries of what work is, and how it is perceived. Both the
Second Machine Age and the McKinsey report describe how automation has
the opportunity to mitigate stagnating productivity gains. Productivity gains
which may previously have been ensured by having a large working-age pop-
ulation with respect to the general population and sufficiently high birthrate
[67]. They envision, and consider necessary for increasing productivity, a
workforce where man and machine are in cooperation, where the creative
and interpersonal skills become more important, or to quote the McKinsey
report: “Automation could make us more human”. This vision may present
unique opportunities for skilled workers, but does not address the issue of
the unskilled worker.

A trend in information technology rarely addressed in manufacturing
and presentations of Industrie 4.0 is that of the open-source movement. In
my opinion, an important enabler of the rapid development of information
technology is the early open-source attitude8. This enabled the establishment
of new companies by creating standardized interfaces and communication
protocols with which new and hitherto unheard-of services and products
could be provided. It also allowed new actors to enter the market without
major initial investments in software infrastructure [76]. Similarly, robots
are acquiring and distributing skills at an unprecedented rate thanks to open-

7Translation: No man benefits from slave labor.
8E.g. the free and open-source Apache HTTP Server from 1995 quickly became the leading

HTTP server, and has remained so since [75].

22

source robotics projects such as ROS [28], [29], OROCOS [26], [27], and
others. They allow us to quickly distribute our work, and incorporate existing
methods into new approaches. Various free online tutorials are now bringing
robotics to the younger generation with realistic dynamic simulations and
levels of control. It is my belief that this has increased the innovation potential
of robotics significantly and will be an important step to bring about the new
industrial revolution.

Brynjolfsson and McAfee outline various potential approaches to handle
the onslaught of technological development, of which one appears addressed
to the unskilled worker and is of particular interest to researchers in robotics.
For students and workers of the future they recommend to “fill up your toolkit
and acquire skills and abilities that will be needed in the second machine
age”. We, as researchers within the field, have the opportunity to design
these toolkits. By working in education and making the tools and methods
we design publically available we will democratize automation. This will
lower the entrance cost, enabling the unskilled worker to become skilled. To
quote Glaucon in Book II of the Republic by Plato: “the tools which would
teach men their own use would be beyond price”. That is my motivation for
researching automation. To make the esoteric art of robotics commonplace,
to create tools which would teach men their own use.

23

Chapter 3

Robot Control

24

3.1 Introduction

Robots are the culmination of electronics, mathematics, and physics. They are
the bridge between the digital and the physical. The interacting computed
will. And most of the time they are simply a couple of motors, sensors, and
microcontrollers hooked up to a computer.

Fig. 3.1 shows the overall control hierarchy considered in the thesis. Such
robot control hierarchies are commonly split into low-level dynamic control,
controlling the torque on the motors, and mid-level kinematic control, con-
trolling the joint position and velocity. Recent commercially available robots
such as the Franka Emika [77] and KUKA LBR IIWA [78] allow for low-level
joint torque setpoints suggesting that this distinction may change. Describing
the low-level controller as a dynamics controller also ignores any control of
current or electrical characteristics of the servo-control loop. In this thesis,
the kinematics–dynamics separation is sufficient for describing the work in
the papers.

This chapter presents some of the literature on low-level and mid-level
control to entice the curiosity of the reader, and place the papers in a larger
context. The chapter ends with a brief discussion on the results and potential
future work.

Mid-Level
Controller

Low-Level
Controller

Motor

Internal
Sensors

Gearbox Mechanical
Link Environment

External
Sensors

High-Level
Controller

Robot

Computer

Figure 3.1: Abstract representation of the overall control hierarchy considered in the thesis.

25

3.2 Low-Level Controller

The low-level controller is concerned with actuator control [79]. Most robots
are electrical, and a popular choice of motor for actuation is the permanent
magnet synchronous motor [80]. For direct-driven robots [81], control of the
motors directly relates to the joint angles. However, most modern robots have
either gearing with low backlash such as harmonic drives [82], or gearboxes
and belts to transmit the power from the motor to the rotational or prismatic
joint on the manipulator [83]. Fig. 3.2 shows how the motors for the last
three joints of the KUKA KR16-2 are on its shoulder, and the transmission goes
down the length of its forearm. These transmissions are generally designed
to have a high mechanical stiffness as the control of rigid manipulators is
well established [84], but they have an inherent flexibility, friction, and may
exhibit backlash. For an overview of the control of flexible joint robots, the
survey paper by Ozgoli and Taghirad [83] is an excellent starting point. They
state that the spring constant in industrial robots is very high, which means
that the effect of the gearbox dynamics is likely to only adversely affect the
robot when moving at high speeds or with heavy loads.

Joint angle, joint speed, or joint torque setpoints are common control
modes described in the control literature. Most industrial robots are only
equipped with a joint angle sensor which is usually placed on the motor side

Figure 3.2: The KUKA KR16-2 industrial robot with motors highlighted in purple and the long
transmission down link A3 highlighted in green.

26

of the transmission [85]. This means that in an ideal world, with perfect
knowledge of the parts and their placements, and an infinitely fast motor
controller, the transmission is still a source of uncertainty. A transmission that
is subject to wear and tear, heat expansion, and other time varying effects
[80]. Accurately modeling the dynamics of the robot system is therefore an
important aspect of the low-level controller.

According to Hedberg et al. [86], a common scheme for control of in-
dustrial robotic manipulators is model-based feed-forward combined with
decentralized PID control of the motor angles. Decentralized PID control
refers to controlling each motor angle separately, while model-based feed-
forward involves adding a feed-forward term based on the modeled dynamics.
This is intended to make the control of each servo separable, and each motor
has its own PID controller. The joint velocity is often found using a derivative
filter. In his doctoral thesis [87], Andreas Stolt provides a block diagram of
the low-level joint controller on the ABB IRC5. Descriptions of the low-level
joint controllers are not readily available from most robot manufacturers.
One can generally expect industrial manipulators to have motion buffers that
introduce a tracking latency from when a signal is sent to the robot, until it
is able to achieve the desired joint position [88].

For collaborative robots such as the UR5 or the KUKA LBR IIWA, the
motors are situated in the joints with a harmonic drive transmission. The DLR
lightweight robot, which served as the basis for the KUKA LBR, is documented
in [82]. It has strain gauges placed in the flex spline of the harmonic drives
to measure the torques on the links themselves. The UR5 does not provide
a joint torque setpoint interface, but it does have a 250 Hz joint velocity
interface. This was used in Paper 7 to implement compliance with respect to
forces and torques.

The low-level controller may also allow for operational space control [89].
Operational space control refers to control of the end-effector in Cartesian
coordinates as most tasks can be parameterized by the 6 DOF present in
everyday life. This means that the low-level controller has setpoints for the
pose or pose velocities of the end-effector. It may also allow for direct force
control methods to describe the forces and torques of the robot in its envi-
ronment [90] and hybrid force/position control strategies exist to control
the robot in certain modes in certain directions [91]. For accurate control in
such a scenario, environment modeling can be necessary [92] including the
stiffness and damping of the workpiece. Operational space control means that
the inverse kinematics are handled in the low-level controller. Delegating the
inverse kinematics problem to the mid-level controller instead, and having a
standardized interface to the low-level controller on robots may open up for
flexible robot assembly programming architectures as described in Paper 4.

27

3.3 Mid-Level Controller

The mid-level controller is a translator and compensator. It translates the
intent of the higher-level controller to something that can be sent to the low-
level controller, and using modeling, learning, and sensors, it compensates for
limitations in the robot system or its environment. The intent of the higher-
level controller is a difficult topic and the separation of the layers of such a
system is a recurring discussion.

In the Industrial Robotics chapter of the Handbook of Robotics [79], Hägele
et al. (2008) describe different levels of programming of a robotic welding
systems. As a thought experiment it may be interesting to apply the same
terminology to an idealized automated assembly system.

• A product-centric system would be able to automatically generate feasi-
ble assembly sequences and process parameters such as insertion force,
directly from the product design and material information. Then it
would be deployable to the available robots and inform about manual
tasks.

• A process-centric system would be able to take a description of the
assembly processes required (e.g. peg-in-hole insertion) and its process
parameters to automatically control the sensor-based motions of the
end-effector.

• An arm-centric system would require explicitly defining end-effector
paths and trajectories for the process in Cartesian space.

• A joint-centric system would require explicitly defining joint-space
paths and trajectories.

Paper 4 tries to investigate a product-centric system architecture. It describes
a high-level coordinator as an assembly planner and finite state machine that
orchestrates transitions between continuous control modes of the robot. The
mid-level controller is a constraint-based multiple-task controller [93] that
gives joint velocity commands to the low-level controller on the robot.

When the mid-level controller is used to follow a desired path planned
by a high-level controller, Kröger and Wahl refers to it as an on-line trajectory
generator [94]. The Iterative Learning Control [95] method, where repetitive
errors of a robot system are compensated for by modifying the control signals,
can also be considered a mid-level controller as the higher-level intent is a
repetitive path, and the control inputs to the low-level controller are modified.
Model predictive path-following controllers such as the ones presented in
Paper 2 and 3, based on the work of Faulwasser et al. [96], [97], are other

28

examples of mid-level controllers where the intent is to follow a path while
adhering to certain limitations.

We can see that this general concept of mid-level control described in
the beginning of the chapter leaves us with an onion. At any point as we
peel layers from our system until we hit the robot’s communication interface,
we could stop and call this the mid-level controller. And each previous layer
presented a new intent to be translated. The general description is simply
the interface from a conceptual intent to something that can be sent to the
robot system. There appears to be no clear answer to the question of where
the separation of the high-level system and the mid-level system should be.
In Sec. 2.2, most automated assembly systems generated sequential code or
finite state machines describing the full assembly sequence. If one desires a
system capable of opportunistically assembling parts available, more aspects
of the high-level planning must be incorporated into the mid-level controller.
To limit the scope of the discussion, let us consider the low-level controller
taking joint-velocity setpoints, and themid-level controller designed to handle
one or more tasks.

One of the earliest approaches to translating tasks to robot motions was
the Resolved Motion Rate Control (RMRC) [98] by Whitney (1969). RMRC
was used to control a prostheses that had a desired trajectory for both the
hand and the elbow. In continuous time, we can describe the deviation from
the desired trajectory as

e(t, q) = p(t)− f(q), (3.1)

where p ∈ Rnp is a vector of the desired coordinates of the hand and elbow,
q ∈ Rnq are the joint coordinates, and f : Rnq → Rnp is a function describing
the location of the relevant coordinates on the prostheses. Then we can find
an expression for q̇(t) by

q̇(t) =

(
∂f

∂q

)−1

ṗ(t), (3.2)

where the ∂f
∂q is often referred to as the task Jacobian. Starting with e suffi-

ciently small, we can apply (3.2) to follow the desired coordinates, but we
are not guaranteed to converge if disturbances occur.

The robot is said to be redundant with respect to the task if np < nq. As
this creates a non-square task Jacobian, its inverse is not defined. Whitney
proposed that by defining an optimality criterion such as

min
(
ṗ− ∂f

∂q
q̇

)T (
ṗ− ∂f

∂q
q̇

)
, (3.3)

29

which the manipulator must satisfy during its motion, the inverse could be
defined, e.g.:

q̇(t) =

(
∂f

∂q

)T (∂f
∂q

∂f

∂q

T)−1

ṗ(t), (3.4)

which holds for task Jacobians of full rank. This approach is also referred to
as the generalized inverse [99] or pseudoinverse control [100] and can be
velocity-resolved [101] or torque-resolved [102].

The closed-loop inverse kinematics (CLIK) formulation of RMRC addresses
the lack of feedback control of the position error [103]–[105] and was, to
the best of this author’s knowledge, first described by Balestrino in 1984.
In Fig. 3.3, a UR5 is tracking a trajectory. The robot did not start such that
e(t, q) = 0, this is prime usecase for CLIK. CLIK works by designing the
derivative of (3.1) to have an exponential convergence:

ė(t, q, q̇) =
∂e

∂t
+
∂e

∂q
q̇ = −Ke(t, q) (3.5)

whereK is positive definite. Expressed in terms of the joint velocity we have

∂e

∂q
q̇ = −Ke(t, q)− ∂e

∂t
(3.6)

which can be solved using an optimization-based approach [93] or by using
the pseudoinverse [101].

Figure 3.3: Visualization of the different parts of (3.1) for a UR5 tracking a trajectory.

30

A key concept of the RMRC is its generality and the possibility of sensor
integration. The task function approach [106] by Samson et al. (1991) is
a thorough presentation of sensor integration in a CLIK framework. A key
insight of Samson et al. was that (3.1), which they refer to as the output
function, can be described in terms of various variables, such as sensor input,
and that the convergence criterion of CLIK imposes a control objective on
the output function. They define a task as an output function with a control
objective, for more information see Paper 7.

Due to the redundancy of manipulators with respect to their tasks, multi-
ple tasks can be combined using either the null-space projection of higher-
priority tasks [107], activation and deactivation of tasks [99], or by prioritiza-
tion in an optimization problem [93]. One of the earliest cases of combining
tasks by exploiting the redundancy of the manipulator with respect to the
task was by Hanafusa et al. (1981) where a 7 DOF manipulator tracked
a trajectory while avoiding an obstacle [108]. The trajectory tracking task
was placed in the null-space of the collision avoidance task. The stability of
the regulation problem when handling multiple tasks was described by An-
tonelli [109] in 2009, and the stability of the tracking problem is discussed in
Paper 5. In 2011, Falco and Natale presented the stability of CLIK strategies
for the regulation problem in the discrete time case in 2011. This was further
described by Bjerkeng et al. [110]–[112] when accounting for tracking delay
in the low-level controller.

Another notable early implementation of collision avoidance in robotics
was the artificial potential field approach of Khatib [113]. Essentially one
defines a potential field around obstacles that will repel the manipulator
should it come near. A simplified formulation that gives a one-dimensional
constraint is the local based approach by Faverjon [114] from 1987.

Forces can be accounted for in RMRC by indirect force control techniques.
Where direct force control attempt to control the forces involved by control-
ling the motor torques, indirect force control techniques attempt to achieve
a compliant behavior of the robot’s interaction with its environment. This is
similar to the behavior of the remote center of compliance, and can be used
to make the robot more robust to positioning and part uncertainty and low
assembly tolerances in assembly operations. Hogan introduced impedance
control [90] in 1984 as a means of minimizing the interaction forces that
may occur when the robot interacts with its environment. In impedance con-
trol, we attempt to control the positioning of the robot. Admittance control
[115], introduced by Kazerooni et al. (1986), reverses the perspective and
we adjust the positioning of the robot to accommodate an external force.
Because of this, admittance control can be realized in systems where the
low-level controller takes kinematic setpoints. When the static relationships

31

are concerned, these are usually referred to as stiffness control and compliance
control respectively [79]. As an example, consider that we have force sensors
attached at the relevant coordinates of the previously presented prostheses,
forming the vector y. The prostheses is to follow the previously presented
trajectory in a CLIK manner, and should exhibit compliance with respect to
the forces. This means that

∂e

∂q
q̇ = −Ke(t, q)− ∂e

∂t
+ y (3.7)

which gives the static relationship

Ke(t, q) = y (3.8)

if the desired trajectory is a point and the robot is static. This does not
account for the dynamics of the transition from non-contact to contact, and
more advanced techniques that describe the interaction at a task acceleration
level may be necessary. The static relationship is a situation where we allow
the robot to deviate from the desired position to accommodate the sensed
force.

The previous paragraphs show how there have been momentous achieve-
ments in early robotics for task-based control. These results have then been
further refined through the years, allowing thoroughly established theory for
velocity-resolved continuous control of robots. In part, one can consider this
as viewing the mid-level controller from the bottom-up. Seeing the under-
belly of an idealized system that is above you. The other perspective, looking
from the high-level controller, considers specification and formalization of
what the mid-level controller is to achieve.

In 2007, De Schutter et al. described a constraint-based task specifica-
tion [116]. If the transformation matrix from a reference frame a to reference
frame b is T b

a ∈ R4×4, and one defines the transformation from world to end-
effector as T e

w, transformation from the world to a geometric feature on a
part described in terms of an auxiliary variable x called feature variable as T f

w ,
and one wishes to minimize an observed distance y between the end-effector
and the geometric feature, then De Schutter shows how the position-loop
constraint

T e
w(q)T

w
f (x)T f

e (y) = I4×4 (3.9)

can be used to formulate a joint-velocity control law. The constraint-based
task specification is a general procedure for task specification and design
that extends the task function approach. De Schutter et al. also incorporate
virtual and artificial constraints based on the work of Mason [91]. A key in-
sight of De Schutter et al. was formulating a consistent approach for handling

32

geometric uncertainty, specifying how to handle sensor data with respect to
the position-loop constraint, and the power of a specification method general
enough to be applied to a variety of situations. This led to the development
of eTaSL/eTC [93] by Aertbëlien et al. (2014), a constraint-based task spec-
ification language for continuous reactive control of the robot, as well as
rFSM [117] by Klotzbücher and Bruyninckx (2012), a real-time safe finite
state machine used for describing the discrete switching of robot tasks. As
described in Paper 4, with eTaSL/eTC and rFSM, the high-level controller
provides finite state machine descriptions of the intended behavior of the
robot. As the robot accomplishes this behavior, or errors occur, the high-level
controller would be notified and replanning would be performed.

Another task specification method was used in HighLAP. Namely the
manipulation primitives first presented by Mosemann and Wahl in 2001 [47],
and further formalized by Kröger et al. in 2010 [118]. The formalization
describes how one designs task frames for continuous control of the robot,
with well-defined switching behavior between control modes. LightRocks is
a UML/P-based robot programming language by Thomas et al. [119] that
has elemental actions reminiscent of the manipulation primitives. In this
formalization, the mid-level controller processes the state chart, switching
the elemental action to perform according to sensor events.

From an outsider’s perspective, the two formalizations presented are
closely related. The freedom presented by the work of De Schutter et al.
allows for creating and combining complex tasks. The clarity and strictness
presented by the work of Kröger et al. allows for a clearer picture of what
the high-level controller should do. Other formalizations where the robot
motions are described by a finite set of motion instructions exist, and are
more closely related to the proprietary robot programming languages most
robot manufacturers provide. Attempts have been made at standardizing
these instructions, such as the canonical robot command language [120] by
the National Institute of Science and Technology, USA (2016).

The previous paragraphs have focused on reactive control strategies. They
base the choice of control input on the instantaneous situation that robot and
its environment is in. The model predictive control approaches such as the
model predictive path following controller presented in Paper 2 and Paper
3 that are based on the work of Faulwasser et al. [96], [97], [121], or the
model predictive constraint-based task controller of Paper 7 attempt to ex-
ploit the future. The model predictive approaches are local planning systems
that attempt to predict the motion of the robot to take future information
into account. The work presented in this thesis only considers scenarios in
which future sensor information cannot be predicted, and the controller is
supplied with a path or constraint-based task specification from a higher-level

33

controller.
Local planners are generally limited by the horizon they look ahead. This

means that they may succumb to local minima such as not knowing how to
move out of a a corner, or stop when an obstacle blocks its path (see Paper
2). This may be a desired behavior of the robot, or it may be indicative of
the limits of local planning. Global planners can give solutions that would
circumvent these issues. The combinatorial planning approaches give exact
solutions for continuous space, but are known to be PSPACE-hard1 even for
simple 2D cases [122]. The sampling-based approaches either sample the
joint space and define obstacles in joint space [123], or sample Cartesian
space and provide a set of waypoints that another trajectory generation al-
gorithm handles. The sampling-based approaches can be memory intensive
due to the high dimensional spaces involved.

Despite these limitations, there have been attempts at real-time adaptive
motion planning (RAMP) [124]. The idea is to apply one of the global plan-
ning approaches, that is guaranteed to work for structured environments,
in an iterative fashion, thereby allowing the environment to vary. This has
been considered with respect to robot dynamics [125], by deformation of
an initial guessed path [126]–[128], by querying a pregenerated probabilis-
tic roadmap [129], or a variety of other approaches. For these systems the
intent of the high-level controller is usually considered as a desired list of
configurations of the robot, or a desired list of relative configuration of parts.
Examples of systems capable of real-time on-line trajectory planning include
CHOMP [130] by Ratliff et al. (2009), STOMP [131] by Kalakhrisnan (2011),
or the real-time trajectory generation using model predictive control [132]
by Ardakani et al. (2015). Both CHOMP and STOMP have plugins for the
popular ROS [28] motion planning package MoveIt [133].

1A PSPACE problem can be decided with no more than polynomial storage space (superset
of NP).

34

3.4 Discussion and Future Work

The papers presented in this thesis contain contributions in: nonlinear speed
observers for general mechanical systems, a mid-level model predictive path-
following controller, a system architecture for CAD-based robotic assembly,
implementation and timing analysis of an open-source ROS interface for
KUKA robots, a stability proof of the tracking problem with task-priority
inverse kinematic, and both reactive and model predictive closed-loop inverse
kinematics controllers for constraint-based multiple task control.

The nonlinear speed observer of Paper 1, exhibits globally exponential
convergence, a promising property as it is based on an observer applicable
to a large variety of mechanical systems. Due to this, the goal was to see if a
method could be created to automatically generate speed observers for any
robot system, and it was expected that such a method would be beneficial
in adaptive control of industrial manipulators. In practice, the observer was
a very stiff dynamical system, and very small timesteps were necessary for
simulation of a simple two DOF manipulator. Loria presented the article
Observers are unnecessary for Output-Feedback Control of Lagrangian Systems
[134],where the dirty-derivative filterwas shown to be a sufficient alternative
to speed observers. It was also observed that most commercially available
industrial manipulators have kinematic control setpoints. For these reasons,
the work was not pursued further.

The model predictive path following controller of Paper 2 and Paper 3
showed more promising results. Many industrial tasks are defined by a path
rather than a trajectory. The focus is rather on the deviation of the end-
effector from the path than its timing along the path. It also has interesting
properties when faced with an obstacle. By tuning the length of the horizon
and the weights in the model predictive controller, one can allow the end-
effector to move around small obstacles, or stop when it arrives at a larger
obstacle. When the industrial manipulator has kinematic setpoints, and one
has access to a symbolic algorithmic differentiation tool such as CasADi [8],
the model predictive controller can be used with any manipulator for which
the parameters of the forward kinematics is known. This opened up an avenue
into RMRC approaches, and its many related approaches. Specifically the
constraint-based task-specification language eTaSL. The convergence of the
model predictive path-following controller has been explored in the two DOF
case [121], but the question of how to prove the convergence in the general
case, both for redundant and non-redundantmanipulators, is yet unanswered.
Further work also includes implementing the model predictive path-following
controller in CASCLIK.

The system architecture for constraint-based robotic assembly with CAD

35

information of Paper 4 is an attempt at looking at the integration of a constraint-
based task-specification language in a larger automated assembly system. The
architecture includes novel features such as finite state machines based on
the operational mode that the manipulator is in, and inference of parameters
related to the assembly process. Integration of geometric information from
CAD models of the assembly has been thoroughly researched, as presented
in Sec. 2.2, but enabling complex sensor-based assembly tasks still remains
a difficult prospect. By separating the parameters into two categories, appli-
cation parameters related to the geometric information available in the CAD
models, and process parameters that must be inferred from the models and
the materials involved, the architecture attempts to simplify the process of
generating controllers that can perform the assembly.

One of the key possibilities with constraint-based task specification is
that multiple tasks can be combined and achieved simultaneously. Intuitively
one can enforce joint limits, collision avoidance, and guarded motion in one
and the same skill. When considering such situations, one is discussing the
granularity of the architecture. What is the smallest elements involved? A
collection of constraints, or a single task constraint? As the architecture was
aimed at industrial assembly situations, the granularity was chosen at an
atomic skill level. Each atomic skill was a single eTaSL script, defined by
a collection of task constraints, that were known to work. The alternative,
describing singular task constraints as the smallest element that the higher-
level controller is to compose is not guaranteed to result in feasible skills,
and it is difficult to evaluate beforehand whether the resulting skill can be
achieved in the whole workspace of the robot with any possible sensor input.
The chosen granularity makes it easier to create finite state machines of
atomic skills into composed skills, where each state defines an operational
mode of the controller. Operational mode in this context means that the state
describes which atomic skill is active, or which form of continuous motion
the robot is currently executing. Be it guarded Cartesian motion or compliant
peg-in-hole insertion. By defining the composed skills as having each state
as an operational mode of the robot, the number of states in the finite state
machine is reduced, but the complexity is shifted to the transitions rather
than the states. Classically in robotics, the finite state machine has states
defined in terms of objectives to be achieved rather than the operational
mode of the controller, e.g. “move to grasp”.

In some ways, the architecture can be considered to be limited by the free-
dom available. In this architecture, the mid-level controller is the composed
skill executor, created with rFSM and eTaSL/eTC. The high-level controller
is the process layer of the architecture. Constraint-based robot program-
ming is closely related to the geometric constraints between features in

36

CAD. Intuitively this presents an opportunity to exploit the CAD information
for generating the relevant skills, but a variety of problems arise when one
wishes to go from idealized objects to real-life. For position-based control of
parts, automatic generation of skills can be accomplished, such as the work
of Somani et al. [135] (2016). They define assemblages in terms of CAD
constraints, which allows for intuitive robot programming [136]. For tasks
requiring sensor-based control, the problem of translating CAD information
and constraints into tasks that can be accomplished with a constraint-based
control remains elusive. The approach used in the system architecture is to
consider eTaSL as a tool by which one can easily construct sensor-based as-
sembly skills, still requiring a programmer for the skills. Instead of relying on
CAD constraints, assembly tasks are defined in the application layer, for which
a set of composed skills are feasible. The planning module is then only re-
quired to look through the set of composed skills associated with the assembly
task when choosing the appropriate skill. Further work includes investigating
automatic generation of composed skills from the CAD information.

CASCLIK was created as an attempt to investigate the flexibility of the
system proposed by eTaSL/eTC. It follows the architecture of eTaSL, allowing
a collection of tasks to be combined into a specification that can be executed
by a variety of controllers. By using CasADi, algorithmic differentiation of
arbitrary constraint expressions can be performed. This allows one to com-
pare different underlying representations for the reference frames such as
full transformation matrices with dual quaternions. CASCLIK is also meant
for investigating whether a model predictive formulation of the controller is
feasible and beneficial, and whether modification of the objective function
can be of use. The original RMRC description by Whitney considers an ob-
jective function weighted with respect to an approximation of the kinetic
energy of the system. Samson et al. furthers this discussion with respect to
manipulability of the end-effector [106], which has also been addressed in
a quadratic programming formulation without CLIK by Dufour et al. [137].
Model predictive controllers often define objectives to be achieved by the
robot in terms of the cost function, see the cost function in Paper 2 or Paper 3.
CASCLIK enables this by taking the cost expression as input to the instantia-
tion of a controller. Further work also includes the implementation of indirect
force control formulations such as an admittance controller [79] for the re-
active control approaches, as well as torque-resolved controller formulations.
The controller formulations should also be optimized for execution speed, as
this is a prerequisite for using them in feedback control.

Researching control of robots is like searching for hay in a haystack.
Robotics encompasses a variety of systems, and multitudinous articles from
the early days of robotics to last Tuesday have presented relatable and useful

37

results. From an outside perspective one may consider kinematic control of
industrial manipulators to be solved, and the limitations simply being imple-
mentation. But then why are there not more complete automated assembly
systems available?

Part of the reason appears to be the complexity of high-level planning
as briefly discussed in the previous section. As one attempts to plan tasks
in a higher-dimensional space for manipulators with an arbitrary number
of joints, the complexity of the problem grows with the number of DOF of
the manipulator. With dynamic unstructured environments, such as a busy
work cell, real-time feedback planning may be required for which efficient
solvers are still an issue. From the thought experiment in the beginning of the
previous section, there is no unified approach to what should be transmitted
to the mid-level controller. To a certain degree, one can say that the core
requirements of robotics presented by Lozano-Perez [52] in 1983 are still
not solved. When they are, if they ever will be, there is still the problems
described by Hägele et al. of system integration and system design. Different
robot manufacturers may provide different interfaces to the manipulator, and
the low-level controller is often a black box that one has little insight into. As
one nails down a rigid formalization of the low-level controller, the mid-level
controller, or the high-level controller, one limits the possibilities of the other
components. Integration of new sensor technology, new planning techniques,
or new feedback control techniques into the same architecture is then more
difficult.

Intuitively, the task function approach of Samson et al.[106] is a highly
generalizable problem formulation. This makes it attractive as various sys-
tems and scenarios can be envisioned, not only in control of industrial ma-
nipulators but in control of robot platforms such as underwater swimming
manipulators [138] or mobile robots [116], [139]. It can also be used with
various interfaces to the low-level controller, at a kinematics, or dynamics
level. And from the development of CASCLIK, it appears that only a small
step is required from the reactive control formulation to a model predictive
control formulation.

System integration may not be solved, but open-source middleware so-
lutions such as OROCOS or ROS simplify the process of controlling robot
systems and developing new software. Hardware standardizations such as
the Hardware Robot Information Model [140] proposed by Acutronic Robotics
(2018) that describe a standardization of ROS topics from sensors may fur-
ther simplify sensor integration. Software such as Gazebo [141] provide
interfacing between ROS and various physics engines. These tools allow a
simplification of the system integration step that is unprecedented in robotics
history, but also increase the variety of approaches to the problems as each

38

research group still think and program in their own parlance.
When faced with the combinatorial explosion of system integration and

possible methods of control, one cannot expect to create an ideal, or perma-
nent solution to any robotics problem. Creating tools that are left to dust
among textbooks and hard drives, or dead before they hit the market is a
disquieting thought. Giving others insight and interfaces to our software
enables others to learn from our accomplishments and failures, and perhaps
usher in a new set of tools from which we can learn.

39

Chapter 4

Original Publications

40

41

Paper 1 On the Globally Exponentially Convergent
Immersion and Invariance SpeedObserver
for Mechanical Systems

M. H. Arbo, E. I. Grøtli, and J. T. Gravdahl, “On the globally exponentially
convergent immersion and invariance speed observer formechanical systems,”
American Control Conference (ACC), Seattle, WA, 2017, pp. 3294-3299.

42

On the Globally Exponentially Convergent
Immersion and Invariance Speed Observer for

Mechanical Systems
Mathias Hauan Arbo∗, Esten Ingar Grøtli† and Jan Tommy Gravdahl∗

∗Department of Engineering Cybernetics
NTNU, Norwegian University of Science and Technology

† Mathematics and Cybernetics, SINTEF DIGITAL, Trondheim, Norway

Abstract—In this article we present a reformulation of the in-
variance and immersion speed observer of Astolfi et al. as applied
to mechanical systems with bounded inertia matrices. This is done
to explore the possibility of its practical implementation e.g. for
6 degrees-of-freedom industrial robots. The reformulation allows
us find an explicit expression for one of the bounds used in the
observer, and a constructive method for the second. We show that
the observer requires either analytically or numerically solving
at most 2n2 integrals, where n is the number of generalized
coordinates in the mechanical system.

I. INTRODUCTION

Industrial robots are typically equipped with encoders to
measure the angles of the joints. These give accurate and
steady measurements of the angles, but the speeds of these
angles are not always available. Some systems have a tachome-
ter, inertial sensors, or perform numerical differentiation of the
joint position. These methods can introduce high-frequency
noise or phase lag. An alternative method is to construct an
observer for the nonlinear system.

Speed observers have been an important topic in robotics.
One of the first references to a speed observer for mechanical
systems is [1], where an asymptotic observer was used in a
feedback situation with a trajectory tracking controller. In [2] a
semi-globally exponentially stable observer based on passivity
was presented. In [3] a globally exponentially convergent
observer was established for general Euler-Lagrange systems.
In [4] the observer was applied to systems with non-holonomic
constraints and the system written in port-Hamiltonian form.
In [5], a novel observer was presented with globally expo-
nentially stable properties given that the inertia matrix has
an upper bound. Speed observers are most notably featured
in the topic of output-feedback control, where there are two
main approaches: model-based approaches which utilize speed
observers [5], [6], and filter-based approaches which use filters
to replace speed observers [7]. In this article we are interested
in the speed observer of [3]. The usage of the invariance and
immersion observer for the output-feedback tracking scenario
is outside the scope of this article, however we refer the
reader to [8] where a globally exponentially stable trajectory

controller that uses the immersion and invariance observer for
a mechanical system in port-Hamiltonian form is presented.

In [9], Karagiannis et al. showed that a globally asymp-
totically convergent speed observer can be constructed for
2 degrees-of-freedom mechanical system if a certain partial
differential equation admits analytical solutions. In [10] Kara-
giannis et al. presents a method of approximating such a partial
differential equation using output filters and a dynamic scaling
parameter. The deviation between the partial derivative of the
approximated solution and the ideal solution is compensated
for by the dynamic scaling parameter. In [3], Astolfi et al.
applied this approximation method to general Euler-Lagrange
systems to create a globally exponentially convergent speed
observer. Astolfi et al. showed that there exist some bounds
on the disturbances introduced by the deviation from the
ideal partial differential equation. The speed observer was
to be considered a proof of existence rather than a directly
implementable method. The reason for this is that it requires
the solution of a set of integrals that may not have closed-form
solutions. To that end, they must be approximated numerically.
Future developments in computational power may allow us to
perform the necessary numerical integrations on-line. To that
effect this article establishes how many integrals are needed
at most. Given the Euler-Lagrange equations, the remaining
difficulty is then how to define the necessary bounds on our
deviation from the ideal partial differential equation.

In both [9] and [3], the speeds of the mechanical system
were transformed by the Cholesky factorization of the inertia
matrix, see the preliminary lemma of [3]. This transformation
gives rise to a skew-symmetric property that simplifies the
Lyapunov analysis. The basis of which stems from the skew-
symmetry of the derivative of the inertia matrix. A similar
transformation is performed on the port-Hamiltonian system
in [4]. In this paper we show that, given the property that
the inertia matrix has an upper bound, this transformation is
not necessary. This excludes us from applying the observer
to systems with an infinitely extending prismatic joint, but
allows us to make an explicit bound on one of the disturbances.
We give a constructive method of finding the other bound, a
method that can also be applied to the observer of Astolfi

43

et al., and we show how a naively implemented observer
requires the evaluation of at most 2n2 integrals. This article
is an attempt to explore the possibility of using the invariance
and immersion globally exponentially convergent observer for
general mechanical robots with bounded inertia matrices.

The paper is organized as follows: Section II contains
two subsections, system and observer. The system subsection
describes the system discussed in this paper and the properties
assumed for it, and the observer subsection follows the proof
of stability of our observer, a parallel to the proof of [3],
and presents two lemmas for finding the bounds. Section III
contains two sections, system description and results. Finally,
Section IV contains the discussion and conclusion.

II. THEORY

A. System

In this paper we consider an n degrees-of-freedom robot
described by the differential equation

M(q)q̈ + C(q, q̇)q̇ +G(q) = u (1)

where q ∈ Rn are the generalized coordinates, M(q) ∈ Rn×n
is the inertia matrix, C(q, q̇) ∈ Rn×n is the Coriolis matrix,
G(q) ∈ Rn is a vector of potential forces, and u ∈ Rn is the
control input. For any q, x, y ∈ Rn and λi ∈ R we assume the
following properties hold
P1: kMI ≥M(q) ≥ kmI
P2: C(q, x)y = C(q, y)x
P3: C(q, λ1x1 + λ2x2)y = λ1C(q, x1)y + λ2C(q, x2)y
P4: ‖C(q, x)‖ ≤ kc ‖x‖
P5: Ṁ(q) = C(q, q̇) + C(q, q̇)

T .
with some known positive kM , km, and kc. The property P4
is not required for stability, but simplifies one of the bounds
as will be shown in Lemma 1. P5 is to cancel the Coriolis
matrices, for more information on applicability of P1 and P5
we refer the reader to [11]. The system admits the state-space
representation:

ẏ = x (2a)

ẋ = M(y)−1(u− C(y, x)x−G(y)) (2b)

with y the measured coordinates, and x being the unmeasured
speeds of the generalized coordinates.

B. Observer

For the system (2), we define the observer

ξ̇ = α1(ξ, sy, sx, y, u, r) (3a)
x̂ = ξ + β(y, sy, sx) (3b)
ṡy = α2(x̂, sy, sx, y, r) (3c)
ṡx = α3(x̂, sy, sx, y, u, r) (3d)
ṙ = α4(x̂, sy, sx, y, r) (3e)

where ξ, x̂, sy , sx and r are the internal states of the observer.
The output of the observer will be sx, a filtered version of x̂.

We will define the dynamics αi and mapping β will so that
the error

z = x̂− x (4)

has a globally exponentially stable origin. The proof of this
follows the proof in [3], except that we use P5 instead of the
preliminary lemma of [3], where x in (2b) is transformed by
the Cholesky factorization of the inertia matrix. For brevity
we will omit the arguments of αi when referred to in the
following proof.

The dynamics of the error is found from (4) and taking the
derivative of (3b) as

ż =α1 +
∂β

∂y
x+

∂β

∂sy
α2 +

∂β

∂sx
α3

−M(y)−1 (u− C(y, x)x−G(y)) (5)

choosing α1 as

α1 =M(y)−1 (u− C(y, x̂)x̂−G(y))

− ∂β

∂y
x̂− ∂β

∂sy
α2 −

∂β

∂sx
α3 (6)

the estimation error dynamics becomes

ż = M(y)−1 (C(y, x)x− C(y, x̂)x̂)− ∂β

∂y
z. (7)

From P2 and adding and subtracting C(y, x)x̂, we have

C(y, x)x− C(y, x̂)x̂ = −C(y, x)z − C(y, x̂)z (8)

giving the dynamics

ż = −M(y)
−1

(C(y, x) + C(y, x̂)) z − ∂β

∂y
z. (9)

With a Lyapunov function V (t, z) = 1
2z
TM(y)z, and using

P5, we can see that solving ∂β
∂y such that

∂β

∂y
= M(y)

−1
(k1I − C(y, x̂)) (10)

yields a globally exponentially convergent observer for k1 > 0.
But the partial differential equation is not always solvable, we
follow the proof of [3] and approximate (10).

We define

H(y, x̂) ..= M(y)
−1

(k1I − C(y, x̂)) (11)

as the ideal we want. Then following step 2 in [3], which uses
a method from Karagiannis et al. in [10], we choose to model
β as the sum of n integrals

β(y, sy, sx) ..=

∫ y1(t)

0

H1([y1, sy2, . . . , syn], sx)dy1 + . . .

+

∫ yn(t)

0

Hn([sy1, . . . , syn−1, yn], sx)dyn (12)

where the subscript i of Hi is the ith column of the matrix H ,
and syi, yi refers to the ith element of the vectors. Note that
we are substituting x̂ for the filtered state sx, and y for the
filtered state sy for all but the integrated elements yi. We will

44

denote this as the column Hi being a function of yi, sy1:n\i,
and sx. This gives us the partial differential equation

∂β

∂y
= [H1([y1, . . . , syn], sx) . . . Hn([sy1, . . . , yn], sx)] .

(13)
We can now also find the partial derivatives needed for α1,

starting with

∂β

∂syi
=

n∑

j=0,j 6=i

∫ yj(t)

0

∂Hj

∂syi
(yj , sy1:n\j , sx)dyj (14)

which requires at most we n(n − 1) integrals. Secondly we
have

∂β

∂sxi
=

n∑

j=0

∫ yj(t)

0

∂Hj

∂sxi
(yj , sy1:n\j , sx)dyj (15)

similarly to (14), it requires evaluating n2 integrals.
We define the deviation of our modeled β from the ideal as

Hi(y, x̂)−Hi(yi, sy1:n\i, sx) =

Hi(y, x̂)−Hi(y, sx) +Hi(y, sx)−Hi(yi, sy1:n\i, sx)

= ∆x,i(y, sx, ex) + ∆y,i(y, sx, ey) (16)

where i refers to the column vector of the matrices ∆x and
∆y , and we have defined the errors

ey ..= sy − y (17)
ex ..= sx − x̂ (18)

which, from (13) and (16), gives us

∂β

∂y
= H(y, x̂)−∆x(y, sx, ex)−∆y(y, sy, ey). (19)

As (13) is the same as (11) when y = sy and x̂ = sx, we
see that when ey = 0 and ex = 0 then ∆x = 0 and ∆y = 0. In
combination with the fact that the mappings are smooth this
ensures that there exists some mappings ∆̄x, ∆̄y such that

∆x(y, sx, ex) = ∆̄x(y, sx, ex)ex (20a)
∆y(y, sy, ey) = ∆̄y(y, sy, ey)ey. (20b)

Theoretically we can see that ∆̄x and ∆̄y can be found
by taking the Taylor series around ex = 0 and ey = 0
and factoring out ex or ey . But as many systems contain
trigonometric expressions, this is potentially an infinite series
that is not easy to implement. The following lemma gives a
constructive method of finding ‖∆x‖ related to ‖ex‖.
Lemma 1. Given a matrix ∆x(y, sx, ex) as defined in (16),
and the properties P1, P3, and P4, then

‖∆x(y, sx, ex)‖ ≤ kc
km
‖ex‖ (21)

Proof. From (16) we have

∆x(y, sx, ex) = H(y, sx − ex)−H(y, sx)

= M(y)
−1

(−C(y, sx − ex) + C(y, sx))

= M(y)
−1

(C(y, ex)) (22)

where we have used P3 to arrive at the last line. And thus

‖∆x(y, sx, ex)‖ ≤
∥∥M(y)−1

∥∥ ‖C(y, ex)‖ (23)

which, given P1 and P4 becomes (21).

When P4 is available, Lemma 1 gives an explicit bound on
∆x. For ∆y the partial substitution of sy for y for all but
element yi complicates matters. The following lemma is more
general and is used to find bounds that relate ‖∆x‖ or ‖∆y‖
to ‖ex‖ or ‖ey‖.
Lemma 2. Given a function ∆ : Rn×Rn×Rn → Rn×n that
is continuously differentiable, where

∆(x, y, e) = 0 (24)

if
e = 0 (25)

and ∥∥∥∥ sup
e∈Rn

∂∆ij(x, y, e)

∂e

∥∥∥∥
2

= ∆̄ij(x, y, e) (26)

where the subscript ij refers to an element in the matrix. Then

‖∆(x, y, e)‖2 ≤
∥∥∆̄(x, y, e)

∥∥
F
‖e‖2 (27)

Proof. From the definition of the matrix 2 norm and Frobenius
norm we have

‖∆(x, y, e)‖2 ≤ ‖∆(x, y, e)‖F ..=

√√√√
m∑

i=1

m∑

j=1

∆ij(x, y, e)
2

(28)

from (26), there exists a supremum such that

|∆ij(x, y, e)| ≤
∣∣∣∣
(

sup
e∈Rn

∂∆ij(x, y, e)

∂e

)
e

∣∣∣∣
≤ ∆̄ij(x, y, e) ‖e‖2 (29)

and putting this into the (28) gives

‖∆(x, y, e)‖2 ≤

√√√√
m∑

i=1

m∑

j=1

∆̄ij(x, y, e)2 ‖e‖2 (30)

which is equal to (27).

Continuing on the stability proof, we substitute (19) in (9)

ż =−M(y)
−1

(C(y, x) + C(y, x̂)) z

−H(y, x̂)z + (∆y + ∆x)z (31)

and using (11) we get

ż = −M(y)−1 (k1I + C(y, x)) z + (∆y + ∆y)z (32)

The matrices ∆x and ∆y act as disturbances on z that we will
dominate with a dynamic scaling r. We define a new scaled
variable as

η =
z

r
(33)

with the derivative
η̇ =

ż

r
− ṙ

r
η. (34)

45

We define the Lyapunov function V1(t, η) = 1
2η
TM(y)η so

as to cancel the Coriolis matrices. Using (32), (34), and P5,
we get

V̇1 = −k1 ‖η‖2 + ηTM(y)(∆y + ∆x)η − ṙ

r
ηTM(y)η (35)

using P1

V̇1 ≤ −k1 ‖η‖2 + ‖M(y)(∆y + ∆x)‖ ‖η‖2 − ṙ

r
km ‖η‖2

≤ −
(
k1

2
+ km

ṙ

r
− 1

2k1
‖M(y)(∆y + ∆x)‖2

)
‖η‖2

≤ −
(
k1

2
+ km

ṙ

r
− 1

k1
(‖M(y)∆y‖2 + ‖M(y)∆x‖2

)
‖η‖2

(36)

where the second inequality is found using Young’s inequality
with factor k1. Choosing the dynamics of r as

ṙ = − k1

4km
(r − cr) +

r

k1km

(
‖M(y)∆y‖2 + ‖M(y)∆x‖2

)

(37)
with r(t0) > cr > 0 and r(t) > cr > 0 gives

V̇1 ≤ −
(
k1

2
− k1

4

r − cr
r

)
‖η‖2 ≤ −k1

4
‖η‖2 . (38)

This gives global exponential stability of η(t), and in turn we
need boundedness of r(t) to ensure global exponential stability
of z(t). The choice of placing a parameter cr as a lower bound
on r is inspired by [5].

We are going to create the Lyapunov functions

V2(t, η, ey, ex) = V1(t, η) +
1

2
(eTy ey + eTx ex) (39)

V3(t, η, ey, ex, r) = V2(t, η, ey, ex) +
1

2
(r − cr)2

. (40)

From the definition of the errors (17) and (18), and taking the
derivative of (3b), we have

ėy = α2 − x (41)

ėx = α3 − α1 +
∂β

∂y
x+

∂β

∂sy
α2 +

∂β

∂sx
α3 (42)

choosing

α2 = x̂− ψ1ey (43)

α3 = M(y)−1 (u− C(y, x̂)x̂−G(y))− ψ2ex (44)

where ψ1 and ψ2 are scalar gain functions, with our chosen
α1, (6), we have

ėy = z − ψ1ey (45)

ėx =
∂β

∂y
z − ψ2ex. (46)

The time derivative of V2 is therefore

V̇2 = V̇1 + reTy η + reTx
∂β

∂y
η − ψ1e

T
y ey − ψ2e

T
x ex (47)

≤ −
(
k1

4
− 1

)
‖η‖2 −

(
ψ1 −

r2

2

)
‖ey‖2

−
(
ψ2 −

r2

2

∥∥∥∥
∂β

∂y

∥∥∥∥
2
)
‖ex‖2 (48)

where we have used Young’s inequality. From (37), we get
the time derivative of V3 as

V̇3 = V̇2 −
k1

4km
(r − cr)2

+
r(r − cr)
k1km

(
‖M(y)∆y‖2 + ‖M(y)∆x‖2

)
. (49)

As we have established (20a) and (20b), or similarly appro-
priate bounds through Lemma 1 and Lemma 2, we arrive at
the inequality

V̇3 ≤V̇2 −
k1

4km
(r − cr)2

+
r2k2

M

k1km

(∥∥∆̄y

∥∥2 ‖ey‖2 +
∥∥∆̄x

∥∥2 ‖ex‖2
)

(50)

where we have used the fact that r2 > r(r−cr) for r > cr > 0.
Collecting the terms from (48) we get

V̇3 ≤ −
(
k1

4
− 1

)
‖η‖2 −

(
ψ1 −

r2

2
− r2k2

M

k1km

∥∥∆̄y

∥∥2
)
‖ey‖2

−
(
ψ2 −

r2

2

∥∥∥∥
∂β

∂y

∥∥∥∥
2

− r2k2
M

k1km

∥∥∆̄x

∥∥2

)
‖ex‖2

− k1

4km
(r − cr)2 (51)

we can see that if we choose

ψ1 = k2 +
r2

2
+
r2k2

M

k1km

∥∥∆̄y

∥∥2
(52)

ψ2 = k3 +
r2

2

∥∥∥∥
∂β

∂y

∥∥∥∥
2

+
r2k2

M

k1km

∥∥∆̄x

∥∥2
(53)

we get

V̇3 ≤−
(
k1

4
− 1

)
‖η‖2 − k2 ‖ey‖2 − k3 ‖ex‖2

− k1

4km
(r − cr)2 (54)

where we choose k1 > 4. This gives V̇3 ≤ 0, which ensures
that r(t) is bounded. This in turn gives us global exponential
convergence of z(t).

As shown in [9], the difference between the solution to the
ideal partial differential equation (10) and our approximation
(12) is such that the states from the output filters, sy and
sx give the best estimates of the system states from the
“perspective” of our observer. One way to think of this is to see
that ξ would have been the states of our ideal observer, with
output defined by x̂. We cannot solve the differential equation
required to render β of the output function as we want it. So we
give it dynamics sx and sy that filter the states to compensate
for the disturbances introduced by the approximation. This
means that sy , and sx are the output of our observer.

III. SIMULATION

A. System description

We consider the 2 degrees-of-freedom system used in [3],
with y1 and y2 defined as illustrated in Fig.1. We define

46

y1

y2

Fig. 1. Two-link manipulator with revolute joints.

c(x, y) = cos(x − y), s(x, y) = sin(x − y), D(x, y) =
c1c2 − c23c(x, y)2, and the system is described by

M(y) =

[
c1 c3c(y1, y2)

c3c(y1, y2) c2

]
(55a)

C(y, x) =

[
0 −c3s(y1, y2)x1

c3s(y1, y2)x2 0

]
(55b)

G(y) = g

[
c4 cos(y1)
c5 cos(y2)

]
(55c)

with

c1 = I1 + I2 +m1L
2
c1 +m2(L2

1 + L2
c2) (56a)

c2 = 2m2Lc2L1, c3 = m2L
2
c2 + I2 (56b)

c4 = g(Lc1(m1 +M1) + L1(m2 +M2))g (56c)
c5 = gLc2(m2 +M2) (56d)

where the links are of length Li, with link masses Mi at Lci ,
and masses mi at the joints. We have

km = λmin(M0)), kM = λmax(M0), kc = c3 (57)

where km and kM stem from the eigenvalues λ of M0, the
inertia matrix M at the origin [y1, y2] = [0, 0], and using the
method of [12] we get kC .

Using (11) we have:

H(y, x) =


c2k1+
c23x2

2 s(2y1,2y2)

D(y1,y2)
c3(c2x1s(y1,y2)−k1c(y1,y2))

D(y1,y2)

− c3(c1x2s(y1,y2)+k1c(y1,y2))
D(y1,y2)

c1k1− c23x1
2 s(2y1,2y2)

D(y1,y2)




(58)

from which ∆x, and ∆y can be constructed using (16). A
simple albeit overestimating method of finding ∆̄ij from a
symbolically calculated ∂∆ij

∂e is the sum of the supremum of
the terms of the expression. E.g. if ∂∆ij

∂e = f1 − f2 + f3 then
we choose ∆̄ij = ‖f1‖∞+‖f2‖∞+‖f3‖∞. The initial states
of the robot and the observer are given in Table I, and the
robot parameters are given in Table II. The initial states of the
robot and the initial estimate sx were chosen so as to coincide
with the initial states in [3].

B. Results

The graphs show the observer of this paper with parameters
specified in Table II as well as that of [3] with k1 = 10. In
Fig.2 we see that the filtered angles sy converge to the actual

TABLE I
INITIAL STATES OF OBSERVER AND ROBOT

y(0) x(0) ξ(0) sy(0) sx(0) r(0)

[0, 0]T [−0.29, 6.66]T [−8.45, 68.33]T [1, 2]T [10, 20]T 0.1

TABLE II
ROBOT AND OBSERVER PARAMETERS

c1 c2 c3 c4 c5 k1 k2 k3 cr
0.9698 0.1575 0.264 1.74 0.44 40 8 2.5 0.001

trajectories y over time. In Fig.3 we can see that the filtered
speeds sx converge to the actual speeds x over time. Note
that with the same gains as in [3] our observer takes a longer
time to converge. It appears that we require larger gains to
achieve the same effect as in [3]. In Fig.5 we attempt to show
our reasoning for choosing a small initial r(t0), and using cr
to allow an r lower than 1. The graph shows the norm of
[ξ̇, ṡy, ṡx, ṙ] evaluated for varying r at the initial state. With
larger r the observer differential equation is stiffer, requiring
a small timestep to remain accurate. This trend was observed
for many states other than the initial state as well. To simplify
simulation, we chose a sufficiently small r(t0) so as to remain
in the region where r < 10−1.

−1
0
1
2

q 0
[ra

d]

0.00 0.05 0.10 0.15 0.20
t [s]

−1
0
1
2

q 1
[ra

d]

Fig. 2. Joint angles over time. The blue line is the actual angles, the dashed
green line is sy , and the dotted red line is the filtered angles from the observer
in [3]. Note that this is shown for the timeframe 0 to 0.2 s.

−10
−5

0
5

10

q̇ 0
[ra

d/
s]

0 1 2 3 4 5 6
t [s]

−20
0

20
40
60
80

q̇ 1
[ra

d/
s]

Fig. 3. Joint speeds over time. The blue line is the actual speeds, the dashed
green line is sx, and the dotted red line is the estimated speeds of the observer
in [3].

47

0 1 2 3 4 5 6
t [s]

0
20
40
60
80

100
120
140
160

||s
x
−
x
||2

Fig. 4. ‖sx − x‖2 over time.

10−4 10−3 10−2 10−1 100 101

r

103

104

105

106

107

108

||ξ̇
T
,ṡ
T y
,ṡ
T x
,ṙ
||

Fig. 5. The norm of [ξ̇T , ṡTy , ṡ
T
x , ṙ]

T with respect to r. Evaluated at the
initial state of the observer described in Table I.

IV. DISCUSSION AND CONCLUSION

A. Discussion

Our alternative formulation of the observer does not come
for free, we use a Lyapunov function V1 that depends on the
inertia matrix. This means that unlike [3] we require an upper
bound on the inertia matrix, a property that does not hold for
mechanical systems with inifinitely extending prismatic joints.
Further work into relating the observer presented in this article
to that of [3] may give explicit bounds for the disturbances.
Lemma 2 can also be used for the disturbance bounds in [3].

As the second Lemma relies on finding the supremums
of nonlinear equations, it is not as practical as Lemma 1.
Investigating the general structure of ∆y with respect to some
classes of robotic systems, e.g. consisting of revolute joints
defined by the Denavit-Hartenberg convention, might give rise
to explicit bounds.

We can see that if all the integrals of (12) are performed
numerically, which would allow us to generate an observer
from only the symbolic system equations, naively imple-
mented, we will end up with 2n2 numerical integrals from our
approximation of β, ∂β

∂sy
, and ∂β

∂sx
evaluated at each timestep.

This might be cumbersome even with optimized methods of
performing the integrals and parallelising the effort. Further
work evaluating what to do when parts of the differential equa-
tion is solvable may reduce the number of numeric integrals
needed. The exact number of integrals required depends on
how one defines the generalized coordinates of the robot, and
the mechanical structure of the system. For example, if the

second joint in our example was defined relative to the first
joint angle instead of the horizontal line, H(y, x̂) would not
depend on y1 and the corresponding integrals would be zero.

B. Conclusion

In this article we presented the observer of Astolfi et al.
from [3] reformulated so as to give more intuitive internal
states. These make it easier to provide an explicit method in
Lemma 1 and constructive method in Lemma 2 for defining
the necessary bounds. The method of Lemma 2 is sufficiently
general to be applied to the observer of [3]. A result of our
reformulation of the observer is that it requires an upper bound
on the inertia matrix, a property that Astolfi et al. did not
require. Through our approximation of a partial differential
equation, the observer requires evaluation of 2n2 integrals.

V. ACKNOWLEDGEMENTS

The work reported in this paper was based on activities
within centre for research based innovation SFI Manufacturing
in Norway, and is partially funded by the Research Council
of Norway under contract number 237900.

REFERENCES

[1] S. Nicosia and P. Tomei, “Robot Control by Using Only Joint Position
Measurements,” IEEE Transactions on Automatic Control, vol. 35, no. 9,
pp. 1058–1061, 1990.

[2] H. Berghuis and H. Nijmeijer, “A Passivity Approach to Controller-
Observer Design for Robots,” IEEE Transactions on Robotics and
Automation, vol. 9, no. 6, pp. 740–754, 1993.

[3] A. Astolfi, R. Ortega, and A. Venkatraman, “A globally exponentially
convergent immersion and invariance speed observer for n degrees
of freedom mechanical systems,” in Proceedings of the 48h IEEE
Conference on Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference. IEEE, dec 2009, pp. 6508–6513.

[4] ——, “A globally exponentially convergent immersion and invariance
speed observer for mechanical systems with non-holonomic constraints,”
Automatica, vol. 46, no. 1, pp. 182–189, 2010.

[5] Ø. N. Stamnes, O. M. Aamo, and G.-O. Kaasa, “Global Output Feed-
back Tracking Control of Euler-Lagrange Systems,” IFAC Proceedings
Volumes, vol. 44, no. 1, pp. 215–220, 2011.

[6] B. Xian, M. S. De Queiroz, D. M. Dawson, and M. L. McIntyre,
“A discontinuous output feedback controller and velocity observer for
nonlinear mechanical systems,” Automatica, vol. 40, no. 4, pp. 695–700,
2004.

[7] A. Loria, “Observers are Unnecessary for Output-Feedback Control of
Lagrangian Systems,” IEEE Transactions on Automatic Control, vol. 61,
no. 4, pp. 905–920, 2016.

[8] J. G. Romero, R. Ortega, and I. Sarras, “A Globally Exponentially Stable
Tracking Controller for Mechanical Systems Using Position Feedback,”
IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 818–823,
mar 2015.

[9] D. Karagiannis, D. Carnevale, A. Astolfi, and S. Member, “Invariant
Manifold Based Reduced-Order Observer Design for Nonlinear Sys-
tems,” IEEE Transactions on Automatic Control, vol. 53, no. 11, pp.
2602–2614, 2008.

[10] D. Karagiannis and A. Astolfi, “Observer Design for a Class of Non-
linear Systems Using Dynamic Scaling with Application to Adaptive
Control,” 47th IEEE Conference on Decision and Control, pp. 2314–
2319, 2008.

[11] P. J. From, I. Schjølberg, J. T. Gravdahl, K. Y. Pettersen, and T. I.
Fossen, “On the Boundedness Property of the Inertia Matrix and Skew-
Symmetric Property of the Coriolis Matrix for Vehicle-Manipulator
Systems,” Journal of Dynamic Systems, Measurement, and Control, vol.
134, no. 4, 2012.

[12] R. Kelly, V. Santibañez, and A. Loría, Control of Robot Manipulators in
Joint Space, ser. Advanced Textbooks in Control and Signal Processing.
London: Springer-Verlag, 2005.

48

49

Paper 2 On Model Predictive Path Following and
Trajectory Tracking for Industrial Robots

M. H. Arbo, E. I. Grøtli, and J. T. Gravdahl, “On model predictive path fol-
lowing and trajectory tracking for industrial robots,” 13th IEEE Conference
on Automation Science and Engineering (CASE), Xi’an, 2017, pp. 100-105.

50

On Model Predictive Path Following and
Trajectory Tracking for Industrial Robots

Mathias Hauan Arbo∗and, Esten Ingar Grøtli† and Jan Tommy Gravdahl∗
∗Department of Engineering Cybernetics

NTNU, Norwegian University of Science and Technology
†Mathematics and Cybernetics, SINTEF DIGITAL, Trondheim, Norway

Abstract—In this article the model predictive path following
controller and the model predictive trajectory tracking con-
troller are compared for a robotic manipulator. We consider
both the Runge-Kutta and collocation based discretization. We
show how path-following can stop at obstructions in a way
trajectory tracking cannot. We give simulations for a two-
link manipulator, and discuss the real-time viability of our
implementations.

I. INTRODUCTION

Modern industrial robots weld, grind, screw, measure, film,
paint, pick and place, and perform other tasks that require the
robot to follow arbitrary paths in space. For a typical robot
cell, we simplify our work as robotics engineers by having
enclosed, structured workspaces with no obstructions. For
dedicated large-scale production of a small set of products,
this is easily achieved. Small-scale manufacturing has a large
variety of products and each product series is produced
in low-scale or on-demand. Flexible robot cells are moved
around in cluttered workspaces and require rapid prototyping
of the paths. This means the control strategies must handle
obstructions without sacrificing quality of the product.

We consider model predictive control (MPC), as it han-
dles constraints on states and rudimentary obstructions. This
article considers known obstructions, and focuses on the
difference between path-following and trajectory tracking.

In trajectory tracking model predictive control (TT-MPC),
the robot is to follow a path with an explicit path-timing. The
trajectory may even incorporate constraints on the torques
or velocities of the robot through optimal control problem
(OCP) approaches such as [1], where a time-optimal path
timing law under constraints is generated. The path timing
law specifies the relation between the desired path and time,
while accounting for state constraints during the execution of
the path. The OCP is solved under the assumption that the
robot is moving along the path, and is an open-loop approach
to the constraint handling. In [2] this was extended to also
allow constraints on the acceleration and inertial forces at the
end-effector.

In [3], a model predictive path-following controller
(MPFC) that handles both path-timing and error from path
in the same OCP is described. In [4], the MPFC is shown
to converge to the path given terminal constraints without
needing terminal penalties. In [5] the MPFC is implemented

on a KUKA LWR IV robot, without end penalty or a
terminal constraint. This is done with the ACADO framework
[6], which uses a sequential programming method (SQP),
iteratively solving quadratic programs approximating the
nonlinear program using the qpOASES active set solver.

In [7], a real-time MPFC scheme for contouring control
of an x-y table is described. Here a linear time varying
approximation of the dynamics is used to define a QP which
is solved using an active-set solver. In [8], this is implemented
on an x-y table, and the MPFC outperformed both a similarly
implemented TT-MPC, and the industry standard cascaded PI
controlled set-point controller operating at a higher sampling
frequency.

In [9], an MPFC is applied to a tower crane. The OCP
is solved using the gradient projection method, an indirect
method where Pontryagin’s Maximum Principle is solved
for the OCP without inequality constraints on the states.
Instead slack variables are introduced to implicitly handle
the inequality constraints.

In this article we
• draw attention to differences in MPFC and TT-MPC

behavior, with and without obstructions,
• compare the Runge-Kutta and collocation integration

method for the two strategies,
• solve the nonlinear programs (NLP) for the control

strategies using the interior point solver IPOPT,
• and discuss the framework for real-time applications.

II. THEORY

A. System

The robot is an n degrees-of-freedom system with the
state-space representation

ẏ(t) = x(t) (1a)
ẋ(t) = fx(y(t),x(t),u(t)) (1b)

where y ∈ Rn are the generalized coordinates, x ∈ Rn are
generalized velocities, and u ∈ R are the inputs. The function
fx describes acceleration. We assume the robot has known
forward kinematics, allowing us to define a point of interest
p on the robot such that

p(t) = fp(y(t)) (2)

51

where fp(·) ∈ Rnp is found from the forward kinematics.
We describe the C1 reference path as %(·) ∈ Rnp , defined in
the same frame as p.

The path-timing variable s moves from 0 to sf . The TT-
MPC assumes s = t for t < sf and s = sf otherwise. The
MPFC controls s through the path-timing dynamics, which
we model as a double integrator

[
ṡ(t)
s̈(t)

]
=

[
0 1
0 0

] [
s(t)
ṡ(t)

]
+

[
0
1

]
v(t) ..= fs(s, ṡ, v), (3)

with piecewise constant input v(·) ∈ R. To ensure that we
never move backwards along the path, and that we have a
maximum along path speed, we constrain ṡ ∈ [0, ṡu]. For
more information on choice of the path-timing dynamics, we
refer the reader to [4] and [9].

For the MPFC we define the extended state ξ =
[yT ,xT , s, ṡ]T , input w = [uT , v]T , and dynamics

ξ̇(t) =




x(t)
fx(ξ(t),w(t)
fs(ξ(t),w(t)


 = fξ(ξ(t),w(t)). (4)

Similarly, for the TT-MPC we define the extended state χ =
[yT ,xT] with dynamics

χ̇(t) =

[
x(t)

fx(χ(t),u(t)

]
= fχ(χ(t),u(t)). (5)

We define the deviation from the path as

epf (t) ..= fp(y(t))− %(s(t)). (6)

for the MPFC, and

ett(t) ..= fp(y(t))− %(t) (7)

for the TT-MPC. For s to converge to sf we also define the
path-timing error

es(t) ..= s(t)− sf . (8)

B. Optimal Control Problem

With the previously defined dynamics and errors, we can
describe the OCP for the MPFC as

min
epf ,ėpf ,es,u,v

∫ tk+T

tk

Jpf (τ, ξ̄(τ), w̄(τ))dτ (9a)

s.t.:
˙̄ξ(τ) = fξ(ξ̄(τ), w̄(τ)) (9b)
ξ̄(tk) = ξ(tk) (9c)
ξ̄(τ) ∈ [ξ̄l, ξ̄u] (9d)
hc(ξ̄(τ)) ≤ 0 (9e)

and for the TT-MPC as

min
ett,ėtt,es,u

∫ tk+T

tk

Jtt(τ, χ̄(τ), ū(τ))dτ (10a)

s.t.:
˙̄χ(τ) = fχ(χ̄(τ), ū(τ)) (10b)
χ̄(tk) = χ(tk) (10c)
χ̄(τ) ∈ [χ̄l, χ̄u] (10d)
hc(χ̄(τ)) ≤ 0 (10e)

where subscript u refers to the upper bounds on the states,
subscript l refers to the lower bound, and hc describes other
constraints such as obstacles in the path. The bar denotes
internal states of the MPC.

The cost integrands are defined as

Jpf (τ, ξ̄(τ), w̄(τ)) =
1

2
ēpf (τ)TQēpf +

1

2
˙̄epf (τ)TQd ˙̄epf

+
1

2
ū(τ)TRū(τ)

+
1

2
qēs(τ)2 +

1

2
rv̄(τ)2 (11)

for the MPFC and

Jtt(τ, χ̄(τ), w̄(τ)) =
1

2
ētt(τ)TQētt +

1

2
˙̄ett(τ)TQd ˙̄ett

+
1

2
ū(τ)TRū(τ) (12)

for the TT-MPC. The matrices Q, Qd, and R are positive
definite. The scalars q and r are positive. We have included
the derivative of the path deviation to reduce oscillations.

Solving the OCPs can be done by an indirect approach
using Pontryagin’s Maximum Principle as done in [9], or
a direct approach as done in [7]. We will apply the direct
simultaneous approach, reformulating the OCP as an NLP by
discretizing the problem. The direct simultaneous approach
is most common in real-time applications, with existing
software support such as ACADO [6] and CasADI [10].

C. Nonlinear Program and Interior Point

In this section we only give the discretization of (9) as the
TT-MPC is similar and simpler. To discretize the OCP we use
two different integration methods: the 4th order Runge-Kutta
(RK4), and collocation based on Lagrange polynomials with
d Legendre points.

The control input is a piecewise continuous function,
constant on intervals of length δt, which is the length of our
timesteps. This gives us a horizon of length NT = T/δt. With
the simultaneous approach we use the integration method
between each time step, and constrain the result and next
state to be equal.

1) Runge-Kutta: Given a δt, RK4 [11] gives us the equa-
tion

ξ̄k+1 = ξ̄k +
δt
6

(k1 + 2k2 + 2k3 + k4) = F (ξ̄k, w̄k) (13)

52

with

k1 = fξ(ξ̄k, w̄k), (14a)

k2 = fξ

(
ξ̄k + k1

δt
2
, w̄k

)
, (14b)

k3 = fξ

(
ξ̄k + k2

δt
2
, w̄k

)
, (14c)

k4 = fξ
(
ξ̄k + k3δt, w̄k

)
. (14d)

The resulting NLP is then

min
q

φ(q) (15a)

s.t.:
fe(q) = 0 (15b)
he(q) ≤ 0, (15c)

where q = [ξ̄Tk , w̄
T
k , . . . , ξ̄

T
k+NT−1, w̄

T
k+NT−1, ξ̄

T
k+NT

]T , the
cost function is approximated with the rectangle method

φ(q) =

k+NT∑

j=k

δtJpf (tj , ξ̄j , w̄j), (16)

and

fe(q) =




ξ̄k − ξ(tk)
ξ̄k+1 − F (ξ̄k, w̄k)

...
ξ̄k+NT

− F (ξ̄k+NT−1, w̄k+NT−1)


 . (17)

The inequality constraints use (9d)-(9e) enforced on ξ̄i for
i = k, . . . , k +Nt.

2) Collocation: For the collocation method, with d collo-
cation points, we define j = 0, . . . , d Lagrange polynomials

Lj(τ̃) =

d∏

r=0,r 6=j

τ̃ − θr
θj − θr

(18)

where τ̃ ∈ [0, 1], θ0 is 0, and the other θi are Legendre
collocation points. The approximation of the state trajectory
between tk and tk+1 is then

ξ̄(τ) =
d∑

j=0

Lj

(
τ − tk
δt

)
ξ̄k,j , for τ ∈ [tk, tk+1] (19)

where ξ̄k,j are optimization variables included in q. Requir-
ing the simultaneous constraint to hold, and the derivatives
to fit on the Legendre points, we have

ξ̄k+1,0 =
d∑

j=0

Lj(1)ξ̄k,j (20)

fξ(ξ̄k,j , w̄k)− 1

δt

d∑

r=0

L̇r(θj) = 0, for j = 1, . . . , d (21)

where Lr(1) and L̇r(θj) are independent of tk and are
precomputed. This gives a similar structure to (15) with the
cost function evaluated with ξ̄i,0 for i = k, . . . , k + Nt.
We have chosen to evaluate (9d) at all states ξ̄k,j and the

nonlinear inequality constraints, (9e), at ξ̄k,0. This reduces
the computational burden, but allows the collocation points
ξ̄k,j between tk and tk+1 to violate the nonlinear inequality
constraints. The optimization vector is of the form

q =[ξ̄Tk,0, ξ̄
T
k,1, . . . , ξ̄

T
k,d, w̄

T
k ,

. . . , ξ̄Tk+NT−1,d, w̄
T
k+NT−1,

ξ̄Tk+NT ,0, . . . , ξ̄
T
k+NT ,d]T (22)

and equality constraint function

fe(q) =




ξ̄k,0 − ξ(tk)

ξ̄k+1,0 −
∑d

r=0 Lr(1)ξ̄k,r
fξ(ξ̄k,0, w̄k)−∑d

r=0 L̇r(θ0)ξ̄k,0
...

fξ(ξ̄k,1, w̄k)−∑d
r=0 L̇r(θ1)ξ̄k,d

...




. (23)

3) Interior point solver: Primal Interior point methods
consider NLPs of the form

min
q̃

φ(q̃)− µ
ñ∑

i=0

ln(q̃n) (24a)

s.t.:
fe(q̃) = 0 (24b)

where q̃ includes slack variables to make he an equality con-
straint, and µ defines the steepness of the barrier associated
with the slack variables. For large values of µ the ln term
dominates and the solution tends to the center of the feasible
region. As µ decreases, φ dominates and the solution moves
towards the optimal solution. Solving for decreasing µ will
converge to the solution of (15). Interior point methods are
difficult to warm-start, as a too low µ may make certain slack
variables prematurely small and cause slow convergence. In
the timing tests, we have not used warm start as the initial
states are random, but in the MPC implementation we use
the previous ξ̄ predictions as an initial guess.

We will use the interior point solver IPOPT [12], a primal-
dual interior point solver, solving (24) using the primal-dual
equations, see section 3.1 in [12]. Interior point methods have
consistent runtime with respect to problem size, allowing us
to potentially include more states with little effect on runtime.

Convergence of the MPFC is ensured using terminal sets
and penalties as constructed in [4] where an example is given
for the same system as ours with different parameters. In this
article we do not consider the terminal cost and penalty.

III. SIMULATION

We consider a two-link manipulator. This can easily be
extended to 6 degrees-of-freedom, and results here are indica-
tive of the larger systems as interior point methods are consis-
tent with respect to the number of variables. The system was
implemented using Python and the CasADi framework [10].
CasADi allows us to define symbolic expressions for the

53

various equations in (9), and evaluate the derivatives using
algorithmic differentiation, e.g. for RK4, which may be
difficult to do by hand. The framework supports IPOPT [12].

A. System

y1

y2

Fig. 1: Two-link manipulator with 2 revolute joints.

The robot has two links of length L1 and L2, with link
masses M1 and M2 at Lc1 and Lc2, and masses m1 and
m2 at the joints. The point of interest is the tip of the end
effector. The system is described by

ẏ = ẋ (25a)

ẋ = M(y)−1 (u−C(y,x)x−G(y)) (25b)

with

M(y) =

[
a1 + a2 cos(y2) 1

2a2 cos(y2) + a3
1
2a2 cos(y2) + a3 a3

]
(26)

C(y,x) =

[
− 1

2a2 sin(y2)x2 − 1
2 sin(y2)(x1 + x2)

1
2a2 sin(y2)x1 0

]
(27)

G(y) =

[
g1 cos(y1) + g2 cos(y1 + y2)

g2 cos(y1 + y2)

]
, (28)

where

a1 = I1 + I2 +m1L
2
c1 +m2(L2

1 + L2
2), (29)

a2 = 2m2Lc2L1, a3 = m2L
2
c2 + I2, (30)

g1 = (Lc1(m1 +M1) + L1(m2 +M2))g, (31)
g2 = Lc2(m2 +M2)g. (32)

For brevity we give a1, a2, a3, g1, g2 ∈ R in Table I, for
more information see [13]. The joint angles are defined as in
Fig.1. The maximum torques are 30 Nm, the timesteps are
δt = 0.01 s, and if not otherwise specified the horizon is
T = 0.20 s.

TABLE I: System parameters

Parameter a1 a2 a3 g1 g2

Value 0.5578 0.2263 0.0785 17.0694 4.3164

TABLE II: MPC Parameters

Parameter Q Qd R q r

MPFC 104I2×2 101I2×2 10−3I2×2 1 10−3

TT-MPC 104I2×2 101I2×2 10−3I2×2

In order to study obstacle avoidance, we include obstacles
oi as bounding circles with known radius roi and position
poi . Their inequality equations are

hoi =
∥∥fp(ξ̄(t))− poi

∥∥2 − r2oi > 0. (33)

In actual applications a vision system would bound detected
objects or people by a circle that the point of interest is
not to enter. When present we consider two obstacles with:
ro1 = 0.02m, at po1 = [0.55, 0.75]T , and ro2 = 0.04m, at
po2 = [0.4, 0.4]T .

The reference path is a circle of radius 0.2 with center at
[0.55, 0.55]T .

B. Results

1) Moving to origin: In Fig.2 we see the Cartesian paths
of the Runge-Kutta TT-MPC and MPFC. The black dot is
%(0). For this simulation we used maximum joint speeds of
0.5π rad/s to exaggerate the differences. The set-point of the
TT-MPC moves gradually while the TT-MPC is approaching
the path. The MPFC on the other hand first approaches the
origin of the path, then moves along it. If q is large compared
toQ, we will move along the path faster than to the path. The
MPFC has come further with no difference in path deviation
as ˙̄s is greater than the rate of t, allowing it to move faster
along the path.

2) Obstacles: In Fig.3 two obstacles have been placed
in the path, and the speed constraints are removed. Both
MPFC and TT-MPC pass the first obstacle, but the MPFC
stops at the second. The second obstacle is too large, and
the horizon is not long enough to pass behind the obstacle.
The MPFC will decrease ˙̄s to zero, see t ≈ 2s in Fig.5,
whereas the TT-MPC will have a gradually increasing cost as
the trajectory set-point moves forward through the obstacle,
forcing it around the object.

When obstructed, there was a difference between the two
integration methods for the TT-MPC. We saw that the collo-
cation method left the TT-MPC path closer to the obstacles,
see Fig.4. The MPFC decreased ṡ upon approaching the
first object, at t ≈ 0.9s in Fig.5, and was not affected by
integration differences.

3) Timing: The simulations were performed on a Mac-
book Pro with a 2.5 Ghz i7 CPU. Using the compilation fea-
ture of CasADi we can create implementations that approach
speeds needed for real-time systems. To compare the timings
of the two integration methods we have performed a Monte-
Carlo simulation of the MPFC with uniformly distributed
initial positions in the upper right quadrant of the workspace.
Box plot of the solver using RK4 for varying horizon lengths
is given in Fig.6. In Fig.7 we give the same for the collocation
method.

CasADi gives timing statistics of the solver. Upon in-
spection it appears that the collocation method has faster
evaluation of the constraint functions, Hessian of the problem
Lagrangian, and generally fewer iterations, but the increased
optimization vector length makes the solver slower. In Table
III we give typical timings of the solver. The cost function

54

and cost gradient are not included as they were the same and
approximately 1 ms.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

xp [m]

0.3

0.4

0.5

0.6

0.7

0.8

y
p

[m
]

ref
MPFC
TT-MPC

Fig. 2: TT-MPC and MPFC moving from the same start point
towards the path. The blue dot is the start of the reference
path.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

xp [m]

0.3

0.4

0.5

0.6

0.7

0.8

y
p

[m
]

ref
obstacle
MPFC
TT-MPC

Fig. 3: TT-MPC and MPFC initialized close to the path
origin. The path is obstructed by a small and a large object.
Both controllers pass the first object, but the MPFC does not
pass the second.

TABLE III: Typical timing statistics T = 0.6

Constr.1 ∇qConstr. H(L)2 Iter. Solver tot.

MPFC-RK4 0.03 ms 0.16 ms 0.52 ms 27 0.045 s
MPFC-Col 0.03 ms 0.08 ms 0.15 ms 24 0.102 s

TT-MPC-RK4 0.03 ms 0.23 ms 0.66 ms 14 0.039 s
TT-MPC-Col 0.03 ms 0.07 ms 0.11 ms 14 0.046 s

IV. DISCUSSION AND FUTURE WORK

The collocation method has a sparse structure in the
equality constraints, and relies on evaluation of fξ, whereas
the RK4 requires evaluation of its algorithimic differentiation.

1The constraint function include both the inequality constraints and the
ODE dynamics.

2Hessian of the problem Lagrangian.

0.54 0.55 0.56 0.57 0.58 0.59 0.60

xp [m]

0.73

0.74

0.75

0.76

0.77

y
p

[m
]

ref
obstacle
MPFC
TT-MPC

(a) Collocation method

0.54 0.55 0.56 0.57 0.58 0.59 0.60

xp [m]

0.73

0.74

0.75

0.76

0.77

y
p

[m
]

ref
obstacle
MPFC
TT-MPC

(b) RK4

Fig. 4: Difference between the two integration methods when
the path is obstructed. Only evident in TT-MPC as the MPFC
slows sufficiently down before the obstacle to not encounter
the integration problems.

0 1 2 3 4 5 6

t [s]

0

1

2

3

4

5

6

pa
th

-t
im

in
g

s

ṡ

sf

Fig. 5: Timing parameter s, blue line, and ṡ, green line, when
MPFC follows the obstructed path. First object encountered
at t ≈ 0.9s, second object encountered at t ≈ 2s.

This gives the collocation method faster function evaluations,
but it did not appear to be sufficient to make the colloca-
tion method faster than RK4. The solver itself took more
time with the increased number of states. For systems with
complex dynamics the collocation method may be necessary.
TT-MPC had fewer states, simpler dynamics and was faster

55

4 8 12 16 20 24
Horizon lengths [timesteps]

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

ru
nt

im
e

[s
]

Fig. 6: Boxplot of 2000 RK4 MPFC solver run times.

4 8 12 16 20 24
Horizon lengths [timesteps]

0.00

0.02

0.04

0.06

0.08

0.10

ru
nt

im
e

[s
]

Fig. 7: Boxplot of 2000 collocation MPFC solver run times.

on the whole, with the same observations as for the MPFC
regarding integration method.

The MPFC has the ability to stop along its path. For
time-critical systems this is not desired, but for robots in
open environments it can prove useful. It also suggests that
when obstructed by an unknown object, it may push against
the object with a constant force. In future experiments this
will be investigated further. The TT-MPC will observe a
growing difference in the current position and the desired
position. With a known obstruction it will project the path
onto the constraint attempting to minimize the path error.
Suddenly removing the obstruction should result in the TT-
MPC moving towards its current set point as fast as possible.
With an unknown obstruction the TT-MPC may exert a
gradually increasing force on the obstruction.

For the MPC to be real-time feasible, we require the solver
to run faster than the control interval used. In this article we
have considered a control interval of length δt = 0.01 s. For
low horizon lengths we are approaching such timing with
the CasADi running in Python. Future work will extend this
framework for a 6 degrees-of-freedom robot with a 3D path.
The low horizon length needed to be able to achieve fast run
time of the solver suggests that terminal constraints may be
required in the final system.

The obstructions considered in this article were static and

known apriori. Future work may include varying number of
obstacles that enter the robot workspace.

V. CONCLUSION

The model predictive path-following controller gives rise
to a set of new design opportunities. Of most value for
obstructed environments is the fact that it may freely stop and
resume along its path. The question is whether a constraint
ends the path, as the path-following controller did, or whether
the robot should move along the path projected onto the
constraint, as the trajectory tracking controller did.

We also saw that the interior point method of IPOPT
interfaced through CasADi in Python, approached timings
we would desire in a real-time systems.

VI. ACKNOWLEDGEMENTS

The work reported in this paper was based on activities
within centre for research based innovation SFI Manufac-
turing in Norway, and is partially funded by the Research
Council of Norway under contract number 237900.

REFERENCES

[1] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex opti-
mization approach,” IEEE Transactions on Automatic Control, vol. 54,
no. 10, pp. 2318–2327, 2009.

[2] F. Debrouwere, W. Van Loock, G. Pipeleers, M. Diehl, J. Swevers,
and J. De Schutter, “Convex time-optimal robot path following with
Cartesian acceleration and inertial force and torque constraints,” Pro-
ceedings of the Institution of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering, vol. 227, no. 10, pp. 724–732, nov
2013.

[3] T. Faulwasser, B. Kern, and R. Findeisen, “Model predictive path-
following for constrained nonlinear systems,” Proceedings of the 48h
IEEE Conference on Decision and Control (CDC) held jointly with
2009 28th Chinese Control Conference, no. 3, pp. 8642–8647, 2009.

[4] T. Faulwasser and R. Findeisen, “Nonlinear Model Predictive Con-
trol for Constrained Output Path Following,” IEEE Transactions on
Automatic Control, vol. 9286, no. c, pp. 1–1, 2016.

[5] T. Faulwasser, T. Weber, P. Zometa, and R. Findeisen, “Implementation
of Nonlinear Model Predictive Path-Following Control for an Industrial
Robot,” IEEE Transactions on Control Systems Technology, pp. 1–7,
2016.

[6] B. Houska, H. J. Ferreau, and M. Diehl, “ACADO Toolkit – An Open
Source Framework for Automatic Control and Dynamic Optimization,”
Optimal Control Applications and Methods, vol. 32, no. 3, pp. 298–
312, 2011.

[7] D. Lam, C. Manzie, and M. Good, “Model predictive contouring
control,” in 49th IEEE Conference on Decision and Control (CDC),
vol. 86, no. 8. IEEE, dec 2010, pp. 6137–6142.

[8] ——, “Application of model predictive contouring control to an X-Y
table,” IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 18, pp.
10 325–10 330, 2011.

[9] M. Böck and A. Kugi, “Real-time nonlinear model predictive path-
following control of a laboratory tower crane,” IEEE Transactions on
Control Systems Technology, vol. 22, no. 4, pp. 1461–1473, 2014.

[10] J. Andersson, “A General-Purpose Software Framework for Dynamic
Optimization,” PhD thesis, Arenberg Doctoral School, KU Leuven,
Belgium, 2013.

[11] O. Egeland and J. T. Gravdahl, Modeling and Simulation for Automatic
Control. Trondheim: Marine Cybernetics, 2003.

[12] A. Wächter and L. T. Biegler, On the Implementation of Primal-Dual
Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear
Programming, 2006, vol. 106, no. 1.

[13] A. Astolfi, D. Karagiannis, and R. Ortega, Nonlinear and Adaptive
Control with Applications (Communications and Control Engineering),
2007.

56

57

Paper 3 Mid-Level MPC and 6 DOFOutput Path Fol-
lowing for Robotic Manipulators

M. H. Arbo, E. I. Grøtli, and J. T. Gravdahl, “Mid-Level MPC and 6 DOF
output path following for robotic manipulators,” IEEE Conference on Control
Technology and Applications (CCTA), Mauna Lani, HI, 2017, pp. 450-456.

58

Mid-Level MPC and 6 DOF Output Path Following
for Robotic Manipulators

Mathias Hauan Arbo∗, Esten Ingar Grøtli† and Jan Tommy Gravdahl∗
∗Department of Engineering Cybernetics

NTNU, Norwegian University of Science and Technology
†Mathematics and Cybernetics, SINTEF DIGITAL, Trondheim, Norway

Abstract—In this article we discuss some of the benefits of using
an MPC as a mid-level controller between the path generator
and the low-level joint controller of a robot system. The MPC
handles rudimentary runtime constraints that are not considered
during path generation. We compare two task space oriented
controllers: the model predictive path following controller and
the model predictive trajectory tracking controller. We describe
a 6 degrees of freedom reference path in terms of three points,
and use this to experimentally verify the results with a UR5 robot
and a UR3 robot.

I. INTRODUCTION

Articulated industrial robots are used for a large variety
of tasks which often entail moving the end-effector along a
precomputed Cartesian path. When in enclosed spaces we can
ensure that objects and obstructions are exactly known, but the
real world is not so orderly. Objects may be moved around,
obstructing the task at hand, motivating the use of controllers
that can explicitly handle these observable constraints the ob-
structions impose. For some tasks obstructions can be handled
during path generation, but when the path itself is pertinent,
the obstructions should be considered during path execution.

The nonlinear model predictive controller (NMPC) views
the control objective as an optimal control problem (OCP) with
constraints and dynamics. Based on the predicted behavior of
the system, it optimizes the input sequence so as to minimize
an objective function. The first input in this sequence is
applied to the actual system and the OCP is reformulated with
new initial conditions based on the results of applying the
input to the system. NMPCs allow us to handle rudimentary
obstructions during path execution as constraints on the OCP.

There are two common schools in control of industrial
manipulators. One considers the dynamics of the robot, where
the torque applied at each joint as controllable. The other
uses servo control on the robot joints, handling gravitational,
Coriolis, friction and other forces internally, and exposes the
end-user to kinematic references of the low-level controller.
Kinematic control uses either position, velocity, or acceleration
setpoints. The benefit of the kinematic approach is that it is
simple and intuitive for end-users during free moving tasks.
For fast-moving, high-inertia, or interaction tasks, dynamics
play a greater role. In this article we will use joint velocity
setpoints as the control interface, as this allows for application
to different manipulators by redefining the forward kinematics.

We consider two MPC approaches: the model predictive
path following controller (MPFC, following the convention of
[1]), and the model predictive trajectory tracking controller
(MPTTC). With MPTTC, the robot is to follow a path with
an explicit path-timing. In [2], the path-timing is formulated
as an OCP with constraints on the states. This is an open-
loop approach that predefines a path-timing law for the tra-
jectory tracking controller. In [3] this was extended to include
constraints on the acceleration and inertial forces at the end-
effector. For the MPFC, the path-timing dynamics are a part of
the MPC, and are handled closed-loop. This allows the robot to
move to minimize the deviation from the path, before moving
along the path as will be demonstrated.

We will consider the output-path following MPFC of
Faulwasser et al. [1]. This formulation focuses on paths defined
in the output space. In [4], the MPFC is shown to converge to
the path given appropriately chosen terminal constraints and
penalties. In [5] the MPFC is used to generate torque inputs
for a KUKA LWR IV robot. The OCP is solved using the
ACADO framework [6], which uses sequential programming
and the qpOASES active set solver. The robot is constrained
to act as a two-link planar arm, and the path has 2 degrees-
of-freedom (DOF).

The MPFC formulation is implemented for real-time con-
touring control of an x-y table in [7], where current commands
are used to specify torques on the two servo drives. The
dynamics are linearised and the OCP is formulated as a
quadratic program which is solved using an active set solver.
In [8] it is implemented for control of a toy tower crane. The
tower crane is controlled with acceleration setpoints, and the
OCP is solved using the gradient projection method which
uses Pontryagin’s maximum principle to solve the analytical
OCP.

This article is a continuation of [9] which looks at the
MPFC and MPTTC for a 2 DOF double pendulum system. It
notes that Runge-Kutta gives a faster solver than collocation
if the system is sufficiently simple, and shows how the MPFC
can stop at obstructions that are not profitable, from the OCP
perspective, to pass around. The MPTTC on the other hand
will move along the nullspace of the constraint to follow the
path.

In this article we extend the results of [5] and [9] to 6 DOF
paths using a novel method of following 3 points, and argue for

59

the flexibility of output path following systems with kinematic
control. We also provide experimental results of the 6 DOF
path formulation for a spiral path with MPTTC and MPFC,
and exemplify the flexibility by following a 3D Lissajous path
with the UR3 robot and the UR5 robot.

II. THEORY

A. Control

In Fig.1 we show a possible realization of the total control
system. At the highest level a geometric path is precomputed
based on the task to be performed, only considering static
obstructions or task related obstructions. When the robot is
to execute the task, the path is given to the mid-level MPC
which uses cameras or similar systems to identify obstructions.
The MPC gives kinematic setpoints to the fast low-level joint
controllers on the robot. The output-path oriented control
of the MPC means that we only need to generate the new
forward kinematics for using it with a new robot, given that
the interface to the low-level controller is similar. This flexible
design means that tasks can be shared between different robot
setups without the need for redesigning the path following and
obstruction handling portion of the controller. The tasks can
also be defined independent of the robots to be used, and a
system can be devised which distributes ones available robots
to the appropriate tasks.

B. Robot and Path

We consider a 6 DOF articulated robot, with q ∈ R6 joint
coordinates, and angular velocity setpoints u ∈ R6.

Assumption 1. The low-level controllers are assumed to be
sufficiently fast for

q̇(t) = u(t) (1)

to represent the robot dynamics.

Joint constraints are enforced as q(t) ∈ [ql, qu], and joint
velocities are u(t) ∈ [ul,uu].

The base frame is located at the base of the robot, and
the robot has known forward kinematics described using the
Denavit-Hartenberg convention. The rotation from a reference
frame situated at joint i to the base frame b is Rb

i ∈ R3×3 for
i = 1, . . . , 6, and pbbi is the coordinates of the reference frame
i relative to frame b expressed in terms of frame b. The 6 DOF
path is defined as Rb

d(s) and pbbd(s) defining rotation of the

Path
Generator MPC Joint

controller

u

q

p(s)

Fig. 1: Control hierarchy described in this article. The portion
in the dashed box can be quickly changed if u and q are
available through the same interface.

Fig. 2: The red, green, and blue points, attached to the UR5
follow the path of their lighter counterparts.

desired reference frame d w.r.t. the base frame, and s being
the path-timing variable. We want the end-effector frame 6 to
follow the desired reference frame d.

A variety of methods exist for representing rotations, e.g.
quaternions, Euler angles, etc. We propose to use the intu-
itive method of defining three desired paths corresponding to
orthogonal vectors from the desired reference frame:

p(s) =



p1(s)
p2(s)
p3(s)


 =



Rb

d(s(t))[1, 0, 0]T + pbbd(s(t))
Rb

d(s(t))[0, 1, 0]T + pbbd(s(t))
Rb

d(s(t))[0, 0, 1]T + pbbd(s(t))


 (2)

which three points in the end-effector frame are to follow.
The points in the base frame are found using the forward
kinematics as

h(q) =



h1(q)
h2(q)
h3(q)


 =



Rb

b6(q)[1, 0, 0]T + pbb6(q(t))
Rb

b6(q)[0, 1, 0]T + pbb6(q(t))
Rb

b6(q)[0, 0, 1]T + pbb6(q(t))


 , (3)

where hi(q) is the forward kinematics to point i.
This is visualized in Fig.2 as the red, green, and blue dots at

the end-effector moving to the desired positions at their lighter
counterparts.

We define the deviation from path as

ep(t) ..= h(q(t))− p(s(t)) (4)

with ep(t) ∈ R9.
For the MPFC, we must also define the path-timing dynam-

ics. We will use a simple double integrator

s̈(t) = v(t) (5)

where v(t) ∈ [−∞,∞] is the input, and ṡ(t) ∈ [0, ṡu] is the
non-negative path speed to ensure forward motion along the
path. For more information on choice of path-timing dynamics
we refer the reader to [4] and [8]. In theory and simulations
we only required a single integrator, but in the experiments the
double integrator path-dynamics performed better. We believe
this was due to the delay caused by the solver making the
system overshoot its desired path timing.

60

We will consider paths with a specific start and finish, s ∈
[0, sf] where sf denotes the final value. We also define the
deviation from the final value as

es(t) ..= s(t)− sf . (6)

For the MPFC we define the augmented state vector
ξ ..= [q, s, ṡ]T , augmented input w ..= [u, 0, v]T , augmented
deviation eξ = [eTp , es]

T , and augmented system

ξ̇(t) = Aξ(t) +w(t) (7)

with

A =



06×6 06×1 06×1

01×6 0 1
01×6 0 0


 . (8)

C. Optimal Control Problem

Using the previously defined dynamics and deviations, we
describe the OCP for the MPFC as

min
eξ,ėp,w

∫ tk+T

tk

Jpf (τ, ξ̄(τ), w̄(τ))dτ (9a)

s.t.:
˙̄ξ(τ) = Aξ̄(τ) + w̄(τ) (9b)
ξ̄(tk) = ξ(tk) (9c)
ξ̄(τ) ∈ [ξ̄l, ξ̄u] (9d)
w̄(τ) ∈ [w̄l, w̄u] (9e)
hc(ξ̄(τ)) ≤ 0 (9f)

and for the MPTTC as

min
ep,ėp,u

∫ tk+T

tk

Jtt(τ, q̄(τ), ū(τ))dτ (10a)

s.t.:
˙̄q(τ) = ū(τ) (10b)
q̄(tk) = q(tk) (10c)
q̄(τ) ∈ [q̄l, q̄u] (10d)
ū(τ) ∈ [ūl, ūu] (10e)
hc(q̄(τ) ≤ 0 (10f)

where the bar is to signify that these are internal states of the
OCP, subscript u refers to the upper bounds, and subscript
l refers to the lower bounds. The function hc defines other
constraints such as obstructions, the end-effector remaining in
the workspace, etc. The OCP uses samples from time tk and
has a prediction horizon of length T .

The cost integrands are defined as

Jpf (τ, ξ̄(τ), w̄(τ)) =
1

2
ēξ(τ)TQξēξ(τ)

+
1

2
˙̄ep(τ)TQd ˙̄ep(τ)

+
1

2
w̄(τ)TRww̄(τ) (11)

fort the MPFC, and

Jtt(τ, q̄(τ), ū(τ)) =
1

2
ēp(τ)TQpēp(τ)

+
1

2
˙̄ep(τ)TQd ˙̄ep(τ)

+
1

2
ū(τ)TRuū(τ) (12)

for the MPTTC. We have Qξ = diag(Qp, qs) and Rw =
diag(Ru, rv) with Qp, Qd and Ru being positive definite,
and scalars qs and rv positive.

D. Nonlinear Program

In this section we only give the discretization of (9) as the
MPTTC is similar and simpler. We consider u(t) and v(t)
to be piecewise continuous with time intervals of δt. The
prediction horizon has NT = T/δt intervals. This means that
the prediction horizon is discretized from step tk to tk+NT

.
Runge-Kutta of the 4th order (RK4) [10] gives

ξ̄k+1 = ξ̄k +
δt
6

(k1 + 2k2 + 2k3 + k4) ..= F (ξ̄k, w̄k) (13)

with

k1 = Aξ̄k + w̄k, (14a)

k2 = A

(
ξ̄k +

δt
2
k1

)
+ w̄k, (14b)

k3 = A

(
ξ̄k +

δt
2
k2

)
+ w̄k, (14c)

k4 = A
(
ξ̄k + δtk3

)
+ w̄k. (14d)

We employ the simultaneous approach, and define the
optimization vector as

x =
[
ξ̄Tk w̄T

k . . . ξ̄Tk+NT−1 w̄T
k ξ̄Tk+NT

]
(15)

where subscript k means that it is the discretised value of the
state at time tk. The dynamics and initial value are accounted
for by

f(x) =




ξ̄k − ξ(tk)
ξ̄k+1 − F (ξ̄k, w̄k)

...
ξ̄k+NT

− F (ξ̄k+NT−1, w̄k+NT−1)


 (16)

and the constraints are accounted for by

fc(x) =




ξ̄k − ξ̄u
w̄k − w̄u

...
ξ̄k+NT

− ξ̄u
ξ̄l − ξ̄k
w̄l − w̄k

...
ξ̄l − ξ̄k+NT

fc(ξ̄k)
...

fc(ξ̄k+NT
)




(17)

61

The resulting nonlinear program (NLP) is then

min
x

φ(x) (18a)

s.t.:
f(x) = 0 (18b)
fc(x) ≤ 0, (18c)

where the cost function is approximated with Euler’s method

φ(x) =

k+NT−1∑

j=k

δtJpf (tj , ξ̄j , w̄j). (19)

E. Interior point solver

Primal Interior point methods consider NLPs of the form

min
x̃

φ(x̃)− µ
ñ∑

i=j

ln(x̃i) (20a)

s.t.:
f(x̃) = 0 (20b)

where x̃i for i < j are the previous optimization variables and
i < j are slack variables to make fc an equality constraint. µ
defines the steepness of the barrier associated with the slack
variables. For large values of µ the ln term will dominate and
the solution will tend to the middle of the feasible region.
As µ decreases, φ will dominate and the solution will move
towards the optimal solution. Solving (20) for decreasing µ
will converge to the solution of the actual NLP (18).

The motivation for interior point solvers is that they have
consistent runtime with respect to problem size, allowing
us to potentially include more states and constraints without
adversely affecting the runtime. They are however difficult to
warm-start, as too low µ may make certain slack variables pre-
maturely small and cause slow convergence. It was observed
that warm-starting with the previously solved x gave a small
decrease in runtime.

We will use the interior point solver IPOPT [11], a primal-
dual interior point solver, solving (20) using the primal-dual
equations, see Section 3.1 in [11]. Convergence of the MPFC
can be ensured with terminal sets and penalties as in [4]. In
this article we focus on run time and do not create terminal
sets and penalties.

III. EXPERIMENTAL RESULTS

In this section we describe the experiments performed. To
compare the MPFC and MPTTC we use a UR5 that is to
follow a spiral path. To illustrate the simplicity of using the
same approach for different robots, we use a 3D Lissajous
curve that is executed both by a UR3 and a UR5.

A. Implementation

The system was implemented using Python and the CasADi
framework [12]. CasADi is a symbolic framework for defining
optimization problems. It allows for: algorithmic differentia-
tion, exploiting sparsity of the problem, and compiling the
symbolic functions to C++ for faster execution. The framework

supports a variety of solvers, both commercial and open-
source. As of writing the fastest and most common solver
is IPOPT [11].

We used the compilation flag “O2” to optimize the resulting
functions. The experiments were performed on a Macbook Pro
with a 2.5 Ghz i7 CPU. The timestep used in the simulations
is δt = 0.05, corresponding to an update rate of 20 Hz. The
horizon has NT = 5 timesteps corresponding to 0.25 s.

The forward kinematics were found using the Denavit-
Hartenberg parameters described in [13]. The tuning parame-
ters are given in Table I, and were the same for both the UR5
and the UR3.

B. Spiral path

In this section the reference path of the MPTTC and MPFC
is a downward moving spiral path with a constant rotation of π
rad around the y-axis from the base frame to the end-effector
frame. The coordinate of the desired frame is

pbbd(s) =




0.155 cos(2s) + 0.477
0.155 sin(2s)− 0.239

0.219− 0.05s


 (21)

giving

p(s) =



p1(s)
p2(s)
p3(s)


 =



pbbd(s)− [1, 0, 0]T

pbbd(s) + [0, 1, 0]T

pbbd(s)− [0, 0, 1]T


 (22)

and the paths terminate at sf = 2π. For the MPTTC we
scale s by 0.0125 so that a full rotation is completed after
approximately 80 s.

TABLE I: MPC Parameters

Parameter Qp Qd Ru qs rv

MPFC 107I9×9 1.5 · 105I9×9 10−4I6×6 10−1 10−4

MPTTC 107I9×9 1.5 · 105I9×9 10−4I6×6

C. Spiral Results

In Fig.3 we see end-effector position of the MPFC following
the described downward spiral. In Fig.4 we see the same for
the MPTTC. Both controllers start a small distance from the
start of the path. In Fig.5 we see the norms of ep for the
MPFC.In Fig.6 we see the norms of ep for the MPTTC. Note
that the MPFC converges faster than the MPTTC stemming
from the MPFC first handling orientation and position before
moving along the path. This is a trait of the path-following
dynamics and can be adjusted by tuning qs and rv . The
MPTTC on the other hand only has the positions of the desired
points at each timestep, and will struggle to catch up with the
desired orientation while also moving along the path.

It was observed that the run time of the solver depended
on the configuration of the robot and deviation from the path.
This is likely due to the solver entering local minima when
solving. In Fig.7 we see the run times of the MPFC solver over
time during the spiral path test. The run time is slightly longer
before it has reached the path. When the path is reached, the

62

x[m]

0.3

0.4

0.5

0.6

y[m
]

−0.4

−0.3

−0.2

−0.1

0.0

z
[m

]
−0.50

0.50

0.15

0.25

pbbd

MPFC

Fig. 3: The MPFC moves to the path before moving along it.
The rotation to fit to the paths initial reference frame moves
the origin a little off from the path until it converges.

x[m]

0.3

0.4

0.5

0.6

y[m
]

−0.4

−0.3

−0.2

−0.1

0.0

z
[m

]

−0.50

0.50

0.15

0.25

pbbd

MPTTC

Fig. 4: The MPTTC moves along the path before matching
the orientation. The deviation from the path is greater than for
the MPFC.

run time stays relatively consistent. In Fig.8 the run times of
the MPTTC is given. We see that the MPTTC solver struggles
more than the MPFC when far from the path, but becomes
more consistent when on the path.
Remark 1. In simulations ės was not required in (11) or (12)
for convergence. The delay caused by the solver and the robot
interface made the proportional control result in the manipu-
lator oscillating greatly around the path. The introduction of
dampening along the path through ės was fundamental for the
implementation.

D. Robot Change

In Fig.10 we see the UR3 and UR5 moving to the 3D
Lissajous path

pbbd(s) =




0.035 cos(10s) + 0.1
0.035 cos(30s+ 1) + 0.2
0.035 cos(20s+ 1) + 0.3


 (23)

which can be seen in Fig.9. The path was chosen to be as far
from the home position q(0) = [0,−π/2, 0,−π/2, 0, 0]T , and

0 5 10 15 20

t[s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

||
·|
|

	e1	
	e2	
	e3	

Fig. 5: Norm of the errors e1, e2 and e3 for the MPFC. The
black stippled line is the sum of the norms.

0 5 10 15 20

t[s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
||
·|
|

	e1	
	e2	
	e3	

Fig. 6: Norm of the errors e1, e2 and e3 for the MPTTC. The
black stippled line is the sum of the norms.

0 10 20 30 40 50 60 70

t[s]

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

ru
n

ti
m

e
[s

]

mean

max

min

Fig. 7: Run times of the MPFC solver during execution of the
path.

63

0 10 20 30 40 50 60 70

t[s]

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

ru
n

ti
m

e
[s

]

mean

max

min

Fig. 8: Run times of the MPTTC solver during execution of
the path.

x[m]

0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

y[
m

]

0.16
0.17

0.18
0.19

0.20
0.21

0.22
0.23

0.24

z
[m

]

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

Fig. 9: The 3D Lissajous reference path is placed such that it
is inside both the UR3 and the UR5 workspace.

small enough to be within the UR3’s workspace. No change
in tuning parameters was needed between the two robots. As
the previous path, the desired rotation places the end-effector
with its z-axis pointing downwards.

Fig. 10: The UR3 and UR5 start in their upright position, and
move to the Lissajous path.

IV. DISCUSSION AND FUTURE WORK

Both the MPFC and the MPTTC managed to follow the
6 DOF paths. The MPFC first moves to the initial path
orientation before moving along the path. The MPTTC on
the other hand has a moving setpoint that it must catch up
with. The alternative to this is to have one controller to move
the end-effector to the desired path and then switching to the
along path controller. Using the MPFC allows us to tune the
transition from approach to along path motion through the
parameter qs.

For a system where switching between active constraints
does not happen often and rapidly, the interior point solver may
not be the best option. Other solvers which benefit more from
warm-starting may prove to give better run times. We believe
the times when the solver takes longer than usual is a result
of the restoration from local minima. We suggest testing with
other solvers for evaluating the useability further. The longer
run time of MPTTC stems from how it is implemented, the
timing parameters s is included as a parameter, and we believe
this may increase the run time slightly.

Delay in the interface and from the solver caused issues
for the implementation of the system. The robot would only
change joint velocity when a new command was sent, and
as the solver could at times run longer than expected, there
would be an integration error. This would cause the system
to repeatedly overshoot, and oscillate around the desired
position. With a faster implementation this is expected to be
manageable, but dampening may still be desired.

V. CONCLUSION

Using MPC controllers as a mid-level controller between
the path generator and the low-level controller allows us
the flexibility of changing robots for the same task. Path
generation is not necessarily the same as obstacle avoidance,
and relinquishing that control to a system between the fast
joint controller and the path generator may make for more
flexible systems.

The definition of a 6 DOF path as three orthogonal points
moving in space was useful for making the MPFC and
MPTTC. We also experimentally demonstrated that the MPFC
and the MPTTC were capable of following the desired paths.

VI. ACKNOWLEDGEMENTS

The work reported in this paper was based on activities
within centre for research based innovation SFI Manufacturing
in Norway, and is partially funded by the Research Council
of Norway under contract number 237900.

REFERENCES

[1] T. Faulwasser, B. Kern, and R. Findeisen, “Model predictive path-
following for constrained nonlinear systems,” Proceedings of the 48h
IEEE Conference on Decision and Control (CDC) held jointly with 2009
28th Chinese Control Conference, no. 3, pp. 8642–8647, 2009.

[2] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex optimization
approach,” IEEE Transactions on Automatic Control, vol. 54, no. 10, pp.
2318–2327, 2009.

64

[3] F. Debrouwere, W. Van Loock, G. Pipeleers, M. Diehl, J. Swevers, and
J. De Schutter, “Convex time-optimal robot path following with Carte-
sian acceleration and inertial force and torque constraints,” Proceedings
of the Institution of Mechanical Engineers, Part I: Journal of Systems
and Control Engineering, vol. 227, no. 10, pp. 724–732, nov 2013.

[4] T. Faulwasser and R. Findeisen, “Nonlinear Model Predictive Control for
Constrained Output Path Following,” IEEE Transactions on Automatic
Control, vol. 9286, no. c, pp. 1–1, 2016.

[5] T. Faulwasser, T. Weber, P. Zometa, and R. Findeisen, “Implementation
of Nonlinear Model Predictive Path-Following Control for an Industrial
Robot,” IEEE Transactions on Control Systems Technology, pp. 1–7,
2016.

[6] B. Houska, H. J. Ferreau, and M. Diehl, “ACADO Toolkit – An Open
Source Framework for Automatic Control and Dynamic Optimization,”
Optimal Control Applications and Methods, vol. 32, no. 3, pp. 298–312,
2011.

[7] D. Lam, C. Manzie, and M. Good, “Application of model predictive
contouring control to an X-Y table,” IFAC Proceedings Volumes (IFAC-
PapersOnline), vol. 18, pp. 10 325–10 330, 2011.

[8] M. Böck and A. Kugi, “Real-time nonlinear model predictive path-
following control of a laboratory tower crane,” IEEE Transactions on
Control Systems Technology, vol. 22, no. 4, pp. 1461–1473, 2014.

[9] M. H. Arbo, E. I. Grøtli, and J. T. Gravdahl, “On Model Predictive Path
Following and Trajectory Tracking for Industrial Robots,” in 13th IEEE
Conference on Automation Science and Engineering (CASE), 2017.

[10] O. Egeland and J. T. Gravdahl, Modeling and Simulation for Automatic
Control. Trondheim: Marine Cybernetics, 2003.

[11] A. Wächter and L. T. Biegler, On the Implementation of Primal-Dual
Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear
Programming, 2006, vol. 106, no. 1.

[12] J. Andersson, “A General-Purpose Software Framework for Dynamic
Optimization,” PhD thesis, Arenberg Doctoral School, KU Leuven,
Belgium, 2013.

[13] “Actual center of mass for robot - 17264 | Universal
Robots.” [Online]. Available: https://www.universal-robots.com/
how-tos-and-faqs/faq/ur-faq/actual-center-of-mass-for-robot-17264/

65

66

67

Paper 4 A SystemArchitecture for Constraint-Based
Robotic Assembly with CAD Information

M. H. Arbo, Y. P. Pane, E. Aertbeliën, and Wilm Decré, “A System Architecture
for Constraint-Based Robotic Assembly with CAD Information,”IEEE Interna-
tional Conference on Automation Science and Engineering (CASE), Munich,
2018, pp. 690-696.

68

A System Architecture for Constraint-Based
Robotic Assembly with CAD Information

Mathias Hauan Arbo⇤, Yudha Pane†, Erwin Aertbeliën† and Wilm Decré†
⇤Department of Engineering Cybernetics

NTNU, Norwegian University of Science and Technology
†Robotics Research Group, core lab Flanders Make
Department of Mechanical Engineering, KU Leuven

Abstract—A system architecture is presented to generate
sensor-controlled robot tasks from knowledge encoded in a CAD
model. This architecture consists of an application layer where
the user annotates assembly tasks in the CAD software. A
process layer infers the specific robot skills and parameters
from the CAD model and annotated data. A control layer
executes the complex, force-controlled tasks. A proof-of-concept
implementation is made, consisting of an application layer
implemented in FreeCAD and a process layer that focuses on
using fuzzy inference to generate appropriate skill-dependent
process parameters from the geometric CAD information and
annotations in the CAD model. In the control layer, a constraint-
based control framework is used to robustly execute the assem-
bly tasks. The system is validated on a challenging assembly
task involving the assembly of screw compressor parts.

I. INTRODUCTION

Manufacturing automation is entering a new era, where a
high degree of customization of the product is expected by
the client to which manufacturers must adapt quickly. This
era is associated with human-robot collaborative workcells,
short time to deploy, and tighter coupling of design and
manufacturing.

Computer-Aided Design (CAD) software is a rich source
of information for robotic assembly processes that may
benefit a broad range of companies. The information includes
part dimensions, geometric features, contact situations, etc.
An early constraint-based description of pose relations be-
tween geometric features on assembly parts was presented
by Ambler and Popplestone [1]. Reference frames attached
to the geometric features were used to define the end-product
of assembly in terms of “fits” or “against” relationships. The
relative pose between these frames was described by equality
or inequality constraints.

Autopass [2] is an early CAD-based assembly program-
ming system that starts from a workpiece rather than a
robot-centric perspective. Archimedes 2 [3] describes an
architecture where the CAD model and assembly description,
sequence planning, and skill execution are separated into
modules. One of the most advanced systems is HighLap
[4] where the CAD model is annotated with a small set
of simple semantic assembly descriptions. The descriptions
give constraints similar to Ambler and Popplestone that are
used to find remaining degrees-of-freedom. HighLap uses the

task frame formalism to execute force-controlled motion [5].
Neto et al. argued that integration of robot path programming
in CAD software would benefit small and medium-sized
enterprises where programming costs hinder automation [6].
A more recent approach by Perzylo et al. uses object-
centric programming based on geometric constraints between
parts to simplify the robot motion programming [7]. The
comparison of the object-centric programming and classical
teach-pendant based programming shows that object-centric
programming is faster.

The robot control layer of a CAD-based assembly system
can simplify or complicate the architecture. We advocate for:
a workpiece perspective, composability, and sensor integra-
tion. A workpiece perspective allows us to specify control
relative to the parts. Composability allows us to combine and
include aspects of the environment, workpiece, and robot. To
support a larger class of assembly situations, force control
and easy sensor integration are key. Mason’s task frame
formalism [8] presents an early force and position control in
the task domain. It shows how different control modes can
be applied independently along an instantaneous task frame’s
directions, both in translation and rotation.

Motions are easily defined w.r.t. the workpiece, environ-
ment or robot using constraints, and the constraints are
naturally composable. In [9], De Schutter et al. describe a
procedure to design a robot controller that can deal with
sensor interactions and motion in contact, using a set of aux-
iliary frames to systematically describe the constraints. This
approach gave rise to the iTaSC software framework [10], a
systematic approach for constraint-based programming that
allows us to specify complex sensor-based skills. Subse-
quently, expression graphs are used to simplify constraint-
based programming leading to a specification language
eTaSL [11]. eTaSL scripts are used to specify the continuous
behavior of the controller using constraints that relate to
geometry or sensor-input. eTaSL scripts can specify monitors
that trigger events into a restricted finite state machine
(rFSM) [12]. This rFSM describes the discrete switching
between different continuous control actions. A control layer
using eTaSL/eTC and rFSM can perform assembly tasks in
dynamic and uncertain environments, but requires specific
process parameters to be defined, such as the force magnitude

69

during assembly or the dither amplitude during insertion. It is
difficult to completely determine appropriate values for these
parameters in a model-based way, so they are typically tuned.
In this paper we want to facilitate the generation of assembly
skills from CAD data by automatically determining process
parameters using a fuzzy inference module.

The key contribution of this paper is the design of an
architecture and a prototype implementation that allows us
to generate controllers for assembly tasks requiring complex
sensor-based interaction. This is done by splitting the re-
quired parameters for these assembly skills into two groups.
One group of application and geometry-related parameters
is generated from CAD model information. Another group
of process parameters is determined using a fuzzy inference
module. The resulting parameters are then used to generate a
skill specification. These specification files can then be used
to execute the specified skill on a reactive constraint-based
robot controller. Using this architecture, complex force-
controlled assembly skills can be executed even though the
skills rely on empirical parameters.

Section II describes the system architecture and its basic
concepts such as skills and tasks, and the inference module.
Section III describes the software and hardware of the exper-
imental setup, CAD workbench, the implemented skills and
parameter inference. The experimental results are presented
in Section IV. Section V discusses the experimental results.

II. SYSTEM ARCHITECTURE

The system architecture is outlined in Fig.1 and is split
up into three layers: the application layer, the process layer,
and the control layer. In the application layer we have a
workpiece-centric view, where the user annotates the CAD
model with the assembly tasks. In the process layer, assembly
is considered from the point of view of the robotcell, and a
planning and inference system ensures appropriate selection
and composition of robot skills. The skills involved have
application parameters and process parameters. Application
parameters can be extracted from the CAD data, e.g. feature
frame, or insertion length. Process parameters relate to the
CAD data but without a clear underlying model. They may be
empirical or have a range of values that produce acceptable
results e.g. insertion force, or amplitude of anti-jamming
dither. The inference module generates the value of these
parameters. In the control layer the appropriate eTaSL skills
are loaded together with the application parameters and the
process parameters. A finite-state machine handles execution
of the discrete states.

A. Skill and Task

Skill and task are often used interchangeably in the
robotics literature. In this paper the terms refer to two
different concepts.

A task is a piece of work to be undertaken, a skill is
a particular ability. Assembly tasks are high-level assembly
specifications in the application layer, and skills are related
to particular actions the robot can perform. We differentiate

Workpiece
CAD

Task	
Library

Planning	
and	

inference

Robot	cell
Information

eTaSL F S M

User

Skill	
Library

Application	Layer

Process	Layer

Control	Layer

Fig. 1. System architecture.

between atomic skills and composed skills. The skills are
defined by a set of specification files.

Atomic skills are eTaSL scripts that have: a configuration,
inputs, outputs, and event specifications. The configuration
is a set of parameters that are prepended to the eTaSL
script and are constant during skill execution. These could
be application parameters coming from the CAD model or
process parameters generated by the inference module. The
inputs bring information from continuous sources such as
sensors. The outputs are mainly used for logging or analysis
purposes. Monitors can trigger events that denote success or
failure modes of the skill.

A common approach in robotics is to have states
in finite state machines denote motion goals, e.g.
move_to_grasp_location. This puts the skill complexity in
terms of the states. An approach more often found in
computer games is to have states denote operational modes,
e.g. walk, run, or move_cartesian, and then redefine the
parameters of these states during runtime. This reduces the
states used and puts the complexity in the transitions. We
have used the operational modes approach as it is easy to
reuse a finite state machine with new application parameters,
and as transition events denote the momentary situation that
the robot is in. A composed skill is therefore an rFSM where
each state corresponds to an atomic skill to be executed,
and a function call associated with each transition event.
The function call invokes external services such as grippers
and tools, and loads the configuration parameters of the next
atomic skill to be executed.

From a workpiece perspective, inserting a peg into a hole
with large or small clearance is the same task, but they
may need completely different insertion control strategies,
e.g. when there is a large clearance a pure position-based
approach could be sufficient, while small clearance would

70

necessitate force-control strategies. Therefore we map a task
to a set of potentially applicable composed skills.

Going from task to composed skill is done by first finding
the geometric primitives involved, and then using the CAD
data describing these primitives to select the composed skill
from a set of composed skills associated with a task on
such geometric primitives, see Fig.2. In conclusion, tasks are
generalisable and workpiece-centric, while skills correspond
to an ability of the robot system to realize a task in a specific
way.

Task CAD	Primitives Composed	skills

Application
Parameters

Process
Parameters

Fig. 2. A task is annotated between two geometric primitives. This task for
these geometric primitive types can be performed by a set of composed
skills. The CAD data of the geometric primitives is used to select the
composed skill, which has application parameters and process parameters.

B. Planning and Inference Module

The planning and inference module has three main pur-
poses: plan the assembly sequence, compose skills based
on the task and the workcell, and generate the appropriate
configuration parameters. Optimal planning of assembly in-
volves optimal task sequencing, optimal trajectory planning,
and selecting the optimal parameter values. These domains
are interconnected, but they are assumed separable in the
scope of this article. This article does not give a planning
strategy but outlines how the task annotations tie in to the
literature on assembly sequences.

1) Assembly Sequence Planning: tasks and parts form a
liaison graph. In liaison graphs, a node represents a part, and
an edge represents an assembly situation [13]. A precedence
graph specifies which edges in the liaison graph should be
completed before others. This precedence graph represents
all feasible assembly sequences. In [14], Homem De Mello
and Sanderson show the relation between precedence graphs
and other assembly representations such as And/Or graphs.
The precedence graph is created in the application layer.
Assembly of geometric features gives a defined assembly
direction and virtual disassembly in the CAD software along
these lines provides a suggested precedence graph. The
precedence graph is passed from the application layer to the
planner for generation of the assembly sequence. Moving
to grasp, changing tool, reorientation, and other workcell-
related composed skills are added to the assembly sequence
by the planner. Robot cell information such as which parts
and tools are available, or are collaborative workspace skills
required, is an essential plan of the planning module. This

information must be stored in a robot cell database describing
the different setups available for the manufacturer. As the
underlying control layer is robot-agnostic and the skills are
transferrable, we view this as a problem to be addressed in
the planning module.

2) The Parameter Inference Module: given the geometric
information between two mating parts and the selected skill,
the inference module generates the appropriate process pa-
rameters to ensure successful assembly. Here we present an
inference module for the insertion task of a cylindrical object
in a tight-tolerance situation. This task would be extremely
difficult to perform with only position control, hence the
necessity of a force-controlled skill. We generalize the task
as a peg-in-hole problem.

A number of process parameters need to be tuned for
optimal insertion behavior. From existing literature [15], it is
known that the insertion behavior is determined by a number
of factors such as the peg’s dimension and the peg-hole clear-
ance. Even for a peg-in-hole assembly with relatively simple
geometry, accurate process modeling is difficult to achieve
for narrow clearances. Due to hyperstatic contact situations,
not all contact forces are always externally observable. We
therefore use a data-driven approach to determine the process
parameters. To infer parameters in an uncertain or stochastic
situation, a fuzzy inference approach is chosen [16]. Our
fuzzy inference module uses the peg’s length, peg’s diameter
and clearance to estimate the appropriate insertion force and
dither amplitude.

III. IMPLEMENTATION

A. Assembly Use Case

We consider an assembly of a large and a small rotary-
screw compressor (see Fig.3). The large compressor is com-
posed of >30 parts and the small compressor is composed
of >15 parts. To limit the scope of this demonstration, we
focus on the assembly of the rotors and the housing lid.
The housing is attached to a fixture and all insertions are in
the same direction. Each compressor has a small and large
meshing helical screw rotors. The top of the rotors go through
the housing lid trough two chamfered holes. All parts to
be assembled are placed in known poses. Fig.8 shows the
resulting assembly sequence.

B. Application Layer

The application layer is implemented as a workbench in
FreeCAD 0.16 [17]. FreeCAD is an open-source parametric
CAD program. We implemented three task classes: Insert,
Place, and Screw. Each of them is associated with two faces,
and two FeatureFrame objects. To transfer information about
the geometric features and their location, we implemented a
tool for creating reference frames on geometric primitives.
FeatureFrame objects can be instantiated on a selected vertex,
edge, or face. If the selected geometric primitive has a center,
center of mass, axis, or focus, the feature frame can be
placed at the attribute with z-axis oriented along the axis
if possible. On edges the frame can be placed along the edge

71

Fig. 3. CAD model of the two compressors side by side.

with x-axis aligned with the edge tangent. On the face the
frame is placed with z-axis aligned with the normal. The
parts are exported as STL meshes for visualization, and a
JSON file describing the feature frames and the attributes
of the geometric primitives relative to the mesh origin. The
feature frame part of the workbench is publicly available
[18]. By creating task instances between parts we form a
liaison diagram, see Fig.4. During instantiation of an Insert
or Screw object, we also instantiate a FeatureFrame object
denoting the instantaneous task frame for force control.
Since assembly sequence planning is not the focus of this
paper, the assembly sequence was manually determined while
specifying the task. The task instances, in order of execution,
are: insert_littlerotor, insert_bigrotor, and place_lid. The
tasks are exported in JSON files with reference to the part
names and feature frame names. Grasp location is assumed
to be known and is annotated as a FeatureFrame instance on
the part.

big_rotor

housing

little_rotor

housing_lid

Fig. 4. Liaison diagram for the assembly use case. Although the rotors are
in contact with the lid, the chamfers allow us to use a place task defined
between the housing and the lid.

C. Implemented Skills

In this use-case each task maps to a single composed
skill. When the skill set of the system grows this will no
longer be the case. The two implemented composed skills
are composed of a larger number of atomic skills, as listed
in Table I. As the table shows, the insert_littlerotor instance
uses grasp_and_insert as the suitable composed skill. This
composed skill consists of three different atomic skills:

move_cartesian, guarded_cartesian, and cylinder_insert. The
transition between these atomic skills is shown in Fig. 5.
When e_start occurs, we set the goal of move_cartesian to
reach a position offset a constant distance along the z-axis of
the grasp frame. Success in reaching the goal is associated
with the e_pregrasp event. When e_pregrasp occurs the goal
of move_cartesian is set to the grasp frame with success
of the atomic skill being associated with e_grasp. When
e_grasp occurs we have reached the grasp pose and engage
the gripper and set the next goal to a z-axis offset from
the grasp frame that we call post-grasp, and success gives
the e_postgrasp event. The procedure is repeated for the z-
axis pre-hole locations. When e_prehole occurs we transition
into guarded_cartesian which is a cartesian motion towards
the hole with monitors that trigger when end-effector force
exceeds a threshold. This procedure of reconfiguring the
goals of the atomic skill is adhered to for all of the transitions.

TABLE I
PROTOTYPE DESCRIPTION

Part name Tasks Composed Skill Atomic Skills Tool

small_rotor insert grasp_and_insert move_cartesian gripper
guarded_cartesian

cylinder_insert

big_rotor insert grasp_and_insert move_cartesian gripper
guarded_cartesian

cylinder_insert

housing_lid place grasp_and_place move_cartesian gripper
guarded_cartesian

As described in Section II, each atomic skill is imple-
mented as an eTaSL script. This script contains a number
of constraints, monitors and input/output ports. For example,
in the cylinder_insert skill, a constraint is used to impose
a specified insertion force. The constraint is parameterized
by the instantaneous task frame and desired insertion force
Fz,des along the cylindrical axis. Meanwhile zero forces and
torques are maintained along and around the other axes. The
location of the instantaneous task frame is a FeatureFrame
instance created on the peg-face of the Insert instance, this
is an an application parameter of the composed skill. The
target insertion force is a process parameter given by the
inference module. The dither is applied as superposed torques
around the x and y axes of the instantaneous task frame. The
selection of the dither axes is based on empirical results.

D. Inference Module

A Mamdani-type fuzzy inference is chosen and imple-
mented in MATLAB R2017a’s fuzzy logic designer toolbox.
21 rules are defined, describing the mapping from the peg’s
dimension and the clearance to the appropriate insertion force
and dither amplitude. The fuzzy rules are derived from rough
modeling of the contact situation and the empirical trend
observed after executing the cylinder_insert skill. Each fuzzy
rule is approximated with gaussian membership functions

72

cylinder_insert guarded_cartesian

move_cartesian
e_start e_posthole

e_prehole

e_contact

e_inserted

grasp_and_insert

Fig. 5. Example of the finite state machine for grasp_and_insert. The tran-
sition between two states is triggered by incoming event "e_event_name".

that categorize a range of parameter values into fuzzy sets.
For example, the peg’s diameter can be categorized into
"very small", "small", "medium", "large" and "very large".
The fuzzy sets for each geometric and process parameters
are shown in Fig. 6 while five sample rules are provided in
Listing 1.

0.0 0.2 0.4 0.6 0.8 1.0
clearance [mm]

0.0

0.5

1.0

m
em

be
rs

hi
p

de
gr

ee very
small small medium large very

large

0 20 40 60 80
peg diameter [mm]

0.0

0.5

1.0

m
em

be
rs

hi
p

de
gr

ee very
small small medium large very

large

0 50 100 150 200
peg length [mm]

0.0

0.5

1.0

m
em

be
rs

hi
p

de
gr

ee

small medium large

0 20 40 60
insertion force [N]

0.0

0.5

1.0

m
em

be
rs

hi
p

de
gr

ee very
small small medium large very

large

0.0 0.5 1.0 1.5
jitter amplitude [Nm]

0.0

0.5

1.0

m
em

be
rs

hi
p

de
gr

ee very
small small medium large very

large

Fig. 6. The fuzzy sets used in the inference module. The left column shows
the geometric parameters while the right one shows the process parameters.

Listing 1. Selection of the fuzzy rules used in the inference module
if diameter is "small" then insertion force is "large"
if clearance is "medium" then insertion force is "medium"
if length is "long" then insertion force is "small"
if clearance is "very small" then dither amplitude is "very large"
if diameter is "small" and length is "long" then dither amplitude is "medium"

In this data-driven approach, we first collected the training
data by running a total of 40 peg-in-hole trials with different
process parameter values. For each run, the insertion force
and dither amplitude were carefully selected to ensure suc-
cessful execution, while minimizing contact force. Based on
these experiments, the number of membership functions and
their shapes were then tuned. Finally, the fuzzy inference
module was validated with a new set of peg-in-hole tasks.

E. Control Layer

The experimental setup consists of a seven DOF KUKA
LBR iiwa 14 robot equipped with a pneumatic SCHUNK
RH940 parallel gripper. The robot is controlled with

eTaSL/eTC [11] which is deployed as an Orocos [19] com-
ponent. eTaSL is used for constraint specification in Lua
language while eTC is the controller implementation that sat-
isfies the constraints in an instantaneously optimal way. The
control loop is run with a frequency of 200 Hz. Additionally,
a feature_frame_publisher node [20] was created in ROS [21]
for publishing all relevant frames with TF2. Actuation of the
gripper is also performed through a ROS service call.

IV. EXPERIMENTAL RESULTS

The overall system is deployed for assembling the small
rotor, big rotor, and housing lid consecutively. The rotor
assemblies are categorized as tight-tolerance tasks, therefore
the grasp_and_insert composed skill using force control is
selected, and process parameter inference is required. The
geometric property generated from the CAD information of
the tasks and their inferred process parameters are reported
in Table II. Meanwhile, since the housing lid assembly has
a relatively large clearance, a position control skill with
force monitor i.e. guarded_cartesian is sufficient. Therefore,
process parameter inference is not required.

The experiment shows that the robot successfully as-
sembles the parts using a parametrized skill by the ap-
plication and process layers, see Fig.8 for a snapshot of
the assembly sequence. The recorded insertion forces and
moments during a portion of the assembly sequence are
shown in Fig 7. The plot gives a recording of the transition
from guarded_cartesian to cylinder_insert. To emphasize the
behavior of the dithering in the skill, we do not transition
from cylinder_insert to move_cartesian, but remain in the
cylinder_insert skill.

TABLE II
GEOMETRIC AND INFERRED PROCESS PARAMETERS FOR THE ROTOR

ASSEMBLIES

Part Name
Parameter Category Parameter Name small_rotor big_rotor

Length (mm) 192 192
Geometric Diameter (mm) 61 75.5

Clearance (mm) 0.1 0.08

Process Insertion Force (N) -31.1 -33.5
dither Amplitude (Nm) 1.13 1.33

V. DISCUSSION

The force controller in eTaSL has a damping behavior
[11]. This resulted in a velocity proportional to the difference
between the measured and desired force. The plot in Fig. 7
shows that when the robot approached the rotor’s hole
between 0 s and 2.8s the forces were approximately zero.
When a force magnitude of -10 N in Fz was experienced by
guarded_cartesian a transition into cylinder_insert occurred.
The insertion process lasted from 2.8 s to 6.7 s and the
robot was moving down with a constant velocity. The effects
of friction (approximately -10 N in z-direction) are visible

73

40

20

0

20

Fo
rc

es
 [

N
]

Fx
Fy
Fz

0 2 4 6 8 10 12
Time [seconds]

4

2

0

2

4

To
rq

ue
s

[N
m

]

x

y

z

Fig. 7. The measured forces and torques during insertion of the big rotor.
Note that from 8 s, the rotor is in contact with the bottom. This was added
to verify that the desired dithering is present.

Fig. 8. The robot performing the assembly sequence of the compressor
parts. From left to right: assembly of the small rotor, the big rotor, and the
housing lid.

during the insertion. The remaining difference between in-
sertion force set-point and the measured friction caused an
approximately constant insertion velocity. The dithering was
not easily distinguished in the graph during the insertion
process. From 6.7 s to 8 s, the rotor touched the bottom of the
hole, the velocity dropped to zero, and the set-point for the
insertion force reached its desired value. The measured force
along the z-axis was consistent with the selected process
parameters listed in Tab. II. Furthermore, the oscillations due
to the applied dither-force remained bounded. This shows that
the skill executed the assembly task as desired.

The composed skills are given the names of feature frames.
These are used to look up the location of parts using the
published frames, making them less dependent on hard-coded
locations. An example of this is the grasp frame available
on each of the parts. The pre-grasp and post-grasp locations
were constant offsets from the grasp frame, and the grasp
frame was queried from TF2 based on the part name. This
allows easy integration with robot cell localization systems
that publish part locations using TF2.

The published frames were also beneficial in calibration
of the robot cell as we could use the known CAD data on
where the holes are on the parts to quickly calibrate the part
location, e.g. we moved the end-effector to the grasp location
of a rotor and read where the mesh was located relative to the
grasp location from the feature_frame_publisher. This can be
useful if a teach-in of the robot cell information is desired.

An aspect of the geometric information that was not
incorporated was the part symmetry, the rotors are cylin-
drical and can be grasped or inserted from any orientation
around its z-axis. This information is available in the JSON
file of the part, and requires developing an atomic skill,
move_cartesian_symmetric, where the symmetric informa-
tion is added to the application parameters of the skill.
This would allow more efficient execution of the approach
motions. Depending on the specific mounting of the gripper
on the robot, this can also increase the working range of the
robot.

In this paper we have emphasized the geometric informa-
tion available in the CAD data, but there is another aspect that
is of relevance, the material properties of the parts involved.
For example, insertion of a teflon peg in a steel hole has
different process parameters to inserting a steel peg in a soft-
plastic hole. Material properties are available in STEP AP214
file format, and many CAD programs support it. For multi-
material assembly scenarios, the inference engine should be
trained on the material properties as well as the geometric
properties.

VI. CONCLUSION

In this paper, a three-layered system architecture for au-
tomating robot assembly programming using CAD informa-
tion is proposed. The application layer is used for annotating
the tasks, the process layer is used for planning and inference
of the relevant robot skills, and the control layer is used for
execution of the skills on the robot platform. We focus on
more challenging assembly tasks that require force-control.
To accomplish this we use skills that have process parameters
such as insertion force and dither amplitude. These empirical
parameters are not readily available in the CAD model. A
fuzzy logic inference module is used to capture this process
knowledge by providing a method of inferring the process
parameters based on a set of key geometric parameters from
the CAD model.

As a proof-of-concept, we implemented the proposed sys-
tem architecture and validated it with force-controlled inser-
tion of compressor rotors. The problem can be generalized as
a peg-in-hole task, for which the conventional solutions have
been studied well [22]. The key geometric parameters used
in the fuzzy logic was the peg’s clearance, peg’s diameter,
and insertion length, all of which were extracted from the
CAD model and Task object in the application layer. For
more complex assembly tasks, such as click-connection, the
key geometric parameters are yet to be defined.

Inference is realized using a fuzzy inference method which
proved to be straightforward to implement. Of course, this

74

method fails to extrapolate outside the predefined range of
the fuzzy sets and we assumed that all of the given geometric
parameters are relevant. With a sufficiently large dataset
and more advanced regression methods (such as automatic
relevance detection [23]), it is possible to deduce which of
the parameters are really relevant for the process parameters.
Such an approach will be beneficial for including material
properties when inferring process parameters. The fuzzy set
database can grow over time to accommodate a larger variety
of assembly cases and this database can be shared with
similar robot setups.

For many industrial assembly cases, there are more than
two contact surfaces involved. An example is the housing
lid and the two rotors. There are two main approaches to
this: defining a primitive boundary representation [4], or
using the subshape. In this article we have assumed the
chosen geometric primitive to be sufficient for completing
the task. To handle more complex geometries, a task could
be split into subtasks with their individual primitive boundary
representations, or a special purpose composed skill can be
defined.

The preliminary implementation contains prototypes and
tools that the eventual system will use. The assembly of
the rotors and housing lid was successfully executed by
the system, and the inference module provided reasonable
parameters. The application layer implementation is useful
for annotating geometric features to CAD models and the
publisher node gives their transformations in ROS.

A wealth of research exists on assembly analysis, plan-
ning, and skills. This research can become tools that can
benefit researchers as well as manufacturers. We describe
a system architecture based on previous work that also
allows for process parameter inference for tight-tolerance
assembly situations and share some of the tools built in the
process. However, it is difficult to build up a comprehensive
system. Therefore we advocate prototyping in open-source
frameworks such as FreeCAD and Orocos.

VII. ACKNOWLEDGEMENT

The work reported in this paper was supported by Flanders
Make ICON FINROP (Fast and Intuitive Robot Program-
ming) in Belgium and the centre for research based inno-
vation SFI Manufacturing in Norway. The work is partially
funded by the Research Council of Norway under contract
number 237900.

REFERENCES

[1] A. Ambler and R. Popplestone, “Inferring the positions of bodies from
specified spatial relationships,” Artificial Intelligence, vol. 6, no. 2, pp.
157–174, jun 1975.

[2] L. I. Lieberman and M. A. Wesley, “AUTOPASS: An Automatic
Programming System for Computer Controlled Mechanical Assembly,”
IBM Journal of Research and Development, vol. 21, no. 4, pp. 321–
333, jul 1977.

[3] S. Kaufman, R. Wilson, R. Jones, T. Calton, and A. Ames, “The
Archimedes 2 mechanical assembly planning system,” in Proceedings
of IEEE International Conference on Robotics and Automation, vol. 4.
IEEE, 1996, pp. 3361–3368.

[4] U. Thomas and F. M. Wahl, “Assembly Planning and Task Planning
— Two Prerequisites for Automated Robot Programming,” in Springer
Tracts in Advanced Robotics, 2010, vol. 67, pp. 333–354.

[5] F. Dietrich, J. Maaß, A. Raatz, and J. Hesselbach, “RCA562: Control
Architecture for Parallel Kinematic Robots,” in Springer Tracts in
Advanced Robotics, 2010, vol. 67, pp. 315–331.

[6] P. Neto, N. Mendes, R. Araújo, J. Norberto Pires, and A. Paulo
Moreira, “High-level robot programming based on CAD: dealing
with unpredictable environments,” Industrial Robot: An International
Journal, vol. 39, no. 3, pp. 294–303, apr 2012.

[7] A. Perzylo, N. Somani, S. Profanter, I. Kessler, M. Rickert, and
A. Knoll, “Intuitive instruction of industrial robots: Semantic process
descriptions for small lot production,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 2016-
Novem. IEEE, oct 2016, pp. 2293–2300.

[8] M. T. Mason, “Compliance and Force Control for Computer Controlled
Manipulators,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 11, no. 6, pp. 418–432, 1981.

[9] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits,
E. Aertbeliën, K. Claes, and H. Bruyninckx, “Constraint-based Task
Specification and Estimation for Sensor-Based Robot Systems in the
Presence of Geometric Uncertainty,” The International Journal of
Robotics Research, vol. 26, no. 5, pp. 433–455, may 2007.

[10] R. Smits, T. De Laet, K. Claes, H. Bruyninckx, and J. De Schutter,
“iTASC: a tool for multi-sensor integration in robot manipulation,”
in 2008 IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems. IEEE, aug 2008, pp. 426–433.

[11] E. Aertbelien and J. De Schutter, “eTaSL/eTC: A constraint-based task
specification language and robot controller using expression graphs,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, sep 2014, pp. 1540–1546.

[12] M. Klotzbücher and H. Bruyninckx, “Coordinating robotic tasks and
systems with rfsm statecharts,” JOSER: Journal of Software Engineer-
ing for Robotics, vol. 3, pp. 28–56, 2010.

[13] T. De Fazio and D. Whitney, “Simplified generation of all mechanical
assembly sequences,” IEEE Journal on Robotics and Automation,
vol. 3, no. 6, pp. 640–658, dec 1987.

[14] L. Homem de Mello and A. Sanderson, “Representations of mechanical
assembly sequences,” IEEE Transactions on Robotics and Automation,
vol. 7, no. 2, pp. 211–227, apr 1991.

[15] N. Pitchandi, S. P. Subramanian, and M. Irulappan, “Insertion force
analysis of compliantly supported peg-in-hole assembly,” Assembly
Automation, vol. 37, no. 3, pp. 285–295, 2017. [Online]. Available:
http://www.emeraldinsight.com/doi/10.1108/AA-12-2016-167

[16] S. Guillaume, “Designing fuzzy inference systems from data: An
interpretability-oriented review,” IEEE Transactions on Fuzzy Systems,
vol. 9, no. 3, pp. 426–443, jun 2001.

[17] J. Riegel and Y. van Havre, “FreeCAD: Parametric 3D modeler.”
[Online]. Available: https://www.freecadweb.org

[18] M. H. Arbo and Y. Pane, “ARBench,” 2017. [Online]. Available:
https://github.com/mahaarbo/ARBench

[19] P. Soetens, “A Software Framework for Real-Time and Distributed
Robot and Machine Control,” Ph.D. dissertation, Katholieke Univer-
siteit Leuven, 2006.

[20] M. H. Arbo and Y. Pane, “ARBench part publisher,” 2017. [Online].
Available: https://github.com/mahaarbo/arbench{_}part{_}publisher

[21] M. Morgan Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” in Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA) Workshop on Open Source Robotics, may 2009.

[22] T. Lozano-Perez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” The International Journal of
Robotics Research, vol. 3, no. 1, pp. 3–24, 1984.

[23] C. M. Bishop, Pattern Recognition and Machine Learning. New York:
Springer, 2006.

75

76

77

Paper 5 Stability of the Tracking Problemwith Task-
Priority Inverse Kinematics

M. H. Arbo and J. T. Gravdahl, “Stability of the Tracking Problem with Task-
Priority Inverse Kinematics”, IFAC Symposium on Robotics and Control (SY-
ROCO), Budapest, 2018, pp. 121-125.

78

Stability of the Tracking Problem with
Task-Priority Inverse Kinematics ?

Mathias Hauan Arbo ∗ Jan Tommy Gravdahl ∗∗

∗Department of Engineering Cybernetics, Norwegian University of
Science and Technology (NTNU), Trondheim, Norway (e-mail:

mathias.arbo@ntnu.no).
∗∗Department of Engineering Cybernetics, Norwegian University of
Science and Technology (NTNU), Trondheim, Norway (e-mail:

jan.tommy.gravdahl@ntnu.no).

Abstract: The multiple task-priority inverse kinematics framework using the Moore-Penrose
pseudoinverse has been shown to be asymptotically stable for the regulation problem with
certain conditions on the tasks. In this article we present a theorem that extends this to the
tracking problem by including an additional criterion that we term fully represented in the null-
space. We show the effect of this on a simulation with a snake-like robot manipulator with 30
links for 3 compatible tasks, and an example of 2 tasks that are compatible as a regulation
problem but incompatible as a tracking problem. As the tracking problem is more affected by
the linearization assumption, we also include an example showing that the effect of linearization
can be detrimental during tracking.

Keywords: Inverse kinematic problem, Stability analysis, Control (closed-loop), Robot
kinematics, Industrial robots, Robot arm

1. INTRODUCTION

From humanoid service robots to industrial manipulators,
we often want the robot to follow a reference trajectory.
The reference is represented in a task space (f.ex. in
Cartesian space) and finding the appropriate robot-centric
control setpoints to converge to the reference is referred to
as the inverse kinematics problem. Inverse kinematics is a
classical problem in robotics, and is fundamental to highly
redundant robots such as humanoid or snake robots.

Sciavicco and Siciliano (1986) and Das et al. (1988) present
methods of finding joint speed setpoints to achieve a given
inverse kinematics. This is commonly called the closed-
loop inverse kinematics (CLIK), where the joint speeds are
found by inverting differential kinematics. By design, the
joint speeds are chosen such that the task errors converge
exponentially.

For robots where there are multiple tasks to be achieved,
and the robot is redundant with respect to the tasks,
Chiaverini (1997) shows that tasks can be combined in
priority by placing lower priority tasks in the null-space of
the higher priority tasks. Antonelli (2009) presents a set
of criteria on the tasks to ensure that we have asymptotic
stability of the regulation problem (when the robot is to
move to a reference point).

Multiple-task inverse kinematics can be solved in many
different ways. We consider the use of pseudo-inverses and

? The work reported in this paper was based on activities within
centre for research based innovation SFI Manufacturing in Norway,
and is partially funded by the Research Council of Norway under
contract number 237900.

null-space operators, but others such as Aertbeliën and
Schutter (2014) solves the problem by using a quadratic
program. Falco and Natale (2011) consider the discretized
version of the problem, and gives a stability proof of the
regulation problem.

In this article we consider the tracking problem where
the robot is to follow a reference trajectory rather than
the regulation problem where it moves to a point. We
present a proof with criteria on the tasks to ensure that
the tracking problem exhibits asymptotic stability. We give
three examples on a 30 link planar snake robot. The first
example emphasizes the behavior when we have compati-
ble tasks. The second is a minimal example of tasks that
are compatible as a regulation problem but incompatible
as a tracking problem. The minimal example can easily
happen if a user makes a mistake when designing the tasks.
The final example shows how the tracking problem is more
sensitive to how long the joint speed setpoint is applied to
the robot than the regulation problem.

2. STABILITY

2.1 Description of the Moore-Penrose Pseudoinverse

The Moore-Penrose pseudoinverse, A† is defined for A ∈
Rm×n whereA not necessarily has full rank, and it satisfies
the following conditions:

AA†A = A, (1)
A†AA† = A†, (2)

(
AA†

)T
= AA†, (3)

(
A†A

)T
= A†A (4)

79

and if A has full rank, we have
AA† = Im. (5)

2.2 Single task stability

We consider a general robotic system with n degrees of
freedom whose configuration is described by the joint
coordinates q = [q1, q2, . . . , qn] ∈ Rn. The robot is con-
trolled by the speed of the joints q̇des and we assume
q̇des(t) = q̇(t). We define a task error, σ̃ : R× Rn → Rm,
that should be stabilized to zero. It is a function of time,
joint coordinates, and m is the dimension of the task. A
typical regulation problem would be:

σ̃ = p− fp(q) (6)
where fp is the forward kinematics, and p is the desired
goal state. A typical tracking problem would be:

σ̃ = pref(t)− fp(q) (7)
where pref(t) is a reference signal that the end-effector
tracks.

Looking at the total derivative of σ̃ we find the task error
is related to the control input q̇ by

˙̃σ(t, q) =
∂σ̃

∂t
(t, q) +

∂σ̃

∂q
(t, q)q̇(t) (8)

we define J(q) = ∂σ̃
∂q ∈ Rm×n as the configuration-

dependent task error Jacobian. For brevity we simply write
J and σ̃. We essentially assume that we can linearize the
system at this time instance and give the robot a q̇ setpoint
for a short enough time interval that we have not diverged
from this linearization.

To ensure exponential stability of the task error, choose
˙̃σ ..= −Λσ̃, (9)

where Λ > 0. From (8), we find

Jq̇ = −∂σ̃
∂t
− Λσ̃. (10)

Note that ∂σ̃
∂t is a feedforward term of the time derivative

of the task error. If J has full rank, we can use the Moore-
Penrose inverse of J to find the desired q̇

q̇ = −J†
(
∂σ̃

∂t
+ Λσ̃

)
. (11)

if the system is redundant with respect to the task, i.e.
n > m, the solution has a null-space operator N = (In −
J†J) such that

q̇ = −J†
(
∂σ̃

∂t
+ Λσ̃

)
+Nq̇null (12)

where q̇null ∈ Rn can be arbitrarily chosen without
affecting the stability of the task. This means that tasks
are combined in priority by projecting their desired joint
speed, (11), into the null-space of the higher-priority tasks.

We use the augmented null-space operator to achieve
this. The augmented null-space operator describes the
null-space formed by the combination of multiple task
error Jacobians. That is, for task errors σ̃1 and σ̃2 the
augmented Jacobian is defined as

J1,2 =

[
J1

J2

]
, (13)

and the augmented null-space operator is defined as

N1,2 =
(
In + J1,2

†J1,2

)
. (14)

A useful property of the augmented null-space operator is:
JiN1,...,k = 0m×n (15)

with i ∈ {1, . . . , k}. For proof see Moe et al. (2016). The
desired joint speed for k tasks, is then:

q̇ = −
k∑

i=1

N1,i−1J1
†
(
∂σ̃1

∂t
+ Λ1σ̃1

)
(16)

where we have defined the shorthandN1,0 = In to simplify
our sum expression.

2.3 Task relation definitions

Antonelli (2009) provides three useful definitions for the
relation between tasks. Two tasks with Jacobians Ji and
Jj are defined to be annihilating if:

JiJj
† = 0m×m. (17)

They are annihilating in the null-space of σ̃1, . . . , σ̃l if

JiN1,...,lJ
†
j = 0m×m, (18)

and the two tasks are independent if they are not annihi-
lating and

ρ(J†i) + ρ(J†j) = ρ
([
Ji
†,Jj

†
])

(19)

where ρ(·) denotes the rank.

We include an additional definition, a tracking task is fully
represented in the null-space Nj if

JiNjJ
†
i = JiJ

†
i (20)

which for full rank of Ji gives the identity matrix. This
new criteria ensures that the time-varying aspect to track
in a task can be followed in the null-space it will operate
in.

2.4 Tracking Multiple tasks

Theorem 1. Given k > 1 tasks, and that

(A) each task has full rank,
(B) task i is independent of all tasks 1, . . . , i− 1,
(C) any tasks i and j with i > j > 1 are annihilating in

the augmented null-space N1,...,j−1,
(D) if task i is a tracking task, it is fully represented in

N1,...,i−1

then the task errors are asymptotically stable.

Proof. We have k > 1 tasks. For each of these tasks, we
desire exponential behavior of the task error derivative

˙̃σi =
∂σ̃i

∂t
+ Jiq̇ (21)

˙̃σi
..= −Λσ̃i (22)

where i = 1, . . . , k. To investigate the stability of all the
tasks, we define

−→σ = [σ̃T
1 , . . . , σ̃

T
k]T (23)

∂−→σ
∂t

= [
∂σ̃1

∂t

T

, . . . ,
∂σ̃k

∂t

T

]T (24)

80

Then, by inserting (16) into (21) we obtain the system

−̇→σ =−




A11 0m1×m2 . . . 0m1×mk

A21 A22 . . . 0m2×mk

...
. . .

Ak1 Ak2 . . . Akk



−→σ

+




B11 0m1×m2
. . . 0m1×mk

B21 B22 . . . 0m2×mk

...
. . .

Bk1 Bk2 . . . Bkk



∂−→σ
∂t

(25)

where

Aij = JiN1,...,j−1Jj
†Λj (26)

Bij =

{
I − JiN1,...,i−1Ji

†, i = j

−JiN1,...,j−1Jj
†, i 6= j

(27)

Note: the upper-trianguluar block terms are zero as a
result of (15).

Following the proof in Antonelli (2009), we use the Lya-
punov function

V =
1

2
−→σ T−→σ (28)

which is positive for all non-zero−→σ . It has a time derivative
given by

V̇ =−→σ T −̇→σ (29)

V̇ =−−→σ TA−→σ +−→σ TB
∂−→σ
∂t

(30)

Looking at (26) and (27) we notice that from requirement
(C), the off-diagonal elements of A and B are zero
matrices of appropriate dimension. From requirement (A)
and (D) B disappears entirely, giving

V̇ =−−→σ TA−→σ . (31)

This means that the tracking problem has been reduced to
the regulation problem. As described in Antonelli (2009)
the block diagonal elements of A are positive definite from
the requirement (B) and (C), and the task errors are
asymptotically stable for any Λi > 0 with i ∈ 1, . . . , k.
If requirement (D) holds for all tasks, not just the ones
that have a time-varying aspect, then we also have A =
diag(Λ1Im1 ,Λ2Im2 , . . . ,ΛkImk

).

3. EXAMPLES

To simplify Jacobian and pseudo-inverse calculation, the
following examples were implemented in Python with
CasADi (Andersson et al., 2018). CasADi is a symbolic
and algorithmic differentiation framework for numeric
optimization. The system is simulated with Euler’s method
and a timestep of 0.01 s.

We consider a highly redundant snake-like manipulator
with 30 links of unit length with 30 revolute joints. The
snake is rigidly attached at the base and moves in the
plane. We have q = [q1, q2, . . . , q30]T ∈ R30 with each
subsequent joint angle defined relative the preceding joint.
The forward kinematics to link i is then given by

fpi
(q) =




i∑

j=1

cos(

j∑

k=1

qk)

i∑

j=1

sin(

j∑

k=1

qk)




(32)

and the partial derivatives of these are simply

∂fpi

∂ql
(q) =




i∑

j=l

− sin(

j∑

k=1

qk)

i∑

j=l

cos(

j∑

k=1

qk)




(33)

we denote the relative forward kinematics from link i to
link j as fpi,j

(q).

The first example emphasizes how feedforward of the task
error derivative reduces the tracking error for tasks that
are compatible. The second example shows two tasks that
can be combined in the case of a regulation problem but
will cause problems as a tracking problem. The third
example shows a problem with discretization that is more
evident in tracking tasks than in regulation tasks.

3.1 Example 1 - Effect of Feedforward

We have three tasks forming three task errors:

σ̃1(t, q) =

[
2 cos(0.1t) + 10
2 sin(0.1t) + 10

]
− fp20

(q) (34)

σ̃2(t, q) =

[
cos(0.2t) + 2
sin(0.2t) + 2

]
− fp25,30

(q) (35)

σ̃3(t, q) = q21 + q22 + q23 − sin(t) (36)
the first task is for the 20th link to follow a circle of radius 2
centered around (10, 10), and the second is for the 30th link
to follow a circle of radius 1 centered around (2, 2) relative
to the frame on the 25th link. The third tasks is for the
sum of joints q21, q22 and q23 to follow a sinusoidal signal.
The tasks are annihilating, and fully represented in the
necessary null-spaces, and we use gains Λ1 = Λ2 = Λ3 = 1.

In Fig.1 we see the norms of the tasks w.r.t time both
with and without feedback. Without feedforward, there is
a persistent tracking error in all the tasks. In Fig.2 we see
the smallest eigenvalue of A and the Frobenius norm of B
w.r.t. time, note thatA remains positive definite, andB is
zero. As B is zero, the tracking tasks are fully represented
in the null-space of the higher-priority tasks, and the task
errors are asymptotically stable.

3.2 Example 2 - Incompatible Tasks

A simple mistake during task design is to take what should
be one task, and splitting it into two. Here we consider
the case where we control the x and y position of the end-
effector as two different tasks. This gives the task errors

σ̃x(t, q) = 2 cos(0.1t) + 10−
30∑

j=1

cos(

j∑

k=1

qk) (37)

σ̃y(t, q) = 2 cos(0.1t) + 10−
30∑

j=1

sin(

j∑

k=1

qk) (38)

81

0 5 10 15 20

t [s]

0

2

4

6

8

10

er
ro

r
n

o
rm

[m
]

σ̃1

σ̃2

σ̃3

σ̃1 (no feedforward)

σ̃2 (no feedforward)

σ̃3 (no feedforward)

Fig. 1. Norm of task errors for example 1. With compatible
tasks, feedforward removes tracking error.

0 5 10 15 20

t [s]

0.0

0.2

0.4

0.6

0.8

1.0

min(eig(A))

||B||

Fig. 2. Minimum eigenvalue of A and Frobenius norm of
B for example 1. Only the case with feedforward is
given as the no feedforward case is similar.

for which the partial derivatives are

∂σ̃x
∂qi

=
30∑

j=i

sin(

j∑

k=1

qk) (39)

∂σ̃y
∂qi

= −
30∑

j=i

cos(

j∑

k=1

qk) (40)

In Appendix A we show that as a regulation problem this
is asymptotically stable, but not as a tracking problem. In
Fig.3 we see the norm of the task errors. The high-priority
σ̃x converges, but σ̃y does not as it is affected by the time-
varying reference signal. In Fig.4 we see that the smallest
eigenvalue of A is positive, and that B is non-zero.

3.3 Example 3 - Linearization

CLIK approaches generally assume that q̇ = q̇desired,
calculates q̇desired, and then applies q̇desired to the robot
for a time interval. This means that the time interval we
apply q̇ = q̇desired to the robot should be sufficiently small
for the linearization assumption to hold. In Fig.5 we show
the norm of the full task error vector in Example 1 for
varying timestep sizes. In Fig.6 we show the same tasks
but with a constant reference point instead of a reference
trajectory.

0 5 10 15 20

t [s]

0

2

4

6

8

10

12

er
ro

r
n

o
rm

[m
]

σ̃x

σ̃y

σ̃x (no feedforward)

σ̃y (no feedforward)

Fig. 3. Norms of the task errors for Example 2. Note that
σ̃x converges but σ̃y does not.

0 5 10 15 20

t [s]

0

1

2

3

4

5 min(eig(A))

||B||

Fig. 4. Minimum eigenvalue of A and Frobenius norm of
B for example 2. Only the case with feedforward is
given as the no feedforward case is similar. Note that
the minimum eigenvalue remains positive, but ‖B‖ is
non-zero.

0 5 10 15 20

t [s]

10−3

10−2

10−1

100

101

lo
g
(t

a
sk

er
ro

r)
[m

]

dt=0.05

dt=0.01

dt=0.005

dt=0.0025

dt=0.001

Fig. 5. Norms of the full task error vector from (34)-(36)
for varying timestep lengths.

4. CONCLUSION

When performing tracking tasks, it is not as easy to
combine tasks as when handling a regulation problem.
In this article we presented a theorem showing sufficient
conditions on the tasks to ensure asymptotic stability of
the task errors for task-priority inverse kinematics for
tracking problems. The new requirement when compared

82

0 5 10 15 20

t [s]

10−7

10−5

10−3

10−1

101

lo
g
(t

a
sk

er
ro

r)
[m

]

dt=0.05

dt=0.01

dt=0.005

dt=0.0025

dt=0.001

Fig. 6. Norms of the full task error vector from (34)-(36)
for varying timestep lengths and a constant t = 0.

to the regulation problems is that tracking tasks are fully
represented in the null-space of the previous tasks. This
was shown with two examples, one showing compatible
tasks where the tracking error was removed by the feedfor-
ward signal, and one showing a minimal example of incom-
patible tasks that could arise by simple user mistakes. The
third example emphasized the dangers of linearization and
discretization as a reminder that this becomes a larger is-
sue when handling tracking problems. The errors observed
in the third example are to be expected in other CLIK
approaches where we assume the same linearity in the
task error Jacobian. As the error observed is in the order
of millimeters or even centimeters, this could negatively
affect industrial use-cases such as seam-following as the
error may exceed the desired tolerances if not accounted
for.

The multiple task-priority inverse kinematics framework
has been extended to set-based tasks in Moe et al. (2016).
Extending the results of this article to set-based tasks will
allow us to design control systems where we can ensure
convergence while avoiding obstacles moving in known
paths, or when the robot must remain inside a time-
varying workspace.

The linearization issues may be addressed by extending the
work of Falco and Natale (2011) to consider the tracking
problem in the discretized version of the approach.

REFERENCES

Aertbeliën, E. and Schutter, J.D. (2014). etasl/etc: A
constraint-based task specification language and robot
controller using expression graphs. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, 1540–1546.

Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., and
Diehl, M. (2018). CasADi – A software framework for
nonlinear optimization and optimal control. Mathemat-
ical Programming Computation.

Antonelli, G. (2009). Stability analysis for prioritized
closed-loop inverse kinematic algorithms for redundant
robotic systems. IEEE Transactions on Robotics, 25(5),
985–994.

Chiaverini, S. (1997). Singularity-robust task-priority
redundancy resolution for real-time kinematic control
of robot manipulators. IEEE Transactions on Robotics
and Automation, 13(3), 398–410.

Das, H., Slotine, J.E., and Sheridan, T.B. (1988). Inverse
kinematic algorithms for redundant systems. In Proceed-
ings. 1988 IEEE International Conference on Robotics
and Automation, 43–48 vol.1.

Falco, P. and Natale, C. (2011). On the stability of closed-
loop inverse kinematics algorithms for redundant robots.
IEEE Transactions on Robotics, 27(4), 780–784.

Moe, S., Antonelli, G., Teel, A.R., Pettersen, K.Y.,
and Schrimpf, J. (2016). Set-based tasks within the
singularity-robust multiple task-priority inverse kine-
matics framework: General formulation, stability analy-
sis, and experimental results. Frontiers in Robotics and
AI, 3, 16.

Sciavicco, L. and Siciliano, B. (1986). Coordinate trans-
formation: A solution algorithm for one class of robots.
IEEE Transactions on Systems, Man, and Cybernetics,
16(4), 550–559.

Appendix A. STABILITY OF EXAMPLE 2 AS A
REGULATION PROBLEM

We have the partial derivatives (39) and (40) that form the
Jacobians Jx ∈ R1×n and Jy ∈ R1×n. We investigate the
stability of the regulation problem by looking at A. As A
is lower-triangular, we are only interested in A11 and A22:

A11 = Λ1 (A.1)
and

A22 = Jy(I − Jx
†Jx)Jy

†Λ2 (A.2)
A22 = (1− JyJx

†JxJy
†)Λ2 (A.3)

We observe that

JyJx
† =

1

‖Jx‖2
JyJ

T
x (A.4)

JyJx
†JxJy

† =
1

‖Jx‖2 ‖Jy‖2
(
JyJ

T
x

)2
(A.5)

and that the tasks are not annihilating by design. By
Cauchy-Schwarz, assuming Jy and Jx are non-zero (we
avoid singularities), we have that

1 ≥
(
JxJ

T
y

)2

‖Jx‖2 ‖Jy‖2
(A.6)

which gives:
eig(A) = (Λ1, αΛ2) (A.7)

where α ≥ 0 as long as Jy 6= 0, Jx 6= 0 and the
two are linearly independent. This means that given any
arbitrary Λ1 > 0 and Λ2 > 0 the regulation problem is
asymptotically stable. The tracking problem on the other
hand is not. We have

B =

[
0 0
−β 1− α

]
(A.8)

where

β =
JyJ

T
x

‖Jx‖2
(A.9)

If Jx and Jy are linearly independent, then β = 0 but
1 − α 6= 0. If Jx and Jy are dependent, then 1 − α = 0,
but β 6= 0. The example shows how we can have stability
of the regulation problem while not guaranteeing stability
of the tracking problem with pseudo-inverse based closed-
loop inverse kinematics.

83

84

85

Paper 6 Interfacing KUKA Industrial Robots with
ROS for Research and Education

M. H. Arbo, I. Eriksen, F. Sanfilippo, and J. T. Gravdahl, “Interfacing KUKA
Industrial Robots with ROS for Research and Education,” submitted to Elsevier
journal of Mechatronics January 2019.

86

Interfacing KUKA Industrial Robots with ROS for
Research and EducationI

M. H. Arboa,∗, I. Eriksena, F. Sanfilippob, J. T. Gravdahla

aDepartment of Engineering Cybernetics, Norwegian University of Science and Technology
(NTNU), 7491 Trondheim, Norway

bDepartment of Science and Industry systems, University of Southeast Norway (USN), Post
box 235, 3603 Kongsberg, Norway

Abstract

In this work, an open-source ROS interface based on KUKAVARPROXY is
proposed for control of KUKA robots. The interface allows for reading/writing
variables of the controlled manipulators and is based on work previously intro-
duced by our research group. This work also presents the process of investigat-
ing two available libraries for the interface, BoostCrossCom and JOpenShowVar,
from the perspective of the end-user being in research and education. The in-
terface is investigated in a use-case scenario often encountered in the industry,
with sensors, tooling, and aging hardware.

To demonstrate the potential of the proposed interface, a systematic compar-
ison with the commercial closed-source Robot Sensor Interface (RSI), a low-level
control interface provided by KUKA for sensor feedback control of the robots us-
ing an external computer, is considered. This comparison provides an in-depth
analysis of the communication latency expected in the system and an insight
into the level of control that can be achieved with the KUKA robot system. The
results highlight that even though the commercial interface is more reliable for
feedback control tasks, the proposed open-source interface can approach similar
behavior with a proper tuning of the override speed.

Keywords: Robot interface, Industrial Robots, Feedback Control, ROS

IThe work reported in this paper was based on activities within centre for research based
innovation SFI Manufacturing in Norway, and is partially funded by the Research Council of
Norway under contract number 237900.

∗Corresponding author
Email addresses: mathias.arbo@ntnu.no (M. H. Arbo), ivareri@stud.ntnu.no (I.

Eriksen), filippo.sanfilippo@usn.no (F. Sanfilippo), jan.tommy.gravdahl@ntnu.no (J. T.
Gravdahl)

Preprint submitted to Elsevier January 9, 2019

87

1. Introduction

1.1. Motivation and Outline
Robotic manipulators perform an unimaginable variety of tasks. They are

ubiquitous in modern industry and essential to meeting the future production
demands of the world [1]. By using the same robot systems in research and
education as in industry, the step from university to factory can be made sur-
mountable. But as we do this, we must acknowledge the different requirements
the different fields have. In industrial use cases there are strict requirements for
uptime, safety, and repeatability, with few changes after initial installation and
programming [2]. Each robot manufacturer usually provides a programming
paradigm, with specialized hardware and software packages. In research use
cases the software requirements are often bleeding edge, with unique hardware
requirements. In education use cases the goal is a minimal representation of
the robot showcasing the core principles of its use, with easy access for educa-
tors to control and survey the work of the students. These differences are often
reflected in both the level of control the users have on the robot system, and
the interfaces required. With the advent of Industry 4.0, the border between
industry and research is shifting. New standards allow communications among
different entities of an interconnected production system or system of systems,
the requirement for industrial applications are becoming more demanding and
similar to the research use cases with an increasing need for open software [3].

Most robot manufacturers provide two main methods of controlling the robot
system: using a proprietary programming paradigm, or using an external com-
puter. The proprietary programming paradigm is usually a part of the control
computer and can be extended with commercial software and hardware. By
using an external computer for control, the user can use custom software and
hardware, at the cost of communication delay and requiring an interface between
their software and the robot system. Access to the underlying control architec-
ture in the robot system is often limited in both the proprietary programming
paradigm and when using an external computer for control.

In this article we focus on the KUKA robot systems controlled by an exter-
nal computer. KUKA produces robot manipulators ranging from collaborative
lightweight robots such as the LWR IIWA 7 to the massive car-carrying KR
1000 Titan. A complete robot system by KUKA is comprised of the robot arm
itself, a control cabinet e.g. KUKA Robot Controller 4 (KRC4), and a teach
pendant referred to as the KUKA Control Panel (KCP). This article focuses on
the KUKA KR 16 robot, and the KRC2 control cabinet. The robot is controlled
from the control cabinet either manually using the teach pendant, or by run-
ning a KUKA Robotics Language (KRL) program. External axes attached to
the robot can be controlled synchronously, or asynchronously, and the control
cabinet can communicate with attached devices and external computers over
Profibus or Ethernet.

While the KRL provides an interface that is easy to use in industrial applica-
tions, it is quite limited for research purposes. In particular, the KRL is tailored
to the underlying controller and consequently, only a fixed, controller-specific

88

set of instructions is offered [4, 5]. Extending the KRL to include new instruc-
tions and functionalities is an arduous task. Without a native way of including
third party libraries in KRL, it is difficult to implement novel controllers and
quickly connect to external input devices. To overcome such challenges, one of
the most recognised and effective efforts that has come from the research com-
munity concerns the development of the Robot Operating System (ROS) [6].

ROS is an open-source middleware for writing robot software, it provides
a message-passing structure for inter-process communication. Packages writ-
ten in ROS are transferrable from one robot setup to another, and the large
international userbase provides packages ranging from indoor navigation, to ob-
ject identification, to reference frame calculation. The ROS community simplify
software development through standards for data represtion, and both visual-
ization and simulation tools. ROS-Industrial (ROS-I) is an open-source project
aimed at extending ROS to new manufacturing application. ROS-I provides a
standardisation of package structures for writing packages aimed at industrial
robotics. In ros_control[7], ROS provides a framework for designing interfaces
for controlling robot hardware from ROS. ROS provides support for different
industrial robots including vendors like ABB, Adept, Fanuc, Motoman, and
Universal Robots. Extensive research work has also gone into creating ROS
drivers for KUKA robots using commercially available interfaces.

The main contribution of this work is an open ROS-based interface for
KUKA industrial manipulators. Interfacing with industrial robots is not a triv-
ial task, especially when the robots are to be used by everyone from first-year
bachelor students to robotics researchers. This article discusses two different
methods for controlling and communicating with a KUKA robot system from
an external computer, an analysis of the communication latency expected in
the system, and insight into the level of control that can be achieved with the
KUKA robot system. The first of the two communication methods investigated
uses the closed-source Robot Sensor Interface (RSI), a low-level real-time con-
trol interface provided by KUKA for sensor feedback control of the robots. The
other method is communicating directly to the variables in a KRL program
running on the KRC using the open-source KUKAVARPROXY (KVP) based
jOpenShowVar [8] and BoostCrossCom[9]. This work is a continuation of [10]
and [8], and investigates the KVP based control method for use in research and
education.

The article is split into four sections. The first section gives the motivation
and related research. Section 2 describes the robotics lab as well as the KRC2
and software used. Section 3 describes the process of creating the ROS interface,
from evaluating the library to use, to designing the KRL program to run on
the KRC2. Section 3 ends with a simple example of a grasp and place task
executed with both the commercial and open-source interface. Section 4 gives
a qualitative comparison of the interfaces and discusses the results for research
and education.

89

L
ig

h
tw

e
ig

h
t

Lo
w

-p
a

y
lo

a
d

O
th

e
r

In
d

u
st

ri
a

l

OpenKC
RSI/FRI

KUKA Control Toolbox
RSI

KUKAVARPROXY JOpenShowVar
KUKAVARPROXY

2010

2011
2012

2014

Figure 1: A time-line with recent related works. The works are categorized based on which
class of KUKA manipulators they are intended to be used with. Where applicable, the un-
derlying interface used is specified in small text under the name.

1.2. Related Research
KUKA offers three interfaces for control and communication with a robot

using an external computer: Robot Sensor Interface (RSI), Ethernet KRL Inter-
face (EKI), and Fast Research Interface (FRI). RSI was used in this article and
will be further discussed in the following sections. EKI is an interface intended
for TCP/IP data communication between the computer and an external com-
puter. As this data may include motion commands, it allows for motion control.
EKI is generally less expensive than RSI, but not as viable for feedback control.
FRI is a real-time interface supporting control modes from joint impedance con-
trol to joint position control, but it is only available for the KUKA lightweight
manipulator series.

As shown in Fig.1, several research groups have explored the possibility of
creating alternative software interfaces to KUKA robots. An open-source real-
time control software for the KUKA lightweight robot, OpenKC, was presented
in [11]. This software relies on either RSI or FRI, and is intended for use with
POSIX compliant operating systems. OpenKC makes it possible to control the
robot by using a simple set of routines that can easily be integrated into existing
software. As a result, developers of robot applications can explore different
software scenarios. However, the software is limited to the KUKA lightweight
manipulator series, and use of RSI or FRI is required.

The KUKA Control Toolbox, introduced in [12], provides a collection of
MATLAB functions for control of KUKA industrial robots. The underlying
idea of the KCT is to offer an intuitive and high-level programming interface

90

for the user. This toolbox is compatible with all small and low-payload KUKA
robots that have six degrees of freedom (DOFs). The KCT runs on a remote
computer connected to the KRC via TCP/IP. A multi-thread server runs on
the KRC and communicates via RSI with a client whose job is to manage the
information exchange with the manipulator. High transmission rates are guaran-
teed by this communication set-up, thus enabling real-time control applications.
Nonetheless, as in the previous work, this approach requires the use of RSI.

KVP was developed by IMTS s.r.l. as a freely distributed server that runs
on the Windows portion of the KUKA Robot Controller. The open-source com-
munication library JOpenShowVar, was created by Filippo Sanfilippo et al. [8]
as a Java based middleware for communication and control of the robot. It
was created as an open-source alternative to current KUKA control packages.
JOpenShowVar has been used in research on active heave compensation for off-
shore crane operations [13], robotic welding of tubes [14], sensorless admittance
control in human-robot interaction [15], and in robot assisted 3D vibrometer
measurements [16]. The open-source nature of JOpenShowVar allowed for the
development of BoostCrossCom, a minimal C++ library for communicating
with the KVP server. BoostCrossCom was developed by Eirik Njåstad for his
master thesis [9] (results presented in [17]).

Even though JOpenShowVar and KVP have shown great potential, to the
best of our knowledge, a ROS-based interface that works with all KUKA indus-
trial robots without requiring FRI, EKI, or RSI has not been released yet.

2. Robot System and Setup

This section presents the robot system used in the experiments, and gives an
overview of the software and hardware involved. This is to give insight necessary
for reflecting on the behavior and applicability of the interface.

2.1. Thrivaldi
The typical application categories for industrial robots include: handling,

welding, assembly, painting, and processing. In all of these applications one
encounters tooling and sensors. Similarly it is common to find external axes
in the form of the manipulator being situated on a moving platform, or linear
axes attached to the end-effector to increase the workspace of the robot. The
robot system in this article features aspects that are common in such industrial
use cases: aging hardware, robots with external axes, and tool and sensor com-
munication. This prepares students for robot systems they may encounter in
industry, and means that the interface investigations are applicable to a wide
range of robot setups.

The lab, see Fig.2, is situated at the Department of Engineering Cybernetics
at the Norwegian University of Science and Technology (NTNU) and consists
of two 6 degrees-of-freedom KUKA KR 16 robots, where one is attached to a
GÜDEL gantry crane giving it 9 degrees-of-freedom. The lab was named after
Thrivaldi, a 9 headed giant from Norse mythology. With its impressive size, and

91

Figure 2: Thrivaldi with a floor mounted KR 16 with a pneumatic SCHUNK gripper attached
(RH9010), and a gantry mounted KR 16 with an IMU attached.

large workspace, the lab is a good motivator for young students and a capable
tool for researchers.

Each robot is controlled with a KRC2 cabinet. The gantry crane is con-
nected to the KRC2 and set up as synchronous external axes controlled directly
by the cabinet. Both robots have a SCHUNK FTC-50-80 force/torque sen-
sor attached, and a pneumatic toolchanger. The floor mounted KR 16 has a
SCHUNK RH9010 pneumatic parallel gripper attached, controlled with an SMC
EX250 pneumatic controller connected to the KRC2’s over Profibus. The github
project describing the lab setup is available [18] and includes ROS drivers for
controlling synchronous external axes with an RSI interface.

2.2. Software and Hardware
To understand how the KVP and RSI-based control interfaces differ in how

they interact with the controller cabinet, we must give an overview of the soft-
ware and hardware commonly found on KUKA robot systems. Specifically we
introduce: the KUKA Robot Controller (KRC), the KUKA Robot Language
(KRL) interpreter, the KUKA Simple Programmable Logic (SPS) interpreter,
the KUKA Robot Sensor Interface (RSI), and KUKAVARPROXY (KVP). This
section focuses on the hardware in Thrivaldi but is generalizable for other in-
dustrial KUKA robot systems requiring control from an external computer. For
a more in-depth description of the KUKA software and hardware ecosystem,
and programming within the propriatery KRL paradigm, we refer the reader to
the documentation from KUKA.

92

2.2.1. KUKA Robot Controller
The KRC2 encompasses the power supply, servo controllers, control com-

puter, I/O, etc. It is fully capable of controlling complex robot systems on
its own with KRL programs and software programmable logic controllers. The
control computer in the KRC2 is a standard x86 computer with a single core
Intel Celeron CPU. The KUKA System Software (KSS) is the software collec-
tion running on the control computer responsible for all robot operations. KSS
uses VxWin, a KUKA specific real-time operating system based on VxWorks
that runs both VxWorks and Windows XP. More modern versions of the KRC
such as the KRC4 has multi-core CPUs and more recent versions of Windows.

The KRC2 has an interpolation cycle (IPOC) of 12 ms. Within each IPOC,
the KRL interpreter runs, I/O devices are updated, the software programmable
logic controller (SPS, from speicherprogrammierbare steuerung in German) runs,
and Windows tasks are executed. It is important to note that KRL programs
and I/O are of higher priority than SPS and Windows tasks. As robot control is
the goal the control computer prioritizes execution of any running KRL program
over handling Windows requests.

2.2.2. KRL Interpreter
KRL is KUKA’s Pascal-based proprietary programming language. It has

robot-oriented commands and data types, specified both for motion in Carte-
sian and joint space. The KRL interpreter executes the sequential commands
defined in a program, performing inverse kinematics and motion planning where
necessary, writing and reading variables when needed, and communicating with
analog and digital I/O. To understand the KVP based interfaces, we only require
the system variables AXIS_ACT, ADVANCE, OV_PRO, and the motion command
PTP. AXIS_ACT is the current joint coordinates of the robot. ADVANCE defines
how many commands ahead the motion planner should look when performing
path smoothing. OV_PRO is the override speed percentage, the percentage of
maximum speed permissible when executing a motion command. Note that the
override speed is not necessarily the speed that will be used, but the speed limit
in the motion planner. PTP is a point-to-point motion command to either a
pose defined in Cartesian space or joint space. The PTP command executes a
trapezoidal motion between the current pose to the desired pose. If the option
C_PTP is supplied to the PTP command, and ADVANCE>0, the motion planner will
approximate the motion to the pose, and start to move towards the next desired
pose as soon as the robot is sufficiently close to the current desired pose. This
smooths the motion, making it more efficient and faster, at the cost of posi-
tional accuracy. KRL supports defining workspaces that can constrain motion
commands and be used to ensure that certain functions are only executed when
the end-effector is in a particular workspace.

2.2.3. SPS Interpreter
Simple programmable logic is intended to be run in the SPS interpreter. A

single KRL based SPS program is set up as the main program that starts at
controller boot, and runs as long as the KRC2 is powered. SPS cannot move

93

synchronous axes such as the gantry crane in Thrivaldi, but I/O such as the valve
controlling the gripper, and asynchronous external axes commonly attached
to the end-effector of the robot. In Thrivaldi SPS is used for controlling the
toolchanger, pneumatic gripper, and force-torque sensor as these are attached
to the control cabinet via Profibus.

2.2.4. Robot Sensor Interface
The Robot Sensor Interface (RSI) is a commercially available software pack-

age for KSS intended for sensor assisted motion and data exchange. The idea is
to use external sensors to correct the position of the robot while it is following a
trajectory. RSI lets us directly communicate with the VxWorks portion of the
KRC2 using TCP or UDP and the connection is dropped if too many responses
are late or absent. RSI will try to apply any position corrections within the
IPOC it receives them. Communication with RSI from an external computer is
done using KUKA.Ethernet RSI XML. The messages are transmitted as XML
strings, and the data objects to transmit can be configured from KRL.

In the kuka_experimental package, RSI has been used to create an inter-
face to control KUKA robots via ROS. The ROS interface uses joint position
corrections to control the robot. The RSI position corrections are intended for
minor joint or Cartesian position corrections and work at a lower level than
the KRL interpreter. This means that it has a separate configuration for the
maximum position corrections (effectively the override speed), and neither ad-
heres to workspace limitations, nor perform trapezoidal motion between cur-
rent and desired position. For ROS independent movement latency testing in
Sec.3.1.2, a barebones C++ interface was created from the XML header files in
kuka_experimental. A modified version of the package that supports external
axes can be found on the project repository[18].

2.2.5. KUKAVARPROXY
KUKAVARPROXY (KVP) is a multi-client server that runs in Windows on

the KRC2 and gives TCP/IP access to external computers. KVP communicates
with the KRL interpreter using the CrossCom library, and can read and write
to global variables in the interpreter. To move the robot we must have a KRL
program running on the KRC2 with a loop that executes a motion command
with a KVP writable global variable. This is discussed in Sec.3.2.2. Although
CrossCom allows for interaction with the real-time control processes, the KVP
server runs in the lower-priority Windows OS, which introduces communication
latency. This latency is investigated in Sec.3.1.1. There are two main libraries
available for communicating with KVP. JOpenShowVar, presented in [8], is a
Java library with classes for all KRL variable types. BoostCrossCom [9] is a
minimal C++ library inspired by JOpenShowVar, but is not as feature rich as
JOpenShowVar and does not provide classes for all KRL variable types.

94

KRC

VxWorks

Windows

Remote Computer

kuka_rsi_hw_interface

ROS Control

TCP/IP

KRL SPS

KUKAVARPROXY

JopenShowVar or

BoostCrossCom

RSI

UDP/IP

Figure 3: We have two paths of communication from an external computer running ROS
to the robot hardware. One going via RSI to VxWorks, and one going via KVP through
Windows to KRL and SPS. Both paths can be used simultaneously.

3. ROS Interface

In this section we describe the process of evaluating which of the JOpen-
ShowVar and BoostCrossCom libraries is best suited as the basis for a KVP
based ROS interface.

ros_control hardware interfaces are used to communicate between ROS
and the robots. ros_control provides a hardware abstraction layer and generic
controller plugins that can be activated and deactivated during runtime. This
allows for controlling the robot using a stream of messages in a feedback sit-
uation, then switch to serving it a trajectory using a cancellable ROS action.
Examples of controllers include the joint_state_controller that publishes
joint states, and the joint_position_controller for giving joint position com-
mands to the robot. RSI is well established in the ROS-I community with the
kuka_experimental package, and in this section it will serve as the baseline
on which the JOpenShowVar and BoostCrossCom libraries will be evaluated.
A visualization of how the two interfaces have different pathways to control
the robot is shown in Fig. 3. The KVP based interface communicates with the
KVP server running on the Windows portion of the KRC, it reads and writes
to global variables available to the SPS and KRL interpreters. The RSI based
interface communicates directly to the real-time operating system on the KRC,
allowing for low-level control that ignores the motion planner and the override
speed in the KRL interpreter. It has its own configuration file that is loaded in
the KRL program one needs to run to establish a connection from the KRC to
the external computer.

3.1. Evaluating the libraries
JOpenShowVar is implemented in Java, with full support for all KRL vari-

able types. BoostCrossCom is implemented in C++, and supports a small set
of KRL variable types. Qualitatively, C++ support is more mature in ROS
than Java support, but JOpenShowVar is a more mature library. For a more

95

quantitative comparison, a test was performed for the access time, and for the
movement latency when using these two libraries. Timing was performed using
the Boost cpu_timer class in C++, and System.nanoTime method in Java.
The tests were performed on a computer with an Intel Xeon CPU E5-1650 v3
running Ubuntu 16.04 with ROS Kinetic Kame.

3.1.1. Access time
The access time is a communication latency from ROS to the hardware

resulting from the KVP server running on the lower-priority Windows side of
the KRC, see Fig.3. The access time refers to the time to access the global
variables in the interpreters from an external computer. Filippo et al. reported
in [8] an average access time of approximately 5 ms when writing to an E6AXIS
variable using JOpenShowVar on a KRC4. We investigate the access time for
both JOpenShowVar and BoostCrossCom on a KRC2 when reading a variable
(READ), writing to a variable (WRITE), and for a write-copy-read strategy
(SYNC).

We implement SYNC as writing to VAR1 and then reading from VAR2 until it
equals VAR1. In the main SPS, the value of VAR1 is written to VAR2. As the only
thing running on the KRC is the SPS and Windows, and Windows is of lower
priority than the SPS, the SYNC strategy becomes an estimate of the delay
from a variable is written to until it becomes available for the KRL interpreter.
The SYNC command is representative of using the SPS for real-time processing
and access to KRC global variables, tooling, or state-machines.

The tests were performed for both a composite datatype (E6AXIS) and a
single data type (INT) as these are our main use cases. To see if multiple
connections affect the access time READ and WRITE were performed with 1
and 5 threads. SYNC was performed both with 1 thread, and with 1 thread and
4 threads running READ to simulate network traffic. Each test was performed
50000 times. For the setup available, 5 connections were the most that could
be reliably used with the KVP server.

The access time statistics of the full set of tests are given in Appendix Ap-
pendix A. The libraries have, for the most part, comparable performance. INT
is faster to both READ and WRITE than E6AXIS, and having 1 connection
is faster than having 5 connections. READ and WRITE for an E6AXIS takes
approximately 3 ms each for both libraries with 1 connection. For 5 connections
READ takes approximately 11 ms and WRITE takes approximately 16 ms. For
1 connection SYNC takes approximately 24 ms for E6AXIS using BoostCross-
Com, and approximately 30 ms with 5 connections. Using JOpenShowVar with
1 connection SYNC takes approximately 24 ms for E6AXIS, but approximately
35 ms with 5 connections.

To visually compare the results we use a cumulative percentage of the tests
with respect to the access time. As seen in Fig.4, BoostCrossCom is more
reliable than JOpenShowVar. The figure shows that one can assume 80% of the
INT SYNC tests to have less than 30 ms access time with BoostCrossCom, but
only 37% with JOpenShowVar. In general with 5 connections, one can expect

96

0 10 20 30 40 50 60 70

Access time [ms]

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
Pe

rc
en

ta
ge

of
te

st
s

be
lo

w
ti

m
e

[%
]

JOpenShowVar
BoostCrossCom

Figure 4: Comparison of the percentage of tests that had a SYNC latency under a certain
time for JOpenShowVar and BoostCrossCom. The tests were performed with 5 threads trans-
mitting the INT variable. The final dot denotes the maximum latency.

SYNC to take around 24-40 ms for INT datatypes, and 24-48 ms for E6AXIS
datatypes.

3.1.2. Movement Latency
For feedback control, access time is secondary to the movement latency. The

movement latency is the time from a write command is issued until the robot
starts moving. It can adversely affect feedback control situations by introduc-
ing a delay that can lead to instability. This section investigates whether the
movement latency differs from the access latency experienced with SYNC.

To get a measurement that is independent of the library used, we placed
an Arduino Micro with an MPU-6050 IMU on the end-effector of the gantry-
mounted robot. The time from the write command is issued until the Arduino
responds that the IMU has sensed a change in acceleration is recorded as the
measurement time. This measurement is independent of the internal behavior of
the interface. To further separate the measurement from the interface, listening
for the IMU was done in a separate thread.

Using a ROS independent barebones C++ RSI interface based on the RSI
interface in ROS, we establish a baseline for the movement latency we can
achieve with commercially available software packages.

For the KVP based libraries, the robot moved joint A5 30◦ up and down with
an override speed of 100%. This uses the PTP command in KRL which exhibits
trapezoidal motion on the joint angles (the KRL program running on the KRC
is given in Listing 1). For RSI, a simple trapezoidal motion was implemented
with similar acceleration. The robot was given 10 seconds to stabilize after each
motion had executed to ensure that vibrations caused by the motions would not
affect the subsequent measurements. This also means that for each execution

97

0 48 96 144 192
Movement latency [ms]

0

500

1000

1500

2000

2500

3000

N
um

be
r

of
te

st
s

JOpenShowVar
BoostCrossCom
RSI

Figure 5: Movement latency for the three different interfaces. Each bin of the histogram is
the length of one IPOC (12 ms). Note that RSI is only in the 4th or 5th IPOC whereas both
JOpenShowVar and BoostCrossCom have cases with longer delay.

the robot controller must overcome the static friction in the joint. For each
library the test was performed 5000 times.

Fig.5 shows the results as a histogram where each bin is the length of one
IPOC (12 ms). RSI consistently uses 4-5 IPOCs to overcome the static friction
in the joint, and the KVP libraries use longer. Statistics of the results are given
in Tab.1. The average movement latency of BoostCrossCom and JOpenShowVar
are comparable, but BoostCrossCom outperforms JOpenShowVar when it comes
to variance. Both libraries had tests in the hundreds of milliseconds range, but
JOpenShowVar had significantly more. As they did not differ as much in the
SYNC experiments, this could be a result of differing behavior of RxTx (used
in Java) and POSIX (used in C++) for communicating with the Arduino.

The KVP based interfaces have 2-3 IPOCs longer movement latency when
compared to RSI. This is similar to what was observed in the SYNC experiments
with one connection, and it is expected that the movement latency may increase
when more connections are used.

Table 1: Movement Latency for 5000 Tests

Library Min Max Mean Median Std.Dev.

BoostCrossCom 49.98 268.72 76.15 77.62 18.59
JOpenShowVar 51.16 402.73 84.67 78.58 38.24

RSI 31.10 55.82 46.86 46.87 3.88

3.2. Implementation
Three considerations from the previous sections are: the aging hardware

in the lab (KRC2) allows at most 5 connections to KVP, BoostCrossCom has

98

marginally lower variance in access time and movement latency, and ROS has
a more mature support for C++ than Java. Because of this, the ROS interface
was implemented in C++ using BoostCrossCom. In this section we describe
the process of designing a KVP based ROS interface using BoostCrossCom that
minimizes the effect of our lab limitations, and investigate design considerations
such as C_PTP and OV_PRO for the KRL program running on the KRC.

3.2.1. ROS Hardware Interface
The most important limiting factor for the implementation of the interfaces

is the number of connections that can be established with the KVP server. To
mitigate this we developed the interface with a set of nodes.

Following the ROS-I conventions, the hardware interface is available in the
kuka_kvp_hw_interface package [19]. It implements a set of nodes that can
be activated depending on what is needed. Motion control is exposed via the
kvp_joint_command_node that contains generic read and write commands for
the joint pose. This allows it to be used with the joint_position_controller
plugin for streamed message control, and the joint_trajectory_controller
plugin for trajectory actions. The node establishes two connections to the KVP
server, one for reading and one for writing the joint commands.

If one only desires to read the joint states, the kvp_joint_state_node
achieves this without interfering with any running KRL program on the robot.
This node establishes a single connection to the KVP server.

kvp_variable_interface_node exposes ROS services for reading or writing
to any global variables referenced by name. This gives access to control and
monitoring of tooling and other devices attached to the KRC2. The connections
to the KVP server are established in the services, and are therefore meant for
intermittent transmission of signals.

By design, the kvp_variable_interface_node has been made to cause the
least amount of network load by only establishing the connections when needed.
This is an attempt at reducing the increase in access latency caused by multiple
connections running simultaneously.

The code is publically available at [19].

3.2.2. KRL Program and Tracking Delay
The KVP based ROS interface relies on a KRL program running on the KRC.

As noted in [8], this program can be designed to suite the needs of the particular
application. To generalize the interface for a varied use and to minimize how
much students will have to interact with the KRC, we implement the KRL
program as a simple loop that moves the robot to the desired pose in joint
space (see Listing 1). There are three design parameters to the PTP command:
OV_PRO that governs the override speed, ADVANCE that governs the look-ahead
motion planner, and C_PTP that activates path smoothing. To investigate how
they affect the motion profile, a simple ROS node publishing a sinusoidal signal
on joint A3 was created in Python. The desired joint angle is

qA3,des(t) = A sin(ωt) (1)

99

25 30 35 40 45

t [s]

1.4

1.5

1.6

1.7

1.8

J
o
in

t
A

3
[r

a
d
]

resulting

commanded

41.0 41.5

1.565

1.570

1.575

Figure 6: Joint A3 moving with a sinusoidal motion using RSI. Note that there is an approxi-
mately 120 ms delay from a command is published until it is reported that the robot achieves
the desired joint position.

where A = 0.2 rad, and ω = 0.2 rad/s.
The access time with KVP affects the current investigation as stochastic

noise on the measured joint angles, but the major periodic behavior of the
reported joint states are indicative of the effect of the design parameters.

In Fig.6 the RSI interface was used to establish a baseline performance.
There is an approximately 120 ms tracking delay from a command is given until
the robot achieves the same joint angle and it is reported in ROS. These results
are similar to that of Lind et al. in [20] where tracking delay was tested with
RSI without ROS. We therefore assume that any latency caused by the ROS
communication stack and the reported timestamps of the rosbag to be negligible
with respect to the tracking delay.

In Fig.7 the KVP based interface was used with 100% override speed, an
ADVANCE of 1, and no C_PTP. The robot moves in a stop-and-go motion. As
the override speed is very high, the robot performs a trapezoidal motion to the
desired pose and then stops when the pose is reached. After this the robot
requires some time to start a new motion, resulting in a stop-and-go motion.

With C_PTP active, the robot will start moving to the next pose as the new
commanded pose is updated. However, as can be seen in Fig.8, with an override
speed of 100%, the robot has moved to the next commanded pose by the time the
new commanded pose is written. This causes an even more severe stop-and-go
motion.

In Fig.9 C_PTP is activated and the override speed is set to 30%. This is
approximately the speed at which the robot is required to move by the com-
manded signal, and we see that we can achieve behavior that is close to RSI,
exhibiting approximately 150 ms delay.

100

25 30 35 40 45

t [s]

1.4

1.5

1.6

1.7

1.8

J
o
in

t
A

3
[r

a
d
]

resulting

commanded

40.0 40.5

1.565

1.570

1.575

Figure 7: Joint A3 moving with a sinusoidal motion using KVP at 100% override speed
without C_PTP.

25 30 35 40 45

t [s]

1.4

1.5

1.6

1.7

1.8

J
o
in

t
A

3
[r

a
d
]

resulting

commanded

40.0 40.5

1.565

1.570

1.575

Figure 8: Joint A3 moving with a sinusoidal motion using KVP at 100% override speed with
C_PTP.

101

25 30 35 40 45

t [s]

1.4

1.5

1.6

1.7

1.8

J
o
in

t
A

3
[r

a
d
]

resulting

commanded

40.0 40.5

1.565

1.570

1.575

Figure 9: Joint A3 moving with a sinusoidal motion using KVP at 30% override speed with
C_PTP.

Listing 1: KRL Program for KVP-Based Control

1 DEF kukavarproxy()
2 INI
3 $ADVANCE = 1;
4 AXIS_SET = $AXIS_ACT;
5 LOOP
6 PTP AXIS_SET C_PTP
7 ENDLOOP
8 END

3.3. Access Time and Feedback Control
For feedback control situations where we desire joint velocity control the

stochastic delay caused by the access time may adversely affect our control. In
this example we control joint A1 by following the procedure by Filippo et al. in
[8] such that

qA1,des(tk+1) = q̂A1(tk) + q̇A1,des∆t (2)

where q̂A1(tk) is the reported joint angle, q̇A1,des is the desired joint velocity,
and ∆t = tk+1 − tk is one IPOC (12 ms). If run in an open-loop manner, we
can replace the reported joint angle with the previous qA1(tk) that was sent to
the robot.

To investigate the effect of the stochastic delay and design parameters in
feedback control scenarios, we want to track

qA1,des(t) = A cos(ωt) (3)

whereA = 0.349 rad (corresponding to 20◦) and ω = 0.314 rad/s (corresponding

102

to 2 Hz). With velocity control this means we send

qA1,des(tk+1) = q̂A1(tk)− ωA sin(ωtk) (4)

to the robot. This was implemented as a simple ROS node in Python.
In Fig.10 the RSI interface was used. Again there is a 120 ms tracking delay

that is inherent to the system, but the desired joint angle is tracked quite well
and the results do not drift.

In Fig.11 the KVP interface was used with 100% override speed. The
stochastic delay affects the signal, and the error caused by this is integrated.
Later on in the experiment, the external computer is synchronized with respect
to the control cabinet and tracking is acceptable albeit shifted. The KVP inter-
face exhibits a similar 120 ms tracking delay. As C_PTP is active, the robot does
not span the whole of the desired curve and the resulting amplitude is slightly
lower than the desired.

In Fig.12 the KVP interface was used with 100% override speed but the
external computer is not synchronized with respect to the control cabinet. This
causes the robot to not find the new desired joint angles ahead of time, and the
motion becomes more stop-and-go, resulting in an integration of the error and
worse tracking of the desired behavior.

In Fig.13 the KVP interface was used with 50% override speed. For the most
part this works well, however, the lower override speed does not guarantee that
synchronization will occur. This means that the motion becomes stop-and-go
and we integrate the error. Lower override speeds were tested but exhibited
similar results.

To mitigate the effect of the override speed, automatic tuning was imple-
mented where the KVP variable interface was used to set the override speed
automatically before each joint position command is sent. The override speed
was chosen according to

OV_PRO =
q̇A1,des

q̇A1,max
(5)

where q̇A1,max = 2.722rad/s according to the KR 16 manual. In Fig.14 we
see the same experiment with automatic tuning of the override speed. The
automatic tuning helps mitigate the severity of the stop-and-go motion, but
there is a access latency in setting the override speed, and stop-and-go motion
does occur.

3.4. Closed-Loop Inverse Kinematics Example
In this example we want the end-effector to follow a 3D Lissajous trajectory

defined by

pdes(t) = 0.3




sin(nxωt)− 1.4
sin(nyωt) + 0.7
sin(nzωt) + 1.0


 (6)

where ω = 0.02, nx = 5, ny = 2, and nz = 3. The trajectory w.r.t. the robot in
its initial position is visualized in Fig.15. The error between the current position

103

9.95 10.00 10.05 10.10 10.15 10.20

1.50

1.55

10 20 30 40 50 60

t [s]

1.50

1.55

a
n

g
le

[r
a
d

]

A1

A1 desired

Figure 10: Velocity-resolved sinusoid with the RSI interface with 120 ms tracking delay.

52.15 52.20 52.25 52.30 52.35 52.40
1.50

1.55

10 20 30 40 50 60 70

t [s]

1.525

1.550

1.575

1.600

a
n

g
le

[r
a
d

]

A1

A1 desired

Figure 11: Velocity-resolved sinusoid with the KVP interface and an override speed of 100%
with 150 ms tracking delay. From t = 45 we synchronize and follow the sinusoid well.

and the desired position is described by

e(t, q) = p(q)− pdes(t) (7)

which we desire to converge to zero.
To do this we apply CASCLIK[21], a CasADi-based[22] closed-loop inverse

kinematics Python framework. The framework allows for formulating controllers
for multiple constraint-based tasks and solves them either using the Moore-
Penrose pseudoinverse, or as constraints to an optimization problem. In this
example we apply the quadratic programming controller, and CASCLIK formu-
lates the constraint

Jq̇d = −Ke− ∂e

∂t
(8)

104

10 20 30 40 50 60 70

t [s]

1.55

1.60

1.65
a
n

g
le

[r
a
d

]
A1

A1 desired

Figure 12: Velocity-resolved sinusoid with the KVP interface and an override speed of 100%,
but synchronization does not occur and the error from the stop-and-go motion is integrated.

and the cost
c = q̇T

d q̇d (9)

where J is the task Jacobian automatically generated from the KR 16 URDF,
q̇d is the desired joint velocity that will be applied, K = 50, and c ensures
that the resulting joint velocity remains bounded. CASCLIK was chosen as
it has a velocity-resolved ROS node that applies the same method as in the
previous section for velocity-resolved control but is intended for closed-loop
position control.

In Fig.16 we see the Euclidean norm of the error when for four different
experiments: using the RSI interface, using KVP with 100% override speed and
achieving synchronization, using KVP with 100% override speed but not achiev-
ing synchronization, and using KVP with automatic tuning. If synchronization
is achieved the KVP with 100% override speed is close to the tracking error of
the RSI interface, but access delay may cause stochastic errors that makes us
lose this synchronization. With automatic tuning of the override speed we can
reduce the occurrences of the stop-and-go motion.

As CASCLIK attempts to achieve exponential convergence, the errors caused
by the stop-and-go motion have an exponential convergence to back to the
minimum tracking error. The minimum tracking error is a result of not having
an integrating effect in the controller, from the tracking delay in the interface,
and from the linearization assumption inherent in (8).

3.5. Benefits of Abstraction: An Education Example
In this example the robot is to move a stapler from one cardboard box to

another using either RSI for motion, or KVP. The robot moves between four
points defined in joint space, stopping momentarily above the cardboard boxes
to release and grasp the stapler. With RSI, the trapezoidal motion profile
in joint space between any two points is created by the external computer and

105

10 20 30 40 50 60 70

t [s]

1.52

1.54

1.56

1.58

1.60

1.62

a
n

g
le

[r
a
d

]

A1

A1 desired

Figure 13: Velocity-resolved sinusoid with the KVP interface and an override speed of 50%.
Synchronization is not achieved but the stop-and-go motion is reduced.

commanded as small angle corrections. With KVP, only the end position is com-
manded and system relies on the internal trapezoidal motion planner. The grip-
per and toolchanger are controlled using SPS and the kvp_variable_interface.
To ensure a student cannot open the gripper while the robot is in motion, the
gripper can only be activated when the end-effector is in designated workspaces
above the boxes.

In Fig.18 the Cartesian motion of the end-effector with respect to time is
given for when the task is performed with the KVP based interface. Both
the robot and gripper is controlled using the KVP interface. In Fig.19 the
Cartesian motion of the end-effector with respect to time is given for when
the task is performed with the RSI based interface. In this case the motion is
commanded using RSI and the gripper is controlled using ROS services from the
kvp_variable_interface_node. Note that with only the KVP based interface,
the motion is slightly smoother and slower as the KRL program is running
with an override speed of 30% and uses the internal trapezoidal motion planner
of KUKA. The RSI based interface uses a trapezoidal motion created in the
external computer that does not exactly match the KVP based interface. The
overall curvature of the two are similar, and the example demonstrates usage of
both KVP and RSI at the same time for motion and tool control.

As the KVP based interface inherently uses the PTP command in KRL,
the students will learn to program similar to what one might encounter in the
industry. With the RSI based interface, OV_PRO does not affect the execution
speed, but with the KVP based interface it does. This means that an educator
can control the execution speed of anything the students may implement by
simply adjusting the value from the pendant.

106

10 20 30 40 50 60 70

t [s]

1.52

1.54

1.56

1.58

a
n

g
le

[r
a
d

]

A1

A1 desired

Figure 14: Velocity-resolved sinusoid with the KVP interface and automatic tuning of the
override speed. Synchronization is not achieved but the stop-and-go motion is further reduced.

4. Discussion

The qualitative comparison between the two interfaces investigated is sum-
marised in Tab.2. RSI is a commercial real-time interface which demands care
and consideration of the programmer, both in terms of safety handling and
keeping the real-time communication requirements. The KVP based interface
is an open-source interface with natural limitations in how fast and accurate
one can expect the control to be, both in terms of timing reliability and path
accuracy when C_PTP is active.

JOpenShowVar and BoostCrossCom are comparable libraries for communi-
cating with the KVP server running on the KRC, but BoostCrossCom is favor-
able in two regards. BoostCrossCom has lower variance in the access time and
movement latency and as the rosjava client library is still maturing, the C++
based BoostCrossCom is easier to use with ROS.

Closed-loop inverse kinematics should be applied when using the KVP in-
terface. The stochastic delay caused by the access time and the potential for
stop-and-go motion in the motion planner of the KRC2 makes it difficult to rely
on the convergence of any joint velocities applied to the robot. Lind et al.[20]
attributes the 120 ms tracking delay of the RSI interface to motion buffers in the
system. Although KVP uses point-to-point motion in a different manner than
RSI, it also exhibits a minimum tracking delay of the same order of magnitude.
To reduce the stop-and-go motion would require more accurate modeling of the
internal motion planner, which can be easier to do now that the KVP allows
inspection of the joint variables while a KRL program is being executed.

The different behavior of RSI and KVP based ROS interfaces suggests the
possibility of different usage scenarios. The KVP based interface is closer to
programming in KRL. It provides the same layer of abstraction from motion
profile planning that may stop novice users of the robot system, and it does not
require timely responses to the external computer. This means that one can

107

Figure 15: Visualization of the 3D Lissajous trajectory the robot is to follow.

restart a program in ROS without having to restart the program on the KRC,
requiring less interaction with the KRC from students.

This layer of abstraction can be problematic for advanced users who want
to perform sensor feedback control tasks. To them, RSI is more appropriate.
However, the KVP based interface can be used to control tooling and other SPS
based aspects of the system while the RSI interface is used for motion. The
KVP based interface also allows for logging and plotting the robot motion when
executing KRL programs by utilizing the kvp_joint_state_node.

Table 2: Comparison of the RSI and KVP based ROS interfaces

RSI Interface KVP based Interface

Commercial Open-Source
Real-time Stochastic movement latency

Small angle corrections only Uses KRL motion planner
Only stop and start from pendant Stop, start, and speed from pendant

Restart of KRL No restart of KRL when ROS restarts
Ignores workspaces Uses workspaces

Specific KRL for new tools Read and write to any global booleans

When it comes to data access and acquisition, it would be more appropriate
to compare the KVP based interface with EKI which is meant for data commu-

108

0 10 20 30 40 50 60

t [s]

10−3

10−2

10−1
p

o
si

ti
o
n

er
ro

r
[l

o
g
(m

)]
KVP OVPRO100 No sync

KVP OVPRO100 Sync

KVP Autotune

RSI

Figure 16: Tracking error of the closed-loop inverse kinematics example.

nication from the KRC to an external computer. This was not done as the core
of this investigation was outlining how KVP compares in timing for feedback
control education on realistic industrial hardware.

5. Conclusion

This article presents a new open-source interface for controlling KUKA
robots using ROS, and compares it to a common commercially available inter-
face. It outlines the differing behavior, showing how the commercial interface is
more reliable for feedback control tasks, but that with an override speed equal
to the required speed of the robot during the task, the open-source interface ex-
hibits similar performance. It also provides an insight into access time latency
and movement latency, two factors that are important when designing hardware
interfaces.

The two interfaces are not mutually exclusive, and one can use KVP for
tooling, statemachines, or observing the joint states while using RSI for motion.
The KVP based interface also has some qualities that are helpful in education,
e.g. the students do not need to interact with the KRC itself, the educator can
control the execution speed from the pendant while the students are using the
robot, and it uses the internal trapezoidal motion planner.

Further work includes expanding BoostCrossCom to support a wider range
of KRL datatypes, allowing for a greater range of tools, sensors, and inspection.
Extending the interface with the ability to use Cartesian poses with Euler angles
instead of joint poses will make the interface easier to use for non-robotics
students and researchers. The degree of flexibility with KVP based interfaces
allow for inspecting any global variables in the KUKA robot controller, this can
be beneficial in Industry 4.0 as one can create a fully open-source digital twin
system using tools in the ROS community such as Gazebo and RViz [23].

109

Figure 17: KR 16 ready to transfer the stapler from one location to another using a pneumatic
SCHUNK gripper with 3D printed fingers.

110

45 50 55 60 65

t [s]

−1.0

−0.5

0.0

0.5

1.0

p
o
s

[m
] x

y

z

Figure 18: Cartesian coordinates of the end-effector when moving the stapler from one box to
another using the KVP interface.

45 50 55 60 65

t [s]

−1.0

−0.5

0.0

0.5

1.0

p
o
s

[m
] x

y

z

Figure 19: Cartesian coordinates of the end-effector when moving the stapler from one box to
another using the RSI interface.

111

Although this article only consider the KUKA robot platform, the results
are important considerations for control theory applications in general. Both
the movement latency and the tracking latency are aspects that can negatively
impact the transition from academic results to industrial application. Docu-
menting and describing these in a thorough manner are integral for ensuring
that one finds and fights the problems where they truly lie.

[1] X. V. Wang, L. Wang, A. Mohammed, M. Givehchi, Ubiquitous manu-
facturing system based on cloud: A robotics application, Robotics and
Computer-Integrated Manufacturing 45 (2017) 116–125.

[2] P. Alhama Blanco, F. Abu-Dakka, M. Abderrahim, Practical use of robot
manipulators as intelligent manufacturing systems, Sensors 18 (9) (2018)
2877.

[3] J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, A. V. Vasilakos,
Software-defined industrial internet of things in the context of industry
4.0, IEEE Sensors Journal 16 (20) (2016) 7373–7380.

[4] H. Mühe, A. Angerer, A. Hoffmann, W. Reif, On reverse-engineering the
kuka robot language, arXiv preprint arXiv:1009.5004.

[5] F. Sanfilippo, L. I. Hatledal, H. Zhang, M. Fago, K. Y. Pettersen, Jopen-
showvar: an open-source cross-platform communication interface to kuka
robots, in: Proc. of the IEEE International Conference on Information and
Automation (ICIA), Hailar, China, 2014, pp. 1154–1159.

[6] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, A. Ng, Ros: an open-source robot operating system, in: Proc.
of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop on
Open Source Robotics, Kobe, Japan, 2009.

[7] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep, A. Ro-
dríguez Tsouroukdissian, J. Bohren, D. Coleman, B. Magyar, G. Raiola,
M. Lüdtke, E. Fernández Perdomo, ros_control: A generic and sim-
ple control framework for ros, The Journal of Open Source Software-
doi:10.21105/joss.00456.

[8] F. Sanfilippo, L. I. Hatledal, H. Zhang, M. Fago, K. Y. Pettersen, Con-
trolling kuka industrial robots: Flexible communication interface jopen-
showvar, IEEE Robotics Automation Magazine 22 (4) (2015) 96–109.
doi:10.1109/MRA.2015.2482839.

[9] E. B. Njåstad, Robotic welding with correction from 3d camera, Master’s
thesis, Norwegian University of Science and Technology (2015).

[10] I. Eriksen, Setup and interfacing of a kuka robotics lab, Master’s thesis,
Norwegian University of Science and Technology (2017).

112

[11] M. Schopfer, F. Schmidt, M. Pardowitz, H. Ritter, Open source real-time
control software for the kuka light weight robot, in: Proc. of the 8th IEEE
World Congress on Intelligent Control and Automation (WCICA), Jinan,
China, 2010, pp. 444–449.

[12] F. Chinello, S. Scheggi, F. Morbidi, D. Prattichizzo, Kuka control toolbox,
IEEE Robotics & Automation Magazine 18 (4) (2011) 69–79.

[13] F. Sanfilippo, L. I. Hatledal, H. Zhang, W. Rekdalsbakken, K. Y. Pettersen,
A wave simulator and active heave compensation framework for demand-
ing offshore crane operations, in: 2015 IEEE 28th Canadian Conference
on Electrical and Computer Engineering (CCECE), 2015, pp. 1588–1593.
doi:10.1109/CCECE.2015.7129518.

[14] S. H. Bredvold, Robotic welding of tubes with correction from 3d vision
and force control, Master’s thesis, Norwegian University of Science and
Technology (2015).

[15] B. Yao, Z. Zhou, L. Wang, W. Xu, Q. Liu, A. Liu, Sensorless and adaptive
admittance control of industrial robot in physical human-robot interaction,
Robotics and Computer-Integrated Manufacturing 51 (2018) 158 – 168.

[16] S. K. Venugopal, Robot assisted 3d vibrometer measurements with one
vibrometer, Master’s thesis, Technische Universität Braunschweig (2018).

[17] E. B. Njaastad, O. Egeland, Automatic touch-up of welding paths using 3d
vision, IFAC-PapersOnLine 49 (31) (2016) 73 – 78, 12th IFAC Workshop
on Intelligent Manufacturing Systems IMS 2016.

[18] I. Eriksen, Itk-thrivaldi github project (December 2017).
URL https://github.com/itk-thrivaldi/

[19] I. Eriksen, kuka_kvp_hw_interface (December 2017).
URL https://github.com/itk-thrivaldi/kuka_kvp_hw_interface

[20] M. Lind, J. Schrimpf, T. Ulleberg, Open Real-Time Robot Controller
Framework, 2010 3rd CIRP Conference on Assembly Technology and Sys-
tems (June 2010) (2010) 13–18.

[21] M. H. Arbo, E. I. Grøtli, J. T. Gravdahl, Casclik: Casadi-based closed-
loop inverse kinematics, IEEE Transactions on Automation Science and
Engineering.

[22] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, M. Diehl, CasADi
– A software framework for nonlinear optimization and optimal control,
Mathematical Programming Computation.

[23] A. Øvern, Industry 4.0 - digital twins and opc ua, Master’s thesis, Norwe-
gian University of Science and Technology (2018).

113

Appendix A. Access Time Statistics

Table A.3: Access time for READ operations in ms for BoostCrossCom.

Data Threads Min Max Mean Median Std.Dev.

INT 1 1.72 16.10 2.37 2.06 0.83
INT 5 2.01 30.72 10.95 10.32 1.28

E6AXIS 1 1.80 52.20 2.49 2.15 0.87
E6AXIS 5 2.21 32.78 11.54 11.11 1.33

Table A.4: Access time for WRITE operations in ms for BoostCrossCom.

Data Threads Min Max Mean Median Std.Dev.

INT 1 1.64 16.04 2.28 1.98 0.83
INT 5 2.00 24.33 10.64 9.94 1.30

E6AXIS 1 2.54 16.85 3.42 3.07 0.95
E6AXIS 5 2.95 31.03 15.10 15.66 1.37

Table A.5: Access time for SYNC operations in ms for BoostCrossCom.

Data Threads Min Max Mean Median Std.Dev.

INT 1 6.19 35.98 23.91 23.68 1.21
INT 5 11.30 53.94 24.01 22.18 3.84

E6AXIS 1 6.41 36.69 23.92 24.11 1.13
E6AXIS 5 6.51 59.49 30.27 24.10 9.51

114

Table A.6: Access time for READ operations in ms for JOpenShowVar.

Data Threads Min Max Mean Median Std.Dev.

INT 1 1.68 19.97 2.36 2.04 0.85
INT 5 2.01 39.56 11.02 10.34 1.35

E6AXIS 1 1.75 17.90 2.42 2.09 0.84
E6AXIS 5 2.08 38.12 11.33 10.67 1.42

Table A.7: Access time for WRITE operations in ms for JOpenShowVar.

Data Threads Min Max Mean Median Std.Dev.

INT 1 1.63 20.96 2.27 1.97 0.85
INT 5 1.95 42.14 10.72 10.00 1.40

E6AXIS 1 2.61 89.24 3.44 3.10 1.06
E6AXIS 5 2.96 51.47 15.22 15.78 1.52

Table A.8: Access time for SYNC operations in ms for JOpenShowVar.

Data Threads Min Max Mean Median Std.Dev.

INT 1 8.07 46.35 23.93 23.67 1.20
INT 5 8.27 64.43 30.15 31.55 5.33

E6AXIS 1 8.60 64.83 23.96 24.18 1.01
E6AXIS 5 8.84 80.79 34.74 33.65 9.19

115

116

117

Paper 7 CASCLIK: CasADi-Based Closed-Loop Inverse
Kinematics

M. H. Arbo, E. I. Grøtli, and J. T. Gravdahl, “CASCLIK: CasADi-Based Closed-
Loop Inverse Kinematics,” submitted to IEEE journal ofTransactions on Robotics
(T-RO) January 2019.
Note: The version of the article in this thesis has increased figure sizes and a
visualization of the activation map.

118

CASCLIK: CasADi-Based Closed-Loop Inverse
Kinematics

Mathias Hauan Arbo, Member, IEEE, Esten Ingar Grøtli, Member, IEEE and Jan Tommy Gravdahl, Senior
Member, IEEE

Abstract—A Python module for rapid prototyping of
constraint-based closed-loop inverse kinematics controllers is
presented. The module allows for combining multiple tasks that
are resolved with a quadratic, nonlinear, or model predictive
optimization-based approach, or a set-based task-priority inverse
kinematics approach. The optimization-based approaches are
described in relation to the set-based task approach, and a novel
multidimensional “in tangent cone” function is presented for set-
based tasks. A ROS component is provided, and the controllers
are tested with matching a pose using either transformation
matrices or dual quaternions, trajectory tracking while remaining
in a bounded workspace, maximizing manipulability during a
tracking task, tracking an input marker’s position, and force
compliance.

Note to Practitioners: Abstract—In many industrial use cases,
the manipulator is redundant with respect to the task it is to
achieve. Placing a symmetrical cup on a table, or spray painting
a part rarely requires the full six degrees of freedom to be defined
to in order to achieve the task. This redundancy can be exploited
to combine multiple tasks such as maximizing manipulability of
the task or keeping the shoulder away from an obstacle, and
task-based closed-loop inverse kinematic frameworks allow one
to do so. As task-based frameworks can involve a significant
developmental effort, rapid prototyping of task-based controllers
can be used to evaluate whether the alternative technique can
result in potential speed up of the task, faster execution, or
increased functionality.

Index Terms—Primary Topics: Robot Programming, Motion
Control, Secondary Topic Keywords: Force Control

I. INTRODUCTION

ROBOTS perform tasks that involve interacting and mov-
ing objects in Cartesian space by moving joints and

motors. Finding control setpoints in terms of the joint coordi-
nates such that the robot can achieve the desired task requires
solving the inverse kinematics problem. Inverse kinematics
is fundamental to all robots, and occurs in everything from
humanoid service robots to 3D printers, surgical robots to
autonomous vehicles. In this article we present CASCLIK,
a Python module for rapid prototyping of closed-loop inverse
kinematics controllers for realizing multiple constraint-based
tasks.

Closed-loop inverse kinematics involves defining a feedback
controller for achieving the desired task. In [1], Sciavicco et al.

M. H. Arbo and J. T. Gravdahl are with Department of Engineering
Cybernetics, NTNU, Norwegian University of Science and Technology.

E. I. Grøtli is with Mathematics and Cybernetics, SINTEF DIGITAL,
Trondheim, Norway

The work reported in this paper was supported by the centre for research
based innovation SFI Manufacturing in Norway. The work is partially funded
by the Research Council of Norway under contract number 237900.

present a closed-loop inverse kinematic approach where joint
speed setpoints minimize the distance to a given end-effector
pose. The distance errors have a guaranteed convergence char-
acteristics. The controller works by inverting the differential
kinematics and defines a continuous motion control of the
robot.

The task function approach by Samson et al. [2] describes
a robotic task as defined by an arbitrary output function and a
control objective. The output function is a mapping from the
joint states and time to an output space. Samson formulates
the task such that the control objective is to bring the output
function to zero. The task function approach generalizes to a
large class of tasks as the output function may go from any
robot states to any positions or orientations defined relative
the robot or world frame.

The constraint-based task specification approach of
De Schutter et al. [3] describes procedures for designing tasks
with complex sensor-based robot systems and geometric un-
certainties. Constraint-based task specification uses variables
termed feature variables to describe position of geometric and
task related features that are useful for the task. A key aspect
of constraint-based task specification is to allow for feature
variables.

A robot is redundant with respect to its task when it has
more degrees of freedom than there are dimensions in the
output function of the task. This allows one to utilize the
free degrees of freedom to achieve tasks simultaneously. A
common approach to handling redundancy involves inverting
the differential kinematics using a pseudo-inverse. The pseudo-
inverse often introduces a null-space within which additional
tasks can be achieved. To the author’s knowledge, the earliest
article combining multiple tasks in this manner is by Hanafusa
et al. [4] where a 7 degrees-of-freedom robot tracks a trajectory
and avoids an obstacle. This is achieved by placing the lower
priority tracking task in the null-space of the higher priority
obstacle avoidance task. Chiaverini et al. shows in [5] that
multiple tasks can be combined in a singularity robust way.
Any framework that supports closed-loop inverse kinematics
using task specification should allow for multiple tasks. The
state of the art presents two approaches to multiple tasks, strict
prioritization with null-space based approaches such as the
set-based singularity robust task-priority inverse kinematics
framework [6] and optimization-based prioritization which
lacks strict priority but allows prioritization through the cost
function in an optimization problem [7].

Calculating the Jacobians involved in closed-loop inverse
kinematics has been a complicated process requiring explicit

119

knowledge of the underlying representation used in the tasks.
Modern algorithmic differentiation systems such as CasADi
[8] simplify this process, allowing us to generate compiled
functions of complicated Jacobians. CasADi uses a symbolic
framework for performing algorithmic differentiation on ex-
pression graphs to construct Jacobians. CasADi provides meth-
ods for formulating linear, quadratic, and nonlinear problems
that can be solved with e.g. QPOASES [9] and IPOPT [10].
CASCLIK translates a set of tasks to optimal problems of
a form that CasADi can solve. This allows the user to test
constraint-based programming with any of the available opti-
mizers in CasADi with the different controller formulations
presented in this article. The purpose of CASCLIK is to
facilitate rapid prototyping of constraint-based control of robot
systems.

The architecture of CASCLIK is inspired by eTaSL/eTC
[7] by Aertbeliën et al., which is a more mature task spec-
ification language and controller. A core principle of the
architecture of eTaSL/eTC is to separate the low-level robot
controller, numerical solver, and the task specification. Tasks
are robot-agnostic and transferrable to any robot system with
known forward kinematics. The power of constraint-based
task specification and control has allowed the creation of a
system architecture capable of exploiting CAD knowledge for
assembly [11], for which this work may present alternative
controller formulations of interest. Robot-agnostic task speci-
fication enables execution of the same task with different robot
platforms, which also allows for easier delegation of tasks to
the appropriate robots, and transferral of skills from one robot
system to another.

CASCLIK is a CasADi-based Python module for testing
closed-loop inverse kinematics controllers. The module fo-
cuses on being cross-platform and defers to CasADi for the
symbolic backend and optimization. The purpose of this mod-
ule is to explore alternative controller and constraint formula-
tions that utilize the same general structure as eTaSL/eTC. It
considers nonlinear and model predictive formulations which
are less real-time applicable, in an attempt to investigate
aspects that may later be implemented into more industrially
relevant frameworks. As it uses CasADi for optimization,
CASCLIK utilizes the development efforts of the CasADi
community to enable a variety of solvers.

The article is divided into six sections. The first section
introduces relevant concepts such as closed-loop inverse kine-
matics, task function approach, algorithmic differentiation, and
presents modern related research. The second section describes
the theory involved in CASCLIK. The third section gives a
brief description of the implementation. The fourth section
gives example applications of CASCLIK and preliminary
studies. The fifth and sixth section is the discussion and
conclusion.

The main contributions of the article are:
• A nonlinear programming formulation of the constraint-

based closed-loop inverse kinematics task controller,
• a model predictive formulation of the constraint-based

closed-loop inverse kinematics task controller,
• a general implementation of the set-based singularity ro-

bust multiple task-priority inverse kinematics framework

of [6],
• a novel multidimensional in tangent cone function for the

set-based singularity robust multiple task-priority inverse
kinematics framework,

A. Related Research

When considering fundamental robotics problems such as
inverse kinematics, there are innumerable important refer-
ences. To limit the scope we focus on related modern frame-
works.

Stack-of-Tasks [12], [13] is a C++ software development
kit for real-time motion control of redundant robots. Tasks and
robots are defined using dynamic graphs that allow for caching
results in functions for fast evaluation. The system allows for
equality and set tasks by activating and deactivating control
of the set tasks. The framework allows for joint torque level
control of the robot. Stack-of-tasks also supports a hierarchical
quadratic programming formulation [14]. It is open-source,
includes tools for integration with ROS, and is limited to Unix
platforms.

iTaSC [15], [16] is a software framework for constraint-
based task specification and execution. It presents a modular
design for task specification, scenegraph representation, and
solver. The software framework is a part of the OROCOS
project, and uses OROCOS RTT [17], [18] to control robots.

The previously mentioned eTaSL/eTC [7] is a successor
to iTaSC, and is a C++/LUA constraint-based task speci-
fication and control framework. Expressions are formulated
using expressiongraphs [19], a symbolic framework that uses
OROCOS KDL definitions [20] for frames and rotations.
Arbitrary symbolic expressions are used in constraints to
form a task specification. The architecture of eTaSL/eTC is
modular, allowing one to define new controllers for a task
specification and new solvers if they have a C++ interface. It
currently supports QPOASES and the hierarchical quadratic
programming solver of Stack-of-Tasks. eTaSL/eTC includes a
Python interface for rapid prototyping and an OROCOS RTT
[17], [18] component for real-time control of robots using
OROCOS. eTaSL/eTC is open-source and is currently limited
to Linux platforms.

Other advanced constraint-based approaches include the
task level robot programming framework of Somani et al.
[21], that supports an optimization based solver, and an ana-
lytical solver [22]. The software focuses on semantic process
description and CAD level tasks and constraints [23]. The
CAD level constraints have composition rules, allowing for
a reduction of the space of possible control setpoints. The
reduced space is used to formulate the analytical solver. To
the author’s knowledge, the software is not open-source.

The set-based singularity robust multiple task-priority in-
verse kinematics controller [6] is a task controller that uses the
augmented null-space projection operator [24] and activation
or deactivation of null-spaces to implement set tasks. This
controller forms the null-space approach in CASCLIK and this
article extends the approach with support for multidimensional
set constraints.

120

II. THEORY

In this section we present the underlying theory used in
CASCLIK. We present the variables and output function
involved, the available control objectives one can define, the
convexity of the constraints in optimization based controllers,
and their effect in the null-space projection based controller.
Then we present the four different controllers available:
the quadratic, nonlinear, and model predictive optimization-
based approaches, and the null-space projection approach.
The quadratic programming approach is based on eTaSL/eTC
[7] and the null-space approach is based on the set-based
singularity robust task-priority inverse kinematics controller
[6].

A. Variables and Output Function

CASCLIK currently supports four different variable types:

• t, time,
• q(t) ∈ Rnq , robot variable (e.g. joint angles),
• x(t) ∈ Rnx , virtual variable (e.g. path-timing),
• y(t) ∈ Rny , input variables (e.g. sensor values).

Time and robot variables are self-explanatory. Virtual variables
are similar to the feature variables of eTaSL/eTC or iTaSC,
but the term feature implies a relation to geometric aspects
of the task. We describe these as virtual variables as they
are variables maintained by the computer, and not necessarily
linked to any features of the objects involved. This is merely
a semantic choice. Virtual variables simplify task specification
and are present in cases such as path-following. Input variables
are variables for which we have no information about the
derivative behavior.

The output function is a function:

e(t, q,x,y) ∈ Rne , (1)

where ne ≤ nq+nx and t, x and y are optional. In CASCLIK
we assume no knowledge of the underlying geometry involved
when evaluating the partial derivatives of the output function.
This differs from most other closed-loop inverse kinematics
frameworks where the representation is used when evaluating
the derivative of transformation matrices and orientations. This
is a design choice to make the library as general as possible
and allows us to inspect the behavior with different representa-
tions. This may require more from the task programmer as the
behavior of the robot may differ depending on the formulation
of the output function.

Assumption 1 (Velocity Control). The robot system is
equipped with a sufficiently fast velocity controller giving
q̇(t) = q̇des(t) where q̇des is the designed control setpoint.
The velocity controller controls all robot state velocities.

Samson et al. [2] describe how the first industrial robots
had velocity-controlled electrical motors, leading to the joint
velocity becoming the “true control variable” for robot sys-
tems in the control literature. Assumption 1 stems from this
time and has been a common robotics assumption since.

B. Constraints

We use a formulation of robotic tasks similar to Samson et
al. [2]: a task is defined by an output function and a control
objective. Samson et al. defines the control objective as a
regulation problem where a task is performed perfectly during
[t0, tf] if

e(t, q,x,y) = 0 (2)

for all t ∈ [t0, tf]. This is achieved by designing a controller
such that the output function converges to zero.

Similar to eTaSL, we refer to the control objective as a type
of constraint. CASCLIK specifies four types of constraints:
• equality constraints,

e(t, q,x,y) = 0, (3)

• set constraints,

el(t, q,x,y) ≤ e(t, q,x,y) ≤ eu(t, q,x,y), (4)

• velocity equality constraints,

ė(t, q,x,y) = ėd(t, q,x,y), (5)

• and velocity set constraints,

ėl(t, q,x,y) ≤ ė(t, q,x,y) ≤ ėu(t, q,x,y). (6)

where subscript l and u refer to the lower and upper bounds,
and subscript d refers to a desired derivative of the output
function. The control objectives of the tasks are achieved
perfectly if the equations hold during t ∈ [t0, tf].

As the control objectives both include equality (converging
to zero), and set constraints (converging to or remaining in a
set), and set constraints can have different upper and lower
bounds, we cannot use the regulation problem formulation of
Samson et al. We rely on linearization of the time-derivative
of the output functions to achieve the control objectives.

Assumption 2 (Linearization). The partial derivatives ∂e
∂t ,

∂e
∂q

and ∂e
∂x (commonly called the task Jacobian) can be considered

constant with respect to the control duration. That is:

∂e

∂t
(τ)+

∂e

∂q
(τ)q̇(tn) +

∂e

∂x
(τ)ẋ(tn) ≈

∂e

∂t
(tn) +

∂e

∂q
(tn)q̇(tn) +

∂e

∂x
(tn)ẋ(tn) (7)

for tn ≤ τ ≤ tn + ∆t where tn is a sampling point and ∆t is
the duration of the control step.

The linearization assumption is often used in closed-loop
inverse kinematics frameworks without explicitly stating it as
an assumption. The linearization assumption does not always
hold, and for long control steps or rapidly moving trajectories
a tracking error may occur [25].

Defining a controller for a set of tasks is finding (q̇, ẋ)
such that we achieve the tasks. For the optimization-based
controller approaches we do this by imposing constraints on
the optimization problem, and for the null-space approach we
do this by both null-space projection and inversion of the
differential kinematics.

121

1) Equality Constraints: Taking the time-derivative of the
output function, we get:

ė =
∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ (8)

where the best guess for the derivatives of y is zero. An equal-
ity constraint forms a regulation problem, which is achieved
by ensuring that:

ė =
∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ = −K(t, q,x,y)e(t, q,x,y) (9)

for which exponential convergence to zero is guaranteed if
(9) is upheld and K is positive definite. K is a user-defined
function, and its dependent variables will be omitted for
brevity in the rest of the paper.

Velocity equality constraints are included to allow for ve-
locity following, but do not guarantee convergence:

ė =
∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ = ėd(t, q,x,y), (10)

where the right hand side is the desired constraint velocity.
This is to accommodate control situations for which the
desired output function derivative is easy to define, but its
integral is not. Because we rely on Assumption 1 and As-
sumption 2, the lack of convergence of velocity constraints is
not considered in this article.

By using the Moore-Penrose pseudo-inverse (superscript †)
we get (9) and (10) on a form that fits with the null-space
projection approach. For equality constraints it becomes:

[
q̇
ẋ

]
= −

([
∂e
∂q

∂e
∂x

])†(
Ke+

∂e

∂t

)
. (11)

Similarly for the velocity equality constraint we have:
[
q̇
ẋ

]
=
([

∂e
∂q

∂e
∂x

])†(
ėd −

∂e

∂t

)
. (12)

2) Set Constraints: Set constraints are different in opti-
mization approaches and the null-space projection approach.
In optimization based controllers we enable exponential con-
vergence to the set by defining the constraint as:

K(e− el) ≤
∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ ≤K(e− eu) (13)

where the gain is defined as previously. Fig.1 visualizes how
(13) leads to convergence. When approaching a limit from
inside the constraint, the maximum of ė will gradually be
reduced, which causes an exponential decay when approaching
a constraint limit.

Similar to the velocity equality constraints, velocity set
constraints do not ensure convergence and are defined as:

ėl(t, q,x,y) ≤ ∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ ≤ ėu(t, q,x,y) (14)

which can be visualized as horizontal lines in Fig.1.
Set constraints in the null-space approach are handled

using null-space projection and the in tangent cone function
(Algorithm 1 in [6]). The method states that if the desired
(q̇, ẋ) ensures that the output function remains in the set,
by asking whether the (e, ė) pair is in the extended tangent

e

_e

el

Fig. 1: Visualization of set constraint convergence in one
dimension. q̇ and ẋ must be chosen such that ė remains in
the gray area. As this results in requiring ė to be positive
when e < el and negative when e > eu, we will converge to
el ≤ e ≤ eu. The slope of the lines are defined by K.

_e

Fig. 2: Visualization of when in tangent cone evaluates to true
for a one-dimensional output function. For any (e, ė) not in
the gray area, the set constraint becomes active and lower level
tasks are projected into the null-space of the set constraint.

cone, then the set constraint is not active. If the desired robot
state velocity is not in the extended tangent cone then the set
constraint is active and lower priority tasks are modified by
the null-space projection operator of the active set constraint.
The choice of (e, ė) pairs that do not cause an activation of
the set constraint is visualized in Fig.2.

In [25] it was noted that formulating multidimensional
tracking tasks as one dimensional tasks of differing priorities
may lead to unexpected tracking errors. The in tangent cone
function of Moe et al. [6] assumes one-dimensional output
functions. CASCLIK addresses this by implementing a multi-
dimensional version which allows for using multidimensional
output functions with set constraints. The algorithm is given in
Alg.1. If at a time we are at e then the vector d describes the
normal vector to the closest point that is in the set. This allows
us to identify when ė points inwards. The signs of e−el and
e−eu are equal when the closest point inside the set is on the
corners of a set, allowing us to identify the corners as special
cases.

The multidimensional in tangent cone function assumes that
corners can be approximated with a 45◦ cone situated at the
corner. This is an approximation that may falsely report that
we are not in the extended tangent cone for dim(e) > 2, e.g.
when the desired ė points along an edge of the set constraint.

Velocity set constraints are not currently defined in the task-
priority inverse kinematics framework, and are therefore not
included in the null-space projection approach.

3) Convexity of Desired Control Input Space: For the
optimization-based approaches, the task constraints form con-
straints in the optimization problem. The derivative of the
output function is an affine function with respect to the desired

122

Algorithm 1 Multidimensional in tangent cone

Input: t, q,x,y, q̇, ẋ
1: d← sign(e− el) + sign(e− eu)
2: in_crnr← sign(e− el) == sign(e− eu)
3: if el(t, q,x,y) ≤ e(t, q,x,y) ≤ eu(t, q,x,y) then
4: return True
5: else if in_crnr and |− d · ė| < ‖d‖ ‖ė‖ cos(45◦) then
6: return True
7: else if not in_crnr and d · ė < 0 then
8: return True
9: else

10: return False
11: end if

control input q̇ and ẋ. For the different constraint types, the
space of desired control inputs are:

D(e, eq) =

{
q̇, ẋ

∣∣∣∣
∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ = −Ke

}

(15)

D(e, vel.eq) =

{
q̇, ẋ

∣∣∣∣
∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ = ėd

}
(16)

D(e, set) ={
q̇, ẋ

∣∣∣∣
∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ ∈ [K(e− el),K(e− eu)]

}

(17)

D(e, vel.set) =

{
q̇, ẋ

∣∣∣∣
∂e

∂t
+
∂e

∂q
q̇ +

∂e

∂x
ẋ ∈ [ėl, ėu]

}
.

(18)

At any particular time instance t, q,x and y are constant,
making ė an affine transformation with respect to q̇ and ẋ.
From [26] we know that the inverse image of an affine function
on a convex set is convex, which makes D convex. The set of
possible choices of (q̇, ẋ) with multiple tasks is

S(t, q,x,y) =

nc⋂

i=1

D(ei, ci)(t, q,x,y), (19)

where we have nc tasks, each with an output function ei
and a control objective ci ∈ {eq., vel.eq., set, vel.set}. As
the intersection of convex sets is convex, combining tasks
maintains convexity of the set of possible control variables.
This convexity hinges on the derivative of the output function
being affine with respect to the control variables. Thus the
convexity argument does not hold for the model predictive
approach where q and x are predicted variables for the
predicted constraints.

Tasks are incompatible if S = ∅ (e.g. first task is to remain
in a box, second task is to track a reference that leaves the
box). We can easily see that adding a slack variable term ε to ė
reinstates the convexity with respect to the variables (q̇, ẋ, ε)
for the non-predictive approaches.

4) Null-Space Projection: Given an output function ei, we
define the null-space projection operator of the task as:

Ni = Inq+nx
−
[
∂ei
∂q ,

∂ei
∂x

]† [
∂ei
∂q ,

∂ei
∂x

]
(20)

such that Niv = 0 if v is a vector that extends only into the
space of the task. For multiple tasks, the null-space of all the
tasks combined uses the augmented inverse-based projection
of [24]:

Ni,i+1,... = Inq+nx−




∂ei
∂q ,

∂ei
∂x

∂ei+1

∂q , ∂ei+1

∂x
...




† 


∂ei
∂q ,

∂ei
∂x

∂ei+1

∂q , ∂ei+1

∂x
...


 (21)

With multidimensional set constraints the null-space should
only consider directions in which the output function violates
the set constraints. For each set constraint we define a diagonal
activation matrix Si ∈ Rnei

×nei with diagonal elements:

si,j =

{
1, ei,j < el,i,j or ei,j > eu,i,j
0, else (22)

where subscript i, j refers to jth element of the ith output
function, upper bound, or lower bound. With the activation
matrix, the augmented inverse-based projection becomes:

Ni,i+1,... = Inq+nx
−




∂ei
∂q ,

∂ei
∂x

∂ei+1

∂q , ∂ei+1

∂x
...




† 

JA,i
JA,i+1

...


 (23)

where

JA,i =

{
[∂ei∂q ,

∂ei
∂x], if equality constraint

Si[
∂ei
∂q ,

∂ei
∂x], if set constraint.

(24)

C. Quadratic Programming Approach

The quadratic programming (QP) approach is a reactive
control that formulates a QP problem based on the current
sensor information. At time t = tk, we know q(tk),x(tk),
and y(t). q̇k is a setpoint sent to the robot system and ẋk is
used to obtain xk+1. The optimization problem is:

min
q̇k,ẋk,ε

cq̇TkWq̇q̇k + cẋTkWẋẋk + (1 + c)εTWεε (25a)

s.t. :

(q̇k, ẋk) ∈ S(tk, q(tk),x(tk),y(tk), ε) (25b)

where S is the set of all (q̇k, ẋk) such that:

∂ei
∂t

+
∂ei
∂q
q̇k +

∂ei
∂x
ẋk = −Kiei + εi (26)

Kj(ej − el,j) ≤
∂ej
∂t

+
∂ej
∂q
q̇k +

∂ej
∂x

ẋk + εj (27)

‘
∂ej
∂t

+
∂ej
∂q
q̇k +

∂ej
∂x

ẋk + εj ≤Kj(ej − eu,j) (28)

∂em
∂t

+
∂em
∂q

q̇k +
∂em
∂x

ẋk = −ėd,m + εm (29)

ėl,n ≤
∂en
∂t

+
∂en
∂q

q̇k +
∂en
∂x

ẋk + εn ≤ ėu,n (30)

where i ∈ [0, I] are all equality constraints, j ∈ [0, J] are all
set constraints, m ∈ [0,M] are all velocity equality constraints
and n ∈ [0, N] are all the velocity set constraints. ε denotes a
vector of all slack variables, and c is a regularization weight.
The matrices Wq̇,Wẋ and Wε are positive definite matrices

123

denoting the weights on the robot velocity, virtual variable
velocity, and the slack variables respectively.

This formulation is based on the QP controller in
eTaSL/eTC. The gains, output functions, and partial derivatives
of the output functions are evaluated at time t = tk and
assumed constant with respect to the optimization problem.
When the controller is started for the first time, the virtual
variables and the slack variables must be initialized. This is
done by solving the QP problem (25) at time t = t0 with
q̇0 = 0.

The slack variable defines the behavior when constraints
are incompatible. This is a form of soft “prioritization” of
the constraints by avoiding the case where S = ∅. With the
QP approach all objectives of the controller are formulated in
terms of constraints.

D. Nonlinear Programming Approach

The nonlinear programming (NLP) approach is a reactive
control approach that uses the same problem formulation as
the QP approach, but allows for more general cost expressions.
The optimization problem is:

min
q̇k,ẋk,ε

cf(tk, q,x,y, q̇k, ẋk) + (1 + c)εTWεε (31a)

s.t. :

(q̇k, ẋk) ∈ S(tk, q,x,y, εk) (31b)

where the cost function f is a user-defined function. If the
cost function is convex, then we have a convex optimization
problem for which efficient solvers exist. The cost function
must depend upon q̇k, and ẋk if there are virtual variables,
the rest are optional.

As the QP and NLP approach are similar in their constraints
and regularization, any set of tasks implemented for the QP
approach can be implemented for the NLP approach. The
NLP approach allows defining more complex controllers by
implementing objectives in terms of costs.

E. Model Predictive Approach

The QP and NLP approaches are reactive approaches where
the current states of the robot system are used to determine
what the next control input should be. A natural extension to
such a system is the introduction of model predictive control
(MPC). The states are predicted by relying on Assumption 1.
The MPC approach does not support inputs y as there is no
way of predicting what the input will be.

The MPC approach problem is implemented using a
multiple-shooting strategy. We define the horizon length as
nh steps of length ∆t and the optimization variable χ =
{q̇k, ẋk, εk, qk+1,xk+1, }k∈[0,nh−1]. The times are tk = t0 +

∆tk. The control input duration is ∆t. The problem is formu-
lated as:

min
χ

Φ(χ) (32a)

s.t. :

q0 = q(t0) (32b)
x0 = x(t0) (32c)
qk+1 − (qk + q̇k∆t) = 0 (32d)
xk+1 − (xk + ẋk∆t) = 0 (32e)
(q̇k, ẋk) ∈ S(tk, qk,xk) (32f)

where k ∈ [0, nh] and

Φ(χ) =

nh−1∑

k=0

cf(tk, qk,xk, q̇k, ẋk) + (1 + c)εTkWεεk (33)

is the cost from the NLP applied to each timestep along the
prediction horizon. (32b)-(32c) are lifting conditions for the
current timestep. (32d)-(32e) are the shooting gap constraints.
S uses either the shooting-gap variables for the predicted
constraints or the numerical value for the initial constraints.
As mentioned, the convexity of the task constraints is not
guaranteed for the shooting-gap variables. This is because the
terms depend on predictions rather than constants, and the
derivative of the output function is not necessarily affine.

The MPC approach is a bridge between closed-loop in-
verse kinematics and motion planning. The MPC approach
may utilize knowledge along its prediction horizon to choose
more appropriate control inputs. This comes at the cost of
computational complexity, and not guaranteeing convexity of
the constraints. With nq robot variables, nx virtual variables,
nε slack variables, and the dimension of the task constraints
as nc, the number of decision variables for the QP and NLP
approach is nq+nx+nε and there are nc constraint equations.
For the MPC approach the number of decision variables is
nh(2nq + 2nx + nε) and the dimension of the constraints is
nh(2nq + 2nx + nc).

F. Null-Space Projection Approach

As previously stated, the null-space projection approach
comes from the singularity robust task-priority framework of
Moe et al. [6]. Tasks have a strict prioritization as lower
priority tasks are projected into the null-space of higher
priority tasks.

Given a priority sorted sequence i ∈ [0, . . . , nc − 1] of
constraints, the desired control variables are:

[
q̇
ẋ

]
=

[
q̇d,0
ẋd,0

]
+

nc−1∑

j=1

N0,...,j

[
q̇d,j
ẋd,j

]
(34)

where [q̇Td,0, ẋ
T
d,0]T and [q̇Td,j , ẋ

T
d,j]

T are defined by (11) for
equality constraints, (12) for velocity equality constraints, and
0 for set constraints. If a set constraint is inactive, it does
not contribute to the augmented null-space projection of its
lower priority tasks. If it is active, its task Jacobian is used
when formulating the null-space projector. The null-space is
formed using (21) or (23) when using the multidimensional in

124

tangent cone function. With nset set based tasks, we have 2nset

possible activation combinations of the set constraints. These
form 2nset possible modes of the controller. In Table I we see
the activation of map for an example with 3 set constraints,
thus having 8 modes. Check marks are active, dash marks
are inactive set constraints. At each timestep, we check each

TABLE I: Activation map with 3 set constraints

Mode Set 1 Set 2 Set 3

1 - - -
2 - - X
3 - X -
4 X - -
5 - X X
6 X - X
7 X X -
8 X X X

mode for whether the (q̇, ẋ) it proposes is in the extended
tangent cone for all inactive set constraints. This is done by
going down the list of modes, activating set constraints until
all other set constraints are in their extended tangent cones.
At worst we will evaluate each mode and the times in tangent
cone is run is O(nset log2(nset)) [27].

The null-space projection approach gives hard limits on the
constraints. It ensures that we cannot chose control inputs
that go out of the sets. This differs from the optimization
approaches where the control variables are chosen such that
the controller converges to the sets. If external disturbances,
numerical errors, or measurement noises causes the null-space
projection controller to end up outside the edge of a set
constraint, the controller will still attempt to move along the
null-space of the constraint, and not necessarily converge into
the set again. This means that one must start the controller
with the system inside the sets.

III. IMPLEMENTATION

In this section we briefly present the implementation of
CASCLIK and the support packages. This is to give insight
into their purpose, and important design choices.

A. CasADi - Jacobian Damping
As CasADi is a symbolic framework, it performs pseudo-

inverse by assuming that the item to be inverted has full rank.
If M is the matrix to be inverted CasADi solves the linear
problem:

MMTx = M (35)

for x if M is wide, or by

MTMx = M (36)

if M is tall. We employ Jacobian damping [28] to give
the Jacobian full rank as the activation matrix Si in the
multidimensional set constraint may lead to zero rows in JA,
or ill-defined tasks may lead to zero rows. This modifies (35)
to solve:

(MMT + λI)x = M (37)

for wide matrices, where λ is the damping factor, and similar
for tall matrices. The default damping factor is set to 10−7

and is an option in the null-space approach controller.

B. CASCLIK

CASCLIK is a Python module that only depends on
CasADi. This is to have an operating system independent,
robot middleware independent software solution. The module
is compatible with both Python 2.7 and Python 3. CASCLIK
is available on GitHub under the MIT license [29]. The overall
architecture is inspired by eTaSL/eTC. The core module con-
tains classes for constraints, skill specification, and controllers.

The output function of a constraint is an arbitrary CasADi
expression. The gain, target derivative, and upper or lower lim-
its can be added depending on what type of control objective
is involved. Priority is added by specifying the constraint as
soft or hard for the optimization-based approaches, or as a
numerical value for the null-space based approach.

A collection of constraints is a skill. As the user is free to
define both what the time, robot, virtual, and input variables
are called when formulating the constraints, the user must
provide the symbol for each of the relevant variables to the
skill specification as well as a label and a list of constraints.
The skill sorts the constraints according to their numerical
priority (relevant for the null-space projection approach), and
keeps track of whether there are slack variables or virtual
variables involved in the skill.

Controllers take a skill specification and other controller-
dependent parameters as well as an option dictionary. The
ReactiveQPController (QP) takes a list of weights for the robot
or virtual variables. The ReactiveNLPController (NLP) takes a
cost expression. The ModelPredictiveController (MPC) takes
a cost expression as well as the horizon length, and a timestep
length. The null-space based PseudoInverseController (PINV)
has no optional input.

The controllers are compiled using CasADi’s just-in-time
compilation of solvers and functions. For problems containing
a large number of sets, PseudoInverseController has generally
the longest compilation time as there are 2nset separate modes
to compile.

C. Other modules

Two additional modules were created to simplify prototyp-
ing. urdf2casadi is a Python module for generating CasADi
expressions for the forward kinematics of robots. It uses
either URDF files, which are common in ROS, or Denavit-
Hartenberg parameters, common in industry, for creating for-
ward kinematics reprented by a transformation matrix or a
dual quaternion. casclik_basics provides classes for interfacing
with robots that maintain the virtual variables and subscribes
to joint and sensor topics. Its DefaultRobotInterface publishes
joint position commands, and its URModernInterface is specif-
ically intended for use with the ur_modern_driver [30] and
publishes joint speed commands. casclik_basics is available
on GitHub under the MIT License [29].

IV. EXAMPLES

The tests were performed on a computer with an Intel
Xeon CPU E5-1650 v3 running Ubuntu 16.04 with ROS
Kinetic Kame. In all the experiments we use QPOASES for
the QP controller, IPOPT for the NLP and MPC controller,

125

and Jacobian damping for the PINV controller (null-space
approach).

A. Representation - Matrix or Quaternion

In this example we are controlling a UR5 robot using either
dual quaternions or transformation matrices for frame repre-
sentation. The example uses the UR5 URDF with urdf2casadi
to determine forward kinematics. The robot is simulated at
joint velocity level with Euler discretization as we rely on
Assumption 1.

Transformation matrices T ∈ T ⊂ R4×4 are composed of
a rotation matrix R ∈ R ⊂ R3×3, and a displacement vector
p ∈ R3. Dual quaternions Q̆ are composed of

Q̆ = QR + εQp (38)

where QR ∈ Qunit is a unit quaternion for rotation and Qp ∈
Q a quaternion for displacement. ε is the dual unit which
satisfies εε = 0. Dual quaternions can be represented by a
vector such that Q̆ ∈ R8, and in vector form the quaternion
product of two dual quaternions Q̆c = Q̆a⊗Q̆b can be defined
as:

Q̆c = H̄(Q̆b)Q̆a = H(Q̆a)Q̆b (39)

where H̄,H ∈ R8×8 are matrices referred to as the minus
and plus Hamilton operator [31].

The UR5 has q ∈ R6 joint angles forming the robot
variables, and forward kinematics described by R(q) for the
rotation matrix, p(q) for the displacement, and Q̆(q) for the
dual quaternion.

The task is for the end-effector frame to match a desired
frame. The desired frame is described by (Rd,pd) with
transformation matrices, and Q̆d with dual quaternions. Using
rotation and displacement we can define this as the task:

eT (q) =

[
p(q)− pd∥∥RT
dR(q)− I

∥∥
F

]
(40)

where the first line ensures convergence of position and the
second ensures convergence of the rotation. The second line
uses the orientation metric of Larochelle et al. [32] using the
Frobenius norm.

For dual quaternions, we employ the strategy of Figueredo
et al. [31]:

eQ(q) = H̄(Q̆d)C(Q̆d − Q̆(q)) (41)

where C = diag(−1,−1,−1, 1,−1,−1,−1, 1) is the conju-
gate operator for dual quaternions in vector form. As Qd is
constant, we see that (41) becomes linear with respect to Q̆(q).

The joints have hard set constraints such that qi ∈
[−2π, 2π], and q̇i ∈ [−π/5, π/5]. As the null-space based
controller does not support velocity set constraints, the applied
q̇ is also saturated by the max speed. The example is simulated
with a desired frame at pdes = [0.5, 0, 0.5]T , with a roll of 5◦.
The control duration is 8 ms, and corresponds to 125 Hz. The
MPC approach has a prediction horizon of 10 control steps.
All cost functions are the same as for the QP approach.

In Fig.3 we see the Euclidean norm of the two repre-
sentations for each of the controller classes. The null-space
approach has a greater error while moving closer to the point

0 2 4 6 8

t [s]

10−11

10−6

10−1

e T

qp

nlp

pinv

mpc

(a) eT

0 2 4 6 8

t [s]

10−12

10−8

10−4

100

e Q

qp

nlp

pinv

mpc

(b) eQ

Fig. 3: Euclidean norm of the output functions (40) and (41).

as it does not account for the speed saturation. It also struggles
more with the dual quaternion formulation and takes a more
circuitous route. The different controllers have different limits
before numerical issues arise and these may be optimizer
settings dependent.

In Tab.II the initial and average runtimes are given for the
different controllers during the simulations. The null-space
approach is denoted by PINV.

TABLE II: Controller runtimes for Representation Example

PINV QP NLP MPC

Initial (eQ) 0.11 ms 0.95 ms 4.23 ms 26.80 ms
Average (eQ) 0.04 ms 0.27 ms 2.74 ms 20.01 ms
Initial (eT) 0.09 ms 1.44 ms 4.37 ms 16.90 ms

Average (eT) 0.04 ms 0.26 ms 2.81 ms 147.08 ms

The NLP approach uses approximately half the control
duration, and MPC approach generally uses an order of
magnitude longer. This means that the controllers would not
be applicable to this control situation with the default settings.
The QP approach and null-space approach have applicable
timings with the QP approach being an order of magnitude
slower than the null-space approach. The average runtime of
the MPC formulation with transformation matrix formulation
is much higher as a result of using the Frobenius norm and
matrix operations. This is likely caused by the prediction
constraints becoming more difficult to apply.

B. Set Constraints - Bounded Workspace

This is a recreation of Example 2 from [6] where a
UR5 tracks a Cartesian trajectory while not escaping a box
defined workspace. The forward kinematics are defined by the
Denavit-Hartenberg parameters in [6] using urdf2casadi.

126

Fig. 4: RViz visualization of the bounded workspace example.

Listing 1: Equality Constraint Example
track_cnstr = EqualityConstraint(

label="tracking_constraint",
expression=p(q) - p_d(t),
gain=1.0,
constraint_type="soft",
priority=3

)

The output function is defined by

e(t, q) = p(q)− pdes(t) (42)

where p(q) is the forward kinematics to the origin of the end-
effector, and

pdes(t) =




0.5 sin2(0.1t) + 0.2
0.5 cos(0.1t) + 0.25 sin(0.1t)
0.5 sin(0.1t) cos(0.1t) + 0.7


 . (43)

The set constraint is defined by p(q) ∈ [pl,pu] with
pl = [0.1,−0.5, 0.3] and pl = [0.5, 0.4, 0.85]. Examples of
the code used to define the equality and set constraints can be
seen in Listing.1 and Listing.2. For the null-space projection
approach the set constraint can either be formulated using
the experimental multidimensional set constraint, or as three
separate constraints for x, y, and z as in [6]. The equality
constraint has a lower priority (3rd) such that it can work
with either formulation.

From Fig.1 we know that the approach speed to the upper
or lower bound on a set constraint are determined by the
gain in the optimization approaches. This can be seen as an
exponential decay in the tracking task as we approach the set
limits. From Fig.2 we see that as the gain approaches ∞, we

Listing 2: Set Constraint Example
box_cnstr = SetConstraint(

label="box_constraint",
expression=p(q),
set_min = np.array([0.1, -0.5, 0.3]),
set_max = np.array([0.5, 0.4, 0.85]),
gain = 100.0,
constraint_type="hard",
priority=1

)

will have the same sharp change when approaching a set limit
as the null-space approach exhibits. In this example the set
gain is 100 for the QP and NLP. The MPC has gains of 1 as
large set gains may lead to more difficult predicted constraints.

In Fig.5 we see the position of the end-effector for the
different controllers when handling x, y, and z as separate
constraints and in Fig.6 we see the position when handling
them as a single multidimensional constraint.

In Fig.7 we see the tracking error with the different con-
trollers when handling x, y, and z constraints as separate
constraints. In Fig.8 we see the tracking error with the
different controllers when handling x, y, and z as a single
multidimensional constraint. Similar to the results in [25],
setting the constraints in a priority ordered sequence causes
unwanted behavior. The multidimensional formulation gives
a more correct interpretation of the constraint. Also note that
the multidimensional null-space approach and the optimization
approaches are similar. If more set constraints are included,
such as joint limits, the two methods will differ again. In Fig.9
we see the mode the null-space based controller is in for both
the separate x, y, and z formulation and the multidimensional
formulation. The “noisy” rapid switching of modes occurs due
to numerical issues with the linearization and the comparison
between current and set limits. Tuning either the control
duration or the comparison with some numerical lower limit
can mitigate this effect.

Fig.4 shows a visualization of the controller running with
the DefaultRobotInterface and ROS.

C. Nonlinear cost - Manipulability Index

In this example a 7 degrees of freedom KUKA LWR
IIWA 14 R820 arm is to follow a circular trajectory in its
workspace and maximize the manipulability index of the
task. The forward kinematics are defined by the URDF and
urdf2casadi. The robot is simulated at joint velocity level with
Euler discretization. IIWA has q ∈ R7 where q ∈ [−qu, qu]
with

qTu = [170◦, 120◦, 170◦, 120◦, 170◦, 120◦, 175◦]. (44)

The circular trajectory is defined by:

pd(t) =




0.1 cos(0.05t− 0.5π) + 0.45
0.1 sin(0.05t− 0.5π) + 0.4

0.3


 . (45)

We define the manipulability index of the task as

m(q) =

√
det

(
∂p

∂q
(q)

∂p

∂q
(q)T

)
(46)

where m is a measure of the area of the ellipsoid that
the Jacobian of the end-effector position forms. We want to
both achieve the task and to maximize our manipulability.
Maximizing the manipulability can be beneficial in collision
avoidance, as a high manipulability means we have more
options as to which direction we can move to avoid collision.
Maximizing the manipulability can be achieved by adding a
term to the nonlinear costs of the NLP and the MPC approach:

mc(q, q̇) = −αm(q + ∆tq̇)2 (47)

127

0 20 40 60 80

t [s]

0.2

0.4

0.6

x
[m

]

traj

qp

nlp

pinv

mpc

(a) x

0 20 40 60 80

t [s]

−0.50

−0.25

0.00

0.25

0.50

y
[m

]

traj

qp

nlp

pinv

mpc

(b) y

0 20 40 60 80

t [s]

−0.2

0.0

0.2

z
[m

]

traj

qp

nlp

pinv

mpc

(c) z

Fig. 5: Position of the end-effector for x and y controlled
separately.

where ∆t is the control duration and α is set to 500. This
essentially states that we attempt to maximize the manipu-
lability of the subsequent step. Optimization problems often
struggle with square roots, so we square the manipulability
index before using it in the cost. As the tracking constraint is
of lower priority than the joint limits, we must ensure that the
tracking constraint’s slack weight is greater than α. In Listing
3, we see an example of setting its slack weight to 2000.
The QP approach and null-space approach does not support
nonlinear costs and do not maximize their manipulability. The
MPC has a horizon length of 10 control steps.

In Fig.10 we see the tracking error over time. The lower
limit stems from the linearization assumption, and one must
either use a path-following approach, or use lower control du-
rations to overcome this. At t = 30s, the MPC approach is able
to find a different configuration with higher manipulability at
the cost of a short duration of deviating from the trajectory.

0 20 40 60 80

t [s]

0.2

0.4

0.6

x
[m

]

traj

qp

nlp

pinv

mpc

(a) x

0 20 40 60 80

t [s]

−0.50

−0.25

0.00

0.25

0.50

y
[m

]

traj

qp

nlp

pinv

mpc

(b) y

0 20 40 60 80

t [s]

−0.2

0.0

0.2

z
[m

]

traj

qp

nlp

pinv

mpc

(c) z

Fig. 6: Position of the end-effector for x, y, and z controlled
using a multidimensional constraint. The MPC approach ex-
hibits the exponential approach to the constraint limit.

Listing 3: Equality Constraint With Slack Weight
track_cnstr = EqualityConstraint(

label="tracking_constraint",
expression=p(q) - p_d(t),
gain=1.0,
constraint_type="soft",
slack_weight=2e3

)

This reconfiguration does not affect the final tracking error of
the MPC.

In Fig.11 we see the manipulability index m over time. The
NLP performs slightly better than the QP approach, and the
MPC performs best by far as it chooses to deviate slightly
from the trajectory to arrive at a configuration with a higher

128

0 20 40 60 80

t [s]

0.00

0.25

0.50

0.75

1.00

T
ra

ck
in

g
er

ro
r

[m
] qp

nlp

pinv

mpc

Fig. 7: Tracking error for x, y, and z as separate constraints.
The error does not converge to zero as the desired trajectory
goes out of the box.

0 20 40 60 80

t [s]

0.00

0.25

0.50

0.75

1.00

T
ra

ck
in

g
er

ro
r

[m
] qp

nlp

pinv

mpc

Fig. 8: Tracking error for x, y and z as a multidimensional
constraint. The error does not converge to zero as the desired
trajectory goes outside the box. All are equal except MPC
which deviates slightly.

manipulability.
In Tab.III we see the initial and average runtimes of the

different controllers. The inclusion of the manipulability cost
has not made the controllers deviate from the rule of an order
of magnitude separation between the approaches.

D. Input - Tracking a marker in ROS

In this example a UR5 robot tries to track user input.
The DefaultRobotInterface is used with ROS and an RViz
interactive marker to simulate an external input. The robot
is simulated with Gazebo and is controlled at 50 Hz. We use
the QP approach in this example. The maximum joint speed
is 3 rad/s.

In Fig.12 we see the position of the marker and the end-
effector frame. The end-effector has an exponential conver-
gence to the desired input marker position, but as it does not
consider the speed of the input marker, there is a tracking error
when following the input marker during a continuous motion.

TABLE III: Controller runtimes for Manipulability Example

PINV QP NLP MPC

Initial 0.11 ms 0.48 ms 4.94 ms 54.72 ms
Average 0.07 ms 0.19 ms 3.02 ms 49.52 ms

0 10 20 30 40 50

t [s]

0

2

4

m
o
d
e

separate

multidim

Fig. 9: Excerpt of the mode the null-space based controller
is in for both separate constraints and multidimensional con-
straints. Note the rapid switching at t = 15s and t = 45s when
using separate constraints.

0 20 40 60 80 100 120

t [s]

10−4

10−3

10−2

10−1
tr

a
ck

in
g

er
ro

r
[m

] qp

nlp

pinv

mpc

Fig. 10: Tracking error when following the circular trajectory.
The MPC approach deviates slightly at t = 30s as it is
reconfiguring to an orientation with higher manipulability.

The DefaultRobotInterface has a delay of 7.8s before it starts
as it waits for topics and compiles the controller.

E. Velocity Equality Constraint - 6 DOF compliance

In this example the end-effector of a UR5 is to comply to
forces and torques acting on it. The example uses urdf2casadi
to determine forward kinematics, and ur_modern_driver [30].

0 20 40 60 80 100 120

t [s]

0.005

0.006

0.007

0.008

0.009

m
a
n
ip

u
la

b
il
it

y

qp

nlp

pinv

mpc

Fig. 11: Manipulability index for different controllers over
time when tracking the circular trajectory. The MPC approach
is able to find a configuration with higher manipulability index
at t = 30s.

129

0.0

0.5

x
[m

]

0.0

0.5

y
[m

]

0 10 20 30 40 50 60 70 80

t [s]

0.25

0.50

0.75

z
[m

]

marker

robot

Fig. 12: Position of the input marker and end-effector frame
when tracking the input marker.

Fig. 13: Experimental setup for 6 DOF compliance.

The end-effector has an ATI Mini45 force/torque sensor at-
tached with a mounting plate on it. The robot is in an open
workspace. To ensure the robot does not crash with the table
or is moved to undesired regions, the end-effector is limited
to a box. The box is defined by the set constraint



−0.7
−0.4
−0.2


 ≤ p(q) ≤



−0.3
0.5
0.5


 . (48)

Velocity resolved compliance can be achieved using damp-
ing control [33] by

[
v(t)
ω(t)

]
=

[
Kff(t)
Kττ (t)

]
(49)

where v is the Cartesian velocity, ω is the rotational velocity,
f are the linear forces, and τ are the torques. All evaluated
at the end-effector. Kf and Kτ are the damping constants for
the forces and torques respectively.

For linear forces f acting on the end-effector, and a position
p(t) of the end-effector, we desire:

ṗ(t) = Kff
w(t) = KfR(q)f(t) (50)

where fw are the forces acting on the end-effector represented
in the world coordinates.

We can relate the rotational velocity to the derivative of the
orientation quaternion by following [34], and arrive at

Q̇r(t) =
Kτ

2
H̄

([
τ (t)

0

])
Qr(t) (51)

0 20 40 60 80 100 120

position [m]

−0.5

0.0

0.5

t
[s

]

x

y

z

Fig. 14: Position over time of the end-effector during the
velocity equality experiment for compliance. The stippled and
dotted lines denote the box constraint. From t = 36s until
t = 40s we attempt to pull the end-effector out of the box
constraint in x direction, but the set constraint does not allow
it. At t = 80s we let go of the end-effector, and it drifted to
the bottom of the box due to sensor bias.

where τ (t) are the torques acting on the end-effector in the
end-effector frame.

The controller is running at 125 Hz, and the force/torque
sensor runs at 250 Hz but only the most recent value is used.
The damping factors are Kf = 0.01 and Kt = 0.1. This
experiment was run with the QP controller. To inspect the
behavior of the system we look at the right hand side of (50)
and (51) with the sensor value for force, torque, and q. We
refer to this as sensed speed. The left hand side of (50) and
(51) as desired by the CASCLIK controller or as reported by
the robot, is referred to as the controller speed and the robot
speed respectively.

In Fig.14 we see the position of the end-effector over
time. In Fig.15 we see sensed speed, controller speed and
robot speed. The controller moves to track the target function,
resulting in compliance of the end-effector with respect to the
force. In Fig.16 we comply with respect to the torques. From
t = 36s until t = 40 we try to pull the end-effector out of the
box constraint. As the robot approaches the box constraint, the
compliance is reduced to zero. At t = 80s we let go of the
end-effector and sensor bias moved it slowly to the bottom
and along the bottom of the box constraint. The noise is both
a result of the latency introduced by using ROS for real-time
feedback control, by the computation time of the controller,
and by inherent noise in the joint speed signal.

V. DISCUSSION

Closed-loop inverse kinematics frameworks handle local
problems rather than global problems. When given desired po-
sitions far from the current position, closed-loop inverse kine-
matics may succumb to local minima. This means that they are
mid-level controllers to which a desired path may be supplied
from a high-level path planner. The model predictive controller
formulation is an attempt at bridging the gap between local
and global planning. Proper design of cost and constraint
formulations to better achieve tasks may lead to better handling
of local minima. As of yet, the model predictive approach is

130

0 20 40 60 80 100 120

t [s]

−0.04

−0.02

0.00

0.02

0.04

v
x
[m

/
s]

robot

sensed

controller

(a) Complying with fx

0 20 40 60 80 100 120

t [s]

−0.10

−0.05

0.00

v
y

[m
/
s]

robot

sensed

controller

(b) Complying with fy

0 20 40 60 80 100 120

t [s]

−0.01

0.00

0.01

v
z

[m
/
s]

robot

sensed

controller

(c) Complying with fz

Fig. 15: Sensor and controller Cartesian speeds (right and left
hand side of (50)), and robot Cartesian speeds of the end-
effector. The zoomed inset at t = 36s in subfigure (b) shows
the exponential convergence to zero speed in z direction as
we try to pull the end-effector out of the box constraint.
Otherwise, the sensed and controller speeds perfectly overlap
as long as we are inside the box.

significantly slower than its reactive counterparts and further
work includes investigating sequential quadratic programming
approaches with warmstart as they may have shorter execution
time than the non-warmstarted interior point method of IPOPT.
By using CasADi at the core, CASCLIK can quickly benefit
from any new solver implemented in CasADi. The lack of
convexity of the constraints along the prediction horizon in the
current formulation also suggests that further work should be
done to investigate the optimality and stability of the approach.

CASCLIK is independent of the underlying representation
used to define kinematics. This allows for inspecting behavior
of different representations, but complicates programming for
the user. A more robust framework can be created by defining

0 20 40 60 80 100 120

t [s]

−0.05

0.00

0.05

ω
x

[r
a
d

/
s]

robot

sensed

controller

(a) Complying with τx

0 20 40 60 80 100 120

t [s]

−0.050

−0.025

0.000

0.025

0.050

ω
y

[r
a
d

/
s]

robot

sensed

controller

(b) Complying with τy

0 20 40 60 80 100 120

t [s]

−0.02

0.00

0.02

0.04

ω
z

[r
a
d

/
s]

robot

sensed

controller

(c) Complying with τz

Fig. 16: Sensor and controller angular speed (right and left
hand side of (51)), and robot angular speeds of the end-
effector. As the box constraint only considers the position of
the end-effector, not the orientation, the box constraint does
not affect the torque compliance.

the underlying representation. The choice of using arbitrary
functions is a design choice intended to allow a larger range
of scenarios and systems to be handled by CASCLIK as well
as being easier to implement. Future work includes examining
other coordinate representations and constraints.

From the input experiments we see that the controllers
have an exponential convergence to the reference signal during
positioning, and classical compliance can be implemented in
CASCLIK for the controllers that accept velocity equality
constraints. As sensors are becoming cheaper and more avail-
able, it is important to allow for arbitrary input signals. As
the derivative of inputs are unknown, they are considered to
be zero. For input signals such as distance sensors or force
sensors, this is a false assumption and can lead to tracking
error for time varying sensor signals. Future work includes
allowing the user to provide input derivatives for CASCLIK.
These may come from speed observers, derivative filters, or
any other sources the user provides.

131

CASCLIK only considers control at the velocity setpoint
level. This stems from the main use-case for which the
framework was intended, industrial manipulators. In most
cases, industrial manipulators only provide joint position or
joint velocity setpoints. However, the task function approach
allows for specifying control at the acceleration or torque level
[2]. Extending CASCLIK to include acceleration resolved
controllers would allow specifying velocity constraints that
ensure convergence to the desired velocity.

From the examples, we see that the null-space approach has
similar behavior to the optimization approaches when handling
a single set constraint with very high gain. For multiple tasks,
the null-space projection operator will cause the set-based task
priority framework to behave differently from the optimization
approaches. The optimization approaches uses slack variables
to handle multiple tasks. This moves prioritization into the cost
expression of the optimization problem and does not allow
for strict prioritization between tasks, but tuning of the slack
weight can be used to specify different behavior of the tasks.

The optimization approaches are closely related, and the
complexity of implementing them is similar. The null-space
approach requires more bookkeeping by the programmer but
generally provides controllers with shorter execution time.
Generally the execution speeds are in the order: null-space
approach, QP approach, NLP approach, and MPC approach.
Each increasing by an order of magnitude in the sequence,
depending on the horizon length of the MPC. For rapid
prototyping and large set of tasks, the compilation time may
also be of interest. As the null-space approach compiles each
separate mode, and there are 2nset modes, its compilation time
drastically increases with multiple set constraints.

The nonlinear cost example shows that the NLP and MPC
approach can improve the manipulability in cases where the
QP and null-space approach did not. Although the MPC
approach managed to find an alternative configuration that
increased the manipulability significantly, the reactive NLP
approach did not. As the manipulability cost can be added
to the QP formulation via Taylor expansion of the cost as in
[35], the NLP approach may not be as beneficial as initially
expected.

VI. CONCLUSION

In this paper, CASCLIK, a rapid prototyping framework for
multiple task-based closed-loop inverse kinematics controllers
is presented. It translates tasks into quadratic, nonlinear, or
model predictive optimization problems that can be solved
with CasADi. Tasks are formulated as constraints, and multiple
tasks can be achieved simultaneously.

CASCLIK also provides a CasADi based implementation of
the set-based task priority inverse kinematics framework. The
paper includes a novel multidimensional formulation of the
in tangent cone function such that the set-based task prior-
ity framework can support multidimensional set constraints.
The results show that the multidimensional set constraint
formulation can give a better representation of the desired
behavior than when a multidimensional set constraint is split
into multiple one dimensional constraints.

REFERENCES

[1] L. Sciavicco and B. Siciliano, “Coordinate Transformation: A Solution
Algorithm for One Class of Robots,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 16, no. 4, pp. 550–559, jul 1986.

[2] C. Samson, M. Le Borgne, and B. Espiau, Robot Control: The Task
Function Approach, 1st ed. New York: Oxford University Press, 1991.

[3] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aertbe-
liën, K. Claes, and H. Bruyninckx, “Constraint-based Task Specification
and Estimation for Sensor-Based Robot Systems in the Presence of
Geometric Uncertainty,” The International Journal of Robotics Research,
vol. 26, no. 5, pp. 433–455, may 2007.

[4] H. Hanafusa, T. Yoshikawa, and Y. Nakamura, “Analysis and Control of
Articulated Robot Arms with Redundancy,” IFAC Proceedings Volumes,
vol. 14, no. 2, pp. 1927–1932, aug 1981.

[5] S. Chiaverini, “Singularity-robust task-priority redundancy resolution for
real-time kinematic control of robot manipulators,” IEEE Transactions
on Robotics and Automation, vol. 13, no. 3, pp. 398–410, 1997.

[6] S. Moe, G. Antonelli, A. R. Teel, K. Y. Pettersen, and J. Schrimpf,
“Set-Based Tasks within the Singularity-Robust Multiple Task-Priority
Inverse Kinematics Framework: General Formulation, Stability Analysis,
and Experimental Results,” Frontiers in Robotics and AI, vol. 3, pp. 1–
18, apr 2016.

[7] E. Aertbelien and J. De Schutter, “eTaSL/eTC: A constraint-based task
specification language and robot controller using expression graphs,”
in IEEE International Conference on Intelligent Robots and Systems.
IEEE, sep 2014, pp. 1540–1546.

[8] J. Andersson, “A General-Purpose Software Framework for Dynamic
Optimization,” Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven,
2013.

[9] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpOASES: a parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp. 327–
363, dec 2014.

[10] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[11] M. H. Arbo, Y. Pane, E. Aertbelien, and W. Deere, “A System Archi-
tecture for Constraint-Based Robotic Assembly with CAD Information,”
in IEEE 14th International Conference on Automation Science and
Engineering (CASE’18), aug 2018, pp. 690–696.

[12] N. Mansard, O. Khatib, and A. Kheddar, “A Unified Approach to Inte-
grate Unilateral Constraints in the Stack of Tasks,” IEEE Transactions
on Robotics (T-RO), vol. 25, no. 3, pp. 670–685, 2009.

[13] “Stack-of-tasks.” [Online]. Available: http://stack-of-tasks.github.io/
[14] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic

programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, jun 2014.

[15] R. Smits, T. De Laet, K. Claes, H. Bruyninckx, and J. De Schutter,
“iTASC: a tool for multi-sensor integration in robot manipulation,”
in 2008 IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems. IEEE, aug 2008, pp. 426–433.

[16] “OROCOS: iTaSC wiki.” [Online]. Available: http://orocos.org/wiki/
orocos/itasc-wiki/2-itasc-software

[17] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion
control core of the Orocos project,” in IEEE International Conference
on Robotics and Automation (ICRA’03), 2003, pp. 2766–2771.

[18] P. Soetens, “RTT: Real-Time Toolkit.” [Online]. Available: http:
//www.orocos.org/rtt

[19] E. Aertbeliën, “expressiongraphs.” [Online]. Available: https://github.
com/eaertbel/expressiongraph

[20] R. Smits, “KDL: Kinematics and Dynamics Library.” [Online].
Available: http://www.orocos.org/kdl

[21] N. Somani, M. Rickert, A. Gaschler, C. Cai, A. Perzylo, and A. Knoll,
“Task level robot programming using prioritized non-linear inequality
constraints,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’16), Daejon, oct 2016, pp. 430–437.
[Online]. Available: http://ieeexplore.ieee.org/document/7759090/

[22] N. Somani, M. Rickert, and A. Knoll, “An Exact Solver for Geometric
Constraints With Inequalities,” IEEE Robotics and Automation Letters
(RA-L), vol. 2, no. 2, pp. 1148–1155, apr 2017.

[23] A. Perzylo, N. Somani, S. Profanter, I. Kessler, M. Rickert, and A. Knoll,
“Intuitive instruction of industrial robots: Semantic process descriptions
for small lot production,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’16), Daejeon, oct 2016, pp. 2293–
2300.

132

[24] G. Antonelli, G. Indiveri, and S. Chiaverini, “Prioritized closed-loop
inverse kinematic algorithms for redundant robotic systems with velocity
saturations,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS’09), oct 2009, pp. 5892–5897.

[25] M. H. Arbo and J. T. Gravdahl, “Stability of the Tracking Problem with
Task-Priority Inverse Kinematics,” IFAC-PapersOnLine, vol. 51, no. 22,
pp. 121–125, 2018.

[26] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge:
Cambridge University Press, 2004.

[27] “A000788: Total number of 1’s in binary expansions of 0, ..., n.”
[Online]. Available: https://oeis.org/A000788

[28] A. Colome and C. Torras, “Closed-Loop Inverse Kinematics for Re-
dundant Robots: Comparative Assessment and Two Enhancements,”
IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 944–955,
apr 2015.

[29] M. H. Arbo, “Mathias Hauan Arbo’s Github page.” [Online]. Available:
https://github.com/mahaarbo/

[30] T. T. Andersen, “Optimizing the Universal Robots ROS driver.” Techni-
cal University of Denmark, Department of Electrical Engineering, Tech.
Rep., 2015.

[31] L. F. Figueredo, B. V. Adorno, J. Y. Ishihara, and G. A. Borges, “Robust
kinematic control of manipulator robots using dual quaternion represen-
tation,” Proceedings - IEEE International Conference on Robotics and
Automation, pp. 1949–1955, 2013.

[32] P. M. Larochelle, A. P. Murray, and J. Angeles, “A Distance Metric for
Finite Sets of Rigid-Body Displacements via the Polar Decomposition,”
Journal of Mechanical Design, vol. 129, no. 8, p. 883, 2007.

[33] B. Siciliano and O. Khatib, Springer Handbook of Robotics, B. Siciliano
and O. Khatib, Eds. Berlin, Heidelberg: Springer, 2008.

[34] X. Wang, D. Han, C. Yu, and Z. Zheng, “The geometric structure of
unit dual quaternion with application in kinematic control,” Journal of
Mathematical Analysis and Applications, vol. 389, no. 2, pp. 1352–1364,
2012.

[35] K. Dufour and W. Suleiman, “On integrating manipulability index into
inverse kinematics solver,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’17), Vancouver, sep 2017, pp.
6967–6972.

Mathias Hauan Arbo received the M. S. degree
in Engineering Cybernetics from the Norwegian
University of Science and Technology (NTNU),
Trondheim, Norway in 2015, where he is currently
pursuing the Ph.D. degree. He received the best
student paper award from the 14th IEEE Conference
on Automation Science and Engineering (CASE) in
2018. His research interests include robotic assem-
bly, optimization-based control, force control, and
motion control.

Esten Ingar Grötli received the M. S. degree in
Engineering Cybernetics and the Ph.D. degree in
Engineering Cybernetics from the Norwegian Uni-
versity of Science and Technology (NTNU), Trond-
heim, Norway, in 2005 and 2010 respectively. From
2006 until 2007 he was a visiting Ph.D. student
at the University of California, Berkely, California,
USA. He was a Postdoc researcher at the Norwegian
University of Science and Technology (NTNU) from
2010 until 2014, and a lecturer at the Royal Norwe-
gian Air Force Academy, Kuhaugen, Norway, from

2012 until 2013. He is currently a senior researcher at SINTEF DIGITAL,
Trondheim, Norway. His research interests include estimation, sensor fusion,
motion planning, data analysis, and autonomy.

Jan Tommy Gravdahl received the Siv.ing and
Dr.ing degrees in Engineering Cybernetics from the
Norwegian University of Science and Technology
(NTNU), Trondheim, Norway, in 1994 and 1998,
respectively. He was appointed Associate Profes-
sor (2001) and Professor (2005) at the Depart-
ment of Engineering Cybernetics, NTNU, where he
also served as Head of Department in 2008-09.
In 2007–08, he was a Visiting Professor at The
Centre for Complex Dynamic Systems and Control
(CDSC), The University of Newcastle, Australia. He

has supervised the graduation of more than 100 MSc in addition to 13
PhD candidates. He has published five books and more than 200 papers in
international conferences and journals. In 2000 and 2017, he was awarded the
IEEE Transactions on Control Systems Technology Outstanding Paper Award.
He is a senior editor of the IFAC journal Mechatronics. His current research
interests include mathematical modeling and nonlinear control in general, in
particular applied to turbomachinery, marine vehicles, spacecraft, robots, and
high-precision mechatronic systems.

133

134

135

136

137

References

[1] M. H. Arbo, E. I. Grøtli, and J. T. Gravdahl, “On the globally exponentially
convergent immersion and invariance speed observer for mechanical
systems”, in 2017 American Control Conference (ACC), Seattle, May 2017,
pp. 3294–3299. doi: 10.23919/ACC.2017.7963455.

[2] ——, “On model predictive path following and trajectory tracking for
industrial robots”, in 2017 13th IEEE Conference on Automation Science and
Engineering (CASE), Xi’an, Aug. 2017, pp. 100–105. doi:
10.1109/COASE.2017.8256087.

[3] ——, “Mid-Level MPC and 6 DOF output path following for robotic
manipulators”, in IEEE Conference on Control Technology and Applications
(CCTA’17), Mauna Lani, Aug. 2017, pp. 450–456. doi:
10.1109/CCTA.2017.8062503.

[4] M. H. Arbo, Y. Pane, E. Aertbeliën, and W. Decré, “A System Architecture
for Constraint-Based Robotic Assembly with CAD Information”, in IEEE
14th International Conference on Automation Science and Engineering
(CASE’18), Munich, Aug. 2018, pp. 690–696. doi:
10.1109/COASE.2018.8560450.

[5] M. H. Arbo and J. T. Gravdahl, “Stability of the Tracking Problem with
Task-Priority Inverse Kinematics”, IFAC-PapersOnLine, vol. 51, no. 22,
pp. 121–125, 2018. doi: 10.1016/j.ifacol.2018.11.528.

[6] M. H. Arbo, CASCLIK webpage. [Online]. Available:
https://github.com/mahaarbo/casclik (visited on 11/28/2018).

[7] ——, Urdf2casadi. [Online]. Available:
https://github.com/mahaarbo/urdf2casadi (visited on 01/10/2018).

[8] J. Andersson, “A General-Purpose Software Framework for Dynamic
Optimization”, Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, 2013.

[9] M. H. Arbo, Arbench. [Online]. Available:
https://github.com/mahaarbo/arbench (visited on 01/10/2018).

[10] J. Riegel and Y. van Havre, FreeCAD: Parametric 3D modeler. [Online].
Available: https://www.freecadweb.org (visited on 02/06/2018).

138

[11] I. Eriksen and M. H. Arbo, KUKA KVP Hardware Interface. [Online].
Available:
https://github.com/itk-thrivaldi/kuka_kvp_hw_interface (visited
on 01/10/2018).

[12] M. H. Arbo, T. Utstumo, E. Brekke, and J. T. Gravdahl, “Unscented
Multi-Point Smoother for Fusion of Delayed Displacement Measurements:
Application to Agricultural Robots”, Modeling, Identification and Control: A
Norwegian Research Bulletin (MIC), vol. 38, no. 1, pp. 1–9, 2017. doi:
10.4173/mic.2017.1.1.

[13] J. Westbrook, “30% Iron Chef”, Futurama, vol. 3, no. 22, 2002.

[14] S. Y. Nof, Ed., Handbook of Industrial Robotics, 2nd. Hoboken, NJ: John
Wiley & Sons, Inc., Feb. 1999. doi: 10.1002/9780470172506.

[15] J. F. Engelberger, Robotics in Practice. Boston, MA: Springer US, 1983. doi:
10.1007/978-1-4684-7120-5.

[16] G. C. J. Devol, “US2988237A: Programmed Article Transfer”, United States
Patent Office, 1961.

[17] IRobot, iRobot Roomba. [Online]. Available:
https://www.irobot.com/for-the-home/vacuuming/roomba (visited on
01/10/2018).

[18] Eelume. [Online]. Available: https://eelume.com/ (visited on
01/11/2018).

[19] NASA, Mars Science Laboratory: Curiosity Rover. [Online]. Available:
https://mars.jpl.nasa.gov/msl/ (visited on 01/10/2018).

[20] Intuitive Surgical, Da Vinci Surgical System. [Online]. Available:
https://www.intuitive.com/en/products-and-services/da-vinci
(visited on 01/10/2018).

[21] National Institute of Standards and Technology, Wikimedia: Equipment in
the Automated Manufacturing Research Facility, 2014. [Online]. Available:
https://commons.wikimedia.org/wiki/File:
AutomatedManufacturingResearchFacility_011.jpg (visited on
12/22/2018).

[22] L. G. Jøssang, Frå Jærmuseet sine samlingar: Trallfa Robot TR 2000, Nærbø,
2005. [Online]. Available: https://www.jaermuseet.no/samlingar/wp-
content/uploads/sites/16/2011/06/2005.7-Trallfa-robot-
TR2000.pdf (visited on 12/20/2018).

[23] L. Westerlund, The Extended Arm of Man - A History of the Industrial Robot.
Informationsförlaget, 2000, isbn: 978-9177364672.

[24] P. C. Watson, “US05732286: Remote center compliance system”, United
States Patent Office, 1976.

139

[25] B. Shimano, C. Geschke, and C. Spalding, “VAL-II: A new robot control
system for automatic manufacturing”, in IEEE International Conference on
Robotics and Automation (ICRA’84), vol. 1, Atlanta, 1984, pp. 278–292.
doi: 10.1109/ROBOT.1984.1087187.

[26] H. Bruyninckx, “Open robot control software: the OROCOS project”, in
IEEE International Conference on Robotics and Automation (ICRA’01), vol. 3,
Seoul, 2001, pp. 2523–2528. doi: 10.1109/ROBOT.2001.933002.

[27] The OROCOS Project. [Online]. Available: http://www.orocos.org/
(visited on 12/23/2018).

[28] M. Morgan Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating
System”, in IEEE International Conference on Robotics and Automation
(ICRA’09) Workshop on Open Source Robotics, Kobe, May 2009.

[29] ROS: Robot Operating System. [Online]. Available: http://www.ros.org
(visited on 12/23/2018).

[30] B. Gerkey, IEEE Spectrum: ROS, the Robot Operating System, Is Growing
Faster Than Ever, Celebrates 8 Years, 2015. [Online]. Available:
https://spectrum.ieee.org/automaton/robotics/robotics-
software/ros-robot-operating-system-celebrates-8-years (visited
on 12/23/2018).

[31] German Aerospace Center (DLR), History of the DLR LWR. [Online].
Available: https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-
12464/21732_read-44586/ (visited on 12/23/2018).

[32] Universal Robots, History of Universal Robots. [Online]. Available:
https://www.universal-robots.com/about-universal-robots/our-
history/ (visited on 12/23/2018).

[33] ABB, ABB’s Yumi Collaborative robot named "2016 Best Industrial Robot",
2016. [Online]. Available: http://www.abb.com/cawp/seitp202/
C9AA2AC92A152904C125801200537DF0.aspx (visited on 01/15/2019).

[34] E. Guizzo and E. Ackerman, IEEE Spectrum: How Rethink Robotics Built Its
New Baxter Robot Worker, 2012. [Online]. Available:
https://spectrum.ieee.org/robotics/industrial-robots/rethink-
robotics-baxter-robot-factory-worker (visited on 12/23/2018).

[35] ABB, ABB introduces YuMi®, world’s first truly collaborative dual-arm robot,
2015. [Online]. Available: http://www.abb.com/cawp/seitp202/
33a7cccb0886548048257e2600295564.aspx (visited on 12/23/2018).

[36] J. Vanian, Fortune: The Multi-Billion Dollar Robotics Market Is About to
Boom, 2016. [Online]. Available: http:
//fortune.com/2016/02/24/robotics-market-multi-billion-boom/
(visited on 12/20/2018).

[37] H. L. Sirkin, M. Zinser, and J. Rose, “Boston Consulting Group: The
Robotics Revolution”, BCG perspectives, vol. 9, pp. 1–25, 2015.

140

[38] L. E. Kavraki and M. N. Kolountzakis, “Partitioning a planar assembly into
two connected parts is NP-complete”, Information Processing Letters, vol. 55,
no. 3, pp. 159–165, Aug. 1995. doi: 10.1016/0020-0190(95)00083-O.

[39] S. Elliott Fahlman, “A planning system for robot construction tasks”,
Artificial Intelligence, vol. 5, no. 1, pp. 1–49, 1974. doi:
10.1016/0004-3702(74)90008-3.

[40] L. I. Lieberman and M. A. Wesley, “AUTOPASS: An Automatic
Programming System for Computer Controlled Mechanical Assembly”, IBM
Journal of Research and Development, vol. 21, no. 4, pp. 321–333, Jul. 1977.
doi: 10.1147/rd.214.0321.

[41] T. Lozano-Pérez and P. H. Winston, “LAMA: a language for automatic
mechanical assembly”, in 5th International Joint Conference on Artificial
Intelligence (IJCAI’77), Cambridge, 1977, pp. 710–716.

[42] R. J. Popplestone, A. P. Ambler, and I. Bellos, “RAPT: a Language for
Describing Assemblies.”, Industrial Robot, vol. 5, no. 3, pp. 131–137, 1978.
doi: 10.1108/eb004501.

[43] T. Lozano-Pérez and R. A. Brooks, “An approach to automatic robot
programming”, in ACM 14th annual conference on Computer science - (CSC
’86), Cincinnati: ACM Press, 1986, pp. 61–69. doi:
10.1145/324634.325195.

[44] S. G. Kaufman, R. H. Wilson, R. E. Jones, T. L. Calton, and A. L. Ames, “The
Archimedes 2 mechanical assembly planning system”, in IEEE International
Conference on Robotics and Automation (ICRA’96), vol. 4, Minneapolis,
1996, pp. 3361–3368. doi: 10.1109/ROBOT.1996.509225.

[45] Adept Technology Inc., V + Language User ’s Guide v.12.1. Adept Technoly
Inc., 1997.

[46] U. Thomas and F. Wahl, “A system for automatic planning, evaluation and
execution of assembly sequences for industrial robots”, in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’01), vol. 3,
Maui: IEEE, 2001, pp. 1458–1464. doi: 10.1109/IROS.2001.977186.

[47] H. Mosemann and F. Wahl, “Automatic decomposition of planned assembly
sequences into skill primitives”, IEEE Transactions on Robotics and
Automation, vol. 17, no. 5, pp. 709–718, 2001. doi: 10.1109/70.964670.

[48] U. Thomas, M. Barrenscheen, and F. Wahl, “Efficient assembly sequence
planning using stereographical projections of C-space obstacles”, in IEEE
International Symposium on Assembly and Task Planning (ISATP’03),
Besancon, 2003, pp. 96–102. doi: 10.1109/ISATP.2003.1217194.

[49] U. Thomas, F. Wahl, J. Maass, and J. Hesselbach, “Towards a new concept
of robot programming in high speed assembly applications”, in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’05),
Edmonton, 2005, pp. 3827–3833. doi: 10.1109/IROS.2005.1545582.

141

[50] U. Thomas, S. Molkenstruck, R. Iser, and F. M. Wahl, “Multi Sensor Fusion
in Robot Assembly Using Particle Filters”, in IEEE International Conference
on Robotics and Automation (ICRA’07), Roma, Apr. 2007, pp. 3837–3843.
doi: 10.1109/ROBOT.2007.364067.

[51] U. Thomas and F. M. Wahl, “Assembly Planning and Task Planning — Two
Prerequisites for Automated Robot Programming”, in Springer Tracts in
Advanced Robotics, vol. 67, 2010, pp. 333–354. doi:
10.1007/978-3-642-16785-0_19.

[52] T. Lozano-Perez, “Robot programming”, Proceedings of the IEEE, vol. 71,
no. 7, pp. 821–841, 1983. doi: 10.1109/PROC.1983.12681.

[53] A. Ambler and R. Popplestone, “Inferring the positions of bodies from
specified spatial relationships”, Artificial Intelligence, vol. 6, no. 2,
pp. 157–174, Jun. 1975. doi: 10.1016/0004-3702(75)90007-7.

[54] M. Kim and C.-H. Wu, “A formal part mating model for generating
compliance control strategies of assembly operations”, in IEEE
International Conference on Systems, Man, and Cybernetics Conference
Proceedings (SMC’90), Los Angeles, 1990, pp. 611–616. doi:
10.1109/ICSMC.1990.142185.

[55] A. Bourjault, “Contribution a une approache methodologique de
l’assemblage automatise: elaboration automatique des sequence s
operatories”, Ph.D. Thesis, L’Université de Franche-Comté, 1984.

[56] T. De Fazio and D. Whitney, “Simplified generation of all mechanical
assembly sequences”, IEEE Journal on Robotics and Automation, vol. 3,
no. 6, pp. 640–658, Dec. 1987. doi: 10.1109/JRA.1987.1087132.

[57] L. Homem de Mello and A. Sanderson, “AND/OR graph representation of
assembly plans”, IEEE Transactions on Robotics and Automation, vol. 6,
no. 2, pp. 188–199, Apr. 1990. doi: 10.1109/70.54734.

[58] D. E. Whitney, Mechanical Assemblies: Their Design, Manufacture, and Role
in Product Development. Oxford University Press, 2004, isbn:
978-0195157826.

[59] K. Ikeuchi and S. B. Kang, “Assembly Plan from Observation”, Technical
Report FS-93-04, AAAI press, 1993.

[60] SARAFun, Smart Assembly with Advanced Functionalities. [Online].
Available: http://h2020sarafun.eu/ (visited on 01/10/2018).

[61] N. Wiener, Cybernetics: Or the Control and Communication in the Animal
and the Machine, 2nd Editio. Martino Fine Books.

[62] K. B. Hammersvik, “Her er de tryggeste utdanningsvalgene”, NRK Livsstil,
Apr. 2018. [Online]. Available: https://www.nrk.no/livsstil/her-er-
de-tryggeste-utdanningsvalgene-1.14003297.

[63] S. Fölster, “Vartannat jobb automatiseras inom 20 år”, Stiftelsen för
strategisk forskning, Tech. Rep., 2014. [Online]. Available: http:
//strategiska.se/app/uploads/varannat-jobb-automatiseras.pdf.

142

[64] C. B. Frey and M. A. Osborne, “The future of employment: How
Susceptible are jobs to computerisation?”, Oxford Martin School, Oxford,
England, Tech. Rep., 2013.

[65] ——, “The future of employment: How susceptible are jobs to
computerisation?”, Technological Forecasting and Social Change, vol. 114,
pp. 254–280, Jan. 2017. doi: 10.1016/j.techfore.2016.08.019.

[66] National Center for O*NET Development, O*NET Resource Center. [Online].
Available: https://www.onetcenter.org/ (visited on 12/23/2018).

[67] J. Manyika, M. Chui, M. Miremadi, J. Bughin, K. George, P. Willmott, and
M. Dewhurst, “A future that works: Automation, employment, and
productivity”, Mckinsey Global Institute, 2017.

[68] Mckinsey Global Institute, Where machines could replace humans - and
where they can’t (yet), 2017. [Online]. Available: https://public.
tableau.com/profile/mckinsey.analytics%7B%5C#%7D!/vizhome/
InternationalAutomation/WhereMachinesCanReplaceHumans (visited
on 12/23/2018).

[69] E. Brynjolfsson and A. Mcafee, The Second Machine Age. New York, NY: W.
W. Norton & Company, Inc., 2014, isbn: 978-0-393-35064-7.

[70] M. Andreessen, Wall Street Journal - Why Software Is Eating The World,
2011. [Online]. Available: https://www.wsj.com/articles/
SB10001424053111903480904576512250915629460 (visited on
01/10/2019).

[71] Digitale Wirtschaft und Gesellschaft: Industrie 4.0. [Online]. Available:
https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html
(visited on 12/23/2018).

[72] M. A. Kamarul Bahrin, M. F. Othman, N. H. Nor Azli, and M. F. Talib,
“INDUSTRY 4.0: A REVIEW ON INDUSTRIAL AUTOMATION AND
ROBOTIC”, Jurnal Teknologi, vol. 78, no. 6-13, 2016. doi:
10.11113/jt.v78.9285.

[73] DigitalNorway, Digital21. [Online]. Available: https://digital21.no/
(visited on 12/23/2018).

[74] H. Sinding-Larsen, “Ingen mennesker er tjent med slavearbeid”,
Aftenposten, pp. 5–6, 8. January, 1966.

[75] The Apache Software Foundation, About the Apache HTTP Server Project.
(visited on 12/23/2018).

[76] B. McCullough, On The 20th Anniversary - An Oral History of Netscape’s
Founding. [Online]. Available:
http://www.internethistorypodcast.com/2014/04/on-the-20th-
anniversary-an-oral-history-of-netscapes-founding/ (visited on
01/10/2018).

143

[77] Franka Emika, Franka Emika: libfranka documentation. [Online]. Available:
https://frankaemika.github.io/docs/libfranka.html (visited on
01/08/2019).

[78] G. Schreiber, A. Stemmer, and R. Bischoff, “The fast research interface for
the kuka lightweight robot”, in IEEE Workshop on Innovative Robot Control
Architectures for Demanding (Research) Applications How to Modify and
Enhance Commercial Controllers (ICRA’10), 2010, pp. 15–21.

[79] B. Siciliano and O. Khatib, Springer Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Berlin, Heidelberg: Springer, 2008, p. 1611. doi:
10.1007/978-3-540-30301-5.

[80] A. C. Bittencourt, “Modeling and Diagnosis of Friction and Wear in
Industrial Robots”, PhD-Thesis, Linköping University, 2014, pp. 1–232,
isbn: 9781467366953.

[81] H. Asada, T. Kanade, and I. Takeyama, “Control of a Direct-Drive Arm”,
Journal of Dynamic Systems, Measurement, and Control, vol. 105, no. 3,
p. 136, 1983. doi: 10.1115/1.3140645.

[82] A. Albu-Schäffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, and
G. Hirzinger, “The DLR lightweight robot: design and control concepts for
robots in human environments”, Industrial Robot: An International Journal,
vol. 34, no. 5, C. Loughlin, Ed., pp. 376–385, Aug. 2007. doi:
10.1108/01439910710774386.

[83] S. Ozgoli and H. D. Taghirad, “A Survey on the Control of Flexible Joint
Robots”, Asian Journal of Control, vol. 8, no. 4, pp. 332–344, 2008. doi:
10.1111/j.1934-6093.2006.tb00285.x.

[84] B. Siciliano, “Control in robotics: open problems and future directions”, in
IEEE International Conference on Control Applications (CCA’98), vol. 1,
Trieste, 1998, pp. 81–85. doi: 10.1109/CCA.1998.728949.

[85] A. Y. C. Nee, Ed., Handbook of Manufacturing Engineering and Technology.
London: Springer London, 2013. doi: 10.1007/978-1-4471-4976-7.

[86] E. Hedberg, M. Norrlöf, S. Moberg, and S. Gunnarsson, “Comparing
Feedback Linearization and Jacobian Linearization for LQ Control of an
Industrial Manipulator”, in 12th IFAC Symposium on Robot Control
(SYROCO’18), Budapest, 2018.

[87] A. Stolt, “On Robotic Assembly using Contact Force Control and
Estimation”, Ph.D. Thesis, Lund University, 2015, isbn: 9789176234563.

[88] M. Lind, J. Schrimpf, and T. Ulleberg, “Open Real-Time Robot Controller
Framework”, in 3rd CIRP Conference on Assembly Technology and Systems
(CATS’10), Trondheim, 2010, pp. 13–18.

[89] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation”, IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, Feb. 1987. doi:
10.1109/JRA.1987.1087068.

144

[90] N. Hogan, “Impedance control of industrial robots”, Robotics and
Computer-Integrated Manufacturing, vol. 1, no. 1, pp. 97–113, Jan. 1984.
doi: 10.1016/0736-5845(84)90084-X.

[91] M. T. Mason, “Compliance and Force Control for Computer Controlled
Manipulators”, IEEE Transactions on Systems, Man, and Cybernetics (T-SMC),
vol. 11, no. 6, pp. 418–432, 1981. doi: 10.1109/TSMC.1981.4308708.

[92] S. Eppinger and W. Seering, “Introduction to dynamic models for robot
force control”, IEEE Control Systems Magazine, vol. 7, no. 2, pp. 48–52,
1987. doi: 10.1109/MCS.1987.1105274.

[93] E. Aertbeliën and J. De Schutter, “eTaSL/eTC: A constraint-based task
specification language and robot controller using expression graphs”, in
IEEE International Conference on Intelligent Robots and Systems (IROS’14),
Chicago, Sep. 2014, pp. 1540–1546. doi: 10.1109/IROS.2014.6942760.

[94] T. Kröger, On-Line Trajectory Generation in Robotic Systems, ser. Springer
Tracts in Advanced Robotics. Berlin, Heidelberg: Springer, 2010, vol. 58.
doi: 10.1007/978-3-642-05175-3.

[95] M. Norrlöf and S. Gunnarsson, “Time and frequency domain convergence
properties in iterative learning control”, International Journal of Control,
vol. 75, no. 14, pp. 1114–1126, Jan. 2002. doi:
10.1080/00207170210159122.

[96] T. Faulwasser, B. Kern, and R. Findeisen, “Model predictive path-following
for constrained nonlinear systems”, in 48th IEEE Conference on Decision and
Control (CDC’09) held jointly with 28th Chinese Control Conference
(CCC’09), Shanghai, Dec. 2009, pp. 8642–8647. doi:
10.1109/CDC.2009.5399744.

[97] T. Faulwasser, “Optimization-based solutions to constrained
trajectory-tracking and path-following problems”, Ph.D. Thesis, Otto Von
Guericke University Magdeburg, Magdeburg, 2013. doi:
10.2370/9783844015942.

[98] D. E. Whitney, “Resolved Motion Rate Control of Manipulators and Human
Prostheses”, IEEE Transactions on Man Machine Systems, vol. 10, no. 2,
pp. 47–53, Jun. 1969. doi: 10.1109/TMMS.1969.299896.

[99] N. Mansard, O. Khatib, and A. Kheddar, “A Unified Approach to Integrate
Unilateral Constraints in the Stack of Tasks”, IEEE Transactions on Robotics
(T-RO), vol. 25, no. 3, pp. 670–685, 2009. doi:
10.1109/TRO.2009.2020345.

[100] C. A. Klein and C.-H. Huang, “Review of pseudoinverse control for use with
kinematically redundant manipulators”, IEEE Transactions on Systems, Man,
and Cybernetics, vol. 13, no. 2, pp. 245–250, 1983. doi:
10.1109/TSMC.1983.6313123.

145

[101] S. Chiaverini, “Singularity-robust task-priority redundancy resolution for
real-time kinematic control of robot manipulators”, IEEE Transactions on
Robotics and Automation, vol. 13, no. 3, pp. 398–410, 1997. doi:
10.1109/70.585902.

[102] J. M. Hollerbach and K. C. Suh, “Redundancy resolution of manipulators
through torque optimization”, IEEE Journal on Robotics and Automation,
vol. 3, no. 4, pp. 308–316, 1987. doi: 10.1109/JRA.1987.1087111.

[103] A. Balestrino, G. De Maria, and L. Sciavicco, “Robust Control of Robotic
Manipulators”, IFAC Proceedings Volumes, vol. 17, no. 2, pp. 2435–2440,
Jul. 1984. doi: 10.1016/S1474-6670(17)61347-8.

[104] L. Sciavicco and B. Siciliano, “Coordinate Transformation: A Solution
Algorithm for One Class of Robots”, IEEE Transactions on Systems, Man,
and Cybernetics, vol. 16, no. 4, pp. 550–559, Jul. 1986. doi:
10.1109/TSMC.1986.289258.

[105] H. Das, J.-J. E. Slotine, and T. B. Sheridan, “Inverse kinematic algorithms
for redundant systems”, in IEEE International Conference on Robotics and
Automation (ICRA’88), Philadelphia, 1988, pp. 43–48. doi:
10.1109/ROBOT.1988.12021.

[106] C. Samson, M. Le Borgne, and B. Espiau, Robot Control: The Task Function
Approach, 1st Editio. New York: Oxford University Press, 1991.

[107] S. Moe, G. Antonelli, A. R. Teel, K. Y. Pettersen, and J. Schrimpf,
“Set-Based Tasks within the Singularity-Robust Multiple Task-Priority
Inverse Kinematics Framework: General Formulation, Stability Analysis,
and Experimental Results”, Frontiers in Robotics and AI, vol. 3, pp. 1–18,
Apr. 2016. doi: 10.3389/frobt.2016.00016.

[108] H. Hanafusa, T. Yoshikawa, and Y. Nakamura, “Analysis and Control of
Articulated Robot Arms with Redundancy”, IFAC Proceedings Volumes,
vol. 14, no. 2, pp. 1927–1932, Aug. 1981. doi:
10.1016/S1474-6670(17)63754-6.

[109] G. Antonelli, G. Indiveri, and S. Chiaverini, “Prioritized closed-loop inverse
kinematic algorithms for redundant robotic systems with velocity
saturations”, in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’09), St. Louis, Oct. 2009, pp. 5892–5897. doi:
10.1109/IROS.2009.5354636.

[110] M. C. Bjerkeng, “Sensor-Based Control of Industrial Manipulators”, Ph.D.
Thesis, Norwegian University of Science and Technology (NTNU), 2013.

[111] M. C. Bjerkeng, P. Falco, C. Natale, and K. Y. Pettersen, “Discrete-time
stability analysis of a control architecture for heterogeneous robotic
systems”, in IEEE International Conference on Intelligent Robots and Systems
(IROS’13), Tokyo, 2013, pp. 4778–4783. doi:
10.1109/IROS.2013.6697045.

146

[112] ——, “Stability Analysis of a Hierarchical Architecture for Discrete-Time
Sensor-Based Control of Robotic Systems”, IEEE Transactions on Robotics
(T-RO), vol. 30, no. 3, pp. 745–753, Jun. 2014. doi:
10.1109/TRO.2013.2294882.

[113] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots”, in IEEE International Conference on Robotics and Automation
(ICRA’85), vol. 2, St. Louis, 1985, pp. 500–505. doi:
10.1109/ROBOT.1985.1087247.

[114] B. Faverjon and P. Tournassoud, “A local based approach for path planning
of manipulators with a high number of degrees of freedom”, in IEEE
International Conference on Robotics and Automation (ICRA’87), vol. 4,
Raleigh, 1987, pp. 1152–1159. doi: 10.1109/ROBOT.1987.1087982.

[115] H. Kazerooni, T. Sheridan, and P. Houpt, “Robust compliant motion for
manipulators, part I: The fundamental concepts of compliant motion”,
IEEE Journal on Robotics and Automation, vol. 2, no. 2, pp. 83–92, 1986.
doi: 10.1109/JRA.1986.1087045.

[116] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aertbeliën,
K. Claes, and H. Bruyninckx, “Constraint-based Task Specification and
Estimation for Sensor-Based Robot Systems in the Presence of Geometric
Uncertainty”, The International Journal of Robotics Research, vol. 26, no. 5,
pp. 433–455, May 2007. doi: 10.1177/027836490707809107.

[117] M. Klotzbücher and H. Bruyninckx, “Coordinating Robotic Tasks and
Systems with rFSM Statecharts”, Journal of Software Engineering for
Robotics, vol. 3, no. 1, pp. 28–56, 2012.

[118] D. Schütz and F. M. Wahl, Eds., Robotic Systems for Handling and Assembly,
ser. Springer Tracts in Advanced Robotics. Berlin, Heidelberg: Springer,
2011, vol. 67. doi: 10.1007/978-3-642-16785-0.

[119] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann, “A new
skill based robot programming language using UML/P Statecharts”, in
IEEE International Conference on Robotics and Automation (ICRA’13),
Karlsruhe, May 2013, pp. 461–466. doi: 10.1109/ICRA.2013.6630615.

[120] F. Proctor, S. Balakirsky, Z. Kootbally, T. Kramer, C. Schlenoff, and
W. Shackleford, “The Canonical Robot Command Language (CRCL)”,
Industrial Robot, vol. 43, no. 5, pp. 495–502, 2016. doi:
10.1108/IR-01-2016-0037.

[121] T. Faulwasser and R. Findeisen, “Nonlinear Model Predictive Control for
Constrained Output Path Following”, IEEE Transactions on Automatic
Control, vol. 61, no. 4, pp. 1026–1039, Apr. 2016. doi:
10.1109/TAC.2015.2466911.

[122] S. M. LaValle, Planning algorithms. New York, NY: Cambridge University
Press, 2006.

147

[123] Z. Shiller and S. Dubowsky, “On computing the global time-optimal
motions of robotic manipulators in the presence of obstacles”, IEEE
Transactions on Robotics and Automation, vol. 7, no. 6, pp. 785–797, 1991.
doi: 10.1109/70.105387.

[124] J. Vannoy and Jing Xiao, “Real-Time Adaptive Motion Planning (RAMP) of
Mobile Manipulators in Dynamic Environments With Unforeseen Changes”,
IEEE Transactions on Robotics (T-RO), vol. 24, no. 5, pp. 1199–1212, Oct.
2008. doi: 10.1109/TRO.2008.2003277.

[125] R. Katzschmann, T. Kroger, T. Asfour, and O. Khatib, “Towards online
trajectory generation considering robot dynamics and torque limits”, in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’13), Tokyo, Nov. 2013, pp. 5644–5651. doi:
10.1109/IROS.2013.6697174.

[126] O. Brock and L. Kavraki, “Decomposition-based motion planning: a
framework for real-time motion planning in high-dimensional
configuration spaces”, in IEEE International Conference on Robotics and
Automation (ICRA’01), vol. 2, Seoul, 2001, pp. 1469–1474. doi:
10.1109/ROBOT.2001.932817.

[127] O. Brock and O. Khatib, “Elastic Strips: A Framework for Motion
Generation in Human Environments”, The International Journal of Robotics
Research, vol. 21, no. 12, pp. 1031–1052, Dec. 2002. doi:
10.1177/0278364902021012002.

[128] T. Mercy, E. Hostens, and G. Pipeleers, “Online motion planning for
autonomous vehicles in vast environments”, in IEEE 15th International
Workshop on Advanced Motion Control (AMC’18), Tokyo, Mar. 2018,
pp. 114–119. doi: 10.1109/AMC.2019.8371072.

[129] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces”,
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580,
1996. doi: 10.1109/70.508439.

[130] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP: Gradient
optimization techniques for efficient motion planning”, in IEEE
International Conference on Robotics and Automation (ICRA’09), Kobe, May
2009, pp. 489–494. doi: 10.1109/ROBOT.2009.5152817.

[131] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning”, in IEEE
International Conference on Robotics and Automation (ICRA’11), Shanghai,
May 2011, pp. 4569–4574. doi: 10.1109/ICRA.2011.5980280.

[132] M. M. G. Ardakani, B. Olofsson, A. Robertsson, and R. Johansson,
“Real-time trajectory generation using model predictive control”, in IEEE
International Conference on Automation Science and Engineering (CASE’15),
vol. 147, Gothenburg, Aug. 2015, pp. 942–948. doi:
10.1109/CoASE.2015.7294220.

148

[133] S. Chitta and I. A. Sucan, MoveIt! [Online]. Available:
http://moveit.ros.org/ (visited on 01/09/2019).

[134] A. Loria, “Observers are Unnecessary for Output-Feedback Control of
Lagrangian Systems”, IEEE Transactions on Automatic Control, vol. 61,
no. 4, pp. 905–920, Apr. 2016. doi: 10.1109/TAC.2015.2446831.

[135] N. Somani, M. Rickert, A. Gaschler, C. Cai, A. Perzylo, and A. Knoll, “Task
level robot programming using prioritized non-linear inequality
constraints”, in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’16), Daejon, Oct. 2016, pp. 430–437. doi:
10.1109/IROS.2016.7759090.

[136] A. Perzylo, N. Somani, S. Profanter, I. Kessler, M. Rickert, and A. Knoll,
“Intuitive instruction of industrial robots: Semantic process descriptions for
small lot production”, in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’16), Daejeon, Oct. 2016, pp. 2293–2300. doi:
10.1109/IROS.2016.7759358.

[137] K. Dufour and W. Suleiman, “On integrating manipulability index into
inverse kinematics solver”, in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’17), Vancouver, Sep. 2017,
pp. 6967–6972. doi: 10.1109/IROS.2017.8206621.

[138] J. Sverdrup-Thygeson, S. Moe, K. Y. Pettersen, and J. T. Gravdahl,
“Kinematic singularity avoidance for robot manipulators using set-based
manipulability tasks”, in IEEE Conference on Control Technology and
Applications (CCTA’17), Mauna Lani, Aug. 2017, pp. 142–149. doi:
10.1109/CCTA.2017.8062454.

[139] G. Antonelli, F. Arrichiello, and S. Chiaverini, “The Entrapment/Escorting
Mission”, IEEE Robotics & Automation Magazine, vol. 15, no. 1, pp. 22–29,
Mar. 2008. doi: 10.1109/M-RA.2007.914932.

[140] Acutronic Robotics, Hardware Robot Information Model. [Online].
Available: https://acutronicrobotics.com/technology/hrim/ (visited
on 01/10/2018).

[141] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator”, in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’04), vol. 3, Sendai, 2004,
pp. 2149–2154. doi: 10.1109/IROS.2004.1389727.

