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Abstract

To understand and predict the diffuse scattering of electromagnetic waves
through randomly rough surfaces is a relevant problem in many branches
of science and engineering. We have investigated the scattering of polarized
light from two-dimensional randomly rough dielectric interfaces, in order to
look for scattering patterns of interest in the angular intensity distributions
of the diffusely scattered light. The basis for our investigations has been
the reduced Rayleigh equations and their numerical solutions. Our overall
contribution is towards an increased understanding of diffuse scattering from
randomly rough surfaces, especially for three-dimensional systems where we
allow for cross-polarized scattering. This can be useful in a wide range of
optical systems, since the non-invasive method of surface characterization
through the analysis of scattering data is interesting for both industry and
research.

When light is scattered diffusely in either reflection or transmission from
or through a weakly rough interface, two phenomena of interest can be
observed in the scattering intensity distributions. These are the Yoneda
phenomenon, relatable to the idea of total internal reflection from a planar
interface, and the Brewster scattering phenomenon, relatable to the polariz-
ing angle observed for a planar interface. These scattering phenomena have
only partially been investigated in the past, and their study has been the
core of this thesis.

The Yoneda phenomenon is characterized as an enhancement of the intensity
of the light scattered diffusely by a weakly and randomly rough interface
between two dielectric media when the light is observed in the optically
denser medium. The intensity enhancement occurs above a critical angle of
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scattering which is independent of the angle of incidence of the excitation.
This critical angle is always the polar angle, in the denser medium, for
which the wavenumber of a plane wave turns non-propagating in the less
dense medium.

The Brewster scattering phenomenon is characterized by directions for which
we observe zero, or near-zero, scattered intensity in either the diffusely re-
flected or diffusely transmitted p-polarized light. These scattering angles
depend on the angle of incidence. A consequence of the directionality of
electromagnetic fields, the Brewster scattering phenomenon has been shown
to represent the major difference in the scattering distributions of diffusely
scattered s- and p-polarized light.

In this thesis we investigate these phenomena thoroughly through pertur-
bative and non-perturbative numerical and theoretical work, also with the
aid of new experimental results. We show, describe, explain and predict the
behavior of both phenomena based on a lowest non-zero order perturbative
approach, and as such we conclude that they are so-called single-scattering
phenomena. We also investigate the physical mechanisms that underpin
these phenomena, and attempt to describe them in terms of simple notions
such as scalar waves, oscillating and rotating dipoles and geometrical argu-
ments.

For a system of randomly rough dielectric film configurations on a substrate,
we investigate the appearance of Selényi interference rings in the diffusely
reflected and transmitted light. We show how the interference rings can be
explained using simple sums of optical paths, and provide a more complete
model than what is available in the literature. This work also ties in with
the Yoneda and Brewster scattering phenomena, since they explain some
of the observed results. Theory is developed and presented that can treat
multiple rough interfaces in a stack. This theory is employed numerically to
show how the interface roughness cross-correlation between two interfaces
may selectively enhance and attenuate the Selényi rings.

Lastly, when medium interfaces are randomly rough, it is of value if we
can infer the statistical properties of the roughness along with the proper-
ties of the scattering media based purely on the non-invasive scattering of
light. Through the use of numerical phase perturbation theory based on
the reduced Rayleigh equations, we investigate the reconstruction of such
properties through a minimization method based on the reflected intensity
distributions.
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To the non-physicist

We are surrounded by light being scattered from surfaces all around us,
both natural and man-made. Improving our understanding of exactly how
light interacts with and scatters from or through surfaces, such as a solar
cell, paint or a glass window, is of value and importance to both industry
and society as a whole. It gives us a better understanding of the world
around us and how we perceive it, and it can also enable us to develop new
technologies and improve upon existing ones. This thesis is a collection of
work where we have tried to better understand some of these interactions
through the use of theory, experimental results and computer simulations.

In the following, I will tell you a short introductory story about light scatter-
ing, free from equations but with some interesting (in my opinion) visuals.
Imagine a ray of light, the laser beam from a laser pointer for example, hit-
ting a surface. If the surface were a mirror, it would be reflected at the same
outgoing angle as the angle it had coming in, right? But what happens if
the surface were a more “everyday” surface like a piece of wood, a painted
wall or a piece of brushed steel? It turns out that such surfaces actually give
rise to a marvelous show, where light appear to bounce and bend in a blur
of scattered light — on a microscopic scale, that is. Imagine for a second
that you could focus that laser beam to be just a couple of micrometers
wide, and that you could observe this light show through a microscope1.
What would you see?

Computer simulations allow us to see what this would have looked like as
seen from the side, as if these were sun-rays piercing through the clouds on

1Or, equivalently, imagine that the laser beam is made up of radio waves, and that
those waves hit a mountainous landscape. It would (kind of) be the same thing!
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a rainy day. Or, in a more physics kind of wording: let’s have a look at our
scattering system seen in cross-section (from the side). We start out with
our thin laser beam bouncing off a perfectly flat metallic silver surface:

I assume the figure just above might not be entirely self-explanatory, so I’ll
explain. What we’re looking at is a simulation of a laser beam coming in at
an angle from the left. It propagates down to the metal surface and is then
reflected at the same outgoing angle to the right. The color scale shows
the brightness of the beam (the intensity of its electromagnetic field) with
red at its most intense. But wait a minute — why is the beam not equally
bright at all points across its cross-section, like a laser pointer? It turns
out that this is what a thin laser beam really looks like at a microscopic
scale. This is a Gaussian laser beam where the cross-section intensity of the
beam adheres to a Gaussian distribution (also called a normal distribution,
or a “bell curve”). By the way, all simulations have been performed on my
laptop while writing this text using home-made software.

Let us now introduce some random nano-bumps to the silver surface and
see what happens:
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Now this is more interesting. Can you see the nano-curves on the surface
at the bottom of the figure? They are only about a hundred nanometers
high2, but they really change the distribution of our reflected beam. This
is light scattering. Most of the light is still reflected into an angle similar to
the angle of the incoming light, but a good part of the beam is now spread
in all directions producing a beautifully complicated pattern. The complex
pattern is due to interference. The reflected light interacts with itself just
like waves on water, giving us varying light intensity wherever the many
electromagnetic waves that make up the light overlap.

The scattering of light into all kinds of directions from slightly rough surfaces
is called diffuse scattering of light, and this diffuse scattering is actually the
reason why you can read this text right now. All surfaces are rough at a
microscopic scale, and this is what makes the light bounce in all directions
when it interacts with such a surface in the real world. On a microscopic
scale this interaction might look similar to what we have seen in the previous
figure, but the overall macroscopic (large-scale) result of this diffuse light
scattering is that most of the surfaces we observe in our everyday lives
behave very differently from mirrors (luckily).

What happens if we replace the metallic surface with a slab of glass? We can
assume that some light should be reflected and some should be transmitted?
Let us have a look, with a slightly rougher surface as our glass-air interface:

Look closely at the glass surface. Can you see that some of the nano-bumps
on the surface act as magnifying glasses at a very small scale? We see

2If we assume that the laser is made up of visible light.
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that most of the light actually penetrates the glass, but that the smooth
incoming laser beam has become a very wide and random collection of light
waves as they continue their journey deeper into the bulk of the glass3.

The last two visuals actually do a reasonable job at showing what this the-
sis is all about4. We use well-known equations that describe how electro-
magnetic waves behave when they interact with a material interface, and
through the use of computer simulations we attempt to understand and
predict to which angles the incident light will scatter. We do depend on a
number of approximations and assumptions, of course. Our computers are
still not powerful enough to perfectly simulate reality, not even such a small
part of it. Still, we are able to describe some fairly interesting details in
how light behaves when it interacts with randomly rough surfaces, details
that seem to match well with experimental results.

“It fills me with joy to make discoveries, every day, of things
that I’ve never seen before.

— Carl Sagan

3According to the wave interpretation of light, a laser beam consists of a huge amount
of light waves (electromagnetic waves) to begin with, it’s just that they are very well
orchestrated so that they together form the smooth laser beam. Each of these waves
then interact with the glass interface, which forces many of them to “randomly” change
direction. What emerges from the interface is then a more chaotic mix of waves, and we
get the interference patterns that we observe.

4Well, the visuals are based on solutions of the extinction theorem, an exact method
but too computationally demanding to be used (in three dimensions) for the main results
presented in this thesis.
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Preface

This thesis is submitted as part of the requirements for the degree of
Philosophiae Doctor at the Norwegian University of Science and Technology
(NTNU), in Trondheim, Norway. As is common, the body of this thesis is
organized into two parts. The second part consists of the scientific papers
[1–6] submitted as the main body of work to be considered for the degree.
In the first part I present the most important concepts and motivations
behind the succeeding papers. These introductory chapters do not include
any new results, but attempts to present a more-or-less stepwise journey
through the scientific basis for the second part of the thesis together with
some discussions, details and considerations that did not naturally become
part of the included scientific papers.

“It feels good to be lost in the right direction.
— Unknown

The last years have been quite the scientific journey, and while I’m just as
fascinated by electromagnetism now as I was some years ago, I now have
a much deeper respect for how the scientific method can find its way in
the sometimes frustratingly entangled and messy landscape which is na-
ture. What is light, really? Now I know that I really do not know. I do
know, however, to fully appreciate www.phdcomics.com, hand-ground cof-
fee, supercomputers, California, www.xkcd.com, wrist support, a cozy office,
flexible working hours and vim. And, more importantly, I’ve learned that
any journey is all about the people you meet along the way. Thank you, In-
gve, for being the informal, friendly and knowledgeable supervisor you are.
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Thank you for believing in me. I believe that your journey will continue
to lead to great things both for science and for those around you. Thank
you, Tor, for being exactly the anecdotal and supportive co-supervisor I
needed. You have a great attitude towards science and also towards life,
which I find truly inspiring. Alex, thank you for welcoming me in California
and teaching me the joy of a good Zinfandel while also being a source of
scientific inspiration. Thank you for your kindness, generosity and support
as a coauthor. Dear Torstein and Jean-Philippe. Together we have climbed
some mountains and have definitely fallen into a good amount of traps.
Thank you for making the PhD journey an adventure, and thank you for
making it a laugh. I couldn’t have done it without you.

Thank you Morten S., for making everyday work more enjoyable and for
joining me down the political rabbit hole. Thank you Jacob, Sindre, Stan,
Isha, Magnus, Kristoffer, Eivind, Morten V., Thomas & Thomas, Nora,
Marianne, Arne & Arne, Elisabeth, Justin, Leander and Paul Anton for
being great colleagues in every sense of the word. Thank you Peder and
Kristin, for giving me so many chances at improving my presentation skills
and for your valuable trust and support. Thank you DION for giving me
a shot at being a politician and teaching me a lot about the human aspect
of academia, and NTNUI for letting me attempt to run a company on my
“spare time”. Thank you dear colleagues at Dept. of Physics and NTNU, for
support and a great work environment. I also want to thank Jon Andreas
and Patrick for entrusting me with the temporary title of assistant professor.
I learned a lot, about electronics and teaching, and about myself.

I am sincerely grateful for the time and effort taken on by Dr. José A.
Sánchez-Gil and Dr. Gabriel Soriano in agreeing to evaluate my work. I also
want to thank Prof. Alex Hansen for organizing the assessment committee.

Thank you, dear family, for your endless support, both during the PhD but
also during the twentysomething years leading up to it. Thank you for being
who you are. And to my dear wife... Laura, we did it! We did it together.
Thank you for inspiring me, thank you for your patience and for believing
in me. You are the best.

Øyvind S. Hetland, Trondheim, October 2018
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Chapter1
Introduction - the challenging
wonder of electromagnetism

“The dimmed outlines of phenomenal things all merge into one
another unless we put on the focusing-glass of theory, and screw
it up sometimes to one pitch of definition and sometimes to
another, so as to see down into different depths through the
great millstone of the world.

— James Clerk Maxwell

Electromagnetic waves are everywhere around us, and their interaction with
the world we live in is both a critical component of life on earth as well as a
fundamental part of the universe as we know it. From a human perspective,
light is of course all that we see, and through science we have learned to
explore both the small and the big building blocks of the universe using the
entire electromagnetic spectrum. Ranging from submarine communication
systems operating at a few oscillations per second, all the way through
visible light and to the ionizing radiation called gamma rays and further —
electromagnetic waves are a part of absolutely every part of our everyday
lives. The main reason for the ubiquity of electromagnetic waves is that they
interact so strongly with matter, both when they are created and when their
journey comes to a halt when their energy is transferred into something else.

Considering how relevant these electromagnetic waves are to us, it can be
almost surprising how little we know about their true nature. They are
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2 Introduction - the challenging wonder of electromagnetism

Figure 1.1: Rocks formations and the Dedo de Deus peak in the background, at
the Serra dos Órgãos National Park, Brazil. By Carlos Perez Couto [CC BY-SA
3.0], via Wikimedia Commons.

elusive and counter-intuitive in much of their behavior, and even if electro-
magnetic theory is considered one of the greatest successes of the human
mind, there still is a lot to learn. Creating a mental picture of the elec-
tromagnetic wave in its simplest form may not seem like a big challenge at
first. However, this so-called wave reveals itself also to behave like a mass-
less particle, the photon, for which time itself comes to a standstill. The
particle-wave duality of electromagnetic radiation has become much clearer
to us in the past century, but even with deep insights obtained through the-
ories such as quantum field theory, the rabbit hole seems to become deeper
still. The strangeness of the electromagnetic world, however, has not pre-
vented the immense success of what we now call classical electromagnetism
in general. In the rest of this thesis, we will rely on these classical advance-
ments of electromagnetic theory. Even if many aspects of electromagnetism
are scale-invariant, our main explorative probe will be visible light and our
main concern will be the diffuse scattering of this light.

1.1 When the electromagnetic waves scatter

Subjectively one might argue that the interaction between light and matter
range from the mundane to the outright beautiful. When we see a red sun



1.1. When the electromagnetic waves scatter 3

slowly disappearing behind a snowy mountain, its red rays illuminating a
blanket of clouds above us, we are witnessing a complex interaction between
electromagnetic waves in the form of light and the materials that scatter
them. We have observed these interactions on a wide variety of length scales
since the dawn of biological vision, and we are slowly learning how to de-
scribe them in the more general language of physics and mathematics. This
insight is continuously providing us with tools applicable for both science
and engineering, while also expanding into a wide range of other parts of our
lives, such as philosophy1 and entertainment2. The work presented in this
thesis is an investigation into the scattering of electromagnetic waves in the
form of visible light from weakly and randomly rough dielectric interfaces,
with an emphasis on polarization effects and behavior. For the interested
reader, Ref. 7 provides an excellent overview and introduction into the rough
surface scattering topics that are most relevant for this thesis.

We will mainly focus on diffusely scattered light3, light which for randomly
rough interfaces is (mostly) scattered away from the specular direction (di-
rection of reflection or transmission given a completely flat interface). A
strongly simplified overview of this terminology is given in Fig. 1.2, where
we see that interface roughness increases the diffuse component in both
reflection and transmission at the expense of the specular component.

What do polarized sunglasses (those that help us see when driving on a
wet road with a low sun), electronic displays of all kinds, projectors and
fiberoptic cables, windows and lasers all have in common? Many of these
technologies depend on or are affected by two well known optical phenom-
ena; total internal reflection and the gradual polarization of reflected and
transmitted light accentuated by the Brewster angle. We will, in this thesis,
aim to shed light on the diffuse scattering analogs of the two aforemen-
tioned phenomena through theoretical, numerical and experimental results
and discussions.

If you let sunlight reflect from the layer of water vapor hovering some mi-
crometers above the reflective surface of your morning cup of tea, you might

1In the author’s experience, even simple questions regarding the actual behavior of
light quickly turn into fundamental discussions on quantum mechanics and time itself.

2Computer generated graphics are closing in on so-called photo realism, even when
generated in real-time: A mix of physical insight and clever algorithms have allowed the
construction of these mathematical worlds that now are starting to look real to us, largely
based on our understanding of light scattering.

3Also called incoherently scattered light. The exact definitions of these terms are often
a topic of discussion, but this is good enough for now.
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Specular
Transmission

Specular
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Incident
Light

Diffuse
Reflection

Diffuse
Transmission

Figure 1.2: Simplified overview over the reflection and transmission of unidirec-
tional light interacting with a thin transparent slab.

observe some colored rings of light when you look into the reflection. These
rings are a variety of Selényi rings4, an interesting interference effect that
emerges when light is scattered diffusely by thin dielectric films. We in-
vestigate this effect thoroughly in this thesis, and describe the Selényi phe-
nomenon theoretically and numerically.

1.2 Outline of this thesis

The following chapters will present the most important concepts and mo-
tivations behind the succeeding papers. These introductory chapters do
not include any new results, but attempt to present a stepwise journey
through the scientific basis for the second part of the thesis. These chapters
introduce discussions, details and considerations that did not naturally be-
come part of the included scientific papers. Chapter 2 introduces classical
electromagnetic theory through Maxwells equations and also includes an
introduction to plane waves and the polarization of light. It is followed by

4These colored rings specifically are usually called Quételet rings, but are still inti-
mately connected to Selényi rings.
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Chapter 3, an introduction to the realm of surface scattering. This chap-
ter attempts to give an overview of the theoretical scattering framework
without making any assumptions on the use of the Rayleigh hypothesis. In
addition, the scattering surfaces assumed in the thesis work are introduced
along with the most important observables. Chapter 4 finalizes the theoret-
ical introduction through an introduction to the Rayleigh hypothesis and
its use in this thesis. The main theoretical framework used in the thesis
papers is derived in a brief manner. This includes the perturbative and
non-perturbative methods along with a discussion of their strengths and
weaknesses, some comments on the challenges in the numerical implemen-
tation of said methods and a discussion of the Rayleigh hypothesis. Chapter
5 introduces the physical phenomena at the core of this thesis: The Brew-
ster scattering phenomenon, the Yoneda phenomenon and Selényi rings. As
these phenomena are the subject of most of the thesis papers, this chapter
is kept rather brief. The first part of the thesis is then concluded with a
summary and some thoughts on future work in Chapter 6.



6 Introduction - the challenging wonder of electromagnetism



Chapter2
Basic electromagnetic theory

“From a long view of the history of mankind, seen from, say,
ten thousand years from now—there can be little doubt that
the most significant event of the 19th century will be judged as
Maxwell’s discovery of the laws of electrodynamics. The Ameri-
can Civil War will pale into provincial insignificance in compar-
ison with this important scientific event of the same decade.

— Richard P. Feynman (1964)

One might argue that Maxwell’s equations are not merely a collection of
equations that are useful in the scientific field of electromagnetism, but
that to some extent, electromagnetism is Maxwell’s equations. When they
were first put together by Maxwell in 1861, they were the culmination of
millennia of curious exploration. In their modern form, they still lie at the
core of our understanding of the world around us.

This chapter aims to present the main electromagnetic background theory
of the optical phenomena most relevant for this thesis. We will also start
introducing the assumptions and simplifications that eventually lead to the
equations solved in the thesis papers.

7
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2.1 Maxwell’s Equations

When James Clerk Maxwell published his seminal work “A Dynamical The-
ory of the Electromagnetic Field” [8] in 1865 much was already known about
the then-novel topics of electricity and magnetism. A series of contributions
to the understanding of these almost magical concepts had accumulated into
a new branch of science, a branch with unprecedented explanatory power
for the natural world and a wide range of practical applications. Using the
concept of fields, as popularized by Michael Faraday, Maxwell was able to
formally tie electricity and magnetism together. The result was a num-
ber of equations that became the foundation of what we know today as
“electromagnetism”. Oliver Heaviside later1 used modern vector calculus
to reformulate these equations into four equations that still serve as the
starting point for any scientific journey into electromagnetism:

∇ ·E =
1

ε0
ρ (2.1a)

∇ ·B = 0 (2.1b)
∇×E = −∂tB (2.1c)
∇×B = µ0J+ µ0ε0∂tE, (2.1d)

where E denotes the electric field and B the magnetic induction2, ε0 is
the permittivity of vacuum, µ0 the permeability of vacuum, ρ is the charge
density and J is the current density. The notation ∂t ≡ ∂/∂t denotes the
partial derivative with respect to time t. Here and in the remainder of
this thesis we will let bold symbols indicate vectors. Equations (2.1) are
Maxwell’s equations presented in their differential form, which for several
reasons is the form most convenient as a starting point for investigations of
electromagnetic scattering. The equivalent integral form is, however, often
seen as a more physically intuitive form since it has an easier macroscopic
interpretation.

“Maxwell, like every other pioneer who does not live to explore
the country he opened out, had not had time to investigate the
most direct means of access to the country, or the most sys-
tematic way of exploring it. This has been reserved for Oliver

1In 1884. For a more complete story of the post-Maxwell journey see the book “The
Maxwellians”[9].

2Also called the magnetic flux density.
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Heaviside to do. Maxwell’s treatise is cumbered with the debris
of his brilliant lines of assault, of his entrenched camps, of his
battles. Oliver Heaviside has cleared those away, has opened
up a direct route, has made a broad road, and has explored a
considerable tract of country.

— George Francis Fitzgerald (1893)

Equations (2.1) are in practice most useful for point charges in vacuum. In
order to handle the behavior of electromagnetic fields in various materials it
is therefore practical to introduce the effective fields D and H, where D is
known as the electric displacement and H is known simply as the magnetic
field:

D = ε0E+P (2.2a)
B = µ0(H+M). (2.2b)

For linear electromagnetism P, the polarization, is a function of the elec-
trical field E, and M, the magnetization, is a function of the magnetic
induction B. Assuming that these effective fields can include the proper
response of any material to an electromagnetic field, Eqs. (2.1) becomes

∇ ·D = ρf (2.3a)
∇ ·B = 0 (2.3b)
∇×E = −∂tB (2.3c)
∇×H = Jf + ∂tD, (2.3d)

where the terms ρf and Jf are referred to as the free source terms, repre-
senting the origin of the electric and magnetic fields.

Equations (2.3) are general, and in theory they allow for an almost un-
bounded range of exploration into electromagnetics. However, in this thesis
we are interested in the scattering of monochromatic plane waves by inter-
faces separating linear, isotropic, source-free, non-magnetic and homogenous
materials. This is a strong set of assumptions and simplifications, but as
with any modeling of the physical world our goal is to make our model as
simple as possible while still enabling the scientific insight we are aiming
for. In the following, we will use our assumptions regarding the limits of
our study to simplify the relevant theory to practically usable relations.

Our external fields, usually represented as electromagnetic waves of fre-
quency ω incident on the scattering interface, do not require any sources to
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be included in the system we investigate. We will simply assume that the
waves are a part of the system, letting us assume ρf = 0 and Jf = 0. For
our purposes we will also assume a stationary regime where the time depen-
dence of all fields is carried in the factor e−iωt, that is, the fields are time
harmonic with an angular frequency ω. It will therefore be advantageous
to work in the frequency domain from here on. As an example, the electric
field evaluated at a point x at time t is then

E(x, t) = E(x|ω) e−iωt. (2.4)

Hence, and in summary, we can simplify Eqs. (2.3) by letting ∂t → −iω,
ρf → 0 and Jf → 0, and from now on we will let a reference to a field as
e.g. E implicitly mean E(x|ω):

∇ ·D = 0 (2.5a)
∇ ·B = 0 (2.5b)
∇×E = iωB (2.5c)
∇×H = −iωD. (2.5d)

We now want to relate the fields and the effective fields in a simpler manner
than Eqs. (2.2), meaning that we will make some assumptions regarding the
materials we study and their field response through P and M.
Linearity: If the fields are sufficiently weak, we can assume the non-exotic
materials we study to have a proportional response to the driving fields,
i.e. D ∝ E, B ∝ H. Homogenity: For materials that appear homogenous
relative to the wavelength, the field response of the material is independent
of position as long as we are in the bulk of the material. Isoptropy: We
assume the field response of the material to be independent of the field
direction, meaning that all materials under study are isotropic. Locality
in space: It is common to assume that the field response of a material
is only dependent on the field at the same point in space as the point of
observation. The permittivity and permeability do then not depend directly
on the wavenumber k of the field in any way. Note, however, that we do
not assume locality in time: we allow the field at past times (assuming
causality) to affect the material response at a given point in space. This has
the consequence that both the permittivity and permeability are functions
of time, or, as we will assume time invariance, they will be functions of
time differences and therefore of frequency ω. This is usually summarized
by saying that the material is dispersive. The effects of dispersion are very
visible in our everyday life, as dispersion is a part of the explanation for
why things look the way they do, e.g. why some dielectric materials are
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transparent. Given the recently mentioned assumptions and simplifications,
the constitutive relations become

D(x|ω) = εr(ω)ε0E(x|ω) (2.6a)
B(x|ω) = µr(ω)µ0H(x|ω). (2.6b)

Here εr and µr are the relative permittivity and relative permeability, re-
spectively, for ε = εr(ω)ε0 and µ = µr(ω)µ0, while x represents a position
vector in Euclidian space. We will in the following assume non-magnetic
media, meaning that µr = 1. From Eqs. (2.6) it is clear that εr(ω) then
completely describes the field response of any material we may encounter,
as long as we stay true to the assumptions already made. A typical value
of the relative permittivity is the widely used value for “regular glass” and
visible light, for which εr(ω) ≈ 2.25. Given our sign convention if a mate-
rial’s permittivity has an imaginary part greater than zero, Im εr > 0, that
material is a lossy material.

2.1.1 Electromagnetic waves

Taking the curl of Eq. (2.5c) while also utilizing the simple constitutive
relations from Eqs. (2.6) provides us with

∇× (∇×E) = iµω(∇×H) (2.7)

and corresponding for Eq. (2.5d), both valid for monochromatic fields. Now
using the vector identity ∇×(∇×A) = ∇(∇·A)−∇2A together with the the
source-free divergence relations from Eqs. (2.5a) and (2.5b), we obtain the
(homogenous) Helmholtz3 equations for the electric field and the magnetic
flux in the frequency domain:

(∇2 + εµω2)E(x|ω) = 0 (2.8a)
(∇2 + εµω2)B(x|ω) = 0, (2.8b)

where ∇2 denotes the Laplace operator. These equations are valid for
homogenous, source-free, isotropic, linear media. It is here important to
note that we used Maxwell’s equations for the divergence of D and B,
Eqs. (2.5a) and (2.5b), when we derived Eqs. (2.8). Since any solution
of the Helmholtz equations must also satisfy the assumptions made in its

3Following the same procedure for the time dependent fields in Eq. (2.3) gives a variety
of the time dependent wave equations.



12 Basic electromagnetic theory

derivation, Maxwell’s equations for the divergence of D and B must also be
satisfied at all times. The most common solution to Eq. (2.8) in Euclidian
space is the plane wave solution

E(x|ω) = E eik·x, (2.9)

where the electric vector field amplitude E is a constant vector and k is the
wave vector pointing in the direction of propagation. From Eq. (2.8) it is
clear that for the plane wave to be a solution of the homogenous Helmholtz
equations the wavenumber |k| = k and the angular frequency ω must be
related by

k =
√
εµω, (2.10)

called the dispersion relation. The phase velocity of the wave is then

v =
ω

k
=

1
√
εµ

=
c

n
, (2.11)

where n =
√
εrµr is the index of refraction and c = 1/

√
ε0µ0 is the speed of

light in vacuum. Satisfying Maxwell’s equations also implies that a prop-
agating plane wave solution must be a wave for which both E and B are
perpendicular to the direction of propagation, k. All such plane wave solu-
tions are therefore transverse waves.

“We can scarcely avoid the inference that light consists in the
transverse undulations of the same medium which is the cause
of electric and magnetic phenomena.

— James Clerk Maxwell

Using only Maxwell’s equations, a unification of the electromagnetic knowl-
edge available in 1861, we have now seen what was by far the most novel
part of the equations’ introduction back then. The equations seem to sug-
gest that not only are electricity and magnetism intimately linked, but their
mutual interaction turns out to be the very fabric of which radio waves, x-
rays, gamma rays and light are made of. The speed of this transfer of energy,
these waves, is a constant c in vacuum — all assumptions aside. This speed
has turned out to be the speed of any massless elementary particle, and it is
a fundamental speed in our universe. As magnetic fields can be interpreted
as a manifestation of special relativity applied to electric fields [10], it is
maybe not so surprising to us today that electromagnetic waves travel at
the speed of light. They are, after all, maybe a fundamental resonance in
space-time itself.
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2.1.2 The electromagnetic wave as an energy carrier

We previously mentioned that, clearly, any solution of the Helmholtz equa-
tions must also satisfy the assumptions made in its derivation, namely
Maxwell’s equations as in Eq. (2.5). From this it follows that a plane wave
solution on the form given by Eq. (2.9), and its magnetic equivalent, must
also satisfy

B =
√
µε k̂× E, (2.12)

where a caret over a vector indicates that it is a unit vector. Interestingly,
we see that the magnetic flux amplitude B is proportional to √

µεE = E/v.
If we now assume k̂ to be real, we see that E and B must be in phase, and
Eq. (2.12) shows that the vector field amplitudes E and B are perpendicular
to each other in addition to being perpendicular to the direction of prop-
agation. The time-averaged flux of energy carried by such a plane wave is
then given by the real part of the complex Poynting vector [10]:

⟨S⟩t = Re

(
1

2
E×H∗

)
. (2.13)

where S is the Poynting’s vector itself, indicating both the direction and
magnitude of the flow of energy carried by the electromagnetic wave. ⟨·⟩t
represents the time average, and ∗ denotes the complex conjugate.

If k̂ is complex, the plane wave solution given by Eq. (2.9) becomes an
inhomogeneous plane wave [10]. Such waves possess exponential growth or
decay in some directions, and are a critical part of the solution space for
almost all interactions between electromagnetic waves and matter.

2.2 Polarization

Electromagnetic waves are not scalar waves like sound waves, where the
pressure gradient typically is in the direction of wave propagation. Accord-
ing to the preceding section they are transverse waves. Like sound waves,
electromagnetic waves have a direction of propagation, but unlike sound
waves the directions of the oscillating fields that they are made up of stay
at right angles to each other and with some nonzero angle with the direction
of propagation, depending on the medium in which they are traveling.

If we are merely interested in the vector directions and not their amplitudes,
it is quite common to specify only the direction of propagation, k̂ and the
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direction of the electric field Ê or the magnetic field Ĥ. The direction of
one of these fields (by convention the electric field) for a given direction of
propagation is called the polarization of the electromagnetic wave. This po-
larization might be linear, circular or elliptical, with the latter representing
the more general case. Light that is traveling in a straight line and is linearly
polarized will have its electric (and therefore also magnetic) field maintain
a fixed direction of oscillation. This direction might always be decomposed
into two directional components forming an Euclidean 2-coordinate system,
for example the two well-known orthogonal basis vectors x̂ and ŷ for a wave
traveling along the ẑ-direction. When light interacts with a material inter-
face it is common to name these directional components p and s, where p
indicates the (in our case) well defined direction parallel with the plane of
incidence or scattering: the plane defined by k̂ and the (average, or simi-
lar) interface normal n̂. The s-polarized light, where the s comes from the
German word senkrecht (eng.: perpendicular) is oriented perpendicular to
the same plane of incidence/scattering. The definitions we will use for these
polarizations will be given in the next chapter.

Light might also be circularly polarized, meaning that the two linear compo-
nents of the electromagnetic fields maintain a fixed phase difference of ±90◦

(±π/2) relative to each other. This phase difference leads to a constant
change in the direction of e.g. the electric field as it propagates through
space, making the electric field vector trace out a spiral of either right-hand
or left-hand sense relative to its direction of propagation. Elliptically polar-
ized light is the generalization of circularly polarized light where we allow
any phase difference between the two fields4.

In the quantum particle representation of light, the polarization is an in-
trinsic quantum mechanical property of any photon quantified by its spin
angular momentum, a component of its total angular momentum. There
are two such spin states for a photon: it can either spin in the right-hand
sense or the left-hand sense about its direction of travel.

4Interestingly both linear and circular polarizations might be considered to be the “fun-
damental” basis of polarization – any state of polarization can be equally well represented
by either basis.



Chapter3
The scattering problem

While electromagnetic fields are themselves interesting, understanding their
interaction with physical objects has always been one of the main goals in
studying them. One such class of interactions, and an entire branch of
physics on the metaphorical tree of science, is the interaction between elec-
tromagnetic fields and surfaces/interfaces separating different media. How-
ever, for us to be able to study this interaction through a model we need to
continue the process of introducing assumptions and simplifications started
in the previous chapter, and in order to do so we need to know what systems
and observables we are interested in. In the current work, our interest is
in a specific part of what is called the scattering problem: Given monochro-
matic light incident on a stack of n stochastically rough semi-infinite layered
media, how is the light scattered in reflection and transmission?

We will make the assumptions that we have deemed necessary to solve our
variety of the scattering problem as we go along, but we will start with a
quick summary of the assumptions that were made in the previous chapter.
First, we will limit ourselves to the use of classical physics, neglecting any
direct influence of physical quantum behavior in our model. Second, we will
assume stationarity, letting us consider time only as an implicit variable.
Third, we assume all materials of interest to be isotropic, homogeneous, lo-
cal and completely described by their frequency-dependent permittivity ε,
thereby also assuming the materials to be non-magnetic. The third assump-
tion reduces our model to one where the scattering interaction between an
electromagnetic field and our physical system is specified by the boundaries

15
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Figure 3.1: A sketch of the scattering geometry assumed in parts of this work.
The figure also shows the coordinate system used, angles of incidence (θ0, ϕ0) and
scattered reflection (θr, ϕr), and the corresponding lateral wavevectors k∥ and q∥,
respectively.

between two different materials — the interfaces1. A fourth assumption is
that we can represent any electromagnetic field as an expansion in prop-
agating and evanescent plane waves. With these assumptions we have a
model which is completely specified through the dielectric functions of its
media, the media boundaries, and what we call the incident light2.

In the following we will define the systems that we will investigate more for-
mally, along with some concepts, relations and observables that will prepare
us for the next chapter.

3.1 The scattering system

The presented work in this thesis on the scattering of light by rough inter-
faces is limited to stochastically rough interfaces where the interface profile
function is assumed to be a single-valued function of the coordinates in the
mean plane. The structure of such an interface is specified completely by its
statistical properties. Most natural and man-made surfaces in our surround-

1Note, however, that physically the entire media participate in the scattering pro-
cess. This fact might seem obvious, but it is still a source of some misconceptions and
misinterpretations, some of which are discussed in Ref. [6].

2This light is really just an imposed constraint on our final equations.



3.1. The scattering system 17

ings have some degree of random roughness at some length scale, making
the study of light scattering by such surfaces useful in many contexts.

In the current work the number of layers in the scattering models vary,
and in the following we for readability leave out the subscript j from
variables that are associated with the j-th interface in a multiple inter-
face system whenever possible. The definition of the geometry is set in
the three-dimensional space endowed with a Cartesian coordinate system
(O, ê1, ê2, ê3), with the vector plane (ê1, ê2) parallel to the mean plane of
the interfaces. In the following we will take a vector with subscript ∥ to
indicate that the vector has a zero third component, i.e. x∥ · ê3 = 0. The
origin O can be arbitrarily chosen, only affecting the complex reflection and
transmission amplitudes by an overall phase factor which plays no role in
the intensity of the scattered light. Figure 3.1 presents a simple overview
over the coordinate system, including a sample of an interface with a typical
height distribution (but with exaggerated heights).

3.1.1 Statistical description of interface roughness

“The true logic of this world is the calculus of probabilities.

— James Clerk Maxwell

The interface profile function x3 = ζ(x∥) we will use in our work is assumed
to be a single-valued function of x∥ that is differentiable with respect to x1
and x2, and constitutes a stationary, zero-mean, isotropic, Gaussian random
process. In addition to the specification of the Gaussian height distribution
of the interface we also need to know how the heights are placed relative to
each other in the x∥-plane. This property is given by

⟨ζ(x∥)ζ(x ′
∥)⟩ = δ2W (|x∥ − x∥

′|), (3.1)

where W (x∥) is the isotropic surface height autocorrelation function, nor-
malized so that W (0) = 1. The angle brackets here and in all that follows
denote an average over an ensemble of realizations of the surface profile
function ζ(x∥). The root-mean-square height of the surface is given by

δ = ⟨ζ2(x∥)⟩
1
2 . (3.2)
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Figure 3.2: Examples of realizations of randomly rough interfaces, shown as ζ(x1)
for a randomly selected value of x2. Both realizations have the same rms height
δ = 32nm and a Gaussian correlation function, but the transverse correlation
length of the interface roughness is (a) a = λ/4 = 158 nm, (b) a = λ = 632 nm.
The rms height ±δ is illustrated as stipled black lines.

The surface profile function has a Fourier integral representation,

ζ(x∥) =

∫
d2Q∥

(2π)2
ζ̂(Q∥) exp(iQ∥ · x∥), (3.3)

where Q∥ = (Q1, Q2, 0) is a two-dimensional wave vector. By Fourier inver-
sion we find that the coefficient ζ̂(Q∥) is given by

ζ̂(Q∥) =

∫
d2x∥ζ(x∥) exp(−iQ∥ · x∥), (3.4)

and it also constitutes a zero-mean Gaussian random process defined by

⟨ζ̂(Q∥)ζ̂(Q
′
∥)⟩ = (2π)2δ(Q∥ +Q′

∥)δ
2g(|Q∥|), (3.5)

where the power spectrum of the surface roughness g(|Q∥|) is defined by

g(|Q∥|) =
∫

d2x∥W (x∥) exp(−iQ∥ · x∥). (3.6)
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For W (|x∥|) and g(|Q∥|) we assume either the Gaussian form

W (|x∥|) = exp

(
−
x∥

2

a2

)
(3.7a)

g(|Q∥|) = πa2 exp

(
−
a2|Q∥|2

4

)
, (3.7b)

or the exponential form

W (|x∥|) = exp
(
−
x∥

a

)
(3.8a)

g(|Q∥|) =
2πa2(

1 + a2|Q∥|2
) 3

2

. (3.8b)

where the characteristic length a is the transverse correlation length of the
surface roughness. Figure 3.2 shows two examples of realizations of a cross-
section of such a two-dimensional interface profile ζ(x1, x2), for the Gaussian
form of W (|x∥|). The two realizations share rms height δ = 34nm, but
illustrate the differences in ζ for the transverse correlation lengths a =
λ/4 = 158 nm [Fig. 3.2(a)] and a = λ = 632 nm [Fig. 3.2(b)]. These surface
profiles were generated by the Fourier filtering method (see Refs. 11 and
12), the method that has been used in all papers included with this thesis.

Figure 3.3 presents the power spectra corresponding to the interfaces from
Fig. 3.2, as defined by Eq. 3.6 and with the Gaussian form presented in
Eq. (3.7). As is to be expected, a longer transverse correlation length a
leads to a more narrow power spectrum, since the interface profile from
a Fourier perspective is then represented by a superposition of (relatively
speaking) smaller wavenumbers.

3.1.2 Single interface systems

The simplest system to study consists of a single interface: a dielectric
medium (medium 1), whose dielectric constant is ε1, in the region x3 >
ζ(x∥), and a dielectric medium (medium 2), whose dielectric constant is
ε2, in the region x3 < ζ(x∥) [Fig. 3.1]. This system is the only system
considered in the papers included as Refs. 1, 2, 4 and 6.
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Figure 3.3: Power spectra, as defined in Eq. (3.6), for the corresponding profiles in
Fig. 3.2. The spectra therefore have the Gaussian form presented in Eq. (3.7)(b),
and are normalized to unity.

3.1.3 Film/multilayer systems

Multilayered systems, such as a thin film suspended on a substrate, can
give rise to rich scattering phenomena. A natural extension of the single
interface system is therefore that of a stack of dielectric media, with several
randomly rough and/or planar interfaces. We let each medium interface j,
separating media j and j + 1, be represented by an offset interface profile
function

hj(x∥) = dj + ζj(x∥) (3.9)

where dj = ⟨hj⟩ denotes the average of the jth profile and can be though of
as an offset from the origin. A system with three media and two interfaces
will then have a dielectric medium whose dielectric constant is ε1 in the
region x3 > h1(x∥), a dielectric medium whose dielectric constant is ε2 in
the region h2(x∥) < x3 < h1(x∥) (the film), and a dielectric medium whose
dielectric constant is ε3 in the region x3 < h2(x∥). An instance of the most
general such system, one where both the interfaces are rough, is displayed in
Fig. 3.4. This system geometry is the only system considered in the papers
included as Refs. 3 and 5.
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Figure 3.4: Simple schematic of a typical film system with three media and two
rough interfaces.

3.2 Rough interface scattering

We have now defined the systems that are of core interest for the work pre-
sented in this thesis, namely the scattering of plane electromagnetic waves
from interfaces separating semi-infinite media. The remainder of this chap-
ter will attempt to describe and introduce some topics that will be useful
in the next chapter, but that are relevant for several different methods of
analysis.

3.2.1 Fields in semi-infinite media

We know that a solution to the Helmholtz equations, Eqs. (2.8), in general
can be written as a linear combination of plane waves, each of them in the
form of Eq. (2.9). If we now consider the total far field in each of our media
(both semi-infinite and bounded, but far away from any material boundary),
characterized by εj , we can express this linear combination of plane waves
as

Ej(x) =
∑
a=±

∫
R2

d2q∥

(2π)2
[
Ea
j,p(q∥) ê

a
p,j(q∥) + Ea

j,s(q∥) ês(q∥)
]

× exp
(
iqa

j (q∥) · x
)
, (3.10)
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Figure 3.5: Illustration of some normal and tangential vectors at some points on
a boundary profile ζ typical for the work presented in this thesis. The arrows
indicating the vector directions are normalized, and of uniform but arbitrary length.

and similarly for Hj , where we have defined

αj(q∥) =

√
εj

(ω
c

)2
− q∥2, Re (αj), Im (αj) ≥ 0 (3.11a)

q±
j (q∥) = q∥ ± αj(q∥) ê3 (3.11b)
ês(q∥) = ê3 × q̂∥ (3.11c)

ê±p,j(q∥) =
c

√
εjω

(
±αj(q∥)q̂∥ − q∥ ê3

)
. (3.11d)

Equations (3.11) show that the wave vector q±
j (q∥) of an elementary plane

wave is decomposed into its projection q∥ in the lateral vector plane [(ê1, ê2),
the plane of the mean interface profile indexed by j] and the component
±αj(q∥) along ê3. The sum for a = ± takes into account both upwards
(+) and downwards (−) propagating and evanescent waves. The field
amplitude of argument q∥ is decomposed in the local polarization basis
(êap,j(q∥), ês(q∥)). Hence, Ea

j,α(q∥) denotes the component of the field am-
plitude in the polarization state α of the mode characterized by a and q∥.
In this basis, the directions given by ê±p,j(q∥) and ês(q∥) are the directions
of the p- and s-polarization of the electric field amplitude, respectively.

The field expansion in Eq. (3.10) is complete, as it does not introduce any
assumptions or limitations on the fields other than those already mentioned
in previous sections. Since we have stated that we so far stay far away from
any material boundary, we have not yet invoked the Rayleigh hypothesis
[Sec. 4.1], which under certain conditions allows us to use expansions like
those in Eq. (3.10) also to satisfy boundary conditions.



3.2. Rough interface scattering 23

3.2.2 Boundary conditions

General electromagnetic fields described by field vectors E and H have to
satisfy the following boundary conditions at any interface j separating two
media, identified by indices j and j + 1, of different permittivity:

nj(x∥)×
[
Ej+1(sj(x∥))−Ej(sj(x∥))

]
= 0 (3.12a)

nj(x∥)×
[
Hj+1(sj(x∥))−Hj(sj(x∥))

]
= 0 , (3.12b)

where nj(x∥) is a vector normal to the interface at the (single valued) surface
point sj(x∥) = x∥ + ζj(x∥)ê3, given by

n(x∥) = ê3 −
∂ζ

∂x1
(x∥) ê1 −

∂ζ

∂x2
(x∥) ê2 . (3.13)

Here, ∂ ·/∂xi denotes the partial derivative along the direction êi. Figure 3.5
illustrates some normal and tangential vector directions for some points on
a boundary profile typical in this thesis.

3.2.3 Scattering amplitudes

We will in the next chapter see that we may use field expansions like
Eq. (3.10) and the recently mentioned boundary conditions, under certain
assumptions and conditions, to relate plane waves incident upon our in-
terface(s) to scattered plane waves leaving our interface(s). The Green’s
function is principally the most exhaustive characteristic of a given scatter-
ing problem, in the sense that it in principle can relate sources and resulting
fields in all of space. However, in light scattering investigations using what
is generally known as the scattering amplitude (SA)[13] often suffices. It is
closely related to the relevant Green’s function, but it is now assumed that
both the source and the observer are at infinity. In practice we therefore
investigate our scattering system using linear superpositions of plane waves
where we exploit the symmetry of our scattering interface having an average
boundary, and we limit our investigations to the far field.

Let now E±
j (q∥) = (E±

j,p(q∥), E±
j,s(q∥))

T denote a column vector of the polar-
ization components of the scattered plane wave field amplitudes in medium
j, uniquely identifying the scattering direction through the lateral wave vec-
tor q∥. Let us also, for reasons to become apparent later, assume that the
field amplitude vector E0 describes the field amplitudes of the only plane
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wave incident on the scattering system, with its direction determined by
the incident lateral wave vector k∥. In the current context of light scatter-
ing we are not as interested in the scattered plane wave field amplitudes
themselves as we are in the ratios of the scattered field amplitudes to the
incident field amplitudes. To this end we assume that the scattered field
amplitudes are linearly related to the incident field amplitude E0 via the
reflection [R(q∥|k∥)] and transmission [T(q∥|k∥)] amplitudes, defined as

E+
1 (q∥) = R(q∥|k∥)E0 (3.14a)

E−
t (q∥) = T(q∥|k∥)E0, (3.14b)

where E+
1 (q∥) and E−

t (q∥) represent the field amplitudes for plane waves
propagating away from the scattering system in the semi-infinite medium
of reflection or transmission, respectively. In writing E−

t the subscript t is
therefore meant to indicate that the medium in question is the final medium
in the stack.

The matrix valued amplitudes R and T essentially tell us how the scat-
tered field originating from an incident plane wave with wavenumber k∥ is
distributed by the scattering system. The reflection and transmission am-
plitudes are then necessarily described by 2×2 matrices, so that for X = R
or T

X =

(
Xpp Xps

Xsp Xss

)
. (3.15)

Under the mentioned assumption of linearity the physical interpretation
of R and T is fairly straightforward. The coefficients Rαβ(q∥|k∥) and
Tαβ(q∥|k∥), where α, β ∈ {p, s}, are the field amplitudes for the reflected
and transmitted light, respectively, with lateral wave vector q∥ in the polar-
ization state α, generated by a unit incident field with lateral wave vector
k∥ in the polarization state β.

3.3 Observables

From the knowledge of the scattering amplitudes R and T the mean differ-
ential reflection/transmission coefficient, the reflectivity/transmissivity, and
the reflectance/transmittance can be calculated. These observables repre-
sent quantities that are physically observable, which (in principle) can be
measured experimentally. We will in the following assume that medium 1



3.3. Observables 25

is the medium of incidence, and hence also the medium of reflection. The
constant S will be used to denote the area of the x1x2-plane covered by the
randomly rough interface(s).

3.3.1 The mean DRC/DTC

The differential reflection coefficient (DRC) ∂R/∂Ωr is defined such that
(∂R/∂Ωr) dΩr is the fraction of the total time-averaged flux (power) in-
cident on the interface that is scattered in reflection into the element of
solid angle dΩr about the scattering direction defined by the polar and
azimuthal scattering angles (θr, ϕr). For the scattering system geometries
presented earlier in this chapter, the lateral wave vectors k∥ and q∥ can be
expressed in terms of the polar and azimuthal angles of incidence (θ0, ϕ0)
and reflection (θr, ϕr), respectively, by

k∥ =
√
ε1

ω

c
sin θ0(cosϕ0, sinϕ0, 0) (3.16a)

q∥ =
√
ε1

ω

c
sin θr(cosϕr, sinϕr, 0), (3.16b)

so that dΩr = sin θr dθr dϕr. As we are dealing with scattering from a
randomly rough interface, it is the average of the DRC over the ensemble of
realizations of the surface profile function that we need to calculate. This
is the mean DRC (MDRC), which is defined by⟨

∂Rαβ(q∥|k∥)

∂Ωr

⟩
=

1

S
ε1

1

(2π)2

(ω
c

)2 cos2 θr
cos θ0

⟨∣∣Rαβ(q∥|k∥)
∣∣2⟩

=
1

S

√
ε1

1

(2π)2

(ω
c

) α1(q∥)
2

α1(k∥)

⟨∣∣Rαβ(q∥|k∥)
∣∣2⟩ , (3.17)

where the full derivation is given in the papers included as Refs. 2 and 5.

The differential transmission coefficient (DTC) ∂T/∂Ωt is defined in a com-
pletely analogous fashion; (∂T/∂Ωt) dΩt is the fraction of the total time-
average flux (power) incident on the interface that is scattered in trans-
mission into the element of solid angle dΩt about the scattering direction
defined by the polar and azimuthal scattering angles (θt, ϕt). For the case
when we are interested in the MDTC Eq. (3.16a) still holds true, but we
now have that

q∥ =
√
εt
ω

c
sin θt(cosϕt, sinϕt, 0), (3.18)
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where εt is the dielectric constant in the semi-infinite medium of transmis-
sion, so that dΩt = sin θt dθt dϕt. For this and several other reasons we tend
to use lateral wave vectors in our equations rather than angles. The mean
DTC is defined by⟨

∂Tαβ(q∥|k∥)

∂Ωt

⟩
=

1

S

ε
3/2
t

ε
1/2
1

1

(2π)2

(ω
c

)2 cos2 θt
cos θ0

⟨∣∣Tαβ(q∥|k∥)
∣∣2⟩

=
1

S

√
εt

1

(2π)2

(ω
c

) αt(q∥)
2

α1(k∥)

⟨∣∣Tαβ(q∥|k∥)
∣∣2⟩ , (3.19)

where the full derivation is given in the papers included as Refs 4 and 5.

If we write the scattering amplitude Xαβ(q∥|k∥), where X is R or T , as the
sum of its mean value and the fluctuation from this mean,

Xαβ(q∥|k∥) =
⟨
Xαβ(q∥|k∥)

⟩
+
[
Xαβ(q∥|k∥)−

⟨
Xαβ(q∥|k∥)

⟩]
, (3.20)

then each of these two terms contributes separately to the mean DRC/DTC:⟨
∂Xαβ(q∥|k∥)

∂Ω

⟩
=

⟨
∂Xαβ(q∥|k∥)

∂Ω

⟩
coh

+

⟨
∂Xαβ(q∥|k∥)

∂Ω

⟩
incoh

, (3.21)

where the former term describes the coherent (specular) contribution and
the latter term describes the incoherent (diffuse) contribution.

3.3.2 Reflectivity and reflectance

We define the reflectivity, Rα(θ0), for polar angle of incidence θ0 and light of
α polarization to be the co-polarized light reflected coherently by the rough
interface:

Rα(θ0) =

∫ π
2

0
dθr sin θr

∫ π

−π
dϕr

⟨
∂Rαα(q∥|k∥)

∂Ωr

⟩
coh

=
∣∣Rα(k∥)

∣∣2 . (3.22)

The function Rα(k∥) can be obtained via the following result:

⟨Rαβ(q∥|k∥)⟩ = (2π)2δ(q∥ − k∥)δαβRα(k∥), (3.23)

where the presence of the delta function is due to the stationarity of the
randomly rough surface; the Kronecker symbol δαβ arises from the conser-
vation of angular momentum in the scattering process; and the result that
Rα(k∥) depends on k∥ only through its magnitude is due to the isotropy of
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the random roughness. We then obtain Rα(k∥) with the aid of the result
that (2π)2δ(0) = S (for a surface of finite area), in the form

Rα(k∥) = Rα

(√
ε1

ω

c
sin θ0

)
=

1

S

⟨
Rαα(k∥|k∥)

⟩
. (3.24)

In addition to the reflectivity (3.22) it is also of interest to introduce the
reflectance for β-polarized light defined as

Rβ(θ0) =
∑
α=p,s

Rαβ(θ0), (3.25a)

where

Rαβ(θ0) =

∫ π
2

0
dθr sin θr

∫ π

−π
dϕr

⟨
∂Rαβ(q∥|k∥)

∂Ωr

⟩
. (3.25b)

In short, the reflectance measures the fraction of the power flux incident
on the rough surface that was reflected by it, taking both specularly and
diffusely reflected light into account. In view of Eq. (3.21), the reflectance is
the sum of a contribution from light that has been reflected coherently and a
contribution from light that has been reflected incoherently by the rough in-
terface, Rβ(θ0) = Rβ(θ0)coh+Rβ(θ0)incoh, and both co- and cross-polarized
reflected light contribute. Since cross-polarized coherently reflected light
is not allowed the coherent contribution to the reflectance for β-polarized
light equals the reflectivity for β-polarized light; Rβ(θ0)coh = Rβ(θ0). Equa-
tion (3.25a) can therefore also be written in the form

Rβ(θ0) = Rβ(θ0) +
∑
α=p,s

Rαβ(θ0)incoh. (3.26)

If the incident light is not purely p- or s-polarized, the reflectance and
the reflectivity of the rough surface will have to be calculated on the basis
of weighted sums of the expressions in Eqs. (3.22) and (3.26), where the
weights reflect the fractions of the different polarizations contained within
the incident light.

In an analogous fashion we may also define the transmittance, Tαβ(θ0) as the
fraction of the power flux incident on the rough surface that is transmitted
through it, and transmissivity, Tα(θ0), as the fraction of the power flux
incident on the rough surface that is transmitted coherently and co-polarized
through it. The full derivations of these latter observables can be found in
the paper included as Ref. [4].
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3.4 Conservation of energy

In all cases of scattering systems where all media are lossless, the total
energy scattered in both reflection and transmission relative to the incident
wave should be preserved [14]. While we emphasize that this is a necessary,
but not sufficient, condition for the correctness of our numerical calculations,
it is nevertheless a useful and practical sanity check that is easy to perform.

The fraction of the incident power, as light of polarization β, that is scat-
tered in reflection and transmission in polarization α, is given by the inte-
grals of the DRC/DTC over the two semi-infinite upper and lower hemi-
spheres:

Uαβ =

∫
dΩr

∂Rαβ

∂Ωr
+

∫
dΩt

∂Tαβ

∂Ωt
. (3.27)

If now all media in the system are non-absorbing and the incident light has
polarization β, one should have

Uβ =
∑
α

Uαβ = 1, (3.28)

since energy is conserved in the scattering process. The first term in
Eq. (3.27) represents the energy scattered in reflections, so for a sys-
tem where the semi-infinite medium of the substrate is a lossless metal
[Re εt < 0] or a perfect electric conductor this term is the only term con-
tributing to U . If then all other media in the system are also lossless, we
have a condition called unitarity, where Eq. (3.28) should sum to one based
on reflection alone.

If not all media in the system are lossless, one might correct Eq. (3.28) to
include an absorption term. This term is, however, not straightforward to
obtain in a rigorous way [7].

3.5 Solving the scattering problem

The review article by Elfouhaily et al. [15], written in 2004, is an excellent
source for a thorough and consistent comparison of a wide range of scattering
approximations. They include tables that compare ≈ 20 different methods.
They interestingly, but maybe not surprisingly, conclude that there is no one
method that stands out — they all have strengths and weaknesses. Hence,



3.5. Solving the scattering problem 29

they also state that the work on good approximative scattering methods is
far from concluded.

The remainder of this thesis will primarily rely on methods based on the
Rayleigh equations.
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Chapter4
The reduced Rayleigh equation

“The history of science teaches only too plainly the lesson that
no single method is absolutely to be relied upon, that sources of
error lurk where they are least expected, and that they may
escape the notice of the most experienced and conscientious
worker.

— Lord Rayleigh

The Rayleigh hypothesis is, and has been, a successful cornerstone approx-
imation in several models and methods used for the calculation of wave
scattering from rough surfaces, both perturbative and non-perturbative.
Historically it is maybe best known from one of the oldest and most pop-
ular methods, namely the expansion of the scattering amplitudes to an
arbitrary order in a small height parameter. This method is often termed
the Small Perturbation Method (SPM) or the Rayleigh method, but it exists
in a myriad of varieties and is known under many names [15]. The Rayleigh
equations are at the origin of this method. They are a set of coupled in-
tegral equations that under the Rayleigh hypothesis connect the (known)
boundary conditions, our knowledge of the exciting field (the incident light),
the scatterers and the materials with the unknown: the scattering ampli-
tudes of reflection and transmission in the different propagating and non-
propagating directions possible. The Rayleigh equations are the starting
point for many different perturbative methods, but they can also be used to
obtain numerical methods that are non-perturbative. They are themselves

31
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only approximative due to their dependence on the Rayleigh hypothesis,
which we will describe in detail later in this chapter.

The reduced Rayleigh equations are a rewriting of the Rayleigh equations
that allows us to calculate either the reflection amplitudes or the transmis-
sion amplitudes directly, without caring about the other quantity explicitly.
They were first proposed by Toigo et al. in 1977 [16], where they were derived
with the help of, and also extensively compared to, the exact method based
on the Ewald-Oseen extinction theorem [17–19]. This work was further de-
veloped by Brown et al. in 1985 [20]. The equations were later re-derived
for the case of a multi-layered stack of rough surface slabs by Soubret et al.
[21]. They used these equations to obtain more compact formulations of the
scattering amplitudes under the Rayleigh method to third order, and solved
these for the case of a single randomly rough interface separating a metal or
dielectric and vacuum. In the last three decades numerous works have been
based on the reduced Rayleigh equations, both through their perturbative
expansions but also through their direct numerical solution. The review
article by Simonsen [7] gives a thorough overview of their use leading up to
2009, while some more recent works in two dimensions can be found in e.g.
Refs. 2–4, 12, 22–26.

In the following we will first summarize the main assumptions made in
the Rayleigh hypothesis, followed by a summary of the derivation of the
reduced Rayleigh equations for the system configurations relevant to this
thesis. These equations serve as an excellent starting point for perturbative
methods, and two such methods will be introduced in Sections 4.3 and 4.4.
Finally, we end the chapter with an introduction to the non-perturbative
method based on the reduced Rayleigh equations and some discussions on
its accuracy, limitations and computational requirements.

4.1 The Rayleigh Hypothesis

There are a plethora of theories and assumptions available to choose from
when studying light scattering from rough interfaces, but a common one is
the Rayleigh hypothesis [27, 28]. It serves as a simplifying link between the
(exact) boundary conditions at the scattering interface and the (easy to han-
dle) asymptotic, far-field, outgoing representations of the plane wave elec-
tromagnetic fields. Below the highest point of our interface x3 = max ζ(x∥)
and above the lowest point on the same interface x3 = min ζ(x∥), the region
called the selvedge region, we are at risk of having the different plane waves
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interact in such a way that we need to let our scattered waves propagate both
upward and downward in both the medium of incidence and transmission.
The Rayleigh hypothesis simply lets us assume that it is good enough to let
the incident plane wave(s) be the only plane wave(s) propagating towards
the interface from infinity. It then follows to assume that the scattered field
in transmission or reflection is sufficiently described through a superposition
of plane waves propagating away from the top/bottom interface(s).

The Rayleigh hypothesis is a widely used assumption, in the sense that it
has been applied to a rich variety of scattering problems yielding correct
results [7, 14]. For many methods, especially those designed to rely on
it, it provides a significant mathematical and numerical simplification. It
does, however, introduce an assumption into the scattering model which is
challenging to quantify. Much work and attention has been given to the
discussion of the exact limits of validity of the Rayleigh hypothesis, and
while a full discussion on this topic is well outside the scope of this thesis
we believe that Refs. 29–37, and recently also Ref. 38, might serve as good
starting points for the interested reader. Historically the hypothesis has
been much discussed in relation to the various perturbative methods that
rely on it, such as the small amplitude perturbation method and its cousins,
and some references for the validity discussion is therefore given in Sec. 4.3.
In general, and irrespective of material, there is some consensus on the
“safe” criterion

δ

a
≪ 1 (4.1)

for the validity of the Rayleigh hypothesis, where δ is the rms height and
a is the transverse correlation length of a given interface. Some authors
prefer the essentially similar condition on the gradient of the interface profile
function

∇ζ(x∥) ≪ 1. (4.2)

Both of these formulations of the condition of validity depend on the slopes
of the interface profile.

We would like to mention that most attempts at a circumvention of the
Rayleigh hypothesis, for similar scattering problems as the ones presented
in this thesis, are mainly based on the Ewald-Oseen extinction theorem and
therefore lead to integral equation methods that are in principle similar to
each other [39]. Interestingly, when these integral equations are evaluated in
a perturbative manner it has been verified that they, to second order in the
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small roughness parameter, are identical to the more classical perturbation
method described in Sec. 4.3 which is indeed dependent on the Rayleigh
hypothesis [40]. This fact has been used to lend credibility to the argument
that the Rayleigh hypothesis can lead to methods with wider applicability
than the strict correctness of the hypothesis itself, at least in an asymptotical
sense.

Recent contributions by A. V. Tishchenko, summarized in Ref. 35 and writ-
ten in a popular form in Ref. 41, has carried the title “Rayleigh was right”. In
this work it is argued that, based on investigations of diffraction gratings,
the Rayleigh hypothesis has been underestimated and slightly misunder-
stood during the last fifty years. A main takeaway from these discussions
might be that the Rayleigh hypothesis rarely is the only assumption and
approximation made in scattering studies, especially numerical studies, so
that the physical validity of the hypothesis itself is a question difficult to
untangle. We will not delve any further into this interesting discussion here,
but rather treat the Rayleigh hypothesis as an assumption that we handle
with care.

4.2 Brief derivation of the reduced Rayleigh equa-
tions

We will now use the boundary equations to link the total field expansions
in two media separated by an (infinite) interface. This is a step in the di-
rection of the Rayleigh equations, and whether this step in itself requires
the Rayleigh hypothesis (Sec. 4.1) is an unresolved topic of scientific discus-
sion. Following this first step we will make some definitions on what we call
the incident field in our model, and obtain relations for the reflection and
transmission amplitudes followed by the reduced Rayleigh equations that
enable their calculation separately.

4.2.1 The plane wave transfer equations

Following the general method by Soubret et al. [21], we now substitute the
field expansion given by Eq. (3.10) into the boundary conditions given by
Eq. (3.12b) through the use of a linear integral combination of the bound-
ary conditions. The combinations necessary to obtain the final result were
inspired by the extinction theorem [19], which in turn has been proven to
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be a consequence of Maxwell’s equations themselves [18]. The end result,
connecting the general plane waves represented by Eq. (3.10) in medium j
and medium j + 1 across an interface with no overhangs is∑

aj=±

∫
d2q∥

(2π)2
J aj+1,aj
j+1,j (p∥|q∥)M

aj+1,aj
j+1,j (p∥|q∥)E

aj
j (q∥)

=
2aj+1

√
εjεj+1αj+1(p∥)

εj+1 − εj
Eaj+1

j+1 (p∥). (4.3)

Here p∥ is an arbitrary vector in the plane of the interface, and Ea
j (q∥) =

(Ea
j,p(q∥), Ea

j,s(q∥))
T denotes a column vector of the polarization components

of the field amplitude in medium j. The matrix Mb,a
l,m(p∥|q∥) is a 2 × 2

matrix which originates from a change of coordinate system between the
local polarization basis (êbp,l(p∥), ês(p∥)) and (êap,m(q∥), ês(q∥)), defined for
a = ±, b = ± and l,m ∈ {j, j + 1} such that l ̸= m as

Mb,a
l,m(p∥|q∥) =

√
ε1ε2

ω2

c2

(
êbp,l(p∥) · êap,m(q∥) êbp,l(p∥) · ês(q∥)

ês(p∥) · êap,m(q∥) ês(p∥) · ês(q∥)

)
. (4.4)

The kernel scalar factor J b,a
l,m(p∥|q∥) encodes the surface geometry and is

defined as

J b,a
l,m(p∥|q∥) =

(
bαl(p∥)− aαm(q∥)

)−1

×
∫

d2x∥ exp
[
−i(qb

l (p∥)− qa
m(q∥)) · (x∥ + ζj(x∥)x̂3)

]
, (4.5)

where we have again used several definitions from Eqs. (3.11). The inter-
face profile function ζ(x∥), and thereby also any information regarding the
interface roughness, enters Eq. (4.3) solely through the kernel scalar factor.
The numerator in Eq. (4.5) is called the I-integral in some of the papers
included in this thesis.

In Eq. (4.3) the field amplitude under the integral is the amplitude in
medium j. We will see later that this equation therefore is best suited
for the calculation of reflection amplitudes. However, due to the symmetry
in the boundary conditions [21] one may also show that∑

aj+1=±

∫
d2q∥

(2π)2
J aj ,aj+1

j,j+1 (p∥|q∥)M
aj ,aj+1

j,j+1 (p∥|q∥)E
aj+1

j+1 (p∥)

=
2aj

√
εjεj+1αj(p∥)

εj − εj+1
Eaj
j (p∥), (4.6)
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which is similar to Eq. (4.3) but with an interchange of j and j + 1. Equa-
tion (4.6) is best suited for the calculation of transmission amplitudes.

Equations (4.3) and (4.6) can be combined to represent transfers of plane
waves through systems made up of an arbitrary number of layers. In Ref. 5
this is done for a film geometry in such a way that the field amplitudes in
the film itself becomes implicit in the equations, enabling the calculation of
reflection and transmission amplitudes from the system as a whole. In the
following we will keep the equations as general as practically possible with
respect to the two system geometries mentioned in Secs. 3.1.2 and 3.1.3, but
in order to maintain readability we will primarily discuss the single interface
case. For specifics on the equations related to film geometries, see Refs. 3
and 5 (included in this thesis).

4.2.2 The incident field, reflection and transmission

The way they stand, Eqs. (4.3) and (4.6) offer no unique solutions for the
field amplitudes in either medium. We have assumed that we can satisfy the
boundary conditions at an (infinite) interface through an expansion in plane
waves, where we include both propagating and non-propagating waves. A
suitable constraint on the equations is needed, and in our case we achieve
this by introducing a simple plane wave as our incident field. Under the
Rayleigh hypothesis we may assume this plane wave to be the only plane
wave approaching the interface, forcing all other field amplitudes to describe
plane waves leaving the interface. This is a significant simplification, which
is only valid for weakly rough interfaces as discussed in Sec. 4.1.

In our investigations we define the following incident field, a plane wave
incident in medium 1:

E0(x) =
[
E0,p ê−p,1(k∥) + E0,s ês(k∥)

]
exp

(
ik−

1 (k∥) · x
)
, (4.7)

where k−
1 is the wave vector of the incident plane wave and k∥ is its projec-

tion onto the plane of the mean interface. We now ensure that this incident
plane wave is the only wave approaching the rough interface in our model
by defining the field amplitudes

E−
1 (q∥) = (2π)2δ(q∥ − k∥)E0 (4.8a)

E+
2 (q∥) = 0, (4.8b)

where E0 = (E0,p, E0,s)T. We would like to reiterate on an important point:
the Rayleigh hypothesis is explicitly invoked when we now assume that it is
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physically correct still, even after the above assumptions, to use Eqs. (4.3)
and (4.6).

Now, in the current context we are not as interested in the field amplitudes
as we are in the ratios of the field amplitudes, and to this end we assume that
the scattered field amplitudes are linearly related to the incident field ampli-
tude E via the reflection and transmission amplitudes. These are R(q∥|k∥)
and T(q∥|k∥) from Sec. 3.2.3, defined as

E+
1 (q∥) = R(q∥|k∥)E0 (4.9a)

E−
t (q∥) = T(q∥|k∥)E0, (4.9b)

where we recall from Sec. 3.2.3 that the amplitude matrices R and T es-
sentially tell us how the scattered field originating from an incident plane
wave with wavenumber k∥ is reflected and transmitted, respectively. Un-
der the assumptions made so far and when the incident field is known, the
scattering amplitude R (T) completely specifies the field above (below) the
maximum (minimum) point on the first (last) interface.

These amplitudes are the unknowns we seek, since they easily can be
converted into physically observable quantities like the mean differential
reflection and transmission coefficients (MDRC/MDTC), as presented in
Sec. 3.3.1.

4.2.3 The Reduced Rayleigh Equations

We are now ready to obtain the final equations of interest, relating the geom-
etry, materials and incident plane wave to either the reflection or transmis-
sion amplitudes directly. In order to obtain the reflection amplitudes for a
single rough interface, we merely choose aj+1 = a2 = + in Eq. (4.3) and ap-
ply the assumptions given by Eqs. (4.8) and (4.9). If we are interested in the
transmission amplitudes for a single rough interface we choose aj = a1 = −
in Eq. (4.6) and again apply the assumptions given by Eqs. (4.8) and (4.9).
The end result is the reduced Rayleigh equations (RREs), two decoupled
integral equations which for X = R or T can be written in the following
form: ∫

d2q∥

(2π)2
MX(p∥|q∥)X(q∥|k∥) = −NX(q∥|k∥), (4.10)
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where in the current notation the matrices MX and NX are given by

MR(p∥|q∥) = J +,+
2,1 (p∥|q∥)M

+,+
2,1 (p∥|q∥) (4.11a)

MT(p∥|q∥) = J −,−
1,2 (p∥|q∥)M

−,−
1,2 (p∥|q∥) (4.11b)

NR(p∥|q∥) = J +,−
2,1 (p∥|q∥)M

+,−
2,1 (p∥|q∥) (4.11c)

NT(p∥|q∥) =
2
√
ε1ε2α1(p∥)

ε2 − ε1
(2π)2δ(p∥ − q∥)I2, (4.11d)

where I2 is the 2× 2 identity matrix.

Within the Rayleigh hypothesis and the validity of the expansion of the fields
in plane waves, Eq. (4.10) is the exact equation for the scattering amplitudes
for an arbitrary surface profile. It is valid also for a multilayer system, like
the film system described in Sec. 3.1.3, used in Ref. 3. However, multiple
interfaces will increase the complexity of the matrices given in Eq. (4.11),
even if still only one of the multiple interfaces is non-planar.

4.2.4 Taylor expansion of J

The kernel factor J b,a
l,m, as given in Eq. (4.5), is only practical to solve ana-

lytically for a limited variety of interface profile functions ζj(x∥). It contains
a so-called Fourier integral, and the oscillating integrands necessitates care-
ful evaluation [42, p. 693]. In order to facilitate a numerical solution of
the RREs for randomly rough interface profiles we therefore need a more
accessible form of this kernel factor. The most common approach, which is
also a critical part of the most common perturbative solution of the RREs,
is to expand the kernel factor in an infinite Taylor series about the Fourier
transforms of the power of a given interface profile function ζj :

J b,a
l,m(p∥|q∥) = γb,al,m(p∥|q∥)

∫
d2x∥ e

−i(p∥−q∥)·x∥ e−iγb,a
l,m(p∥|q∥)ζj(x∥) (4.12a)

=

∞∑
n=0

(−i)n

n!

[
γb,al,m(p∥|q∥)

]n−1
ζ̂
(n)
j (p∥ − q∥) (4.12b)

where we have defined

γb,al,m(p∥|q∥) = bαl(p∥)− aαm(q∥), (4.13)
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and ζ̂
(n)
j represents the Fourier transform of the nth power of ζj , similar to

Eq. (3.4):

ζ̂j
(n)

(Q∥) =

∫
d2x∥ e

−iQ∥·x∥ ζnj (x∥)

ζ̂j
(0)

(Q∥) = (2π)2 δ(Q∥). (4.14)

It should be noted that the Taylor expansion in Eq. (4.12b) requires that
|γb,al,m(p∥|q∥)ζj(x∥)| ≪ 1 for the series to converge sufficiently fast. Also,
even though this series expansion should then in theory always converge,
the oscillatory nature of the series might still prevent numerical convergence
when Re γζ < 0. The end result is that the expansion in Eq. (4.12b)
might, in some cases, impose more restrictive constraints on the limits of
the interface roughness than the Rayleigh hypothesis itself. An additional
point to be made in this regard is that while the Rayleigh hypothesis in
essence places a limit on the slope of the interface roughness, the practically
achievable numerical procedure for evaluating Eq. (4.12b) directly limits the
amplitude of the interface roughness.

The profile function(s) ζj enters the reduced Rayleigh equations exclusively
through the kernel factors J . Through the Taylor expansion we now also
recognize that the RRE, in this form, only sees the Fourier transforms of
the profile functions. This fact is well known, and it has had a big impact
on the interpretation of scattering phenomena like the ones discussed in this
thesis. A direct consequence is that the average of the absolute square of
the first order term of the Taylor expansion of J is directly proportional to
the power spectrum [Eq. (3.6)] of the j-th interface. We will soon see that
this fact is one of the main lessons taught by small amplitude perturbation
theories.

In practice it is not feasible to calculate the sum in Eq. (4.12b) for randomly
rough interface profiles to infinite order, and so a truncation of the series is
needed. This cutoff and its consequence will be discussed in Secs. 4.5 and
4.5.4.

4.3 Small amplitude perturbation theory

Probably the most common and popular approximate solution of Eq. (4.10)
is based on a perturbative expansion of the solutions in the reflection and
transmission amplitudes in orders of the interface profile functions [13].
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Originally developed by Lord Rayleigh himself at the end of the 19th cen-
tury [27] for sound waves on sinusoidally corrugated surfaces, the small
amplitude perturbation theory (SAPT) has shown that it is able to obtain
solutions of the RRE of high qualitative and quantitative predictive power,
for interfaces with sufficiently small slopes and amplitudes.

The method has a long and rich history, and the details are outside of the
scope of this summary. However, some selected pieces of information can be
useful. The method is also, in some forms, known as the small perturbation
method (SPM) or Bragg theory, and the perturbative expansion has also be-
come known as the Rayleigh method or the Rayleigh-Rice or Rayleigh-Fano
procedure [15]. The early history starts with the work by Lord Rayleigh in
1896, whose method was adapted to the problem of optical gratings by Fano
in 1941 [43]. The method was then further developed by Rice in 1951 [44]
and 1963 [45]. Navigating the exact history of this collection of methods
is challenging, and it can also be difficult to cleanly separate the history of
what is by us called the Rayleigh equations, historically the starting point
for the RREs, from the perturbative expansions of these equations. Overall
it is clear that there are “many roads to Rome”, and what is most important
for the current work is the assumptions and methods we have used in order
to arrive at the reduced Rayleigh equations presented as Eq. (4.10).

We showed how the kernel factors J can be expanded in a Taylor series in
the preceding section. The basic principle of the method is then to expand
the unknown reflection and transmission amplitudes in similar series:

R(q∥|k∥) =

∞∑
n=0

(−i)n

n!
R(n)(q∥|k∥) (4.15a)

T(q∥|k∥) =
∞∑
n=0

(−i)n

n!
T(n)(q∥|k∥), (4.15b)

and then match terms of corresponding order in ζ(x∥), based on Eq. (4.12b).
As an example of the end result, the reflection amplitude for a single inter-
face system to first order in ζ(x∥) is

R(q∥|k∥) ≈ R(0)(q∥|k∥)− iR(1)(q∥|k∥), (4.16)
(4.17)

where

R(0)(q∥|k∥) = (2π)2δ(q∥ − k∥)ρ
(0)(k∥) (4.18a)

R(1)(q∥|k∥) = ζ̂(q∥ − k∥)ρ
(1)(q∥|k∥). (4.18b)
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In the expression for R(0)(q∥|k∥), ρ(0) is a diagonal matrix containing the
zero-order reflection amplitudes, essentially describing the expected reflec-
tion amplitude for a system with all-planar interfaces. For a single interface
system, ρ(0) therefore contains the well known Fresnel amplitudes1, and the
delta-term ensures that light is reflected in the specular direction only. The
average of the absolute square of the first order term, given in Eq. (4.18b),
is clearly directly proportional to the power spectrum [Eq. (3.6)] of the in-
terface profile function. It also depends on the matrix ρ(1), which in this
case is given by

ρ(1)(q∥|k∥) =(α1(q∥)− α2(q∥))
[
M+,+

2,1 (q∥|q∥)
]−1

×
[
M+,−

2,1 (q∥|k∥) + ρ(0)M+,+
2,1 (q∥|k∥)

]
. (4.19)

We will not discuss this expression here, but refer to the papers included
in this thesis where the constituents of SAPT, and especially the first or-
der terms, have been investigated in great detail. The papers included as
Refs. 2 and 4 feature derivations of SAPT where the notation is less scat-
tering system agnostic, and therefore is made simpler by fewer indices in
the equations.

To first order in ζ(x∥) for the reflection and transmission amplitudes, this
perturbative method is often interpreted as a single scattering approxima-
tion. From a physical point of view, it has been common to interpret this
first order term as the diffuse contribution to the scattering intensity, while
the second order term, usually negative, describes the intensity diminution
of the specular intensity caused by the surface roughness [39]. When im-
plemented to the complete fourth order for the intensity, i.e. involving
terms up to third order in the amplitude, the method has been used to
obtain reliable results that also correctly include multiple scattering effects,
most notably the backscattering peaks observed in reflection from metallic
surfaces [7, 46–48].

This specific perturbative method has been of great aid in the interpre-
tations of several scattering phenomena, and has played a central part in
most of the work included in this thesis. To first order in ζ(x∥), SAPT
is easy to decompose mathematically. This fact has enabled its use as a
tool in the understanding of the underlying mechanisms that lead to a wide
range of scattering phenomena, but with some slippery limitations – even
for weakly rough interfaces. In passing, we note that our work has indi-
cated that SAPT to first order is not a complete description of so-called

1The Fresnel power coefficients for air-glass interfaces are illustrated in Fig. 5.1.
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single scattering processes, usually interpreted as wave-surface interactions
(for interfaces with planar average roughness) that involve a single transfer
of momentum Q. SAPT to first order indicates that the scattering dis-
tributions are proportional to the power spectrum g(Q∥), and as such it
represents an excellent approximation, but not a complete description, of
single scattering phenomena.

When SAPT is utilized to get an approximation for the reflection and trans-
mission amplitudes, the most important requirement on the scattering sys-
tem is that the diffuse component of the scattered light is small [14]. The
more exact limits of validity of the method are themselves diffuse, and a full
discussion will not be given here. SAPT is in general safe to utilize for suf-
ficiently weakly rough interfaces, for example characterized by the Rayleigh
parameter – a value proportional to the ratio of roughness heights to the
incident wave length [13]. In this sense the method and its dependence on
the Rayleigh hypothesis can also be seen as a low frequency asymptotic
solution to the scattering problem. Some selected sources for quantita-
tive discussions on validity are Millar [49–51], Wirgin [52, 53], Soto-Crespo,
Friberg and Nieto-Vesperinas [54] and Sánchez-Gil, Mendez and Maradudin
[55].

4.4 Phase perturbation theory

Contrary to the case for SAPT, in phase perturbation theory (PPT) it is the
phase of the scattered field that is calculated perturbatively as an expansion
in powers of the interface profile function ζ(x∥) [40, 56, 57]. In essence, the
implementation of the method leads to the scattering amplitudes being writ-
ten as a product between the equivalent planar system Fresnel coefficients
and an exponential function of the interface profile function. It is then the
exponent in the latter factor that is calculated perturbatively. Interestingly,
even in the lowest non-zero order of this expansion phase perturbation the-
ory yields results that represent an infinite summation of some subset of
terms in SAPT [55, 58].

As an example of PPT, we will show the expansion to first non-zero order
in reflection, similar to what we did in the previous section. In order to be
consistent with the work done in Ref. 1, we to this end introduce the well
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known scattering matrix S(q∥|k∥), given by

S(q∥|k∥) =

√
α1(q∥)√
α1(k∥)

R(q∥|k∥). (4.20)

It is clear that the scattering matrix is closely related to the reflection am-
plitudes R(q∥|k∥). The perturbative expansion then takes on the following
form:

S(q∥|k∥) =
∞∑
n=0

(−i)n

n!
S(n)(q∥|k∥), (4.21)

(4.22)

where S(n)(q∥|k∥) depends on orders of R(n)(q∥|k∥) as given by Eq. (4.20)
but order-by-order. The elements of S(n) for s-polarized incident light re-
flected into s-polarized scattered light to first order, for a system with a
single rough interface and where ε1 = 1, are [1]:

S(0)
ss (q∥|k∥) = (2π)2δ(q∥ − k∥)

α1(k∥)− α2(k∥)

α1(k∥) + α2(k∥)
(4.23a)

S(1)
ss (q∥|k∥) = 2(1− ε2)

(ω
c

)2
(q̂∥ · k̂∥)ζ̂(q∥ − k∥)

×
α
1/2
1 (q∥)α

1/2
1 (k∥)

[α1(q∥) + α2(q∥)][α1(k∥) + α2(k∥)]
. (4.23b)

The full derivation of PPT to second order in Sss(q∥|k∥) is given in Ref. 1,
where the theory is used to successfully obtain a wide range of system
parameters through an inversion of light-scattering data.

4.5 Non-perturbative solution of the RREs

Solving the reduced Rayleigh equations in a direct manner, without resort-
ing to perturbation theory, has repeatedly proved to be a valuable compro-
mise between the less computationally demanding low-order perturbative
approach and the fully rigorous approach based on the extinction theorem
[7]. This non-perturbative method is the main tool of investigation in sev-
eral of the papers included in this thesis, and the continued development
and extension of the corresponding simulation code Rayleigh2D [25] is
one of the main outputs of the thesis work.
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Many details regarding the practical and actual implementation in soft-
ware for obtaining non-perturbative solutions of the RRE(s), Eq. (4.10),
can be found in Ref. 25. We still find it appropriate to summarize here
some selected aspects of the implementation used in obtaining the results
presented in this thesis, both for convenience and completeness, but also
because the capabilities of the software has been extended since the publi-
cation of Ref. 25.

4.5.1 Summary of the numerical method

In order to solve the RRE in a non-perturbative manner, we begin by gener-
ating one realization of the interface profile function ζj(x∥) for each interface
j in the system. This is done using the Fourier filtering method [11] on a
square grid of Nx × Nx surface points, covering an area of S = L2 in the
(ê1, ê2)-plane. These profile functions enter Eq. (4.10) through the functions
J b,a
l,m(p∥|q∥), which is implemented utilizing the Taylor expansion detailed

in Sec. 4.2.4 2 as Eq. (4.12b). On evaluating these kernel scalar factors
J b,a
l,m(p∥|q∥), we first expand the integrand in powers of ζj(x∥), truncate

this expansion after NT terms, and integrate the resulting sum term-by-
term. The Fourier integral of ζnj (x∥) that remains now only depends on the
interface profile function and the difference in lateral wave vectors p∥ − q∥,
and not on αl(p) and αm(q). These Fourier integrals are therefore calcu-
lated only once, on a p∥ − q∥ grid, for every interface realization by the
use of the fast Fourier transform [42, p. 600]. A typical value for NT is
20, since this truncation marks a practical limit in the calculation of the
factorial function to single precision and this number of terms guarantees
convergence for the roughness parameters assumed in the current work [36].

On evaluation of the q∥ integral in Eq. (4.10), the infinite limits of integra-
tion are replaced by the finite limits |q∥| =

√
q21 + q22 ≤ Q/2, and the inte-

gration is carried out by a two-dimensional version of the extended midpoint
rule [42, p. 161]. The finite limits of integration forms a circular subsection
of a grid of Nq × Nq points in the q1q2-plane, whose size and discretiza-
tion is determined by the Nyquist sampling theorem [42, p. 605] and the
properties of the discrete Fourier transform [25]. In momentum space, these
considerations in short lead to discretization intervals of ∆q = 2π/L along
the orthogonal axes of the q1q2-plane, and upper limits on the magnitude

2The reason why this expansion is vital for the current numerical method is explained
in detail in Ref. 25.



4.5. Non-perturbative solution of the RREs 45

of resolved wave vectors are given by Q = ∆q⌊Nx/2⌋, where ⌊·⌋ denotes the
floor function [59, p. 948]. A more detailed description of the derivation of
these limits, and the chosen discretization of all variables, can be found in
Ref. 25.

The resulting linear system of equations is solved by LU factorization and
back substitution [42, p. 48]. These calculations are then typically per-
formed simultaneously for incident light of both p- and s-polarization, and
are performed for a large number Np of realizations of the model (new re-
alizations of the interface profile functions ζj(x∥)). The resulting scattering
amplitude X(q∥|k∥) and its squared modulus |X(q∥|k∥)|2, where X is ei-
ther R or T, were obtained for each realization. An arithmetic average of
the Np results for these quantities then yield the mean values ⟨X(q∥|k∥)⟩
and ⟨|X(q∥|k∥)|2⟩ that enter Eq. (3.17) and similar for estimates of the
observables of interest.

In passing we note that the various combinations of the scattering am-
plitudes X that are necessary for the full calculation of the Mueller matrix
[24] are also obtained in a trivial manner from the non-perturbative method.
All the information about the polarization transformations light undergoes
when scattered from rough surfaces is contained in the Mueller matrix, and
these matrices were obtained in full for all systems investigated in this thesis.

An example of a typical result is presented in Fig. 4.1, showing results from
Ref. 5 where the upper half of each subfigure was obtained using SAPT
to first non-trivial order, and the lower half was obtained using the non-
perturbative method described in this section. It is clear from the figure
that there is some noise in the latter results, stemming from the fact that
we average over a limited number of realizations of the randomly rough
interfaces.

4.5.2 Computational requirements and limitations

For the interested reader, this section is an attempt at a mention of some
of the practical aspects of the use of the non-perturbative RRE method on
current hardware, with some added thoughts on the computational limits
relevant for the method.

In the majority of the presented work, the non-perturbative solutions of the
RRE have been obtained using the software “Rayleigh2D”, implemented in
FORTRAN and compiled with a recent Intel compiler. The main depen-
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Figure 4.1: The full angular distribution of the incoherent component of the mean
DRC, ⟨∂Rαβ/∂Ωs⟩incoh, as function of the lateral wave vector q∥ of the light that is
scattered from a rough film where the top interface is rough and the other interface
of the film is planar. The light of wavelength λ = 632.8 nm was incident from
vacuum on the rough photoresist film supported by a silicon substrate [ε1 = 1.0,
ε2 = 2.69, ε3 = 15.08 + 0.15i]. The rms-roughness of the rough film interface
was σ1 = λ/30, σ2 = 0. The surface-height correlation length was a = 211nm =
λ/3, the film thickness was d = 5062.4nm = 8λ and the angles of incidence were
(θ0, ϕ0) = (16.8◦, 0◦) for all panels. The positions of the specular directions in
reflection are indicated by white dots. The upper halves of all panels are results
from the small amplitude perturbation method to leading order, while the lower
halves show results obtained through the non-perturbative solutions of the RRE.
The sub-figures in Figs. 4.1(a)–(i) are organized in the same manner and show how
incident β-polarized light is scattered by the one-rough-interface film geometry into
α-polarized light [with α = p, s and β = p, s] and denoted β → α. The full figure
caption and details can be found in the paper included as Ref. 5.
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dencies were resolved through the use of OpenMPI [60] or Intel MPI for
inter-process communication, a parallel version of HDF5 [61] for efficient
data storage, Intel Math Kernel Library (MKL) for fast Fourier transforms
(FFTs) and the MKL-contained version of ScaLAPACK [62] for efficient
LU-decomposition and back-substitution in parallel. Post-processing of the
results were accomplished with the use of Python. The Norwegian (NO-
TUR) national HPC (High Performance Computing) systems “Vilje” and
“Stallo”, both CPU-based, were used for all computations.

In practice the limiting factor in the numerical solution of the RRE is the
number of wave vectors we solve for, mainly due to the associated memory
requirements but also the computational load. For our circular domain of
integration and Nq wave vectors along each of the two q-axes, the total
number of wave vectors in the system is ≈ (π/4)N2

q . In the case of a
single rough interface, irrespective of whether a film geometry is present,
the computational requirement for solving the RRE scales with N4

q [25].
The aggressive computational scaling of the problem is one of the reasons
why numerical solutions of the RRE for two-dimensional interfaces have
been available only in the last decade or so.

The time spent on obtaining results for a single system realization are split
between two parts: the set-up process of obtaining the matrices involved
in the RRE (Eq. (4.10)) and the solving of the resulting linear system of
equations using the LU (non-iterative) method. These two processes are of
different nature. The set-up part has the property of being “embarrassingly”
parallel, meaning that inter-process communication is near-zero across the
distributed computing resource. It therefore scales perfectly with increasing
parallelism, and the requirement on available memory is minimal since the
matrix elements are computed one at a time. The other process, that of solv-
ing the linear system of equations, naturally requires the entire linear sys-
tem to be contained in (distributed) memory for efficient LU-decomposition.
For scattering systems where only one interface is randomly rough and the
other interfaces, if any, are planar, the practical limitations on the use of
the non-perturbative RRE method on systems of size and resolution typical
for the papers included in this thesis (161 < Nq < 225) are equally split
between the two parts, with single-precision memory requirement for the
second part at 20-70GB. However, when we employ the non-perturbative
RRE method on systems with multiple rough interfaces the computational
requirements on the set-up part increases significantly. For the system used
in Ref. 5 when both interfaces are rough, almost all CPU-time required in
obtaining results for a single system realization is spent in the set-up part
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of the problem. A very small system where Nq = 51 already requires CPU-
time corresponding to Nq ≈ 200 for a single-rough interface system. In this
situation we are therefore not memory limited, and the problem might be
much better suited for GPU-based hardware.

Rigorous methods for obtaining the scattering amplitudes and other observ-
ables exist, for relevance to the current work the best known such meth-
ods are based on the extinction theorem. These methods normally make
no approximations in their modeling of the scattering problem, and are
as such only limited by the finite capabilities of computational hardware.
These limits are, however, even today severely limiting what systems may
be investigated using this class of methods. An example is the study of
far-propagating surface plasmon polaritons for weakly rough interfaces. In
modeling such a study the non-rigorous method of this chapter may handle
vastly larger systems than corresponding exact methods. To this end the
non-perturbative solution of the RRE serves to bridge the gap in the pos-
sibilities offered by rigorous methods on one side and simple perturbative
methods on the other [7].

4.5.3 Notes on some numerical challenges

Alpha-cancellation

Given the practical and efficient implementation of the software for the
non-perturbative solution of the RRE, the magnitudes of the lateral vectors
p∥,q∥ and k∥ are all discretized as the midpoint of Nq intervals on the same
numerical grid ranging from [−Q,Q]. In the calculation of Eq. (4.12b) we
divide by the factor γ given by Eq. (4.13), which in turn is a difference in
values of the normal wave vector components α. These are given by

αj(q∥) =

√
εj
ω2

c2
− q∥2

=

√
εj
ω2

c2
− (n2

1 + n2
2)∆q2, (4.24)

where n1 and n2 denotes the indices of some value of q∥ in the numerical grid
it is resolved on. The equation above clearly shows that the difference in α
given as the factor γ may very well become zero, even for differing values
of εj . In the current implementation of Rayleigh2D this issue is avoided
through the addition of a random value smaller than εj/10

4 to εj .
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Film thickness induced instabilities

When the system of interest is a multi-layered system, as in Refs. 3, 5 and as
described for a film system in Sec. 3.1.3, the RRE will always contain factors
exp(−iα2(q∥)d) or exp(−iα2(p∥)d) where medium 2 is the film medium and
d is the film thickness. Numerically, these factors tend to lead to instabilities
since their values may grow exponentially for evanescent waves inside the
film. This technical issue is resolved by using the following two ideas: (i)
expanding the two terms in the kernels (i.e. for a2 = ±) and factorizing
out the troublesome exponential factor and canceling it on both sides of
the reduced Rayleigh equation (if the exponential factor is a function of the
variable p∥) or (ii) making a change of variable such that the troublesome
exponential factor is absorbed into the reflection or transmission amplitudes
(if the exponential factor is a function of the variable q∥). One may also shift
the x3-axis in order to facilitate the aforementioned steps. We chose here not
to give more details on the explicit implementation, as these modifications
are to be done in a case by case basis depending on which surface is planar
and whether the reflected or transmitted light is considered.

The exact thickness limits depend on the materials in the system, but the
ideas mentioned in the above allowed us to model films with thickness suf-
ficient for the analysis of the Selényi phenomenon in Ref. 5.

4.5.4 Accuracy of the non-perturbative Rayleigh method

The reduced Rayleigh equations rely on a number of approximations
and assumptions, most of which have already been discussed. The non-
perturbative method of solving the RRE also introduces a number of lim-
itations and approximations. The aim of this section is to obtain a more
organized overview over (most) of these. To that end we start with an
itemized list over the main talking points:

• The plane wave expansion

• The Rayleigh hypothesis

• Expansion method used for the I-integral,

• Truncation of the Taylor expansion of the I-integral

• Finite size of the rough interface, L× L
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• Discretization of the integrals in the RRE over q∥

• Finite cut-off in the sum over q (circular region in wave-space)

The plane wave expansion and the implications of the Rayleigh hypoth-
esis have already been discussed in a fair amount of detail, especially in
Sec. 4.1. Conservation of energy, as explained in Sec. 3.4, was verified to be
satisfactory in all results presented in this thesis.

Solving the I-integrals, Eq. (4.5), by the use of the Fourier method in ad-
dition to a Taylor series expansion has fairly important implications on the
limits of validity of the current approach to the solution of the RRE. These
implications were discussed in Sec. 4.2.4.

As we adhere to the Nyquist limit in our transitions from real space to
wave space, a finite sized interface of area L × L and discretization ∆x
is intimately linked to the limits in wave space ±Q and its discretization
∆q, as explained in Sec. 4.5.1. Details regarding these relations are given
in Ref. 25. The discretization of the RRE main integrals into sums, in
addition to the truncation of these sums, can be expected to introduce some
numerical inaccuracy, and possibly errors, into the solutions of the RRE.
Physically, the scattering amplitudes X(q∥|k∥) are expected to approach
zero as q∥ enters the evanescent region. However, for certain geometries
and materials these evanescent waves may couple into guided modes and/or
surface plasmon polaritons, observable as localized peaks in the scattering
amplitudes. We therefore have to make sure that the the limit Q is large
enough to include these phenomena. In all results presented in this thesis,
the stability of the results were verified both for an increase in system size
and decrease in sampling interval.

In conclusion, as long as we choose systems with sufficient size and dis-
cretization for (i) the statistical properties of the interfaces to be valid, (ii)
the results to be free from edge-effects and (iii) the limit Q in wave space to
be large enough that evanescent waves of physical importance are included,
we may assume that the finite size of the system will still provide results
that mimic an infinite system.



Chapter5
Physical phenomena in scattering
from dielectric weakly rough
interfaces

We have in the preceding chapters developed some models and methods
that might be used to investigate a range of light scattering systems, both
theoretically and numerically. Although these models and methods are more
than means to an end, the main motivation for developing them was to
investigate a selection of little studied light scattering phenomena. This
chapter will introduce the phenomena most novel and important in the
thesis papers, and will be kept brief since the basic exploration of these
phenomena is an actual part of the papers themselves.

When light is scattered in either reflection or transmission from or through
a single weakly and randomly rough dielectric interface, two phenomena of
interest stand out in the observation of the scattering intensity distribu-
tions for the diffusely scattered light. These are the Yoneda phenomenon,
relatable to the idea of total internal reflection, and the Brewster scattering
phenomenon, relatable to the polarizing angle. These two phenomena have
only been studied to a very limited extent in the past. The exploration and
investigation of these phenomena are at the core of the papers included in
this thesis, since they together explain most, if not all, deviations in the
presented results from more “standard” scattering investigations of systems
consisting of incidence in vacuum and a metallic substrate. These phenom-
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Figure 5.1: Fresnel power coefficients in transmission and reflection. [Left] Air-to-
glass interface. [Right] Glass-to-air interface. By Sbergjohansen [CC BY-SA 4.0],
via Wikimedia Commons.

ena also explain some interesting and semi-novel behaviors in the scattering
interference phenomenon known as “Selényi rings”, which we will also in-
troduce in this chapter.

5.1 The Brewster scattering phenomenon

When light is scattered by a randomly rough surface it is well known that
the polarization of the incident light influences the angular distribution of
the diffusely scattered light. Why is that? We will in this section introduce
the Brewster scattering phenomenon for diffusely scattered light, which fully
answers the question, at least for weakly rough dielectric systems. This phe-
nomenon is intimately related to the well-known Brewster angle for planar
surfaces, so we will start with a summary of this high-school topic before
we return to the Brewster scattering phenomenon.

“ When a pencil of light is incident upon a transparent body at
an angle, whose tangent is equal to the index of refraction, the
reflected portion will be either wholly polarized, or the quantity
of polarized light which it contains will be a maximum.

— Sir David Brewster (1815)
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Figure 5.2: The contribution to the incoherent component of the MDRC from
the in-plane, co-polarized scattering of p- and s-polarized light incident on (a) a
random vacuum-dielectric interface [ε1 = 1.0, ε2 = 2.64] at the angle θ0 = 66.9◦

and (b) a dielectric-vacuum interface [ε1 = 2.64, ε2 = 1.0] at the angle θ0 = 34.5◦

as a function of the polar angle of scattering θs. The solid curves were obtained
on the basis of numerically solving the reduced Rayleigh equations, Eq. (4.10), for
an ensemble of 4500 surface realizations. The dashed curves are results from small
amplitude perturbation theory, Eq. (4.17). The specular direction of reflection is in
each figure indicated by a vertical dash-dotted line, and in Fig. 5.2(b), the dotted
lines at |θs| = θc = sin−1

√
ε2/ε1 ≈ 38.0◦ indicate the positions of the critical

angle for total internal reflection (as expected for a flat surface system). Full figure
description can be found in the paper included as Ref. 2.

The Brewster angle, also called the polarizing angle, is commonly defined
to be the angle of incidence of light onto a planar, dielectric surface for
which the specularly reflected light is linearly s-polarized1. For light that is
incident on a planar non-exotic dielectric surface, the boundary-condition
physics represented by the Brewster angle phenomenon is the only source
of differences in how s- and p-polarized light are reflected and transmitted.
This difference is easy to explore through the Fresnel coefficients, for conve-
nience illustrated in Fig. 5.1 since they are central to the work presented in
this thesis. Somewhat more surprising to some is that a complete physical
understanding of the Brewster phenomenon is, at best, non trivial. The
most common explanation for the gradual disappearance of the reflection
amplitude for p-polarized light is based on the radiation pattern of dipoles
induced in the scattering substrate [64, 65]. This idea is not new, and can be
traced back to investigations by e.g. Sommerfeld [66]. A better understand-

1The exact definition compatible with exotic materials and modern physics however,
is a matter of slight debate [63].
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Figure 5.3: The full angular dependence of the contribution to the incoherent
component of the MDRC from the scattering of p- and s-polarized light incident on
a random dielectric-vacuum interface [ε1 = 2.64, ε2 = 1.0] at the angle θ0 = 34.5◦.
Figure 5.2(b) consists of in-plane cuts through panels (b) and (f) in this figure. For
a brief description of the figure structure, see Fig.4.1. Full figure description can
be found in the paper included as Ref. 2.
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ing of the physics behind the well known Brewster phenomenon turns out to
be a vital part of understanding the scattering distributions of diffuse light
discussed in-depth in our paper included as Ref. 6. A more detailed account
of the interesting century long journey to understand the phenomenon can
be found there.

It has been known for a long time that the scattering distributions for light
scattered from randomly rough dielectric surfaces are different for light of
different (linear) polarization, a main characteristic being partial suppres-
sion of p-polarized scattered light for a wide range of scattering angles. To
our knowledge it was still not until Kawanishi et al. [67] observed angles
of zero scattering intensity to first order in their approach for p-polarized
light that a phenomenon central to this difference got a name. Due to these
angles’ resemblance to the Brewster angle in the reflectivity from a planar
interface, Kawanishi et al. dubbed these angles the “Brewster scattering
angles”. These angles were observed in both reflection and transmission,
for light incident from either medium. While Kawanishi et al. emphasized
the dip to zero scattering intensity, we have chosen to expand the termi-
nology somewhat in the current work. By Brewster scattering angles we
generally mean the angles for which the scattering intensity drops to zero
in a single scattering approximation. As we include higher-order scattering
processes in parts of our work, we have observed that the Brewster scat-
tering angles generally describe local minima rather than dips to zero. In
addition, our latest published work [6] shows that the underlying physical
origin also underpins all2 differences between the distributions of p- and
s-polarized diffusely scattered light, in the sense that s-polarized light scat-
ters similar to scalar waves contrary to the case for p-polarized light. This
has motivated us to use the term “Brewster scattering phenomenon” for the
broader consequences of the non-scalar-wave diffuse scattering behavior of
p-polarized light.

The Brewster scattering phenomenon has been observed and thoroughly
discussed in several papers included in this thesis. In Refs. 2 and 4 its impact
on scattering distributions from single randomly rough dielectric interfaces
is investigated through perturbative and non-perturbative approaches. In
this context the impact of the phenomenon is clearly visible, e.g. in the
MDRC distributions displayed in Fig. 5.2 for incidence in both vacuum and
dielectric. For the angles of incidence used in producing Fig. 5.2 we also
clearly observe the Brewster scattering angles themselves, and in Fig. 5.3
we see that these in-plane distributions are part of much more complex

2Given the materials and assumptions that work is based on.
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and interesting scattering distributions. Figures 5.2 and 5.3 are discussed
in-depth in Ref. 2.

While we do not explicitly point it out in “Experimental and numerical
studies of the scattering of light from a two-dimensional randomly rough
interface in the presence of total internal reflection: optical Yoneda peaks”
[3], our comparison between experiment and simulations presented in that
paper clearly shows that the real-world consequences of the Brewster scat-
tering phenomenon are accurately captured in our simulations.

For a film geometry we in Ref. 5 claim that the phase shifts associated
with the Brewster scattering phenomenon impact the angular positions of
interference rings of diffusely scattered light, known as Selényi rings.

Finally, in Ref. 6 we further investigate the phenomenon of Brewster scat-
tering angles and more generally identify the fundamental mechanisms at
play in the scattering of polarized light by a weakly rough dielectric sur-
face. We study the Brewster scattering phenomenon for outgoing evanescent
waves and circularly-polarized waves, and describe the underpinning phys-
ical mechanisms in terms of simple notions such as scalar waves, oscillating
and rotating dipoles and geometrical arguments.

In summary, the work included in this thesis attempts to both thoroughly
describe and also explain the Brewster scattering phenomenon. While the
physical arguments are valid mainly in a single scattering approximation,
the computational and experimental results indicate that this understanding
might be sufficient for weakly rough interfaces.

5.2 The Yoneda phenomenon

Another phenomenon at the heart of this thesis is what we have come to
denote the Yoneda phenomenon. It is closely linked with the phenomena
commonly known as total internal and external reflection, so we will start
with a (slightly untraditional) introduction into these phenomena before we
continue with Yoneda’s 1963 discovery.

5.2.1 Total internal and external reflection

While a well-polished metallic mirror can reflect almost all the visible light
that is incident upon it, several technologies we use daily make use of an
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even more reflective configuration: the total internal reflection experienced
by electromagnetic waves when they are unable to escape the dielectric
they propagate in. In its simplest form the dispersion relation (Eq. (2.10),
and we will make the same assumptions and simplifications here as were
made in deriving that equation) tells us that an electromagnetic wave can
only propagate in a certain material if its wavenumber |k| in that material
is proportional to its angular frequency ω. The proportionality factor is
given by the material properties through ε and µ, and the speed of light in
vacuum c. While the dispersion relation can be expressed in a variety of
ways, it basically expresses a forced3 relation between an electromagnetic
wave’s oscillations in time and space for a given material and a given energy.
When we combine this limitation with the appropriate boundary conditions
(e.g. Eq. (3.12b)) valid at an interface between two dielectrics we find that
there are limits to which waves are able to propagate across the interface
into the other material. When light propagating in a non-magnetic material
with permittivity ε1 is completely reflected from an interface with a material
with smaller permittivity ε2 due to these limitations we call it “total internal
reflection”. This optical phenomenon has been a cornerstone in many optical
technologies for a long time, today exemplified by optical fibers used in high-
speed digital communication as well as light guides and reflectors in cameras,
displays and LED light sources.

More generally we may say that total reflection is a process that occurs when
Snell’s law of refraction cannot be solved for real angles. For x-rays most
solid materials have a refractive index4 smaller than unity. Total reflection
will then occur as the x-ray impinges on a solid surface from vacuum or
similar at grazing angles of incidence, and we therefore call this process
total external reflection. It is this process that allows us to efficiently focus
x-rays in x-ray telescopes [68].

5.2.2 Yoneda peaks and the Yoneda phenomenon

In their original x-ray context, Yoneda peaks express themselves as sharp,
asymmetric peaks in the rough surface diffuse scattering distributions of
x-rays occurring at the critical angle for total external reflection for a fixed
angle of incidence. These peaks are notable because they are observed in
the diffusely scattered light [from an experimental point of view we then
observe scattered light for which θs ̸= θ0]. They were first observed exper-

3Or natural, depending on the point of view.
4For non-magnetic materials the refractive index is

√
ε.
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imentally in the scattering of x-rays incident from air on a metal surface
by Y. Yoneda [69] and have subsequently been studied in the context of
the scattering of x-rays from both metallic [70–74] and non-metallic [75–78]
surfaces, and also for neutrons [71] scattered from rough surfaces.

In an optical context these peaks were first observed as “sidelobes” in the
one-dimensional numerical investigations by Nieto-Vesperinas and Sánchez-
Gil [79]. These authors did not at the time associate the observation with
Yoneda peaks, and did not pursue the observation. The peaks were then
later described as “quasi-anomalous scattering peaks” and were thoroughly
investigated in the work by Kawanishi et al. [67] based on the stochastic
functional approach [80]. Kawanishi et al. studied the coherent and incoher-
ent scattering of an electromagnetic wave from a two-dimensional randomly
rough interface separating two different dielectric media. The light could be
incident on the interface from either medium. Yoneda peaks, albeit more
spread out than they were in the x-ray experiments, were observed in the
angular dependence of the intensity of the light scattered into the optically
more dense medium. Their observations therefore showed that the peaks
could appear in both reflection and transmission. As an interpretation of
their results, the authors suggested that the Yoneda peaks may be associ-
ated with the presence of lateral waves [81] propagating along the interface
in the optically less dense medium. There have been several other contri-
butions to the physical interpretation of the Yoneda peaks, especially in the
x-ray context, in the past. We provide a short overview over these in the
paper included as Ref. 2.

The peaks observed for θs ≥ θc in Fig. 5.2(b) where ε1 > ε2 are examples of
optical analogues of the Yoneda peaks observed in reflection by Y. Yoneda
in the scattering of x-rays. The Yoneda peaks were originally observed in
x-ray scattering as sharp peaks for incidence close to the grazing angle, as
the difference in the dielectric constants of the two scattering media is very
small at x-ray frequencies. In our optical work, by Yoneda peaks we mean
well-defined maxima in the angular distribution of the intensity of the scat-
tered light at, or slightly above, the critical polar angle for total reflection,
when ε1 > ε2. In our work on the interpretation of these peaks we also found
it necessary to expand this terminology somewhat, since film interference
effects and similar makes the use of the word “peaks” too ambiguous. Ir-
respective of the polarization of the incident and scattered light, what we
have termed the Yoneda phenomenon is characterized as an enhancement of
the intensity of the diffuse light when the light is observed in the optically
denser medium. The intensity enhancement occurs above a critical angle
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Figure 5.4: Photographs showing the spatial intensity distributions formed on a
screen [see Fig. 6 in Ref. 3] for a set of polar angles of incidence, θ0, as indicated
in the figure. See full explanation in the text and in Ref. 3.

of scattering which is independent of the angle of incidence of the excita-
tion. This critical angle is always the polar angle, in the denser medium, for
which the wavenumber of a plane wave turns non-propagating in the less
dense medium [2, 4]. The scattering distributions in Fig. 5.3 serve as good
illustrations of the need for the more general terminology. Since the angle
of incidence (θ0 = 34.5◦) is close to the critical polar angle of total internal
reflection (for a corresponding flat surface system) it is easy to observe both
the Yoneda peaks and the bigger intensity enhancement regions.

Figure 5.4, from the paper included as Ref. 3, shows a purely experimen-
tal demonstration of the Yoneda phenomenon as a photo of a scattering
intensity distribution. While the full experimental set-up is described in
the paper, what we see is at first (top left) only the laser specular reflection
peak as a point of high intensity, and some diffusely (incoherently) reflected
light surrounding it. The laser has been reflected from a randomly rough
dielectric interface in such a way that the scattering we see mimics internal
reflection in a dense medium. In the figure, the angle of scattering increases
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Figure 5.5: The full angular distribution of the Mueller matrix for the scattering of
p- and s-polarized light incident on a randomly rough dielectric-vacuum interface
[ε1 = 2.64, ε2 = 1.0] at the angle (θ0, ϕ0) = (34.5◦, 0◦). The scattering system is
identical to the one in Fig. 5.3. The calculation of the Mueller matrix elements is
done according to the method described in detail in Ref. 24.
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to the right in each subfigure. Therefore, what we observe at the right side
in e.g. the subfigure for θ0 = 38◦ is the sudden intensity enhancement in the
diffusely reflected light due to the Yoneda phenomenon. For a full explana-
tion of the figure, and the underlying distributions which the photograph is
roughly depicting, see Ref. 3. In this paper we present the first experimen-
tal demonstration of the optical Yoneda phenomenon in reflection together
with matching simulations based on the reduced Rayleigh equations.

A big emphasis in the papers included with this thesis has been on the role
of polarization in the light scattered by rough surfaces. It is well known
that all the information about the polarization properties of light scattered
from two-dimensional rough surfaces is contained in the Mueller matrix [82–
84]. Even if none of the current thesis papers explicitly utilize the Mueller
matrix, it is still of interest, especially in order to inspire further work, to
present an example of all the elements of the Mueller matrix for diffusely
scattered light subject to the phenomena of both Brewster scattering and
Yoneda enhancement. Figure 5.5 presents such an example, for the system
assumed in obtaining the results presented in Figs. 5.2(b) and 5.3. The
calculation of the Mueller matrix elements is done according to the method
described in detail in Ref. 24.

We thoroughly study the behaviors and consequences of the Yoneda phe-
nomenon in our work included as Refs. 2–6, and the discussions contained
in those papers will not be repeated here. However, it may be of interest to
summarize our conclusions from the analysis in Ref. 6, since we there claim
that the Yoneda phenomenon can be understood through a very simple hy-
pothesis. Through a factorization of a first order perturbative solution to
the RREs into a scalar component and a polarization component, we show
that the phenomenon results from a so-called single scattering mechanism,
and that it is not associated with surface (eigen) modes. The phenomenon
is explainable through a pure scalar wave approach, as an intensity enhance-
ment induced by the evanescence of one out of two components making up a
scattered couple mode (representing a single wavenumber). All the energy
allocated to a given couple mode is then radiated away by the component
existing in the denser medium. As such, the phenomenon can be seen as a
continuous analogue of a Rayleigh anomaly for periodic dielectric gratings.
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5.3 Selényi rings

When we observe rainbow-like color play in soap bubbles or in oil spills
on water this is due to thin-film interference effects in the mainly coher-
ently reflected light. We all observe these and other consequences of light
interference from time to time. Less well known to most of us are simi-
larly perceived interference effects that occur in the light scattered diffusely
from some film-like system; specifically the scattering of light from a slightly
rough, thin dielectric layer overlying a reflective surface. Roughly speaking,
the rough film-like system gives a multitude of different optical paths that
the light can traverse before it leaves the system. These paths introduce
different phase factors to the scattered light, which results in interference
effects that can be observed as bright and dark rings, or sections of rings.

These interference effects actually have a long and rich history [85]. They
were formally first described in modern times as “colorful rings” in the
diffusely scattered light originating from a dusty back-silvered mirror by
Newton [86], and are today best known as Quételet-rings [87] and Selényi-
rings [88]. Both kinds of “rings” have a long history of scientific investiga-
tion, maybe because they were considered somewhat unavoidable (even un-
wanted) in any optical system that involved reflecting surfaces [85]. Today
we have learned to deal with these phenomena wherever they are unwanted,
but they have still received renewed interest due to numerous applications
in modern optics [89].

An example of a non-laboratory situation where one may observe the
Quételet rings is in light reflections from bodies of water if appropriate
algae are present on the water surface. Another is in the image of a strong
light source as it is reflected from the surface of a cup of hot tea (or similar).
This phenomenon, modeled as a thin layer of spherical scatterers suspended
on a reflecting planar surface, was investigated (in a recommended read) by
Suhr and Schlichting [90].

The Selényi rings can behave quite differently from their Quételet siblings,
but the transition between the two phenomena is somewhat gradual and not
well defined. In a theoretical study of the scattering from one-dimensional
randomly rough surfaces ruled on dielectric films on perfectly conducting
substrates, Lu et al. [91] concluded that the degree of surface roughness had
the biggest impact on which of the two mentioned interference phenomena
could be observed. The patterns in the diffusely scattered light were shown
to undergo a transition, with increasing surface roughness, from an inten-
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Figure 5.6: Sketch of some of the optical paths involved in the single scattering
model in the case of scattering from a randomly rough film system. The light is
incident from the top left. In this optical path approximation the light may interact
with the film interfaces in a variety of ways, giving rise to rich interference patterns
in the diffusely scattered light. See the discussion associated with Fig. 4 in Ref. 5
for a full figure caption and explanation.

sity pattern exhibiting fringes whose angular positions are independent of
the angle of incidence (Selényi rings) to one with fringes whose angular
positions depend on the angle of incidence (Quételet rings) and eventually
into a fringeless pattern with a backscattering peak, which is a signature of
multiple scattering [7]. Although the Selényi rings are centered around the
mean surface normal, with their position being independent of the angle of
incidence, their amplitude, however, is modulated by the angle of incidence.

Figure 4.1 shows the scattering intensity distributions via the MDRC for
light scattered from a weakly and randomly rough dielectric film ruled on top
of a silicon substrate, with the Selényi rings clearly visible. For simulation
method comparison the upper half of each subfigure is obtained through
small amplitude perturbation theory (SAPT), while the lower halves are
results from full non-perturbative solutions of the RREs. The polar angle
of incidence is 16.8◦ (the white dot indicate the specular reflective peak),
but we observe that the rings are still centered around the mean surface
normal even if more than half of the scattered intensity is now going into
the forward direction (the right half of each subfigure). The figure is from
the paper included as Ref. 5, where we continue the work of Lu et al. and
others in the interpretation of the interference ring phenomenon. We also
explore the previously unexplored case when the rough surface is shifted to
the non-incident face of the film. According to the traditional understanding
of the Selényi rings, their main origin is due to the interference between
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light scattered back directly from the top scattering layer and light reflected
by the film after being scattered within it. Our studies indicate that this
explanation seems to hold true, but only if one carefully considers all possible
optical paths (in a single scattering model) both before and after any given
scattering event inside and outside the film [5]. However, when we do so
we obtain a simple model that is able to exactly predict both the angular
positions of the rings and the expected difference in contrast of the rings
for film geometries where either the top or the bottom interface of the film
is rough. Figure 5.6 shows some of the optical path alternatives that are
included in the full model described in Ref. 5.

In the context of this thesis, the exploration of the Selényi interference phe-
nomenon requires all the before mentioned optical phenomena and meth-
ods. Building an understanding and a complete single scattering model for
the film geometry is made possible through the numerical and analytical
results from SAPT, and higher-order effects are considered using the non-
perturbative solutions of the RREs with the necessary consideration of the
numerical challenges presented in Sec. 4.5.3. Since these are rough dielectric
films, both the Yoneda and Brewster scattering phenomena also affect the
interference patterns.



Chapter6
Conclusions and future work

To understand and predict the diffuse scattering of electromagnetic waves
through randomly rough surfaces is a relevant problem in many branches
of science and engineering. In summary, we have in this thesis investigated
the scattering of polarized light from two-dimensional randomly rough di-
electric interfaces in order to look for scattering patterns of interest in the
angular intensity distributions of the diffusely scattered light. The basis for
our investigations has been the so-called reduced Rayleigh equations and
their numerical solutions. Our overall scientific contribution is an increased
understanding of diffuse scattering from randomly rough surfaces, especially
for three-dimensional systems where we allow for cross-polarized scattering.
This can be useful in a wide range of optical systems, since the non-invasive
method of surface characterization through the analysis of scattering data
is interesting for both industry and research.

The Fresnel equations are remarkable in their ability to predict exactly the
specular reflectivity and transmissivity of planar interfaces between dielec-
tric media. They accurately describe the three optical phenomena we all
learn in high school: refraction, total internal reflection and Brewster’s an-
gle (polarizing angle). Largely considered to be manifestations of the wave
properties of light, the consequences of these phenomena surround us even if
no real surface or interface is perfectly planar. In addition, these phenomena
serve as fundamental tools in the optical characterization of any dielectric.
When light is scattered diffusely in both reflection and transmission from
weakly and randomly rough dielectric interfaces, we find two scattering phe-
nomena that are strongly linked with their more classical cousins. These are
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the Yoneda phenomenon, relatable to the idea of total internal reflection,
and the Brewster scattering phenomenon, relatable to the polarizing angle.
These scattering phenomena have only partially been investigated in the
past, and their study has been the core of this thesis.

The Yoneda phenomenon is characterized as an enhancement of the intensity
of the light scattered diffusely by a weakly and randomly rough interface
between two dielectric media when the light is observed in the optically
denser medium. The intensity enhancement occurs above a critical angle of
scattering which is independent of the angle of incidence of the excitation.
This critical angle is always the polar angle, in the denser medium, for
which the wavenumber of a plane wave turns non-propagating in the less
dense medium.

The Brewster scattering phenomenon is characterized by directions for
which we observe zero, or near-zero, scattered intensity in either the dif-
fusely reflected or diffusely transmitted p-polarized light. These scattering
angles depend on the angle of incidence. A consequence of the directional-
ity of electromagnetic fields, the Brewster scattering phenomenon has been
shown to represent the major difference in the scattering distributions of
diffusely scattered s- and p-polarized light.

In this thesis we have investigated these phenomena thoroughly through per-
turbative and non-perturbative numerical and theoretical work [2, 4], also
with the aid of new experimental results [3]. We have shown, described,
explained and predicted the behavior of both phenomena based on a low-
est non-zero order perturbative approach, and as such we have concluded
that they are so-called single-scattering phenomena. We have also investi-
gated the physical mechanisms that underpin these phenomena, and have
attempted to describe them in terms of simple notions such as scalar waves,
oscillating and rotating dipoles and geometrical arguments [6].

For a system of randomly rough dielectric film configurations on a substrate,
we have also investigated the appearance of Selényi interference rings in the
diffusely reflected and transmitted light [5]. We showed how the interference
rings can be explained using simple sums of optical paths, and provided a
more complete model than what is currently available in the literature.
This work also ties in with the Yoneda and Brewster scattering phenomena,
since they explain some of the observed results. Theory was developed and
presented that can treat an arbitrary number of rough interfaces in a stack,
which is a system configuration that can often be found naturally. This
theory was employed numerically to show how the interface roughness cross-
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correlation between two interfaces may selectively enhance and attenuate
the Selényi rings.

Lastly, when medium interfaces are randomly rough, it is of value if we
can infer the statistical properties of the roughness along with the proper-
ties of the scattering media based purely on the non-invasive scattering of
light. Through the use of numerical phase perturbation theory based on
the reduced Rayleigh equations, we investigated the reconstruction of such
properties through a minimization method based on the reflected intensity
distributions [1].

6.1 Directions for further research

What are the exact limitations of the Rayleigh hypothesis? The Rayleigh
hypothesis is, and has been, a successful cornerstone in several methods used
for the calculation of wave scattering. Although a lot of work has been done
towards an understanding of the exact implications of using the Rayleigh
hypothesis, there are still several unanswered questions [see Sec. 4.1], espe-
cially for randomly rough surfaces. While some aspects of the hypothesis
has been discussed in this thesis, a thorough investigation of the Rayleigh
equations and hypothesis has recently become available through the PhD
thesis of J.-P. Banon [38]. This work is an inspiring step in the direction of
a more complete understanding of the Rayleigh hypothesis.

Can the non-perturbative method of solving the RREs employed in this
thesis be used effectively also for studying film systems where multiple in-
terfaces are rough? In the paper included as Ref. 5 we investigated light
scattering from films with multiple rough interfaces through small ampli-
tude perturbation theory, and this work has also been continued by us for
the non-perturbative method. The computational requirements for such an
endeavor are very high however, since in short the integral equation kernels
become nested. We implemented the possibility of simulating the scattering
of light from n-multiple-rough-layered films, but the publication of results
based on this expansion of the non-perturbative method will hopefully be
part of a future project.

Can the non-perturbative method of solving the RREs be used for simula-
tion of the scattering of surface plasmon polaritons (SPPs) from arbitrarily
designed metallic surface roughness? Simulations of the scattering of SPPs
incident on various surface bumps and indentations has been done using
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a variety of approximate methods in the past [See e.g. Refs. 92–94]. In
preliminary work we were able to use the non-perturbative RRE method to
recreate some past published results [especially those in Refs. 92 and 94],
where our use of fully discretized surface profiles additionally allowed us to
perform arbitrary modifications on the roughness profiles. While the results
were very interesting, we found it challenging to fully understand the exact
interactions between the SPPs and specifics of our implementation of the
numerical method. In short, the handling of the incident field becomes more
difficult when we want a system with a well-defined SPP incident on a finite
surface structure instead of a plane wave incident on the entire surface. It
was not possible to include this work in this thesis due to time constraints,
but it is an exciting topic for further study.

Can complete Mueller matrices for the incoherently scattered light help us
better understand the results discussed in this thesis? While an example of
such a Mueller matrix is shown in Fig. 5.5, the insights that these matrix
elements provide did not become part of any work published in this thesis.
This is in part due to the challenges associated with proper use of this rather
complex tool. The complete Mueller matrices are however easily available
for all scattering simulations conducted in relation to the current work, and
it would be interesting to see what they can provide of further insight into
the currently studied phenomena.

Lastly, we mention the concept of the “Depolarization Index” (DI), which
was introduced by Gil and Bernabeu in 1985 [95, 96]. It is a single-number
metric that can provide interesting insight into the (de)polarizing effect of
surface roughness [97]. Calculations of the DI for all scattering angles for
some of the systems investigated in this thesis revealed some interesting
visual patterns, and might also contribute to a better understanding of
rough surface scattering if used in combination with the Mueller matrices.
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Determination of the normalized-surface-height autocorrelation function of a two-dimensional
randomly rough dielectric surface by the inversion of light-scattering data
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An expression is obtained on the basis of phase perturbation theory for the contribution to the mean differential
reflection coefficient from the in-plane co-polarized component of the light scattered diffusely from a two-
dimensional randomly rough dielectric surface when the latter is illuminated by s-polarized light. This result
forms the basis for an approach to inverting experimental light-scattering data to obtain the normalized-surface-
height autocorrelation function of the surface. Several parametrized forms of this correlation function, and the
minimization of a cost function with respect to the parameters defining these representations, are used in the
inversion scheme. This approach also yields the rms height of the surface roughness, and the dielectric constant
of the dielectric substrate if it is not known in advance. The input data used in validating this inversion consist
of computer simulation results for surfaces defined by exponential and Gaussian surface-height correlation
functions, without and with the addition of multiplicative noise, for a single or multiple angles of incidence.
The reconstructions obtained by this approach are quite accurate for weakly rough surfaces, and the proposed
inversion scheme is computationally efficient.

DOI: 10.1103/PhysRevA.93.043829

I. INTRODUCTION

Statistical information about the roughness of a surface is
contained in its rms height and in its normalized-surface-height
autocorrelation function. Efforts to obtain these properties of
rough surfaces from measurements of light scattered into the
far field from them are of interest because of the contactless
nature of this approach, and because measurements in the far
field are easier to carry out than measurements in the near field.

This problem has been studied in the past by several
authors. In the case of a one-dimensional randomly rough
dielectric surface, Chakrabarti et al. [1] inverted by a Fourier
transformation an expression for the contribution to the mean
differential reflection coefficient, obtained in the Kirchhoff
approximation, from light scattered diffusely from the surface.
The incident light was s-polarized and the plane of incidence
was perpendicular to the generators of the surface. Good
agreement with numerically generated scattering data was
obtained for weakly rough surfaces.

The case of a two-dimensional randomly rough surface
was studied by Chandley [2], and by Marx and Vorburger [3].
Chandley used scalar diffraction theory and a thin random
phase screen approximation [4] to model the interaction of
light with the randomly rough surface. A thin phase screen
may be regarded as a layer of negligible thickness that alters
the phase of the wave scattered from it but does not change its
magnitude. It is derived from simple optical path length and
geometrical optics arguments. He used the angular dependence
of the mean intensity of the scattered light in the far field as
the experimental quantity to be inverted. The nature of his
scattering model allowed this inversion to be carried out by
means of a Fourier transformation. The dielectric constant of
the scattering medium does not appear explicitly in Chandley’s

*ingve.simonsen@ntnu.no
†aamaradu@uci.edu

theory which means that it is impossible to use it to recover
the dielectric constant of the scattering medium from the
experimental scattering data if it is not known in advance.

In their study of this problem, Marx and Vorburger applied
the Kirchhoff approximation for the scattering of a scalar
plane wave from a two-dimensional randomly rough perfectly
conducting surface to obtain the mean intensity of the scattered
field. The determination of the rms height of the surface and
the normalized-surface-height autocorrelation function was
achieved by assuming an expression for the latter function
of a particular analytic form and by the determination of the
parameters defining it by a least-squares fit of the theoretical
mean intensity to the experimental result.

In contrast to these studies, in this paper we present an
approach to the determination of the rms height and the
normalized-surface-height autocorrelation function of a two-
dimensional randomly rough penetrable surface, in particular
a dielectric surface, from the inversion of optical scattering
data. It is based on a vector theory of rough surface scattering
rather than on a scalar theory, namely phase perturbation
theory [5]. The dielectric constant of the medium is taken
into account in this approach. This version of rough-surface-
scattering theory was chosen in this study because in a recent
comparison between experimental data and the predictions of
three perturbation theories for the scattering of electromag-
netic radiation from two-dimensional randomly rough metal
surfaces, it produced the best results [5]. We expect it to be
equally accurate in describing the scattering of visible light
from a two-dimensional randomly rough dielectric surface.
Specifically, we use the expression for the contribution to the
mean differential reflection coefficient from the in-plane, co-
polarized component of the light scattered incoherently when
the dielectric surface is illuminated at normal or non-normal
incidence by s-polarized light.

This expression is evaluated with the use of an expression
for the normalized-surface-height autocorrelation function that
contains adjustable parameters. The values of these parameters
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are then determined by a least-squares fit of the resulting
expression to the corresponding experimental scattering data.
The reconstruction of the parameters is performed using
scattering data for both a single and several angles of
incidence, and the sensitivity to noise of the reconstructed
parameters is investigated. We note that the contribution to
the mean differential reflection coefficient from the in-plane
co-polarized component of the light scattered incoherently
when the surface is illuminated by p-polarized light can also be
used for this purpose. However, the expression one works with
to effect this inversion is somewhat simpler in s polarization
than in p polarization. In addition, there is no Brewster effect
in s polarization, so that a smoother function of the scattering
angle is being inverted in s polarization than in p polarization.
It is for these reasons that we have chosen to work with s
polarization.

This paper is organized as follows: First, the scattering
system is presented (Sec. II) followed by elements of scattering
theory (Sec. III) that will be useful for the subsequent discus-
sion. Then in Sec. IV, we present the inversion scheme that
will be used to reconstruct the surface-height autocorrelation
function. The results obtained by the use of this procedure are
presented in Sec. V for a set of different correlation functions
and scattering geometries. Section VI presents discussions of
these results and the conclusions that can be drawn from this
study. The paper ends with an appendix detailing the derivation
of expressions, central to the present work, for the first few
moments of the scattering matrix for s-to-s scattering obtained
on the basis of phase perturbation theory.

II. THE PHYSICAL SYSTEM STUDIED

The physical system we study in this paper consists of
vacuum in the region x3 > ζ (x‖), and a dielectric medium,
characterized by a dielectric constant ε that is real, positive, and
frequency independent, in the region x3 < ζ (x‖) (Fig. 1). Here
x‖ = (x1,x2,0) is a position vector in the plane x3 = 0. The
surface profile function ζ (x‖) is assumed to be a single-valued
function of x‖ that is differentiable with respect to x1 and x2. It
is also assumed to constitute a stationary, zero-mean, isotropic,

x1

x2

x3

q
k

q‖k‖
φs

φ0

θs
θ0

FIG. 1. Schematics of the scattering geometry considered in this
work.

Gaussian random process defined by

〈ζ (x‖)ζ (x ′‖)〉 = δ2W (|x‖ − x ′‖|), (1a)

〈ζ 2(x‖)〉 = δ2, (1b)

where the angle brackets denote an average over the ensemble
of realizations of ζ (x‖), δ is the rms height of the surface,
and W (|x‖|) is the normalized-surface-height autocorrelation
function, with the property that W (0) = 1.

The surface profile function has a Fourier integral represen-
tation,

ζ (x‖) =
∫

d2Q‖
(2π )2

ζ̂ (Q‖) exp(iQ‖ · x‖), (2)

where Q‖ = (Q1,Q2,0) is a two-dimensional wave vector, so
that

ζ̂ (Q‖) =
∫

d2x‖ ζ (x‖)exp(−iQ‖ · x‖). (3a)

We also introduce the notation

ζ̂ (n)(Q‖) =
∫

d2x‖ ζ n(x‖) exp(−iQ‖ · x‖). (3b)

The Fourier coefficient ζ̂ (Q‖) is also a zero-mean Gaussian
random process defined by

〈ζ̂ (Q‖)ζ̂ (Q ′‖)〉 = (2π )2δ(Q‖ + Q ′‖) δ2g(|Q‖|), (4)

where g(|Q‖|), the power spectrum of the surface roughness,
is defined by

g(|Q‖|) =
∫

d2x‖ W (|x‖|) exp(−iQ‖ · x‖). (5)

It follows from Eqs. (1) and (5) that g(|Q‖|) is normalized
to unity,

∫
d2Q‖
(2π )2

g(|Q‖|) = 1. (6)

III. SCATTERING THEORY

The surface x3 = ζ (x‖) is illuminated from the vacuum by
an electromagnetic field of frequency ω. The electric field in
the vacuum above the surface is the sum of an incident and a
scattered field, E(x; t) = E(i)(x; t) + E(s)(x; t), where

E(i)(x; t) =
{

− c

ω
[k̂‖α0(k‖) + x̂3k‖]Bp(k‖) + (x̂3 × k̂‖)

×Bs(k‖)

}
exp{i[k‖ − x̂3α0(k‖)] · x − iωt}, (7a)

E(s)(x; t) =
∫

d2q‖
(2π )2

{
c

ω
[q̂‖α0(q‖) − x̂3q‖]Ap(q‖) + (x̂3 × q̂‖)

×As(q‖)

}
exp{i[q‖ + x̂3α0(q‖)] · x − iωt}. (7b)

The subscripts p and s denote the p-polarized (TM) and s-
polarized (TE) components of each of these fields, respectively.
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The function α0(q‖) in Eqs. (7) is defined as

α0(q‖) =
[(

ω

c

)2

− q2
‖

]1/2

, Re α0(q‖) > 0, Im α0(q‖) > 0.

(8)

Maxwell’s equations imply linear relations between Aα(q‖)
and Bβ(q‖), which we write in the form (α = p,s,β = p,s)

Aα(q‖) =
∑

β

Rαβ(q‖|k‖)Bβ(k‖). (9)

The scattering amplitudes {Rαβ(q‖|k‖)} play a significant
role in the present theory because the mean differential
reflection coefficient is given in terms of them. The dif-
ferential reflection coefficient [∂Rαβ(q‖|k‖)/∂
s] is defined
such that [∂Rαβ(q‖|k‖)/∂
s]d
s is the fraction of the total
time-averaged flux in an incident field of β polarization the
projection of whose wave vector on the mean scattering
plane is k‖, that is scattered into a field of α polarization,
the projection of whose wave vector on the mean scattering
plane is q‖, within an element of solid angle d
s about the
scattering direction defined by the polar and azimuthal angles
(θs,φs). It is given by [6,7]

∂Rαβ(q‖|k‖)

∂
s

= 1

S

(
ω

2πc

)2 cos2 θs

cos θ0
|Rαβ(q‖|k‖)|2, (10)

with (see Fig. 1)

k‖ = ω

c
sin θ0(cos φ0, sin φ0,0), (11a)

q‖ = ω

c
sin θs(cos φs, sin φs,0), (11b)

where (θ0,φ0) and (θs,φs) are the polar and azimuthal angles of
incidence and scattering, respectively. S is the area of the plane
x3 = 0 covered by the rough surface. As we are dealing with
scattering from a randomly rough surface, it is the average of
this function over the ensemble of realizations of the surface
profile function that we have to calculate. The contribution to
this average from the light scattered incoherently is〈

∂Rαβ(q‖|k‖)

∂
s

〉
incoh

= 1

S

(
ω

2πc

)2 cos2 θs

cos θ0
[〈|Rαβ(q‖|k‖)|2〉

− |〈Rαβ (q‖|k‖)〉|2]. (12)

Closely related to the matrix of scattering amplitudes
R(q‖|k‖) is the scattering matrix S(q‖|k‖) whose elements
{Sαβ(q‖|k‖)} are given by

Sαβ(q‖|k‖) = α
1/2
0 (q‖)

α
1/2
0 (k‖)

Rαβ(q‖|k‖). (13)

These elements satisfy the reciprocity relations [8]

Spp(q‖|k‖) = Spp(−k‖| − q‖), (14a)

Sss(q‖|k‖) = Sss(−k‖| − q‖), (14b)

Sps(q‖|k‖) = −Ssp(−k‖| − q‖), (14c)

which serve as a check on the correctness of their derivation.
In terms of the elements of the scattering matrix, Eq. (10) takes
the form〈

∂Rαβ(q‖|k‖)

∂
s

〉
incoh

= 1

S

(
ω

2πc

)2

cos θs[〈|Sαβ(q‖|k‖)|2〉

− |〈Sαβ (q‖|k‖)〉|2]. (15)

This is the definition we will work with.
In the Appendix it is shown that the ss element of the

expression given by Eq. (15) obtained on the basis of second-
order phase perturbation theory can be written as〈

∂Rss(q‖|k‖)

∂
s

〉
incoh

= (ε − 1)2

(2π )2

(
ω

c

)6 cos θs

[ds(q‖)ds(k‖)]2
exp[−2M(q‖|k‖)]

×
∞∑

n=1

[4δ2α0(q‖)α0(k‖)(q̂‖ · k̂‖)2]n

n!

×
∫

d2u‖ Wn(|u‖|) exp[−i(q‖ − k‖) · u‖]. (16)

In writing this expression we have introduced the functions

dp(q‖) = εα0(q‖) + α(q‖), (17a)

ds(q‖) = α0(q‖) + α(q‖), (17b)

where

α(q‖) =
[
ε

(
ω

c

)2

− q2
‖

]1/2

Re α(q‖) > 0, Im α(q‖) > 0.

(18)

The function M(q‖|k‖) is given by (see the Appendix)

M(q‖|k‖) = 2δ2α
1/2
0 (q‖)α1/2

0 (k‖)

×
∫

d2p‖
(2π )2

Re F (q‖|p‖|k‖)g(|p‖ − k‖|), (19)

where

F (q‖|p‖|k‖) = sgn(q̂‖ · k̂‖)

{
1

2
[α(q‖) + α(k‖)](q̂‖ · k̂‖) + (ε − 1)(q̂‖ × p̂‖)3

α0(p‖)α(p‖)

dp(p‖)
(p̂‖ × k̂‖)3

− (ε − 1)

(
ω

c

)2 (q̂‖ · p̂‖)(p̂‖ · k̂‖)

ds(p‖)

}
, (20)

with sgn(·) denoting the sign function.
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We now turn to an evaluation of the ingredients in Eq. (16). We begin with the expression for 2M(q‖|k‖) given by Eqs. (19)–(20).
With the use of Eqs. (5)–(6) we rewrite it in terms of W (x‖):

2M(q‖|k‖) = δ2α
1/2
0 (q‖)α1/2

0 (k‖) sgn(q̂‖ · k̂‖)

{
2[α(q‖) + α(k‖)](q̂‖ · k̂‖) + (ε − 1)

π2
Re

∫ ∞

0
dp‖ p‖

∫ π

−π

dφp

∫ ∞

0
dx‖ x‖W (x‖)

×
∫ π

−π

dφx exp[−ip‖x‖ cos(φp − φx)] exp[ik‖x‖ cos(φk − φx)]

×
[
α0(p‖)α(p‖)

dp(p‖)
sin(φp − φq) sin(φk − φp) − (ω/c)2

ds(p‖)
cos(φq − φp) cos(φp − φk)

]}
, (21)

where φq , φp, φk , and φx are the azimuthal angles of the unit vectors q̂‖, p̂‖, k̂‖, and x̂‖, respectively, measured from the positive
x1 axis (see Fig. 1). On evaluating the angular integrals this result becomes

2M(q‖|k‖) = 2δ2α
1/2
0 (q‖)α1/2

0 (k‖)|q̂‖ · k̂‖|
{
α(q‖) + α(k‖) − (ε − 1) Re

[ ∫ ∞

0
dp‖ p‖

(
α0(p‖)α(p‖)

dp(p‖)
+ (ω/c)2

ds(p‖)

) ∫ ∞

0
dx‖ x‖

×W (x‖)J0(p‖x‖)J0(k‖x‖) +
∫ ∞

0
dp‖ p‖

(
− α0(p‖)α(p‖)

dp(p‖)
+ (ω/c)2

ds(p‖)

)∫ ∞

0
dx‖ x‖W (x‖)J2(p‖x‖)J2(k‖x‖)

]}
, (22)

where Jn(z) is a Bessel function of the first kind and order n, and we have used the relation x sgn(x) = |x|. Finally, due to the
circular symmetry of W (|u‖|) we obtain the result

∫
d2u‖ Wn(|u‖|)exp[−i(q‖ − k‖) · u‖] = 2π

∫ ∞

0
du‖ u‖Wn(u‖)J0(|q‖ − k‖|u‖). (23)

In the case of normal incidence (k‖ = 0) and in-plane (q̂‖ ‖ k̂‖) scattering, Eq. (16) becomes

〈
∂Rss(q‖|0)

∂
s

〉
incoh

= (ε − 1)2

(2π )2

(
ω

c

)6 cos θs

[ds(q‖)ds(0)]2
exp[−2M(q‖|0)]

∞∑
n=1

[4δ2α0(q‖)α0(0)]n

n!

∫
d2u‖ Wn(|u‖|)exp(−iq‖ · u‖),

(24)

and Eq. (22) can be written as

2M(q‖|0) = 2δ2α
1/2
0 (q‖)α1/2

0 (0)

{
α(q‖) + α(0) − (ε − 1) Re

∫ ∞

0
dp‖ p‖

[
α0(p‖)α(p‖)

dp(p‖)
+ (ω/c)2

ds(p‖)

] ∫ ∞

0
dx‖ x‖W (x‖)J0(p‖x‖)

}
.

(25)

From Eq. (11) it is noted that for normal incidence k̂‖ =
(cos φ0, sin φ0,0), even if k‖/k‖ is not well defined in this
case. Moreover, for scattering into directions that are normal
to the mean surface we have q̂‖ = k̂‖, so for all directions
q‖ corresponding to in-plane scattering |q̂‖ · k̂‖| = 1. These
results were used in arriving at the expressions presented in
Eqs. (24) and (25).

IV. THE INVERSE PROBLEM

To determine the function W (x‖) from in-plane scattering
data defined as

〈
∂Rss(θs)

∂
s

〉
incoh,input

≡
〈
∂Rss(q‖|k‖)

∂
s

〉
incoh

∣∣∣∣
|q̂‖·k̂‖|=1

,

we assume an analytic form for it that contains adjustable
parameters. The values of these parameters, together with the
rms height δ, are determined by minimizing a cost function
with respect to variations of these parameters. The cost

function we use is

χ2(P) =
∫ π

2

− π
2

dθs

[〈
∂Rss(θs)

∂
s

〉
incoh,input

−
〈
∂Rss(θs)

∂
s

〉
incoh,calc

]2

, (26)

where P denotes the set of variational parameters used to
characterize 〈∂Rss(θs)/∂
s〉incoh,calc. The minimization of this
function with respect to the elements of P was carried
out by the use of the routine “lmdif1” contained in the
Fortran package MINPACK which is part of the general
purpose mathematical library SLATEC [9]. The routine lmdif1
implements a modified version of the Levenberg-Marquardt
algorithm [10,11], and it calculates the Jacobian by a forward-
difference approximation.

The function 〈∂Rss(θs)/∂
s〉incoh,input was obtained from
rigorous, nonperturbative, purely numerical solutions [8,12] of
the reduced Rayleigh equation for the scattering of polarized
light from a two-dimensional randomly rough penetrable
dielectric surface [13]. These calculations were carried out
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FIG. 2. Reconstruction of the rms roughness δ� and transverse correlation length a� from in-plane scattering data obtained for exponentially
correlated surfaces. (a) The incoherent component of the in-plane, co-polarized (s-to-s) mean differential reflection coefficient 〈∂Rss/∂
s〉incoh

as a function of the polar angle of scattering θs obtained from computer simulations (open circles), and from second-order phase perturbation
theory with the use of the reconstructed surface-roughness parameters (solid curve), for a two-dimensional randomly rough dielectric surface
defined by Eq. (28a). The surface-roughness parameters assumed in the computer simulations have the values δ = 9.50 nm and a = 158.20 nm,
while the reconstructed values of these parameters are δ� = 9.519 nm and a� = 158.565 nm. The dielectric constant of the substrate is ε = 2.64,
and the wavelength of the s-polarized light incident normally on the mean surface is λ = 632.8 nm. (b) The input (open circles) and reconstructed
(solid curve) surface-height autocorrelation function W (|x‖|) for the random surface. The shaded gray region represents the absolute difference
between the input and reconstructed surface-height autocorrelation functions.

for an ensemble of random surfaces generated [12] on the
basis of expressions for W (|x‖|) of either the exponential form

W (|x‖|) = exp

(
−x‖

a

)
, (27a)

or the Gaussian form

W (|x‖|) = exp

{
−

(
x‖
a

)2}
. (27b)

In Eqs. (27), a denotes the transverse correlation length of the
surface roughness.

The function 〈∂Rss(θs)/∂
s〉incoh,calc was obtained by eval-
uating the expression for it obtained using phase perturbation
theory [Eq. (16)] for the trial function assumed to represent
W (|x‖|). Several forms for this trial function were used in
our calculations. In the first set of forms we assumed an
exponential or Gaussian trial function, that is,

W (|x‖|) = exp

(
− x‖

a�

)
, (28a)

or

W (|x‖|) = exp

{
−

(
x‖
a�

)2}
. (28b)

In this case the variational parameters of the reconstruction are
δ�,a�, and potentially also ε�.

For the second set of forms for the trial function a stretched
exponential was assumed,

W (|x‖|) = exp

{
−

(
x‖
a�

)γ �}
, (29)

which reduces to the exponential and Gaussian forms when
γ � = 1 and γ � = 2, respectively. In this case the varia-

tional parameters of the reconstruction are δ�,a�,γ �, and
potentially ε�.

V. RESULTS

We will now illustrate the inversion method developed here
by applying it to the reconstruction of W (|x‖|), first by the use
of one of the trial functions (28) and then by the use of the
more general trial function (29).

A. Exponentially correlated surface roughness

For the first scattering system we consider, it is assumed
that the surface-height autocorrelation function W (|x‖|) is
exponential, Eq. (27a), and characterized by a transverse cor-
relation length a = 158.20 nm and an rms height of the surface
δ = 9.50 nm. The medium above the surface is vacuum and the
dielectric constant of the substrate is ε = 2.64 (photoresist).
The wavelength (in vacuum) of the s-polarized incident light
is λ = 632.8 nm. For this geometry and by the method of
Ref. [12], we calculated the mean differential reflection
coefficients by averaging the results from 5000 realizations
of the surface profile function. For normal incidence, the in-
plane, s-to-s co-polarized incoherent component of the mean
differential reflection coefficient (DRC) obtained in this way is
presented as a function of the scattering angle θs by open circles
in Fig. 2(a) [the same data set also appears in Figs. 3(a)–5(a)].
These data constitute the input function 〈Rss(θs)/∂
s〉incoh,input

for our first set of reconstruction examples.
As our first example of reconstruction based on this data set,

we assume that the trial function W (|x‖|) has the exponential
form given by Eq. (28a). The set of variational parameters
is therefore P = {δ�,a�}. The use of a mean differential
reflection coefficient generated by the use of a known W (|x‖|)

043829-5



SIMONSEN, HETLAND, KRYVI, AND MARADUDIN PHYSICAL REVIEW A 93, 043829 (2016)

-90 -60 -30 0 30 60 90
θs [deg]

0

1

2

3

4

5

6

7

〈∂
R

ss
/ ∂Ω

s 〉 in
co

h

Input
Reconstructed

(a)

-600 -400 -200 0 200 400 600
x|| [nm]

0.0

0.2

0.4

0.6

0.8

1.0

W
(|x

|||)

Input
Reconstructed

(b)

× 50

8

10
4

FIG. 3. Reconstruction of the rms roughness δ�, the transverse correlation length a�, and the dielectric constant of the substrate ε� from
the in-plane scattering data. This figure is the same as Fig. 2 except now the dielectric constant of the substrate is also reconstructed. The
reconstructed surface-roughness parameters are found to be δ� = 9.272 nm, a� = 158.042 nm, and the reconstructed dielectric constant has the
value ε� = 2.718.

in our inversion approach enables us to assess the quality of
the reconstructions we obtain. By starting the minimization
procedure with the values δ� = 2.00 nm and a� = 75.00 nm,
the values of these parameters that minimize the cost function
χ2(P), Eq. (26), were found to be δ� = 9.519 nm and a� =
158.565 nm, to be compared with the values δ = 9.50 nm
and a = 158.20 nm used to generate the input data. In the
minimization procedure we assumed that both δ� and a�

were restricted to positive values. The inversion is quite
accurate. The function 〈∂Rss(θs)/∂
s〉incoh,calc calculated with
the reconstructed values of δ� and a� by means of second-order
phase perturbation theory is plotted as the solid curve in
Fig. 2(a) while the reconstructed correlation function W (|x‖|)
is plotted as the solid curve in Fig. 2(b). The reconstructed
W (|x‖|) is nearly superimposed on the input W (|x‖|) [open
symbols Fig. 2(b)]. The shaded region in Fig. 2(b), and in the
subsequent plots of W (|x‖|), represents the magnitude of the
difference between the input and reconstructed values of this
function. This difference is seen to be very small.

In the preceding example it was assumed that the dielectric
constant of the scattering medium was known. For our second
example we take the input data from our first example, given
by the open circles in Fig. 2(a), but now assume that together
with the roughness parameters the dielectric constant of the
substrate is unknown. Therefore the variational parameter
set is now P = {δ�,a�,ε�}. The results of this inversion are
shown in Fig. 3, and it is seen that also in this case a rather
good reconstruction is obtained. By starting the minimization
procedure with the values δ� = 2.00 nm, a� = 75.00 nm, and
ε� = 2.00, the values of these parameters that minimize the
cost function χ2(P) were determined to be δ� = 9.272 nm,
a� = 158.042 nm, and ε� = 2.718. These are to be compared
with the input values δ = 9.50 nm, a = 158.20 nm, and ε =
2.64. The function 〈∂Rss(θs)/∂
s〉incoh,calc calculated with the
reconstructed values of δ�,a�,ε� by means of second-order
phase perturbation theory is plotted as the solid curve in
Fig. 3(a), while the reconstructed correlation function W (|x‖|)
is plotted as the solid curve in Fig. 3(b). From a comparison of

the results presented in Figs. 2 and 3 it is seen that the addition
of a single variational parameter changes the reconstruction of
W (|x‖|) only marginally.

A more stringent test of our inversion scheme is obtained
when the trial function for W (|x‖|) has a functional form that
differs from the form assumed in generating the input data
that the reconstruction is based on. As our third example,
we therefore present results of our calculations when the
trial W (|x‖|) is assumed to have the stretched exponential
form given by Eq. (29). The set of variational parameters is
now P = {δ�,a�,γ �}. By starting the minimization procedure
with the values δ� = 2.00 nm, a� = 75.00 nm, and γ � =
2.00, the values of these parameters that minimize the cost
function were found to be δ� = 9.425 nm, a� = 161.717 nm,
and γ � = 1.012. These values are fairly close to the input
values δ = 9.50 nm, a = 158.20 nm, and γ = 1.0 used in
obtaining the simulation data. However, the importance of
this example is to show that our minimization procedure is
in fact able to distinguish a Gaussian form for the correlation
function from an exponential form. In Fig. 4(a) we plot the
function 〈∂Rss(θs)/∂
s〉incoh,calc calculated by means of the
second-order phase perturbation theory for the reconstructed
values of δ�,a�,γ � (solid curve), together with a plot of the
input function (open circles). The agreement between these
two results is quite good. In Fig. 4(b) we present plots of the
input (open circles) and reconstructed (solid curve) correlation
functions W (|x‖|). The latter curve very nearly coincides with
the former curve.

In our final example assuming an exponentially correlated
surface, we again use the stretched exponential trial function
for W (|x‖|), but now also assume that the dielectric constant
of the scattering medium is unknown. The set of variational
parameters is now P = {δ�,a�,ε�,γ �}. We start the minimiza-
tion of the cost function χ2(P) with the values δ� = 2.00 nm,
a� = 75.00 nm, ε� = 2.00, and γ � = 2.00. The values of these
parameters that minimize the cost function are found to be
δ� = 9.774 nm, a� = 166.709 nm, ε� = 2.507, and γ � =
1.027. The proximity of these values to the input values, that
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FIG. 4. Reconstruction of the rms roughness δ�, the transverse correlation length a�, and the exponent γ � from in-plane scattering data.
This figure is the same as Fig. 2 except that now the trial function for W (|x‖|) has the stretched exponential form given by Eq. (29). The
reconstructed surface-roughness parameters are found to have the values δ� = 9.425 nm, a� = 161.717 nm, and γ � = 1.012.

are the same as those used previously, is poorer than for the first
three examples, but the reconstructed values are still quite sat-
isfactory. The reconstructed function 〈∂Rss(θs)/∂
s〉incoh,calc

[Fig. 5(a)] and the reconstructed correlation function W (|x‖|)
[Fig. 5(b)] calculated with these reconstructed values are still
in good quantitative agreement with the corresponding input
functions.

The parameters for the scattering system obtained in the
different reconstruction scenarios detailed in this subsection
are summarized in Table I.

B. Gaussian-correlated surface roughness

The second scattering system, from which we will use data
for the purpose of inversion, is characterized by a Gaussian
correlation function instead of the exponential correlation
function assumed in the earlier set of examples. Compared to

TABLE I. Summary of the scattering system parameters obtained
during the different reconstruction scenarios based on in-plane,
s-to-s co-polarized scattering data corresponding to an exponentially
correlated surface: δ�, a�, ε�, and γ �. The scattering system pa-
rameters assumed in generating the input data were δ = 9.50 nm,
a = 158.20 nm, ε = 2.64, and θ0 = 0◦. Note that an exponential
correlation function corresponds to the exponent γ = 1 for the
stretched exponential. The last column indicates the relevant figure
where the results of the reconstruction in question are presented.
The symbol “—” indicates that the corresponding variable was
not reconstructed and instead had the value assumed in the input
data (numerical simulations). In the two first reconstructions a trial
correlation function of the form (28a) was used, while in the last
two the form (29) was assumed. The initial values of {δ�,a�,ε�,γ �}
assumed in the reconstructions were {2 nm,75 nm,2,2}, respectively.

δ� (nm) a� (nm) ε� γ � Comments

9.519 158.565 – – Fig. 2
9.272 158.042 2.718 – Fig. 3
9.425 161.717 – 1.012 Fig. 4
9.774 166.709 2.507 1.027 Fig. 5

the previous scattering system, in addition to the different form
of W (|x‖|), the only parameters that have changed are the rms
roughness and the dielectric constant of the substrate; they now
take the values δ = 15.82 nm (an increase of more than 65%
compared to its previous value) and ε = 2.6896, respectively.
Except for the angles of incidence, all other parameters
characterizing the scattering system remained unchanged, i.e.,
a = 158.20 nm and λ = 632.8 nm.

For these parameters, a computer simulation approach [12]
was used to generate scattering data that were obtained by
averaging the results from 24000 surface realizations. Results
obtained this way are presented as open symbols in Fig. 6(a)
for the polar angle of incidence θ0 = 50.2◦. It is these data we
will base our inversion on in this subsection; that is, here this
data set represents 〈∂Rss/∂
s〉incoh,input.

Motivated by the reconstruction done in Sec. V A using
scattering data obtained for the exponentially correlated
surface, we will now perform similar inversions for Gaussian-
correlated surfaces using various variational parameter sets,
P , that are subsets of {δ�,a�,ε�,γ �}. In such cases, the starting
values assumed in the minimization will be {2 nm,75 nm,2,1},
respectively, if nothing is said to indicate otherwise.

Figure 6 presents the results of the reconstruction for
P = {δ�,a�} under the assumption that the trial function
used for W (|x‖|) is of the Gaussian form, Eq. (28b). In this
way, the reconstruction procedure resulted in the numerical
values δ� = 15.873 nm and a� = 158.000 nm. These values
agree rather well with the values assumed in generating the
scattering data used in the inversion. Moreover, the input and
reconstructed correlation functions, as well as the absolute
difference between them, are depicted in Fig. 6(b); the solid
red line in Fig. 6(a) represents the mean DRC predicted by the
inversion.

We now continue by reconstructing the same variational
parameter sets, P , as were used in Sec. V A for the exponential
surface roughness; the only difference now is that we will
assume the form of the trial function (28b) where we previously
used Eq. (28a). A summary of the reconstructed parameters
is presented in Table II. Moreover, in Fig. 7 the input and
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FIG. 5. Reconstruction of the rms roughness δ�, the transverse correlation length a�, the exponent γ �, and the dielectric constant of the
substrate ε� from in-plane scattering data. This figure is the same as Fig. 2 except that now the trial function for W (|x‖|) has the stretched
exponential form given by Eq. (29), and the dielectric constant of the scattering medium is assumed to be unknown. The reconstructed
surface-roughness parameters are found to have the values δ� = 9.774 nm, a� = 166.709 nm, γ � = 1.027, and the reconstructed value of the
dielectric constant is ε� = 2.507.

different reconstructed correlation functions obtained in this
way are presented, together with comparisons of them. The
mean DRCs that result from these reconstructions are visually
indistinguishable from those of Fig. 6(a), and such plots have
therefore not been presented.

From Figs. 6–7 and Table II we see that the reconstructed
results for the Gaussian-correlated surface roughness are in
general good, at least for the angle of incidence θ0 = 50.2◦
assumed here. The quality of the results obtained is on a
par with the results obtained previously for the exponentially
correlated surface roughness, even though in the Gaussian
case the rms roughness is significantly larger and the angle of
incidence is nonzero.

It should be mentioned that we have also performed
reconstructions based on input data corresponding to other
polar angles of incidence than θ0 = 50.2◦, and it was found that

the values of the reconstructed parameters essentially remained
unchanged; if there were any changes at all, the quality of the
reconstruction seemed to improve for smaller polar angles of
incidence. Assuming different initial values of the parameters
of the setP seemed not to affect the reconstruction. Hence, our
results seem to indicate that reconstruction based on different
input data, at least for the scattering data that we considered,
influences the numerical values of the reconstructed parame-
ters of the surface-height correlation function only to a small
extent. Furthermore, the reconstruction seems to be reliable
for a wide range of angles of incidence.

C. Sensitivity to noise

Any experimental data set will contain some level of
noise. Therefore, it is imperative to have reliable inversion
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FIG. 6. Same as Fig. 2, but now for a Gaussian-correlated surface where the polar angle of incidence is θ0 = 50.2◦. The trial function assumed
in the reconstruction was the Gaussian form (28b), and the values for the parameters obtained were δ� = 15.873 nm and a� = 158.000 nm. The
scattering system assumed in generating the input data were characterized by δ = 15.82 nm, a = 158.20 nm, ε = 2.6896, and λ = 632.8 nm.
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TABLE II. Summary of the values reconstructed from in-plane
scattering data obtained for the polar angle of incidence θ0 = 50.2◦

and corresponding to a Gaussian-correlated surface characterized
by δ = 15.82 nm and a = 158.20 nm. The dielectric constant of the
substrate was ε = 2.6896. Note that a Gaussian correlation function
corresponds to an exponent γ = 2.00 for the stretched exponential.
The symbol “—” indicates that the corresponding parameter was
not reconstructed and instead had the value assumed in numerically
generating the input data. When inverting for any of the parameters in
the set {δ�,a�,ε�,γ �} the initial values used were {2 nm,75 nm,2,1},
respectively.

δ� (nm) a� (nm) ε� γ � Comments

15.922 157.928 – – Fig. 6
16.161 157.785 2.645 – Fig. 7(a)
16.170 154.592 – 1.929 Fig. 7(b)
16.180 157.148 2.651 1.986 Fig. 7(c)

approaches that can be applied successfully to data sets
containing noise. Until now, we have used simulated data
as the basis for the reconstruction, and the only source of
uncertainty (or noise) in such simulations results is the finite
number of surface realizations used to obtain them. However,
since a sufficiently high number of realizations has been used in
generating such data, the uncertainty has been modest. To start
investigating the sensitivity of the reconstructed parameters
to noise, we will, for reasons of comparison, base it on the
data set used in Sec. V B [open symbols in Fig. 6(a)] and
add noise to it. Due to the way these simulation results were
generated [12], only 36 points exist in this data set. However,
experimental angular resolved scattering data sets typically
will have significantly better angular resolution (and, thus,
more points). Therefore, to better mimic the more relevant
experimental situation, we have interpolated by splines these
simulation results [solid symbols in Fig. 8(a)] to an angular
resolution of �θs = 1◦ for θs in the interval from −90◦ to
90◦. Then, to these (locally smooth) interpolated data, we
have added multiplicative Gaussian white noise of a standard
deviation of 5% and zero mean [gray erratic signal oscillating
around zero in Fig. 8(a) resulting in the open blue data in
Fig. 8(a)]. It is this latter data set that will be used as the noisy
input signal for the reconstructions to be performed below. In
passing, it is noted that additive noise (of constant amplitude)
mainly will affect the tails of the in-plane angular intensity
distributions of the scattered light due to their typical convex
shape. In this study we have chosen to focus on multiplicative
noise since it affects the whole intensity distribution and
therefore represents a greater challenge for the reconstruction
approach.

Results for the reconstructed parameters based on this
Gaussian white noisy data set, performed in a fashion identical
to what was done in the preceding subsection, are listed in
Table III. From this table, we observe that the results obtained
are rather good, even for the significant noise level assumed.
Moreover, one finds that the quality of the reconstruction is
not dramatically degraded compared to what was previously
obtained using the non-noisy data set (see Table II). Not
surprisingly, the poorest results of the inversion are obtained
for the variational parameter set P of cardinality 4, and this
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FIG. 7. Correlation functions obtained by reconstructing several
variational parameter sets P for the Gaussian surface roughness
parameters defined in Fig. 6: (a) P = {δ�,a�,ε�}, (b) P = {δ�,a�,γ �},
and (c) P = {δ�,a�,ε�,γ �}. The numerical values of the reconstructed
parameters are listed in Table II. The shaded areas represent the
absolute error between the input and reconstructed correlation
functions.

“worst case” is presented as solid red lines in Fig. 8. The results
presented in Table III and Fig. 8, which for the non-noisy case
should be compared to Table II and Fig. 7(c), support the view
that the reconstruction approach presented in this paper is able
to produce reliable results also when the input data are noisy.
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FIG. 8. The sensitivity of the reconstruction to multiplicative Gaussian white noise of 5% standard deviation. (a) The incoherent component
of the in-plane mean DRC for s-to-s scattering from a Gaussian-correlated surface roughness. The solid symbols represent the same data set that
appears as open symbols in Fig. 6(a). This (smooth) data set was first interpolated to an angular resolution of 1◦, and then multiplicative Gaussian
white noise of 5% standard deviation was added to it. The open blue symbols represent the resulting noisy signal that the reconstruction is based
on; the irregular signal in gray oscillating around zero is the actual noise being added. The (noninterpolated) original data set is indicated by
green filled symbols. The solid red line represents the incoherent component of the mean DRC resulting from reconstructing the variational set
P = {δ�,a�,ε�,γ �} (actual values given by the last line of Table III). (b) The input and reconstructed correlation function W (|x‖|) for variational
parameter set P; the “non-noisy” equivalent of this graph is presented in Fig. 7(c). It should be noted that reconstruction using any subset of P
results in more accurate results for the correlation function (see Table III), so what is shown here is indeed the “worst case” situation for the
cases that we have considered.

For instance, when reconstructing 4 parameters, the relative
errors in the reconstructed correlation lengths are about 3.5%
and −0.7% for the noisy and non-noisy cases, respectively,
which is not dramatic given the level of noise that was added
to the input data.

It should be mentioned that we found that if the parameters
were estimated using a noisy version of the original scattering
data instead of the interpolated data, as done above, the
results using the trial function (28b) essentially remained
unchanged. However, for the stretched exponential form (29),
the results were more sensitive to the initial values used in
the minimization, resulting in less robust results than those
obtained by the use of the former data set. We will see in
the next subsection that this can also be the case when using
multiple angles of incidence.

TABLE III. Same as Table II, but now the data set used in the
inversion consisted of an interpolated version of the data set used to
produce the results of Table II, with added multiplicative Gaussian
white noise of a standard deviation of 5% (and mean zero). In Fig. 8,
the noisy input data set is depicted as blue open symbols, while the
noise appears in gray.

δ� (nm) a� (nm) ε� γ � Comments

15.955 157.705 – – –
16.151 157.571 2.653 – –
15.946 157.824 – 2.003 –
15.941 163.661 2.606 2.102 Fig. 8

D. Inversion of data obtained from multiple angles of incidence

When the experimental setup is prepared to measure the
in-plane scattering of light for one angle of incidence, it is
relatively straightforward to perform additional measurements
for other angles of incidence. Therefore, it is of interest to
study how the reconstructed parameters will depend on using
multiple angles of incidence, and thus several data sets, in
the inversion. In order to include, say, N data sets into the
reconstruction, the cost function used in the minimization is
generalized to

χ2(P) =
N∑

n=1

χ2
n (P), (30)

where χ2
n (P) is defined by Eq. (26) and corresponds to the

contribution to the total cost function χ2(P) from a single
angle of incidence θ

(n)
0 ∈ {θ (1)

0 ,θ
(2)
0 , . . . ,θ

(N)
0 }.

Assuming the Gaussian-correlated surface roughness of the
previous subsections, in-plane data for the mean DRCs were
obtained from computer simulations for the polar angles of
incidence θ0 = 1.6◦, 25.3◦, and 50.2 [12]. A series of joint
inversions were then performed based on the three resulting
data sets seen as open symbols in Fig. 9(a). The parameters
obtained by such an approach are presented in Table IV and
the resulting mean DRCs obtained when reconstructing δ�, a�,
and ε� are presented as solid lines in Fig. 9(a). A comparison of
the results presented in Tables II and IV reveals that including
additional data sets into the inversion scheme, at least for the
data sets we used in obtaining these results, did not change
the estimates of the parameters in any significant way. If there
is any change, it may seem as if a multiangle reconstruction
may slightly improve the results when using the trial function
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FIG. 9. The same as (a) Fig. 6(a) and (b) Fig. 8(a) but for the polar angles of incidence θ0 = 1,6◦, 25.3, and 50.2 and multiangle
reconstruction of the data sets corresponding to these angles of incidence assuming the variational parameter set P = {δ�,a�,ε�}. The solid
lines, independent of color, represent the reconstructed mean DRCs. The parameter values obtained from the reconstructions are listed in
Tables IV and V.

(28b), while it becomes slightly worse for the trial function
(29). However, before one can draw firm conclusions on this
issue, proper estimates of the error bars associated with each
of these parameters will have to be obtained, something that
is outside the scope of the present work.

If now noise is added to these data sets after first interpo-
lating them to a higher angular resolution, as was done above
for the single data set corresponding to θ0 = 50.2◦, then on
performing multiangle reconstructions based on the resulting
data, the values presented in Table V are obtained [see also
Fig. 9(b)]. The first thing to observe from Table V is that
the multiangle inversions based on the stretched exponential
trial function (29) produce rather inaccurate results compared
to inversions based on only one of these data sets (see
Table III). Potentially one could first estimate the exponent
of the stretched exponential from a single data set, since we
have found that it does not matter which of the data sets we
use, and then use this value for γ � as a fixed parameter in
a multiangle inversion. However, we will not consider this
situation farther here, since we feel that it is probably more
fruitful to consider alternative forms of the trial functions.

On the other hand, when using the Gaussian trial function
(28b) in the minimization, a comparison of the results
presented in Tables III and V shows that the multiangle
reconstructions are producing more accurate results than those
obtained when the inversion is based on the single angle
scattering data set corresponding to θ0 = 50.2◦. We have also

TABLE IV. Same as Table II, but now the reconstruction is based
on several data sets corresponding to the polar angles of incidence
θ0 = 1.6◦, 25.3◦, and 50.2◦ [open symbols in Fig. 9(a)].

δ� (nm) a� (nm) ε� γ � Comments

15.920 157.649 – – –
16.074 157.929 2.658 – Fig. 9(a)
16.308 152.620 – 1.896 –
16.208 155.652 2.665 1.953 –

found this result to be true when any of the other two data sets
were used in the single-angle inversion. This is an important
result, since it may indicate that including several experimental
data sets into the inversion may improve the estimates of
the parameters. The results from Table V also hint at the
importance of the choice taken for the trial function, since
a priori it is not known which form of W (|x‖|) will result
in a cost function, χ (P), that has a deep and well-defined
minimum, in contrast to many local minima of comparable
depths.

It is also interesting to note that the results obtained for
the multiangle noisy case (Table V) seem to be more accurate
than those for the corresponding multiangle non-noisy case
(Table IV). However, here it is important to recall that
significantly more points are used in the inversion in the former
than in the latter case, and we speculate that this could be the
main reason for the improvement.

E. Computational cost of the inversion scheme

In principle, an inversion scheme, similar to the one
proposed in this work, could be based on one of the
rigorous simulation approaches that recently have become
available to calculate light scattering from two-dimensional

TABLE V. Same as Table III, but now the reconstruction is
based on several data sets obtained for the polar angles of incidence
θ0 = 1.6◦, 25.3◦, and 50.2◦. The data sets with the multiplicative
5% standard deviation Gaussian white noise data added to them, on
which the reconstructions are based, are depicted as open symbols in
Fig. 9(b).

δ� (nm) a� (nm) ε� γ � Comments

15.843 158.694 – – –
15.822 158.863 2.669 – Fig. 9(b)
16.866 145.591 – 1.749 –
17.050 140.664 2.730 1.675 –
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randomly rough surfaces [6,7,14]. However, for such an
inversion scheme to be practically relevant, it is has to be
numerically efficient, since during the inversion process, the
forward-scattering problem has to be solved for a large set
of parameters. From this perspective, the rigorous numerical
simulation approaches mentioned previously fall short since
they typically require days of computer time, or more, to run
for just one set of parameters.

In contrast, the phase perturbation theoretical approach to
the forward scattering problem that we base our inversion
scheme on is computationally efficient. For instance, for an
angular resolution of 1◦, it takes less than 2 s to obtain the
mean DRC in the plane of incidence for one set of surface
parameters (and one angle of incidence). Furthermore, the
CPU times it took to perform the four inversions whose results
are given in Table II were 25 s and 140 s when reconstructing
2 and 4 parameters, respectively (initial values as in Sec. V B).
The remaining two inversions required CPU times somewhere
in between the two previously given CPU times. All reported
computer CPU times are based on the use of a single computer
core on an Intel i7 960 CPU operating at 3.20 GHz.

Even if such CPU times do depend strongly on the angular
resolution of the data set used in the inversion, the amount of
noise that it contains, and the initial values from which the
reconstruction is started, these numbers for the computational
cost do illustrate that the proposed inversion method is rather
quick to perform; this, together with its robustness, should
make it useful in practical situations.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have shown that second-order phase pertur-
bation theory can be used to model the incoherent scattering of
light by a two-dimensional randomly rough dielectric surface
and to calculate the mean differential reflection coefficient
for such a surface. As a result it has been expected that it
should be an effective tool for the inversion of light-scattering
data to obtain statistical properties of a random surface on
which the mean differential reflection coefficient depends.
This expectation has been borne out for weakly rough two-
dimensional randomly rough dielectric surfaces. Together with
several parametrized forms for the normalized-surface-height
autocorrelation function W (|x‖|), namely an exponential, a
Gaussian, and a stretched exponential, and the minimization
of a cost function with respect to the parameters defining
these forms, phase perturbation theory has been used in this
paper to determine W (|x‖|), the rms height of the surface,
the transverse correlation length of the surface roughness, the

dielectric constant of the scattering medium when it was not
known in advance, as well as the exponent of the stretched
exponential. The function W (|x‖|) has been reconstructed quite
accurately. The agreement between the reconstructed values
of δ, a, and ε and the input values of these parameters is
gratifyingly satisfactory.

This agreement remains very good when significant mul-
tiplicative Gaussian white noise is included in the input data.
When simulated data for multiple angles of incidence are used
in the inversion scheme, it is found that in the absence of
noise in the input data the quality of the reconstructions is
slightly poorer than when only a single angle of incidence is
used. However, when noise is introduced into the input data
the use of results obtained from multiple angles of incidence
yields slightly better reconstructions than when data from only
a single angle of incidence are used. The reasons for this
behavior of the reconstructions is not understood, and deserve
further study.

An investigation of the computational cost of the inversion
approach developed here shows that it is quite computationally
efficient compared to the several orders of magnitude higher
computational cost of carrying out the inversions by the use
of scattering data obtained by rigorous simulations. The CPU
times required for carrying out an inversion calculation using
our approach for a given angular resolution, one set of surface
parameters, and a single angle of incidence, namely seconds,
are short enough that this approach can be useful in practical
situations.

The inversion approach developed here needs to be explored
to determine ranges of roughness, wavelength, and dielectric
parameters for which it gives reliable results. Error estimates
for the reconstructed values of the roughness and material
parameters sought should be obtained. The use of more
flexible trial functions for W (|x‖|) in reconstructions should
be explored, as well as the use of more than one wavelength.
Reflectivity data can serve as the basis of an inversion scheme
based on phase perturbation theory, and its utility for this
purpose should be examined. This issue will be explored in
subsequent work.
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APPENDIX: DERIVATION OF EQUATION (16)

Even if we in this work are concerned with a scattering geometry where the substrate is a dielectric, this assumption will not
be made in this appendix. Instead, the dielectric function of the substrate will here be assumed complex, so that the substrate can
be either a dielectric or a metal. This generalization is done in order to facilitate future reference to the results of this appendix,
and because the expressions can be derived simultaneously for a dielectric or metallic substrate with little extra effort.

The starting point for our derivation of Eq. (16) is Eqs. (12), (15), and (16)–(18) of Ref. [15], and the definition of the scattering
matrix S(q‖|k‖) in terms of the matrix of the scattering amplitudes R(q‖|k‖), Eq. (13). From these results we obtain for the ss

element of the scattering matrix the expansion

Sss(q‖|k‖) = S(0)
ss (q‖|k‖) − iS(1)

ss (q‖|k‖) − 1
2S(2)

ss (q‖|k‖) + · · · , (A1)
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where the superscript denotes the order of the corresponding term in the surface profile function ζ (x‖). The coefficient S(0)
ss (q‖|k‖)

is given by

S(0)
ss (q‖|k‖) = (2π )2δ(q‖ − k‖)

α0(k‖) − α(k‖)

α0(k‖) + α(k‖)

= (2π )2δ(q‖ − k‖)

(
α0(q‖) − α(q‖)

α0(q‖) + α(q‖)

)1/2(
α0(k‖) − α(k‖)

α0(k‖) + α(k‖)

)1/2

= (2π )2δ(q‖ − k‖)

[
α2

0(q‖) − α2(q‖)
]1/2[

α2
0(k‖) − α2(k‖)

]1/2

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]

= (2π )2δ(q‖ − k‖)
(1 − ε)(ω/c)2

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]
, (A2a)

where the functions α0(q‖) and α(q‖) are defined by Eqs. (8) and (18), respectively. The coefficient S(1)
ss (q‖|k‖) is found to be

S(1)
ss (q‖|k‖) = 2(1 − ε)

(
ω

c

)2
α

1/2
0 (q‖)α1/2

0 (k‖)

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]
(q̂‖ · k̂‖)ζ̂ (q‖ − k‖), (A2b)

while the coefficient S(2)
ss (q‖|k‖) is given by

S(2)
ss (q‖|k‖) = − 4α

1/2
0 (q‖)α1/2

0 (k‖)

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]

{
− 1

2
(1 − ε)

(
ω

c

)2

[α(q‖) + α(k‖)](q̂‖ · k̂‖)ζ̂ (2)(q‖ − k‖)

+ (1 − ε)2

ε

(
ω

c

)2 ∫
d2p‖
(2π )2

ζ̂ (q‖ − p‖)(q̂‖ × p̂‖)3α(p‖)(p̂‖ × k̂‖)3ζ̂ (p‖ − k‖)

}

+ 4α
1/2
0 (q‖)α1/2

0 (k‖)(1 − ε)(ω/c)2

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]

∫
d2p‖
(2π )2

ζ̂ (q‖ − p‖)

×
{

1 − ε

ε
(q̂‖ × p̂‖)3

α2(p‖)

εα0(p‖) + α(p‖)
(p̂‖ × k̂‖)3 + (1 − ε)

(
ω

c

)2 (q̂‖ · p̂‖)(p̂‖ · k̂‖)

α0(p‖) + α(p‖)

}
ζ̂ (p‖ − k‖)

= −4(1 − ε)

(
ω

c

)2
α

1/2
0 (q‖)α1/2

0 (k‖)

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]

×
∫

d2p‖
(2π )2

ζ̂ (q‖ − p‖)

{
− 1

2
[α(q‖) + α(k‖)](q̂‖ · k̂‖) + 1 − ε

ε
(q̂‖ × p̂‖)3α(p‖)(p̂‖ × k̂‖)3

− 1 − ε

ε
(q̂‖ × p̂‖)3

α2(p‖)

εα0(p‖) + α(p‖)
(p̂‖ × k̂‖)3 − (1 − ε)

(
ω

c

)2 (q̂‖ · p̂‖)(p̂‖ · k̂‖)

α0(p‖) + α(p‖)

}
ζ̂ (p‖ − k‖)

= −4(1 − ε)

(
ω

c

)2
α

1/2
0 (q‖)α1/2

0 (k‖)

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)]

×
∫

d2p‖
(2π )2

ζ̂ (q‖ − p‖)

{
− 1

2
[α(q‖) + α(k‖)](q̂‖ · k̂‖) + (1 − ε)(q̂‖ × p̂‖)3

α0(p‖)α(p‖)

εα0(p‖) + α(p‖)
(p̂‖ × k̂‖)3

− (1 − ε)

(
ω

c

)2 (q̂‖ · p̂‖)(p̂‖ · k̂‖)

α0(p‖) + α(p‖)

}
ζ̂ (p‖ − k‖). (A2c)

In obtaining this expression we have used the result that

ζ̂ (2)(q‖ − k‖) =
∫

d2p‖
(2π )2

ζ̂ (q‖ − p‖)ζ̂ (p‖ − k‖). (A3)
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When we substitute the results given by Eqs. (A2) into Eq. (A1) we find that through terms of second order in the surface
profile function, Sss(q‖|k‖) takes the form

Sss(q‖|k‖) = sgn(q̂‖ · k̂‖)
(1 − ε)(ω/c)2

[α0(q‖) + α(q‖)][α0(k‖) + α(k‖)s]

{
(2π )2δ(q‖ − k‖) sgn(q̂‖ · k̂‖) − 2iα

1/2
0 (q‖)

×α
1/2
0 (k‖)|q̂‖ · k̂‖|ζ̂ (q‖ − k‖) − 2α

1/2
0 (q‖)α1/2

0 (k‖) sgn(q̂‖ · k̂‖)
∫

d2p‖
(2π )2

ζ̂ (q‖ − p‖)

[
1

2
[α(q‖) + α(k‖)](q̂‖ · k̂‖)

+ (ε − 1)(q̂‖ × p̂‖)3
α0(p‖)α(p‖)

εα0(p‖) + α(p‖)
(p̂‖ × k̂‖)3 − (ε − 1)

(
ω

c

)2 (q̂‖ · p̂‖)(p̂‖ · k̂‖)

α0(p‖) + α(p‖)

]
ζ̂ (p‖ − k‖)

}
. (A4)

This expression for Sss(q‖|k‖) is manifestly reciprocal; i.e., it satisfies Eq. (14b). Moreover, for reasons of later convenience, in
writing Eq. (A4) we have factored out a phase sgn(q̂‖ · k̂‖), where sgn(·) denotes the sign function defined by x = sgn(x)|x|.

We next express Eq. (A4) in the form of a Fourier integral:

Sss(q‖|k‖) = sgn(q̂‖ · k̂‖)
(1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∫
d2x‖ exp [−i(q‖ − k‖) · x‖]

{
1 − 2iα

1/2
0 (q‖)α1/2

0 (k‖)|q̂‖ · k̂‖|ζ (x‖)

− 2α
1/2
0 (q‖)α1/2

0 (k‖)
∫

d2p‖
(2π )2

F (q‖|p‖|k‖)
∫

d2u‖ exp [−i(p‖ − k‖) · u‖]ζ (x‖)ζ (x‖ + u‖)

}
, (A5)

where

F (q‖|p‖|k‖) = sgn(q̂‖ · k̂‖)

{
1

2
[α(q‖) + α(k‖)](q̂‖ · k̂‖) + (ε − 1)(q̂‖ × p̂‖)3

α0(p‖)α(p‖)

dp(p‖)
(p̂‖ × k̂‖)3

− (ε − 1)

(
ω

c

)2 (q̂‖ · p̂‖)(p̂‖ · k̂‖)

ds(p‖)

}
, (A6)

and the functions dp(p‖) and ds(p‖) are defined in Eq. (17). One notes from Eq. (A6) that F (q‖|p‖|k‖) = F (−q‖|p‖|k‖) so that
the expression inside the curly brackets in Eq. (A5) is a continuous function of the lateral scattering wave vector q‖ (and in
particular at q‖ = 0).

From Eq. (A5) we find that

〈Sss(q‖|k‖)〉 = sgn(q̂‖ · k̂‖)
(1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∫
d2x‖ exp [−i(q‖ − k‖) · x‖]

×
{

1 − 2δ2α
1/2
0 (q‖)α1/2

0 (k‖)
∫

d2p‖
(2π )2

F (q‖|p‖|k‖)g(|p‖ − k‖|)
}

(A7a)

∼= sgn(q̂‖ · k̂‖)
(1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∫
d2x‖ exp [−i(q‖ − k‖) · x‖]

× exp

[
−2δ2α

1/2
0 (q‖)α1/2

0 (k‖)
∫

d2p‖
(2π )2

F (q‖|p‖|k‖)g(|p‖ − k‖|)
]
. (A7b)

It follows that

|〈Sss(q‖|k‖)〉|2 =
∣∣∣∣ (1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∣∣∣∣
2

exp [−2M(q‖|k‖)]
∫

d2x‖
∫

d2x ′
‖ exp [−i(q‖ − k‖) · (x‖ − x ′‖)], (A8)

where

2M(q‖|k‖) = 4δ2α
1/2
0 (q‖)α1/2

0 (k‖) Re
∫

d2p‖
(2π )2

F (q‖|p‖|k‖)g(|p‖ − k‖|). (A9)

We next find that

〈|Sss(q‖|k‖)|2〉 =
∣∣∣∣ (1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∣∣∣∣
2∫

d2x‖
∫

d2x ′
‖ exp [−i(q‖ − k‖) · (x‖ − x ′‖)]

{
1 − 2iα

1/2
0 (q‖)α1/2

0 (k‖)|q̂‖ · k̂‖|〈ζ (x‖) − ζ (x ′‖)〉

+ 4α0(q‖)α0(k‖)(q̂‖ · k̂‖)2〈ζ (x‖)ζ (x ′‖)〉 − 2α
1/2
0 (q‖)α1/2

0 (k‖)
∫

d2p‖
(2π )2

∫
d2u‖ [exp [−i(p‖ − k‖) · u‖]

×F (q‖|p‖|k‖)〈ζ (x‖)ζ (x‖ + u‖)〉 + exp[i(p‖ − k‖) · u‖]F ∗(q‖|p‖|k‖)〈ζ (x ′‖)ζ (x ′‖ + u‖)〉]
}
. (A10)
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From this result we obtain

〈|Sss(q‖|k‖)|2〉 =
∣∣∣∣ (1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∣∣∣∣
2 ∫

d2x‖
∫

d2x ′
‖ exp [−i(q‖ − k‖) · (x‖ − x ′‖)]

×[1 + 4δ2α0(q‖)α0(k‖)(q̂‖ · k̂‖)2W (|x‖ − x ′‖|) − 2M(q‖|k‖)]

∼=
∣∣∣∣ (1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∣∣∣∣
2

exp[−2M(q‖|k‖)]
∫

d2x‖
∫

d2x ′
‖ exp [−i(q‖ − k‖) · (x‖ − x ′‖)]

× exp[4δ2α0(q‖)α0(k‖)(q̂‖ · k̂‖)2W (|x‖ − x ′‖|)]. (A11)

Thus, we have finally

〈|Sss(q‖|k‖)|2〉 − |〈Sss(q‖|k‖)〉|2 = S

∣∣∣∣ (1 − ε)(ω/c)2

ds(q‖)ds(k‖)

∣∣∣∣
2

exp[−2M(q‖|k‖)]
∫

d2u‖ exp [−i(q‖ − k‖) · u‖]

×{exp[4δ2α0(q‖)α0(k‖)(q̂‖ · k̂‖)2W (|u‖|)] − 1}. (A12)

The substitution of this result into Eq. (15) yields Eq. (16).
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Numerical studies of the scattering of light from a two-dimensional randomly rough interface
between two dielectric media
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The scattering of polarized light incident from one dielectric medium on its two-dimensional randomly rough
interface with a second dielectric medium is studied. A reduced Rayleigh equation for the scattering amplitudes
is derived for the case where p- or s-polarized light is incident on this interface, with no assumptions being
made regarding the dielectric functions of the media. Rigorous, purely numerical, nonperturbative solutions of
this equation are obtained. They are used to calculate the reflectivity and reflectance of the interface, the mean
differential reflection coefficient, and the full angular distribution of the intensity of the scattered light. These
results are obtained for both the case where the medium of incidence is the optically less dense medium and
in the case where it is the optically more dense medium. Optical analogs of the Yoneda peaks observed in the
scattering of x rays from metal surfaces are present in the results obtained in the latter case. Brewster scattering
angles for diffuse scattering are investigated, reminiscent of the Brewster angle for flat-interface reflection, but
strongly dependent on the angle of incidence. When the contribution from the transmitted field is added to that
from the scattered field it is found that the results of these calculations satisfy unitarity with an error smaller than
10−4.

DOI: 10.1103/PhysRevA.93.053819

I. INTRODUCTION

In the great majority of the theoretical studies of the
scattering of light from a two-dimensional randomly rough
surface of a dielectric medium, the medium of incidence has
been vacuum. Recent reviews of such studies can be found
in Refs. [1] and [2]. As a result of this restriction, effects
associated with total internal reflection, which requires that
the medium of incidence be optically more dense than the
scattering medium, were not considered in these studies. There
have been exceptions to this general practice, however.

By the use of the stochastic functional approach [3],
Kawanishi et al. [4] studied the coherent and incoherent
scattering of an electromagnetic wave from a two-dimensional
randomly rough interface separating two different dielectric
media. The light could be incident on the interface from
either medium. The theoretical approach used in this work
[4] is perturbative in nature and applicable only to weakly
rough interfaces. Nevertheless, its use yielded interesting
results, including the presence of Yoneda peaks in the angular
dependence of the intensity of the light scattered back into the
medium of incidence when the latter was the optically more
dense medium. These are sharp, asymmetric peaks occurring at
the critical angle for total internal reflection for a fixed angle
of incidence for both p- and s polarization of the incident
light. These peaks were first observed experimentally in the
scattering of x rays incident from air on a metal surface [5] and
have subsequently been studied theoretically in the context of
the scattering of x rays [6–8] and neutrons [7] from rough
surfaces.

In Ref. [4], Kawanishi et al. also observed angles of zero
scattering intensity, to first order in their approach, in the
distributions of the intensity of the incoherently scattered

*oyvind.hetland@ntnu.no

light, when the incident light was p polarized. Due to their
resemblance to the Brewster angle in the reflectivity from
a flat interface, they dubbed these angles the “Brewster
scattering angles.” These were observed, in both reflection
and transmission, for light incident from either medium.

Both the Yoneda peaks and the Brewster scattering angles
seem to have had their first appearance in optics in the
paper by Kawanishi et al. [4]. They have yet to be observed
experimentally in this context. It should be mentioned that in
an earlier numerical investigation of light scattering from one-
dimensional dielectric rough surfaces, Nieto-Vesperinas and
Sánchez-Gil [9] observed “sidelobes” in the angular intensity
distributions. However, these authors did not associate these
features with the Yoneda peak phenomenon, even though we
believe doing so would have been correct.

In a subsequent paper Soubret et al. [10] derived a reduced
Rayleigh equation for the scattering amplitudes when an
electromagnetic wave is incident from one dielectric medium
on its two-dimensional randomly rough interface with a second
dielectric medium. The solution of this equation was obtained
in the form of expansions of the scattering amplitudes in
powers of the surface profile function through terms of third
order. However, in obtaining the numerical results presented
in this paper [10], the medium of incidence was assumed to be
vacuum.

In this paper we present a study of this problem free
from some of the restrictive assumptions and approximations
present in the earlier studies of scattering of polarized light
from two-dimensional randomly rough dielectric surfaces. We
first derive a reduced Rayleigh equation for the scattering
amplitudes when p- or s-polarized light is incident from
a dielectric medium whose dielectric constant is ε1 on its
two-dimensional randomly rough interface with a dielectric
medium whose dielectric constant is ε2. The dielectric constant
ε1 can be smaller or larger than ε2. This equation is then solved
by a rigorous, purely numerical, nonperturbative approach.

2469-9926/2016/93(5)/053819(21) 053819-1 ©2016 American Physical Society
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FIG. 1. A sketch of the scattering geometry assumed in this work.
The figure also shows the coordinate system used, angles of incidence
(θ0,φ0) and scattering (θs,φs), and the corresponding lateral wave
vectors k‖ and q‖, respectively.

The scattering amplitudes obtained in this way are then used
to calculate the reflectivity and reflectance of the interface
as functions of the angle of incidence and also the effect of
surface roughness on the contribution to the mean differential
reflection coefficient from the light scattered incoherently
(diffusely) and the full angular dependence of the intensity of
the incoherently scattered light. It is hoped that the presentation
of these results will stimulate and motivate experimental
studies of such scattering systems.

II. THE SCATTERING SYSTEM

The system we study in this paper consists of a dielectric
medium (medium 1), whose dielectric constant is ε1, in the
region x3 > ζ (x‖), and a dielectric medium (medium 2), whose
dielectric constant is ε2, in the region x3 < ζ (x‖) (Fig. 1).
Here x‖ = (x1,x2,0) is an arbitrary vector in the plane x3 = 0
and we assume that both ε1 and ε2 are real and positive. The
surface profile function ζ (x‖) is assumed to be a single-valued
function of x‖ that is differentiable with respect to x1 and x2

and constitutes a stationary, zero-mean, isotropic, Gaussian
random process defined by

〈ζ (x‖)ζ (x ′
‖)〉 = δ2W (|x‖ − x′

‖|), (1)

where W (x‖) is the normalized surface height autocorrelation
function, with the property that W (0) = 1. The angle brackets
here and in all that follows denote an average over the ensemble
of realizations of the surface profile function. The root-mean-

square height of the surface is given by

δ = 〈ζ 2(x‖)〉 1
2 . (2)

The power spectrum of the surface roughness g(k‖) is defined
by

g(k‖) =
∫

d2x‖W (x‖) exp(−ik‖ · x‖). (3)

For W (x‖) we assume the Gaussian function W (x‖) =
exp (−x2

‖/a
2), where the characteristic length a is the trans-

verse correlation length of the surface roughness. The corre-
sponding power spectrum is given by

g(k‖) = πa2 exp

(
−a2k2

‖
4

)
. (4)

III. THE REDUCED RAYLEIGH EQUATION

The interface x3 = ζ (x‖) is illuminated from the region
x3 > ζ (x‖) (medium 1) by an electromagnetic wave of fre-
quency ω. The total electric field in this region is the sum of
an incoming incident field and an outgoing scattered field,

E>(x|ω) = E0(k‖) exp[iQ0(k‖) · x]

+
∫

d2q‖
(2π )2

A(q‖) exp[iQ1(q‖) · x], (5)

while the electric field in the region x3 < ζ (x‖) is an outgoing
transmitted field,

E<(x|ω) =
∫

d2q‖
(2π )2

B(q‖) exp[iQ−
2 (q‖) · x]. (6)

In writing these equations we have introduced the functions

Q0(k‖) = k‖ − α1(k‖)x̂3, (7a)

Q1(q‖) = q‖ + α1(q‖)x̂3, (7b)

Q±
2 (q‖) = q‖ ± α2(q‖)x̂3, (7c)

where (i = 1,2)

αi(q‖) =
[
εi

(ω

c

)2
− q2

‖

] 1
2

Re αi(q‖) > 0, Im αi(q‖) > 0.

(8)

Here k‖ = (k1,k2,0), and a caret over a vector indicates that it
is a unit vector. A frequency dependence of the field of the form
exp(−iωt) has been assumed, but not indicated explicitly.

The boundary conditions satisfied by these fields at the
interface x3 = ζ (x‖) are the continuity of the tangential
components of the electric field,

n × E0(k‖) exp[ik‖ · x‖ − iα1(k‖)ζ (x‖)] +
∫

d2q‖
(2π )2

n × A(q‖) exp[iq‖ · x‖ + iα1(q‖)ζ (x‖)]

=
∫

d2q‖
(2π )2

n × B(q‖) exp[iq‖ · x‖ − iα2(q‖)ζ (x‖)], (9)
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the continuity of the tangential components of the magnetic field,

n × [iQ0(k‖) × E0(k‖)] exp[ik‖ · x‖ − iα1(k‖)ζ (x‖)] +
∫

d2q‖
(2π )2

n × [iQ1(q‖) × A(q‖)] exp[iq‖ · x‖ + iα1(q‖)ζ (x‖)]

=
∫

d2q‖
(2π )2

n × [iQ−
2 (q‖) × B(q‖)] exp[iq‖ · x‖ − iα2(q‖)ζ (x‖)], (10)

and the continuity of the normal component of the electric displacement,

ε1n · E0(k‖) exp[ik‖ · x‖ − iα1(k‖)ζ (x‖)] + ε1

∫
d2q‖
(2π )2

n · A(q‖) exp[iq‖ · x‖ + iα1(q‖)ζ (x‖)]

= ε2

∫
d2q‖
(2π )2

n · B(q‖) exp[iq‖ · x‖ − iα2(q‖)ζ (x‖)]. (11)

The vector n ≡ n(x‖) entering these equations is a vector normal to the surface x3 = ζ (x‖) at each point of it, directed into
medium 1:

n(x‖) =
[
−∂ζ (x‖)

∂x1
, − ∂ζ (x‖)

∂x2
,1

]
. (12)

Equation (11) is redundant, but its inclusion simplifies the subsequent analysis. We now proceed to eliminate the transmission
amplitude B(q‖) from this set of equations to obtain an equation that relates the scattering amplitude A(q‖) to the amplitude of
the incident field E0(k‖).

We begin by taking the vector cross product of Eq. (9) with ε2Q+
2 (p‖) exp[−iQ+

2 (p‖) · {x‖ + x̂3ζ (x‖)}]; we next multiply
Eq. (10) by −iε2 exp[−iQ+

2 (p‖) · {x‖ + x̂3ζ (x‖)}]; and finally we multiply Eq. (11) by −Q+
2 (p‖) exp[−iQ+

2 (p‖) · {x‖ + x̂3ζ (x‖)}],
where p‖ = (p1,p2,0) is an arbitrary wave vector in the plane x3 = 0. When we add the three equations obtained in this way, and
integrate the sum over x‖ we obtain an equation that can be written in the form

ε2Q+
2 (p‖) × [VE(p‖|k‖) × E0(k‖)] + ε2VE(p‖|k‖) × [Q0(k‖) × E0(k‖)] − ε1Q+

2 (p‖)[VE(p‖|k‖) · E0(k‖)]

+
∫

d2q‖
(2π )2

{ε2Q+
2 (p‖) × [VA(p‖|q‖) × A(q‖)] + ε2VA(p‖|q‖) × [Q1(q‖) × A(q‖)] − ε1Q+

2 (p‖)[VA(p‖|q‖) · A(q‖)]}

= ε2

∫
d2q‖
(2π )2

{Q+
2 (p‖) × [VB(p‖|q‖) × B(q‖)] + VB(p‖|q‖) × [Q−

2 (q‖) × B(q‖)] − Q+
2 (p‖)[VB(p‖|q‖) · B(q‖)]},

(13)

where

VE(p‖|k‖) =
∫

d2x‖ n(x‖) exp{−i(p‖ − k‖) · x‖ − i[α2(p‖) + α1(k‖)]ζ (x‖)}, (14a)

VA(p‖|q‖) =
∫

d2x‖ n(x‖) exp{−i(p‖ − q‖) · x‖ − i[α2(p‖) − α1(q‖)]ζ (x‖)}, (14b)

VB(p‖|q‖) =
∫

d2x‖ n(x‖) exp{−i(p‖ − q‖) · x‖ − i[α2(p‖) + α2(q‖)]ζ (x‖)}. (14c)

At this point it is convenient to introduce the representation

exp[−iγ ζ (x‖)] =
∫

d2Q‖
(2π )2

I (γ |Q‖) exp(iQ‖ · x‖). (15)

On differentiating both sides of Eq. (15) with respect to xj (j =
1,2) we obtain the result

− ∂ζ (x‖)

∂xj

exp[−iγ ζ (x‖)]

=
∫

d2Q‖
(2π )2

Qj

γ
I (γ |Q‖) exp(iQ‖ · x‖). (16)

Finally, to be able to evaluate the function I (γ |Q‖) we need
the inverse of Eq. (15), namely,

I (γ |Q‖) =
∫

d2x‖ exp(−iQ‖ · x‖) exp[−iγ ζ (x‖)]

=
∞∑

n=0

(−iγ )n

n!
ζ̂ (n)(Q‖), (17)

where

ζ̂ (0)(Q‖) = (2π )2δ(Q‖), (18a)

ζ̂ (n)(Q‖) =
∫

d2x‖ ζ n(x‖) exp(−iQ‖ · x‖), n � 1. (18b)
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On combining Eqs. (14)–(17) with Eqs. (7) and (12) we
obtain the results

VE(p‖|k‖) = [Q+
2 (p‖) − Q0(k‖)]

× I (α2(p‖) + α1(k‖)|p‖ − k‖)

α2(p‖) + α1(k‖)
, (19a)

VA(p‖|q‖) = [Q+
2 (p‖) − Q1(q‖)]

× I (α2(p‖) − α1(q‖)|p‖ − q‖)

α2(p‖) − α1(q‖)
, (19b)

VB(p‖|q‖) = [Q+
2 (p‖) − Q−

2 (q‖)]

× I (α2(p‖) + α2(q‖)|p‖ − q‖)

α2(p‖) + α2(q‖)
. (19c)

When the results given by Eq. (19) are substituted into Eq. (13),
the latter becomes

Q+
2 (p‖) × [Q+

2 (p‖) · E0(k‖)]
I (α2(p‖) + α1(k‖)|p‖ − k‖)

α2(p‖) + α1(k‖)

+
∫

d2q‖
(2π )2

Q+
2 (p‖) × [Q+

2 (p‖) · A(q‖)]

× I ( − α1(q‖) + α2(p‖)|p‖ − q‖)

−α1(q‖) + α2(p‖)
= 0. (20)

Thus, the amplitude of the transmitted field B(q‖) has been
eliminated from the problem and we have obtained an equation
for the scattering amplitude A(q‖) alone.

To transform Eq. (20) into a more useful form,
we first introduce three mutually perpendicular unit
vectors:

â0(p‖) = c√
ε2ω

[p‖ + x̂3α2(p‖)] = c√
ε2ω

Q+
2 (p‖), (21a)

â1(p‖) = c√
ε2ω

[p̂‖α2(p‖) − x̂3p‖], (21b)

â2(p‖) = x̂3 × p̂‖. (21c)

In terms of these vectors Eq. (20) becomes

{[â0(p‖)·E0(k‖)]â0(p‖) − E0(k‖)}I (α2(p‖) + α1(k‖)|p‖−k‖)

α2(p‖) + α1(k‖)

+
∫

d2q‖
(2π )2

{[â0(p‖) · A(q‖)]â0(p‖) − A(q‖)}

× I (α2(p‖) − α1(q‖)|p‖ − q‖)

α2(p‖) − α1(q‖)
= 0. (22)

We now write the vectors E0(k‖) and A(q‖) in the forms

E0(k‖) = ê(i)
p (k‖)E0p(k‖) + ê(i)

s (k‖)E0s(k‖), (23a)

with

ê(i)
p (k‖) = c√

ε1ω
[k̂‖α1(k‖) + x̂3k‖], (23b)

ê(i)
s (k‖) = k̂‖ × x̂3, (23c)

and

A(q‖) = ê(s)
p (q‖)Ap(q‖) + ê(s)

s (q‖)As(q‖), (24a)

with

ê(s)
p (q‖) = c√

ε1ω
[−q̂‖α1(q‖) + x̂3q‖], (24b)

ê(s)
s (q‖) = q̂‖ × x̂3. (24c)

In these expressions E0p(k‖) and E0s(k‖) are the amplitudes
of the p-and s-polarized components of the incident field with
respect to the plane of incidence, defined by the vectors k̂‖ and
x̂3. Similarly, Ap(q‖) and As(q‖) are the amplitudes of the p-
and s-polarized components of the scattered field with respect
to the plane of scattering, defined by the vectors q̂‖ and x̂3.

Equation (22) is a vector equation: It is a set of three coupled
equations. However, there are only two unknowns, namely
Ap(q‖) and As(q‖). Consequently, one of these equations is
redundant. To obtain Ap(q‖) and As(q‖) in terms of E0p(k‖)
and E0s(k‖), we proceed as follows. We take the scalar product
of Eq. (22) with each of the three unit vectors given by Eq. (21)
in turn. The results are

â0(p‖) · [
Eq. (22)

]
: 0 = 0; (25a)

â1(p‖) · [
Eq. (22)

]
:

− â1(p‖) · E0(k‖)
I (α2(p‖) + α1(k‖)|p‖ − k‖)

α2(p‖) + α1(k‖)
=

∫
d2q‖
(2π )2

â1(p‖) · A(q‖)
I (α2(p‖) − α1(q‖)|p‖ − q‖)

α2(p‖) − α1(q‖)
; (25b)

â2(p‖) · [
Eq. (22)

]
:

− â2(p‖) · E0(k‖)
I (α2(p‖) + α1(k‖)|p‖ − k‖)

α2(p‖) + α1(k‖)
=

∫
d2q‖
(2π )2

â2(p‖) · A(q‖)
I (α2(p‖) − α1(q‖)|p‖ − q‖)

α2(p‖) − α1(q‖)
. (25c)

Equations (25b) and (25c) are the two equations we seek.
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With the use of Eqs. (21) and (23)–(24), Eqs. (25b) and (25c) can be rewritten in the form (α = p,s, β = p,s)

Aα(q‖) =
∑

β

Rαβ(q‖|k‖)E0β(k‖). (26)

On combining Eqs. (25b) and (25c) with Eq. (26) we find that the scattering amplitudes {Rαβ(q‖|k‖)} are the solutions of the
equation ∫

d2q‖
(2π )2

I (α2(p‖) − α1(q‖)|p‖ − q‖)

α2(p‖) − α1(q‖)
M+(p‖|q‖)R(q‖|k‖) = −I (α2(p‖) + α1(k‖)|p‖ − k‖)

α2(p‖) + α1(k‖)
M−(p‖|k‖), (27)

where

M±(p‖|q‖) =
(

1√
ε1ε2

[p‖q‖ ± α2(p‖) p̂‖ · q̂‖ α1(q‖)] − 1√
ε2

ω
c
α2(p‖) [p̂‖ × q̂‖]3

± 1√
ε1

ω
c

[p̂‖ × q̂‖]3 α1(q‖) ω2

c2 p̂‖ · q̂‖

)
(28a)

and

R(q‖|k‖) =
(

Rpp(q‖|k‖) Rps(q‖|k‖)
Rsp(q‖|k‖) Rss(q‖|k‖)

)
. (28b)

Equation (27) is the reduced Rayleigh equation for the scattering amplitudes.

IV. THE MEAN DIFFERENTIAL REFLECTION COEFFICIENT

From the knowledge of the scattering amplitudes the mean differential reflection coefficient, the reflectivity, and the reflectance
can be calculated. The differential reflection coefficient ∂R/∂s is defined such that (∂R/∂s)ds is the fraction of the total
time-averaged flux incident on the interface that is scattered into the element of solid angle ds about the scattering direction
defined by the polar and azimuthal scattering angles (θs,φs). To obtain the mean differential reflection coefficient, we first note
that the magnitude of the total time-averaged flux incident on the interface is given by

Pinc = −Re
c

8π

∫
d2x‖

{
E∗

0(k‖) ×
[ c

ω
Q0(k‖) × E0(k‖)

]}
3

exp{[−iQ∗
0(k‖) + iQ0(k‖)] · x}

= −Re
c2

8πω

∫
d2x‖ {|E0(k‖)|2Q0(k‖) − [E∗

0(k‖) · Q0(k‖)]E0(k‖)}3

= Re
c2

8πω

∫
d2x‖ α1(k‖)|E0(k‖)|2

= S
c2

8πω
α1(k‖)|E0(k‖)|2. (29)

In this result S is the area of the x1x2 plane covered by the randomly rough surface. The minus sign on the right-hand side of
the first equation compensates for the fact that the 3-component of the incident flux is negative, and we have used the fact that
α1(k‖) is real, so that Q0(k‖) is real, and E∗

0(k‖) · Q0(k‖) = 0.
In a similar fashion we note that the total time-averaged scattered flux is given by

Psc = Re
c

8π

∫
d2x‖

∫
d2q‖
(2π )2

∫
d2q ′

‖
(2π )2

{
A∗(q‖) ×

[ c

ω
Q1(q‖) × A(q′

‖)
]}

3
exp[−i{Q∗

1(q‖) − Q1(q′
‖)} · x]

= Re
c2

8πω

∫
d2q‖
(2π )2

{|A(q‖)|2Q1(q‖) − [A∗(q‖) · Q1(q‖)]A(q‖)}3 exp[−2Im α1(q‖)x3]

= Re
c2

8πω

∫
d2q‖
(2π )2

{
α1(q‖)|A(q‖)|2 − c√

ε1ω
q‖[A∗(q‖) · Q1(q‖)]Ap(q‖)

}
exp[−2Im α1(q‖)x3]

= Re
c2

8πω

∫
d2q‖
(2π )2

α1(q‖)|A(q‖)|2 exp[−2Im α1(q‖)x3]

− Re
c2

8πω

∫
d2q‖
(2π )2

[α1(q‖) − α∗
1 (q‖)]

c2

ε1ω2
q2

‖ |Ap(q‖)|2 exp[−2Im α1(q‖)x3]. (30)

The integral in the second term is purely imaginary. Thus, we have

Psc = c2

32π3ω

∫
q‖<

√
ε1

ω
c

d2q‖ α1(q‖)|A(q‖)|2. (31)
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The wave vectors k‖ and q‖ can be expressed in terms of the
polar and azimuthal angles of incidence (θ0,φ0) and scattering
(θs,φs), respectively, by

k‖ = √
ε1

ω

c
sin θ0(cos φ0, sin φ0,0), (32a)

q‖ = √
ε1

ω

c
sin θs(cos φs, sin φs,0). (32b)

From these results it follows that

d2q‖ = ε1

(ω

c

)2
cos θs ds, (33)

where ds = sin θsdθsdφs . The total time-averaged scattered
flux therefore becomes

Psc = ε
3/2
1 ω2

32π3c

∫
ds cos2 θs[|Ap(q‖)|2 + |As(q‖)|2]. (34)

Similarly, the total time-averaged incident flux [Eq. (29)]
becomes

Pinc = S

√
ε1c

8π
cos θ0[|E0p(k‖)|2 + |E0s(k‖)|2]. (35)

Thus, by definition, the differential reflection coefficient is
given by

∂R

∂s

= 1

S
ε1

( ω

2πc

)2 cos2 θs

cos θ0

|Ap(q‖)|2 + |As(q‖)|2
|E0p(k‖)|2 + |E0s(k‖)|2 . (36)

From this result and Eq. (26) we find that the contribution to
the differential reflection coefficient when an incident plane
wave of polarization β, the projection of whose wave vector

on the mean scattering plane is k‖, is reflected into a plane
wave of polarization α, the projection of whose wave vector
on the mean scattering plane is q‖, is given by

∂Rαβ(q‖|k‖)

∂s

= 1

S
ε1

( ω

2πc

)2 cos2 θs

cos θ0
|Rαβ(q‖|k‖)|2. (37)

As we are dealing with scattering from a randomly rough
interface, it is the average of this function over the ensemble
of realizations of the surface profile function that we need to
calculate. This is the mean differential reflection coefficient,
which is defined by〈
∂Rαβ(q‖|k‖)

∂s

〉
= 1

S
ε1

( ω

2πc

)2 cos2 θs

cos θ0
〈|Rαβ(q‖|k‖)|2〉. (38)

If we write the scattering amplitude Rαβ(q‖|k‖) as the sum of
its mean value and the fluctuation from this mean,

Rαβ(q‖|k‖) = 〈Rαβ(q‖|k‖)〉 + [Rαβ(q‖|k‖) − 〈Rαβ(q‖|k‖)〉],
(39)

then each of these two terms contributes separately to the mean
differential reflection coefficient,〈

∂Rαβ(q‖|k‖)

∂s

〉
=

〈
∂Rαβ(q‖|k‖)

∂s

〉
coh

+
〈
∂Rαβ(q‖|k‖)

∂s

〉
incoh

,

(40)

where〈
∂Rαβ(q‖|k‖)

∂s

〉
coh

= 1

S
ε1

( ω

2πc

)2 cos2 θs

cos θ0
|〈Rαβ(q‖|k‖)〉|2

(41)

and

〈
∂Rαβ(q‖|k‖)

∂s

〉
incoh

= 1

S
ε1

( ω

2πc

)2 cos2 θs

cos θ0
〈|Rαβ(q‖|k‖) − 〈Rαβ(q‖|k‖)〉|2〉]

= 1

S
ε1

( ω

2πc

)2 cos2 θs

cos θ0
[〈|Rαβ(q‖|k‖)|2〉 − |〈Rαβ(q‖|k‖)〉|2]. (42)

The former contribution describes the coherent (specular)
reflection of the incident field from a randomly rough surface,
while the latter contribution describes the incoherent (diffuse)
component of the scattered light.

Reflectivity and reflectance

Equation (41) is the starting point for obtaining the
reflectivity of the two-dimensional randomly rough interface.
We begin with the result that

〈Rαβ(q‖|k‖)〉 = (2π )2δ(q‖ − k‖)δαβRα(k‖). (43)

The presence of the δ function is due to the stationarity of
the randomly rough surface; the Kronecker symbol δαβ arises
from the conservation of angular momentum in the scattering
process; and the result that Rα(k‖) depends on k‖ only through
its magnitude is due to the isotropy of the random roughness.

With the result given by Eq. (43), the expression for
〈∂Rαβ(q‖|k‖)/∂s〉coh given by Eq. (41), becomes

〈
∂Rαα(q‖|k‖)

∂s

〉
coh

= ε1

(ω

c

)2 cos2 θs

cos θ0

∣∣Rα(k‖)
∣∣2

δ(q‖ − k‖),

(44)

where we have used the result

[(2π )2δ(q‖ − k‖)]2 = (2π )2δ(0) (2π )2δ(q‖ − k‖)

= S(2π )2δ(q‖ − k‖) (45)

in obtaining this expression. We next use the relation

δ(q‖ − k‖) = 1

k‖
δ(q‖ − k‖) δ(φs − φ0) (46)

together with the relations

k‖ = √
ε1

ω

c
sin θ0, q‖ = √

ε1
ω

c
sin θs, (47)
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to obtain〈
∂Rαα(q‖|k‖)

∂s

〉
coh

= √
ε1

(ω

c

)cos2 θs

cos θ0

1

k‖
|Rα(k‖)|2

× δ(sin θs − sin θ0)δ(φs − φ0)

= cos2 θs

cos2 θ0

∣∣Rα(k‖)
∣∣2 δ(θs − θ0)δ(φs − φ0)

sin θ0

= |Rα(k‖)|2 δ(θs − θ0)δ(φs − φ0)

sin θ0
. (48)

The reflectivity, Rα(θ0), for light of α polarization is defined
by

Rα(θ0) =
∫ π

2

0
dθs sin θs

∫ π

−π

dφs

〈
∂Rαα(q‖|k‖)

∂s

〉
coh

= |Rα(k‖)|2. (49)

The function Rα(k‖) is obtained from Eq. (43), with the aid of
the result that (2π )2δ(0) = S, in the form

Rα(k‖) = Rα

(√
ε1

ω

c
sin θ0

)
= 1

S
〈Rαα(k‖|k‖)〉. (50)

In addition to the reflectivity (49) that depends only on the
co-polarized light reflected coherently by the rough interface,
it is also of interest to introduce the reflectance for β-polarized
light defined as

Rβ(θ0) =
∑

α=p,s

Rαβ(θ0), (51a)

where

Rαβ(θ0) =
∫ π

2

0
dθs sin θs

∫ π

−π

dφs

〈
∂Rαβ(q‖|k‖)

∂s

〉
. (51b)

In short, the reflectance measures the fraction of the power
flux incident on the rough surface that was reflected by
it, taking both specularly and diffusely reflected light into
account: In view of Eq. (40), the reflectance is the sum of a
contribution from light that has been reflected coherently and
a contribution from light that has been reflected incoherently
by the rough interface, Rβ(θ0) = Rβ(θ0)coh + Rβ(θ0)incoh, and
both co- and cross-polarized reflected light contribute. Since
cross-polarized coherently reflected light is not allowed [see
Eq. (43)], the coherent contribution to the reflectance for
β-polarized light equals the reflectivity for β-polarized light;
Rβ(θ0)coh = Rβ(θ0). Equation (51a) can therefore also be
written in the form

Rβ(θ0) = Rβ(θ0) +
∑

α=p,s

Rαβ(θ0)incoh. (52)

If the incident light is not purely p- or s-polarized, the
reflectance and the reflectivity of the rough surface will have to
be calculated on the basis of weighted sums of the expressions
in Eqs. (49) and (52), where the weights reflect the fractions of
the different polarizations contained within the incident light.

V. NUMERICAL SOLUTION OF THE REDUCED
RAYLEIGH EQUATION

The simulation results to be presented in this work were
obtained by a nonperturbative numerical solution of the
reduced Rayleigh equation (27), which was carried out in the

following manner. A realization of the surface profile function
was generated on a grid of Nx × Nx points within a square
region of the x1x2 plane of edges L. This surface profile enters
Eq. (27) through the function I (γ |Q‖), given by Eq. (17).
Utilizing the Taylor expansion detailed in Eq. (17), the Fourier
transform of ζ n(x‖) was calculated by use of the fast Fourier
transform [2], and the Taylor series was truncated at the finite
order NT . In evaluating the q‖ integral in Eq. (27), the infinite
limits of integration were replaced by finite limits |q‖| < Q/2,
and the integration was carried out by a two-dimensional
version of the extended midpoint rule [11, p. 135] applied
to a circular subsection of a grid of Nq × Nq points in the
q1q2 plane, whose size and discretization was determined by
the Nyquist sampling theorem [11, p. 494] and the properties
of the discrete Fourier transform [2]. In momentum space,
these limits lead to discretization intervals of �q = 2π/L

along the orthogonal axes of the q1q2 plane, and upper limits
on the magnitude of resolved wave vectors are given by
Q = �q
Nx/2�, where 
·� denotes the floor function [11,
p. 948]. The resulting linear system of equations was solved
by LU factorization and back substitution.

These calculations were performed simultaneously for
incident light of both p- and s-polarization, and they were
performed for a large number Np of realizations of the
surface profile function ζ (x‖). The resulting scattering am-
plitude Rαβ(q‖|k‖) and its squared modulus |Rαβ(q‖|k‖)|2
were obtained for each realization. An arithmetic average of
the Np results for these quantities yielded the mean values
〈Rαβ(q‖k‖)〉 and 〈|Rαβ(q‖|k‖)|2〉 that enter Eqs. (50), (51),
and (42) for the reflectivity, reflectance, and mean differential
reflection coefficient, respectively. A more detailed description
of the numerical method can be found in Ref. [2].

VI. RESULTS AND DISCUSSIONS

The two-dimensional randomly rough dielectric interfaces
we study in this work were defined by isotropic Gaussian
height distributions of rms heights δ = λ/40 and δ = λ/20,
and an isotropic Gaussian correlation function of transverse
correlation length a = λ/4 [Eq. (4)]. They covered a square
region of the x1x2 plane of edge L = 25λ, giving an area
S = L2 = 25λ × 25λ. The incident light was assumed to be
a p- or s-polarized plane wave of wavelength λ in vacuum.
One of the two media in our configuration was assumed
to be vacuum with a dielectric constant ε = 1.0, and the
other medium was assumed to be a photoresist defined by
the dielectric constant ε = 2.64. Since the dielectric constants
entering the calculations are independent of the wavelength, all
lengths appearing in them can be scaled with respect to λ. The
angles of incidence were (θ0,φ0), where the azimuthal angle
of incidence was set to φ0 = 0◦, without loss of generality. We
remark that this value of φ0 was chosen since it coincided with
one of the two axes of the numerical grid, but that it is, due to the
isotropy of the roughness, an arbitrary choice in the sense that
results for any other value of φ0 can be obtained from the results
presented through a trivial rotation. The surface profiles were
generated by the Fourier filtering method (see Refs. [12] and
[13]) on a grid of Nx × Nx = 321 × 321 points. The values
used for Nx and L correspond to Q = 6.4 ω/c, where Q is the
limit in the I (γ |Q‖) integrals [Eq. (17)], and we used the first
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FIG. 2. The contribution to the incoherent component of the mean differential reflection coefficient from the in-plane, co-polarized
scattering of p- and s-polarized light incident normally [θ0 = 0◦] on (a) a random vacuum-dielectric interface [ε1 = 1.0,ε2 = 2.64] and (b)
a dielectric-vacuum interface [ε1 = 2.64,ε2 = 1.0] as a function of the polar angle of scattering θs . The solid curves were obtained on the
basis of numerically solving the reduced Rayleigh equations [Eq. (27)] for an ensemble of 4500 surface realizations. The dashed curves are
results from small-amplitude perturbation theory [Eq. (53)], included for comparison. The specular direction of reflection is indicated by the
vertical dash-dotted line at θs = 0◦, and in (b) the dotted lines at |θs | = θc = sin−1 √

ε2/ε1 ≈ 38.0◦ indicate the positions of the critical angle
for total internal reflection (as expected for a flat surface system). Results for cross-polarized scattering have not been indicated since they
are generally suppressed in the plane of incidence. The wavelength of the incident light in vacuum was λ. The rough interface was assumed
to have a root-mean-square roughness of δ = λ/40, and it was characterized by an isotropic Gaussian power spectrum [Eq. (4)] of transverse
correlation length a = λ/4. In the numerical calculations it was assumed that the surface covered an area L × L, with L = 25λ, and the surface
was discretized on a grid of 321 × 321 points.

NT = 18 terms of the Taylor expansion in the calculation of
these integrals.

Investigating the energy conservation of our simulation
results can be a useful test of their accuracy. In combining
simulation results from the current work with correspond-
ing results obtained for the mean differential transmission
coefficient 〈∂Tαβ/∂t 〉 through the use of computationally
similar methods [14,15], we may add the total reflected
and transmitted power for any lossless system. When the
reflectance is added to the transmittance for any of the systems
investigated in the current work, it is found that the results
of these calculations satisfy unitarity [14], a measure of
energy conservation, with an error smaller than 10−4. This
testifies to the accuracy of the approach used, and it is also
a good indicator of satisfactory discretization. It should be
noted, however, that unitarity is a necessary, but not sufficient,
condition for the correctness of the presented results. In a
separate investigation [16], unitarity was found to be satisfied
to a satisfactory degree for surfaces with a root-mean-square
roughness up to about three times larger than the roughness
used in obtaining the results presented in this paper.

A. Normal incidence

In Fig. 2 we display the contribution to the in-plane (q̂‖ ‖
k̂‖) incoherent components of the mean differential reflection

coefficient (DRC) as a function of the polar angle of scattering
when the random surface is illuminated from the vacuum side
at normal incidence by p- and s-polarized light [Fig. 2(a)]
and when it is illuminated from the dielectric medium side
[Fig. 2(b)]. Notice that the unit vectors q̂‖ = q‖/q‖ and
k̂‖ = k‖/k‖ are well defined also for θs = 0◦ and θ0 = 0◦, re-
spectively, as follows from Eqs. (32) and (47). Only results for
in-plane co-polarized scattering are presented, since in-plane
cross-polarized scattering is suppressed due to the absence of
contribution from single-scattering processes. An ensemble of
4500 realizations of the surface profile function was used to
produce the numerical results that this figure is based on. This
ensemble size is more than adequate in terms of the interpre-
tation of the results and their features, but we note that a larger
ensemble size would have reduced the jaggedness that can be
observed in all the (solid line) results presented in this work.

From Fig. 2(a) it is observed that the curves corresponding
to the two polarizations are featureless and are nearly identical.
In contrast, the curves presented in Fig. 2(b) are rather different
for the two polarizations; they display both peaks and dips
in p → p scattering and peaks in s → s scattering. The
origins of these features can be understood through small-
amplitude perturbation theory (SAPT). The contribution to the
mean differential reflection coefficients from light scattered
incoherently can to the lowest nonzero order in the surface
profile function ζ (x‖) be expressed as (see the Appendix for
details)

〈
∂Rpp(q‖|k‖)

∂s

〉
incoh

= δ2

π2
ε1(ε2 − ε1)2

(ω

c

)2 cos2 θs

cos θ0
g(|q‖ − k‖|) 1

|dp(q‖)|2 |ε2q‖k‖ − ε1α2(q‖)(q̂‖ · k̂‖)α2(k‖)|2 α2
1(k‖)

|dp(k‖)|2 , (53a)
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FIG. 3. Same as Fig. 2, but for the root-mean-square roughness δ = λ/20.

〈
∂Rsp(q‖|k‖)

∂s

〉
incoh

= δ2

π2
ε2

1(ε2 − ε1)2
(ω

c

)4 cos2 θs

cos θ0
g(|q‖ − k‖|) α2

2(k‖)

|ds(q‖)|2 ([q̂‖ × k̂‖]3)2 α2
1(k‖)

|dp(k‖)|2 , (53b)

〈
∂Rps(q‖|k‖)

∂s

〉
incoh

= δ2

π2
ε2

1(ε2 − ε1)2
(ω

c

)4 cos2 θs

cos θ0
g(|q‖ − k‖|) α2

2(q‖)

|dp(q‖)|2 ([q̂‖ × k̂‖]3)2 α2
1(k‖)

|ds(k‖)|2 , (53c)

〈
∂Rss(q‖|k‖)

∂s

〉
incoh

= δ2

π2
ε1(ε2 − ε1)2

(ω

c

)6 cos2 θs

cos θ0
g(|q‖ − k‖|) 1

|ds(q‖)|2 (q̂‖ · k̂‖)2 α2
1(k‖)

|ds(k‖)|2 , (53d)

where the functions dα(q‖) and dα(k‖) for α = p,s are
presented in Eq. (A5) as d+

α (q‖) and d+
α (k‖).

The results of a numerical evaluation of Eq. (53) for normal
incidence and in-plane scattering [q̂‖ ‖ k̂‖] are displayed
as dashed curves in Fig. 2. By comparing the curves ob-
tained from small-amplitude perturbation theory to the results
obtained from a purely numerical solution of the reduced
Rayleigh equation (RRE) [Eq. (27)] we conclude that SAPT
for the considered level of roughness, even to lowest nonzero
order in the surface profile function as in Eq. (53), reproduces
all the important features found in the mean differential
reflection coefficients fairly well, but with a discrepancy in
the amplitudes. This discrepancy decreases with decreasing
surface roughness (results not shown). For example, similar
comparisons for surfaces with an rms roughness of δ = λ/80,
but with the same correlation length a = λ/4, show that the
ability of Eq. (53) to reproduce the results based on the RRE
is excellent for such weakly rough surfaces. However, for
surfaces of rms roughness δ = λ/20 and the same correlation
length, significant discrepancies are observed in both intensity
(or amplitude) and angular dependence between the curves
obtained on the basis of SAPT and the corresponding curves
resulting from a numerical solution of the RRE (Fig. 3).
For instance, from Fig. 3(b) it is observed that the angular
dependence of the s → s scattered intensity around the normal
scattering direction is not correctly reproduced by SAPT;
in this angular interval the numerical simulation results are
almost constant and therefore essentially independent of
θs . These results illustrate the importance and necessity of
going beyond lowest-order SAPT or of performing numerical

simulations. We therefore stress the point that even if we in
the following often turn to SAPT for interpretation of the
nonperturbative solutions to the RRE, any conclusion drawn
on the basis of Eq. (53) is correct only to the lowest nonzero
order in the surface profile function.

Results similar to those presented in Figs. 2 and 3 but for
scattering out-of-plane [q̂‖ · k̂‖ = 0] are not presented, since,
for normal incidence, the results for co-polarized in-plane
scattering are the same as the results for cross-polarized
out-of-plane scattering when the polarization of the scattered
light is the same in the two cases. This symmetry is expected for
isotropic surfaces like the ones we are investigating when the
lateral momentum of the incident light is zero, supported by the
observation that Eq. (53a) evaluated in-plane equals Eq. (53c)
evaluated out of plane, and correspondingly for Eqs. (53d) and
(53b), when k‖ = 0 and θ0 = 0.

In order to simplify the subsequent discussion, we here
express dα(q‖) and dα(k‖) in terms of the polar angles of
incidence and scattering using the relations in Eq. (47):

dp(q‖) = √
ε1

ω

c

{
ε2 cos θs + ε1

[
ε2

ε1
− sin2 θs

] 1
2
}
, (54a)

ds(q‖) = √
ε1

ω

c

{
cos θs +

[
ε2

ε1
− sin2 θs

] 1
2
}
, (54b)

dp(k‖) = √
ε1

ω

c

{
ε2 cos θ0 + ε1

[
ε2

ε1
− sin2 θ0

] 1
2
}
, (54c)

ds(k‖) = √
ε1

ω

c

{
cos θ0 +

[
ε2

ε1
− sin2 θ0

] 1
2
}
. (54d)
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We see from Eq. (54) that when ε2 is greater than ε1, both
dp(q‖) and ds(q‖) are real continuous functions of θs in
the interval 0 < |θs | < π/2, and so therefore are |dp(q‖)|2
and |ds(q‖)|2. Hence, no features are introduced into the
corresponding mean differential reflection coefficients by
these functions. However, when ε1 is greater than ε2, the

function [(ε2/ε1) − sin2 θs]
1
2 present in dp(q‖) and ds(q‖)

vanishes when |θs | equals the critical angle θc = sin−1 √
ε2/ε1

for total internal reflection for the corresponding flat-surface
system, and becomes purely imaginary as |θs | increases
beyond this angle. The functions |dp(q‖)|2 and |ds(q‖)|2,
therefore, both have minima at |θs | = θc. In the case of s → s

in-plane scattering at normal incidence, the minima in the
function |ds(q‖)|2 for ε1 > ε2 lead to sharp peaks at |θs | = θc

in 〈∂Rss(q‖|k‖)/∂s〉incoh, as displayed in Fig. 2(b). These
same peaks will then also be present for p → s out-of-
plane scattering at normal incidence. However, for p → p

in-plane scattering, while there are still minima in the function
|dp(q‖)|2, we see from Eq. (53a) that 〈∂Rpp(q‖|k‖)/∂s〉incoh,
to lowest order in the surface profile function, vanishes when
the function

F (q‖|k‖) = |ε2q‖k‖ − ε1α2(q‖)(q̂‖ · k̂‖)α2(k‖)|2 (55)

vanishes. For normal incidence (k‖ = 0) and in-plane
scattering (q̂‖ ‖ k̂‖), we see from this expression that
〈∂Rpp(q‖|k‖)/∂s〉incoh will vanish when α2(q‖) = 0, which
is when q‖ = √

ε2ω/c [see Eq. (47)]. This will be the case
for θs < 90◦ only when ε1 > ε2, and the expression for
〈∂Rpp(q‖|k‖)/∂s〉incoh in Eq. (53a) will in this case be zero
for |θs | = θc, explaining the dips shown in Fig. 2(b) for p → p

scattering. We note in passing that the out-of-plane distribution
of 〈∂Rps(q‖|k‖)/∂s〉incoh also shows dips at the same polar
angles, due to the factor α2(q‖) in Eq. (53c), but these dips will
be present regardless of the angle of incidence.

The peaks observed for θs � θc in Figs. 2 and 3 for
ε1 > ε2 are optical analogs of the Yoneda peaks observed by
Yoneda in the scattering of x-rays from a metal surface [5]
and described as “quasi-anomalous scattering peaks” in the
two-dimensional work by Kawanishi et al. [4]. The Yoneda
peaks were originally observed as sharp peaks for incidence
close to the grazing angle, as the difference in the dielectric
constants of the two scattering media is very small at x-ray
frequencies. In the following, by Yoneda peaks we mean
well-defined maxima in the angular distribution of the intensity
of the scattered light at, or slightly above, the critical polar
angle for total internal reflection, when ε1 > ε2.

Although the mathematical origin of the Yoneda peaks is
clear from Eqs. (53) and (54)—namely, they are associated
with the minimum of the functions |dp,s(q‖)|2 and |dp,s(k‖)|2—
a physical interpretation of them is still under discussion. Thus,
Warren and Clarke [17], in a study of the reflection of x rays
from a polished surface (mirror), proposed that these peaks
arise when the incident beam at a grazing angle of incidence
θ0 that is greater than the grazing critical angle for total internal
reflection θc is scattered through a small angle β by something
just above the mirror surface. The scattered field falls upon
the mirror at a grazing angle α, and strong reflection occurs
when α < θc. This reflection is cut off sharply for α > θc and
less sharply for α < θc by the rapidly decreasing intensity of

small-angle scattering. This produces an asymmetric peak in
the intensity of the scattered field, whose maximum occurs at
the critical angle. It was suggested that the scatterer could be
a projection on an irregular surface.

In a subsequent study of the grazing-angle reflection of x
rays from rough metal surfaces with the use of the distorted-
wave Born approximation [18], Vineyard [6] noted from an
examination of the angular dependence of the magnitude
of the Fresnel coefficient for transmission through a planar
vacuum-metal interface, that it produces a transmitted field
on the surface whose angular dependence has the form of an
asymmetric peak. The peak maximum occurs at the critical
angle and has a magnitude that is twice that of the incident
electric field on the surface, leading to enhanced diffuse
scattering at this angle. This “Vineyard effect” was invoked
by Sinha et al. [7] as the origin of the Yoneda peaks. This
result is mathematically similar to the explanation provided
by Eqs. (53) and (54), but it is not a physical explanation for
these peaks.

Such an interpretation was offered by Kawanishi et al.
[4], who suggested that the Yoneda peaks may be associated
with the presence of lateral waves [19] propagating along
the interface in the optically less dense medium. This wave
satisfies the condition for refraction back into the optically
more dense medium, and it therefore leaks energy at every
position along the interface, along rays whose scattering angle
θs equals θc [20]. This radiation is restricted to the range
θc < θs < π/2. This is an attractive explanation, but it needs
to be explored more through additional calculations.

We have also calculated the full angular intensity distri-
butions of the reflected light. Figures 4 and 5 present such
simulation results for the contribution to the mean differential
reflection coefficient from the light that has been scattered
incoherently by the randomly rough interface. The angles of
incidence were set to (θ0,φ0) = (0◦,0◦); it was cross-sectional
cuts along the plane of incidence of these angular intensity
distributions that resulted in the solid curves presented in
Fig. 2. The parameters assumed in producing the results of
Figs. 2(a) and 4, and Figs. 2(b) and 5 are therefore identical.

Figures 4 and 5 and all following full angular intensity
distributions are organized with a similar layout: They are
arranged in 3 × 3 subfigures where each row and column of the
array correspond to the angular distribution of the incoherent
component of the mean differential reflection coefficient for
a given state of polarization of the scattered and incident
light, respectively. The lower left 2 × 2 corner of such figures
corresponds to the cases where β-polarized incident light
is reflected by the rough interface into α-polarized light,
denoted β → α in the lower left corner of each subfigure,
where α = p,s and the same for β. Moreover, the first row
corresponds to results where the polarization of the reflected
light was not recorded (indicated by �); such results are
obtained by adding the other two results from the same column.
The rightmost column presents results for which the incident
light is unpolarized (indicated by an open circle, ◦); these
results are obtained by taking the arithmetic average of the
other two results present in the same row.

The lower left 2 × 2 corners of Figs. 4 and 5 display
dipole-like patterns oriented along the plane of incidence for
co polarization and perpendicular to it for cross polarization.
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FIG. 4. The incoherent component of the mean differential reflection coefficient, showing the full angular intensity distribution as a function
of the lateral wave vector of the light scattered by a rough interface between vacuum and a dielectric. The light was incident on the surface
from the vacuum, [ε1 = 1.0,ε2 = 2.64]. The angles of incidence were (θ0,φ0) = (0◦,0◦). The position of the specular direction in reflection is
indicated by white dots. The parameters assumed for the scattering geometry and used in performing the numerical simulations had values that
are identical to those assumed in obtaining the results of Fig. 2(a). The in-plane intensity variations in panels (b) and (f) are the curves depicted
in Fig. 2(a). The star notation, e.g., p → �, indicates that the polarization of the scattered light was not recorded; hence, panel (a) is the sum
of panels (b) and (c), and panel (d) is the sum of panels (e) and (f). Furthermore, for the subfigures in the third column the open circle in, e.g.
◦ → � symbolizes that the incident light was unpolarized; these simulation results were obtained by taking the arithmetic average of the other
two subfigures in the same row. The roughness parameters assumed in obtaining these results were δ = λ/40 and a = λ/4.

This is a consequence of the definition used for the polarization
vectors in our system. Moreover, Figs. 4(g)–4(i) and 5(g)–5(i)
show that for unpolarized incident light at normal incidence,
the scattering distributions are independent of the azimuthal
angle of scattering φs . This rotational symmetry is expected
for isotropic surfaces like the ones we are investigating when
the lateral momentum of the unpolarized incident light is
zero. However, for ε1 < ε2 and when the incident light is
linearly polarized but the polarization of the reflected light
is not recorded [Figs. 4(a) and 4(d)], we observe a slight
skew in the distributions. This is similar to results presented in
other, similar work [2,21] and is due to the subtle differences
between the distributions of p → p and s → s scattered light,
as presented for in-plane scattering in Fig. 2.

When ε1 > ε2 the Yoneda peaks form a circle of equal
intensity at the polar angle θs = θc [or q‖ = √

ε2ω/c] in
Fig. 5(i), where unpolarized incident light is scattered by
the surface into s-polarized light. Similarly, a circular groove
of close-to-zero intensity [exactly zero according to SAPT,
Eq. (53)] can be found at θs = θc in Fig. 5(h). The position and
circular symmetry of this groove can be understood through
the previously mentioned factors of α2(q‖) and k‖ present in
Eq. (53a) for p → p polarization and the factor α2(q‖) present
in Eq. (53c) for s → p polarization, since α2(q‖) becomes zero
when q‖ = √

ε2ω/c and k‖ is zero for normal incidence. It can
be of interest to note that we also, as a consequence, observe
a φs-independent peak in Fig. 5(h) at a polar scattering angle
significantly larger than θc: the same peak as seen for p → p
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FIG. 5. The same as Fig. 4, but for light incident from the dielectric side onto the interface with vacuum, [ε1 = 2.64; ε2 = 1.0]. The
in-plane intensity variations in panels (b) and (f) are the curves depicted in Fig. 2(b). Notice the rapid changes in intensity around the polar
angle θs = θc = sin−1 √

ε1/ε2 [or q‖ = √
ε2ω/c].

scattering in Fig. 2(b). However, this peak is not as sharp as the
peak found at θc in Fig. 5(i), and, according to our definition,
it is not a Yoneda peak.

Equations (53) demonstrate that the angular intensity
distributions we are investigating can, to lowest order in the
surface profile function, be explained through different factors
in these equations with good approximation. As an aid in the
interpretation of the results presented here and in the following,
we notice that the power spectrum of the surface, g(|q‖ − k‖|)
is common for all equations in Eq. (53). As such, the mean
DRC in SAPT to lowest order is essentially a distorted
Gaussian on which critical angle effects are superposed.

B. Non-normal incidence

As a starting point for our discussion of results for non-
normal incidence, in Fig. 6(a) we present the angular depen-
dence of the light scattered incoherently for a grazing angle
of incidence from vacuum: θ0 = 66.9◦. The scattering distri-
bution for s → s scattered light can be seen to have retained

its general shape from Fig. 2(a), but for p → p scattering we
now observe a new feature: a local minimum at θs ≈ 50◦. In
the case of small-amplitude perturbation theory, represented
in Fig. 6(a) by dashed curves, 〈∂Rpp(q‖|k‖)/∂s〉incoh goes to
zero at the position of this minimum.

In order to explain this minimum for p → p scattering
in Fig. 6(a), we again turn to Eq. (53). For non-normal
incidence (k‖ �= 0), the function F (q‖|k‖) in Eq. (55) can
only cause 〈∂Rpp(q‖|k‖)/∂s〉incoh to vanish when q̂‖ · k̂‖
is positive (forward scattering). Specifically, for in-plane
forward-scattering [q̂‖ · k̂‖ = 1], 〈∂Rpp(q‖|k‖)/∂s〉incoh will
vanish at a polar angle �B given by

�B(θ0) = sin−1

[√
ε2(ε2 − ε1 sin2 θ0)(

ε2
2 − ε2

1

)
sin2 θ0 + ε1ε2

]
. (56)

The scattering intensity 〈∂Rpp(q‖|k‖)/∂s〉incoh will therefore,
to lowest nonzero order in SAPT, have a zero when ε1 < ε2

and θ0 is in the interval sin−1[ε2(ε2 − ε1)/(ε2
2 + ε2ε1 − ε2

1)]
1
2
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FIG. 6. (a) Same as Fig. 2(a), but for angles of incidence (θ0,φ0) = (66.9◦,0◦). (b) Same as panel 6(a), but for out-of-plane scattering
[φs = ±90◦]. Results for combinations of the polarizations of the incident and scattered light for which the scattered intensity was everywhere
negligible have been omitted. Parameters: ε1 = 1.0, ε2 = 2.64; δ = λ/40, a = λ/4.

< θ0 < π/2. For θ0 = 66.9◦, as assumed in producing
Fig. 6(a), we therefore expect a local minimum in
〈∂Rpp(q‖|k‖)/∂s〉incoh at θs = �B(66.9◦) = 51.7◦, which is
in good agreement with the observed value.

The scattering angles defined by �B were first mentioned in
the literature by Kawanishi et al. [4], where the angular values
of �B were explored through a stochastic functional approach
for two-dimensional surfaces. They chose to call the angles at
which the first-order contribution (according to their approach)
to 〈∂Rαp(q‖|k‖)/∂s〉incoh vanishes the Brewster scattering
angles, as a generalization of the Brewster angle for a flat
surface. In what follows, following Kawanishi et al., we call the
polar angles of scattering in the plane of incidence at which p-
and s-polarized light is scattered diffusely (incoherently) into
light of any polarization with zero, or nearly zero, intensity,
the Brewster scattering angles.

The Brewster angle θB is defined by the zero in the
reflectivity from a flat surface (coherent reflection in the
specular direction) for p-polarization at the angle of incidence
given by θ0 = θB = tan−1(

√
ε2/ε1). For one set of {ε1,ε2},

there is hence only one Brewster angle for incidence in a given
medium. However, in contrast, we would like to stress the
fact that the Brewster scattering angles for p → p scattering
are present for a wide range of angles of incidence, given
by Eq. (56) for in-plane scattering. From Eq. (56) it is also
of interest to note that for light incident at the Brewster
angle (for the corresponding flat-surface system), θ0 = θB ,
we find that �B(θB) = θB ; the scattering intensity for light
scattered incoherently vanishes for a scattering angle equal to
the Brewster angle. This attests to the close relation between
the Brewster angle for coherent reflection and the Brewster
scattering angle �B for diffuse reflection and is consistent
with the findings of Kawanishi et al. [4].

Figure 6(b) presents simulation results for the same
configuration as in Fig. 6(a), but for light scattered out-of-
plane [q̂‖ · k̂‖ = 0]. The dot product q̂‖ · k̂‖ in Eq. (53d)
indicates that, to lowest nonzero order in SAPT, we should
not expect any contribution to the mean DRC from s → s

out-of-plane incoherently scattered light. However, this is
not the case for p → p scattered light, where, even for
q̂‖ · k̂‖ = 0, a closer look at Eq. (53a) indicates that the out-
of-plane scattered intensity is zero only for θs = 0 [q‖ = 0].
This is precisely what we observe for 〈∂Rpp(q‖|k‖)/∂s〉incoh
in Fig. 6(b).

Figure 7 depicts results similar to those presented in Fig. 6
but for an increased surface rms roughness of δ = λ/20
with the remaining parameters unchanged. As for normal
incidence, it is found, not surprisingly, that small-amplitude
perturbation theory is most accurate for the smallest surface
roughness. However, the most interesting feature to notice
from Fig. 7(a), as compared to Fig. 6(a), is the angular position
and amplitude of the local minimum of the in-plane p → p

intensity distribution. In the former figure [Fig. 7(a)], the
intensity at the position of the minimum is nonzero and it is
located at an angle that is smaller than the Brewster scattering
angle �B(θ0) predicted by Eq. (56). We speculate that this shift
in the Brewster scattering angle is roughness induced in a way
similar to how the “normal” Brewster angle is shifted by the
introduction of surface roughness.

The results presented in Fig. 6 are in-plane and out-of-plane
cuts from Fig. 8, which presents the full angular distribution of
the contributions to the mean DRC from incoherently scattered
light for the angles of incidence (θ0,φ0) = (66.9◦,0◦). Here the
white dots indicate the lateral wave vector of the specular re-
flection, k‖. Compared to the results presented in Fig. 4, Fig. 8
displays many interesting features that are strongly dependent
on both incoming and outgoing polarization, and we are in
Fig. 8 left with symmetry in the distributions only about the
plane of incidence. For p → p polarized reflection [Fig. 8(b)]
we observe that a significant fraction of the incoherently
scattered light has shifted into the backscattering portion of the
q‖ plane as the angle of incidence has increased. The opposite
is true for s → s polarized reflection, Fig. 8(f), where the
majority of the incoherently scattered light is scattered into the
forward portion of the q‖ plane. This can be understood through
small-amplitude perturbation theory: In Eq. (53), the function
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FIG. 7. Same as Fig. 6, but for root-mean-square roughness δ = λ/20.

F (q‖|k‖) [Eq. (55)] constitutes the main difference between
s → s and p → p polarized scattering, and it is easy to see
that this term will enhance the backward scattering and reduce

the forward scattering for p → p polarization. Additionally,
the Brewster scattering angle, which for θ0 = 66.9◦ was given
by Eq. (56) and found to be at θs = 51.7◦ for the parameters

FIG. 8. Same as Fig. 4, but for the angles of incidence (θ0,φ0) = (66.9◦,0◦). Parameters: ε1 = 1.0, ε2 = 2.64; δ = λ/40, a = λ/4.
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FIG. 9. (a) Same as Fig. 2(b), but for angles of incidence (θ0,φ0) = (34.5◦,0◦). (b) Same as panel (a), but for out-of-plane scattering
[φs = ±90◦]. Results for combinations of the polarizations of the incident and scattered light for which the scattered intensity was everywhere
negligible have been omitted. Parameters: ε1 = 2.64, ε2 = 1.0; δ = λ/40, a = λ/4.

assumed, can now be seen to be part of a more general but still
localized minimum in both Fig. 8(a) and Fig. 8(h), i.e., for p →
� and ◦ → p scattering, respectively. Figure 8(b) shows that
the Brewster scattering angle for p → p polarized scattering
can be found to be part of an interestingly shaped minimum
in the q‖ plane. The shape of this minimum can, however, be
extracted in a straightforward manner from Eq. (55).

More interesting still is scattering in the inverse configura-
tion, where light is incident from the dielectric side of the rough
interface [ε1 = 2.64,ε2 = 1.0]: Solutions of the RRE for this
configuration and angles of incidence (θ0,φ0) = (34.5◦,0◦),
but for otherwise identical parameters as in Figs. 6 and 8,
are presented in Fig. 9. Analogous with Fig. 6, Fig. 9(a)
shows the incoherent component of the mean DRC for in-plane
scattering, and Fig. 9(b) shows the corresponding curves for
out-of-plane scattering.

In Fig. 9(a), we now observe that the two dips in
〈∂Rpp(q‖|k‖)/∂s〉incoh at |θs | = θc observed in Fig. 2(b)
have both turned into Yoneda peaks, albeit with different
peak intensities, and that the sharp dip at the same angle
for forward scattering have turned into a less sharp local
minimum at θs ≈ 27◦. In order to understand these features,
we see from Eq. (56) that, for ε1 > ε2, 〈∂Rpp(q‖|k‖)/∂s〉incoh
vanishes for θs = �B(θ0) when θ0 is in the interval 0 <

θ0 < sin−1 √
ε2/ε1. This minimum in 〈∂Rpp(q‖|k‖)/∂s〉incoh

will shift its polar position towards θs = 0◦ for increasing
θ0, eventually “releasing” the Yoneda peaks in the forward-
scattering plane originating in the |dα(q‖)|2 functions also for
p → p scattering. In the backscattering plane, we observe
through the function given in (55) that the negative sign of
(q̂‖ · k̂‖) will lead to a monotonic increase in the contribution
from Eq. (55) to Eq. (53a) as θ0 increases, eventually producing
a Yoneda peak also for q̂‖ · k̂‖ < 0. The overall distribution of
s → s incoherent scattering in Fig. 9(a) also shows a strong
forward shift in its scattering intensities, which, as we look
to Eq. (53d), can be attributed solely to the shifted power
spectrum g(|q‖ − k‖|).

Looking at Fig. 9(b), we observe several features for
out-of-plane scattering that warrant a comment. Overall, we

observe that the scattering distributions are again symmetric
about θs = 0, as is expected for out-of-plane scattering when
the surface roughness is isotropic. Moreover, the distribution
of 〈∂Rps(q‖|k‖)/∂s〉incoh appears similar in shape to the
distribution of 〈∂Rpp(q‖|k‖)/∂s〉incoh in Fig. 2(b). Their
similarity can, to lowest nonzero order in SAPT, be attributed
to their shared factor of α2(q‖) in Eqs. (53a) and (53c), which
in both cases vanishes for q‖ = √

ε2ω/c, thereby suppressing
the Yoneda peaks at this polar angle. There are no such
suppressing factors present in Eq. (53b), and the distribution
of 〈∂Rsp(q‖|k‖)/∂s〉incoh therefore displays Yoneda peaks
at |θs | = θc. Similar to what we observed in Fig. 6(b), we
see that the distribution of 〈∂Rpp(q‖|k‖)/∂s〉incoh has a local
minimum at θs = 0; both this minimum and the Yoneda peaks
found at |θs | = θc are readily understood through the function
in Eq. (55) and the factor |dα(q‖)|2, respectively.

We now turn to a scattering system for which the rms
roughness of the surface is increased to δ = λ/20, i.e., twice
the roughness assumed in obtaining the results of Fig. 9.
Results for the in-plane and out-of-plane scattered intensity
distributions for different combinations of the polarizations of
the incident and scattered light are presented in Fig. 10. Overall
the results in Fig. 10 are in qualitative agreement with those
of Fig. 9 for the equivalent but less rough scattering system.
In general, the increase in surface roughness is again found to
result in a poorer agreement between the results obtained on
the basis of SAPT and those obtained by a direct numerical
solution of the RRE. However, it is interesting to observe
that for the case of in-plane as well as out-of-plane p → p

scattering, SAPT seems to give a fair representation of the
simulated scattered intensity distributions for both levels of
roughness considered in Figs. 9 and 10. For other combinations
of the polarizations of the incident and scattered light this is
not the case.

The results presented in Fig. 9 are, as for Fig. 6, in-plane
and out-of-plane cuts from Fig. 11, which displays the full
angular distribution of the contribution to the mean DRC
from the incoherently scattered light for the angles of incid-
ence (θ0,φ0) = (34.5◦,0◦). In contrast to what was observed in
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FIG. 10. Same as Fig. 9, but for root-mean-square roughness δ = λ/20.

FIG. 11. Same as Fig. 5, but for the angles of incidence (θ0,φ0) = (34.5◦,0◦). As can be seen from the position of the white dot, this figure
captures the scattering distribution when the polar angle of incidence θ0 is close to the critical angle θc = sin−1 √

ε2/ε1 for a corresponding
flat-interface system. Parameters: ε1 = 2.64; ε2 = 1.0; δ = λ/40, a = λ/4.
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FIG. 12. Same as Fig. 11, but for the angles of incidence (θ0,φ0) = (45.5◦,0◦). Parameters: ε1 = 2.64, ε2 = 1.0; δ = λ/40, a = λ/4.

Fig. 8, all four of the lower left 2 × 2 subfigures in Fig. 11
now have significantly differing appearances. Similar to our
observations in the case of incidence from vacuum, we observe
that the Brewster scattering angle described by Eq. (56) can
be seen to be part of a more general but still localized
minimum in both Fig. 11(a) and Fig. 11(h), for p → � and
◦ → p scattering, respectively. Further, we still, as in Fig. 5,
observe Yoneda peaks for all azimuthal angles of scattering.
The intensities of these peaks are now, however, significantly
stronger in the forward-scattering plane, closer to the direction
of specular reflection.

We now turn to Fig. 12, which is identical to Fig. 11
but for the angles of incidence (θ0,φ0) = (45.5◦,0◦). For
these angles of incidence, the light incident on a flat surface
would exhibit total internal reflection. Incoherent scattering
is, as before, greatly enhanced for q‖ � √

ε2ω/c, the part
of wave-vector-space that is evanescent in the medium of
transmission. The intensity of the light scattered diffusely into
this region is now comparable for s- and p-polarized light, and
we see Yoneda peaks in both forward and backward scattering,
for a fairly wide range of azimuthal angles. This can, as

before, be understood to lowest nonzero order in SAPT through
Eqs. (53) and (54). The factors |dp(k‖)|−2 and |ds(k‖)|−2 will
both have their maxima at θ0 = sin−1 (

√
ε2/ε1), maxima that

coincide with the corresponding maxima for the previously
mentioned factors |dp(q‖)|−2 and |ds(q‖)|−2. The contribution
from these factors will be the same for all φs , but common
for all combinations of polarized scattering in Eq. (53) is that
the multiplicative factor of the power spectrum will have its
principal weight at |q‖ − k‖| = 0; explaining the asymmetry
about q1 = 0 and the consequent shift of scattering to the
forward-scattering portion of the q‖ plane.

While there is no Brewster scattering angle for the angle
of incidence in Fig. 12, we still observe a local minimum in
the backward scattering direction close to the critical angle for
p-polarized incident light, Fig. 12(a).

C. Reflectivity and reflectance

The reflectivities for the two configurations of media are
presented in Fig. 13. Both Fig. 13(a) and Fig. 13(b) show only
small deviations from the Fresnel reflection coefficients for a
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FIG. 13. (a) The reflectivities Rα(θ0) of a two-dimensional randomly rough vacuum-dielectric interface [ε1 = 1.0,ε2 = 2.64] for p- and
s-polarized light as functions of the polar angle of incidence. (b) The same as in panel (a), but for a dielectric-vacuum interface [ε1 = 2.64,ε2 =
1.0]. The quantity RF

α (θ0) indicates the Fresnel reflection coefficient (flat surface reflectivity). The critical angle θ0 = θc = sin−1 √
ε2/ε1 for

total internal reflection for an equivalent flat-interface system is indicated by a vertical dashed line in panel (b). Several simulations were run
with small perturbations in the surface length L in order to obtain reflectivity data with higher angular resolution. The roughness parameters
assumed in obtaining these results were δ = λ/40 and a = λ/4.

corresponding flat-surface system, the only notable difference
being in Fig. 13(b), where the surface roughness prevents
total internal reflection for incoming light with θ0 larger than
θc = sin−1 √

ε2/ε1 ≈ 38.0◦, the critical angle corresponding
to the values of the dielectric constants assumed in these
simulations. The overall reflectivities for both systems are
slightly smaller in all cases than the corresponding Fresnel
coefficients, which is expected for a rough-surface system
since some light is scattered diffusely away from the specular
direction. The rough-surface analogs of the Brewster angles for
corresponding flat-interface systems, called analogs because

the reflectivity does not reach strict zero in the case of
surface roughness, are clearly seen for p-polarized light in both
figures.

The differences between the presented results for the reflec-
tivity and the corresponding Fresnel coefficients can be better
understood through Fig. 14, which presents the contribution
to the reflectance from the light that has been reflected
incoherently by the interface: Rβ(θ0)incoh [see Eq. (52)]. In
both subfigures in Fig. 14 we see that the amount of diffusely
scattered light in general decreases with an increasing angle of
incidence if we ignore the effects of total internal reflection.
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FIG. 14. The θ0 dependence of the contribution to the reflectance from p- and s-polarized incident light that has been scattered incoherently
from a two-dimensional randomly rough surface. This quantity is for β-polarized incident light defined as Rβ (θ0)incoh = Rβ (θ0) − Rβ (θ0). (a)
The reflectances for a vacuum-dielectric interface [ε1 = 1.0,ε2 = 2.64] for p- and s-polarized light as functions of the polar angle of incidence.
(b) Same as panel (a), but for a dielectric-vacuum interface [ε1 = 2.64,ε2 = 1.0]. As in Fig. 13, the critical angle for total internal reflection in a
corresponding flat-interface system, θc, is indicated by a vertical dashed line in Fig. 14(b). Several simulations were run with small perturbations
in the surface length L in order to obtain reflectance data with higher angular resolution. The roughness parameters assumed in obtaining these
results were δ = λ/40 and a = λ/4.
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This is consistent with the general notion that a rough surface
is perceived as less rough for large angles of incidence [14].

Figure 14(a) shows that the incoherent part of the re-
flectance for the vacuum-dielectric configuration is a mono-
tonically decreasing function of θ0 for both polarizations, as
expected by inspection of Eqs. (53) and (54), for ε1 < ε2. The
functions |dp(k‖)|−2 and |ds(k‖)|−2 and the factor 1/cos(θ0)
are all monotonically increasing functions of k‖ (or θ0), but
they do not increase rapidly enough to compensate for the
monotonically decreasing factor of α2

1(k‖). A closer inspection
of the numerical results and a more careful evaluation of
the different factors in Eq. (53) have shown that the more
rapid initial decrease of Rp(θ0)incoh is due to the contribution
from its cross-polarized term, while its copolarized term is
responsible for the eventual less rapid decrease compared to
Rs(θ0)incoh.

The incoherent part of the reflectance for the dielectric-
vacuum configuration is displayed in Fig. 14(b). We can find
here the explanation for why the curve for p-polarization in
Fig. 13(b) showed a stronger peak for θ0 just beyond the
critical angle θc than the curve for s-polarization: less light is
scattered incoherently for these angles when the incident light
is p-polarized than when it is s-polarized. We can also see
that the contribution to the reflectance from the light scattered
incoherently increases more than two-fold at the critical
angle relative to the contribution at normal incidence. This
behavior can, again, be understood in terms of small-amplitude
perturbation theory to lowest order in the surface profile
function [Eqs. (53) and (54)]. The functions |dp(k‖)|−2 and
|ds(k‖)|−2 will each have their maximum at the critical angle
θc, but while Rs(θ0)incoh will get monotonically increasing
contributions from its co- and cross-polarized components for
0 < θ0 < θc, for Rp(θ0)incoh the cross-polarized component
will go to zero due to the α2(k‖) factor present in Eq. (53b).
This dip in 〈∂Rsp(q‖|k‖)/∂s〉incoh is hence the main reason for
the differences in the incoherent component of the reflectance
for this configuration of media.

VII. CONCLUSIONS

We have presented a derivation of the RRE for the reflec-
tion amplitudes of light scattered from a two-dimensional,
randomly rough, surface. These equations enable a non-
perturbative solution of the scattering problem based on
the Rayleigh hypothesis. As an example of its solution by
purely numerical means, the full angular distributions for
both co- and cross-polarized incoherent components of the
mean differential reflection coefficients were reported for
configurations of vacuum and an absorptionless dielectric
with a Gaussian surface power spectrum and correlation
function.

It was shown that a configuration of reflection within
the optically denser medium leads to Yoneda peaks in
the angular distributions of the diffusely scattered light,
namely peaks at the critical angle for total internal reflection
in the denser medium. The behavior and development of
these peaks for a wide range of angles of incidence and
scattering were investigated, and the lack of such peaks for
light scattered into p-polarization for polar angles of inci-

dence smaller than the critical angle were explained through
SAPT.

Brewster scattering angles, angles where scattering into
p-polarization is suppressed to strict zero in SAPT to lowest
nonzero order in the surface profile function, were found
to explain many of the differences in scattering into s-
and p-polarization for the scattering systems investigated in
the current work. These angles were first mentioned in the
literature by Kawanishi et al. in Ref. [4]. Our results are in
good agreement with their findings.

Small-amplitude perturbation theory, to lowest nonzero
order in the surface profile function, was overall shown
to reproduce our numerical results qualitatively to a fairly
high degree of accuracy through both analytical arguments
and a numerical implementation of that theory. This leads
us to believe that the features presented in the results are
single-scattering effects.

The scattering of light from a transparent dielectric is well
described by solutions obtained by means of small-amplitude
perturbation theory, including the full angular distribution of
the mean DRC for all combinations of the polarizations of the
incident and scattered light. The reduced Rayleigh equation is
a powerful starting point for studies of higher-order scattering
features, such as enhanced backscattering, for example. The
results presented here show that for the degree of surface
roughness and the values of the dielectric constants assumed in
this work no higher-order features are observed. Nevertheless,
the RRE still gives more accurate numerical results for the
mean DRC than does SAPT to lowest nonzero order in
the surface profile function when the surface roughness is
increased.

As an investigation of the quality of the results, energy
conservation (unitarity) was found to be satisfied within 10−4

when the total scattered energies from both reflection and
transmission were added together for the roughness parameters
and configurations used in this paper. An investigation similar
to the present one but for light transmitted through the
dielectric rough interface will be presented in a separate
publication [15].
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APPENDIX: EXPANSION OF R(q‖|k‖) IN POWERS OF THE
SURFACE PROFILE FUNCTION

In this Appendix we outline the derivation of Eq. (53). To
this end, we begin with the expansion

R(q‖|k‖) =
∞∑

n=0

(−i)n

n!
R(n)(q‖|k‖), (A1)
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where the superscript n denotes the order of the corresponding term in powers of ζ (x‖). When Eqs. (17) and (A1) are substituted
into Eq. (27), the latter becomes

∞∑
m=0

m∑
n=0

(−i)m

m!

(
m

n

) ∫
d2q‖
(2π )2

[−α1(q‖) + α2(p‖)]n−1ζ̂ (n)(p‖ − q‖)M+(p‖|q‖) R(m−n)(q‖|k‖)

=
m∑

n=0

− (−i)n

n!
[α1(k‖) + α2(p‖)]n−1ζ̂ (n)(p‖ − k‖)M−(p‖|k‖). (A2)

When we equate terms of zero order in ζ (x‖) on both sides of this equation, we obtain

1

−α1(p‖) + α2(p‖)
M+(p‖|p‖) R(0)(p‖|k‖) = −(2π )2δ(p‖ − k‖)

1

α1(p‖) + α2(p‖)
M−(p‖|p‖), (A3)

which, if we solve for R(0)(q‖|k‖), gives
(

R(0)
pp(q‖|k‖) R(0)

ps (q‖|k‖)

R(0)
sp (q‖|k‖) R(0)

ss (q‖|k‖)

)
= (2π )2δ(q‖ − k‖)

⎛
⎝

d−
p (k‖)

d+
p (k‖)

0

0 d−
s (k‖)

d+
s (k‖)

⎞
⎠, (A4)

where

d±
p (k‖) = ε2α1(k‖) ± ε1α2(k‖), (A5a)

d±
s (k‖) = α1(k‖) ± α2(k‖). (A5b)

Equation (A4) essentially represents the Fresnel coefficients for specular reflection from a flat interface.
For m = 1, Eq. (A2) can be simplified to

1

−α1(p‖) + α2(p‖)
M+(p‖|p‖)R(1)(p‖|k‖) +

∫
d2q‖
(2π )2

ζ̂ (1)(p‖ − q‖)M+(p‖|q‖) R(0)(q‖|k‖) = −ζ̂ (1)(p‖ − k‖)M−(p‖|k‖). (A6)

If we now use the result that the matrix M+(p‖|p‖) is diagonal and hence readily inverted and that the matrix R(0)(q‖|k‖) is given
by Eq. (A4), we can simplify Eq. (A6) into

R(1)(q‖|k‖) = − (ε2 − ε1)ζ̂ (1)(q‖ − k‖)

×
⎛
⎝

√
ε1ε2

d+
p (q‖)d+

p (k‖)
[d−

p (k‖)M+
pp(q‖|k‖) + d+

p (k‖)M−
pp(q‖|k‖)]

√
ε1ε2

d+
p (q‖)d+

s (k‖)
M±

ps(q‖|k‖)[d−
s (k‖) + d+

s (k‖)]
1

d+
s (q‖)d+

p (k‖)
[d−

p (k‖)M+
sp(q‖|k‖) + d+

p (k‖)M−
sp(q‖|k‖)] 1

d+
s (q‖)d+

s (k‖)
M±

ss(q‖|k‖)[d−
s (k‖) + d+

s (k‖)]

⎞
⎠. (A7)

where the matrix elements {M±
αβ(q‖|k‖)} are given by Eq. (28a). This ultimately gives

R(1)(q‖|k‖) = − (ε2 − ε1)ζ̂ (1)(q‖ − k‖)

×
⎛
⎝ 1

d+
p (q‖)d+

p (k‖)
[ε2q‖k‖ − ε1α2(q‖)(q̂‖ · k̂‖)α2(k‖)] −

√
ε1

d+
p (q‖)d+

s (k‖)
ω
c
α2(q‖) [q̂‖ × k̂‖]3

−
√

ε1

d+
s (q‖)d+

p (k‖)
ω
c

[q̂‖ × k̂‖]3 α2(k‖) 1
d+

s (q‖)d+
s (k‖)

ω2

c2 (q̂‖ · k̂‖)

⎞
⎠2α1(k‖). (A8)

In view of Eq. (A1) we find that through terms linear in the surface profile function

R(q‖|k‖) = R(0)(q‖|k‖) − iR(1)(q‖|k‖) + O(ζ 2). (A9)

The substitution of these results in Eq. (42) and use of the result that 〈ζ̂ (Q‖)ζ̂ (Q‖)∗〉 = Sδ2g(|Q‖|) yields Eq. (53).
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Abstract: The scattering of polarized light from a dielectric film sandwiched between two dif-
ferent semi-infinite dielectric media is studied experimentally and theoretically. The illuminated
interface is planar, while the back interface is a two-dimensional randomly rough interface. We
consider here only the case in which the medium of incidence is optically more dense than the
substrate, in which case effects due to the presence of a critical angle for total internal reflection
occur. A reduced Rayleigh equation for the scattering amplitudes is solved by a rigorous, purely
numerical, nonperturbative approach. The solutions are used to calculate the reflectivity of the
structure and the mean differential reflection coefficient. Optical analogues of Yoneda peaks are
present in the results obtained. The computational results are compared with experimental data
for the in-plane mean differential reflection coefficient, and good agreement between theory and
experiment is found.

c© 2016 Optical Society of America
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1. Introduction

In many theoretical and experimental studies of the scattering of light from randomly rough
surfaces the medium of incidence is vacuum. In the case that the scattering medium is a dielectric,
this choice for the medium of incidence rules out investigations of interesting single- and multiple-
scattering effects associated with the phenomenon of total internal reflection, which occurs when
the medium of incidence is optically more dense than the scattering medium.

By use of the stochastic functional approach [1] Kawanishi et al. studied the coherent and
incoherent scattering of an electromagnetic wave from a two-dimensional interface separating
two different dielectric media [2]. The medium of incidence could be either medium. The
theoretical approach used in this work was perturbative, and applicable only to weakly rough
interfaces. Nevertheless it yielded interesting results, including the presence of Yoneda peaks in
the angular dependence of the intensity of the light scattered back into the medium of incidence,
when the latter is the optically more dense medium. These are sharp asymmetric peaks occurring
at the critical angle for total internal reflection, for a fixed angle of incidence, for either p-
or s-polarization of the incident light. These peaks were first observed experimentally in the
scattering of x-rays incident from air on a metal surface [3]. Until now they have not been
observed in optical experiments.

In subsequent work Soubret et al. [4] derived a reduced Rayleigh equation for the scattering
amplitudes when an electromagnetic wave is incident from one dielectric medium on its two-
dimensional randomly rough interface with a second dielectric medium. They obtained a solution
of this equation as an expansion in powers of the surface profile through terms of third order, but
in obtaining the numerical results presented in the paper the medium of incidence was assumed
to be vacuum.

In this paper we remove two limitations present in earlier studies of the scattering of light from
dielectric structures possessing one two-dimensional interface. The first constraint we remove is
the lack of experimental results for scattering from two-dimensional randomly rough interfaces
in the presence of total internal reflection. We present experimental results for the contribution to
the mean differential reflection coefficient (DRC) from in-plane co-polarized scattering. These
are the first experimental studies of such scattering, and they demonstrate the existence of Yoneda
peaks at optical frequencies.

The second limitation we remove is the absence of nonperturbative solutions of the equations
of scattering theory. We solve a reduced Rayleigh equation for the scattering amplitudes for
the dielectric structure studied experimentally, by a rigorous, purely numerical, nonperturbative
approach. The solutions are used to calculate the reflectivity and the mean DRC of the structure,
the latter of which is compared with the experimental results.

2. Theoretical formulation

The scattering system we consider consists of a dielectric medium whose dielectric constant
is ε1 in the region x3 > 0, a dielectric medium whose dielectric constant is ε2 in the region
−d + ζ (x‖ ) < x3 < 0, where x‖ = (x1 , x2 , 0), and a dielectric medium whose dielectric constant
is ε3 in the region x3 < −d + ζ (x‖ ) [see Fig. 1]. The dielectric constants ε1 , ε2, and ε3 are all real
and positive. The surface profile function ζ (x‖ ) is assumed to be a single-valued function of x‖
that is differentiable with respect to x1 and x2, and constitutes a stationary, zero-mean, isotropic,
Gaussian random process. This random process is defined by the surface height autocorrelation
function 〈ζ (x‖ )ζ (x′

‖
)〉 = δ2W (|x‖ − x′

‖
|). The angle brackets here and in all that follows denote

an average over the ensemble of realizations of the surface profile function, and δ = 〈ζ2(x‖ )〉
1
2 is

the rms height of the surface.
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Fig. 1. Schematic diagram of the sample geometry.

We have chosen to study this structure instead of the simpler system of a single two-
dimensional randomly rough interface separating two different dielectric media because it
is the one employed in the experimental work whose results will be compared with the results of
our calculations.

The interface x3 = 0 is illuminated from the region x3 > 0 by a plane wave of angular
frequency ω. We write the electric field in this region as the sum of an incident field and a
scattered field, E(x; t) = [E(x|ω)inc +E(x|ω)sc] exp(−iωt), where

E(x|ω)inc =
[
ê(i)
p (k‖ )E0p (k‖ ) + ê(i)

s (k‖ )E0s (k‖ )
]

exp
[
ik‖ · x‖ − iα1(k‖ )x3

]
(1a)

E(x|ω)sc =

∫
d2q‖
(2π)2

[
ê(s)
p (q‖ )Ap (q‖ ) + ê(s)

s (q‖ )As (q‖ )
]

exp
[
iq‖ · x‖ + iα1(q‖ )x3

]
, (1b)

where αi (q‖ ) = [εi (ω/c)2 − q2
‖
]

1
2 (i = 1, 2, 3), with Re αi (q‖ ) > 0, Im αi (q‖ ) > 0, while

ê(i)
p (k‖ ) =

k̂‖α1(k‖ ) + x̂3k‖
√
ε1

ω
c

(2a)

ê(i)
s (k‖ ) = k̂‖ × x̂3 (2b)

and

ê(s)
p (q‖ ) =

−q̂‖α1(q‖ ) + x̂3q‖
√
ε1

ω
c

(3a)

ê(s)
s (q‖ ) = q̂‖ × x̂3. (3b)
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A caret over a vector indicates that it is a unit vector. In Eq. (1) E0p (k‖ ) and E0s (k‖ ) are the
amplitudes of the p- and s-polarized components of the incident field with respect to the plane of
incidence, defined by the vectors k̂‖ and x̂3. Similarly, Ap (q‖ ) and As (q‖ ) are the amplitudes of
the p- and s-polarized components of the scattered field with respect to the plane of scattering,
defined by the vectors q̂‖ and x̂3.

Maxwell’s equations and the associated boundary conditions at the interfaces x3 = 0 and
x3 = −d + ζ (x‖ ) imply a linear relation between Ap (q‖ ), As (q‖ ) and E0p (k‖ ), E0s (k‖ ), which
we write as (α = p, s, β = p, s)

Aα (q‖ ) =
∑
β

Rαβ (q‖ |k‖ )E0β (k‖ ). (4)

The equations satisfied by the scattering amplitudes {Rαβ (q‖ |k‖ )} can be written in the form∫
d2q‖
(2π)2 M+(p‖ |q‖ )R(q‖ |k‖ ) = −M− (p‖ |k‖ ), (5)

where

R(q‖ |k‖ ) =

(
Rpp (q‖ |k‖ ) Rps (q‖ |k‖ )
Rsp (q‖ |k‖ ) Rss (q‖ |k‖ )

)
(6)

M± (p‖ |q‖ ) =

(
M±pp (p‖ |q‖ ) M±ps (p‖ |q‖ )
M±sp (p‖ |q‖ ) M±ss (p‖ |q‖ )

)
, (7)

and the matrix elements are expressed as [4]

M±pp (p‖ |q‖ ) =
1

α2(q‖ )

{
I− (p‖ |q‖ )

[
p‖q‖ + α3(p‖ )p̂‖ · q̂‖α2(q‖ )

] [
ε1α2(q‖ ) ± ε2α1(q‖ )

]
+ I+(p‖ |q‖ )

[
p‖q‖ − α3(p‖ )p̂‖ · q̂‖α2(q‖ )

] [
ε1α2(q‖ ) ∓ ε2α1(q‖ )

] }
(8a)

M±sp (p‖ |q‖ ) =
√
ε3
ω

c
[
p̂‖ × q̂‖

]
3

×

{
I− (p‖ |q‖ )

[
ε1α2(q‖ ) ± ε2α1(q‖ )

]
− I+(p‖ |q‖ )

[
ε1α2(q‖ ) ∓ ε2α1(q‖ )

] }
(8b)

M±ps (p‖ |q‖ ) = −
√
ε1ε2

ω

c
[
p̂‖ × q̂‖

]
3
α3(p‖ )
α2(q‖ )

×

{
I− (p‖ |q‖ )

[
α2(q‖ ) ± α1(q‖ )

]
+ I+(p‖ |q‖ )

[
α2(q‖ ) ∓ α1(q‖ )

] }
(8c)

M±ss (p‖ |q‖ ) =
√
ε1ε2
√
ε3

(
ω

c

)2
p̂‖ · q̂‖

1
α2(q‖ )

×

{
I− (p‖ |q‖ )

[
α2(q‖ ) ± α1(q‖ )

]
+ I+(p‖ |q‖ )

[
α2(q‖ ) ∓ α1(q‖ )

] }
. (8d)

In writing Eq. (8) we have defined

I± (p‖ |q‖ ) = exp{i[α3(p‖ ) ± α2(q‖ )]d}
I
(
α3(p‖ ) ± α2(q‖ ) |p‖ − q‖

)
α3(p‖ ) ± α2(q‖ )

, (9)

where d is the mean thickness of the film, and

I (γ |Q‖ ) =

∫
d2x ‖ exp

[
−iγζ (x‖ )

]
exp

(
−iQ‖ · x‖

)
. (10)
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The contribution to the mean DRC from the light that has been scattered incoherently (dif-
fusely), and the reflectivity of the scattering system can be expressed in terms of the scattering
amplitudes {Rαβ (q‖ |k‖ )}. Thus, the fraction of the total time-averaged flux in an incident wave
of polarization β, the projection of whose wave vector on the mean scattering plane is k‖ that is
scattered incoherently into a wave of α polarization, the projection of whose wave vector on the
mean scattering plane is q‖ , within an element of solid angle dΩs about the scattering direction
defined by the polar and azimuthal scattering angles (θs , φs ), is given by〈

∂Rαβ (q‖ |k‖ )
∂Ωs

〉
incoh

=
ε1

S

(
ω

2πc

)2 cos2 θs
cos θ0

[
〈|Rαβ (q‖ |k‖ ) |2〉 − |〈Rαβ (q‖ |k‖ )〉|2

]
. (11)

Here S is the area of the plane x3 = 0 covered by the random surface, and we have used the
relations k‖ =

√
ε1(ω/c) sin θ0(cos φ0 , sin φ0 , 0) and q‖ =

√
ε1(ω/c) sin θs (cos φs , sin φs , 0).

Similarly, the reflectivity for light of polarization α incident on the surface with a polar angle of
incidence θ0 is

Rα (θ0) =
∣∣∣Rα (k‖ )

∣∣∣2 =
∣∣∣Rα (
√
ε1(ω/c) sin θ0)

∣∣∣2 , (12)

where Rα (k‖ ) = 〈Rαα (k‖ |k‖ )〉/S.
The numerical solution of equations like Eq. (5) is described in detail in [5].
The theoretical results given by Eqs. (5)–(7) are valid both when the medium of incidence

is optically more dense than the substrate and when it is optically less dense. However, in this
paper we will present computational and experimental results only for the former case, because
it is only in that case that effects due to total internal reflection occur. Results for the latter case
will be presented elsewhere [6].

3. Experimental details

We have conducted angular scattering experiments with specially fabricated randomly rough sur-
faces. They were fabricated by exposing photoresist-coated plates (Shipley 1805) to statistically
independent speckle patterns [8]. The speckle patterns were produced by passing a He-Cd laser
beam (λ = 442 nm) through a ground glass plate. The samples consist then of a glass substrate
(ε1 = 2.25), covered with a randomly rough film of photoresist (ε2 = 2.69) in contact with air
(ε3 = 1), see Fig. 1.

Due to the exposure characteristics, the surfaces should have approximately Gaussian statistics
and a Gaussian correlation function. They were characterized optically (by the strength of the
coherent component) and by means of a mechanical profilometer. We present scattering data
obtained from a surface whose rms height is δ = 22 nm and its transverse correlation length
a = 1.9 µm. In the visible region of the spectrum, theories based on the reduced Rayleigh
equation are adequate to deal with surfaces with such characteristic parameters. The mean film
thickness of the sample is d = 0.6 µm.

The experimental arrangement is shown in Fig. 1. The intensity was measured as a function of
angle using a scatterometer that consists of an illumination and a detection system whose angular
position can be controlled by a computer using two rotary stages with an angular resolution
of 0.25 degrees. The illumination system consists of a HeNe laser beam (λ = 632.8 nm) and a
series of mirrors, diaphragms and lenses. The intensity and polarization of the illumination were
controlled by placing, in series, a circular and a linear polarizer.

In order to illuminate the surface from the optically denser medium with angles of incidence
close to the total internal reflection angle, the substrate was put in optical contact with a glass
hemisphere (about 3.7 cm in diameter) using index matching oil [see Fig. 1]. A converging beam
was focused a couple of centimeters before the glass hemisphere so that, after refraction at the
hemisphere, the photoresist-air interface was illuminated by a diverging beam. The scattered
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Fig. 2. The in-plane angular dependence of 〈∂Rαα/∂Ωs〉incoh for a set of θ0 obtained by
the numerical approach outlined in the text. The open symbols represents the data points
obtained in the simulations, while the lines connecting them, are only included as a guide to
the eye. Notice how the amplitudes of the data vary from panel to panel.

light passed again through the glass hemisphere and was collected by the detection system,
about 30 cm away, in what is, effectively, the far field of the rough photoresist-air interface. The
detection system consisted, basically, of a lens and a silicon detector. To reduce noise in the
measurements, the detected signal was processed using lock-in detection techniques. For this, a
mechanical chopper and a lock-in amplifier were used in the illumination and detection systems,
respectively.

The use of the hemisphere permits the illumination of the rough interface with angles of
incidence beyond the critical angle and simplifies the measurements of the angular distribution
of scattered light. On the other hand, it introduces some experimental difficulties. First of all, the
light has to pass twice through an interface with high optical power and, in a symmetric system
(equal distances to the point source and to its image, obtained by specular reflection from the
photoresist-air interface), the conjugate distances are practically equal to the diameter of the
hemisphere. To facilitate the measurements, the first conjugate (source of the diverging beam)
must be placed close to the hemisphere, so that the second conjugate point moves away from
the sample, as shown in Fig. 1. The detection system moves then in a circle whose radius is
determined by the position where the light that is specularly reflected by the rough photoresist-air
interface is focused.

The alignment of the whole system is quite demanding. It is hard to make the center of
curvature of the glass hemisphere coincide with the center of rotation of the sample, which makes
it difficult to establish the angles of incidence and scattering with precision. However, since the
critical angle is determined solely by the dielectric constants of the flat photoresist-air interface,
this difficulty was circumvented by making the critical angle observed in the measurements
coincide with the theoretical value of the critical angle. The other issue worth mentioning is
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Fig. 3. Same as Fig. 2 but now presenting experimental measurements. The data sets in each
panel were scaled by a common factor so that a unit amplitude corresponds to the maximum
value of the corresponding numerical simulation results presented in Fig. 2.

that, since it is not possible to measure directly the light incident on the rough photoresist-air
interface, it is difficult to obtain scattering data normalized by the incident power.

4. Results and discussion

Numerical and experimental results for the contribution to the mean DRC from in-plane co-
polarized light scattered incoherently by the rough surface, 〈∂Rαα/∂Ωs〉incoh, are presented in
Figs. 2 and 3, respectively, for the same values of θ0. By also calculating the transmitted intensity,
energy conservation was found to be satisfied in our calculations with an error smaller than 10−3

(see [6] for details). For polar angles of incidence θ0 . θ?0 = 30◦, no pronounced Yoneda peaks
are observed, either in the experimental or numerical data; at least, this is true for the structure
that we considered. However, when the angle of incidence is increased towards the critical angle
for total internal reflection θc = 41.89◦ [θ?0 . θ0 < θc ], Yoneda peaks gradually start to develop
around θs = θc [Figs. 2 and 3; panels θ0 = 35◦ , 38◦]. Initially these peaks are most readily
observed in p-to-p scattering, but for an angle of incidence in the vicinity of the critical angle,
θ0 . θc , Yoneda peaks are also clearly identifiable in s-to-s scattering. Finally, for θ0 > θc ,
Yoneda peaks are no longer observed either in the numerical or experimental data, and the signal
amplitude at their position starts to drop off as one approaches grazing incidence [see Fig. 4].

There is a good quantitative agreement between the predicted angular positions of the Yoneda
peaks presented in Fig. 2, and the experimental positions presented in Fig. 3. There is qualitative
agreement about how these peaks develop with an increase of the polar angle of incidence.
However, the experimental distributions 〈∂Rαα/∂Ωs〉incoh are broader then their numerical
counterparts, and the ratio of the amplitudes of the two co-polarized experimental intensity
distributions are not consistently reproduced by the numerical simulation results. We attribute
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Fig. 4. Contour maps of the in-plane dependence of the raw simulation data for the co-
polarized mean DRC as functions of θs and θ0. Figure 4(a) represents the contour map of
〈∂Rpp/∂Ωs〉incoh and its inset details the behavior around (θs , θ0) = (θc , θc ). In Fig. 4(b)
the logarithm of the same data, log〈∂Rpp/∂Ωs〉incoh, are presented but over the full range of
polar scattering angles −90◦ < θs < 90◦ . The vertical dashed center line (black) indicates
θs = 0◦ .

these differences between the experimental and numerical results in part to deviations of the
statistical properties of the fabricated randomly rough surface used in the experiments from those
assumed in performing the numerical calculations [7].

To better represent the dependence of the incoherently scattered light on the polar angles of
incidence and scattering, in Fig. 4 we present contour maps of the angular dependence of the
computational results for the in-plane, p-to-p incoherent scattering contribution to the mean
DRC. The inset in Fig. 4(a) details the region around (θs , θ0) = (θc , θc ) and explicitly shows
the asymmetric character of the Yoneda peak phenomenon. To more readily inspect the local
variations of this data set, Fig. 4(b) presents a contour plot of log〈∂Rpp/∂Ωs〉incoh as a function
of θs and θ0 for −90◦ < θs < 90◦ [12]. Several features of the scattered intensity should be
noted from the results presented in Fig. 4(b). The first feature is the rapid intensity variations
in the angular region around θ0 = θc or θs = ±θc . For instance, at normal incidence [θ0 = 0◦],
local minima in the p-to-p scattered intensity distributions are observed around θs ≈ ±θc [seen
as the dark blue vertical structures in Fig. 4(b)]. As the polar angle of incidence is increased, the
scattered intensity distribution is transformed from displaying local minima around θs ≈ ±θc
to displaying local maxima around the same angles. Only in the latter case does the scattered
intensity distribution show Yoneda peaks, the phenomenon that we study experimentally in this
work. It should be mentioned that in a recent numerical study of a related scattering system, a
similar variation of the in-plane, p-to-p scattered intensity around θs ≈ ±θc was observed and
explained theoretically [6]. In this publication it was also shown that the in-plane, s-to-s scattered
intensity displays Yoneda peaks independent of the value of the polar angle of incidence.
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Fig. 5. Photographs showing the spatial intensity distributions formed on the rough aluminum
screen [see Fig. 6] for a set of polar angles of incidence, θ0 = θs , as indicated in the figure.

Figure 5 presents experimental results for the angular dependence of the intensity distributions
of the light scattered also outside the plane of incidence; as such, these results complement the
measured in-plane intensity distributions reported in Fig. 3.

The photographs of the scattered intensity patterns depicted in Fig. 5, were obtained with the
arrangement illustrated in Fig. 6. As in the scattering measurements reported in Fig. 3, the sample
is illuminated through a glass hemisphere, and the light is scattered back from the rough back
surface of the sample through the glass hemisphere. However, in contrast to how the scattering
measurements were preformed to produce the results of Fig. 3, a rough aluminum screen was
placed about 45 cm from the sample so that the light would rescatter from it and form an image
on the screen. A digital camera was then used to take photographs of the scattering patterns
observed on the aluminum screen. It is in this way that the photographs shown in Fig. 5 were
obtained.
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Fig. 6. Schematics of the geometry used to take the photographs presented in Fig. 5.
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The specular direction is represented by the bright red circular spots readily observed in the
results presented in Fig. 5. As the polar angle of incidence is approaching the critical angle
for total internal reflection θc = 41.89◦, the Yoneda peaks start to appear. In particular, for the
intensity distributions presented in Fig. 5 corresponding to the polar angles of incidence 38◦

and 41◦, the Yoneda phenomenon is clearly seen. It is manifested by an abrupt increase in the
intensity of the scattered light in directions parallel to the plane of incidence. This results in a
“ridge” of high intensity that locally is oriented almost perpendicular to the plane of incidence.
This finding is consistent with the theoretical prediction for the full angular intensity distribution
of the light scattered from a sample of similar geometry [6].

Although small amplitude perturbation theory predicts that the Yoneda peaks occur in the
contribution to the scattering amplitudes {Rαβ (q‖ |k‖ )} of first order in the surface profile
function [6], and so are single-scattering phenomena, their physical interpretation has been the
subject of discussion for five decades. In a study of the reflection of x-rays from a polished
surface Warren and Clark [9] proposed that these peaks can be interpreted in terms of a small
angle scattering from a projection on an irregular surface followed by total reflection. In a
subsequent study of grazing-angle reflection of x-rays from rough metal surfaces, Vineyard [10]
noted that the angular dependence of the Fresnel coefficient for transmission through a planar
vacuum-metal interface produces a transmitted field on the surface whose angular dependence
has the form of an asymmetric peak. The maximum of this peak occurs at the critical angle for
total internal reflection and has a magnitude that is twice that of the incident electric field on the
surface, which leads to an enhanced diffuse scattering at this angle. This effect was invoked by
Sinha et al. [11] as the origin of the Yoneda peaks. However, it is not a physical explanation for
the origin of these peaks. Kawanishi et al. [2] suggested that the Yoneda peaks may be due to
the presence of lateral waves, excited through the roughness, propagating along the interface in
the optically less dense medium. This wave satisfies the condition for refraction back into the
optically more dense medium, and therefore leaks energy at each point along the interface along
rays whose scattering angle equals θc . This explanation is attractive, but should be explored
more through additional calculations.

Finally, in Fig. 7 we present the calculated reflectivity of our structure for p- and s-polarized
incident light. The effect of total internal reflection is clearly seen in these results. For θc < θ0 <
90◦ the reflectivity in each polarization decreases by approximately 20% from the corresponding
Fresnel reflectivity in much of this interval, a significant change for the degree of roughness
possessed by this surface.
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5. Conclusions

In this paper we have presented the first experimental results for the scattering of p- and s-
polarized light from a dielectric structure with a two-dimensional randomly rough interface
that can display effects associated with total internal reflection. In particular, we have shown
the existence of Yoneda peaks in the angular dependence of the mean differential reflection
coefficient. The experimental results are supported by the results of rigorous, purely numerical,
nonperturbative solutions of the reduced Rayleigh equation for scattering from this structure.
These features are already present in single-scattering calculations of the mean differential
reflection coefficient. It will be of interest to see how they develop in the presence of strong
multiple scattering and in transmission. Finally, we find that even a small degree of roughness
significantly depresses the reflection of p- and s-polarized light for scattering angles greater than
the critical angle for total internal reflection.
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Numerical studies of the transmission of light through a two-dimensional
randomly rough interface
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The transmission of polarized light through a two-dimensional randomly rough interface between two dielectric
media has been much less studied, by any approach, than the reflection of light from such an interface. We have
derived a reduced Rayleigh equation for the transmission amplitudes when p- or s-polarized light is incident on
this type of interface, and have obtained rigorous, purely numerical, nonperturbative solutions of it. The solutions
are used to calculate the transmissivity and transmittance of the interface, the mean differential transmission
coefficient, and the full angular distribution of the intensity of the transmitted light. These results are obtained
for both the case where the medium of incidence is the optically less dense medium and in the case where
it is the optically more dense medium. Optical analogs of Yoneda peaks observed in the scattering of x rays
from metallic and nonmetallic surfaces are present in the results obtained in the former case. For p-polarized
incident light we observe Brewster scattering angles, angles at which the diffuse transmitted intensity is zero in
a single-scattering approximation, which depend on the angle of incidence in contrast to the Brewster angle for
flat-surface reflection.

DOI: 10.1103/PhysRevA.95.043808

I. INTRODUCTION

In the theoretical and experimental studies of the interaction
of an electromagnetic wave with a two-dimensional randomly
rough dielectric surface, the great majority have been devoted
to the reflection problem [1–3], and less attention has been paid
to studies of the transmission of light through such surfaces.
Greffet [4] obtained a reduced Rayleigh equation for the
transmission amplitudes in the case where light incident from
vacuum is transmitted through a two-dimensional randomly
rough interface into a dielectric medium, and obtained a
recursion relation for the successive terms in the expansions
of the amplitudes in powers of the surface profile function.
Kawanishi et al. [5], by the use of the stochastic functional
approach, studied the case where a two-dimensional randomly
rough interface between two dielectric media is illuminated
by p- and s-polarized light from either medium. Properties
of the light transmitted through, as well as reflected from,
the interface were examined. This theoretical approach is
perturbative in nature and can be applied only to weakly rough
surfaces. Nevertheless, Kawanishi et al. obtained several in-
teresting properties of the transmitted light that are associated
with the phenomenon of total internal reflection when the
medium of transmission is the optically denser medium. These
include the appearance of Yoneda peaks in the intensity of the
transmitted light as a function of the angle of transmission for
a fixed value of the angle of incidence. Yoneda peaks are sharp
asymmetric peaks at the critical polar angle of transmission
for which the wave number of incidence turns nonpropagating
when the medium of transmission is the optically more dense
medium. Although well known in the scattering of x rays
from both metallic [6–9] and nonmetallic [10–13] surfaces,

*oyvind.hetland@ntnu.no

the paper by Kawanishi et al. apparently marks their first
explicit appearance in optics. Yoneda peaks were recently
observed experimentally for a configuration of reflection from
a randomly rough dielectric interface, when the medium of
incidence was the optically denser medium [14]. The physical
origin of the Yoneda peak phenomenon is not clear [15].

For p-polarized incident light Kawanishi et al. also ob-
served angles of zero scattering intensity, to first order in
their approach, in the distributions of the intensity of the
incoherently reflected and transmitted light. Due to their
resemblance to the Brewster angle in the reflectivity from
a flat interface, they dubbed these angles the “Brewster
scattering angles.” These were observed, in both reflection and
transmission, for light incident from either medium, and were
found to be strongly dependent on the angle of incidence. The
Brewster scattering angles can be observed to be part of the
mechanisms that result in a strong dependence on polarization
in the scattering distributions of incoherently scattered light.
Nieto-Vesperinas and Sánchez-Gil [16] observed this strong
dependence on polarization in their numerical investigations
of incoherent transmission through one-dimensional dielectric
surfaces, but they did not investigate this dependence any
further.

Soubret et al. [17] also obtained a reduced Rayleigh
equation for the transmission amplitudes in the case where
light incident from one dielectric medium is transmitted into
a second dielectric medium through a two-dimensional ran-
domly rough interface. However, only perturbative solutions
of this equation were obtained by them, and only for vacuum
as the medium of incidence.

In this paper we present a theoretical study of the trans-
mission of light through a two-dimensional randomly rough
interface between two dielectric media, free from some of the
limitations and approximations present in the earlier studies
of this problem. We obtain a reduced Rayleigh equation for

2469-9926/2017/95(4)/043808(22) 043808-1 ©2017 American Physical Society
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FIG. 1. Sketch of the scattering geometry assumed in this work.
The figure also shows the coordinate system used, angles of incidence
(θ0,φ0) and transmission (θt ,φt ), and the corresponding lateral wave
vectors k‖ and q‖.

the transmission amplitudes in the case where light incident
from a dielectric medium whose dielectric constant is ε1

is transmitted through a two-dimensional randomly rough
interface into a dielectric medium whose dielectric constant
is ε2. The dielectric constant ε1 can be larger or smaller
than the dielectric constant ε2. Thus effects associated with
total internal reflection are included in the solutions of this
equation. Instead of solving the reduced Rayleigh equation as
an expansion in powers of the surface profile function, in this
work we obtain a rigorous, purely numerical, nonperturbative
solution of it. This approach enables us to calculate the
transmissivity and transmittance of the system studied, the
in-plane co- and cross-polarized, and the out-of-plane co- and
cross-polarized incoherent (diffuse) scattering contributions
to the mean differential transmission coefficient, and the full
angular dependence of the total scattered intensity, all in a
nonperturbative fashion.

Numerical studies of similar systems and phenomena,
obtained through a corresponding numerical method but in
reflection, have previously been reported in Refs. [14,15]. Both
Yoneda peaks and Brewster scattering angles were reported
and discussed in-depth in Ref. [15], and an experimental
observation of Yoneda peaks were presented in Ref. [14]. As
such, the currently presented work serves to add to the fuller
understanding of the scattering behavior of randomly rough
dielectric interfaces.

II. SCATTERING SYSTEM

The system we study in this paper consists of a dielectric
medium (medium 1), whose dielectric constant is ε1, in the
region x3 > ζ (x‖), and a dielectric medium (medium 2), whose
dielectric constant is ε2, in the region x3 < ζ (x‖) (Fig. 1). Here
x‖ = (x1,x2,0) is an arbitrary vector in the plane x3 = 0, and
we assume that both ε1 and ε2 are real and positive.

The surface profile function ζ (x‖) is assumed to be a single-
valued function of x‖ that is differentiable with respect to
x1 and x2, and constitutes a stationary, zero-mean, isotropic,
Gaussian random process defined by

〈ζ (x‖)ζ (x ′‖)〉 = δ2W (|x‖ − x′
‖|), (1)

where W (x‖) is the normalized surface height autocorrelation
function, with the property that W (0) = 1. The angle brackets
here and in all that follows denote an average over the ensemble
of realizations of the surface profile function. The root-mean-
square height of the surface is given by

δ = 〈ζ 2(x‖)〉 1
2 . (2)

The power spectrum of the surface roughness g(k‖) is defined
by

g(k‖) =
∫

d2x‖W (x‖) exp(−ik‖ · x‖), (3)

where k‖ = (k1,k2,0) is a lateral wave vector, k‖ = |k‖|, and
x‖ = |x‖|. We will assume for the normalized surface height
autocorrelation function W (x‖) the Gaussian function

W (x‖) = exp

(
−x2

‖
a2

)
, (4)

where the characteristic length a is the transverse correlation
length of the surface roughness. The corresponding power
spectrum is given by

g(k‖) = πa2 exp

(
−k2

‖a
2

4

)
. (5)

III. REDUCED RAYLEIGH EQUATION

The interface x3 = ζ (x‖) is illuminated from the region
x3 > ζ (x‖) (medium 1) by an electromagnetic wave of fre-
quency ω. The total electric field in this region is the sum of
an incoming incident field and an outgoing scattered field,

E>(x|ω) = E0(k‖) exp[iQ0(k‖) · x]

+
∫

d2q‖
(2π )2

A(q‖) exp[iQ1(q‖) · x], (6)

while the electric field in the region x3 < ζ (x‖) is an outgoing
transmitted field,

E<(x|ω) =
∫

d2q‖
(2π )2

B(q‖) exp[iQ2(q‖) · x]. (7)

In writing these equations we have introduced the functions

Q0(k‖) = k‖ − α1(k‖)x̂3, (8a)

Q1(q‖) = q‖ + α1(q‖)x̂3, (8b)

Q2(q‖) = q‖ − α2(q‖)x̂3, (8c)
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where (i = 1,2)

αi(q‖) =
⎧⎨
⎩

√
εi

(
ω
c

)2 − q2
‖ , q‖ � √

εi ω/c,

i

√
q2

‖ − εi

(
ω
c

)2
, q‖ >

√
εi ω/c.

(9)

Here q‖ = (q1,q2,0), q‖ = |q‖|, and a caret over a vector
indicates that it is a unit vector. A time dependence of the field
of the form exp(−iωt) has been assumed, but not indicated
explicitly.

The boundary conditions satisfied by these fields at the
interface x3 = ζ (x‖) are the continuity of the tangential
components of the electric field,

n × E0(k‖) exp[ik‖ · x‖ − iα1(k‖)ζ (x‖)]

+
∫

d2q‖
(2π )2

n × A(q‖) exp[iq‖ · x‖ + iα1(q‖)ζ (x‖)]

=
∫

d2q‖
(2π )2

n × B(q‖) exp[iq‖ · x‖ − iα2(q‖)ζ (x‖)], (10)

the continuity of the tangential components of the magnetic
field,

n × [iQ0(k‖) × E0(k‖)] exp[ik‖ · x‖ − iα1(k‖)ζ (x‖)]

+
∫

d2q‖
(2π )2

n × [iQ1(q‖) × A(q‖)]

× exp[iq‖ · x‖ + iα1(q‖)ζ (x‖)]

=
∫

d2q‖
(2π )2

n × [iQ2(q‖) × B(q‖)]

× exp[iq‖ · x‖ − iα2(q‖)ζ (x‖)], (11)

and the continuity of the normal component of the electric
displacement,

ε1n · E0(k‖) exp[ik‖ · x‖ − iα1(k‖)ζ (x‖)]

+ε1

∫
d2q‖
(2π )2

n · A(q‖) exp[iq‖ · x‖ + iα1(q‖)ζ (x‖)]

= ε2

∫
d2q‖
(2π )2

n · B(q‖) exp[iq‖ · x‖ − iα2(q‖)ζ (x‖)]. (12)

The vector n ≡ n(x‖) entering these equations is a vector
normal to the surface x3 = ζ (x‖) at each point of it, directed
into medium 1:

n(x‖) =
(

−∂ζ (x‖)

∂x1
, − ∂ζ (x‖)

∂x2
,1

)
. (13)

Strictly speaking the continuity of the tangential compo-
nents of the electric and magnetic fields across the interface,
Eqs. (10) and (11), are sufficient (and necessary) boundary
conditions on electromagnetic fields [18]. Hence the conti-
nuity of the normal components of the electric displacement
[Eq. (12)] and the magnetic induction are redundant. However,
the inclusion of Eq. (12) enables us to eliminate the scattering
amplitude A(q‖) from consideration, and thus to obtain an
equation that relates the transmission amplitude B(q‖) to the
amplitude of the incident field E0(k‖). This we do in the
following manner.

We take the vector cross product of Eq. (10)
with ε1Q0(p‖) exp[−ip‖ · x‖ + iα1(p‖)ζ (x‖)], then multiply
Eq. (11) by −iε1 exp[−ip‖ · x‖ + iα1(p‖)ζ (x‖)], and finally
multiply Eq. (12) by −Q0(p‖) exp[−ip‖ · x‖ + iα1(p‖)ζ (x‖)],
where p‖ is an arbitrary wave vector in the plane x3 = 0. When
we add the three equations obtained in this way, and integrate
the sum over x‖ we obtain an equation that can be written in
the form

ε1{Q0(p‖) × [VE(p‖|k‖) × E0(k‖)] + VE(p‖|k‖) × [Q0(k‖) × E0(k‖)] − Q0(p‖)[VE(p‖|k‖) · E0(k‖)]}

+ ε1

∫
d2q‖
(2π )2

{Q0(p‖) × [VA(p‖|q‖) × A(q‖)] + VA(p‖|q‖) × [Q1(q‖) × A(q‖)] − Q0(p‖)[VA(p‖|q‖) · A(q‖)]}

=
∫

d2q‖
(2π )2

{ε1Q0(p‖) × [VB(p‖|q‖) × B(q‖)] + ε1VB(p‖|q‖) × [Q2(q‖) × B(q‖)] − ε2Q0(p‖)[VB(p‖|q‖) · B(q‖)]}, (14)

where we define

VE(p‖|k‖) = V(−α1(p‖) + α1(k‖)|p‖ − k‖), (15a)

VA(p‖|q‖) = V(−α1(p‖) − α1(q‖)|p‖ − q‖), (15b)

VB(p‖|q‖) = V(−α1(p‖) + α2(q‖)|p‖ − q‖), (15c)

with

V(γ |Q‖) =
∫

d2x‖n(x‖) exp(−iQ‖ · x‖) exp[−iγ ζ (x‖)].

(16a)

It is shown in Appendix A that

V(γ |Q‖) = I (γ |Q‖)

γ
(Q‖ + γ x̂3) − (2π )2δ(Q‖)

Q‖
γ

, (16b)

where

I (γ |Q‖) =
∫

d2x‖ exp(−iQ‖ · x‖) exp[−iγ ζ (x‖)]. (17)

When Eqs. (15) and (16) are substituted into Eq. (14), the
latter becomes

(2π )2δ(p‖ − k‖)2ε1
k‖ · (p‖ − k‖)

−α1(p‖) + α1(k‖)
E0(k‖)

= (ε1 − ε2)
∫

d2q‖
(2π )2

I (−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)

×
{

−ε1

(
ω

c

)2

B(q‖) + [Q0(p‖) · B(q‖)]Q0(p‖)

}
. (18)
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In obtaining this result we have used the result that the singular
term of VB(p‖|q‖) does not contribute to the right-hand side
of Eq. (14), since p‖ = q‖ leaves −α1(p‖) + α2(q‖) nonzero
(see Appendix A). If we note that

−α1(p‖) + α1(k‖) = k‖ · (p‖ − k‖)

α1(k‖)
+ O((p‖ − k‖)2), (19)

the left-hand side of Eq. (18) becomes (2π )2δ(p‖ −
k‖)2ε1α1(k‖)E0(k‖). Thus we have an equation for the trans-
mission amplitude B(q‖) alone:

t =
∫

d2q‖
(2π )2

I (−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)

×
{

−ε1

(
ω

c

)2

B(q‖) + [Q0(p‖) · B(q‖)]Q0(p‖)

}

= (2π )2δ(p‖ − k‖)
2ε1α1(k‖)

ε1 − ε2
E0(k‖). (20)

We now write the vectors E0(k‖) and B(q‖) in the forms

E0(k‖) = ê(i)
p (k‖)E0p(k‖) + ê(i)

s (k‖)E0s(k‖), (21a)

where

ê(i)
p (k‖) = c√

ε1ω
[k̂‖α1(k‖) + x̂3k‖], (21b)

ê(i)
s (k‖) = x̂3 × k̂‖, (21c)

and

B(q‖) = ê(t)
p (q‖)Bp(q‖) + ê(t)

s (q‖)Bs(q‖), (22a)

where

ê(t)
p (q‖) = c√

ε2ω
[q̂‖α2(q‖) + x̂3q‖], (22b)

ê(t)
s (q‖) = x̂3 × q̂‖. (22c)

In these expressions E0p(k‖) and E0s(k‖) are the amplitudes of
the p- and s-polarized components of the incident field with
respect to the plane of incidence, defined by the vectors k̂‖
and x̂3. Similarly, Bp(q‖) and Bs(q‖) are the amplitudes of the
p- and s-polarized components of the transmitted field with
respect to the plane of transmission defined by the vectors q̂‖
and x̂3.

Our goal is to express Bp(q‖) and Bs(q‖) in terms of
E0p(k‖) and E0s(k‖). To this end we introduce three mutually
perpendicular unit vectors:

â0(p‖) = c√
ε1ω

[p̂‖ − x̂3α1(p‖)], (23a)

â1(p‖) = c√
ε1ω

[p̂‖α1(p‖) + x̂3p‖], (23b)

â2(p‖) = x̂3 × p̂‖. (23c)

We now take the scalar product of Eq. (20) with each of
these three unit vectors in turn, after E0(k‖) and B(q‖) have
been replaced by the right-hand sides of Eq. (21a) and (22a),
respectively. The results are

â0(p‖) · t: 0 = 0, (24a)

â1(p‖) · t:∫
d2q‖
(2π )2

I (−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)

×
{

−
√

ε1

ε2
[α1(p‖) p̂‖ · q̂‖ α2(q‖) + p‖q‖]Bp(q‖) + √

ε1
ω

c
α1(p‖) [p̂‖ × q̂‖]3 Bs(q‖)

}

= (2π )2δ(p‖ − k‖)
2ε1α1(k‖)

ε1 − ε2
E0p(k‖), (24b)

â2(p‖) · t:∫
d2q‖
(2π )2

I (−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)

{
− ε1√

ε2

ω

c
[p̂‖ × q̂‖]3 α2(q‖)Bp(q‖) − ε1

ω2

c2
p̂‖ · q̂‖Bs(q‖)

}

= (2π )2δ(p‖ − k‖)
2ε1α1(k‖)

ε1 − ε2
E0s(k‖). (24c)

These equations represent linear relations between Bp,s(q‖) and E0p,s(k‖) which we write in the form (α = p,s, β = p,s)

Bα(q‖) =
∑

β

Tαβ(q‖|k‖)E0β(k‖). (25)

On combining Eqs. (24) and (25) we find that the transmission amplitudes {Tαβ(q‖|k‖)} are the solutions of the equation

∫
d2q‖
(2π )2

I (−α1(p‖) + α2(q‖)|p‖ − q‖)

−α1(p‖) + α2(q‖)
M(p‖|q‖)T(q‖|k‖) = (2π )2δ(p‖ − k‖)

2α1(k‖)

ε2 − ε1
I2, (26)
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where

M(p‖|q‖) =
( 1√

ε1ε2
[α1(p‖) p̂‖ · q̂‖ α2(q‖) + p‖q‖] − 1√

ε1

ω
c
α1(p‖) [p̂‖ × q̂‖]3

1√
ε2

ω
c

[p̂‖ × q̂‖]3 α2(q‖) ω2

c2 p̂‖ · q̂‖

)
, (27a)

T(q‖|k‖) =
(

Tpp(q‖|k‖) Tps(q‖|k‖)

Tsp(q‖|k‖) Tss(q‖|k‖)

)
, (27b)

and

I2 =
(

1 0
0 1

)
. (27c)

Equation (26) is the reduced Rayleigh equation for the transmission amplitudes.

IV. MEAN DIFFERENTIAL TRANSMISSION COEFFICIENT

The differential transmission coefficient ∂T /∂t is defined such that (∂T /∂t )dt is the fraction of the total time-averaged
flux incident on the interface that is transmitted into the element of solid angle dt about the direction of transmission (θt ,φt ).
To obtain the mean differential transmission coefficient we first note that the magnitude of the total time-averaged flux incident
on the interface is given by

Pinc = −Re
c

8π

∫
d2x‖

{
E∗

0(k‖) ×
[

c

ω
Q0(k‖) × E0(k‖)

]}
3

exp{[−iQ∗
0(k‖) + iQ0(k‖)] · x}

= −Re
c2

8πω

∫
d2x‖{|E0(k‖)|2Q0(k‖) − [E∗

0(k‖) · Q0(k‖)]E0(k‖)}3

= Re
c2

8πω

∫
d2x‖α1(k‖)|E0(k‖)|2

= S
c2

8πω
α1(k‖)|E0(k‖)|2. (28)

In this result S is the area of the x1x2 plane covered by the randomly rough surface, and the integrand in the first line is the
time-averaged three-component of the complex Poynting vector [19]. The minus sign on the right-hand side of the first equation
compensates for the fact that the three-component of the incident flux is negative, and we have used the fact that α1(k‖) is real,
so that Q0(k‖) is real, and E∗

0(k‖) · Q0(k‖) = 0.
In a similar fashion we note that the total time-averaged transmitted flux is given by

Ptrans = −Re
c

8π

∫
d2x‖

∫
d2q‖
(2π )2

∫
d2q ′

‖
(2π )2

{
B∗(q‖) ×

[
c

ω
Q2(q′

‖) × B(q′
‖)

]}
3

× exp{−i(q‖ − q′
‖) · x‖ − i[α2(q ′

‖) − α∗
2 (q‖)]x3}

= −Re
c2

8πω

∫
d2q‖
(2π )2

{B∗(q‖) × [Q2(q‖) × B(q‖)]}3 exp[2 Im α2(q‖)x3]

= −Re
c2

8πω

∫
d2q‖
(2π )2

{|B(q‖)|2Q2(q‖) − [B∗(q‖) · Q2(q‖)]B(q‖)}3 exp[2 Im α2(q‖)x3]

= Re
c2

32π3ω

∫
d2q‖|B(q‖)|2α2(q‖) exp[2 Im α2(q‖)x3]

−Re
ic4

16π2ε2ω3

∫
d2q‖Im α2(q‖)q2

‖ |Bp(q‖)|2 exp[2 Im α2(q‖)x3]. (29)

The second term vanishes since it is the real part of a pure
imaginary number. Thus we have

Ptrans = c2

32π3ω

∫
q‖<

√
ε2

ω
c

d2q‖α2(q‖)|B(q‖)|2. (30)

The vectors k‖ and q‖ can be expressed in terms of the polar
and azimuthal angles of incidence (θ0,φ0) and transmission

(θt ,φt ), respectively, by

k‖ = √
ε1

ω

c
sin θ0(cos φ0, sin φ0,0), (31a)

q‖ = √
ε2

ω

c
sin θt (cos φt , sin φt ,0). (31b)
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From these results it follows that

d2q‖ = ε2

(
ω

c

)2

cos θtdt , (32)

where dt = sin θtdθtdφt . The total time-averaged transmit-
ted flux becomes

Ptrans = ε
3/2
2 ω2

32π3c

∫
dt cos2 θt [|Bp(q‖)|2 + |Bs(q‖)|2]. (33)

Similarly, the total time-averaged incident flux, Eq. (28),
becomes

Pinc = S

√
ε1c

8π
cos θ0[|E0p(k‖)|2 + |E0s(k‖)|2]. (34)

Thus, by definition, the differential transmission coefficient is
given by

∂T

∂t

= 1

S

ε
3/2
2

ε
1/2
1

(
ω

2πc

)2 cos2 θt

cos θ0

|Bp(q‖)|2 + |Bs(q‖)|2
|E0p(k‖)|2 + |E0s(k‖)|2 . (35)

When we combine this result with Eq. (25) we find that the
contribution to the differential transmission coefficient when
an incident plane wave of polarization β, the projection of
whose wave vector on the mean scattering plane is k‖, is
transmitted into a plane wave of polarization α, the projection
of whose wave vector on the mean scattering plane is q‖, is
given by

∂Tαβ(q‖|k‖)

∂t

= 1

S

ε
3/2
2

ε
1/2
1

(
ω

2πc

)2 cos2 θt

cos θ0
|Tαβ(q‖|k‖)|2. (36)

Since we are considering the transmission of light through a
randomly rough interface, it is the average of this function over
an ensemble of realizations of the surface profile function that
we need to calculate. This is the mean differential transmission
coefficient, which is defined by

〈
∂Tαβ(q‖|k‖)

∂t

〉
= 1

S

ε
3/2
2

ε
1/2
1

(
ω

2πc

)2 cos2 θt

cos θ0
〈|Tαβ(q‖|k‖)|2〉.

(37)

If we write the transmission amplitude Tαβ(q‖|k‖) as the sum
of its mean value and the fluctuation from this mean,

Tαβ(q‖|k‖) = 〈Tαβ(q‖|k‖)〉 + [Tαβ(q‖|k‖) − 〈Tαβ(q‖|k‖)〉],
(38)

then each of these two terms contributes separately to the mean
differential transmission coefficient,〈

∂Tαβ(q‖|k‖)

∂t

〉
=

〈
∂Tαβ(q‖|k‖)

∂t

〉
coh

+
〈
∂Tαβ(q‖|k‖)

∂t

〉
incoh

,

(39)

where
〈
∂Tαβ(q‖|k‖)

∂t

〉
coh

= 1

S

ε
3/2
2

ε
1/2
1

(
ω

2πc

)2 cos2 θt

cos θ0
|〈Tαβ(q‖|k‖)〉|2

(40)

and〈
∂Tαβ(q‖|k‖)

∂t

〉
incoh

= 1

S

ε
3/2
2

ε
1/2
1

(
ω

2πc

)2 cos2 θt

cos θ0
[〈|Tαβ(q‖|k‖) − 〈Tαβ(q‖|k‖)〉|2〉]

= 1

S

ε
3/2
2

ε
1/2
1

(
ω

2πc

)2 cos2 θt

cos θ0
[〈|Tαβ(q‖|k‖)|2〉 − |〈Tαβ(q‖|k‖)〉|2].

(41)

The first contribution describes the refraction of the incident
field, while the second contribution describes the diffuse
transmission.

V. TRANSMISSIVITY AND TRANSMITTANCE

In the following we will refer to transmittance as the
fraction of the power flux incident on the rough surface that
is transmitted through it, and transmissivity as the fraction
of the power flux incident on the rough surface that is
transmitted coherently and copolarized through it. To obtain
the transmissivity of the two-dimensional randomly rough
interface we start with the result that

〈Tαβ(q‖|k‖)〉 = (2π )2δ(q‖ − k‖)δαβTα(k‖). (42)

The presence of the δ function is due to the stationarity of the
randomly rough surface, the Kronecker symbol δαβ arises from
the conservation of angular momentum in the transmission
process, and the result that Tα(k‖) depends on k‖ only through
its magnitude is due to the isotropy of the random roughness.

With the result given by Eq. (42), the expression for
〈∂Tαβ(q‖|k‖)/∂t 〉coh given by Eq. (40) becomes
〈
∂Tαα(q‖|k‖)

∂t

〉
coh

= ε
3/2
2

ε
1/2
1

(
ω

c

)2 cos2 θt

cos θ0
|Tα(k‖)|2 δ(q‖ − k‖),

(43)

where we have used the result

[(2π )2δ(q‖ − k‖)]2 = (2π )2δ(0) (2π )2δ(q‖ − k‖)

= S(2π )2δ(q‖ − k‖) (44)

in obtaining this expression. We next use the result

δ(q‖ − k‖) = 1

k‖
δ(q‖ − k‖) δ(φt − φ0)

= 1√
ε1ε2

(
c

ω

)2
δ(θt − �t ) δ(φt − φ0)

sin θ0 cos �t

(45)

to obtain〈
∂Tαα(q‖|k‖)

∂t

〉
coh

= ε2

ε1

cos �t

sin θ0 cos θ0
|Tα(k‖)|2δ(θt − �t ) δ(φt − φ0), (46)

where the polar angle for the specular direction of transmission
has, according to Snell’s law, been denoted

�t ≡ sin−1

(√
ε1

ε2
sin θ0

)
. (47)
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The transmissivity, Tα(θ0), for light of α polarization is defined
by

Tα(θ0) =
∫ π

2

0
dθt sin θt

∫ π

−π

dφt

〈
Tαα(q‖|k‖)

∂t

〉
coh

= ε2

ε1

cos �t sin �t

sin θ0 cos θ0
|Tα(k‖)|2

∫ π
2

0
dθtδ(θt − �t )

=
⎧⎨
⎩

√
ε2
ε1

cos �t

cos θ0
|Tα(k‖)|2, 0 <

√
ε1/ε2 sin θ0 < 1,

0, otherwise.

(48)

In writing this expression we have used the result that
sin �t = √

ε1/ε2 sin θ0, and that sin θ0 is a monotonically
increasing function of θ0 for 0◦ < θ0 < 90◦, and so therefore
is sin �t . We see from Eq. (48) that when ε1 > ε2 the
transmissivity is nonzero for angles of incidence satisfying
0 < θ0 < sin−1(

√
ε2/ε1), and vanishes for angles of incidence

satisfying sin−1(
√

ε2/ε1) < θ0 < π/2. This result is a conse-
quence for transmission of the existence of a critical angle for
total internal reflection, namely θ�

0 = sin−1(
√

ε2/ε1). In the
case where ε1 < ε2, the transmissivity is nonzero in the entire
range of angles of incidence, 0 < θ0 < π/2.

The function Tα(k‖) is obtained from Eq. (42), with the aid
of the result that (2π )2δ(0) = S, in the form

Tα(k‖) = Tα

(√
ε1

ω

c
sin θ0

)
= 1

S
〈Tαα(k‖|k‖)〉. (49)

In addition to the transmissivity (48) that depends only on the
copolarized light transmitted coherently by the rough interface,
it is also of interest to introduce the transmittance for light of
β polarization defined as

Tβ(θ0) =
∑

α=p,s

Tαβ(θ0), (50a)

where

Tαβ(θ0) =
∫ π

2

0
dθt sin θt

∫ π

−π

dφt

〈
Tαβ(q‖|k‖)

∂t

〉
. (50b)

In light of Eq. (39), the transmittance obtains contributions
from light that have been transmitted coherently as well as in-
coherently through the rough interface, Tβ(θ0) = Tβ(θ0)coh +
Tβ(θ0)incoh, and both co- and cross-polarized transmitted
light contribute to it. Moreover, with Eq. (48), and since
cross-polarized coherently transmitted light is not allowed
[see Eq. (42)], the coherent contribution to transmittance for
light of β polarization equals the transmissivity for light of β

polarization: Tβ(θ0)coh = Tβ(θ0). Therefore, Eq. (50a) can be
written in the form

Tβ(θ0) = Tβ(θ0) +
∑
α=p,s

Tαβ(θ0)incoh. (51)

It remains to remark that in cases where the incident
light is not purely p or s polarized, the transmittance and
transmissivity of the optical system will have to be calculated
on the basis of weighted sums of the expressions in Eqs. (48)
and (50) where the weights reflect the fraction of p and s

polarization associated with the incident light.

VI. RESULTS AND DISCUSSIONS

Calculations were carried out for two-dimensional ran-
domly rough dielectric surfaces defined by an isotropic
Gaussian height distribution of rms height δ = λ/20 and an
isotropic Gaussian correlation function of transverse correla-
tion length a = λ/4. The incident light consisted of a p- or
s-polarized plane wave of wavelength λ (in vacuum) and well-
defined angles of incidence (θ0,φ0). The dielectric medium
was assumed to be a photoresist defined by the dielectric
constant ε = 2.6896. The azimuthal angle of incidence was
φ0 = 0◦ in all simulation results presented in this work;
this choice for φ0 is somewhat arbitrary, since, due to the
isotropy of the roughness, results for another choice of φ0

can be obtained from the results presented here by a trivial
rotation. Realizations of the surface profile function ζ (x‖)
were generated [1,20] on a grid of Nx×Nx = 321×321 points.
The surfaces covered a square region of the x1x2 plane of
edge L = 25λ, giving an area S = L2. With these spatial
parameters, the corresponding momentum space parameters
used in the simulations were �q = 2π/L for the discretization
intervals in momentum space, and the largest momentum value
that was resolved was Q = 6.4ω/c.

The reduced Rayleigh equation (26) was solved numeri-
cally by the method described in detail in Ref. [2], so only a
summary of this method will be presented here. In evaluating
the q‖ integral in Eq. (26), the infinite limits of integration
were replaced by finite limits |q‖| < Q/2, and the integration
was carried out by a two-dimensional version of the extended
midpoint rule [21, p. 161] applied to the circular subsection of
a grid in the q1q2 plane which is determined by the Nyquist
sampling theorem [21, p. 605] and the properties of the discrete
Fourier transform [2]. The function I (γ |q‖) was evaluated
by expanding the integrand in Eq. (17) in powers of ζ (x‖)
and calculating the Fourier transform of ζ n(x‖) by the fast
Fourier transform [2]. For these expansions we used the first
N = 18 terms. The resulting matrix equations were solved by
LU factorization and back substitution, using the ScaLAPACK
library [22].

These calculations were carried out for a large number Np of
realizations of the surface profile function ζ (x‖) for an incident
plane wave of p or s polarization. For each surface realization
the transmission amplitude Tαβ (q‖|k‖) and its squared modulus
|Tαβ(q‖|k‖)|2 were obtained. An arithmetic average of the Np

results for these quantities yielded the mean values 〈Tαβ (q‖k‖)〉
and 〈|Tαβ(q‖|k‖)|2〉 entering Eq. (41) for the mean differential
transmission coefficient, and related quantities [see Eqs. (49)
and (51)].

Investigating the energy conservation of our simulation
results can be a useful test of their accuracy. In combining
simulation results from the current work with corresponding
results obtained for the mean differential reflection coefficient
〈∂Rαβ/∂s〉 through the use of the computationally similar
methods presented in Ref. [15], we may add the total reflected
and transmitted power for any lossless system. When the
reflectance is added to the transmittance for any of the systems
investigated in the current work, it is found that the results
of these calculations satisfy unitarity with an error smaller
than 10−4. This testifies to the accuracy of the approach used,
and it is also a good indicator for satisfactory discretization.

043808-7



HETLAND, MARADUDIN, NORDAM, LETNES, AND SIMONSEN PHYSICAL REVIEW A 95, 043808 (2017)

FIG. 2. Contribution to the incoherent component of the mean differential transmission coefficient from the in-plane, copolarized
transmission of p- and s-polarized light incident normally [(θ0,φ0) = (0◦,0◦)] on the random vacuum-dielectric interface, as a function of
the angle of transmission θt . (a) The medium of incidence is vacuum [ε1 = 1; ε2 = 2.6896]; (b) the medium of incidence is the dielectric
[ε1 = 2.6896; ε2 = 1]. Negative values of θt correspond to light transmitted in the azimuthal direction of φt = 180◦. Results for (in-plane)
cross-polarized transmission have not been indicated since they are generally suppressed in the plane of incidence. The results presented
as solid lines were obtained on the basis of numerical solutions of the reduced Rayleigh equation (26) for an ensemble of 5000 surface
realizations. The dashed curves represent the result of the small amplitude perturbation theory (52) to first order, assuming polarization as
indicated for the solid lines of the same color. The specular direction of transmission is indicated by the vertical dash-dotted line at θt = 0◦, and
in Fig. 2(a), the vertical dotted lines at θt = ±θ�

t indicate the position of the critical angle where θ�
t = sin−1(

√
ε1/ε2) ≈ 37.6◦ for the parameters

assumed. The wavelength of the incident light in vacuum was λ. The rough interface was assumed to have a root-mean-square roughness of
δ = λ/20, and it was characterized by an isotropic Gaussian power spectrum (3) of transverse correlation length a = λ/4. In the numerical
calculations it was assumed that the surface covered an area L×L, with L = 25λ, and the surface was discretized on a grid of 321×321 points.

It should be noted, however, that unitarity is a necessary, but
not sufficient, condition for the correctness of the presented
results. Through a preliminary investigation, unitarity seemed
to be satisfied to a satisfactory degree for surfaces with a root
mean square roughness up to about two times larger than the
roughness used in obtaining the results presented in this paper,
if the correlation function was kept the same.

A. Normal incidence

In Fig. 2 we display the mean differential transmission
coefficient (MDTC) in the plane of incidence as a function
of the polar angle of transmission when the random surface
is illuminated from the vacuum at normal incidence by p-
and s-polarized light, Fig. 2(a), and when it is illuminated
from the dielectric medium, Fig. 2(b). Only results for in-
plane [q‖ ‖ k‖] copolarized transmission are presented, since

in-plane cross-polarized transmission is suppressed due to the
absence of a contribution from single-scattering processes. An
ensemble of 5000 realizations of the surface profile function
was used to produce the averaged results presented in each of
these figures.

From Fig. 2(a) it is observed that the curves display both
maxima and minima in the p → p transmission spectrum,
and peaks in the s → s transmission spectrum. In contrast,
the curves presented in Fig. 2(b) are featureless, and are
nearly identical. The presence of these features, and others
in subsequent figures, can be understood if we calculate
the contribution to the MDTC from the light transmitted
incoherently through the random interface as an expansion
in powers of the surface profile function. This calculation,
outlined in Appendix B, yields the result that to lowest nonzero
order in ζ (x‖) we have

〈
∂Tpp(q‖|k‖)

∂t

〉
incoh

= δ2

π2
(ε2 − ε1)2ε

1/2
1 ε

5/2
2

(
ω

c

)2 cos2 θt

cos θ0
g(|q‖ − k‖|) 1

|dp(q‖)|2 |α1(q‖)(q̂‖ · k̂‖)α2(k‖) + q‖k‖|2 α2
1(k‖)

|dp(k‖)|2 , (52a)

〈
∂Tps(q‖|k‖)

∂t

〉
incoh

= δ2

π2
(ε2 − ε1)2 ε

5/2
2

ε
1/2
1

(
ω

c

)4 cos2 θt

cos θ0
g(|q‖ − k‖|) |α1(q‖)|2

|dp(q‖)|2 ([q̂‖ × k̂‖]3)2 α2
1(k‖)

|ds(k‖)|2 , (52b)

〈
∂Tsp(q‖|k‖)

∂t

〉
incoh

= δ2

π2
(ε2 − ε1)2 ε

1/2
2

ε
1/2
1

(
ω

c

)4 cos2 θt

cos θ0
g(|q‖ − k‖|) 1

|ds(q‖)|2 ([q̂‖ × k̂‖]3)2 α2
1(k‖)|α2(k‖)|2

|dp(k‖)|2 , (52c)

〈
∂Tss(q‖|k‖)

∂t

〉
incoh

= δ2

π2
(ε2 − ε1)2 ε

3/2
2

ε
1/2
1

(
ω

c

)6 cos2 θt

cos θ0
g(|q‖ − k‖|) 1

|ds(q‖)|2 (q̂‖ · k̂‖)2 α2
1(k‖)

|ds(k‖)|2 , (52d)
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where the functions dα(q‖) and dα(k‖) for α = p,s are
presented in Eqs. (B11) and (53). In the following we will refer
to Eq. (52) as the results of small amplitude perturbation theory
(SAPT) to first order. Results from numerical evaluations
of Eq. (52) for normal incidence and in-plane transmission
[q̂‖ ‖ k̂‖] are displayed as dashed lines in Fig. 2 and several
figures to follow. For Fig. 2 we have not included results
for transmission out of plane [q̂‖ · k̂‖ = 0], since, for normal
incidence, the results for copolarized in-plane transmission
are identical with the results for cross-polarized out-of-plane
transmission. We notice in passing that the unit vectors
q̂‖ = q‖/q‖ and k̂‖ = k‖/k‖ are well defined also for θt = 0◦
and θ0 = 0◦, respectively, as follows from Eq. (31).

From Fig. 2 it is observed that the single-scattering
perturbation theory reproduces fairly well the overall shape
of the MDTC for in-plane copolarized transmission, at least
for the level of roughness assumed in producing these results.
However, there is a difference in amplitude between the
simulation results and the curves produced from perturbation
theory, in particular when ε1 < ε2.

The results from SAPT can be further analyzed in order to
understand all features seen in Fig. 2. With the aid of q‖ =√

ε2(ω/c) sin θt , dα(q‖) can be written in the form

dp(q‖) = √
ε2

ω

c

{
ε2

[(
ε1 − ε2

ε2

)
+ cos2 θt

] 1
2

+ ε1 cos θt

}
,

(53a)

ds(q‖) = √
ε2

ω

c

{[(
ε1 − ε2

ε2

)
+ cos2 θt

] 1
2

+ cos θt

}
, (53b)

and from k‖ = √
ε1(ω/c) sin θ0, dα(k‖) can be expressed as

dp(k‖) = √
ε1

ω

c

{
ε1

[(
ε2 − ε1

ε1

)
+ cos2 θ0

] 1
2

+ ε2 cos θ0

}
,

(53c)

ds(k‖) = √
ε1

ω

c

{[(
ε2 − ε1

ε1

)
+ cos2 θ0

] 1
2

+ cos θ0

}
. (53d)

We see from Eqs. (53a) and (53b) that when ε1 is greater than
ε2, both dp(q‖) and ds(q‖) are real continuous monotonically
decreasing functions of θt , and so therefore are |dp(q‖)|2 and
|ds(q‖)|2. This leads to smooth dependencies of the MDTC
on the angle of transmission [Fig. 2(b)]. However, when ε1

is smaller than ε2, the first term in the expressions for dp(q‖)
and ds(q‖) vanishes for a polar angle of transmission θt = θ�

t

defined by cos θ�
t = [(ε2 − ε1)/ε2]

1
2 , or, equivalently, when

sin θ�
t = √

ε1/ε2, and becomes pure imaginary as θt increases
beyond the angle

θ�
t = sin−1

√
ε1

ε2
, (54)

which is the critical angle for total internal reflection in the
corresponding, inverse, flat-surface system where ε1 → ε2

and ε2 → ε1. The functions |dp(q‖)|−2 and |ds(q‖)|−2 in
Eq. (52) therefore display asymmetric peaks at the polar
angle of transmission θt = θ�

t . For s → s copolarized in-plane
(incoherent) transmission at normal incidence we therefore see
sharp peaks in the MDTC at this polar angle both for forward

and backward scattered light [Fig. 2(a)]. The same peaks will
then also be visible for p → s cross-polarized out-of-plane
transmission at normal incidence. However, in the case of
p → p copolarized transmission we instead see dips at θ�

t in
Fig. 2(a). In the case of the first-order SAPT results, the MDTC
does indeed go to zero at this “critical” polar angle. This is due
to the zeros in Eq. (52a), specifically the zeros in the function

F (q‖|k‖) = |α1(q‖)(q̂‖ · k̂‖)α2(k‖) + q‖k‖|2. (55)

For normal incidence [k‖ = 0] and in-plane transmission [q‖ ‖
k‖], the function F (q‖|k‖) is zero for α1(q‖) = 0. This is the
case for q‖ = √

ε1ω/c [Eq. (9)], which corresponds to θt = θ�
t

in the medium of transmission when ε2 is greater than ε1.
Finally, in the case of s → p cross-polarized transmission,
we will also see dips at θ�

t due to the simple factor α1(q‖) in
Eq. (52b), but this factor is zero at this angle of transmission
regardless of the angle of incidence.

The peaks observed in Fig. 2(a) where ε1 < ε2 are the
optical analogs of the Yoneda peaks observed in the scattering
(in reflection) of x rays from both metallic [6–9] and non-
metallic [10–13] surfaces, later described as “quasi-anomalous
scattering peaks” in the two-dimensional numerical work
by Kawanishi et al. [5]. The Yoneda peaks were originally
observed as sharp peaks for incidence close to the grazing
angle, as the difference in the dielectric constants of the
two scattering media is very small at x-ray frequencies. In
the following, by Yoneda peaks we will mean well-defined
maxima in the angular distribution of the intensity of the
transmitted light at, or slightly above, the critical polar angle in
the medium of transmission for which the wave number turns
nonpropagating in the medium of incidence, when ε1 < ε2. A
more detailed discussion on Yoneda peaks in reflection and in
general can be found in Ref. [15].

Because the Yoneda peaks and the minima given by Eq. (55)
are present in the expressions for the MDTC obtained in
the lowest order in the surface profile function, the second,
they can be interpreted as single-scattering phenomena, not
multiple-scattering effects. This is supported by the qualitative
similarity between the plots presented in Fig. 2. We specify that
the polar angle of transmission where the Yoneda phenomenon
can be observed is determined only by the ratio of the dielectric
constants of the two media; it does not, for instance, depend
on the polar angle of incidence.

We now turn to the angular intensity distributions of the
transmitted light. In Figs. 3 and 4 we present simulation
results for the contribution to the MDTC from the light
that has been transmitted incoherently through the randomly
rough interface, that display the full angular distribution of
this contribution. These two figures were obtained under
the assumption that the angles of incidence were (θ0,φ0) =
(0◦,0◦); cuts along the plane of incidence of these angular
intensity distributions result in the curves presented in Fig. 2.
Therefore, the parameters assumed in producing the results
of Figs. 2(a) and 3 are identical, and so are the parameters
assumed in obtaining Figs. 2(b) and 4.

All angular intensity distributions presented in this work,
including those in Figs. 3 and 4, are organized in the same
fashion. They are arranged in 3×3 subfigures where each row
and column of the array correspond to the angular distribu-
tion of the incoherent component of the mean differential
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FIG. 3. Incoherent component of the mean differential transmission coefficient, showing the full angular intensity distribution as a function
of the lateral wave vector of the light transmitted from vacuum into a dielectric medium separated by a rough interface. The angles of incidence
are (θ0,φ0) = (0◦,0◦). Notice the rapid changes in intensity around the polar angle θt = θ�

t = sin−1(
√

ε1/ε2) corresponding to q‖ = √
ε1ω/c.

The position of the specular direction in transmission is indicated by white dots. The parameters assumed for the scattering geometry and
used in performing the numerical simulations have values that are identical to those assumed in obtaining the results of Fig. 2(a). The in-plane
intensity variations in Figs. 3(b) and 3(f) are the curves depicted in Fig. 2(a). The star notation, e.g., p → �, indicates that the polarization
of the transmitted light was not recorded. Furthermore, in, e.g., Fig. 3(g), the open circle in ◦ → � symbolizes that the incident light was
unpolarized; this simulation result was obtained by adding half of the results from Figs. 3(a) and 3(d). [Parameters: ε1 = 1.0, ε2 = 2.6896;
δ = λ/20, a = λ/4.]

transmission coefficient for a given state of polarization of
the transmitted and incident light, respectively. The lower
left 2×2 corner of such figures corresponds to the cases
where β-polarized incident light is transmitted by the rough
interface into α-polarized light, denoted β → α in the lower
left corner of each subfigure, where α = p,s and the same
for β. Moreover, the first row corresponds to results where
the polarization of the transmitted light was not recorded
(indicated by �); such results are obtained by adding the
other two results from the same column. The last column of
the angular intensity distribution figures corresponds to the
situation when the incident light is unpolarized (indicated

by an open circle, ◦); these results are obtained by adding
half of the other two results present in the same row. For
instance, the subfigure in the upper right corner, labeled ◦ → �,
refers to unpolarized light (the open circle) transmitted by the
surface into light for which we do not record the polarization
(the star). It should be stressed that even if the polarization
of the transmitted light is not recorded, it does not mean that
the transmitted light is unpolarized; in general this is not the
case as can be seen by, for instance, inspecting Fig. 3.

When both the incident and transmitted light are linearly
polarized, the lower left 2×2 corners of Figs. 3 and 4 show that
the angular distributions of the incoherent component of the

043808-10



NUMERICAL STUDIES OF THE TRANSMISSION OF . . . PHYSICAL REVIEW A 95, 043808 (2017)

FIG. 4. Same as Fig. 3, but for light incident from the dielectric side onto the interface with vacuum. The in-plane intensity variations in
Figs. 4(b) and 4(f) are the curves depicted in Fig. 2(b). [Parameters: ε1 = 2.6896, ε2 = 1.0; δ = λ/20, a = λ/4.]

FIG. 5. (a) Same as Fig. 2(a) but for angles of incidence (θ0,φ0) = (21.1◦,0◦). (b) Same as (a) but for out-of-plane scattering [φt = ±90◦].
Results for combinations of the polarizations of the incident and scattered light for which the scattered intensity was everywhere negligible
have been omitted. [Parameters: ε1 = 1.0, ε2 = 2.6896; δ = λ/20, a = λ/4.]
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FIG. 6. Same as Fig. 3, but for the angles of incidence (θ0,φ0) = (21.1◦,0◦).

mean differential transmission coefficients take on dipolelike
patterns oriented along the plane of incidence for copolariza-
tion and perpendicular to it for cross polarization. We note
that such patterns are a consequence of our definitions of the
polarization vectors, and that similar patterns have recently
been observed in reflection [2,15,23]. It was already concluded
based on Fig. 2 that the in-plane, copolarized transmission is
rather different for p and s polarization when the medium of
incidence is vacuum, and rather similar when the medium
of incidence is the dielectric. Not surprisingly, a similar
conclusion can be drawn by inspecting the copolarized angular
intensity distributions depicted in the β → β subfigures of
Figs. 3 and 4 (β = p,s). For normal incidence, the angular
intensity distributions for cross- and copolarized transmission
are intimately related to each other, but only if they share
the same polarization state of the transmitted light; in fact, the
former distributions are 90◦ rotations of the latter. For instance,
for scattering into s-polarized light, this can be understood if
we note from Eqs. (52c), (52d), and (27) [see also Eq. (B13)
of Appendix B] that to the lowest nonzero order in ζ (x‖) we

have

〈
∂Tsp(q‖|k‖)

∂t

〉
incoh

= δ2

π2
(ε2 − ε1)2ε

1/2
1 ε

5/2
2

(
ω

c

)2 cos2 θt

cos θ0

× g(|q‖ − k‖|) |Msp(q‖|k‖)|2α2
1(k‖)

|ds(q‖)|2|dp(k‖)|2 ,

(56a)〈
∂Tss(q‖|k‖)

∂t

〉
incoh

= δ2

π2
(ε2 − ε1)2 ε

3/2
2

ε
1/2
1

(
ω

c

)2 cos2 θt

cos θ0

× g(|q‖ − k‖|) |Mss(q‖|k‖)|2α2
1(k‖)

|ds(q‖)|2|ds(k‖)|2 ,

(56b)

where the matrix elements Msp(q‖|k‖) and Mss(q‖|k‖) are
presented in Eq. (27). For normal incidence, dp(0)/

√
ε1ε2 =

ds(0) and Msp(q‖|0) out of plane equals Mss(q‖|0) in
plane. This means that 〈∂Tsp(q‖|0)/∂t 〉incoh will equal
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〈∂Tss(q′
‖|0)/∂t 〉incoh if q‖, after a rotation by an angle of

90◦, equals q′
‖. A similar argument can be used to relate

the angular distribution of 〈∂Tps(q‖|0)/∂t 〉incoh to a 90◦
rotation of the angular distribution of 〈∂Tpp(q‖|0)/∂t 〉incoh.
This symmetry property of the angular intensity distributions at
normal incidence is readily observed in Figs. 3 and 4. Hence
we conclude that the regions of high intensity observed in
the cross-polarized angular intensity distribution in Fig. 3(c)
around the out-of-plane direction are also Yoneda peaks; their
origin is due to the peaking factor |ds(q‖)|−2 versus transmitted
wave number, identical to what we found for the in-plane peaks
in the copolarized transmitted light.

When ε1 < ε2, Yoneda peaks may actually be observed
for a wide range of azimuthal angles of transmission. For
instance, at normal incidence, and when unpolarized incident
light is transmitted through the surface into s-polarized light,
the Yoneda peaks occur around θt = θ�

t (or q‖ = √
ε1ω/c)

independent of the value of the azimuthal angle of transmission
φt , and they will have constant height [Fig. 3(i)]. Similarly,
when unpolarized light is transmitted into p-polarized light
for the same scattering system, one observes from Fig. 3(h)
that a circular groove exists at q‖ = √

ε1ω/c. For normal
incidence (k‖ = 0), the amplitudes of 〈∂Tpp(q‖|k‖)/∂t 〉incoh

and 〈∂Tps(q‖|k‖)/∂t 〉incoh at the position of the groove will be
zero according to (52a) and (52b). As mentioned earlier, this is
due to the factor α1(q‖), which vanishes when q‖ = √

ε1ω/c.
It should be observed from Figs. 3(g)–3(i) and 4(g)–4(i),

that at normal incidence, and due to the isotropy of the surface,
unpolarized incident light will be transmitted by the surface
into rotationally symmetric intensity distributions independent
of whether the transmitted light is p or s polarized. When
unpolarized light is incident from the dielectric, there are only
minor differences in the intensity distributions of the p- and
s-polarized transmitted light [Figs. 4(h) and 4(i)]. However,
when the light is incident from vacuum, Figs. 3(h) and 3(i)
show pronounced differences in their intensity distributions.

B. Non-normal incidence

We now address the situation when θ0 �= 0◦, and we start
our discussion by assuming that the light is incident from
vacuum onto its rough interface with the dielectric. In Fig. 5
we present the MDTC for light that has been transmitted
incoherently (a) in plane and (b) out of plane by the surface
for θ0 = 21.1◦, and in Fig. 6 we present the corresponding
full angular intensity distributions. Figures 5 and 6 show that
the Yoneda peaks are still prominent, but their amplitudes are
no longer independent of the azimuthal angle of transmission,
as was found for normal incidence. For s → s transmission,
Figs. 5(a) and 6(f), it is found that the Yoneda peak amplitudes
are higher in the forward transmission plane than in the
backward plane, and the former peaks have a higher amplitude
than they had for normal incidence. Moreover, the Yoneda
peaks visible in cross-polarized p → s transmission, Fig. 6(c),
that for normal incidence were located symmetrically out of
plane, are now moving into the forward transmission plane.
The amplitude of 〈∂Tpα(q‖|k‖)/∂t 〉incoh when q‖ = √

ε1ω/c,
which was essentially zero for normal incidence, no longer
vanishes everywhere as can be seen in Fig. 5 and the second
row of subfigures in Fig. 6, but we do still observe a local

minimum in the transmitted intensity into p-polarized light at
the position of the Yoneda peaks, and this intensity is, in the
plane of incidence, substantially lower than the corresponding
intensity for transmission into s-polarized light.

Further inspection of Fig. 5 for p → p copolarized
transmission reveals that the local minimum found in plane
in the backscattering direction (φt = 180◦), has shifted its
position away from the critical polar angle of θ�

t . To first
order in SAPT, for which the transmitted intensity at this
local minimum is zero, this shift is due to behavior in the
function F (q‖|k‖) [Eq. (55)] that deserves a more thor-
ough discussion. When k‖ �= 0, F (q‖|k‖) can only cause
〈∂Tpp(q‖|k‖)/∂t 〉incoh to vanish for q‖ · k‖ < 0 (backward
scattering). Specifically, for in-plane backward scattering
[q̂‖ · k̂‖ = −1], 〈∂Tpp(q‖|k‖)/∂t 〉incoh will be zero for angles
of transmission

�B(θ0) = sin−1

(
ε1

ε2

√
ε2

ε1
− sin2 θ0

)
. (57)

Note that for normal incidence, θ0 = 0◦, Eq. (57) reduces
to �B(0◦) = sin−1 √

ε1/ε2, which becomes θ�
t when ε1 <

ε2. Figure 7 shows the dependence of �B on θ0 for both
configurations of the dielectric and vacuum, provided that φt =
180◦. In this figure, the critical angle θ�

t has been indicated
on both axes as black dash-dotted lines. Corresponding plots
of �B but for incoherent reflection from the rough interface
[Eq. (56) in Ref. [15]] have been included in the figure
as thicker colored dashed lines. For ε1 = 1.0, ε2 = 2.6896,
and θ0 = 21.1◦, Eq. (57) gives �B(21.1◦) ≈ 36.5◦, in good
agreement with what we observe in Fig. 5.

The transmission angles defined by �B were first men-
tioned in the literature by Kawanishi et al. [5], where the
angular values of �B in both reflection and transmission
were explored through a stochastic functional approach for
two-dimensional surfaces. They chose to call the angles at

FIG. 7. Dependence of the in-plane Brewster scattering angle
�B on the polar angle of incidence θ0 for φt = 180◦ [Eq. (57)].
Corresponding results, but for �B in reflection and φs = 0◦ as
provided by Eq. (56) in Ref. [15], are included as dashed lines for
completeness. The critical angle θ�

t has been indicated on both axes
as black dash-dotted lines.
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FIG. 8. (a) Same as Fig. 2(a) but for angles of incidence (θ0,φ0) = (66.9◦,0◦). (b) Same as (a) but for out-of-plane scattering [φt = ±90◦].
Results for combinations of the polarizations of the incident and scattered light for which the scattered intensity was everywhere negligible
have been omitted. [Parameters: ε1 = 1.0, ε2 = 2.6896; δ = λ/20, a = λ/4.]

FIG. 9. Same as Fig. 3, but for the angles of incidence (θ0,φ0) = (66.9◦,0◦).
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which the first-order contribution (according to their approach)
to 〈∂Tpα(q‖|k‖)/∂t 〉incoh vanishes the Brewster scattering
angles, as a generalization of the Brewster angle (polarizing
angle) in reflection for a flat surface. In what follows,
following Kawanishi et al., we will refer to the polar angles
of transmission in the plane of incidence at which p- and
s-polarized light is transmitted diffusely (incoherently) into
light of any polarization with zero, or nearly zero, intensity,
the Brewster scattering angles. This is consistent with our
previous investigation into the Brewster scattering angles in
reflection, as presented in Ref. [15].

The Brewster angle θB is defined by the zero in the
reflectivity from a flat surface, for p polarization at the angle of
incidence given by θ0 = θB = tan−1(

√
ε2/ε1). For one set of

{ε1,ε2}, there is hence only one Brewster angle for incidence
in a given medium. However, in contrast, we would like to
stress the fact that the Brewster scattering angles for p → p

scattering are present for a wide range of angles of incidence,
given by Eq. (57) for in-plane transmission.

We now let the polar angle of incidence increase to θ0 =
66.9◦, as presented in Figs. 8 and 9. These figures show that
p-polarized transmitted light gives a significant, maybe even
dominant, contribution to the in-plane transmitted intensity at
the position of the Yoneda peak in the forward transmission
plane (φt = φ0). This is in sharp contrast to what was found
when θ0 = 0◦ and θ0 = 21.1◦, where s-polarized transmitted
light gave the most significant contribution to the in-plane
transmitted intensity at the position of the Yoneda peaks. To
explain this behavior in the current context, we will again be
assisted by Eq. (52a), from which it follows that at the position
of the Yoneda peaks〈

∂Tpp(q‖|k‖)

∂t

〉
incoh

∣∣∣∣
q‖=√

ε1ω/c

∝ k2
‖

|dp(k‖)|2 , (58)

where we used α1(
√

ε1ω/c) = 0 in obtaining this result.
For normal incidence, Eq. (58) predicts that the p → p

transmission should go to zero, consistent with what we have
seen. However, as the polar angle of incidence is increased, the
function on the right-hand side of Eq. (58) will grow quickly,
particularly as one approaches grazing incidence. This has the
consequence that 〈∂Tpp(q‖|k‖)/∂t 〉incoh, for increasing polar
angle of incidence, will go from dipping to peaking at the
position of the Yoneda peaks, q‖ = √

ε1ω/c. This will not
happen for the s → p transmitted light since to lowest order
in the surface profile function its intensity is proportional to
α1(q‖), which will always be zero at the position of the Yoneda
peaks [see Eq. (52c)].

To illustrate this behavior, we study the copolarized
transmitted intensity at the position of the Yoneda peak in
the forward transmission plane, (θt ,φt ) = (θ�

t ,φ0), by defining
the quantity

Yα(θ0) ≡
〈
∂Tαα(q‖|k‖)

∂t

〉
incoh

∣∣∣∣
q‖=√

ε1
ω
c

k̂‖

. (59)

Figure 10 presents simulation results for Yα(θ0) as a function of
polar angle of incidence for transmission through the vacuum-
dielectric system. This figure shows, as is consistent with the
preceding discussion, that Yp(θ0) increases more rapidly than
Ys(θ0) for moderate angles of incidence; moreover, for an angle

FIG. 10. Simulation results for the in-plane, copolarized con-
tribution to the mean DTC at the Yoneda peak in the forward
transmission plane as measured by the function Yα(θ0) defined in
Eq. (59). Results for the same angles of incidence, but obtained
through SAPT, are included as dashed lines. [Parameters: ε1 = 1.0,
ε2 = 2.6896; δ = λ/20, a = λ/4.]

of incidence of about 62◦ and greater, we find that Yp(θ0) �
Ys(θ0) for the dielectric constants assumed in the current work.
The reason for the nonzero Yp(θ0 = 0◦) is multiple scattering
effects which were included consistently in the nonperturbative
simulation technique used to obtain the solid-line results of
Fig. 10.

Also of interest in the figures presented for θ0 = 66.9◦

is the position of the Brewster scattering angle �B , which
is now shifted even farther away from the critical angle θ�

t .
From Eq. (57) we calculate that �B(66.9◦) ≈ 30.3◦, in good
agreement with the observed value in Fig. 8. This Brewster
scattering angle is close to its limiting value for grazing
incidence for the dielectric constants currently investigated:
�B(90◦) ≈ 28.9◦ [Fig. 7].

We now turn our attention to the inverse system where light
is again incident from the dielectric side of the rough interface.
For this system, Fig. 11 presents the (a) in-plane and (b) out-of-
plane distributions of the MDTC for a polar angle of incidence
θ0 = 34.1◦. As we compare Figs. 11 to 2(b), the observation
made for the vacuum-dielectric system that an increase in θ0

will result in the majority of the light being transmitted into
the forward transmission plane seems also to hold true for the
dielectric-vacuum system. This is expected for weakly rough
surfaces like the ones we are investigating, as the main weight
of the MDTC to first order in SAPT depends on the power-
spectrum factor in Eq. (52), a modified Gaussian centered at
the angular position of the coherently transmitted light.

The Brewster scattering angle can be found also when the
light is incident from the dielectric side. For the parameters in
Fig. 11, we find that 〈∂Tpp(q‖|k‖)/∂t 〉incoh, to first order in
SAPT, vanishes at the polar angle of �B(34.1◦) ≈ 40.2◦ for
φt = 180◦. A similar result is presented in the work by Nieto-
Vesperinas and Sánchez-Gil [Fig. 12 in Ref. [16]], but the
Brewster scattering phenomenon is not mentioned explicitly
in this work.
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FIG. 11. (a) Same as Fig. 2(b) but for angles of incidence (θ0,φ0) = (34.1◦,0◦). (b) Same as (a) but for out-of-plane scattering [φt = ±90◦].
Results for combinations of the polarizations of the incident and scattered light for which the scattered intensity was everywhere negligible
have been omitted. [Parameters: ε1 = 2.6896, ε2 = 1.0; δ = λ/20, a = λ/4.]

FIG. 12. Same as Fig. 4, but for the angles of incidence (θ0,φ0) = (34.1◦,0◦).
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FIG. 13. Same as Fig. 4, but for the angles of incidence (θ0,φ0) = (45.0◦,0◦). Note that for the corresponding flat interface system there
would have been zero transmission, since the incident field will experience total internal reflection due to θ0 > θ�

t ≈ 37.6◦. For this reason
there is no white dot indicating the specular direction of transmission in this case. For this rough interface system, the light that is transmitted
is induced by the surface roughness.

Figures 12 and 13 present the full angular distributions
of the MDTC for angles of incidence (θ0,φ0) = (34.1◦,0◦)
and (θ0,φ0) = (45.0◦,0◦), respectively. The distributions in
Figs. 12 and 13 are rather smooth with few, if any, surprising
characteristics. It should be noted that the polar angle of
incidence θ0 = 45.0◦ is larger than the critical angle for total
internal reflection, θ�

0 = sin−1(
√

ε2/ε1) ≈ 37.6◦, so, for the
equivalent planar system, no light would have been transmitted
at all; the nonzero intensity distributions observed in Fig. 13
are therefore all roughness induced.

C. Transmissivity and transmittance

Turning now to the transmissivity [defined in Eq. (48)] of
the randomly rough interface, we present in Fig. 14(a) the
transmissivity as a function of the polar angle of incidence
θ0 when the interface is illuminated from vacuum by p-
and s-polarized light. The transmissivity when the interface

is illuminated from the dielectric is presented in Fig. 14(b).
In Fig. 14(a), the transmissivity for incident light of both
polarizations is nonzero for all values of θ0, and tends to
zero at a grazing angle of incidence θ0 ≈ 90◦. In contrast,
the vanishing of the transmissivity for incident light of both
polarizations for angles of incidence greater than the critical
angle for total internal reflection, θ�

0 = sin−1(
√

ε2/ε1), which
evaluates to θ�

0 ≈ 37.6◦ for the assumed values of the dielectric
constants, is clearly seen in Fig. 14(b). The transmissivity is
larger for p-polarized light than it is for s-polarized light,
irrespective of the medium of incidence. This is consistent
with the result that the reflectivity of a dielectric surface is
larger for s-polarized light than for p-polarized light [15].
Even if the transmissivity curves presented in Fig. 14 closely
resemble the functional form of the transmissivity obtained
for equivalent flat interface systems (the Fresnel transmission
coefficients, quantified by the dashed lines in Fig. 14), we
remark that there are differences. For instance, from Fig. 14
one observes that Tp(θ0) < 1 for all angles of incidence, while
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FIG. 14. (a) Transmissivities Tα(θ0) of a two-dimensional randomly rough vacuum-dielectric interface (ε1 = 1, ε2 = 2.6896) for p- and
s-polarized light as functions of the polar angle of incidence. (b) The same as in 14(a), but for a dielectric-vacuum interface (ε1 = 2.6896, ε2 = 1).
The quantity T F

α (θ0) indicates the Fresnel transmission coefficient (flat surface transmissivity). The critical angle θ0 = θ�
0 = sin−1(

√
ε2/ε1) for

total internal reflection for the equivalent planar dielectric-vacuum system is indicated by the vertical dashed line, with the values assumed for
the dielectric constants θ�

0 ≈ 37.6◦. The roughness parameters assumed in obtaining these results are the same as in Fig. 2.

for the equivalent flat interface systems the transmissivity will
be unity at the Brewster angle located around the maxima of
Tp(θ0) in Fig. 14.

We now focus on the contribution to the transmittance from
the light that has been transmitted incoherently through the
surface; in Eq. (51), this is the last term denoted by Tβ(θ0)incoh

for incident light of β polarization. Small amplitude pertur-
bation theory, through Eq. (52), will again assist us in the
interpretation of the results. The transmittance from vacuum
into the dielectric is depicted in Fig. 15(a). In this situation,
for which ε1 < ε2, the functions |dp(k‖)|−2 and |ds(k‖)|−2 are
both monotonically increasing functions of k‖ (or θ0), and the
transmittances Tβ(θ0)incoh (β = p,s) are hence slowly varying

functions of the angles of incidence, consistent with what is
observed in Fig. 15(a).

Figure 15(b) presents the transmittance Tβ(θ0)incoh as a
function of the polar angle of incidence when the incident
medium is the dielectric, and it is found that this quantity
displays interesting features. For instance, in s polarization,
a sharp maximum is observed for an angle of incidence
a little smaller than 40◦, and for this angle of incidence
the contribution to the transmittance from the light being
transmitted incoherently is about twice the value at normal
incidence. This behavior can be understood on the basis of
Eq. (52d). As a function of the polar angle of incidence (or
k‖), the expression for 〈∂Tss(q‖|k‖)/∂t 〉incoh in this equation

FIG. 15. θ0 dependence of the contribution to the transmittance from p- and s-polarized incident light that has been transmitted incoherently
through a two-dimensional randomly rough surface. This quantity is for β-polarized incident light defined by the last term of Eq. (51), i.e.,
Tβ (θ0)incoh = Tβ (θ0) − Tβ (θ0). The scattering systems assumed in obtaining these results were (a) vacuum dielectric (ε1 = 1, ε2 = 2.6896)
and (b) dielectric vacuum (ε1 = 2.6896, ε2 = 1). The critical angle θ0 = θ�

0 for total internal reflection in the equivalent flat dielectric-vacuum
system is indicated by the vertical dashed line. The roughness parameters assumed were the same as in Fig. 2. Several simulations were run
with small perturbations in the surface length L in order to obtain transmittance data with higher angular resolution (data points are indicated
by the solid dots).
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will have a maximum when |ds(k‖)|−2 is peaking. This
happens when k‖ = √

ε2ω/c, or equivalently, when θ0 = θ�
0 .

The expression for the s → p cross-polarized MDTC will
also go through a maximum at the same critical angle [see
Eq. (52b)], and so, therefore, will Ts(θ0)incoh. This explains the
functional dependence of Ts(θ0)incoh on the angle of incidence.
From Fig. 15(b) it is also observed that the two curves behave
differently around θ0 = θ�

0 . While the transmittance Ts(θ0)incoh

is monotonically increasing in the interval 0◦ < θ0 < θ�
0 and

monotonically decreasing in the interval θ�
0 < θ0 < 90◦, this

is not the case for the transmittance of p-polarized incident
light. Similar to the case of s-polarized incident light, the
rapid dependence on the angle of incidence of Tp(θ0)incoh

around θ0 = θ�
0 is due to the factor |dp(k‖)|−2 present in

Eqs. (52a) and (52c). However, unlike in the case of s-polarized
incident light, the cross-polarized contribution to the MDTC,
〈∂Tsp(q‖|k‖)/∂t 〉incoh, Eq. (52c), will go to zero at the critical
angle θ0 = θ�

0 due to the factor α2(k‖) that is present in the
expression for it. Therefore, for p-polarized incident light,
the transmittance will have a contribution from copolarized
transmission which peaks at the critical angle of incidence,
and a contribution from cross polarization that has a dip down
to zero at the critical angle, and it is the sum of the two that
results in the functional form observed in Fig. 15(b).

VII. CONCLUSIONS

In the current work we have investigated the transmission
of light through a two-dimensional, randomly rough interface
between two semi-infinite dielectric media. A derivation of
the reduced Rayleigh equation for the amplitudes of light
transmitted both coherently and incoherently was presented
together with expressions for the mean differential transmis-
sion coefficient, transmissivity and transmittance. The RRE
enables a nonperturbative, purely numerical solution of the
surface scattering problem, under the Rayleigh hypothesis. As
an example of the numerical implementation of the RRE, the
full angular distribution for both co- and cross-polarized inco-
herent components of the MDTC were reported together with a
discussion on the angular dependence of the transmissivity and
transmittance, for configurations of vacuum and an absorption-
less dielectric separated by a randomly rough interface with a
Gaussian power spectrum and correlation function.

Yoneda peaks, peaks in the incoherent MDTC at the critical
polar angle in the medium of transmission where the wave
number in the medium of incidence turns nonpropagating,
were shown in all cases of transmission into the denser
medium. These peaks are a dominating feature in the dis-
tribution of s-polarized diffusely transmitted light for a wide
range of azimuthal angles of scattering, but are suppressed for
the p-polarized counterpart when the angle of incidence is at,
or close to, normal incidence. The suppression of p-polarized
incoherent scattering in plane in the backscattering direction
(φt = 180◦) was found to be of special interest, since the
angular position of the local scattering minimum in the MDTC
was shown to be dependent on the angle of incidence. This
phenomenon, called the “Brewster scattering angle” due to
its similarity with the flat-surface Brewster angle, was also
observed when the medium of incidence was the dielectric.
This is consistent with the findings of Kawanishi et al. [5].

The development and behavior of both Yoneda peaks and
Brewster scattering angles were investigated over a wide range
of angular parameters, and all observed features were explored
through small amplitude perturbation theory.

Small amplitude perturbation theory, to lowest order in the
surface profile function, was shown to reproduce our numerical
results qualitatively to a high degree of accuracy, both through
analytical arguments and a numerical implementation of that
theory. This leads us to believe that the features presented in
the results can be interpreted as single-scattering effects.

The physical origin of the Yoneda peak phenomenon is still
not clear, neither from the existing literature on the topic nor
from the results obtained in the present detailed study of it.
We have concluded that it is a single-scattering phenomenon.
In addition, our results contradict the explanation for the
existence of the Yoneda peaks given by Gorodnichev et al. [8],
who argue that the peaks arise from the multiscale rough-
ness of the surface, which requires that the surface height
autocorrelation function should be modeled by a sum of
Gaussian functions, rather than by just one. In contrast,
the numerical results of the present study, as well as the
results of first-order small-amplitude perturbation theory, show
explicitly that the representation of W (x‖) by a single Gaussian
function, Eq. (4), is sufficient to produce the Yoneda peaks.
Therefore, a systematic study of the physical origin of the
Yoneda peaks, and their dependence on polarization, will be
left for subsequent work.

As an investigation of the quality of the numerical results
presented in this paper, unitarity (energy conservation) [19]
was found to be satisfied with an error smaller than 10−4 when
the scattered energies from both reflection and transmission
were added, for the roughness parameters and configurations
used.

Calculations of the transmission of light through two-
dimensional randomly rough surfaces are challenging, and
hence they are still often carried out by means of perturbative
and approximate methods. Our approach, through the reduced
Rayleigh equations, represents a step towards more accurate
but still computationally viable solutions of the problem.
This paper complements our previously published work [15]
on the reflection of light from a randomly rough dielectric
interface.
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APPENDIX A: EVALUATION OF V(γ |Q‖)

In this Appendix we outline the calculation of the vector
V(γ |Q‖) defined by Eq. (16a). From Eqs. (16a) and (17) it
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follows immediately that

V3(γ |Q‖) = I (γ |Q‖). (A1)

The remaining two components of V(γ |Q‖) can be obtained
by expanding exp (−iγ ζ (x‖)) in powers of the surface profile
function and integrating the resulting series term by term
(α = 1,2)

Vα(γ |Q‖) = −
∫

d2x‖ exp(−iQ‖ · x‖)ζα(x‖) exp[−iγ ζ (x‖)]

= −
∫

d2x‖ exp(−iQ‖·x‖)ζα(x‖)
∞∑

n=0

(−iγ )n

n!
ζ n(x‖)

= −
∞∑

n=0

(−iγ )n

(n + 1)!

∫
d2x‖ exp(−iQ‖·x‖)

∂ζ n+1(x‖)

∂xα

= − i

γ

∞∑
m=1

(−iγ )m

m!

∫
d2x‖ exp(−iQ‖·x‖)

∂ζm(x‖)

∂xα

.

(A2)

Introducing the Fourier representation of the mth power of the
surface profile function,

ζm(x‖) =
∫

d2P‖
(2π )2

ζ̂ (m)(P‖) exp(iP‖ · x‖), m � 1, (A3)

into Eq. (A2), and evaluating the two resulting integrals after
changing their order, yields

Vα(γ |Q‖) = Qα

γ

∞∑
m=1

(−iγ )m

m!
ζ̂ (m)(Q‖)

= Qα

γ

[ ∞∑
m=0

(−iγ )m

m!
ζ̂ (m)(Q‖) − (2π )2δ(Q‖)

]

= I (γ |Q‖)

γ
Qα − (2π )2δ(Q‖)

Qα

γ
. (A4)

In the last step we have used the result that

I (γ |Q‖) =
∞∑

n=0

(−iγ )n

n!
ζ̂ (n)(Q‖) (A5)

and ζ̂ (0)(Q‖) = (2π )2δ(Q‖). Equation (A5) follows readily
from Eq. (17) by expanding the latter in powers of the surface
profile function and integrating the resulting series term by
term.

By combining Eqs. (A1) and (A4) we arrive at the final
result

V(γ |Q‖) = I (γ |Q‖)

γ
(Q‖ + γ x̂3) − (2π )2δ(Q‖)

Q‖
γ

. (A6)

We note that the last term of Eq. (A6), due to the presence of
the factor δ(Q‖)Q‖, will contribute only if Q‖ = 0. Therefore,
γ must also be zero; in all other cases this term will vanish.
For this reason, we will refer to the second term of Eq. (A6)
as the singular contribution to V(γ |Q‖).

Technically, V(γ |Q‖) is a distribution [24]; for instance,
for the special case ζ (x‖) = 0 it follows from Eq. (16) that
V(γ |Q‖) = (2π )2δ(Q‖)x̂3 (which is independent of γ ). As
is true for any distribution, it cannot appear alone in a
mathematical expression and should therefore not be evaluated
for a single argument as if it were an ordinary function; instead
a distribution can only be evaluated after being multiplied
by some (test) function. This has the consequence that the
singular term of V(γ |Q‖) may not necessarily lead to a “real”
singularity when evaluating the distribution. We will indeed
see that this is what happens in our case.

APPENDIX B: EXPANSION OF T (q‖|k‖) IN POWERS
OF THE SURFACE PROFILE FUNCTION

In this Appendix we outline the derivation of Eq. (52). We
begin with the expansions

I (γ |Q‖) =
∞∑

n=0

(−iγ )n

n!
ζ̂ (n)(Q‖), (B1)

where

ζ̂ (n)(Q‖) =
∫

d2x‖e−iQ‖·x‖ζ n(x‖), (B2a)

ζ̂ (0)(Q‖) = (2π )2δ(Q‖), (B2b)

and

T(q‖|k‖) = 2α1(k‖)
∞∑

n=0

(−i)n

n!
t(n)(q‖|k‖). (B3)

In the last equation the superscript n denotes the order of the
corresponding term in powers of ζ (x‖). When Eqs. (B1) and
(B3) are substituted into Eq. (26), the latter becomes

∞∑
m=0

m∑
n=0

(−i)m

m!

(
m

n

) ∫
d2q‖
(2π )2

[−α1(p‖) + α2(q‖)]n−1ζ̂ (n)(p‖ − q‖)M(p‖|q‖) t(m−n)(q‖|k‖) = (2π )2δ(p‖ − k‖)
1

ε2 − ε1
I2. (B4)

When we equate terms of zero order in ζ (x‖) on both sides of this equation we obtain

1

−α1(p‖) + α2(p‖)
M(p‖|p‖) t(0)(p‖|k‖) = (2π )2δ(p‖ − k‖)

1

ε2 − ε1
I2. (B5)

With the aid of the relation

1

−α1(p‖) + α2(p‖)
= α1(p‖) + α2(p‖)

(ω/c)2(ε2 − ε1)
, (B6)
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Eq. (B5) can be rewritten in the form(
1√
ε1ε2

[ε2α1(p‖) + ε1α2(p‖)] 0

0 α1(p‖) + α2(p‖)

)(
t (0)
pp (p‖|k‖) t (0)

ps (p‖|k‖)

t (0)
sp (p‖|k‖) t (0)

ss (p‖|k‖)

)
= (2π )2δ(p‖ − k‖)I2, (B7)

from which we obtain (
t (0)
pp (q‖|k‖) t (0)

ps (q‖|k‖)

t (0)
sp (q‖|k‖) t (0)

ss (q‖|k‖)

)
= (2π )2δ

(
q‖ − k‖

)⎛⎝
√

ε1ε2

ε2α1(k‖)+ε1α2(k‖) 0

0 1
α1(k‖)+α2(k‖)

⎞
⎠. (B8)

For m � 1, Eq. (B4) can be written as

1

−α1(p‖) + α2(p‖)
M(p‖|p‖)t(m)(p‖|k‖) +

∫
d2q‖
(2π )2

[−α1(p‖) + α2(q‖)]m−1ζ̂ (m)(p‖ − q‖)M(p‖|q‖) t(0)(q‖|k‖)

+
m−1∑
n=1

(
m

n

)∫
d2q‖
(2π )2

[−α1(p‖) + α2(q‖)]n−1ζ̂ (n)(p‖ − q‖)M(p‖|q‖) t(m−n)(q‖|k‖) = 0. (B9)

If we use the result that the matrix M(p‖|p‖) is diagonal and hence easily inverted, and that the matrix t(0)(q‖|k‖) is given by
Eq. (B8), we can simplify Eq. (B9) into

t(m)(p‖|k‖) = −(ε2 − ε1)[−α1(p‖) + α2(k‖)]m−1ζ̂ (m)(p‖ − k‖)

( √
ε1ε2

dp(p‖) 0

0 1
ds (p‖)

)⎛
⎝

√
ε1ε2Mpp(p‖|k‖)

dp(k‖)
Mps (p‖|k‖)

ds (k‖)√
ε1ε2Msp(p‖|k‖)

dp(k‖)
Mss (p‖|k‖)

ds (k‖)

⎞
⎠

−(ε2 − ε1)
m−1∑
n=1

(
m

n

)∫
d2q‖
(2π )2

[−α1(p‖) + α2(q‖)]n−1ζ̂ (n)(p‖ − q‖)

⎛
⎝

√
ε1ε2Mpp(p‖|q‖)

dp(p‖)

√
ε1ε2Mps (p‖|q‖)

dp(p‖)
Msp(p‖|q‖)

ds (p‖)
Mss (p‖|q‖)

ds (p‖)

⎞
⎠t(m−n)(q‖|k‖),

(B10)

where

dp(p‖) = ε2α1(p‖) + ε1α2(p‖), (B11a)

ds(p‖) = α1(p‖) + α2(p‖). (B11b)

Equation (B10) allows t(m)(p‖|k‖) to be obtained recursively in terms of t(m−1)(p‖|k‖), . . . ,t(1)(p‖|k‖).
When m = 1, we obtain from Eq. (B10) the result

t(1)(q‖|k‖) = − (ε2 − ε1)ζ̂ (1)(q‖ − k‖)

⎛
⎜⎝

ε1ε2Mpp(q‖|k‖)
dp(q‖)dp(k‖)

√
ε1ε2Mps (q‖|k‖)
dp(q‖)ds (k‖)

√
ε1ε2Msp(q‖|k‖)
ds (q‖)dp(k‖)

Mss (q‖|k‖)
ds (q‖)ds (k‖)

⎞
⎟⎠. (B12)

The matrix elements {Mαβ(q‖|k‖)} are given by Eq. (27a).
In view of Eq. (B3) we find that through terms linear in the surface profile function

T(q‖|k‖) = (2π )2δ
(
q‖ − k‖

)⎛⎝
√

ε1ε2

dp(k‖) 0

0 1
ds (k‖)

⎞
⎠2α1(k‖)

+ i(ε2 − ε1)ζ̂ (1)(q‖ − k‖)

⎛
⎝

ε1ε2Mpp(q‖|k‖)
dp(q‖) dp(k‖)

√
ε1ε2Mps (q‖|k‖)
dp(q‖) ds (k‖)

√
ε1ε2Msp(q‖|k‖)
ds (q‖) dp(k‖)

Mss (q‖|k‖)
ds (q‖) ds (k‖)

⎞
⎠2α1(k‖) + O(ζ 2). (B13)

The substitution of these results into Eq. (41) and the use of 〈ζ̂ (Q‖)ζ̂ (Q‖)∗〉 = Sδ2g(|Q‖|) yields Eq. (52).
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the top interface of the film (the interface facing the incident light)
is rough than when the bottom interface is rough. When both film
interfaces are rough, Selényi interference rings exist but a potential
cross-correlation of the two rough interfaces of the film can be
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1. Introduction

Interference effects in the diffuse light scattered by thin and rough dielectric films can look
both stunning and unexpected, and they have fascinated their observers for centuries. First formally
described in modern times as colorful rings in the diffusely scattered light originating from a dusty
back-silvered mirror by Newton [1], what is today known as Quételet- and Selényi-rings have been
thoroughly analyzed theoretically [2–6] and experimentally [7,8]. An example of a non-laboratory
situationwhere onemayobserve this phenomenon is in light reflections frombodies ofwater if appro-
priate algae are present on the water surface. This phenomenon, modeled as a thin layer of spherical
scatterers suspended on a reflecting planar surface, was investigated by Suhr and Schlichting [6].

In a theoretical study of the scattering from one-dimensional randomly rough surfaces ruled on
dielectric films on perfectly conducting substrates, Lu et al. [4] concluded that the degree of surface
roughness had the biggest impact onwhich interference phenomena could be observed. For filmswith
a thickness on the order of several wavelengths they were able to explain the periodic fringes they
observed in themean differential reflection coefficient through simple phase arguments. The patterns
in the diffusely scattered light were shown to undergo a transition, with increasing surface roughness,
from an intensity pattern exhibiting fringes whose angular positions are independent of the angle
of incidence (Selényi rings [9]) to one with fringes whose angular positions depend on the angle of
incidence (Quételet rings [7]) and eventually into a fringeless pattern with a backscattering peak,
which is a signature of multiple scattering [10]. Although the Selényi rings are centered around the
mean surface normal,with their position being independent of the angle of incidence, their amplitude,
however, is modulated by the angle of incidence. According to the current understanding of the
Selényi rings, their main origin is due to the interference between light scattered back directly from
the top scattering layer and light reflected by the film after being scattered within it. In this paper
we seek to complete this interpretation of the interference phenomena within a single scattering
approximation, enabling a sound interpretation of the Selényi rings for the previously unexplored
case when the rough surface is shifted to the non-incident face of the film.

A similar system to the one studied by Lu et al. was also thoroughly studied perturbatively and
experimentally by Kaganovskii et al. [8]. They concluded that the long-range (smooth) component
of the surface roughness, whenever present, can have a deciding effect on the interference pattern
observed in the diffusely scattered light.

However, most of the relevant studies conducted on the topic so far have been restricted to
investigations of scattering from a single rough interface. Allowing for more than one rough interface
significantly increases the complexity of the problem both analytically and computationally, but it
also opens a door to a richer set of scattering phenomena. Such stacked, multi-layered systems will in
many cases better represent the real-world scattering systems we are attempting to model [2]. Two
or more of these randomly rough interfaces in the stack will also often be correlated, either naturally
occurring, by design or by method of production [11,12]. Since both Quételet- and Selényi-rings may
enable a practical way of remote sensing and surface characterization for certain geometries and layer
thicknesses, it is important also to model the impact of such roughness cross-correlation.

In this paper we investigate interference effects in the light scattered diffusely from an optical
system composed of two semi-infinite media separated by a single thin dielectric film where both
interfaces may be rough [Fig. 1(a)]. After describing the statistical properties of the interfaces in
Section 2, we derive, in Section 3, a set of reduced Rayleigh equations (RREs) for the case of
electromagnetic scattering from a system with two rough interfaces, inspired by the work of Soubret
et al. [13]. Although only the case of reflected light will be analyzed in detail, the RREs for both
the reflection and the transmission amplitudes are given for completeness; furthermore, this also
serves to show that the presented framework can easily be generalized to an arbitrary number of
rough interfaces. A perturbative method and a purely numerical method for solving the RREs are
described in Section 4. Since solving the RREs for a set of two, or more, two-dimensional randomly
rough surfaces by purely numericalmeans is a highly computationally intensive task, the perturbative
method will be our main investigation tool for simulating and interpreting interference effects in
such geometries. In Section 5.1 we discuss rough film geometries where either the top interface or
bottom interface of the film is allowed to be randomly rough and the other interface is planar. For
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Fig. 1. (a) Layered systemwith two rough interfaces. (b) Definitions of the angles of incidence and scattering andwave vectors.

such geometries, we compare the predictions for the scattered intensities obtained on the basis of
the perturbative and non-perturbative methods. After having established the apparent validity of
the perturbative method for the level of roughness assumed, we continue to investigate rough film
geometries where both interfaces of the film are randomly rough and have a varying cross-correlation
[Section 5.2]. Section 5.3 gives a brief discussion concerning additional effects one expects to observe
in transmission. Finally, Section 6 presents the conclusions that we have drawn from this study.

2. Scattering systems

An overview of a typical system geometry is provided in Fig. 1. We consider the case where both
interfaces of the film may be randomly rough and possess non-trivial auto- and cross-correlation.
Furthermore, we will be interested in scattering systems for which the mean thickness of the film
is several wavelengths so that interference fringes can be observed in the diffusely reflected or
transmitted intensities. The definition of the geometry is set in the three-dimensional space endowed
with a Cartesian coordinate system (O, ê1, ê2, ê3), with the vector plane (ê1, ê2) parallel to the mean
plane of the interfaces [Fig. 1(b)]. The origin, O, can be arbitrarily chosen, only affecting the complex
reflection and transmission amplitudes by an overall phase factor which plays no role in the intensity
of the scattered light. The scattering system splits space into a slab of three domains, or layers, that
will be denoted by the indices j ∈ {1, 2, 3}. The mean thickness of the film will be denoted d > 0, and
the jth interface separating media j and j + 1 can be described by the equation

x3 = ζj(x∥) = dj + hj(x∥) , (1)

for j ∈ {1, 2}, where x∥ = x1 ê1 + x2 ê2, dj = ⟨ζj⟩ denotes the average of the jth profile (and
we have d1 − d2 = d), and the term hj will be assumed to be a continuous, differentiable, single-
valued, stationary, isotropic, Gaussian random process with zero mean and given auto-correlation.
More specifically, the surface profile functions are assumed to satisfy the following properties⟨

hj(x∥)
⟩
= 0 (2a)⟨

hj(x∥)hj(x′

∥
)
⟩
= σ 2

j W (x∥ − x′

∥
). (2b)

Here and in the following, the angle brackets denote an average over an ensemble of realizations of
the stochastic process, σj denotes the rms roughness of interface j and W (x∥) represents the height
auto-correlation function normalized so that W (0) = 1. For reasons of simplicity we here restrict
ourselves to the situation where both interfaces are characterized by the same form of the correlation
function. In particular, we will here assume a Gaussian form of the auto-correlation function that is
defined by

W (x∥) = exp
(

−
|x∥|

2

a2

)
, (3)



J.-P. Banon et al. / Annals of Physics 389 (2018) 0–30 3

where a is the correlation length. The corresponding power spectrum (defined as the Fourier trans-
form of W ) is then

g(p) = πa2 exp
(

−
|p|

2a2

4

)
, (4)

with p = p1 ê1 + p2 ê2. In addition, the two interfaces will be assumed to be cross-correlated in the
following way⟨

h1(x∥)h2(x′

∥
)
⟩
= γ σ1σ2 W (x∥ − x′

∥
) , (5)

where γ ∈ [−1, 1] is a dimensionless cross-correlation coupling variable. When γ = 0 the two
interfaces are uncorrelated, and the extreme cases γ = ±1 and σ1 = σ2 can be viewed respectively
as the second interface being a shifted copy of the first one by a vector−d ê3, or as the second interface
being a symmetric copy of the first one with respect to the plane x3 = (d1 +d2)/2.We can summarize
the correlations expressed by Eqs. (2b) and (5) by the following relation⟨

hi(x∥)hj(x′

∥
)
⟩
= [δij + γ (1 − δij)] σiσj W (x∥ − x′

∥
) , (6)

where δij denotes the Kronecker delta.

3. Formulation of the problem

The theoretical approach used in this work to study the scattering of light from the systems of
interest is based on the so-called reduced Rayleigh equations. A reduced Rayleigh equation is an
integral equation in which the integral kernel encodes the materials and geometry of the scattering
system and the unknowns are the reflection or transmission amplitudes for each polarization. In the
following, in order to establish thenotation andhighlight themain assumptions of themethod,wewill
briefly recall the key ideas of the derivation of the reduced Rayleigh equations for a system composed
of three media separated by two disjoint rough interfaces. We will use, to our knowledge, the most
general form of the reduced Rayleigh equations for a single interface derived by Soubret et al. in Ref.
[13] and used by these authors in Refs. [13,14] in the case of a single interface system and a film
geometry. Once the general framework is established, we will apply it to the specific geometries of
interest.

3.1. The reduced Rayleigh equations

All physical quantities introduced hereafter will be indexed with respect to the medium (domain)
they belong to. The electromagnetic response of the media is modeled by non-magnetic, homoge-
neous, isotropic, linear constitutive relations in the frequency domain, i.e. that a priori each medium
is characterized by frequency dependent scalar complex dielectric functions, ϵj(ω), where ω denotes
the frequency of the electromagneticwave excitation.We consider the presence of an electromagnetic
field (E,H) in thewhole space. The fieldswill be denoted by a subscript jdepending on their containing
medium. As an example, the electric field evaluated at a point x in medium 1 at time t is denoted
E1(x, t) = E1(x, ω) exp(−iωt). The source freeMaxwell equations, togetherwith homogeneous, linear
and isotropic constitutive relations in the frequency domain, result in the electric andmagnetic fields
satisfying the Helmholtz equation in each region. Namely, for all j ∈ {1, 2, 3},

∇
2Ej(x, ω) + ϵj(ω)

(ω

c

)2
Ej(x, ω) = 0 , (7)

and a similar equation satisfied for H. Here, ∇2 denotes the Laplace operator and c represents the
speed of light in vacuum. In the following, we will drop the time, or frequency, dependence, since
we assume a stationary regime where time contributes only by an overall phase factor exp(−iωt). It
is known that a solution to the Helmholtz equation can be written as a linear combination of plane
waves, thus the representation of the electric field in each region can be written as

Ej(x) =

∑
a=±

∫
R2

[
Ea
j,p(q) ê

a
p,j(q) + Ea

j,s(q) ês(q)
]
exp

(
i ka

j (q) · x
) d2q
(2π )2

, (8)
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where

αj(q) =

√
ϵj

(ω

c

)2
− q2, Re (αj), Im (αj) ≥ 0 , (9a)

k±

j (q) = q ± αj(q) ê3 , (9b)

ês(q) = ê3 × q̂ , (9c)

ê±

p,j(q) =
c

√
ϵjω

(
±αj(q) q̂ − |q| ê3

)
. (9d)

Here a caret over a vector indicates that the vector is a unit vector. Note that the wave vector
k±

j (q) of an elementary plane wave is decomposed into its projection q in the lateral vector plane
(ê1, ê2) and the component ±αj(q) along ê3. The sum for a = ± takes into account both upwards
and downwards propagating and evanescent (and possibly growing) waves. The field amplitude is
decomposed in the local polarization basis (êap,j(q) , ês(q) ), so that Ea

j,α(q) denotes the component of
the field amplitude in the polarization state α of the mode characterized by a and q. In this basis,
the directions given by ê±

p,j(q) , and ês(q) are respectively the directions of the p- and s-polarization
of the electric field amplitude. Furthermore, the electromagnetic fields have to satisfy the boundary
conditions (j ∈ {1, 2})

nj(x∥) ×

[
Ej+1(sj(x∥)) − Ej(sj(x∥))

]
= 0 (10a)

nj(x∥) ×

[
Hj+1(sj(x∥)) − Hj(sj(x∥))

]
= 0 , (10b)

where nj(x∥) is a vector that is normal to surface j at the surface point sj(x∥) = x∥ +ζj(x∥)ê3, and given
by

nj(x∥) = ê3 −
∂ζj

∂x1
(x∥) ê1 −

∂ζj

∂x2
(x∥) ê2 . (11)

Here, ∂/∂xk denotes the partial derivative along the direction êk. Following Soubret et al. [13], for a
given surface indexed by j, by substituting the field expansion Eq. (8) into Eq. (10) and by a clever
linear integral combination of the boundary conditions, one can show that the upward or downward
field amplitudes in medium j + 1 can be linked to the upward and downward field amplitudes in
medium j via the following integral equation defined for aj+1 = ±, j ∈ {1, 2}, and p in the vector
plane (ê1, ê2):∑

aj=±

∫
J

aj+1,aj
j+1,j (p | q) Maj+1,aj

j+1,j (p | q) E
aj
j (q)

d2q
(2π )2

=
2 aj+1

√
ϵjϵj+1 αj+1(p)

ϵj+1 − ϵj
E
aj+1
j+1 (p) . (12)

Here Ea
j (q) = (Ea

j,p(q) , E
a
j,s(q) )

T denotes a column vector of the polarization components of the field
amplitude in medium j. Moreover, Mb,a

l,m(p | q) is a 2 × 2 matrix which originates from a change of
coordinate system between the local polarization basis (êbp,l(p) , ês(p) ) and (êap,m(q) , ês(q) ), defined
for a = ±, b = ±, and l,m ∈ {j, j + 1} such that l ̸= m as

Mb,a
l,m(p | q) =

⎛⎜⎝|p||q| + ab αl(p)αm(q) p̂ · q̂ −b
√

ϵm
ω

c
αl(p) [p̂ × q̂] · ê3

a
√

ϵl
ω

c
αm(q) [p̂ × q̂] · ê3

√
ϵlϵm

ω2

c2
p̂ · q̂

⎞⎟⎠ . (13)

The kernel scalar factor J b,a
l,m (p | q) encodes the surface geometry and is defined as

J b,a
l,m (p | q) = (bαl(p) − aαm(q) )−1

∫
exp

[
−i(kb

l (p) − ka
m(q) ) · (x∥ + ζj(x∥) ê3)

]
d2x∥. (14)
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Notice that, as already pointed out in Ref. [13], due to the symmetry of the boundary conditions, one
may also show in the same way that∑

aj+1=±

∫
J

aj,aj+1
j,j+1 (p | q) Maj,aj+1

j,j+1 (p | q) E
aj+1
j+1 (q)

d2q
(2π )2

=
2 aj

√
ϵjϵj+1 αj(p)

ϵj − ϵj+1
E
aj
j (p) , (15)

which can be obtained from Eq. (12) by interchanging j and j + 1. Typically, Eq. (12) is appropriate to
solve the problem of reflection whereas Eq. (15) is appropriate to solve the problem of transmission,
as we will see later. In the following, it will be convenient to define

Θ
aj+1,aj
j+1,j (p | q) = α−1

j+1(p)J
aj+1,aj
j+1,j (p | q) Maj+1,aj

j+1,j (p | q) (16)

and

Θ
aj,aj+1
j,j+1 (p | q) = α−1

j (p)J aj,aj+1
j,j+1 (p | q) Maj,aj+1

j,j+1 (p | q) (17)

which we will refer to as the forward and backward single interface transfer kernels between media j
and j+1, respectively. Our aim is to study reflection from and transmission through thewhole system,
i.e. we need to relate the field amplitudes in regions 1 and 3 without having to explicitly consider the
field amplitudes in region 2. To this end, we have to combine Eq. (12) for j = 1 and j = 2 in order to
eliminate E±

2 . A systematic way of doing this, and which can be generalized to an arbitrary number
of layers, is presented below. The key observation lies in the fact that one can choose the sign aj+1 in
Eq. (12) and therefore Eq. (12) contains two vector equations for a given j. For reasons that will soon
become clear, the variable p that appears in Eq. (12) is renamed p2. By left-multiplying both sides of
Eq. (12) taken at j = 1 by a2 Θ

a3,a2
3,2 (p | p2), where a3 = ± can be arbitrarily chosen, we obtain∑

a1=±

a2

∫
Θ

a3,a2
3,2 (p | p2) Θ

a2,a1
2,1 (p2 | q) Ea1

1 (q)
d2q
(2π )2

=
2

√
ϵ1ϵ2

ϵ2 − ϵ1
Θ

a3,a2
3,2 (p | p2) E

a2
2 (p2) .

By integrating this equation over p2 divided by (2π )2 and summing over a2 = ±, one obtains that
the right-hand-side of the resulting equation is, up to a constant factor, equal to the left-hand-side of
Eq. (12) evaluated for j = 2. In this way we obtain

∑
a1=±

∫
Θ

a3,a1
3,1 (p | q) Ea1

1 (q)
d2q
(2π )2

= a3
4
√

ϵ1ϵ
2
2ϵ3

(ϵ3 − ϵ2)(ϵ2 − ϵ1)
Ea3
3 (p) , (18)

where the forward two-interface transfer kernel Θa3,a1
3,1 (p|q) is defined by the composition rule

Θ
a3,a1
3,1 (p | q) =

∑
a2=±

a2

∫
Θ

a3,a2
3,2 (p | p2) Θ

a2,a1
2,1 (p2 | q)

d2p2
(2π )2

. (19)

By a similar method and by the use of Eq. (15), we obtain the backward relation

∑
a3=±

∫
Θ

a1,a3
1,3 (p | q) Ea3

3 (q)
d2q
(2π )2

= a1
4
√

ϵ1ϵ
2
2ϵ3

(ϵ1 − ϵ2)(ϵ2 − ϵ3)
Ea1
1 (p) , (20)

where the backward two-interface transfer kernel Θa1,a3
1,3 (p|q) is defined as

Θ
a1,a3
1,3 (p | q) =

∑
a2=±

a2

∫
Θ

a1,a2
1,2 (p | p2) Θ

a2,a3
2,3 (p2 | q)

d2p2
(2π )2

. (21)

Let us nowmake a few remarks on Eqs. (18) and (19). Eq. (18) is an integral equation of the same form
as Eq. (12) but it only relates the field amplitudes in medium 1 and 3. Our aim of eliminating the field
amplitudes in the intermediarymedium is therefore achieved. However, this comes at a cost since the
new transfer kernelΘa3,a1

3,1 (p | q) is defined as an integral of the product of two single interface kernels
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as can be seen in Eq. (19). We will see that this pays off in the case where one of the interfaces is flat,
but that the cost can be significant in terms of computational load when both interfaces are rough.

So far,wehave stayed general and simply assumed thepresence of an electromagnetic field decom-
posed in propagating and non-propagating waves in each region. Therefore, there is no uniqueness
in the solutions to the transfer equations, Eqs. (18) and (20). To ensure a unique solution, one needs
to impose some constraints on the field. First, we need to introduce an incident field to our model.
This will split the field expansion into a sum of an incident field, which is given by our model of the
problem, and a scattered field. Note that within this framework, the incident field may be chosen to
be in either medium, or to be a combination of excitations incident from different media. Second, we
need to impose the Sommerfeld radiation condition at infinity. This implies that the non-propagating
waves are indeed only evanescent waves in the media unbounded in the ê3-direction and that the
propagating ones are directed outwards.

In our case, the incident field will be taken as a plane wave incident from medium 1 and defined
as

E0(x) =
[
E0,p ê

−

p,1(p0) + E0,s ês(p0)
]
exp

(
ik−

1 (p0) · x
)
, (22)

where p0 is the projection of the incident wave’s wave vector in the (ê1, ê2) plane, with the property
|p0| ≤

√
ϵ1 ω/c , i.e. we consider an incident propagating wave. The fact that this is the only incident

wave considered, together with the Sommerfeld radiation condition at infinity, gives, apart from the
incident field, that the only elementary waves allowed in the scattered field are those with wave
vectors of the form k+

1 (p) and k−

3 (p) in medium 1 and 3, respectively. This property can be expressed
by defining the field amplitudes

E−

1 (q) = (2π )2 δ(q − p0) E0 , (23a)
E+

3 (q) = 0 , (23b)

where E0 = (E0,p, E0,s)
T. Next, we assume that the scattered field amplitudes are linearly related to

the incident field amplitude E0 via the reflection and transmission amplitudes, R(q | p0) and T(q | p0),
defined as

E+

1 (q) = R(q|p0)E0, (24a)
E−

3 (q) = T(q|p0)E0. (24b)

The reflection and transmission amplitudes are therefore described by 2 × 2 matrices, i.e. for X = R
or T

X =

(
Xpp Xps
Xsp Xss

)
. (25)

From a physical point of view, the coefficient Rαβ (q|p0) (resp. Tαβ (q|p0)) for α, β ∈ {p, s} is the field
amplitude for the reflected (resp. transmitted) lightwith lateralwave vectorq in the polarization state
α from a unit incident field with lateral wave vector p0 in the polarization state β . The reflection and
transmission amplitudes are then the unknowns in our scattering problem. The equations we need
to solve are deduced from the general equations Eqs. (18) and (20) by applying them respectively
at a3 = + and a1 = − and by using Eqs. (23) and (24) for the model of the field expansion. This
yields the following two decoupled integral equations for the reflection or transmission amplitudes,
the so-called reduced Rayleigh equations, that can bewritten in the following general form, forX = R
or T [15]∫

MX(p|q) X(q|p0)
d2q
(2π )2

= −NX(p|p0) , (26)

where the matricesMX and NX are given by

MR(p|q) = Θ
+,+
3,1 (p|q) (27a)

MT(p|q) = Θ
−,−
1,3 (p|q) (27b)
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NR(p|q) = Θ
+,−
3,1 (p|q) (27c)

NT(p|q) =

4
√

ϵ1ϵ
2
2ϵ3

(ϵ1 − ϵ2)(ϵ2 − ϵ3)
(2π )2 δ(p − q) I2, (27d)

with I2 denoting the 2 × 2 identity matrix. In the cases where only one interface is rough and the
other interface is planar, the complexity associated with the transfer kernels is equivalent to that of
a single rough interface separating two media. For instance, if the second interface is planar and the
first interface is rough, we can choose the origin of the coordinate system such that ζ2(x∥) = d2 = 0,
and Eq. (14) yields, for l,m ∈ {2, 3} and l ̸= m,

J b,a
l,m (p | q) =

(2π )2 δ(p − q)
bαl(p) − aαm(q)

. (28)

TheDirac distribution then simplifies thewave vector integrationpresent in the two-interface transfer
kernels and one gets

Θ
a3,a1
3,1 (p | q) =

∑
a2=±

a2
Ma3,a2

3,2 (p | p) Θa2,a1
2,1 (p | q)

α3(p) [a3α3(p) − a2α2(p) ]
, (29a)

and

Θ
a1,a3
1,3 (p | q) =

∑
a2=±

a2
Θ

a1,a2
1,2 (p | q) Ma2,a3

2,3 (q | q)
α2(q) [a2α2(q) − a3α3(q) ]

. (29b)

If the first interface is planar and the second interface rough,we can choose the origin of the coordinate
system such that ζ1(x∥) = d1 = 0, and Eq. (28) holds for l,m ∈ {1, 2} and l ̸= m, and the two-interface
transfer kernels read

Θ
a3,a1
3,1 (p | q) =

∑
a2=±

a2
Θ

a3,a2
3,2 (p | q) Ma2,a1

2,1 (q | q)
α2(q) [a2α2(q) − a1α1(q) ]

, (30a)

and

Θ
a1,a3
1,3 (p | q) =

∑
a2=±

a2
Ma1,a2

1,2 (p | p) Θa2,a3
2,3 (p | q)

α1(p) [a1α1(p) − a2α2(p) ]
. (30b)

3.2. Observables

The observable of interest in this study is the so-called incoherent (or diffuse) component of the
mean differential reflection coefficient (DRC) that we denote ⟨∂Rαβ (p|p0)/∂�s⟩incoh. It is defined as the
ensemble average over realizations of the surface profile function of the incoherent component of
the radiated reflected flux of an α-polarized wave around direction k̂+

1 (p), per unit incident flux of a
β-polarized plane wave of wave vector k−

1 (p0), and per unit solid angle. The precise mathematical
definition and the derivation of the expression for the mean DRC as a function of the reflection
amplitudes is given in Appendix B.

4. Numerical methods

Solutions of the reduced Rayleigh equation, Eq. (26), are obtained via both a perturbative and a
non-perturbative numerical approach. In this work we investigate systems with two interfaces; For
the case when one of these interfaces is planar we are able to employ both approaches, but when both
interfaces are rough wewill exclusively use the perturbative approach due to the high computational
cost of the non-perturbative approach.
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4.1. Perturbative method

The approximated solution of Eq. (26) for the reflection amplitudes, and to first order in product
of surface profiles, obtained by small amplitude perturbation theory (SAPT) is derived in Appendix A
and given by

R(p | p0) ≈ R(0)(p | p0) − iR(1)(p | p0) , (31a)

R(1)(p | p0) = ĥ1(p − p0)ρ1(p | p0) + ĥ2(p − p0)ρ2(p | p0). (31b)

Here R(0)(p | p0) is the response from the corresponding system with planar interfaces (i.e. that of a
Fabry–Perot interferometer), ĥj are the Fourier transforms of the stochastic component of the surface
profiles and ρj(p | p0) are matrix-valued amplitudes depending only on the mean film thickness,
the dielectric constants of all media and the wave vectors of incidence and scattering. The explicit
expressions for thesematrices are given in Appendix A (see Eq. (A.20)). The corresponding expression
for the incoherent component of themean differential reflection coefficient reads Appendices A and B⟨

∂Rαβ (p|p0)
∂�s

⟩
incoh

= ϵ1

( ω

2πc

)2 cos2θs
cos θ0

g(p − p0)
[
σ 2
1 |ρ1,αβ (p | p0)|2 + σ 2

2 |ρ2,αβ (p | p0)|2

+ 2γ σ1σ2 Re
{
ρ1,αβ (p | p0)ρ∗

2,αβ (p | p0)
} ]

, (32)

where the wave vectors

p =
√

ϵ1
ω

c
sin θs(cosφs ê1 + sinφs ê2) (33a)

and

p0 =
√

ϵ1
ω

c
sin θ0(cosφ0 ê1 + sinφ0 ê2) (33b)

are defined in terms of the angles of scattering (θs, φs) and incidence (θ0, φ0), respectively [see Fig. 1].
The three terms present in the angular brackets of Eq. (32) can be interpreted as follows. The term
containing σ 2

1 |ρ1,αβ (p | p0)|2 (resp. σ 2
2 |ρ2,αβ (p | p0)|2) corresponds to the contribution to the diffuse

intensity of the associated system for which the first (resp. second) interface would be rough and
the other planar. Indeed, this would be the only remaining term if we were to set σ2 = 0 (resp.
σ1 = 0) in Eq. (32). The sum of the two first terms would correspond to the sum of intensity of the
aforementioned associated systems,whichwould be the expected overall response if the two interface
were not correlated, i.e. if γ = 0. The last term in Eq. (32), which does not vanish for γ ̸= 0, can be
interpreted physically as taking into account the interference between paths resulting from single
scattering events on the top interface and those resulting from single scattering events on the bottom
interface. Note that this last term, in contrast to the two first, may take positive and negative values as
the incident and scatteringwave vectors are varied, and hencemay result in cross-correlation induced
constructive and destructive interference. It is clear from the derivation, however, that the overall
incoherent component of the mean differential coefficient remains non-negative, as is required for
any intensity.

4.2. Nonperturbative method

Solutions of Eq. (26) were also obtained in a rigorous, purely numerical, nonperturbative manner
according to the method described in detail in Ref. [16]; only a brief summary of the method is
presented here. This method has previously been used for the investigations of the two-dimensional
rough surface scattering of light from metallic or perfectly conducting surfaces [16–18]; from and
through single dielectric interfaces [17,19,20] and film geometries [21–23]. In this method, an
ensemble of realizations of the surface profile function ζj(x∥) is generated by the use of the Fourier
filtering method [24] on a square grid of Nx × Nx surface points, covering an area of S = L2 in
the (ê1, ê2)-plane. The integral equation, Eq. (26), is solved numerically with finite limits ±Q and
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discretization 1q = 2π/L with Nq × Nq points in wave vector space according to the Nyquist
sampling theorem given the spatial discretization of the surface. On evaluating the kernel scalar
factors J b,a

l,m (p | q) , defined in Eq. (14), we first expand the integrand in powers of ζj(x∥), truncate
this expansion after 20 terms, and integrate the resulting sum term-by-term. The Fourier integral of
ζ n
j (x∥) that remains nowonly depends on the surface profile function and thedifference in lateralwave
vectors p−q, and not onαl(p) andαm(q). These Fourier integrals are therefore calculated only once, on
a p−q grid, for every surface realization by the use of the fast Fourier transform. The resulting matrix
equations are then solved by LU factorization and back substitution, using the ScaLAPACK library [25].
This process is repeated for a large number Np of realizations of the surface profile function, enabling
the calculation of the ensemble averaged observables of interest; like the mean DRC.

It remains to mention that Eqs. (29) and (30), giving the transfer kernels in the case where only
one of the interfaces is rough and the other planar, have been written in a rather compact form.
Numerically, these expressions tend to lead to instabilities due to factors of the form exp(−iα2(q)d)
or exp(−iα2(p)d) which grow for evanescent waves inside the film. This technical issue is resolved
by using the following two ideas: (i) expanding the two terms in the kernels (i.e. for a2 = ±) and
factorizing out the troublesome exponential factor and canceling it on both sides of the reduced
Rayleigh equation (if the exponential factor is a function of the variable p) or (ii) making a change of
variable such that the troublesome exponential factor is absorbed into the reflection or transmission
amplitudes (if the exponential factor is a function of the variable q). One may also shift the x3-axis in
order to facilitate the aforementioned steps. We chose here not to give more details on the explicit
implementation, as these modifications are to be done in a case by case basis depending on which
surface is planar and whether the reflected or transmitted light is considered.

5. Results and discussion

5.1. Single rough interface

As a direct comparison between results obtained by the perturbative and nonperturbative so-
lutions of Eq. (26), Fig. 2 shows the angular distributions of the co-polarized (α = β) incoherent
contribution to the mean DRC for light incident from vacuum (ϵ1 = 1) that is reflected diffusively
into the plane of incidence (i.e. |p̂ · p̂0| = 1) from a randomly rough dielectric film (photoresist,
ϵ2 = 2.69) deposited on a silicon substrate (ϵ3 = 15.08 + 0.15i) for the cases where only one of
the interfaces is rough and the other planar. Results for the case where only the top interface (the
interface facing the medium of incidence) is rough (σ2 = 0) and where only the bottom interface
is rough (σ1 = 0) are shown in Figs. 2(a)–(b) and (c)–(d), respectively. Light was incident on the
dielectric film from the vacuum side in the form of a plane wave of wavelength λ = 632.8 nm with
angles of incidence (θ0, φ0) = (16.8◦, 0◦). The two interfaces were characterized by rms-roughness
σ1 = λ/30, σ2 = 0 [Figs. 2(a)–(b)] or σ1 = 0, σ2 = λ/30 [Figs. 2(c)–(d)], correlation length a = λ/3,
and the film thickness was assumed to be d = 8λ ≈ 5 µm. The scattering system was chosen in
order to highlight the interference phenomena and to purposely deviate from the more historically
typical scattering system of a dielectric film on a perfect electric conductor. The dashed curves in Fig. 2
display the results of computations of the perturbative solution of the RRE, Eq. (32), to leading order,
while the solid curves in Fig. 2 show the non-perturbative solutions of the RRE, Eq. (26). In obtaining
these latter results the following parameters, defined in Section 4.2, were used: Nx = 449, L = 45λ,
Nq = 225 and Np = 325, implying integration limits in wavevector space Q = ±2.5ω/c. Since these
non-perturbative results for the mean DRC are obtained through an ensemble average over a finite
number of surface realizations, they are less smooth than their perturbative counterparts, for which
the averaging is performed analytically. Using a larger number of surface realizations in obtaining the
ensemble average would have produced smoother results, but we have chosen not to do so here due
to the high associated computational cost.

Figs. 2(a)–(b) show excellent agreement between the results for the mean DRC obtained by the
analytical perturbative method and the corresponding results obtained by a full solution of the RRE
for the chosen parameters for the case where only the upper interface is rough. In particular, the
fringes observed in these figures are consistently predicted by both calculation methods for the set
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Fig. 2. Incoherent components of the mean DRCs for in-plane co-polarized scattering as functions of the polar angle of
scattering, θs (note the convention θs < 0 for φs = φ0 + 180◦). The light of wavelength λ = 632.8 nm was incident from
vacuum on the rough photoresist film supported by a silicon substrate [ϵ1 = 1.0, ϵ2 = 2.69, ϵ3 = 15.08 + 0.15i]. The surface-
height correlation length of the rough Gaussian correlated surface was a = λ/3, the mean film thickness was d = 8λ, and the
angles of incidence were (θ0, φ0) = (16.8◦, 0◦) in all cases. Panels (a) and (b) correspond to cases where only the top interface
was rough, while panels (c) and (d) present the results for a film where only the bottom interface of the film is rough. In both
cases, the rms-roughness of the rough interface was set to σ = λ/30. The results obtained on the basis of the non-perturbative
method are shown as solid lines while those obtained with the perturbative method, Eq. (32), are shown as dashed lines. The
position of the specular direction in reflection is indicated by the vertical dashed lines. The vertical dash-dotted and dotted
lines indicate the angular positions of the maxima and minima predicted by Eq. (36), respectively.

of parameters assumed and their angular positions agree well with the expected angular positions
(dashed–dotted vertical lines in Figs. 2(a)–(b)).When the lower surface is rough, the results presented
in Figs. 2(c)–(d) show that the agreement between the two calculation methods is still satisfactory,
but a larger discrepancy between them is now observed relative to what was found when the upper
surface was rough. This larger discrepancy might be due to the fact that the error between the
perturbative solution and the exact solution grows with the ratio of the dielectric constants of the
media that are separated by the rough interface. Since the dielectric contrast between the silicon
substrate and the photoresist film is larger than that between the photoresist film and vacuum,
the corresponding error is also larger. Since the perturbative method is employed only to leading
order, these agreements overall indicate that the physical phenomena that give rise to the scattered
intensity distributions are well approximated as single scattering phenomena, at least for weakly
rough surfaces.

We identify the interference fringes in Fig. 2 as in-plane scattering distributions of Selényi rings
[9]. These rings are known to be centered around themean surface normal, with their angular position
being independent of the angle of incidence. Their amplitude, however, is modulated by the angle of
incidence. This can indeed be observed if we vary the angle of incidence and record the resulting
in-plane co-polarized angular scattering distributions, presented as contour plots in the first two
columns of Fig. 3. Figs. 3(a)–(b) present, for p-polarized light, contour plots of the (θ0, θs) dependence
of the in-plane co-polarized incoherent component of themeanDRCwhen the top or bottom interface
of the film is rough, respectively. Similar results but for s-polarized light are presented in Figs. 3(f)–(g).
For both configurations, the co-polarized incoherent component of the mean DRC exhibits maxima
that occur on a regular grid of (θ0, θs)-points for s-polarized light [Figs. 3(f)–(g)]. A similar pattern
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Fig. 3. Scaled incoherent component of themean DRCs for in-plane co-polarized scattering, 100×⟨∂Rαα/∂�s⟩incoh , as functions
of the polar angle of incidence θ0 and the polar angle of scattering θs obtained on the basis of Eq. (32). The first row of sub-figures
[Figs. 3(a)–(e)] corresponds to p-polarized light (as marked in the figure), while the second row [Figs. 3(f)–(j)] corresponds to
s-polarized light. These results were obtained under the assumption that the wavelength in vacuum was λ = 632.8 nm, the
mean film thickness was d = 8λ, and the dielectric constants of the media were ϵ1 = 1.0, ϵ2 = 2.69, ϵ3 = 15.08 + 0.15i.
The rms-roughness of the rough interfaces of the film were assumed to be σ1 = σ2 = λ/30, and the Gaussian correlation
functions were characterized by the correlation length a = λ/3. The first column of sub-figures presents contour plots of the
mean DRCs for a film geometry where only the top interface of the film is rough and the bottom interface planar. The second
column shows similar results when the top film interface is planar and the bottom film interface is rough. In the third column,
contour plots of only the cross-correlation term in Eq. (32) – that is, the contribution to the mean DRC produced by the last
term in the square brackets of this equation – are depicted assuming a perfect correlation [γ = 1] between the rough top and
rough bottom interface of the film. Finally, in the fourth and fifth column, contour plots of the total mean DRCs obtained on the
basis of Eq. (32) are presented for two-rough-interface film geometries characterized by γ = 1 and γ = −1, respectively.

is observed for p-polarized light in Figs. 3(a)–(b), although the grid of maxima appears to lose some
of its regularity for the larger polar angles of incidence and scattering [Figs. 3(a)–(b)]. We speculate
that this is due to a Brewster effect, both in its traditional sense and through the Brewster scattering
angles [19,20,26], but we will not delve further on this behavior here. In addition, by comparing the
results presented in Figs. 2, 3(a)–(b), and 3(f)–(g), we note that the contrast in the interference pattern
is better for the configurations where the top interface is rough than for those where the bottom
interface is rough. In the following we will explain these observations in terms of a single scattering
model which is an extension of the model previously proposed by Lu and co-workers [4].

Lu et al. suggested that, for sufficiently small roughness, the main effect of the rough interface is to
produce scattered waves that cover a wide range of scattering angles both inside and outside the film,
and the film may then be considered to approximate a planar waveguide for subsequent reflections
and refractions within the film. This claim is supported by the observed agreement between the
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Fig. 4. Sketch of the optical paths involved in the single scatteringmodel in the case of scattering from the top surface (a) and (b),
or from the bottom interface (c). Incoherent component of the mean differential reflection coefficient for in-plane co-polarized
scattering as a function of the polar angle of scattering for normal incidence for p-polarization (d) to (f). Apart from the angle
of incidence the remaining parameters are the same as those from Fig. 2. In panels (d) and (f), the results were obtained from
SAPT (circles), and from the single scattering model Eqs. (40)(d) and (41)(e) (solid line) respectively for the cases illustrated in
(a–b) and (c). In panel (e), only the contribution of r ′′ (Eq. (39)) to the incoherent component of the mean DRC is shown.

mean DRC distributions obtained through the perturbative solution to leading order, whose physical
interpretation is to take only single scattering events into account, and the full solutions of the RRE in
Fig. 2, since the latter method allows for the full range of multiple scattering events. As the incident
light interacts with the rough interface, whether it is located at the top or bottom interface, multiple
wave components are generated in the film. These waves then undergo multiple specular reflections
within the film while also being partially refracted back into the medium of incidence. Since Lu et al.
only investigated the casewhere the rough interface is on top, their resultswere adequately explained
under the assumption that the incident light was scattered by the rough interface during its first
encounter with the interface. However, a more detailed analysis of the possible optical paths in the
system is necessary in order to fully understand the case where the rough interface is at the bottom of
the film, as illustrated by the more complete depiction of optical paths in Figs. 4(a)–(c). We will now
analyze the different optical paths involving a single scattering event in the two configurations inmore
detail, and also construct a model for the resulting reflection amplitudes. Let rji(p | p0) and tji(p | p0)
denote the reflection and transmission amplitudes obtained by small amplitude perturbation theory
to first order in the surface profile separating two media with dielectric constants ϵi and ϵj (with the
incident wave in medium i). Note that these amplitudes are different from those obtained for the full
system considered in this paper. The expressions for these reflection amplitudes can be found e.g. in
Refs. [19,20]. Moreover, let r (F)ji (p) and t (F)ji (p) represent the corresponding Fresnel amplitudes. All the
amplitudes considered heremay represent either p-polarization or s-polarization aswe treat in-plane
co-polarized scattering for simplicity.

In the case where only the top interface is rough the scattering event may occur on the first
intersection between the path and the top interface, yielding a reflected scattered path denoted (0)
in Fig. 4(a). Alternatively, on the first intersection the scattering event may yield a refracted (and
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scattered)wave in the film. Since the single scattering event allowed in our analysis has then occurred,
subsequent reflections within the film and refractions through the top interface are treated according
to Snell’s law of reflection and refraction, resulting in the paths denoted (1) and (2) (and so on) in
Fig. 4(a). With each such non-scattering interaction with an interface, the reflection/transmission
amplitude associated with the path is given by the Fresnel amplitude. Following the different paths
depicted in Fig. 4(a) and summing the corresponding (partial) reflection amplitudes we obtain the
following reflection amplitude:

r(p|p0) = r21(p|p0) + t (F)12 (p) r
(F)
32 (p) t21(p|p0) exp(2iϕs)

∞∑
n=0

[
r (F)12 (p) r

(F)
32 (p) exp(2iϕs)

]n

= r21(p|p0) +
t (F)12 (p) r

(F)
32 (p) t21(p|p0) exp(2iϕs)

1 − r (F)12 (p) r
(F)
32 (p) exp(2iϕs)

, (34)

where ϕs = 2π
√

ϵ2d cos θ
(2)
s /λ. The positions of the maxima in the resulting angular intensity

distribution |r(p|p0)|
2 are consistent with the predictions given by Lu et al. [4]. The difference in

optical path length between path (0) and (1), and between (1) and (2), and more generally between
two such consecutive paths, can be expressed as

1 = 2
√

ϵ2d cos θ (2)
s , (35)

where θs in the vacuum is related to θ
(2)
s in the film by

√
ϵ2 sin θ

(2)
s =

√
ϵ1 sin θs according to Snell’s

law. The polar angles of scattering for which the diffusely scattered intensity has local maxima are
given by

2π
√

ϵ2d
λ

cos θ (2)
s =

2πd
λ

(
ϵ2 − ϵ1sin2θs

)1/2
= (ν + 1/2)π, (36a)

while the positions of the minima are determined from the relation

2π
√

ϵ2d
λ

cos θ (2)
s =

2πd
λ

(
ϵ2 − ϵ1sin2θs

)1/2
= νπ, (36b)

where ν ∈ Z. The angular positions of the maxima and minima predicted by Eq. (36) are indicated by
vertical dash-dotted and dotted vertical lines, respectively, in Fig. 2, and these predictions agree well
with the maxima and minima that can be observed in the in-plane co-polarized mean DRC. Equation
(36) does not depend on the polar angle of incidence θ0, which supports the observation that the
positions of themaxima andminima of the incoherent components of themeanDRCdo notmovewith
angle of incidence for weakly rough films. However, the modulation of the fringes with the angle of
incidence cannot be explained if we consider solely the paths depicted in Fig. 4(a). Indeed, additional
paths involving a single scattering event may be drawn as illustrated in Fig. 4(b). It is possible for the
incident path not to experience a scattering event when it encounters the top interface for the first
time, and it may also bounce within the film an arbitrary number of times before it experiences a
scattering event while finally being refracted into the vacuum. Such paths are denoted (1′) and (2′) in
Fig. 4(b). The resulting (partial) reflection amplitude corresponding to the ‘‘single-primed’’ paths in
Fig. 4(b) reads

r ′(p|p0) = t12(p|p0) r
(F)
32 (p0) t

(F)
21 (p0) exp(2iϕ0)

∞∑
n=0

[
r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

]n

=
t12(p|p0) r

(F)
32 (p0) t

(F)
21 (p0) exp(2iϕ0)

1 − r (F)12 (p0) r
(F)
32 (p0) exp(2iϕ0)

, (37)

where ϕ0 = 2π
√

ϵ2d cos θ
(2)
0 /λ. The difference in optical path length between path (1′) and (2′) is

given by

1 = 2
√

ϵ2d cos θ
(2)
0 , (38)
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where
√

ϵ2 sin θ
(2)
0 =

√
ϵ1 sin θ0 according to Snell’s law. Hence, we again obtain a series of maxima

and minima in the mean DRC if we replace θ
(2)
s by θ

(2)
0 in Eq. (36), but this time the positions of

the maxima and minima are indeed a function of the polar angle of incidence θ0. This interference
phenomenon serves to modulate the intensity of the Selényi interference patterns. The static fringe
pattern and the modulation introduced by the angle of incidence is clearly observed in the in-plane
scattered intensities displayed in Fig. 3(a) and (f). However, we still have more optical paths to take
into account. Indeed, paths yielding outgoing paths of type (1′) and (2′) may experience a scattering
event while being reflected on the top surface instead of being refracted into the vacuum. Such a
scattering event is indicated by the star in Fig. 4(b), and thereon the path may be reflected within
the film an arbitrary number of times before being refracted into the vacuum as depicted by the
paths denoted (1′′) and (2′′) in Fig. 4(b). In order to obtain the reflection amplitudes corresponding
to all such paths, it suffices to multiply the overall reflection amplitude for all paths bouncing any
arbitrary number of times with an angle θ

(2)
0 within the film before the scattering event, with the

overall reflection amplitude of all paths starting from the scattering event and bouncing any number
of times within the film before being refracted into the vacuum. In this way we obtain the reflection
amplitude

r ′′(p|p0) = t (F)21 (p0) r
(F)
32 (p0) exp(2iϕ0)

∞∑
n=0

[
r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

]n

× t (F)12 (p) r
(F)
32 (p) r12(p|p0) exp(2iϕs)

∞∑
n′=0

[
r (F)12 (p) r

(F)
32 (p) exp(2iϕs)

]n′

=
t (F)12 (p) r

(F)
32 (p) r12(p|p0) r

(F)
32 (p0) t

(F)
21 (p0) exp(2i(ϕ0 + ϕs))[

1 − r (F)12 (p) r
(F)
32 (p) exp(2iϕs)

] [
1 − r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

] . (39)

Note that the paths (1′′) and (2′′) are somewhat ill-defined in Fig. 4(b). Indeed, each path represents a
family of paths with different history prior to the scattering event. For a given path, the path prior to
the scattering event consists of a number of specular reflections within the film for which amplitudes
dependent on the angle of incidence θ0, as seen previously for the paths represented by r ′, while the
path that follows after the scattering event consists of a number of specular reflectionswithin the film
which are dependent on the angle of scattering θs. Therefore, the phase difference between any two
such paths will, in general, contain an integer combination of ϕ0 and ϕs depending on the number
of bounces prior to and after the scattering event. Eq. (39) hence contains both ϕ0 and ϕs. The total
reflection amplitude for all possible paths involving a single scattering event for the rough-planar
(RP) film [Figs. 4(a) and (b)] is obtained by summing the amplitudes obtained from all the previously
analyzed diagrams, namely

rRP(p|p0) = r(p|p0) + r ′(p|p0) + r ′′(p|p0). (40)

The intensity distribution corresponding to Eq. (40) is shown in Fig. 4(d) for normal incidence and
p-polarized light, and is compared to results based on small amplitude perturbation theory to leading
order, Eq. (32), in the case where only the top interface is rough. The two results are literally
indistinguishable. Similar results were also found in the case of s-polarized light, but the results are
not shown (in order to keep the figure simple). These findings strongly suggest that the two methods
are equivalent. In particular, this means that the perturbative solution to leading order derived in
AppendixA can indeedbe interpreted as a sumof all paths involving a single scattering event, although
this was not obvious from the derivation itself. The model presented here thus justifies this physical
picture. Fig. 4(e) shows the incoherent contribution to the in-plane co-polarizedmean DRC onewould
obtain if only paths of type (1′′), (2′′), and so onwere present, in other words the intensity distribution
resulting from Eq. (39). The relative contribution from r ′′ [Fig. 4(e)] to rRP [Fig. 4(d)] is so small that it
to some approximation may be ignored, as it was in Ref. [4], but we will soon see that this path type
is crucial in the case of a system with the rough interface shifted to the bottom of the film.

Let us nowanalyze the casewhere only the bottom interface is rough, as illustrated in Fig. 4(c). Ifwe
follow paths (1) and (2) in Fig. 4(c), it becomes evident that a pathmust first undergo a Snell refraction
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from vacuum into the film before it may interact with the rough interface. Following this refraction
into the film a given path may undergo an arbitrary number of Snell reflections within the film, now
at a polar angle θ

(2)
0 with the normal to the mean film interfaces, before it is scattered by the rough

interface as indicated by the star in Fig. 4(c). The path then performs an arbitrary number of Snell
reflections within the film, now at a polar angle of scattering θ

(2)
s with the normal to the mean film

interfaces, before it exits into the vacuum. All possible paths involving a single scattering event are for
the present configuration depicted in Fig. 4(c), and it is now immediately evident that these paths bear
close resemblance to those shown in Fig. 4(b) which correspond to the amplitude r ′′. Consequently
the resulting intensity pattern associatedwith the paths in Fig. 4(c) will exhibit, by construction of the
paths, dependencies on both the polar angles of incidence and scattering as given by Eqs. (38) and (35).
This is supported both by the resulting reflection amplitude [Eq. (41)] and the angular positions of the
maxima and minima of the in-plane co-polarized mean DRC displayed in Figs. 2(c) and (d), indicated
as vertical dashed–dotted and dotted lines, respectively. Similar to what was done for the paths of
type (1′′) and (2′′) in the configuration depicted in Fig. 4(b), the resulting reflection amplitude for the
paths shown in Fig. 4(c) can be expressed as the product of the partial reflection amplitude resulting
from all possible paths prior to the scattering event and the partial reflection amplitude resulting from
all possible paths that may follow after the scattering event. The resulting reflection amplitude for the
planar-rough (PR) film [Fig. 4(c)] obtained in this way reads

rPR(p|p0) = t (F)21 (p0) exp(iϕ0)
∞∑
n=0

[
r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

]n

× t (F)12 (p) r32(p|p0) exp(iϕs)
∞∑

n′=0

[
r (F)12 (p) r

(F)
32 (p) exp(2iϕs)

]n′

=
t (F)12 (p) r32(p|p0) t

(F)
21 (p0) exp(i(ϕ0 + ϕs))[

1 − r (F)12 (p) r
(F)
32 (p) exp(2iϕs)

] [
1 − r (F)12 (p0) r

(F)
32 (p0) exp(2iϕ0)

] . (41)

The intensity pattern predicted by Eq. (41) is presented as a solid line in Fig. 4(f) for normal incident
p-polarized light; in the same figure, the filled circles represent the prediction from Eq. (32). As was
the case when only the top interface was rough, we find an excellent agreement between the two
approaches also when only the bottom interface is rough. A similar agreement was also found when
the incident light was s-polarized (results not shown). These findings support our single scattering
interpretation of the perturbative solution to leading order. We have now explained the angular
positions of the Selényi rings and their amplitude modulation with the angle of incidence based on
optical path analysis.

It remains to explain the difference in contrast observed in the interference patterns corresponding
to the geometries where the rough surface is either located on the top of the film or at the bottom of
the film (with the other film interface planar). In providing such an explanation, the expressions given
by Eqs. (40) and (41) will prove to be useful alternative representations of the perturbative solutions
of the RRE to leading order. Indeed, we can now investigate the relative contribution from each type
of path by artificially removing terms. In our analysis of the type of paths in the two configurations,
we have identified that paths of type (1′′) and (2′′), in the configuration where the top interface is
rough, are similar to paths (1) and (2) for the configuration where the bottom interface is rough.
As was mentioned previously, Fig. 4(e) shows the (diffuse) in-plane mean DRC we would obtain if
only paths of type (1′′), (2′′), etc. were present; in other words the scattering intensities originating
in Eq. (39). We observe that the curve in Fig. 4(e) exhibits poor contrast, and is very similar to the
scattering intensities observed in the case where the bottom interface is rough [Fig. 4(f)]. This clearly
hints towards the idea that the poor contrast observed when the bottom film interface is rough is
intrinsically linked to the nature of the paths. Moreover, we have seen that ignoring the contribution
from r ′′ in Eq. (40) gives a result similar to when all terms of the same equation are included. This
indicates that the contribution from r ′′ can be neglected relative to the other two terms in Eq. (40).
However, since paths similar to (1′′), (2′′), etc. are the only paths allowed for the configuration where
the bottom interface is rough, the contrast is poor by default. In both cases, and as we have seen, a
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Fig. 5. The full angular distribution of the incoherent component of the mean DRC,
⟨
∂Rαβ/∂�s

⟩
incoh , as function of the lateral

wave vector q of the light that is scattered from a rough film where either the top interface is rough [Figs. 5(a)–(i)] or the
bottom interface is rough [Figs. 5(j)–(r)] and the other interface of the film is planar. The light of wavelength λ = 632.8 nmwas
incident from vacuum on the rough photoresist film supported by a silicon substrate [ϵ1 = 1.0, ϵ2 = 2.69, ϵ3 = 15.08+0.15i].
The rms-roughness of the rough film interface was σ1 = λ/30, σ2 = 0 [Figs. 5(a)–(i)] and σ1 = 0, σ2 = λ/30 [Figs. 5(j)–(r)].
The surface-height correlation length was a = 211nm = λ/3, the film thickness was d = 5062.4nm = 8λ and the angles
of incidence were (θ0, φ0) = (16.8◦, 0◦) for all panels. The positions of the specular directions in reflection are indicated by
white dots. The remaining parameters assumed for the scattering geometry and used in performing the numerical simulations
had values that are identical to those assumed in obtaining the results of Fig. 2. The upper halves of all panels are results from
the small amplitude perturbation method to leading order, while the lower halves show results obtained through the non-
perturbative solutions of the RRE. The sub-figures in Figs. 5(a)–(i) and (j)–(r) are both organized in the same manner and show
how incident β-polarized light is scattered by the one-rough-interface film geometry into α-polarized light [with α = p, s and
β = p, s] and denoted β → α. Moreover, the notation ◦ → ⋆ is taken to mean that the incident light was unpolarized while
the polarization of the scattered light was not recorded. For instance, this means that the data shown in Fig. 5(a) are obtained
by adding the data sets presented in Figs. 5(b)–(c); similarly, the data shown in Fig. 5(g) result from the addition and division
by a factor two of the data sets presented in Figs. 5(a) and (d); etc.. Finally, the in-plane intensity variations from Figs. 5(b, f)
and (k, o) are the curves depicted in Figs. 2(a)–(b) and (c)–(d), respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

typical pathmust undergo a number of non-scattering reflectionswithin the filmboth before and after
the scattering event occurs. Consequently, the phase difference between any two such paths will in
general involve integer combinations of ϕ0 and ϕs, as can be seen from Eqs. (39) and (41). This phase
mixing is the fundamental reason for the difference in contrast found in the contributions to the total
intensity rRP from the three components of Eq. (40). The difference in contrast can also be investigated
mathematically by estimating the contrast directly, as explained in Appendix C.

We now turn to the full angular distributions for the mean DRC. Figs. 5(a)–(i) and (j)–(r) show the
full angular distributions of the incoherent contribution to the mean DRC, for simulation parameters
corresponding to those assumed in obtaining the results of Figs. 2(a)–(b) and (c)–(d), respectively. In
fact, the non-perturbative results presented in Figs. 2(a)–(b) and (c)–(d) correspond to in-plane cuts
along the q1 axis from Figs. 5(b, f, k, o). The results of Fig. 5 show that, in addition to the interference
phenomena already mentioned, the distributions of the incoherent contributions to the mean DRC
are also weighted by the shifted power spectrum of the rough interface. In the current work this is
a Gaussian envelope centered at the angle of specular reflection, where the width of the envelope is
directly influenced by the surface-height correlation length a. This is shown explicitly in the case of
small amplitude perturbation theory to leading order as the term g(p − p0) in Eq. (32), and its impact
on the scattering distributions should not be confused with the interference phenomena.
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The reader may verify that the maxima and minima are located at the same positions as predicted
for Fig. 2, as is predicted by Eq. (36). However, for Figs. 5(j)–(r) the contrast in the oscillations of the
incoherent contribution to themeanDRC is now less pronounced, as explained for in-plane scattering.

The lower left 2 × 2 panels in each of the panel collections in Fig. 5 display overall dipole-like
patterns oriented along the plane of incidence for co-polarized scattering and perpendicular to it for
cross-polarized scattering. These features are consequences of the definition used for the polarization
vectors of our system. They are similar to the scattered intensity patterns obtained in recent studies
of light scattering from single two-dimensional randomly rough surfaces [16,19,20,27–29].

5.2. Two rough interfaces

We will now turn to the discussion of the geometry where both the top and bottom interfaces of
the film are rough. In the following it will be assumed that these rough interfaces are characterized by
Eq. (6), and for simplicity it will be assumed that their rms-roughness are the same and equal to σ1 =

σ2 = λ/30. The cross-correlation between these two interfaces is characterized by the parameter
γ which is allowed to take values in the interval from −1 to 1. All the remaining experimental
parameters are identical to those assumed in the preceding sections of this paper.

For the case where only one of the two interfaces of the film was rough, we demonstrated that
good agreement exists between the results obtained by a purely numerical solution of the RRE and
those obtained on the basis of a perturbative solution of the same equation [SAPT]. A purely numerical
solution of the RRE associated with a film geometry where more than one of the interfaces are
rough is a challenging task that requires extensive computational resources to obtain, and to the
best of our knowledge such a purely numerical solution has not yet been reported. Therefore, for
film geometries where both interfaces are rough we will only solve the corresponding RRE through
SAPT to obtain the incoherent component of the mean DRC to second order in products of the surface
profile functions, for which the relevant expression is given by Eq. (32). In the following it will be
assumed that for the level of surface roughness thatwe consider here,which provided accurate results
for the corresponding one-rough-interface film geometry considered in the preceding subsection,
such a perturbative solution method is sufficiently accurate to adequately describe the physics of the
problem under investigation.

The first set of scattering results for a film bounded by two rough interfaces is presented in Fig. 6. In
particular, Figs. 6(a)–(c) present the incoherent component of themean DRC for in-plane co-polarized
scattering (i.e. |p̂ · p̂0| = 1 and α = β) as a function of the polar angle of scattering θs, for given polar
angle of incidence equal to θ0 = 0◦, and for three extreme values of the cross-correlation parameter
γ ∈ {0, 1, −1}. These three values of γ physically correspond to the situations of uncorrelated film
interfaces; perfectly positively correlated interfaces so that the film thickness measured along any
vertical line segment will be constant and equal to d; and perfectly negatively correlated or anti-
correlated interfaces, respectively. From Fig. 6(a) one observes that for uncorrelated interfaces of the
film [γ = 0], the number of interference fringes and their angular positions remain unchanged as
compared to what was found when only one of the two interfaces of the filmwas rough. This is found
to be the case for both p- and s-polarized incident light. Such behavior can easily be understood in
terms of the expression in Eq. (32); when γ = 0 only the first two terms in the square brackets on
the right-hand-side of this equation contribute. These two terms are the only non-zero contributions
to the incoherent component of the mean DRC (to second order) for a film system bounded by two
uncorrelated rough surfaces. Moreover, these two contributions are, respectively, identical to the
incoherent component of the mean DRC obtained for film geometries where either the top or the
bottom interface of the film is rough and the other planar. Summing these two contributions will
hence result in summing two similar interference intensity patterns. Consequently, the resulting
interference pattern maintains the same number of fringes at the same positions as the pattern
obtained from scattering from the corresponding one-rough interface film geometry. However, by
gradually introducing more cross-correlation between the two rough interfaces of the film [γ ̸= 0],
one observes that half of the fringes observed for the system for which γ = 0 are significantly
attenuated whereas the other half are enhanced [Figs. 6(b) and (c)]. Furthermore, it is observed from
the results in Figs. 6(a)–(c) that the fringes that are enhanced (attenuated) for the case when γ = 1
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Fig. 6. Incoherent components of the mean differential reflection coefficients ⟨∂Rαα/∂�s⟩incoh for in-plane co-polarized
scattering from a two-rough-interface film geometry for the polar angle of incidence θ0 = 0◦ [Figs. 6(a)–(c)] and θ0 = 60◦

[Figs. 6(d)–(e)]. The wavelength of the incident light was λ = 632 nm, the mean thickness of the film d = 8λ, and the dielectric
constants of themediawere ϵ1 = 1.0, ϵ2 = 2.69, ϵ3 = 15.08+0.15i. The rms-roughness of the interfaceswereσ1 = σ2 = λ/30,
and the Gaussian correlation functions of each of the surfaces were characterized by the correlation length a = λ/3. The cross-
correlation function between the rough top and rough bottom interface of the film had the form (5) and was characterized by
the parameter γ with values as indicated in each of the panels. The vertical dash-dotted and dotted lines indicate the expected
angular positions of the maxima and minima of the scattered intensity as predicted by Eq. (36b), respectively. For reasons of
clarity only the expected positions of the minima of the in-plane mean DRCs are indicated in Figs. 6(a) and (d).

are the fringes being attenuated (enhanced) for the case when γ = −1. This phenomenon can
be attributed to the last term in the square brackets in Eq. (32) which is linear in γ and can take
both positive and negative values and hence increase or decrease the value of the intensity pattern
resulting from the superposition of the scattering amplitudes obtained for the two independent
aforementioned one-rough-interface film geometries.

The last term in the square brackets of Eq. (32) is an interference term. Physically it can be inter-
preted as the interference between a path formed by a single scattering event occurring on the top in-
terface of the film such as one depicted in Figs. 4(a–b), and a path consisting of a single scattering event
taking place on the bottom interface as depicted in Fig. 4(c).When the two interfaces are uncorrelated,
the phase difference between these two optical paths will form an uncorrelated random variable so
that the ensemble average of the termwhere it appears in Eq. (32) will be zero and themean DRCwill
equal the sum of the intensities of the two corresponding one-rough-interface geometries, i.e. it will
be given by the two first terms of Eq. (32). However,when the two interfaces of the film are completely
or partially correlated, |γ | > 0, the phase difference of these two paths becomes a correlated random
variable so that the interference term – the last term in (32) – does not average to zero; this results in
an optical interference effect. Consequently, the observed interference pattern for |γ | > 0 will obtain
a non-zero contribution from the last term in the square brackets of Eq. (32), which thus will make it
different from the pattern obtained for an uncorrelated film geometry that corresponds to γ = 0.

Figs. 6(d)–(f) present for polar angle of incidence θ0 = 60◦ similar results to those presented
in Figs. 6(a)–(c) for normal incidence. Except for the increased intensity of the light scattered into
the forward direction defined by θs > 0◦ relative to what is scattered into angles θs < 0◦, and the
increased contrast of the fringes observed for s-polarized light in the forward direction, the behavior of
themean DRC curves is rather similar for the two angles of incidence. In particular, for the same value
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of γ , fringes are observed at the same angular positions for the two angles of incidence. Moreover,
which of the fringes that are enhanced or attenuated by the introduction of (positive or negative)
cross-correlation between the two rough interfaces of the film are also the same for the two angles of
incidence. Such behavior is as expected for Selényi fringes.

A close inspection of the perturbative results presented in Fig. 6 reveals that for both θ0 = 0◦ and
θ0 = 60◦ the angular positions of the maxima of the in-plane, co-polarized mean DRC curves are
more accurately predicted by Eq. (36) for s-polarized light than for p-polarized light; this seems in
particular to be the case for the larger values of |θs|. We speculate that such behavior is related to a
phase change associated with the Brewster scattering phenomenon [19,20,26] that exists in the case
of p-polarized light, reminiscent of the well known phase change associated with the Brewster angle
found for planar interfaces.

So far in our analysis of the two-rough-interface film geometry, we have observed that the
enhancement or attenuation of the diffusely scattered co-polarized intensity are localized to regions
around the polar angles determined by Eq. (36a). In order to make this observation more apparent,
Figs. 3(a)–(e) present various terms, or combinations of terms, from Eq. (32) when the incident and
scattered light is p-polarized; Figs. 3(f)–(j) depict similar results for s-polarized incident and scattered
light. The three first columns of sub-figures that are present in Fig. 3 – labeled ‘‘Interface 1’’, ‘‘Interface
2’’, and ‘‘Cross-correlation’’ – represent the terms in Eq. (32) that contain the factors σ 2

1 , σ
2
2 , and σ1σ2,

respectively. The cross-correlation terms, Figs. 3(c) and (h), where obtained from the last term of
Eq. (32) with γ = 1. Furthermore, a contour plot that appears in the 4th column of Fig. 3 [labeled
‘‘Total (γ = 1)"], displays the sum of the data used to produce the three first mean DRC contour plots
appearing in the same row. In other words, the results depicted in Figs. 3(d) and (i) are the contour
plots of the incoherent component of the mean DRC for a film geometry bounded by two perfectly
correlated rough interfaces and therefore given by the expression in Eq. (32) with γ = 1. Similarly,
the incoherent component of themeanDRCs for a geometrywhere the two rough interfaces of the film
are perfectly anti-correlated are displayed in the last column of Fig. 3 [Figs. 3(e) and (j)] and labeled
‘‘Total (γ = −1)’’. These latter results correspond to Eq. (32) with γ = −1, and can be obtained by
summing the results of the two first columns and subtracting the result of the third column of Fig. 3.

The contour plots of the cross-correlation terms presented in Figs. 3(c) and (h), which are obtained
under the assumption that γ = 1, display extrema localized on the same grid of points in the (θ0, θs)-
plane as the extrema of the incoherent component of the mean DRC obtained when only one of the
film interfaces is rough [Figs. 3(a)–(b) and (f)–(g)]. An important observation should be made from
these results. The minima of the former (the cross-correlation terms) are negative while the latter are
always non-negative. Hence, the incoherent component of the mean DRC for γ = 1, which according
to Eq. (32) corresponds to the addition of the results used to produce the three first columns of each
row of Fig. 3, will cause fringes localized at the minima of the cross-correlation terms to be attenuated
(or disappear) and those localized at the maxima of the cross-correlation terms to be enhanced [see
Figs. 3(d) and (i)].

The preceding discussion stays valid when considering the full angular distribution of the inco-
herent component of the mean DRC. Fig. 7 presents the full angular distribution of the incoherent
component of the mean DRC, obtained on the basis of Eq. (32), for the two polar angles of incidence
θ0 = 0◦ [Figs. 7(a)–(f)] and θ0 = 60◦ [Figs. 7(g)–(l)]. In this figure, each column formedby the sub-plots
corresponds to either p- or s-polarized incident light, and in all cases the polarization of the scattered
light was not recorded. Moreover, each of the three rows of sub-figures that are present in Fig. 7
corresponds to different values for the cross-correlation parameter γ ∈ {0, 1, −1} as indicated in the
figure. From the results presented in Fig. 7 it should be apparent that what appear as fringes in the
in-plane angular dependence of the mean DRCs indeed are expressed as interference rings in the full-
angular distribution of the same quantity; this is particularly apparent for normal incidencewhere the
intensity of the (Selényi) interference rings is independent of the azimuthal angle of scattering φs (due
to the rotational invariance of the system and the source). The angular distributions in Figs. 7(a)–(f)
also demonstrate very clearly how the possible interference rings present for uncorrelated interfaces
of the film [γ = 0] are enhanced or attenuated when |γ | ̸= 0, i.e. when cross-correlation exists
between the two rough interfaces of the film.

Figs. 7(g)–(l) show that interference rings are also present for non-normal incidence and that they
are present for the same polar scattering angles θs as was found for normal incidence. However, for
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Fig. 7. The full angular distribution of the incoherent component of the mean DRC,
⟨
∂Rαβ/∂�s

⟩
incoh , for incident β-polarized

light that is scattered by a two-rough-interface film geometry into α-polarized light [with α = p, s and β = p, s]. When the
polarization of the scattered light is not observed, the relevant mean DRC quantity is

∑
α=p,s

⟨
∂Rαβ/∂�s

⟩
incoh and this situation

is labeled as β → ⋆. The reported results were obtained on the basis of SAPT, Eq. (32), and the polar angles of incidence
were θ0 = 0◦ [Figs. 7(a)–(f)] and θ0 = 60◦ [Figs. 7(g)–(l)]. The incident in-plane wave vector is indicated by the white dot
for non-normal incidence [Figs. 7(g)–(l)]. The cross-correlation function between the rough top and rough bottom interface of
the film had the form (5) and was characterized by the parameter γ as indicated in the figure (and constant for each row of
sub-figure). The remaining roughness parameters are identical to those assumed in producing the results presented in Fig. 6.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

non-normal incidence the intensity of the rings does depend on the azimuthal angle of scattering. It
is found that the intensity of the interference rings are concentrated to the forward scattering plane
[|φs − φ0| < 90◦].

For normal incidence Fig. 8 presents, for completeness, the full angular distribution of
⟨
∂Rαβ/

∂�s
⟩
incoh for all possible linear polarization couplings, i.e. from incident β-polarized light to scattered

α-polarized light. The values assumed for the cross-correlation parameter in obtaining these results
were γ ∈ {0, 1, −1}. It should be observed from the results of Fig. 8 that interference structures are
observed but they are not ring structures of a constant amplitude as was seen in Figs. 7(a)–(f). The
reason for this difference is that in the results presented in Fig. 8 only scattered light of a given linear
polarization was observed; this contrasts with the situation assumed in producing Fig. 7 where all
scattered light was observed and not only scattered light of a given linear polarization.

We have here only shown the extreme cases of cross-correlation, but one may also consider
intermediate values for the cross-correlation parameter γ . The effect found for γ = ±1 remains
also for 0 < |γ | < 1 but with less pronounced enhancement and attenuation of the rings. The reader
is invited to take a look at the animations in the Supplementary Materials, where the contour plots
of the incoherent component of the mean DRCs are featured for smoothly varying cross-correlation
parameter γ over the interval from −1 to 1, for both normal incidence and for θ0 = 60◦ incidence.

5.3. Transmitted light

Finally, we would like to briefly comment on what would be observed in transmission if a non-
absorbingmediumwas chosen, such as silica. No results will be presented here, but we have observed
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Fig. 8. The full angular distribution of the incoherent component of the mean DRC,
⟨
∂Rαβ/∂�s

⟩
incoh , for incident β-polarized

light of polar angle θ0 = 0◦ that is scattered by a two-rough-interface film geometry into α-polarized light [with α = p, s
and β = p, s] and labeled β → α in the sub-figures. The cross-correlation function between the rough top and rough bottom
interface of the film had the form (5) and was characterized by the parameter γ as marked in the figure. The reported results
were obtained on the basis of SAPT, Eq. (32). The remaining experimental and roughness parameters are identical to those
assumed in producing the results presented in Figs. 6 and 7.

that interference rings are also observed in the diffusely transmitted light and that the effect of
enhancement and attenuation of the rings induced by the interface cross-correlation still holds.
Furthermore, additional features attributed to the so-called Brewster scattering angles and Yoneda
effects in the diffusely transmitted light would then be present. As presented in Ref. [20] for scattering
systems of comparable surface roughness and materials, the diffusely transmitted intensity as a
function of angle of transmission will be modulated by a typical Yoneda intensity pattern. At normal
incidence this pattern exhibits a peak at some critical angle of scattering for s-polarized light and a
vanishing intensity for p-polarized light (see Ref. [20] for details). However, we observed that not only
did the overall intensity distribution undergo such modulation: the angular positions of the fringes
were also affected compared to the predictions provided by naive optical path arguments, analogous
to what was presented in this paper for reflection. The angular positions of the fringes predicted by
optical path arguments leading to equations similar to Eq. (36) still hold for scattering angles below the
Yoneda critical angle, butmust be corrected for scattering angles larger than the Yoneda critical angle.
We speculate that this is due to a gradual phase shift that occurs above the critical angle, and that it is
associatedwith the Yoneda phenomenon. Note that this phenomenon is also observed in the diffusely
reflected light if the medium of incidence has a higher refractive index than that of the substrate (i.e.
ϵ1 > ϵ3) [19,22]. Moreover, we have also observed that when scattered to larger polar angles than
the Brewster scattering angle the p-polarized transmitted light exhibits an additional phase shift, as
compared to s-polarized transmitted light, resulting in a switch in the positions for the maxima and
minima. These and other features of the interference rings in the diffusely transmitted light will be
discussed in more detail in a dedicated paper.



22 J.-P. Banon et al. / Annals of Physics 389 (2018) 0–30

6. Conclusion

Based on both non-perturbative and perturbative solutions of the reduced Rayleigh equation,
we have in this paper demonstrated that for systems composed of two-dimensional weakly rough
dielectric films, Selényi rings can be observed in the diffusely scattered light. These rings make up a
static interference pattern that is modulated by the polar angle of incidence. We have illustrated that
the interference mechanism at play can be explained by simple optical path arguments, leading to a
simplemodel capable of predicting both the angular positions of the rings and the expected difference
in contrast of the rings for film geometries where either the top or the bottom interface of the film is
rough (but not both interfaces).

Furthermore, by investigating the influence of the cross-correlation between the film interfaces
when both interfaces are rough, we have shown that a selective enhancement or attenuation of the
interference rings in the diffusely scattered light can be observed. This suggests that the positions
and the amplitudes of Selényi rings can, when combined with reflectivity and/or ellipsometry
measurements, in principle enable the determination of the mean film thickness, the dielectric
constant of the film material and the statistical properties of the interfaces. In particular, numerical
experiments show that the cross-correlation between interfaces can be assessed. Alternatively, film
geometries consisting of cross-correlated interfaces can be designed to control the intensity pattern
of the diffusely scattered light that they give rise to. Sensors can also be designed in such a way that
the interference rings observed for a clean system with known cross-correlated interfaces will be
modified by the adsorption of a substance or nano-particles onto the first interface, hence partially
destroying the effective cross-correlation between the interfaces. These possibilities are, however,
likely to be limited by the ordering of length scales d > λ > σ , which expresses the fact that
the film thickness must be on the order of a few wavelengths to observe interference rings in the
diffusely scattered light and that the rms-roughness of the interfaces should be small compared to
the wavelength. Such a length scale ordering combined with controlled interface cross-correlation
may be challenging to achieve experimentally.

While the main results presented in this paper considered the diffusely scattered light, the
theoretical framework that it presents also allows for the investigation into the light transmitted
diffusely through transparent film structures with one or several rough interfaces. The developed
theoretical framework is readily generalized to the case of an arbitrary number of correlated layers
and allows, for example, for the study of the effect of gradually changing cross-correlations overmany
interfaces.

We hope that the results presented in this paper can motivate experimental investigations into
the scattering of light from rough film systems so that the predictions that are reported here based on
theoretical grounds can be confirmed experimentally.
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Appendix A. Perturbative solution

We present here a method known as small amplitude perturbation theory that we apply to find an
approximate solution of the reduced Rayleigh equations. We will illustrate the method considering
a system made of a stack of three media separated by two randomly rough interfaces, like the one
depicted in Fig. 1. Using the notation introduced in Section 3, we know that the reduced Rayleigh
equations for the reflection amplitude is given by Eqs. (26) and (27)∫

Θ
+,+
3,1 (p | q) R(q | p0)

d2q
(2π )2

= −Θ
+,−
3,1 (p | p0) , (A.1)
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where we recall that the forward two-interface transfer kernel is defined as

Θ
a3,a1
3,1 (p3 | p1) =

∑
a2=±

a2

∫
Θ

a3,a2
3,2 (p3 | p2)Θ

a2,a1
2,1 (p2 | p1)

d2p2
(2π )2

, (A.2)

with the single-interface kernelsΘb,a
l,m defined for successivemedia, i.e. l,m ∈ {1, 3} such that |l−m| =

1, a, b ∈ {±}, as

Θ
b,a
l,m(p | q) = α−1

l (p)J b,a
l,m (p | q) Mb,a

l,m(p | q). (A.3)

The perturbative method consists in expanding each single-interface kernel in a series of Fourier
moments. In order to avoid unnecessary lengthy expansion, we first introduce some notations that
will allow us to keep a compact derivation and proved to be useful for generalizing to an arbitrary
number of layers and for numerical implementation. We define

Θ̃
a3,a1,(m)
3,1 (p3 | p2 | p1) =

∑
a2=±

a2 α−1
3 (p3)

[
a3α3(p3) − a2α2(p2)

]m2−1

× exp
[
−i

{
a3α3(p3) − a2α2(p2)

}
d2

]
× α−1

2 (p2)
[
a2α2(p2) − a1α1(p1)

]m1−1

× exp
[
−i

{
a2α2(p2) − a1α1(p1)

}
d1

]
× Ma3,a2

3,2 (p3 | p2)M
a2,a1
2,1 (p2 | p1) , (A.4)

wherem = (m1,m2) ∈ N2 is a pair-index (i.e. a two componentmulti-index). Here, we havemade the
choice of factorizing the phase factor e−i(aj+1αj+1(pj+1)−ajαj(pj))dj , with dj = ⟨ζj⟩ being the offset height
of the jth interface, from each factor J

aj+1,aj
j+1,j (pj+1 | pj) for later convenience. Given this definition, an

expansion of the two-interface kernel in Fourier moments is given by

Θ
a3,a1
3,1 (p3 | p1) =

∞∑
m=0

(−i)|m|

m!

∫
ĥ(m2)
2 (p3 − p2) ĥ

(m1)
1 (p2 − p1)Θ̃

a3,a1,(m)
3,1 (p3 | p2 | p1)

d2p2
(2π )2

=

∞∑
m=0

(−i)|m|

m!
Za3,a1,(m)
3,1 (p3 | p1) , (A.5)

where
∑

∞

m=0 ≡
∑

∞

m1=0
∑

∞

m2=0, |m| = m1 +m2 is the length of the pair-index, andm! = m1!m2!, and
for all j ∈ {1, 2},

ĥ
(mj)
j (q) =

∫
exp

[
−iq · x

] [
ζj(x) − dj

]mjd2x , (A.6)

is the Fourier moment of hj = ζj − dj of order mj. It is then clear that Za3,a1,(m)
3,1 (p3 | p1) is a term of

order |m| in product of surface profiles. The reflection amplitude can be expanded as

R(q | p0) =

∞∑
j=0

(−i)j

j!
R(j)(q | p0) , (A.7)

where the term R(j)(q | p0) is of order j in product of surface profiles. We are now ready to start the
derivation of the perturbative expansion. By plugging Eqs. (A.5) and (A.7) into Eq. (A.1) we obtain

∞∑
m′=0
j=0

(−i)|m
′
|+j

m′! j!

∫
Z+,+,(m′)
3,1 (p | q) R(j)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

(−i)|m|

m!
Z+,−,(m)
3,1 (p | p0). (A.8)

Summing over all multi-index m is equivalent to summing over subsets Sm = {m ∈ N2
||m| = m}

of multi-index of constant lengthm, i.e. that we have
∑

∞

m=0 ≡
∑

∞

m=0
∑

m∈Sm
, therefore the previous
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equation can be re-written as
∞∑

m′=0
j=0

∑
m′∈S

m′

(−i)m
′
+j

m′! j!

∫
Z+,+,(m′)
3,1 (p | q) R(j)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

∑
m∈Sm

(−i)m

m!
Z+,−,(m)
3,1 (p | p0). (A.9)

We then use the definition of the multinomial coefficient in multi-index form as |m|!/m! =
(
|m|

m

)
to

obtain
∞∑

m′=0
j=0

(−i)m
′
+j

m′! j!

∑
m′∈S

m′

(
m′

m′

)∫
Z+,+,(m′)
3,1 (p | q) R(j)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

(−i)m

m!

∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0). (A.10)

We nowmake a change of summation index j ↔ m − m′ on the left hand side of the above equation.
This makes clearly appear terms of orderm in product of surface profiles. We obtain

∞∑
m=0

m∑
m′=0

(−i)m

m′! (m − m′)!

∑
m′∈S

m′

(
m′

m′

)∫
Z+,+,(m′)
3,1 (p | q) R(m−m′)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

(−i)m

m!

∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0) , (A.11)

which can be re-written with the use of the definition of the binomial coefficient
(m
m′

)
as

∞∑
m=0

(−i)m

m!

m∑
m′=0

(
m
m′

) ∑
m′∈S

m′

(
m′

m′

)∫
Z+,+,(m′)
3,1 (p | q) R(m−m′)(q | p0)

d2q
(2π )2

= −

∞∑
m=0

(−i)m

m!

∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0).

It is now time to identify terms of same orders in the left and right hand sides. For m = 0, only the
term form′

= (0, 0) remains in the left hand side, only the termm = (0, 0) remains in the right hand
side and we have∫

Z+,+,(0)
3,1 (p | q) R(0)(q | p0)

d2q
(2π )2

= −Z+,−,(0)
3,1 (p | p0). (A.12)

which, when expanded, reads∫∫
ĥ(0)
2 (p − p2) ĥ

(0)
1 (p2 − q)Θ̃+,+,(0)

3,1 (p | p2 | q)
d2p2
(2π )2

R(0)(q | p0)
d2q
(2π )2

= −

∫
ĥ(0)
2 (p − p2) ĥ

(0)
1 (p2 − p0)Θ̃

+,−,(0)
3,1 (p | p2 | p0)

d2p2
(2π )2

. (A.13)

From the definition of the zero order Fourier moment, we have ĥ(0)
j (q) = (2π )2 δ(q), which yields

Θ̃
+,+,(0)
3,1 (p | p | p) R(0)(p | p0) = −(2π )2Θ̃+,−,(0)

3,1 (p0 | p0 | p0) δ(p − p0). (A.14)
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Here, the reader may recognize the solution of the reflection problem for a stack of layers with flat
interfaces, i.e. Fresnel amplitudes

R(0)(p|p0) = −
[
Θ̄

+,+
3,1 (p0)

]−1
Θ̄

+,−
3,1 (p0) (2π )2δ(p − p0) = −ρ0(p0) (2π )2δ(p − p0) , (A.15)

where Θ̄
+,+
3,1 (p0) ≡ Θ̃

+,+,(0)
3,1 (p0 | p0 | p0) and Θ̄

+,−
3,1 (p0) ≡ Θ̃

+,−,(0)
3,1 (p0 | p0 | p0). Thus, the order zero of

the perturbative expansion corresponds to the Fresnel coefficients for the corresponding systemwith
flat interfaces. For ordersm ≥ 1, we have

m∑
m′=0

(
m
m′

) ∑
m′∈S

m′

(
m′

m′

)∫
Z+,+,(m′)
3,1 (p | q) R(m−m′)(q | p0)

d2q
(2π )2

= −

∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0).

By isolating the term corresponding to m′
= 0, hence m′

= (0, 0) and using that for all j ∈ {1, 2} we
have ĥ(0)

j (q) = (2π )2 δ(q), we obtain

R(m)(p | p0) = −
[
Θ̄

+,+
3,1 (p)

]−1

⎡⎣ ∑
m∈Sm

(
m
m

)
Z+,−,(m)
3,1 (p | p0)

+

m∑
m′=1

(
m
m′

)∫ ∑
m′∈S

m′

(
m′

m′

)
Z+,+,(m′)
3,1 (p | q)R(m−m′)(q | p0)

d2q
(2π )2

⎤⎦ . (A.16)

We have finally obtained a recursive expression giving themth order term in the reflection amplitude
expansion as a function of lower order terms. For weakly rough surfaces, an approximation based on
a truncation of the expansion of the reflection amplitude Eq. (A.7) to the first non-trivial order often
yields accurate physical insights. Form = 1, we obtain that

R(1)(p | p0) = −
[
Θ̄

+,+
3,1 (p)

]−1
[
Z+,−,(1,0)
3,1 (p | p0) + Z+,−,(0,1)

3,1 (p | p0)

+

∫ (
Z+,+,(1,0)
3,1 (p | q) + Z+,+,(0,1)

3,1 (p | q)
)
R(0)(q | p0)

d2q
(2π )2

]
= −

[
Θ̄

+,+
3,1 (p)

]−1
[
Z+,−,(1,0)
3,1 (p | p0) + Z+,−,(0,1)

3,1 (p | p0)

−

(
Z+,+,(1,0)
3,1 (p | p0) + Z+,+,(0,1)

3,1 (p | p0)
) [

Θ̄
+,+
3,1 (p0)

]−1
Θ̄

+,−
3,1 (p0)

]
, (A.17)

where we have used the previously obtained expression for R(0)(q | p0) in Eq. (A.15), and in particular
the fundamental property of the Dirac delta. From the definition of Za3,a1,(m)

3,1 [Eq. (A.5)] it is clear that
form = (1, 0) or (0, 1) the integration reduces to

Za3,a1,(1,0)
3,1 (p | p0) = ĥ(1)

1 (p − p0)Θ̃
a3,a1,(1,0)
3,1 (p | p | p0) (A.18a)

Za3,a1,(0,1)
3,1 (p | p0) = ĥ(1)

2 (p − p0)Θ̃
a3,a1,(0,1)
3,1 (p | p0 | p0). (A.18b)

It is convenient to group terms with common factor ĥj ≡ ĥ(1)
j in Eq. (A.17), which leads to

R(1)(p | p0) = ĥ1(p − p0)ρ1(p | p0) + ĥ2(p − p0)ρ2(p | p0) , (A.19)

with

ρ1(p | p0) =
[
Θ̄

+,+
3,1 (p)

]−1
[
Θ̃

+,+,(1,0)
3,1 (p | p | p0)ρ0(p0) − Θ̃

+,−,(1,0)
3,1 (p | p | p0)

]
(A.20a)

ρ2(p | p0) =
[
Θ̄

+,+
3,1 (p)

]−1
[
Θ̃

+,+,(0,1)
3,1 (p | p0 | p0)ρ0(p0) − Θ̃

+,−,(0,1)
3,1 (p | p0 | p0)

]
. (A.20b)
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We have treated the case of reflection as a representative example, but the same method applies for
transmission.

Appendix B. Differential reflection coefficient

Assuming we have obtained the reflection amplitudes Rαβ (p | p0) either by using the perturbative
approach or by the purely numerical simulation, we can now proceed to express the differential
reflection coefficient (DRC) defined as the time-averaged flux radiated around a given scattering
direction (θs, φs) per unit solid angle and per unit incident flux and denoted ∂R/∂�s(p | p0). Let a
virtual hemisphere of radius r ≫ c/ω lie on the plane x3 = 0 on top of the scattering system. The
support of this hemisphere is a disk of area S = πr2. We consider the scattering from a truncated
version of the scattering system inwhich the surface profiles are set to be flat outside the disk support.
Consequently, the field amplitudes we will manipulate are not strictly speaking those of the full
system of interest butwill converge to them as r → ∞. Wewill nevertheless keep the same notations
as that from the full system introduced in Section 3 for simplicity. The time-averaged flux incident on
this disk is given by

Pinc/S = −Re
c
8π

∫
S

[
E∗

0(p0) ×

( c
ω

k−

1 (p0) × E0(p0)
)]

· ê3 exp
[
−i(k−∗

1 (p0) − k−

1 (p0)) · x
]
d2x∥

= −
c2

8πω
Re

∫
S

[
|E0(p0)|

2 k−

1 (p0) −
(
E∗

0(p0) · k−

1 (p0)
)
· E0(p0)

]
· ê3d2x∥

= S
c2

8πω
α1(p0) |E0(p0)|

2

= S
c2

8πω
α1(p0)

[⏐⏐E0,p⏐⏐2 +
⏐⏐E0,s⏐⏐2] . (B.1)

Here, the ∗ denotes the complex conjugate, and incident field amplitude E0(p0) = E0,p ê
−

p,1(p0) +

E0,s ês(p0) as defined in Eq. (22), the vector identity a × (b × c) = (a · c)b − (a · b)c and the
orthogonality between the field and the wave vector E∗

0(p0) · k−

1 (p0) = 0 have been used. Note that
the flux incident on the disk is proportional to the disk area. Let us now consider the outgoing flux
crossing an elementary surface dσ = r2 sin θsdθsdφs = r2d�s around a point r = r (sin θs cosφs ê1 +

sin θs sinφs ê2 + cos θs ê3) = r n̂. The flux crossing this elementary surface is given by

Pdσ =
c
8π

Re
[
E+∗

1 (r) × H+

1 (r)
]
· n̂ dσ . (B.2)

We then use the well-known asymptotic expansion of the field in the far-field given by (see Refs.
[30,31])

E+

1 (r) ∼ −i ϵ1/2
1

ω

2π c
cos θs

exp(iϵ1/2
1

ω
c r)

r
E+

1 (p) (B.3a)

H+

1 (r) ∼ −i ϵ1
ω

2π c
cos θs

exp(iϵ1/2
1

ω
c r)

r
n̂ × E+

1 (p) (B.3b)

where p =
√

ϵ1
ω
c (sin θs cosφs ê1 + sin θs sinφs ê2). This asymptotic approximation will becomemore

and more accurate as we let r → ∞. Plugging Eq. (B.3) into Eq. (B.2) we obtain

Pdσ = ϵ
3/2
1

( ω

2π c

)2
cos2θs

c
8π

|E+

1 (p)|
2 d�s

= ϵ
3/2
1

( ω

2π c

)2
cos2θs

c
8π

(
|E+

1,p(p)|
2
+ |E+

1,s(p)|
2
)

d�s. (B.4)

The total differential reflection coefficient is then given by

∂R
∂�s

(p | p0) = lim
r→∞

Pdσ
Pinc/S d�s

= lim
r→∞

ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

|E+

1,p(p)|
2
+ |E+

1,s(p)|
2

|E0,p|
2
+ |E0,s|

2 . (B.5)
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From the total differential reflection coefficient given by Eq. (B.5), we deduce the differential reflection
coefficient when an incident plane wave of polarization β , with in-plane wave vector p0 is reflected
into a plane wave of polarization α with in-plane wave vector p given as

∂Rαβ

∂�s
(p | p0) = lim

r→∞

ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

⏐⏐Rαβ (p | p0)
⏐⏐2 = lim

r→∞

∂R(S)
αβ

∂�s
(p | p0). (B.6)

As we are interested in averaging the optical response over realizations of the surface profiles, we
consider the following ensemble average⟨

∂R(S)
αβ

∂�s
(p | p0)

⟩
=

ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

⟨
|Rαβ (p | p0)|

2⟩ . (B.7)

By decomposing the reflection amplitudes as the sum of the mean and fluctuation (deviation from
the mean)

Rαβ (p | p0) =
⟨
Rαβ (p | p0)

⟩
+

[
Rαβ (p | p0) −

⟨
Rαβ (p | p0)

⟩]
, (B.8)

we can decompose the mean differential reflection coefficient as the sum of a coherent term and an
incoherent term⟨

∂R(S)
αβ

∂�s
(p | p0)

⟩
=

⟨
∂R(S)

αβ

∂�s
(p | p0)

⟩
coh

+

⟨
∂R(S)

αβ

∂�s
(p | p0)

⟩
incoh

, (B.9)

where ⟨
∂R(S)

αβ

∂�s
(p | p0)

⟩
coh

=
ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

⏐⏐⟨Rαβ (p | p0)
⟩⏐⏐2 (B.10a)⟨

∂R(S)
αβ

∂�s
(p|p0)

⟩
incoh

=
ϵ1

S

( ω

2π c

)2 cos2θs
cos θ0

[⟨⏐⏐Rαβ (p|p0)
⏐⏐2⟩ −

⏐⏐⟨Rαβ (p|p0)⟩
⏐⏐2] . (B.10b)

If we now use the expression found in Appendix A for the reflection amplitudes to first order in the
product of surface profiles,

R(p | p0) ≈ R(0)(p | p0) − iR(1)(p | p0) , (B.11)

where R(0)(p | p0) is the response from the corresponding system with flat interfaces (i.e. that of a
Fabry–Perot interferometer), Eq. (A.15), and R(1)(p | p0) is given in Eq. (A.19), we obtain that the factor
in the square bracket in Eq. (B.10b) reads⟨

|Rαβ (p | p0)|
2⟩

−
⏐⏐⟨Rαβ (p | p0)

⟩⏐⏐2 =

⟨⏐⏐⏐R(1)
αβ (p | p0)

⏐⏐⏐2⟩
=

⟨
|ĥ1,S(p − p0)|

2⟩
|ρ1,αβ (p | p0)|2

+

⟨
|ĥ2,S(p − p0)|

2⟩
|ρ2,αβ (p | p0)|2

+ 2 Re
⟨
ĥ1,S(p − p0)ĥ

∗

2,S(p − p0)
⟩

×
(
ρ1,αβ (p | p0)ρ∗

2,αβ (p | p0)
)
. (B.12)

Note here that we are still dealing with a scattering systemwhose surface profiles are flat outside the
disk of radius r , hence the subscript S. For the statistical properties attributed to the surface profiles
in Section 2, we have⟨

ĥi,S(q)ĥ∗

j,S(q)
⟩
=

⟨∫
S

∫
S
hi(x)hj(x′) exp

[
iq · (x − x′)

]
d2x d2x′

⟩
=

∫
S

∫
S

⟨
hi(x)hj(x′)

⟩
exp

[
iq · (x − x′)

]
d2x d2x′
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=

∫
S

∫
S
γij W (x − x′) exp

[
iq · (x − x′)

]
d2x d2x′. (B.13)

Here we have used the definition of the Fourier transform, and the fact that ensemble average
commutes with the integration of the surfaces and the definition of the correlation function. We have
also introduced the shorthand γij =

[
δij + γ (1 − δij)

]
σi σj. Via the change of variable u = x − x′ we

obtain ⟨
ĥi,S(q)ĥ∗

j,S(q)
⟩
= S γij

∫
S
W (u) exp(iq · u) d2u = S γij gS(q). (B.14)

Thus ⟨
|Rαβ (p | p0)|

2⟩
−

⏐⏐⟨Rαβ (p | p0)
⟩⏐⏐2 = S gS(p − p0)

[
σ 2
1

⏐⏐ρ1,αβ (p | p0)
⏐⏐2 + σ 2

2

⏐⏐ρ2,αβ (p | p0)
⏐⏐2

+ 2γ σ1σ2 Re
{
ρ1,αβ (p | p0)ρ∗

2,αβ (p | p0)
} ]

. (B.15)

Finally, by plugging the above equation into Eq. (B.10b), the surface area S cancels and letting r → ∞,
gS → g (where we remind the reader that g is the power spectrum of the surface profiles) and
we finally obtain the expression for the incoherent component of the mean differential reflection
coefficient for the entire (infinite) system under the first order approximation of the reflected
amplitudes in product of the surface profiles⟨

∂Rαβ (p|p0)
∂�s

⟩
incoh

= ϵ1

( ω

2πc

)2 cos2θs
cos θ0

g(p − p0)
[
σ 2
1

⏐⏐ρ1,αβ (p | p0)
⏐⏐2 + σ 2

2

⏐⏐ρ2,αβ (p | p0)
⏐⏐2

+ 2γ σ1σ2 Re
{
ρ1,αβ (p | p0)ρ∗

2,αβ (p | p0)
} ]

. (B.16)

Appendix C. Contrast estimates

We propose here to motivate mathematically that the phase mixing in paths of type (1’’), (2’’) etc.,
from Fig. 4(b) and those from Fig. 4(c) intrinsically leads to poorer contrast in the interference pattern
found in the incoherent contribution to the mean DRC than, for example, paths of type (1), (2) in
Fig. 4(a), where no phase mixing is allowed. As a prototypical reflection amplitude for a sum of paths
that involves phase mixing and a sum of paths that does not (and will serve as reference), let us have
respectively

rmixϕ =
r̃

[1 − r0 exp(2iϕ0)] [1 − rs exp(2iϕs)]
(C.1a)

rref =
r̃

1 − rs exp(2iϕs)
. (C.1b)

These reflection amplitudes mimic the structure from Eqs. (41) and Eq. (34) respectively, but we will
see that the precise expressions for the numerators do not matter for the contrast, and are hence
denoted by the same symbol r̃ . Note that all the reflection amplitudes in Eq. (C.1) depend on angles
of incidence and scattering, but for clarity we drop these arguments. Our first step consists in taking
the square modulus of Eq. (C.1)

Imixϕ =
|r̃|2

|1 − r0 exp(2iϕ0)|2 |1 − rs exp(2iϕs)|2
(C.2a)

Iref =
|r̃|2

|1 − rs exp(2iϕs)|2
, (C.2b)

and in bounding the intensity by using the triangular inequality

|r̃|2

(1 + |r0|)2 (1 + |rs|)2
≤ Imixϕ ≤

|r̃|2

(1 − |r0|)2 (1 − |rs|)2
(C.3a)
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|r̃|2

(1 + |rs|)2
≤ Iref ≤

|r̃|2

(1 − |rs|)2
. (C.3b)

It is clear from Eq. (C.3) that the intensity lies between two bounding curves. A fair estimate for the
trend, i.e. the intensity without the oscillationswould be given by |r̃|2, andwe thus estimate, or rather
define, the inverse contrast as

η−1
mixϕ = (1 + |r0|)2 (1 + |rs|)2 − (1 − |r0|)2 (1 − |rs|)2 (C.4a)

η−1
ref = (1 + |rs|)2 − (1 − |rs|)2. (C.4b)

This may not be the most natural definition for the contrast, but we choose this one since it is easier
to work with and will not change the conclusion. By re-writing Eq. (C.4) by using straightforward
algebra, we obtain

η−1
mixϕ = 4|rs| + 4|r0| + 4|r0||rs| + 4|r0|2|rs| (C.5a)

η−1
ref = 4|rs|. (C.5b)

This shows that the inverse contrast for phase mixing is larger than that of the reference, i.e. that the
contrast in the case of phase mixing is smaller than that of the reference. Indeed, the two last terms
in Eq. (C.5a) are cross-terms resulting directly from the phase mixing nature of the initial reflection
amplitude. Note that the choice for the reference was arbitrary and one could choose to study paths
of type (1’), (2’), etc., in Fig. 4(b), and hence replace rs exp(2iϕs) in Eq. (C.1) by r0 exp(2iϕ0), and the
conclusion would still hold.

Appendix D. Supplementary data

Supplementarymaterial related to this article can be found online at https://doi.org/10.1016/j.aop.
2017.12.003.
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The optical Yoneda and Brewster scattering phenomena are studied theoretically based on pertu-
bative solutions of the reduced Rayleigh equations. The Yoneda phenomenon is characterized as an
enhancement of the intensity of the diffuse light scattered by a randomly rough interface between
two dielectric media when the light is observed in the optically denser medium. The intensity en-
hancement occurs above a critical angle of scattering which is independent of the angle of incidence
of the excitation. The Brewster scattering phenomenon is characterized by a zero scattered intensity
either in the reflected or transmitted light for an angle of scattering which depends on the angle of
incidence. We also describe a generalization of the Brewster scattering phenomenon for outgoing
evanescent waves and circularly-polarized waves. The physical mechanisms responsible for these
phenomena are described in terms of simple notions such as scalar waves, oscillating and rotating
dipoles and geometrical arguments, and are valid in a regime of weakly rough interfaces.

I. INTRODUCTION

When light is scattered in either reflection or transmis-
sion from or through a weakly rough interface, two phe-
nomena of interest can be observed in the scattered in-
tensity distributions. These are the Yoneda phenomenon,
relatable to the idea of total internal reflection, and the
Brewster scattering phenomenon, relatable to the polar-
izing angle.

The Yoneda phenomenon is characterized as an en-
hancement of the intensity of the light scattered diffusely
by a randomly rough interface between two dielectric me-
dia when the light is observed in the optically denser
medium. The intensity enhancement occurs above a crit-
ical angle of scattering which is independent of the angle
of incidence of the excitation. This critical angle is al-
ways the polar angle, in the denser medium, for which
the wavenumber of a plane wave turns non-propagating
in the less dense medium [1, 2]. Although well known
in the scattering of x-rays from both metallic [3–8] and
non-metallic [9–12] surfaces, a paper by Kawanishi et
al. [13] marks their first explicit appearance in optics[14].
Kawanishi et al., by the use of the stochastic functional
approach, studied the case where a two-dimensional ran-
domly rough interface between two dielectric media is il-
luminated by p- or s-polarized light from either medium.
They obtained several interesting properties of the re-
flected and transmitted light that are associated with the
phenomenon of total internal reflection when the medium
of observation is the optically denser medium. These in-
clude the appearance of Yoneda peaks, which were de-
scribed by the authors as “quasi-anomalous scattering
peaks.” As an interpretation of their results, the authors
suggested that the Yoneda peaks may be associated with
the presence of lateral waves [15] propagating along the
interface in the optically less dense medium. Although
the mathematical origin of the Yoneda effect has been
shown through various perturbative approaches based on
the reduced Rayleigh equations (RRE), a physical inter-

pretation of the effect is still under discussion; a summary
of which can be found in Ref. 1. Optical Yoneda peaks
were recently observed experimentally for a configuration
of reflection from a randomly rough dielectric interface,
when the medium of incidence was the optically denser
medium [16].

The Brewster angle is maybe the best known planar
surface reflection effect where the polarization of light
plays a major role. Proposed as a polarizing angle by
Sir David Brewster in 1812 [17], its exact definition has
been a slight matter of debate in modern times [18]. For
isotropic dielectric non-magnetic materials, however, it
may be defined to be the angle of incidence, onto a planar
dielectric surface, for which the reflection amplitude for
p-polarized light (light polarized in the plane given by
the incident light and the surface normal) is zero.

A complete physical understanding of the Brewster
phenomenon is, at best, non trivial. The most com-
mon explanation for the gradual disappearance of the
reflection amplitude is based on the radiation pattern of
dipoles induced in the scattering substrate [19, 20]. This
idea is not new, and can be traced back to investiga-
tions by e.g. Sommerfeld [21]. Modelling the scattering
from a rough surface as a layer of polarizable spheres led
Greffet and Sentenac [22] to the same conclusion. In a
later collaboration with Calvo-Perez, this point of view
was reinforced through the development of, and the re-
sults given by, the Mean Field Theory (MFT) [23, 24].
However, amongst others Lekner [25] argues that even if
the dipole argument holds great explanatory power for
a wide range of scattering systems, he challenges the ar-
gument for the case of the Brewster angle for dielectric
media. His main issue with the argument is that the
accelerated electrons cannot oscillate as dipoles in the
transmitted medium in the case of the wave approaching
an interface with vacuum on the opposing side, since the
argument goes that the dipoles are oriented according to
the field in the refracted wave. Also, there is an analogue
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to Brewster’s angle for longitudinal acoustic waves called
Green’s angle, and in this case the radiation from each
scatterer does not have dipole character [25].

These and other conceptual issues in the explanatory
model for the Brewster angle are attempted reconciled
by Doyle [26] in his work with a factored form of the
Fresnel equations. Inspired by the work of Sein [27], and
Pattanayak and Wolf [28] on the interpretation and gen-
erality of the extinction theorem, Doyle claims that the
proper understanding of the Brewster phenomenon has
been hampered by the attention given to surface sources
through a slightly misunderstood interpretation of the
Ewald-Oseen extinction theorem [29]. Doyle emphatizes
the participation of the entire media in the creation of
the reflected wave, and makes use of Ewald’s original
concept of “wave triads”. Doyle’s factored form of the
Fresnel equations separately expresses the scattering pat-
tern from individual dipoles and the coherent scattering
function of the dipole array, and manages in this way
to explain the polarizing angles for any combination of
transparent media.

Kawanishi et al. [13] observed angles of zero scattering
intensity to first order in their approach in the distribu-
tions of the intensity of the incoherently scattered light
when the incident light was p-polarized. Due to their re-
semblance to the Brewster angle in the reflectivity from
a flat interface, they dubbed these angles the “Brewster
scattering angles”. These angles were observed in both
reflection and transmission, for light incident from either
medium.

Both the Brewster scattering angles and Yoneda peaks
were recently observed and discussed in numerical simu-
lations of scattering in both reflection and transmission
from weakly rough surfaces [1, 2], and also in a film ge-
ometry [30] where it was claimed that the phase shifts
associated with these phenomena impact the angular po-
sitions of interference rings of diffusely scattered light,
known as Selényi rings.

In this paper we seek to further illuminate the phenom-
ena of Brewster scattering angles and Yoneda peaks and
more generally identify the fundamental mechanisms at
play in the scattering of polarized light by a weakly rough
surface. After describing the statistical properties of the
interface in Sec. II, we derive, in Sec. III, a set of reduced
Rayleigh equations (RREs) for the case of electromag-
netic scattering inspired by the work of Soubret et al. [31]
and give the corresponding RRE for scalar waves sub-
jected to the continuity of the scalar field and its normal
derivatives with respect to the interface. Furthermore,
we give an approximate solution of the RREs to first or-
der in the surface profile function in a series expansion of
the reflection and transmission amplitudes. The first or-
der perturbative solution will be our main tool of investi-
gation in Sec. IV. Section IV A is devoted to summarizing
some phenomenological observations which have been ob-
tained in the literature before embarking in Sec. IV B into
a more in-depth analysis of the reflection and transmis-
sion amplitudes with special care given to their physical

interpretation. In particular, we show how the response
can be factorized as a product of a term reminiscent of a
scalar wave response and a term encoding the component
of the response specific to polarization. Such a factoriza-
tion is a clear signature of two aspects of scattering by
arrays of dipoles; the radiated power is controlled both
by the interference of the spherical-like waves emitted
by each atomic source and their individual characteristic
dipolar radiation. Once the general physical interpreta-
tion of the equations is clarified, we explain in detail the
origin of the Yoneda phenomenon in Sec. IV C, and show
that it is fundamentally a single scattering, scalar wave
phenomenon. The Brewster scattering phenomenon, and
more generally all polarization induced effects, are then
discussed thoroughly in Secs. IV D-IV F. We first restrict
the analysis of the Brewster scattering phenomenon to
scattering in the plane of incidence and derive a one-
line criterion for predicting the Brewster scattering angle
which allows for a simple geometrical interpretation. A
detour via the analysis of the polarization properties of
the radiation of oscillating and rotating dipoles in free
space is made in Sec. IV E in order to facilitate the in-
tuitive understanding of the full angular distribution of
scattering by a rough surface discussed in Sec. IV F. Fi-
nally, Sec. V summarizes the conclusions we have drawn
from this study and suggests experimental setups to test
some interesting predictions made by the theory.

II. SCATTERING SYSTEMS

FIG. 1. Definitions of the angles of incidence and scattering,
together with the relevant wave vectors.

The system we study in this work consists of a non-
magnetic dielectric medium (medium 1), whose dielectric
constant is ϵ1 > 0 (refractive index n1 =

√
ϵ1), in the re-

gion x3 > ζ(x∥), and a non-magnetic dielectric medium
(medium 2), whose dielectric constant is ϵ2 > 0 (refrac-
tive index n2 =

√
ϵ2), in the region x3 < ζ(x∥) [Fig.

1]. The definition of the geometry is set in the three-
dimensional space endowed with a Cartesian coordinate
system (O, ê1, ê2, ê3), with the vector plane (ê1, ê2) par-
allel to the mean plane of the interface. The origin, O,
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of the coordinate system can be arbitrarily chosen, only
affecting the complex reflection and transmission ampli-
tudes by an overall phase factor which plays no role in
the intensity of the scattered light. A point is then rep-
resented as x =

∑3
i=1 xiêi = x∥ + x3 ê3. An overview of

a typical system geometry is provided in Fig. 1. The sur-
face profile function ζ will be assumed to be a realization
of a continuous, differentiable, single-valued, stationary,
isotropic, Gaussian random process with zero mean and
given auto-correlation. More specifically, the surface pro-
file function is assumed to satisfy the following properties:

⟨
ζ(x∥)

⟩
= 0 , (1a)⟨

ζ(x∥)ζ(x
′
∥)
⟩
= σ2 W (x∥ − x′

∥) . (1b)

Here and in the following, the angle brackets denote an
average over an ensemble of realizations of the stochastic
process, σ denotes the rms roughness and W the height
auto-correlation function normalized so that W (0) = 1.
In particular, we will deal with the special case of a Gaus-
sian auto-correlation function defined by

W (x∥) = exp

(
−
|x∥|2

a2

)
, (2)

where a is the correlation length. The corresponding
power spectrum (defined as the Fourier transform of W )
is then

g(p) = πa2 exp

(
−|p |2a2

4

)
, (3)

with p = p1 ê1 + p2 ê2.

III. THEORY

The theoretical approach used in this work to study the
scattering of light from the systems of interest is based
on the so-called reduced Rayleigh equations. A reduced
Rayleigh equation is an inhomogeneous integral equation
in which the integral kernel encodes the materials and ge-
ometry of the scattering system, and the unknowns are
the reflection or transmission amplitudes for each polar-
ization. First derived by Brown et al. [32], the reduced
Rayleigh equation is obtained from the Rayleigh solution
to the electromagnetic boundary problem. Using inspi-
ration drawn from the extinction theorem it is possible
to “reduce” the full Rayleigh equations through the elim-
ination of either the reflected or transmitted field. In the
following, in order to establish the notation and highlight
the main assumptions of the method, we will briefly recall
the key ideas of the derivation of the reduced Rayleigh
equations for a system composed of two media separated
by a rough interface. We will use, to our knowledge, the
most general form of the reduced Rayleigh equations for
a single interface derived by Soubret et al. in Ref. 31 and
used by these authors in Refs. 31 and 33 in the case of a
single interface system and a film geometry.

A. The reduced Rayleigh equations

In this work we assume the electromagnetic response of
the media to be modeled by non-magnetic, homogeneous,
isotropic, linear constitutive relations in the frequency
domain. We consider the presence of an electromag-
netic field (E,H) in the whole space, where their restric-
tion will be denoted by a subscript j depending on the
medium in which they are evaluated. As an example, the
electric field evaluated at a point x in medium 1 at time
t is denoted E1(x, t). The source free Maxwell equations,
together with homogeneous, linear and isotropic consti-
tutive relations in the frequency domain, result in the fact
that the electric and magnetic fields satisfy the Helmholtz
equation in each region. Namely, for j ∈ {1, 2},

∇2Ej(x, ω) + ϵj(ω)
(ω
c

)2
Ej(x, ω) = 0 , (4)

and similarly for H. Here, ∇2 denotes the vector Laplace
operator and c is the speed of light in vacuum. Here on-
ward, we will drop the time, or frequency, dependence,
since we assume a stationary regime at a fixed frequency
where time contributes only by an overall phase fac-
tor exp(−iωt). It is well known that a solution to the
Helmholtz equation can be written as a linear combina-
tion of plane waves, thus the electric field in each region
can be represented as

Ej(x) =
∑
a=±

∫
R2

[
Ea
j,p(q) ê

a
p,j(q) + Ea

j,s(q) ês(q)
]

× exp
(
i ka

j (q) · x
) d2q

(2π)2
, (5)

where we have defined

k±
j (q) = q± αj(q) ê3 , (6a)

αj(q) =
√

k2j − q2, Re (αj), Im (αj) ≥ 0 , (6b)

ês(q) = ê3 × q̂ , (6c)
ê±p,j(q) = k−1

j (±αj(q) q̂− |q| ê3) (6d)

kj = nj
ω

c
= |k±

j (q)| . (6e)

In other words, the wave vector k±
j (q) of an elemen-

tary plane wave is decomposed into its projection q
in the lateral vector plane (ê1, ê2) and the component
±αj(q) along ê3. The sum over a = ± takes into ac-
count both upwards (+) and downwards (−) propagat-
ing and evanescent (and possibly growing) waves. The
field amplitude is decomposed in the local polarization ba-
sis (êap,j(q), ês(q)), hence Ea

j,α(q) denotes the component
of the field amplitude in the polarization state α of the
mode characterized by a and q. In this basis, the direc-
tions given by ê±p,j(q), and ês(q) are the directions of the
p- and s-polarization of the electric field amplitude, re-
spectively. Furthermore, the electromagnetic fields have
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to satisfy the boundary conditions

n(x∥)×
[
E2(s(x∥))−E1(s(x∥))

]
= 0 (7a)

n(x∥)×
[
H2(s(x∥))−H1(s(x∥))

]
= 0 , (7b)

where n(x∥) is a vector normal to the interface at the
surface point s(x∥) = x∥ + ζ(x∥)ê3, given by

n(x∥) = ê3 −
∂ζ

∂x1
(x∥) ê1 −

∂ζ

∂x2
(x∥) ê2 . (8)

Here, ∂ · /∂xk denotes the partial derivative along the
direction êk. Following Soubret et al. [31], by substi-
tuting the field expansion Eq. (5) into Eq. (7) and by a
clever linear integral combination of the boundary con-
ditions inspired by the extinction theorem [28], one can
show that the upward or downward field amplitudes in
medium 2 can be linked to the upward and downward
field amplitudes in medium 1 via the following integral
equation defined for a2 = ±, and p in the vector plane
(ê1, ê2):∑

a1=±

∫
J a2,a1

2,1 (p |q) Ma2,a1

2,1 (p |q) Ea1
1 (q)

d2q

(2π)2

=
2 a2 n1n2 α2(p)

ϵ2 − ϵ1
Ea2
2 (p). (9)

Here Ea
j (q) = (Ea

j,p(q), Ea
j,s(q))

T denotes a column vector
of the polarization components of the field amplitude in
medium j. Moreover, Mb,a

l,m(p |q) is the 2×2 matrix

Mb,a
l,m(p |q) = k1k2

(
êbp,l(p) · êap,m(q) êbp,l(p) · ês(q)
ês(p) · êap,m(q) ês(p) · ês(q)

)
,

(10)
which originates from a change of coordinate system be-
tween the local polarization basis (êbp,l(p), ês(p)) and
(êap,m(q), ês(q)), defined for a = ±, b = ±, and l,m ∈
{1, 2} with l ̸= m. The kernel scalar factor J b,a

l,m(p |q)
encodes the surface geometry and is defined as

J b,a
l,m(p |q) = [bαl(p)− aαm(q)]

−1

×
∫

exp
[
−i(kb

l (p)− ka
m(q)) · s(x∥)

]
d2x∥. (11)

Notice that, as already pointed out in Ref. 31, due to
the symmetry of the boundary conditions, one may also
show in the same way that

∑
a2=±

∫
J a1,a2

1,2 (p |q) Ma1,a2

1,2 (p |q) Ea2
2 (q)

d2q

(2π)2

=
2 a1 n1n2 α1(p)

ϵ1 − ϵ2
Ea1
1 (p), (12)

which can be obtained from Eq. (9) by interchanging the
subscripts 1 and 2. Typically, Eq. (9) is appropriate to

solve the problem of reflection whereas Eq. (12) is appro-
priate to solve the problem of transmission, as we will see
later.

So far, we have stayed general and simply assumed
the presence of an electromagnetic field decomposed in
propagating and non-propagating waves in each region.
Therefore, there is no uniqueness in the solutions to the
transfer equations, Eqs. (9) and (12). To ensure a unique
solution, one needs to impose some constraints on the
field. First, we need to introduce an incident field to our
model. This will split the field expansion into a sum of an
incident field, which is given by our model of the problem,
and a scattered field. Note that within this framework,
the incident field may be chosen to be in either medium,
or to be a combination of excitations incident from dif-
ferent media.

In our case, the incident field will be taken as a plane
wave incident from medium 1 and defined as

E0(x) =
[
E0,p ê−p,1(p0) + E0,s ês(p0)

]
× exp

(
ik−

1 (p0) · x
)
, (13)

where p0 is the projection of the wave vector of the in-
cident wave onto the (ê1, ê2) plane, with the property
|p0 | ≤ k1, i.e. we consider an incident propagating wave.
The fact that this is the only incident wave considered,
together with the Sommerfeld radiation condition at in-
finity, gives that the only elementary waves allowed in
the scattered field are those with wave vectors of the
form k+

1 (p) and k−
2 (p) in medium 1 and 2, respectively.

This property can be expressed by defining the field am-
plitudes

E−
1 (q) = (2π)2 δ(q−p0) E0 , (14a)

E+
2 (q) = 0 , (14b)

where E0 = (E0,p, E0,s)T. Next, we assume that the scat-
tered field amplitudes are linearly related to the incident
field amplitude E0 via the reflection and transmission
amplitudes, R(q |p0) and T(q |p0), defined as

E+
1 (q) = R(q |p0)E0, (15a)

E−
2 (q) = T(q |p0)E0 . (15b)

The reflection and transmission amplitudes are therefore
described by 2×2 matrices of the form,

X =

(
Xpp Xps

Xsp Xss

)
, (16)

with X = R or T. From a physical point of view, the
complex amplitude Rαβ(q |p0) (resp. Tαβ(q |p0)) for
α, β ∈ {p, s} is the field amplitude for the reflected light
(resp. transmitted) with lateral wave vector q in the po-
larization state α from a unit incident field with lateral
wave vector p0 in the polarization state β. The reflec-
tion and transmission amplitudes are then the unknowns
in our scattering problem. The equations we need to
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solve are deduced from the transfer equations, Eqs. (9)
and (12), by applying them respectively at a2 = + and
a1 = − and by using Eqs. (14) and (15) for the model
of the field expansion. This yields the following two de-
coupled integral equations for the reflection and trans-
mission amplitudes, the so-called reduced Rayleigh equa-
tions, that can be written in the following general form,
for X = R or T:∫

MX(p |q)X(q |p0)
d2q

(2π)2
= −NX(p |p0) , (17)

where the matrices MX and NX are given by

MR(p |q) = J +,+
2,1 (p |q) M+,+

2,1 (p |q) (18a)
MT(p |q) = J−,−

1,2 (p |q) M−,−
1,2 (p |q) (18b)

NR(p |q) = J +,−
2,1 (p |q) M+,−

2,1 (p |q) (18c)

NT(p |q) = 2n1n2α1(p)

ϵ2 − ϵ1
(2π)2δ(p−q) I2, (18d)

with I2 denoting the 2×2 identity matrix.

B. RRE for scalar waves

The reduced Rayleigh equations can also be derived
for scalar waves satisfying the scalar Helmholtz equation
and subjected to various boundary conditions at the in-
terfaces. Here, we focus on scalar waves subjected to the
continuity of the field and its normal derivative at the
interface. Under these hypotheses, one can derive the
corresponding reduced Rayleigh equations which read∫

MX(p |q)X(q |p0)
d2q

(2π)2
= −NX(p |p0) , (19)

where X = R or T is either the scalar reflection or trans-
mission amplitude, and the scalar kernels and right-hand-
sides are given by Eq. (18) where all the Mb,a

l,m matrices
are replaced by the scalar constant k1k2 = n1n2 ω

2/c2

and I2 is replaced by the scalar constant 1. We would
like to stress that the fact that one can go from the elec-
tromagnetic RRE to the scalar RRE by simply replacing
all the aforementioned matrices by 1 is only true for the
case where the scalar field is subjected to the continu-
ity of the field and its normal derivative at the surface.
For other types of boundary conditions, as for the case
of acoustic waves for example, one would obtain different
expressions [25]. The obtained equations could in prin-
ciple be used for modeling the scattering of a quantum
particle by a surface between two regions of constant po-
tential. In this paper, we will use the presented scalar
RRE, for which the analysis is simplified compared to
the case for electromagnetic waves, to explain the funda-
mental mechanism of the Yoneda effect. We will show
that the Yoneda effect is present for scalar waves (sub-
jected to the aforementioned boundary conditions) and
can be decoupled from additional effects induced by the

polarization of electromagnetic waves, such as the Brew-
ster scattering effect. The identified mechanism for scalar
waves will then be extended to electromagnetic waves.

C. Perturbative method

Probably the most common approximate solution to
Eq. (17) is based on a perturbative expansion of the re-
flection and transmission amplitudes in powers of the
interface profile function. This approach, often called
“small amplitude perturbation theory” (SAPT) or “small
perturbation method” (SPM), has shown that it is ca-
pable of obtaining solutions of the RRE of high quali-
tative and quantitative predictive power, for interfaces
with sufficiently small slopes and amplitudes. To first
order in ζ for the reflection and transmission amplitudes,
the method is often interpreted as a single scattering ap-
proximation. When implemented to the complete fourth
order in the surface profile function for the intensity,
i.e. involving terms up to third order in the amplitude,
the method has been used to obtain reliable results that
also correctly include multiple scattering effects, most
notably the backscattering peaks observed in reflection
from metallic surfaces [34–37].

To first order in the interface profile function ζ, we
have for X = R or T that

X (p |p0) ≈ X(0) (p |p0)−iX(1) (p |p0) , (20)

where

R(0) (p |p0) = (2π)2δ(p−p0)ρ
(0)(p0) , (21a)

T(0) (p |p0) = (2π)2δ(p−p0) τ
(0)(p0) , (21b)

R(1) (p |p0) = ζ̂(p−p0)ρ
(1) (p |p0)

= [α1(p)− α2(p)] ζ̂(p−p0) ρ̂
(1) (p |p0) , (21c)

T(1) (p |p0) = ζ̂(p−p0) τ
(1) (p |p0)

= [α1(p)− α2(p)] ζ̂(p−p0) τ̂
(1) (p |p0) . (21d)

Here ζ̂ denotes the Fourier transform of ζ, and ρ(0)(p0)
and τ (0)(p0) are matrix-valued amplitudes for the
zero order reflection and transmission amplitudes, re-
spectively. The matrix-valued amplitudes ρ(1) (p |p0),
ρ̂(1) (p |p0), τ (1) (p |p0), and τ̂ (1) (p |p0) for the first
order terms are derived in A. In Eqs. (21c) and (21d),
we have given two alternative factorizations of the first
order reflection and transmission amplitudes. The factor-
ization including the caret amplitudes is the most appro-
priate for physical interpretation, while the factorization
including the non-caret amplitudes simply aims at sepa-
rating ζ̂, which is the only factor depending on the spe-
cific realization of the surface profile, from the remaining
profile-independent amplitude factor.
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D. Observables

The observables of interest in this study are the
so-called diffuse or incoherent component of the mean
differential reflection and transmission coefficients
(MDRC and MDTC) denoted ⟨∂Rαβ(p|p0)/∂Ωr⟩incoh
and ⟨∂Tαβ(p|p0)/∂Ωt⟩incoh, respectively. They are both
defined as the ensemble average over realizations of the
surface profile of the incoherent component of the radi-
ated reflected/transmitted flux of an α-polarized wave
around a direction given by k+

1 (p)/k−
2 (p) per unit inci-

dent flux of a β-polarized plane wave with wave vector
k−
1 (p0), per unit solid angle. Based on the reflection and

transmission amplitudes found to first order in ζ, the in-
coherent component of the MDRC and MDTC can be
expressed as⟨

∂Rαβ

∂Ωr
(p |p0)

⟩
incoh

= ϵ1

( ω

2πc

)2 cos2 θr
cos θ0

× σ2 g(p−p0)
∣∣∣ρ(1)αβ (p |p0)

∣∣∣2 , (22)

and ⟨
∂Tαβ

∂Ωt
(p |p0)

⟩
incoh

=
ϵ
3/2
2

ϵ
1/2
1

( ω

2πc

)2 cos2 θt
cos θ0

× σ2 g(p−p0)
∣∣∣τ (1)αβ (p |p0)

∣∣∣2 . (23)

The detailed derivation of the Eqs. (22) and (23) can be
found in B. The definition of the angles of incidence and
scattering can be deduced from Figure 1.

IV. RESULTS AND DISCUSSION

In order to study the phenomena observed in the scat-
tering of light from weakly rough dielectric interfaces, we
choose to base our discussion on results obtained through
small amplitude perturbation theory (SAPT) to lowest
non-zero order in the interface profile function, Eqs. (21).
For sufficiently smooth interfaces this approximation has
previously been compared to numerical non-perturbative
solutions to the reduced Rayleigh equations, where it has
been shown to adequately model the phenomena of both
the Brewster scattering angles and the Yoneda peaks
[1, 2]. We will start our investigations with a summary of
the features observed in the main physical observables,
the MDRC and MDTC [Eqs. (22) and (23)], followed by
more in-depth analyses and discussions from a physics
point of view.

A. Phenomenology of the Yoneda and Brewster
scattering effects

The top panel of each subfigure in Fig. 2 presents re-
sults based on Eqs. (22) and (23) for the contribution

to the co-polarized diffuse component of the MDRC and
MDTC in the plane of incidence (p̂ ∥ p̂0), for a configu-
ration where light is incident from vacuum [ϵ1 = 1] onto
a two-dimensional randomly rough interface with glass
[ϵ2 = 2.25]. The incident light was assumed to be a p-
or s-polarized plane wave of wavelength λ = 632.8 nm
in vacuum. In the current work all results presented
for randomly rough interfaces consist of interfaces de-
fined by an isotropic Gaussian height distribution with
rms height σ = 32nm = λ/20 and an isotropic Gaus-
sian correlation function of transverse correlation length
a = 211 nm = λ/3.

For normal incidence [θ0 = 0◦, Fig. 2(a)] the MDRC
distributions are nearly featureless. The differences in
the scattered intensities observed for p- and s-polarized
incident light are very small. Note that the scattered
intensity is zero beyond the limit of propagation in the
medium of reflection (|p1| > k1). The overall bell-shape
of the distributions can be attributed in part to the Gaus-
sian correlation function for the transverse correlation
length in the interface profile together with the cos2 θr
factor of the MDRC, as seen in Eq. (22). The correspond-
ing transmitted intensity (MDTC) shown in Fig. 2(d),
however, shows several interesting features. As is de-
tailed in Ref. 2, we now observe pronounced peaks in
s-polarization and narrow dips to zero in p-polarization
around |p1| = k1. For normal incidence these features
are independent of the azimuthal angle of transmission
ϕ. The peaks have become known as “Yoneda peaks”,
and are always found at the parallel wavevectors p along
the propagation limit in the less dense medium (i.e.
|p| = min(k1, k2)). The polar angles corresponding to the
dips to zero in the MDTC have been called the “Brewster
scattering angles”[13], and are unique to scattered light
which is p-polarized. As the polar angle of incidence is
increased [θ0 = 35◦ or 70◦ in Fig. 2], we observe that a
Brewster scattering angle also appears in the MDRC. In
transmission, the distributions of the MDTC behave very
predictably in the s-polarized case as the weight of the
distribution is shifted to higher polar scattering angles.
However, in the case of p-polarization the Brewster scat-
tering angle in the direction of ϕ = 180◦ (negative values
of θt in Fig. 2(d)) shifts to positions closer to θt = 0◦ as
the angle of incidence is increased, and the dip to zero in
the forward scattering direction [ϕ = 0◦] first becomes a
non-zero local minimum and is gradually replaced with a
Yoneda peak similar to the one found for s-polarization.

Figure 3 presents results similar to those in Fig. 2,
but for the situation where the media are interchanged;
the light is now incident from glass [ϵ = 2.25] onto a
two-dimensional randomly rough interface with vacuum
[ϵ = 1]. A closer inspection of the distributions of the
MDRC for normal incidence reveals that the distribu-
tions are reminiscent of the distributions seen in trans-
mission for the MDTC in Fig. 2, and vice versa. This
similarity between intensity distributions for which the
media of propagation is the same is an expected sym-
metry, but as the angle of incidence increases these sim-
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FIG. 2. The incoherent component of the MDRC (top row) and MDTC (bottom row) for light incident from vacuum [ϵ1 = 1.0]
onto a randomly rough interface with glass [ϵ2 = 2.25], for in-plane co-polarized scattering, as a function of the lateral component
of the wave vector of scattering p1 or polar angle of scattering θr,t. The polar angle of incidence is indicated on top of each
subfigure. The argument and the modulus of ρ

(1)
αα and τ

(1)
αα are indicated in the middle and bottom section of each subfigure

respectively. Note that we have adopted here the convention that negative θr,t values correspond to θr,t > 0 according Fig. 1
but for ϕ = 180◦. The vertical lines indicate |p | = kmin.

ilarities gradually fade. For light impinging on the in-
terface at θ0 = 35◦, the Brewster scattering angle for
the MDRC is now in the forward scattering direction,
and as documented in Ref. 1 it shifts closer to θr = 0◦ as
the angle of incidence increases towards the critical angle
given by θc = sin−1(n2/n1). Results for an angle of inci-
dence equal to the critical angle, θ0 = θc, are presented in
Figs. 3(c) and 3(f). For the same system but for polar an-
gles of incidence larger than the critical angle, presented
in Fig. 4, the dip to zero MDRC in the forward scatter-
ing direction is gradually overtaken by a Yoneda peak for
p-polarized light. Contrary to the case for transmission
in Fig. 2 however, the peak in p-polarization never grows
beyond the peak in s-polarization. For the intensity dis-

tributions of the transmitted light we again observe a
gradual shift of the weight of the distributions into the
forward scattering direction, but the Brewster scattering
angle is now only visible (strictly speaking) for θ0 = 35◦

and θ0 = 41.81◦, where it is now found in the backward
scattering direction and at θt = 0◦, respectively.

As an aid in understanding the Brewster scattering
angles in Figs. 2, 3 and 4, and also as a support to the
further discussion of these angles in both reflection and
transmission, Fig. 5 presents an overview of the Brewster
scattering angles found in the MDRC/MDTC as derived
from first order SAPT. Figure 5 is based on the following
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FIG. 3. Same as Fig. 2, but for light incident from glass [ϵ1 = 2.25] onto a randomly rough interface with vacuum [ϵ2 = 1.0].

result, obtained from SAPT [1, 2]:

ΘB(θ0) = sin−1

(√
ϵ2(ϵ2 − ϵ1 sin

2 θ0)

(ϵ22 − ϵ21) sin
2 θ0 + ϵ1ϵ2

)
. (24)

for reflection and

ΘB(θ0) = sin−1

(
ϵ1
ϵ2

√
ϵ2
ϵ1

− sin2 θ0

)
, (25)

for transmission. Here ΘB indicates the Brewster scat-
tering angle. As can be observed in both Fig. 5 and from
Eqs. (24) and (25), ΘB is not well-defined for all angles
of incidence for all ϵ1 and ϵ2. These limits will be further
explored in Sec. IV D where a clear geometrical interpre-
tation will be given.

The scattering in both reflection and transmission from
such a randomly rough interface has been thoroughly
studied in the past, and the distributions of the MDRC

and MDTC presented in Figs. 2, 3 and 4 were partially
explained based on the components of the perturbative
approximation in Refs. 1 and 2. However, these publica-
tions stopped short of presenting a full physical interpre-
tation of the features seen in these distributions. In the
current work we aim to finalize this analysis, and to that
end we expand the investigation to include results for the
complex amplitudes on which the MDRC and MDTC are
based. The center panel of each subfigure in Figs. 2, 3
and 4 presents the average phase, ϕr,(1)

αα , ϕt,(1)
αα of the co-

polarized scattered light, obtained from the argument of
the complex amplitudes ρ

(1)
αα or τ

(1)
αα for α ∈ {p, s} given

in Eqs. (21 d) and (21 e), respectively. The lower panel
of each subfigure shows the modulus of ρ(1)αα and τ

(1)
αα .

In passing we emphasize that even if the results pre-
sented are based on a perturbation method to lowest non-
zero order in the interface profile function, previous stud-
ies have demonstrated their validity for the parameters
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FIG. 4. Same as Fig. 3, but for additional polar angles of incidence θ0.

and dielectric constants assumed in obtaining them. In
addition, the results for both MDRC and MDTC have
been compared against numerical results based on the
extinction theorem based method described in Ref. 37
for a 1D system, a method known to be rigorous.

B. Physical interpretation of SAPT to first order

Order zero, Fresnel amplitudes — First we revisit the
interpretation of the Fresnel coefficients which are en-
coded in the amplitudes ρ(0)(p0) and τ (0)(p0) [Eqs. (21a)
and (21b)].

We start our analysis looking at the case of reflection.
The Fresnel amplitudes for s- and p-polarized waves re-
flected by a planar surface between two dielectrics read

[19]

rFs (p0) =
α1(p0)− α2(p0)

α1(p0) + α2(p0)
(26a)

rFp (p0) =
ϵ2α1(p0)− ϵ1α2(p0)

ϵ2α1(p0) + ϵ1α2(p0)
, (26b)

which we have here written in a common form in terms of
the components of the wave vectors along ê3. It is easy
to show by using straightforward algebra that these ex-
pressions are equivalent to ρ

(0)
ss (p0) and ρ

(0)
pp (p0) respec-

tively, given by perturbation theory to zero order. An
equivalent way of writing the Fresnel amplitudes which
follows directly from Eq. (A6) and the definition of the
Mb,a

l,m(p |q) matrix in terms of the polarization vectors,
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FIG. 5. Dependence of the in-plane Brewster scattering an-
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a corresponding system with a planar interface have been in-
dicated on both axes as black dash-dotted lines.

Eq. (10), is

ρ(0)ss (p0) = ρ(0)(p0)
ês(p0) · ês(p0)

ês(p0) · ês(p0)
(27a)

ρ(0)pp (p0) = ρ(0)(p0)
ê+p,2(p0) · ê−p,1(p0)

ê+p,2(p0) · ê
+
p,1(p0)

(27b)

ρ(0)(p0) =
α1(p0)− α2(p0)

α1(p0) + α2(p0)
. (27c)

In Eq. (27a), we have intentionally chosen not to sim-
plify the dot products (all equal to 1) to illustrate that
the Fresnel amplitudes expressed in the form given by
Eqs. (27a) and (27b) exhibit a remarkable factorization
which reveals two facets of the physics of scattering from
a microscopic point of view. First, both Fresnel ampli-
tudes in Eqs. (27a) and (27b) share the same first factor,
ρ(0)(p0) defined in Eq. (27c), which corresponds to the
reflection amplitude for a scalar plane wave subjected to
the continuity of the scalar field and its normal derivative
at the surface. In other words, this first factor can be in-
terpreted as the coherent response of arrays of individual
scatterers (at the atomic level) which scatter the inci-
dent wave as spherical waves. The second factor, which
differs for each polarization, is the signature of the dipo-
lar nature of the radiation of each individual scatterer.
Indeed, for an s-polarized incident wave, the scattering
dipoles are excited along the ê2-axis and hence re-emit
isotropically in the plane of incidence (ê1, ê3). We argue

that this is the reason why the second factor is identi-
cally equal to 1 for s-polarized light. For p-polarization,
the scattering dipoles are excited along some direction in
the plane of incidence (ê1, ê3) and therefore the reflection
amplitude given by the scattering of spherical waves must
be weighted with the second factor in Eq. (27b) in order
to take into account the dipole radiation pattern. Such
a factorization and interpretation of the Fresnel ampli-
tudes were given and thoroughly discussed by Doyle [26]
in light of the Ewald-Oseen extinction theorem and its
original derivation by Ewald based on microscopic optics
[29].

For a planar surface all scattered waves interfere de-
structively in all directions but the specular, as indi-
cated by the Dirac distribution in Eqs. (21a) and (21b).
This is not the case when the surface is non-planar, and
the above interpretation suggests that the spherical-like
waves scattered away from the specular direction are then
to be weighted by the appropriate dipole factor, even for
s-polarized light (as will be the case for the first order
term).

From Eq. (27), we can deduce two properties well
known for the reflection of a plane wave at a planar in-
terface between two dielectric media. First, for ϵ1 > ϵ2
there exists a critical polar angle θc = sin−1(n2/n1), or
equivalently a critical norm of the lateral wave vector
pc = n2 ω/c, such that for all angles of incidence larger
than θc (equivalently for all lateral wave vectors where
|p0 | > pc), all the incident power is reflected. The phe-
nomenon of total internal reflection is entirely controlled
by the factor ρ(0)(p0) present for both polarizations, and
hence can be analyzed from a scalar wave picture de-
coupled from polarization effects. From a physical point
of view, total internal reflection occurs whenever the re-
fracted wave is evanescent in the medium of transmis-
sion, and therefore it cannot transport energy away from
the surface. It is instructive to analyze the behavior of
the reflection amplitude ρ(0)(p0) as the refracted wave
turns evanescent in the second medium as one varies the
incident lateral wave vector p0. For |p0 | < pc, both
α1(p0) and α2(p0) are real. As |p0 | → pc, ρ(0)(p0)
moves on the real line towards 1 when α2 vanishes,
α1(p0) =

√
ϵ1 − ϵ2 ω/c. When |p0 | > pc, α2(p0) be-

comes pure imaginary and ρ(0)(p0) starts to trace a cir-
cular arc in the lower half of the complex plane (neg-
ative imaginary part) with unit modulus (the fact that
|ρ(0)(p0)| = 1 for |p0 | > pc is immediate since then
ρ(0)(p0) is of the form z∗/z where z is a non-zero com-
plex number). As |p0 | → n1ω/c, the reflected wave (and
the incident wave) reaches the limit of propagation in the
first medium and α1(p0) → 0 which makes the reflection
amplitude real, negative, equal to −1. Thus, as we go
from the critical point to grazing incidence the reflection
amplitude traces a half circle in the complex plane with
unit modulus. The argument of the reflection amplitude,
the phase, hence varies from 0 to −π rad. This gradual
phase shift is known as the Goos-Hänchen phase shift and
can be interpreted as follows. If we regard the reflected
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and refracted waves as two components of a single mode,
then as the wave enters the second medium the wave
oscillates while propagating along the surface before it
eventually goes back into the first medium where it can
continue to propagate to infinity. As the wave propagates
along the surface, while being evanescent in medium 2,
it acquires a temporal delay which depends on its wave
vector. This delay is translated into a phase shift as the
wave oscillates back into medium 1. Geometrically this
process is often interpreted as if the wave is reflected from
the second medium only after a slight penetration into it
[19].

The second phenomenon of interest is that of the polar-
ization angle, or Brewster’s angle, which, as the name in-
dicates, requires us to analyze the polarization dependent
factor in the reflection amplitudes. For an s-polarized
wave the polarization factor is identically equal to 1 and
no polarization angle is observed. However, the Fresnel
amplitude for p-polarized light, Eq. (27b), is shown to be
proportional to ê+p,2(p0) · ê−p,1(p0) i.e. it is proportional
to the component of the incident electric field (given by
E0 ê

−
p,1(p0)) along the direction given by ê+p,2(p0). We

recall that the direction given by ê+p,2(p0) corresponds
to the local p-polarization direction for a wave whose
wave vector is given by k+

2 (p0), in other words, a wave
which propagates upwards in the second medium. These
factors of the dot products in Eq. (27b) therefore seem
to indicate that the reflected amplitude for p-polarized
light depends on a projection of the incident field along
the polarization vector of a seemingly nonexisting wave,
propagating along the wave vector k+

2 (p0). However,
such a seemingly virtual wave does have a physical in-
terpretation, based on the mutual interaction between
waves propagating in dielectric media. Doyle [26] pro-
vided an explanation based on the concept of the wave
triad originally introduced by Ewald [29]. Ewald con-
sidered a dense array of dipole scatterers (the entire di-
electric medium) situated in a half space and excited by
an incident plane wave incident from the vacuum half-
space, filling the whole space between the scatterers. He
showed that the dipole scatterers would respond to the
excitation in such a way that there exist planes of scatter-
ers of coherent response, meaning that all dipoles within
such a plane oscillate in phase. As a consequence of this
fact and that the array of scatterers is bounded within a
half space, the superposition of all elementary wavelets
emitted by each individual scatterer results in the prop-
agation of three plane waves: two waves called vacuum
waves propagating with a phase velocity equal to c and
one wave propagating with phase velocity c/n called po-
larization wave, where n corresponds to the refractive
medium made of scatterers within the macroscopic pic-
ture. The wave propagating with phase velocity c/n cor-
responds to the transmitted wave in the macroscopic pic-
ture, while one of the waves propagating with phase ve-
locity c serves to exactly cancel the incident wave within
the dielectric medium. The other wave propagating with
phase velocity c exits the medium and corresponds to the

reflected wave. The wave vectors of the different waves
are naturally given by Snell’s law, and Ewald’s derivation
can be viewed as a microscopic validation of Snell’s law.

When two half-spaces are filled with dipole scatter-
ers of different dipole moments, similar arguments apply
with the difference that the superposition of all wavelets
emitted by all scatterers (i.e. from both sides of the
interface) must be taken into account. This results in
three wave triads: one triad associated with the incident
wave, one for the reflected wave and one for the refracted
wave, which all satisfy the so-called dynamical conditions
[26]. To the incident polarization wave in medium 1,
propagating with phase velocity c/n1 and wave vector
k−
1 (p0) are associated two waves propagating with phase

velocity c/n2 with wave vectors k±
2 (p0). Similarly, to

the reflected (resp. refracted) polarization wave, whose
wave vector is given by k+

1 (p0) (resp. k−
2 (p0)), are asso-

ciated two waves propagating with phase velocity c/n2

(resp. c/n1) and wave vectors k±
2 (p0) (resp. k±

1 (p0)).
The dynamical conditions are state that the amplitudes
of the different waves are such that (i) the wave associ-
ated with the refracted polarization wave and propagat-
ing along k−

1 (p0) in medium 2 cancels the incident wave
and (ii) that the superposition of waves associated with
the incident and reflected polarization waves and propa-
gating along k+

2 (p0) vanishes (more details can be found
in Refs. 26 and 29).

In the following, we will refer to the wave vectors ka
1(p)

and ka
2(p), i.e. wave vectors sharing the same projection

in the (ê1, ê2)-plane and pointing either both upward
or downward, as Snell-conjugate wave vectors. When
it comes to the polarization dependence of the reflec-
tion amplitudes, the fact that ρ

(0)
pp (p0) is proportional

to ê+p,2(p0) · ê−p,1(p0) indicates that the amplitude of the
reflected wave is controlled by the component of the inci-
dent field along the p-polarization vector associated with
the Snell-conjugate wave vector of the wave vector of
the reflected wave. This indicates that the direction of
the dipole oscillation is intimately linked to waves in the
aforementioned triad.

Equation (27b) provides an interesting condition for
the well known Brewster’s angle. The Brewster phe-
nomenon for dielectric media is commonly defined as
the extinction of the p-polarized reflected wave in the
case of a planar interface. From Eq. (27b), it is clear
that the Fresnel amplitude vanishes if and only if [38]
ê+p,2(p0) · ê−p,1(p0) = 0. Since ê+p,2(p0) is orthogonal to
k+
2 (p0), we can restate the condition for Brewster’s an-

gle as the polar angle where k+
2 (p0) ∥ ê−p,1(p0). This

means that we can define Brewster’s angle as the angle of
reflection ensuring colinearity between the incident field
amplitude and the wave vector which is Snell-conjugate
to that of the reflected wave. Note that we take here a
slight change of point of view compared to the common
phrasing. One usually refer to Brewster’s angle as an an-
gle of incidence, while we prefer to refer to the angle of
reflection. Obviously, the two are the same for a planar
interface, but the latter point of view is the one which
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will hold true for non-planar interfaces. Nevertheless, it
is convenient to use the term Brewster’s incidence for
a planar interface and we can define it as the angle of
incidence θB = arctan(n2/n1) which yields a Brewster
(non-)reflected wave. We will see that this angle of inci-
dence, θ0 = θB, has a remarkable property in the case of
scattering by a non-planar interface.

Brewster’s angle in the case of non-magnetic media
is often said to be the angle of incidence that results
in a right angle (90◦) between the wave vector of the
transmitted wave and that of the (non-)reflected wave.
In the case of a planar interface, our new definition
of Brewster angle agrees with this explanation. In-
deed, if ê−p,1(p0) · ê+p,2(p0) = 0 it is immediate that
k+
1 (p0) · k−

2 (p0) = 0. However, we will see below that
the new geometrical criterion proposed in the above holds
when applied with Snell-conjugate wave vector associated
with a non-specularly scattered wave, while the “right
angle” criterion between wave vectors breaks down.

The Fresnel amplitudes for the refracted wave for s-
and p-polarized light expressed in terms of polarization
vectors, presented in a similar fashion as Eq. (27), read

τ (0)ss (p0) =
τ (0)(p0)

ês(p0) · ês(p0)
(28a)

τ (0)pp (p0) =
τ (0)(p0)

ê−p,1(p0) · ê
−
p,2(p0)

(28b)

τ (0)(p0) =
c2

ω2

2α1(p0)

(ϵ1 − ϵ2)
[α1(p0)− α2(p0)] . (28c)

From Eq. (28), it is readily observed that neither the s-
nor p-polarized zero order transmitted wave vanishes in
general, which relates to the common experience that no
Brewster angle is known for transmission through a pla-
nar interface. This fact does not, however, prevent the
existence of Brewster scattering angles in the diffusely
transmitted light. Equation (28) will therefore be impor-
tant in the remainder of this paper. Note the presence of
the factor α1(p0)−α2(p0) in the transmission amplitude
of the scalar wave in Eq. (28c) which is identical to the
numerator of the reflection amplitude in Eq. (27c). The
analysis of this term on total internal reflection hence
leads to a similar behavior for the transmission ampli-
tude, in the sense that τ (0)(p0) leaves the real line and
traces a path in the complex plane when total internal re-
flection occurs. This fact illustrates the coupling between
the reflected and the transmitted waves, which may be
interpreted as two components of the same mode.

First order — We now turn to the first order ampli-
tudes R(1)(p |p0) and T(1)(p |p0). The first remark-
able point to notice is that, when using the caret am-
plitudes, both the first order reflection and transmission
amplitudes are proportional to [α1(p)−α2(p)] ζ̂(p−p0).
By a careful examination of the derivation of Eqs. (21c)
and (21d) we note that this factor originates from a Tay-
lor expansion of the term exp[−i(bαl(·) − aαm(·))ζ(·)]
appearing in the J b,a

l,m integral (see A). Intuitively, the

J b,a
l,m integral encodes information about the sum of am-

plitudes of scattering events occurring near the surface.
A comparison of the expression for the J b,a

l,m integral and
the expression obtained by summing complex amplitudes
for single scattering paths scattered at the surface of a
perfect conductor supports this analogy. In other words,
the integral encodes the resulting interference due to the
phase difference between any scattering path occurring
along the surface. To be more accurate, if one has the
microscopic picture in mind one might say that it corre-
sponds to summing scattering events occurring anywhere
in the bulk, but in virtue of the extinction theorem the
summation reduces to a sum over the surface [28]. With
this picture in mind, the factor [α1(p)−α2(p)] ζ̂(p−p0)
corresponds to the resulting interference pattern when
the phase factor is linearly approximated. Note that this
factor does not contain any information about polariza-
tion. It is therefore instructive to consider the first order
reflection and transmission amplitudes for scalar waves
as a first step in order to obtain a better understanding
of the full amplitudes. For scalar waves we set all the
Mb,a

l,m matrices to unity in Eqs. (21c) and (21d) to obtain

R(1)(p |p0) = [α1(p)− α2(p)] ζ̂(p−p0)

× [1 + ρ(0)(p0)] (29a)
T (1)(p |p0) = [α1(p)− α2(p)] ζ̂(p−p0) τ

(0)(p0) .
(29b)

From Eq. (29) it is apparent that the first order ampli-
tudes are equal to the aforementioned interference factor,
[α1(p) − α2(p)] ζ̂(p−p0), weighted by the total scalar
zero order field amplitude in either medium 1 or 2. In-
deed, the factor [1+ ρ(0)(p0)] in Eq. (29a) represents the
sum of the unit incident field amplitude and the ampli-
tude of the reflected zero order field, while τ (0)(p0) is
simply the refracted zero order field amplitude; hence
the denomination total zero order field.

One may think of the total zero order field as char-
acterizing the state of a background field to which the
interference pattern induced by the surface corrugation
is superimposed (in a multiplicative sense). One could
say that the interference pattern allows to probe the
state of the zero order field away from the specular di-
rection. In addition, note that the dependence on the
outgoing wave vector p is entirely encoded in the term
[α1(p)−α2(p)]ζ̂(p−p0) while the state of the zero order
field only depends on the incident wave vector p0. This
indicates that the factor [α1(p) − α2(p)] ζ̂(p−p0) can
be thought to define a probability measure (by taking
its modulus square) for a change of lateral wave vector
from p0 to p (or its corresponding lateral momentum).
Moreover, since the amplitude for a wave scattered with
lateral wave vector p does not, to first order, involve any
other wave than the incident one through its wave vector
p0, we can consider a wave with lateral wave vector p as
completely decoupled from a wave with lateral wave vec-
tor q ̸= p. However, the wave reflected with lateral wave
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vector p is considered to be coupled to the wave trans-
mitted with the same lateral wave vector. In fact, this
point of view is strengthened by the fact that both the
reflected and transmitted waves sharing the same lateral
wave vector also share exactly the same p-dependence
for their amplitude according to Eq. (29). We can inter-
pret this fact by saying that the reflected and transmitted
waves sharing the same lateral wave vector are two pieces
of one mode defined in the whole space, and not solely
on a single side of the interface. Note that this point of
view is not new. It was adopted by Fano in the early
1940s as a general interpretation of the first order per-
turbative solution of the Rayleigh equation and used to
further deduce the origin of the Wood anomalies [39].

What is now the physical interpretation of the polar-
ization factors ρ̂(1)(p |p0) and τ̂ (1)(p |p0)? It is clear
from the definition of the amplitudes ρ̂(1)(p |p0) and
τ̂ (1)(p |p0), given in Eqs. (A9) and (A16) respectively,
that they are identical for different realizations of the
surface profile. This suggests that these amplitudes are,
in some sense, rather a signature of the bulk polarization
response than the surface scattering properties. In using
their definitions together with Eqs. (A9) and (A16) and
by expressing the Mb,a

l,m matrices as functions of the po-
larization vectors in the local polarization basis as given
in Eq. (10), we obtain the following expressions:

ρ̂(1)ss (p |p0) =
ês(p) · ês(p0) + ρ

(0)
ss (p0) ês(p) · ês(p0)

ês(p) · ês(p)
= ês(p) ·E

(0)
1,s(p0) (30a)

ρ̂(1)ps (p |p0) =
ê+p,2(p) · ês(p0) + ρ

(0)
ss (p0) ê

+
p,2(p) · ês(p0)

ê+p,2(p) · ê
+
p,1(p)

=
ê+p,2(p) ·E

(0)
1,s(p0)

ê+p,2(p) · ê
+
p,1(p)

(30b)

ρ̂(1)sp (p |p0) =
ês(p) · ê−p,1(p0) + ês(p) · ê+p,1(p0)ρ

(0)
pp (p0)

ês(p) · ês(p)
= ês(p) ·E

(0)
1,p(p0) (30c)

ρ̂(1)pp (p |p0) =
ê+p,2(p) · ê

−
p,1(p0) + ê+p,2(p) · ê

+
p,1(p0)ρ

(0)
pp (p0)

ê+p,2(p) · ê
+
p,1(p)

=
ê+p,2(p) ·E

(0)
1,p(p0)

ê+p,2(p) · ê
+
p,1(p)

(30d)

for the reflection amplitudes and

τ̂ (1)ss (p |p0) = τ (0)ss (p0)
ês(p) · ês(p0)

ês(p) · ês(p)

=
ês(p) ·E

(0)
2,s(p0)

ês(p) · ês(p)
(31a)

τ̂ (1)ps (p |p0) = τ (0)ss (p0)
ê−p,1(p) · ês(p0)

ê−p,1(p) · ê
−
p,2(p)

=
ê−p,1(p) ·E

(0)
2,s(p0)

ê−p,1(p) · ê
−
p,2(p)

(31b)

τ̂ (1)sp (p |p0) = τ (0)pp (p0)
ês(p) · ê−p,2(p0)

ês(p) · ês(p)

=
ês(p) ·E

(0)
2,p(p0)

ês(p) · ês(p)
(31c)

τ̂ (1)pp (p |p0) = τ (0)pp (p0)
ê−p,1(p) · ê

−
p,2(p0)

ê−p,1(p) · ê
−
p,2(p)

=
ê−p,1(p) ·E

(0)
2,p(p0)

ê−p,1(p) · ê
−
p,2(p)

(31d)

for the transmission amplitudes. Here we have defined
the total zero order field amplitudes in media 1 and 2,
for s- and p-polarized incident light, as

E
(0)
1,s(p0) =

[
1 + ρ(0)ss (p0)

]
ês(p0) (32a)

E
(0)
1,p(p0) = ê−p,1(p0) + ρ(0)pp (p0) ê

+
p,1(p0) (32b)

E
(0)
2,s(p0) = τ (0)ss (p0) ês(p0) (32c)

E
(0)
2,p(p0) = τ (0)pp (p0) ê

−
p,2(p0) . (32d)

The amplitudes given in Eqs. (32) correspond to the sum
of the unit incident field and the reflected or transmitted
zero order field amplitudes. In other words, they charac-
terize the state of the field given by the superposition of
the incident wave and the zero order response of the me-
dia. This is analogous to what we found for scalar waves
in Eq. (29), with the difference that due to the dipolar
nature of the scatterers the state of this zero order back-
ground is anisotropic, as indicated by the dependence on
p.

An interesting point to notice from Eqs. (30) and (31)
is that the amplitude of the first order α-polarized wave
scattered with lateral wave vector p in medium j is
proportional to the projection of the total zero order
field amplitude in medium j, induced by an incident β-
polarized wave with lateral wave vector p0, on the direc-
tion of the polarization vector associated with its Snell-
conjugate wave vector (with lateral wave vector p). For
s-polarized scattered waves the Snell-conjugate wave vec-
tor is not apparent since all s-polarization vectors are in
the (ê1, ê2)-plane. For p-polarized scattered waves this
is clear as is indicated by the vectors ê+p,2(p) and ê−p,1(p),
for the first order amplitudes in reflection and transmis-
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sion, respectively. One way of interpreting these equa-
tions is to imagine that the wave scattered in one medium
is induced by the roughness of the surface in the sense
that, contrary to the case of the planar surface, the path
issued from a scattering event on the surface will not
destructively interfere anymore when summed over the
surface, and hence probe the underlying polarized radia-
tion pattern induced by arrays of dipole emitters in the
bulk. The scattering amplitude of such a scattered wave
will be controlled by the polarized state of the media,
in such a way that the amplitude is proportional to the
total zero order field amplitude in the medium of scatter-
ing but projected on the polarization vector the scattered
wave would have had, keeping its lateral wave vector and
according to Snell’s law, if it were incoming from the op-
posite medium. This is a generalization of Doyle’s anal-
ysis based on the Ewald triad, although we now have a
triad associated with each observed scattered wave.

A more detailed microscopic understanding of this
result would require an analysis of the way arrays of
dipoles emit when excited by a primary incident wave,
and by summing the elementary wavelets emitted by all
the dipoles while also taking into account the geometry
of the surface. Such an analysis was done by Ewald in his
derivation of the extinction theorem for a planar surface
[29], and later used by Doyle [26] in interpreting the
Fresnel coefficients at a microscopic level, as explained
earlier. A Snell-conjugate wave vector can be viewed as
the wave vector of one of the waves of the Ewald triad
associated to a (first order) scattered wave, in a similar
fashion as what we have already encountered when fac-
torizing the Fresnel coefficients for a p-polarized wave in
Eq. (27b). Modern derivations of the extinction theorem
are directly based on the macroscopic properties of the
media, and what we obtain from such formalism can
only be the integrated contribution of all the scatterers,
as is also the case with the solution of the reduced
Rayleigh equations, which can be shown to derive from
the extinction theorem. Consequently, we must take our
Snell-conjugate wave interpretation as a signature of a
more fundamental microscopic view, and consider this
concept as a useful short cut for reasoning directly on
the integrated response, just as we did for interpreting
the Fresnel coefficients following Doyle’s interpretation.

We can summarize the interpretations of the first or-
der amplitudes discussed in this section as a factorization
of two main mechanisms. All the first order amplitudes
can be written as the product of a polarization indepen-
dent factor, [α1(p) − α2(p)] ζ̂(p−p0), common to all
amplitudes sharing the same outgoing lateral wave vec-
tor, and a polarization dependent factor. The polariza-
tion independent factor encodes the interference pattern
of all spherical waves scattered in the vicinity of the non-
planar surface, and can be viewed as the scattering or
probing mechanism. The polarization dependent factor
is controlled by the state of the zero order field, and is
always proportional to the projection of the total zero

order field amplitude onto the polarization vector of a
Snell-conjugate wave associated to the observed scattered
wave. This mechanism ensures that the polarization and
amplitude of the observed scattered wave is consistent
with the polarized dipole radiation characterized by the
state of the zero order field. We are now ready for a more
in-depth analysis of the Yoneda and Brewster scattering
effects based on the physical interpretation and concepts
we have developed in the present section.

C. The physical origin of the Yoneda effect

Our observations on the Yoneda and Brewster scat-
tering effects in Section IV A led us to the conclusion
that the two effects can be explained independently. The
fact that the Brewster scattering angle coincides with the
Yoneda critical angle for normal incidence can, for the
time being, be considered a simple coincidence. Since
the Yoneda phenomenon seems to be independent of po-
larization we can attempt an explanation solely based on
scalar waves and consider Eq. (29) a relevant simplified
model, in an analogous fashion as Eq. (27c) was suffi-
cient to explain total internal reflection from a planar
surface. In fact, for the scattering of s-polarized waves
restricted to the plane of incidence (p ∥ p0) the reflec-
tion and transmission amplitudes are exactly given by
Eq. (29). We will therefore keep to scalar waves for the
main analysis, but we will also illustrate our conclusions
with results obtained for s-polarized waves. In the fol-
lowing, it will be convenient to refer to the smallest and
largest dielectric constant by ϵmin and ϵmax respectively,
and more generally we will index by min and max the
quantities corresponding to these media. Our analysis
will be independent of the configurations of the media
but will require us to distinguish the optically denser
medium from the less dense medium for the scattered
waves.

We can view the scattering mechanism responsible for
the Yoneda peak phenomenon as a two step process for
the sake of clarity. First, the incident wave impinges
on the surface with an in-plane lateral wave vector p0

and, within a single scattering point of view, gives rise
to a scattered elementary wave reflected with the in-
plane lateral wave vector p and a scattered elementary
wave transmitted with the in-plane lateral wave vector
p. These are arbitrarily chosen wave vectors; the total
scattered field will have components a priori for all wave
vectors but in our analysis we consider just these two ar-
bitrary waves. One may have in mind the picture of an
optical path allowed to be scattered only once in our sin-
gle scattering view and the total field will be obtained by
summing the probability amplitude of all optical paths.
As argued in Section ??, the probability for a change of
lateral wave vector from p0 to p is controlled by the fac-
tor [α1(p) − α2(p)] ζ̂(p−p0) (or its modulus square).
This is not sufficient to obtain the complete probability
amplitude, which in general and for polarized waves will
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depend on the wave vectors, dielectric constants and po-
larizations of the waves involved in the process. However,
we will show that we do not need to analyze the details
of these amplitudes in order to investigate the Yoneda
phenomenon.

The second step determines whether the intensity is
enhanced in the optically denser medium for a given el-
ementary scattered wave. We can view the elementary
reflected and transmitted waves as coupled into a single
mode as explained in the previous section. We can take
this one step further, and interpret the argument based
on the probability measure for a change of momentum
as a way to allocate part of the energy from the incident
wave, to be shared between, and radiated away by, the
two scattered waves gathered in a coupled mode with a
shared lateral wave vector p.

Let us first consider the situation where the shared
lateral wave vector of the scattered waves is restricted
to |p | < nminω/c = pc, which means that both waves
are allowed to propagate to infinity in their respective
medium. Under this assumption, the total energy of the
two waves will be shared a priori non-trivially between
the two waves. In particular, for a given p it is appar-
ent from Eq. (29) that the energy will be split accord-
ing to the relative amplitudes given by the zero order
state since the factor [α1(p) − α2(p)] ζ̂(p−p0) is com-
mon to both the reflected and transmitted wave. How-
ever, if now the shared lateral wave vector is such that
nminω/c < |p | < nmaxω/c, the wave scattered in the
optically less dense medium will be evanescent. There-
fore the total energy for the coupled mode will be carried
away solely by the wave which can propagate, namely
the one scattered into the dense medium, resulting in
the apparent sudden increase of intensity at the transi-
tion between propagation and evanescence of the wave
scattered in the optically less dense medium. An illus-
trative way of seeing that the intensity needs to be en-
hanced is by analyzing the factor α1(p)−α2(p) assuming
|ζ̂| to vary slowly. For |p | < pc both α1(p) and α2(p)
are real. As |p | → pc from below, αmin(p) → 0 and
α1(p)− α2(p) → ±αc, with αc =

√
ϵmax − ϵmin ω/c. By

writing p = |p | = pc −∆p, with ∆p > 0, we can make
an asymptotic analysis of |α1(p)−α2(p)| as p → pc from
below. In this way we obtain the following result

|α1(p)− α2(p)|
c

ω
= [αmax(p)− αmin(p)]

c

ω

= [ϵmax − (p̃c −∆p̃)2]1/2 − [ϵmin − (p̃c −∆p̃)2]1/2

= [ϵmax − ϵmin + 2ϵ
1/2
min∆p̃−∆p̃2]1/2 − [2ϵ

1/2
min∆p̃−∆p̃2]1/2

= αc
c

ω
− [2ϵ

1/2
min∆p̃]1/2 + o(∆p̃1/2) . (33)

Here we have chosen to work with unit-less quantities and
denoted p̃ = p c/ω for conciseness. From Eq. (33) it then
follows that as ∆p → 0, |α1(p) − α2(p)| must increase
towards αc in an inner-neighborhood of the circle p = pc.
Furthermore, the asymptotic expansion reveals that the
critical point will be reached with a sharp edge (infinite

slope) for p < pc as can be deduced from the square
root behavior in ∆p. Note that both the reflection and
transmission amplitudes exhibit the same behavior inde-
pendently of which medium is denser. This is due to the
fact that the two waves are part of the same mode. How-
ever, as the wave propagating in the less dense medium
becomes a grazing wave, the corresponding differential
scattering coefficient is forced to vanish due to the an-
gular dependence in cos2 θs (θs = θr or θt depending on
the context). The complex amplitude is nevertheless en-
hanced for both the reflected and transmitted wave. This
is illustrated for example in Figs. 2(a) and 2(d), which
corresponds to a case for which the medium of incidence
is vacuum. From the results presented in these figures,
we can see that while the incoherent component of the
MDRC is forced to go to zero when p1 → pc = ω/c,
the surface-independent part of the reflection amplitude
ρ
(1)
ss exhibits a sharp increase in modulus. Simultane-

ously, the surface-independent part of the transmission
amplitude τ

(1)
ss also exhibits a similar sharp increase in

modulus as p1 approaches pc. Consequently, since the
wave can propagate away from the surface in the second
medium (which consists of glass in this specific case),
the corresponding incoherent component of the MDTC
exhibits a similar increase. Note that both the phases
associated with ρ

(1)
ss and τ

(1)
ss remain constant and equal

to 0 for p1 < pc for all θ0 in Fig. 2, since the complex
amplitude stays on the real line in the case where ϵ1 < ϵ2
independent of the angle of incidence.

Figures 3 and 4 support the same conclusion but by
interchanging the role of the media. The only difference
worth noting is that the phases ϕ

r,(1)
ss and ϕ

t,(1)
ss have a

constant plateau for p1 < pc which is equal to 0 only
for θ0 < θc. The plateau is offset for θ0 > θc. This
overall phase offset is due to the Goos-Hänchen phase
shift associated with total internal reflection of the zero
order wave. Indeed, recall that the first order amplitudes
are proportional to the total zero order field amplitudes.
As a consequence, if the zero order waves exhibit a phase
shift, it will affect the first order amplitudes in the form
of a constant phase offset for all p.

When |p | > pc, αmin becomes purely imaginary and
α1(p) − α2(p) thus moves off the real line. For pc <
|p | < nmaxω/c, we find that in this regime α1(p)−α2(p)
keeps a constant modulus equal to αc. Indeed, by writing
αmin(p) = iβmin(p) we have

|α1(p)− α2(p)| = |αmax(p)− iβmin(p)|

=
[
α2
max(p) + β2

min(p)
]1/2

=
[
ϵmax − p̃2 + p̃2 − ϵmin

]1/2
ω/c

= αc . (34)

The complex number α1(p)− α2(p) thus traces a circu-
lar arc of radius αc in the complex plane. Finally, when
|p | > nmax ω/c, both the reflected and transmitted
waves are evanescent, αmax becomes pure imaginary and
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hence α1(p) − α2(p) moves along the imaginary axis.
The constant value of |ρ(1)ss | and |τ (1)ss | in the regime
nmin ω/c < p < nmax ω/c can be appreciated for all
angles of incidence illustrated in Figs. 2 – 4, while the
phases exhibit a smooth variation from their plateau
value and decay by a total amount of −π/2 when reach-
ing p1 = nmax ω/c. Once the threshold of nmax ω/c has
been passed, the phases remain constant and the modulii
decay towards zero as |p | → ∞ (which can easily be
deduced from a straightforward asymptotic analysis
leading to α1(p) − α2(p) ∼ i(ϵmax − ϵmin)ω

2/(2c2p)).
The phase change associated with the transition from
the real line to the imaginary line in the complex plane
is therefore −π/2. This gradual phase change is similar
to that of the Goos-Hänchen phase shift discussed for
the reflection by a planar surface. The difference of
absolute total phase change, of π for the case of the
Fresnel amplitude and π/2 in the case of the scattered
waves, comes mathematically from the fact that in the
former case the amplitude is written as the ratio of
a complex number and its complex conjugate, while
in the latter case there is no such ratio. The phase
consequently turns twice as fast in the former case than
in the latter. A physical interpretation of this difference
is that for the Fresnel amplitude both the incident and
outgoing wave vector must vary simultaneously (since
they are the same), while in the case of a scattered
wave the incident wave vector is fixed while only the
outgoing wave vector is allowed to vary. In fact, we
have only analyzed the phase associated with the factor
α1(p)−α2(p) in Eq. (29). The phase of the overall com-
plex amplitude will be the sum of the aforementioned
phase, that given by the argument of ζ̂(p−p0), and
the phase given by the argument of the total zero order
amplitude [1 + ρ(0)(p0)] or τ (0)(p0). In particular, if the
angle of incidence is such that total internal reflection
occurs for the zero order field, the overall phase of
the scattered amplitude will contain a signature of the
Goos-Hänchen phase shift associated with the total
internal reflection of the zero order field in addition to
the corresponding Goos-Hänchen phase shift associated
with the Yoneda effect. Note that when averaged over
surface realizations, the phase contribution coming from
ζ̂ averages to zero. This supports our choice of limiting
the detailed investigation to the surface-independent
factors in Eq. (29).

To summarize, let us gather some important results
and answer some of the questions which were left unan-
swered in previous studies. First, we would like to stress
that the above analysis predicts a critical angle for the
Yoneda phenomenon which is independent both of the
angle of incidence and of which medium the incident wave
came from. The Yoneda transition will therefore always
occur at the same polar angle of scattering: the one given
by |pc | = nmin ω/c. We also want to emphasize that the
approximate solution of the reduced Rayleigh equations
obtained via SAPT to first order in the surface profile

is commonly accepted as a single scattering approxima-
tion. In light of our analysis of the Yoneda phenomenon,
it is clear that the analogy of the Yoneda phenomenon
with that of total internal reflection put forward in the
literature may seem a valid one. There are, however,
some comments to be made about this analogy. It is
important to emphasize the underlying cause of total in-
ternal reflection, namely the impossibility of an evanes-
cent wave to carry energy away from the surface, given
the assumed scattering system. Indeed, trying to directly
and naively apply the total internal reflection argument
would lead one to expect an absence of the Yoneda ef-
fect in transmission into the dense medium based on a
single scattering picture, as this would require multiple
scattering events. Indeed, one could imagine that the
incident wave would need to scatter once to a transmit-
ted grazing or evanescent wave and then a second time
to be scattered in reflection in the dense medium and
therefore follow the rule of total internal reflection. Such
a naive picture would be in contradiction with results
from numerical experiments based on first order pertur-
bation theory [1, 2], or at least contradict the common
single-scattering picture associated with it, and we be-
lieve that our interpretation resolves this issue. The re-
sults presented in Refs. 1 and 2 validated the qualitative
use of SAPT in describing the Yoneda phenomenon, for
the roughness parameters assumed in these studies, when
compared to numerical results obtained through a non-
perturbative solution of the reduced Rayleigh equations.
Similar non-perturbative solutions were found to match
experimental results showing the Yoneda phenomenon in
Ref. 16.

In fact, the Yoneda phenomenon for weakly rough sur-
faces originates from the same physical mechanism as
the Rayleigh anamolies for periodic dielectric gratings.
The continuous set of scattered wave vectors in the case
of a randomly rough surface can be viewed as probing
a diffracted order scattered from a periodic surface with
continuously changing lattice constant. It is easy to show
numerically and with SAPT to first order, that the be-
havior of the efficiency of a given diffractive order as the
lattice constant is changed exhibits the same character-
istic peak as the Yoneda peak when its counter part in
the less dense medium becomes evanescent. The pertur-
bative analysis in the case of a periodic grating is exactly
the same as in the case of a randomly rough surface with
the only difference being that p must be replaced by the
in-plane wave vector of the diffractive order of interest
and make the lattice constant vary instead.

As a remark, we would like to point out that since
the analysis was carried out for the scattering of a scalar
wave subjected to the continuity of the field and its nor-
mal derivative with respect to the surface, we predict that
the Yoneda phenomenon should also be observed for the
scattering of a quantum particle by a rough interface be-
tween two regions of constant potential.

In studying the results from Figs. 2 – 4 we avoided a
direct discussion for p-polarized waves, for which the re-
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sults put forward by the scalar wave analysis seem to be
invalidated. The analysis done for scalar waves is, in fact,
still valid but must be complemented with additional ef-
fects, due to polarization, not only for p-polarized light
but also for s-polarized light when the scattering direc-
tion is out of the plane of incidence as suggested by
Eqs. (30, 31). This is the subject of the following sec-
tion.

D. Physical and geometrical explanations of the
Brewster scattering effect

For a randomly rough surface, we have seen in Figs. 2
– 4 that we may find a Brewster scattering angle for a
wide range of angles of incidence if we look at both the
reflected and transmitted light (the MDRC and MDTC).
We will now see that the general Brewster scattering
phenomenon, roughly defined as a wave scattered with
zero amplitude in a single scattering approximation, also
extends to scattered waves in the evanescent regime.
To this end we will continue our dissection of the phe-
nomenon through perturbative theory.

In-plane reflection — Let us focus first on the case of
co-polarized scattering in the plane of incidence to fix the
ideas. Equation (30a) shows that ρ̂

(1)
ss (p |p0) is propor-

tional to ês(p) ·E
(0)
s,1(p0), where E

(0)
s,1(p0) is the total zero

order field amplitude in medium 1 given by the sum of the
unit incident field amplitude and the reflected field am-
plitude given by the Fresnel coefficient for an s-polarized
wave. This relation indicates that the field amplitude of
the first order reflected amplitude for the wave scattered
with lateral wave vector p is proportional to the projec-
tion of its polarization vector on the total zero order field.
For scattering in the plane of incidence ês(p) = ês(p0)
and therefore the first order reflection amplitude reduces
to that of the scalar wave Eq. (29a). Consequently, there
is no extinction for s → s scattering in the plane of inci-
dence for any angle of incidence. The same analysis and
conclusion hold for the transmitted s-polarized wave.

Similarly, for p-polarized light, Eq. (30d) shows that
the first order reflection amplitude is proportional to
ê+p,2(p) · E

(0)
1,p(p0), where we recall that E

(0)
1,p(p0) is the

total zero order field amplitude given by the sum of the
unit incident field amplitude and the reflected field am-
plitude given by the Fresnel coefficient for p-polarized
waves. Equation (30d) states that the first order field
amplitude is proportional to the projection of the Snell-
conjugate wave’s polarization vector ê+p,2(p) along the
direction of the total zero order field. Note the similar-
ity with what was found for the Fresnel coefficient for
p-polarized light in Eq. (27b). From Eq. (30d) we can
deduce a simple geometrical criterion for Brewster scat-
tering within first order perturbation theory: The lat-
eral wave vector(s) pB of the elementary Brewster scat-
tered wave(s), for which the reflection amplitude for a
p-polarized reflected wave vanishes given a p-polarized in-
cident wave with lateral wave vector p0 is given by the

condition of orthogonality between the p-polarization vec-
tor of the Snell-conjugate scattered wave(s) and the total
zero order field in medium 1, i.e.

ê+p,2(pB) ·E
(0)
p,1(p0) = 0 . (35)

As a direct consequence, in the case of co-polarized scat-
tering in the plane of incidence, the geometrical condi-
tion can be re-stated as a requirement on the colinearity
between the Snell-conjugate wave vector and the total
zero order field, which is exactly the same geometrical
criterion found in the case of reflection from a planar
interface. A second corollary is that for in-plane scat-
tering ΘB(θB) = θB: the Brewster scattering angle is
equal to the Brewster angle for a planar interface when
the angle of incidence is equal to the Brewster angle for
a planar interface, θ0 = θB (or so-called Brewster inci-
dence). In other words, the Brewster angle for a planar
interface, θB, is a fixed point for the mapping which as-
sociates the angle of incidence to the Brewster scattering
angle: ΘB : θ0 7→ ΘB(θ0). This is readily understood
from the geometrical criterion expressed by Eq. (35). At
Brewster incidence the zero order reflected wave vanishes
(by definition of Brewster incidence). Thus the total
zero field amplitude is simply the incident field ampli-
tude, E(0)

p,1(p0) = ê−p,1(p0), and consequently, the Brew-
ster scattering angle is necessarily equal to θB.

Let us now apply the above criterion for tracking the
Brewster scattering direction while the angle of inci-
dence varies. We start with the case where the incident
plane wave is approaching the rough interface from vac-
uum, and is reflected from a glass substrate [ϵ1 = 1 and
ϵ2 = 2.25]. Figure 6 presents selected wave vectors for
different polar angles of incidence θ0, highlighting the
geometrical relations leading to the Brewster scattering
direction. The dashed circles in this figure represent the
dispersion relations (|k±

j | = kj = njω/c) by indicating
the norm of wave vectors allowed to propagate in the
two media. The incident wave vector k−

1 (p0) is repre-
sented pointing towards the origin for clarity while the
wave vector for the reflected zero order wave, k+

1 (p0), is
represented as pointing outwards. The red dashed line
corresponds to the direction of the reflected wave vector
for Brewster scattering in the case of a planar interface
with the purpose of illustrating the aforementioned fixed
point property of the Brewster incident angle θ0 = θB.
The general construction rules go as follows. First, the
wave vectors of the incident and the reflected zero or-
der waves are drawn in black. Second, the direction of
the total zero order field given by Eq. (32b) is determined
and the wave vector of the virtual wave, which is colinear
to the total zero order field (not represented), is drawn
as the blue wave vector k+

2 (pB). Note that k+
2 (pB) lies

on the circle of radius n2ω/c. The projection of k+
2 (pB)

along ê1 gives the Brewster lateral wave vector pB from
which we deduce k+

1 (pB) in red. Note that the reflected
wave associated with k+

1 (pB) may be evanescent, and in
that case we simply represent its lateral component pB
as its component along ê3 is pure imaginary.
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FIG. 6. Illustration of the geometrical criterion for in-plane Brewster scattering for different polar angles of incidence: (a)
θ0 = 0◦, (b) θ0 = 35◦, (c) θ0 = 50◦ and (d) θ0 = 70◦. The dashed circles represent the norm of the full wave vectors, given
by the dispersion relations, in vacuum (ϵ1 = 1 inner circle) and glass (ϵ2 = 2.25 outer circle). The black arrows represent
respectively the incident wave vector k−

1 (p0), which is drawn as pointing towards the origin for clarity, and the wave vector
of the reflected zero order wave, k+

1 (p0). The blue arrow represents the wave vector of the virtual wave, k+
2 (pB), from which

the lateral wave vector of the Brewster wave, pB, is deduced by projection along ê1. From pB, the full wave vector for the
Brewster wave, k+

1 (pB), can be drawn (provided propagation in medium 1) as a red arrow. Note that if the Brewster wave is
evanescent, only pB is draw in red as the out-of-plane component of k+

1 (pB) is purely imaginary. The red dashed line indicates
the Brewster angle for a planar surface approximately equal to 56.3◦ in this case.

FIG. 7. Illustration of the geometrical criterion for in-plane Brewster scattering for different polar angles of incidence: (a)
θ0 = 0◦, (b) θ0 = 35◦ and (c) θ0 = 41.81◦. The dashed circles represent the norm of the full wave vectors, given by the
dispersion relations, in glass (ϵ1 = 2.25 inner circle) and vacuum (ϵ2 = 1 outer circle). The black arrows represent respectively
the incident wave vector k−

1 (p0), which is drawn as pointing towards the origin for clarity, and the wave vector of the reflected
zero order wave, k+

1 (p0). The blue arrow represents the wave vector of the virtual wave, k+
2 (pB), from which the lateral wave

vector of the Brewster wave, pB, is deduced by projection along ê1. From pB, the full wave vector for the Brewster wave,
k+
1 (pB), can be drawn (provided propagation in medium 1) as a red arrow. Note that if the Brewster wave is evanescent, only

pB is drawn in red as the out-of-plane component of k+
1 (pB) is purely imaginary. The red dashed line indicates the Brewster

angle for a planar surface, approximately equal to 33.7◦ in this case.

For normal incidence [Fig. 6(a)] the total zero order
electric field lies along ê1, and consequently, so does
k+
2 (pB). In fact, for normal incidence, due to the fact

that the total zero order field lies along ê1, there are two
Brewster waves in the plane of incidence with opposite
wave vectors p1 = ±n2 ω/c, but we focus on the one
pointing to the right for clarity in Fig. 6(a). It follows
from k+

2 (pB) that |pB | > n1 ω/c and the correspond-
ing Brewster (non-) reflected wave is therefore evanes-
cent. Such a case could not be revealed in previous work
which focused on the diffusely scattered intensity radi-
ated away from the surface. Nevertheless, the theory

suggests that the notion of Brewster scattering should
be extended to evanescent waves. This effect is indeed
visible by inspection of the modulus of the amplitude ρ

(1)
pp

in Fig. 2(a). Indeed, we observe that for p1 = ±n2 ω/c,
ρ
(1)
pp vanishes. The corresponding phase ϕ

r,(1)
pp exhibits a

jump which is characteristic of the Brewster effect. The
phase jump is equal to π/2 in this case, while in gen-
eral the phase jump associated with the Brewster effect
is equal to π. The π/2 jump seems to happen only when
two Brewster waves with opposite lateral wave vectors
are solutions of the criterion Eq. (35), which as far as
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we can see only occurs at normal incidence for the sys-
tems studied in this paper. It is tempting to interpret
the π/2 jump as actually a π jump evenly shared by the
two Brewster waves (although this is over interpreted as
we will see later). By progressively increasing the polar
angle of incidence, the direction of the total zero order
field changes, and so does the wave vector of the Brew-
ster Snell-conjugate wave (which now is unique). For
a polar angle of incidence equal to 35◦, as sketched in
Fig. 6(b), we can observe that the projection of k+

2 (pB)
along ê1 still yields an evanescent Brewster wave, but
the lateral wave vector is now closer to the propagation
limit. This case corresponds to the parameters assumed
in obtaining the results in Fig. 2(b) and we can observe
that ρ

(1)
pp vanishes indeed for p1 just above ω/c, and that

the corresponding phase exhibits a π jump. By further
increasing the polar angle of incidence the Brewster wave
is found in the propagating region as |pB | < n1 ω/c, and
its full wave vector can now be represented as following
the inner dashed circle. As the polar angle of incidence
increases towards the Brewster angle for a planar surface,
the wave vector associated with the reflected zero order
wave k+

1 (p0), drawn in black in Fig. 6, and the wave
vector of the Brewster scattered wave both approach the
red dashed line from either sides and cross it at the same
angle of incidence, namely the Brewster angle for a pla-
nar interface, θ0 = θB. Figure 6(c) shows the case where
θ0 = 50◦ at a slightly lower angle than the Brewster an-
gle of incidence (approximately equal to 56.3◦), i.e. just
before the cross-over. When θ0 is further increased the
lateral component of the Brewster wave vector contin-
ues to decrease. Figure 6(d) assumes θ0 = 70◦ which
corresponds to Fig. 2(c) where we now observe that the
Brewster wave is indeed in the propagating region as can
be seen both from ρ

(1)
pp and the extinction of the incoher-

ent component of the MDRC. Note also the π jump in the
phase. Finally, as the polar angle of incidence approaches
90◦, the virtual wave does not approach the vertical di-
rection as one might naively expect. Indeed, the total
zero order field does not become oriented along ê3 but
along the direction given by the critical angle for total
internal reflection. The change in the expected Brewster
scattering angle ΘB(θ0) for a range of angles of incidence
and for the currently discussed system is visible as blue
dashed lines in Fig. 5.

We now repeat the analysis but for an incident wave
approaching the surface in the denser medium [ϵ1 = 2.25,
ϵ2 = 1.0]. For normal incidence, the total zero order
field is along ê1, and yet again we recover two Brew-
ster waves. However, since now the magnitudes of the
Snell-conjugate waves are situated on the inner circle
(ϵ2 = 1), the wave vectors k+

1 (±pB) correspond to prop-
agating waves in glass, and coincide with the Yoneda
threshold. This situation is illustrated in Fig. 7(a) and
Fig. 3(a). Due to the presence of two Brewster waves, the
phase jump is π/2 [see Fig. 3(a)]. The coincidence of the
Yoneda threshold and the Brewster scattering angle for
internal reflection for normal incidence is now explained,

and we see that although the two effects are of different
nature and decoupled, they occur simultaneously in this
case simply as a consequence of the geometry imposed by
the dispersion relations. As the polar angle of incidence
is increased, only one Brewster wave remains, and the
corresponding lateral wave vector shrinks [see Fig. 7(b)
and Fig. 3(b)]. The wave vectors of the reflected zero or-
der wave and of the Brewster wave cross each other at the
Brewster angle of incidence (≈ 33.7◦). Now comes an in-
teresting effect which was not present when the wave was
incident from the less dense medium. As the polar angle
of incidence approaches the critical angle of total inter-
nal reflection of the zero order reflected wave, the Snell-
conjugate wave vector and that of the Brewster wave ap-
proach the vertical direction and reach it for θ0 = θc, as
displayed in Fig. 3(c). Then a sudden transition occurs
when θ0 is increased beyond θc. In Fig. 4(a), which shows
results for θ0 just above the critical angle, it seems that
the Brewster scattering angle is nowhere to be found.
However, the Brewster scattering angle now comes back
from the left (backscattering) side, visible in the evanes-
cent region of Fig. 4(c) where the polar angle of incidence
is 70◦. What happened? The overall behaviour of the
phase in Figs. 4(a)–(c) gives us a good indication. We
have mentioned earlier that for s-polarized light, when
the zero order reflected wave undergoes total internal re-
flection, the central phase plateau must undergo a Goos-
Hänchen shift with θ0 (in fact it is the whole graph which
undergoes the shift). Similarly, the p-polarized zero or-
der reflected wave undergoes a Goos-Hänchen shift and,
as a consequence, the two terms in Eq. (32b) are not any
longer in phase. In the case where ϵ1 < ϵ2, the arguments
of the two complex amplitudes in Eq. (32b) are always
either in phase or are separated by a phase difference of
π. Therefore, as time progresses, the real total zero order
field keeps a fixed direction. When ϵ1 > ϵ2, the Goos-
Hänchen phase shift makes the real total zero order field
change direction and turn in the plane of incidence as
time progresses (it describes an ellipse). Intuitively, this
seems to indicate that the corresponding dipole radiation
is not expected to be that of an oscillating dipole anymore
but that of a rotating dipole. It is therefore understand-
able that the measurement of a propagating p-polarized
wave does not yield any direction of extinction when the
radiation is emitted from a rotating dipole. Stated in an
equivalent way, ρ(0)pp now draws a lower half circle in the
complex plane from 1 to −1 as the angle of incidence is
varied from the critical angle to 90◦, while it previously
stayed on the real line. It follows that E

(0)
p,1(p0) has a

complex amplitude with non-zero imaginary part. It is
therefore not possible for a propagating Snell-conjugate
wave to satisfy the requirement of Eq. (35) since its p-
polarization vector would be real. Hence, in order to sat-
isfy Eq. (35) the polarization vector ê+p,2(pB) must itself
be complex, and the Snell-conjugate wave is now found
in the evanescent region of medium 2. This is the reason
why the Brewster scattering lateral wave vector seems to
disappear at the transition θ0 = θc +∆θ0 and then come
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back from the negative p1 side as the angle of incidence
is increased, which reveals the evanescent nature of the
Snell-conjugate wave.

Note that what we have defined as a p-polarized wave,
according to the polarization vector ê±p,j(p) given in
Eq. (6d), takes a rather interesting structure when it
is evanescent. For an evanescent wave, αj(p) is pure
imaginary and the polarization vector ê±p,j(p) hence
has a real component along ê3 and a pure imaginary
component along the transverse wave vector direction.
This means that the corresponding real electric field is
the sum of a wave polarized along ê3 and a longitudinal
wave (longitudinal with respect to the lateral wave
vector) dephased by π/2 radians with respect to the first
wave. The resulting field therefore describes an ellipse
in the (ê3, p̂)-plane.

In-plane transmission — The analysis for the Brewster
scattering effect in the transmitted light is similar to that
of the reflected light and will not be analyzed in details.
One difference worth mentioning, however, is that the
Brewster scattering direction is generally found in the
backscattering region when the corresponding Brewster
scattering for reflection is found in the forward scattering
direction. Intuitively, this effect can be related to the
emission of an oscillating dipole which yields zero emitted
power along the direction of oscillation, hence producing
two antipodal zero intensity points when the intensity is
mapped onto a sphere. This fact is better illustrated in
the next section.

E. Polarization of the radiation of oscillating and
rotating dipoles in free space

Before treating the full angular distribution of the
light scattered diffusely by a randomly rough surface,
we allow ourselves a detour via the analysis of the
polarization properties of the radiation emitted by an
oscillating dipole or a rotating dipole in free space. The
study of the polarization of the radiation in these two
cases gives remarkable insight and intuition into the
qualitative physical mechanisms at play for the case of
the scattering from a random interface, for which a more
quantitative analysis requiring Snell-conjugate waves
will be given in the next section.

Polarization of the radiation from an oscillating dipole
in free space with respect to the local (êp, ês) basis – We
consider first the radiation emitted by a single oscillating
dipole in free space. We let this dipole, of dipole moment
D(ϑ) = d(sinϑ ê1 +cosϑ ê3)/2 = d/2 êϑ, be tilted from
the x3-axis by an angle of ϑ ∈ [0, π/2] radians. The dipole
is placed in free space at the origin of the coordinate
system, where it oscillates with angular frequency ω and

radiates the following electric field in the far-field [19]:

Edip(r, t) = − ω2

4πε0c2
êr ×[êr ×D(ϑ)]

r
e−iω(t−r/c) , (36)

where r = r êr =
r(sin θ cosϕ ê1 +sin θ sinϕ ê2 +cos θ ê3) is the point
of observation, and r = | r |. It is well known that no
power is radiated along the axis of oscillation of the
dipole (êr ×D(ϑ) vanishes in Eq. (36) when êr ∥ êϑ)
and that the radiation is polarized in accordance with
the cross products in Eq. (36). The electric field is
polarized along the vector êθ

′, which is the basis vector
tangent to a meridian in a spherical coordinate system
(r, θ′, ϕ′) attached to the dipole direction. We are,
however, interested in analyzing the polarization of
the dipole radiation with respect to the local polar-
ization basis given in Eq. (6), which is defined with
respect to the propagation direction of the radiation
and the plane x3 = 0. Thus we study the following
dot products: êr ×[êr × êϑ] · ês and êr ×[êr × êϑ] · êp
where ês =

ê3 × êr

| ê3 × êr | and êp =
ês × êr

| ês × êr | are defined
with respect to êr in order to mimic the local s- and
p-polarization vectors attached to a scattering direction
along êr. The unit vectors êp = êθ = d êr /dθ and
ês = êϕ = 1/ sin θ d êr /dϕ are also the conventional
basis vectors in spherical coordinates. First we observe
that êr ×[êr × êϑ] · ês and êr ×[êr × êϑ] · êp are invariant
under the transformation êr 7→ − êr, and so the s- and
p-polarized distributions of the dipole radiation are
symmetric with respect to the origin as êr runs over the
unit sphere. Second, for ϑ ∈ (0, π/2] radians the identity
a×[b× c] = (a · c)b−(a ·b) c leads to

êr ×[êr × êϑ] = (êr · êϑ) êr − êϑ , (37)

hence the projection of the dipole radiation on the local
s-polarization basis reads

êr ×[êr × êϑ] · ês = − êϑ · êϕ = − sinϑ sinϕ . (38)

A direct consequence of Eq. (38) is that êr ×[êr × êϑ] · ês
vanishes for all êr in the (ê1, ê3)-plane [see Fig. 8(d)].
The corresponding projection on the local p-polarization
basis reads

êr ×[êr × êϑ] · êp = − êϑ · êθ , (39)

which is a quantity that depends on ϑ, θ, and ϕ. In
the particular case where êθ belongs to the (ê1, ê3)-
plane, there are two solutions for Eq.(39) equal to zero:
êr = ± êϑ, which correspond to the two intersections of
the dipole moment direction with the unit sphere. This
is not surprising since we already know that no power is
emitted along the direction of oscillation of the dipole, in-
dependent of polarization. More interesting are cases for
which êθ, and hence êr, does not belong to the (ê1, ê3)-
plane. Expanding the dot product in Eq. (39) in terms
of the angles ϑ, θ, and ϕ we obtain the following implicit
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FIG. 8. (a-c) Dependence of the p-polarized radiation of a tilted dipole in free space, | êr ×[êr × êϑ] · êp |, on the direction of
êr as it runs over the unit sphere for different dipole tilting angles ϑ ∈ {0◦, 45◦, 90◦}. (d) Similar dependence of the s-polarized
radiation of a tilted dipole in free space on êr for ϑ = 45◦. The black line in panels (a-d) indicates the direction of the dipole
moment. (e-f) Dependence of the σ+-polarized radiation of a rotating dipole in free space parametrized by ϑ = 45◦ and ϑ = 30◦

respectively (note the orientation of the coordinate system).

equation for the set of points on the unit sphere where
the p-polarization component of the dipole radiation van-
ishes:

sinϑ cos θ cosϕ− cosϑ sin θ = 0 , (40)

or equivalently for non-pathologic cases

tanϑ

tan θ
=

1

cosϕ
. (41)

We verify that for the cases ϕ = 0 and ϕ = π radians,
we recover that θ = ϑ and θ = π − ϑ, i.e. the points
of intersection of the dipole moment direction and the
unit sphere. For ϕ ∈ (−π/2, π/2), cosϕ > 0, which
implies that tan θ > 0 (recall that 0 < ϑ < π/2 hence
tanϑ > 0) and tanϑ > tan θ. By the monotony of the
tangent function, and the continuity of Eq. (41) with

respect to the variables, we thus deduce that when ϕ
varies in (−π/2, π/2) the set of the points of zero traces
a curve on the unit sphere latitude-bounded by θ < ϑ.
By the aforementioned symmetry of the polarization
dependence of the dipole radiation with respect to the
origin we immediately deduce that when ϕ varies in
(π/2, 3π/2) the set of the points of zero traces a curve on
the unit sphere latitude-bounded by θ > π − ϑ. This is
well illustrated in Fig. 8(b) where | êr ×[êr × êϑ] · êp | is
shown as a color map on a unit sphere. For ϑ = 45◦ we
here observe that the curve of zero p-polarized radiation
passes through both the north pole and the intersection
point of the dipole moment direction on the northern
hemisphere. The degenerate cases ϑ = 0◦ [Fig. 8(a)] and
ϑ = 90◦ [Fig. 8(c)] are also illustrated. For these cases
the curves of zero p-polarized radiation reduces to two
points (the poles) in the former case, and the equator
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FIG. 9. The full angular distribution of the incoherent component of the MDRC/MDTC, ⟨∂Xαβ/∂Ωr⟩incoh for X = R or T , as
function of the lateral wave vector q of the light that is scattered from a rough interface where the angle of incidence θ0 = 0◦.
The positions of the specular directions in reflection and transmission are indicated by white dots. The parameters assumed
for the scattering geometry and used in performing the numerical calculation had values that are identical to those assumed
in obtaining the results of Fig. 2. The sub-figures in Figs. 9(a)–(i) and 9(j)–(r) are both organized in the same manner and
show how incident β-polarized light is scattered by the one-rough-interface film geometry into α-polarized light [with α = p, s
and β = p, s] and denoted β → α. Moreover, the notation ◦ → ⋆ is taken to mean that the incident light was unpolarized
while the polarization of the scattered light was not recorded. For instance, this means that the data shown in Fig. 9(a) are
obtained by adding the data sets presented in Figs. 9(b)–(c); similarly, the data shown in Fig. 9(g) result from the addition
and division by a factor two of the the data sets presented in Figs. 9(a) and 9(d); etc. Finally, the in-plane intensity variations
from Figs. 9(b, f) and 9(k, o) are the curves depicted in Figs. 2(a) and Figs. 2(d), respectively.

(θ = π/2) and meridians ϕ = ±π/2 in the latter. Indeed,
θ must go to zero when ϑ → 0 as tanϑ vanishes, and,
either ϕ must go towards ±π/2 or θ must go towards
π/2 when ϑ → π/2 as tanϑ diverges.

Polarization of the radiation from a rotating dipole in
free space with respect to the local (êσ+ , êσ−) basis – We
now consider the radiation of a dipole rotating in the
(ê1, ê3)-plane. Equation (36) still holds, but we need to
modify the dipole moment which now reads

D(ϑ) = d (sinϑ ê1 +i cosϑ ê3)/2 = d/2 ϵ̂ϑ . (42)

The real vector Re[ϵ̂ϑ exp(−iωt)] hence describes an
ellipse in the (ê1, ê3)-plane whose excentricity is
parametrized by ϑ. In the limiting cases ϑ = 0 and
ϑ = π/2 radians we obtain an oscillating dipole along
ê3 and ê1 respectively. For ϑ = π/4 we obtain a circu-
larly rotating dipole. We now consider the polarization
of the radiation from such an elliptically rotating dipole
with respect to the local left and right circularly polarized

basis êσ+ and êσ− defined as

êσ± =
1√
2
(êp ±i ês) . (43)

The σ+ polarization component of the rotating dipole
radiation is then measured by

êr ×[êr ×ϵ̂ϑ] · êσ+ = −ϵ̂ϑ · êσ+ , (44)

which when expressed in terms of the angles reads[40]

êr ×[êr ×ϵ̂ϑ] · êσ+ = − 1√
2

sinϑ cos θ cosϕ

− i√
2
(cosϑ sin θ − sinϑ sinϕ) . (45)

The modulus square of Eq. (45) yields

| êr ×[êr ×ϵ̂ϑ] · êσ+ |2 =
1

2
sin2 ϑ cos2 θ cos2 ϕ

+
1

2
(cosϑ sin θ − sinϑ sinϕ)2 . (46)
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FIG. 10. Same as Fig. 9, but now for the angle of incidence θ0 = 70◦.

The directions of zero σ+-polarized light radiation are
obtained if and only if both terms on the right-hand side
of Eq. (46) are zero. The first term vanishes if at least
sinϑ, cos θ or sinϕ is zero. If we first assume that ϑ = 0,
then the second term is zero if and only if the condition
sin θ = 0 is satisfied. Such a case corresponds to a dipole
oscillating along the x3-axis and its radiation vanishes
at the poles of the unit sphere. More interesting are
the cases for which ϑ ̸= 0 and either θ = π/2 (recall
that θ ∈ (0, π)) or ϕ = ±π/2. Let us first assume that
ϕ = ±π/2. The second term in Eq. (46) then vanishes if
and only if

sin θ = ± tanϑ . (47)

This last condition imposes a constraint on ϑ, which must
then have a value between 0 and π/4 in order for tanϑ
(and hence sin θ) to be less than unity. Since θ ∈ (0, π),
only the case ϕ = π/2 yields two solutions, θ1 and θ2,
that are symmetric with respect to θ = π/2. This is
illustrated in Fig. 8(f). Assuming now that θ = π/2, the
second term in Eq. (46) vanishes if and only if

sinϕ = cotanϑ . (48)

Since sinϕ requires cotanϑ to be less than unity the
above condition can only be satisfied if ϑ ∈ (π/4, π/2).
There are then two solutions for ϕ between 0 and π
(since sinϕ > 0 for ϑ ∈ (π/4, π/2)), which are symmetric
with respect to π/2. In fact, it can be shown that the
polarization of the radiation of the rotating dipole for

ϑ ∈ (π/4, π/2) corresponds to that of a rotating dipole
for which ϑ′ = π/2−ϑ (as in Fig. 8(f)) but rotated by 90◦

with respect to the x2-axis. These different cases where
Eq. (46) vanishes for a given circular polarization have
a very simple geometrical interpretation. For ϑ < π/4
the rotating dipole describes an ellipse whose long axis
is oriented along the x3-axis. The two directions of zero
σ+-polarized radiation correspond to the two directions
from which the ellipse is observed as a circle, with the
orientation of the dipole rotation opposite to that of
the σ+ polarization. For these two directions the ra-
diation is therefore purely σ−-polarized, explaining why
the zeros of radiation are found on the meridian where
ϕ = π/2. For ϑ > π/4 the long axis of the ellipse is along
the x1-direction, which explains the fact that the direc-
tions where one circular polarization is zero are found at
the equator. By symmetry the directions where the σ−-
polarized radiation vanishes are symmetric to those of the
σ+-polarized radiation with respect to the (ê1, ê3)-plane.

These results, obtained for the polarization of the
dipole radiation in free space, will prove to be useful
for the qualitative understanding of the full angular
distribution of the incoherent component of the MDRC
and MDTC in the case of the scattering by a randomly
rough dielectric surface.
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(a) (b) (c)

(d) (e) (f)

FIG. 11. Illustration of the construction steps leading to the set of directions of zero p → p reflection for an angle of incidence
of θ0 = 70◦. (a) Sketch of the average surface, the plane of incidence and the considered wave vectors of the incident and
reflected zero order waves (k−

1 (p0) and k−
1 (p0)). (b) Construction of the total zero order field amplitude E

(0)
p,1(p0) and the

plane orthogonal to it. Note that the incident wave vector does not in general belong in this plane as illustrated with the
dashed indigo line indicating the intersection of the plane of incidence and the plane E

(0)
p,1(p0)

⊥. (c) Unit vectors belonging to
the lower half E

(0)
p,1(p0)

⊥-plane. They correspond to the possible polarization vectors ê+
p,2(p) of Eq. (35). The wave vectors

k+
2 (p) associated to the polarization vectors ê+

p,2(p) are then constructed according to Eqs. (6). Note that they lie on a sphere
of radius |k | = n2 ω/c. The color associated to the vectors ê+

p,2(p) and k+
2 (p) helps us to identify the k+

2 (p) associated to
each ê+

p,2(p) (they share the same color). (d) The wave vectors k+
2 (p) are projected on the sphere of radius |k | = n1 ω/c

following the x3-direction, hence giving the wave vectors k+
1 (p) of zero p → p reflection. (e) The incoherent component of the

MDRC is shown on the scattering sphere together with the set of wave vectors k+
1 (p) obtained in (d). (f) Projection of (e) in

the (ê1, ê2)-plane. We verify in (e) and (f) that the constructed wave vectors indeed follow the curve of zero scattering of the
incoherent component of the MDRC.

F. Full angular distributions of the MDRC/MDTC

P-polarized Brewster scattering — Figure 9 presents
the full angular distributions of the diffuse contribution
to the MDRC and MDTC for θ0 = 0◦ and parameters
equivalent to those assumed in Figs. 2(a) and 2(d),
respectively. The overall dipole-like appearance of the
lower left 2 × 2 panels in each collection of panels in
Fig. 9 is reminiscent of the polarization pattern of the
dipole radiation in free space discussed above in the
case when the dipole oscillates in the (ê1, ê2)-plane.
For normal incidence all the zero order waves and the

incident wave have an oscillating electric field either
along ê1 for p polarization or along ê2 for s polarization.
Thus the dipoles in the media[41] oscillate along the
direction of the incident field. For an s-polarized wave
(field along ê2) we have seen that the dipole radiation
in free space yields zero s-polarized emission in the
(ê2, ê3)-plane and an overall | sin(ϕr − π/2)| intensity,
which is consistent with what is observed in Fig. 9(f).
Note that for a given polar angle of reflection θr, the
variation along ϕr of the incoherent component of
the MDRC to lowest non-zero order in the surface
roughness for s → s polarized scattering is exactly



25

FIG. 12. The full angular distribution of |ρ(1)αβ |
2 for normal incidence, θ0 = 0◦, ϵ1 = 2.25, ϵ2 = 1, for incident polarization

β ∈ {p, s} or unpolarized (◦) and outgoing polarization α ∈ {p, s, σ+, σ−}.

FIG. 13. Same as Fig. 12 but for the angle of incidence θ0 = 35◦.

proportional to | sin(ϕr − π/2)| since ρ
(1)
ss is proportional

to ês(p) · ês(p0), as can be seen from Eq. (30a), and this
is the only ϕr dependence for normal incidence. This
observation holds for all the polarization couplings up
to a rotation by π/2 for cross-polarization. For example,
for an s-polarized incident field and p-polarized reflected
light the ϕr dependence is proportional to | sinϕr|.
For the transmitted light [Fig. 9(j-r)] the behaviour is
similar, but in addition we now observe the Yoneda
phenomenon. This is the enhancement of the diffuse
contribution to the MDTC intensity above the critical
lateral wave vector for the scattered light |p | > pc,
as discussed extensively in Sec. IV C, which for normal
incidence is directly observable for outgoing s-polarized
light, especially in Fig. 9(r). For transmitted p-polarized
light we observe a black ring of zero scattering intensity

along the circle |p | = pc. This is the two-dimensional
extension of our discussion in Sec. IV D for in-plane
scattering, where we found that at normal incidence two
Brewster waves with pB = ±pc ê1 could be found. Now
we see that in two-dimensional p-space the solution
to Eq. (35) is in fact given by |p | = pc. In terms of
dipole radiation in free space this corresponds to the
vanishing radiation of p-polarized light in the equatorial
plane for the case ϑ = 90◦ as illustrated in Fig. 8(c). A
ring of zero intensity for the p-polarized reflected waves
can also be found, but then in the evanescent regime
as a two-dimensional extension of the corresponding
discussion for in-plane scattering.

The similitude with the polarization of the radiation
emitted by an oscillating dipole in free space is clear for
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FIG. 14. Same as Fig. 12 but for the angle of incidence equal to the critical angle for total internal reflection, θ0 = θc = 41.81◦.

FIG. 15. Same as Fig. 12 but for the angle of incidence θ0 = 43◦.

normal incidence. Let us now consider a larger angle of
incidence, θ0 = 70◦, for which the diffuse contributions
to the MDRC and MDTC for incidence in vacuum are
shown in Fig. 10. First, we observe that for p → p re-
flection [Fig. 10(b)], there exists a closed curve of zero
intensity in the forward scattering direction. Similarly,
we observe a closed curve of zero intensity for p → p
transmission [Fig. 10(k)] but in the backscattering re-
gion. These features are analogous to those observed in
the case of the p polarization component of the dipole
radiation in free space in the case where the dipole tilt-
ing angle is such that 0◦ < ϑ < 90◦, e.g. as is illustrated
in Fig. 8(b) for ϑ = 45◦. We can interpret the curves
of zero intensity for p → p scattering in Fig. 10 as the
signature of an overall dipole radiation whose dipole mo-
ment is tilted from the x3-axis by some angle ϑ, where
the polarization of the reflected light is derived from the

northern hemisphere of the radiation polarization pattern
while the polarization of the transmitted light is derived
from the southern hemisphere of the radiation polariza-
tion pattern.

Let us now interpret Eq. (35) geometrically for p → p
scattering for the case of reflection and θ0 = 70◦. This
construction is a generalization of the one made for scat-
tering in the plane of incidence presented in Sec. IV D.
Figure 11 provides illustrations of the main steps of the
geometrical construction of the set of directions of zero
p → p reflection in three dimensions. First, the wave vec-
tors of incidence k−

1 (p0) and of the reflected zero order
wave k+

1 (p0) are drawn [Fig. 11(a)]. Second, one deter-
mines the direction of the total zero order field amplitude
E

(0)
p,1(p0) which is contained in the plane of incidence.

The steps to geometrically construct the total zero order
field have been treated in detail for s- and p- polariza-
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FIG. 16. Same as Fig. 12 but for the angle of incidence θ0 = 70◦.

tions in Ref. 42, and thus we do not show these here
for clarity. Once E

(0)
p,1(p0) is determined, we can con-

struct the plane orthogonal to it: E
(0)
p,1(p0)

⊥ [Fig. 11(b)].
Note that in general this plane does not contain the inci-
dent wave vector as made clear by the dashed line, show-
ing the intersection of the plane of incidence with the
plane E

(0)
p,1(p0)

⊥. According to Eq. (35), all the polar-
ization vectors ê+p,2(p) must be contained in the plane
E

(0)
p,1(p0)

⊥. Moreover, since the ê+p,2(p) vectors are nor-
malized their end points are distributed on a circle of unit
radius. The set of all ê+p,2(p) vectors satisfying Eq. (35)
therefore spans a half circle in the plane E

(0)
p,1(p0)

⊥ as
shown on Fig. 11(c), where a sample of polarization vec-
tors are represented. The fact that only the lower half
circle is needed comes from the definition[43] of a po-
larization vector ê+p,2(p). For each polarization vector
satisfying Eq. (35) we can construct its corresponding
wave vector k+

2 (p), using for example that the direction
is given by ê+p,2(p) × [ê+p,2(p) × ê3] and that k+

2 (p) lies
on the northern hemisphere of radius k2 = n2ω/c. We
thus obtain the set of all wave vectors k+

2 (p) whose cor-
responding p polarization vector satisfies Eq. (35). A
sample of such vectors are represented for ê+p,2(p) and
k+
2 (p) in Fig. 11(c). The last step consists in project-

ing the vectors k+
2 (p) along ê3 onto the sphere of radius

|k | = n1 ω/c to obtain the wave vectors k+
1 (p) of zero

p → p reflection [Fig. 11(d)]. Figures 11(e) and 11(f)
show the resulting sampled wave vectors k+

1 (p) together
with the diffuse contribution to the the MDRC, mapped
to the hemisphere and its projection in the (ê1, ê2)-plane
respectively. We verify that the set of constructed wave
vectors correspond to the observed curve of zero intensity
for p → p reflection.

Figure 10(n) shows that the s → p transmitted light
exhibits a circle of zero intensity, for |p | = n1 ω/c

similar to what was observed for normal incidence
[Fig. 9(n)]. This feature is also present in reflection but
in the evanescent region, and is observed by considering
the complex amplitude instead of the MDRC. The
reason for the invariance of the circle of zero intensity
with the angle of incidence for the s → p scattering is
simple to understand in terms of the dipole radiation in
free space. For s-polarized incident light the dipoles in
the media are all oriented along ê2, independent of the
angle of incidence. Thus when measuring the p-polarized
component of the radiated light we expect to obtain
an underlying pattern of zero intensity consistent with
that obtained in the case of the oscillating dipole in free
space as illustrated in Fig. 8(c).

Circularly-polarized Brewster scattering — It is in-
structive to study the modulus square of the amplitudes
rather than the MDRC and MDTC in order to appreciate
the behavior of the amplitudes of the waves scattered in
the evanescent region as well as the ones scattered in the
propagating region. Furthermore, in order to illustrate,
to our knowledge, a new effect which can be considered
as a generalization of the Brewster scattering effect for
light scattered from p-polarized to circularly-polarized
light, we show in Figs. 12-16 |ρ(1)αβ |2 in the p-plane for
different polar angles of incidence. We let β ∈ {p, s, ◦}
represent the polarization of the incident light, where ◦
indicates unpolarized light, and we let α ∈ {p, s, σ+, σ−}
represent the polarization of the light scattered from the
surface. The subscripts σ± denote respectively left and
right circular polarization states and the corresponding
reflection amplitudes are derived from the p and s polar-
ization states by

ρ
(1)
σ±β =

1√
2

[
ρ
(1)
pβ ± iρ

(1)
sβ

]
, (49)

and similarly for the transmission amplitudes. We con-
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sider here only the case for which the medium of inci-
dence is the denser one, as the circularly-polarized Brew-
ster scattering effect only takes place when the reflected
zero order wave undergoes total internal reflection. Note,
however, that the effect can be observed both in the re-
flected and the transmitted scattered light. In Sec. IV D
we have seen that the Brewster scattering effect exhibits
a sudden transition when the reflected zero order wave
undergoes total internal reflection. We have seen that,
when restricted to scattering in the plane of incidence,
the direction of zero p-polarized reflected intensity goes
towards the x3-direction as the polar angle of incidence
approaches the critical angle for total internal reflec-
tion. Then the zero direction suddenly disappears from
the propagating region as the polar angle of incidence
goes beyond the critical angle for total internal reflec-
tion. This sudden transition was argued to be attributed
to a transition of the dipolar response of the media, go-
ing from an oscillating behavior to a rotating behavior
due to the phase shift between the incident excitation
and the reflected zero order wave. We are now studying
this transition in the full p-plane with particular atten-
tion on the scattered circularly polarized light, as it was
shown in Sec. IV E that the radiation emitted by a rotat-
ing dipole in free space exhibits characteristic signatures
in the emitted circularly-polarized light out of the plane
of incidence.

First, for polar angles of incidence smaller than the
critical angle, θ0 < θc, we have seen that both ρ

(1)
pβ and

ρ
(1)
sβ are real for scattering angles smaller than the Yoneda

threshold. In that case the right-hand side in Eq. (49)
vanishes if and only if both ρ

(1)
pβ and ρ

(1)
sβ are zero simul-

taneously. For an incident p-polarized wave, β = p, this
occurs only where the curve of zero p → p scattering
(cf. previous subsection) intersects with the plane of in-
cidence in which p → s scattering is identically zero. This
is illustrated for normal incidence, θ0 = 0◦, in Figs. 12(a)
and (d) showing |ρ(1)pp |2 and |ρ(1)sp |2 in the p-plane, where
we recognize the curves of zero scattering for the p- and
s-polarized light discussed in previous sections. It is also
illustrated in Figs. 12(g) and (j) showing |ρ(1)σ±p|

2 where
two directions of zero p → σ± scattering are present at
p = ±pc ê1, although they are hard to spot on this fig-
ure. The effect is clearer for oblique incidence, as in
Figs. 13(g) and (j), for which θ0 = 35◦. Figures 13(g)
and (j) show a clear unique direction of zero intensity in
p → σ± scattering in the plane of incidence.

As the angle of incidence reaches the critical angle of
incidence, θ0 = θc = 41.81◦, the direction of zero in-
tensity in p → σ± scattering reaches the x3-direction,
as illustrated in Figs. 14(g) and (j). Note that the x3-
direction also implies zero p → p scattering intensity as
already explained earlier, and that the distribution of
|ρ(1)pp |2 and |ρ(1)σ±p|

2 are cylindrical symmetric as shown in
Fig. 14(a), (g) and (j). The cylindrical symmetry can
be understood based on the radiation of an oscillating

dipole aligned with the x3-axis. Indeed, we have seen in
Section IV E that the p-polarized radiation from such a
dipole is cylindrically symmetric with zero radiation at
the poles of the unit sphere. The radiation from such a
dipole is also purely p-polarized, which has two conse-
quences: (i) the s-polarized scattered light vanishes iden-
tically for all p [Fig. 14(d)]; (ii) the radiation can be de-
composed into σ+ and σ− components of equal intensity,
as can be observed in Figs. 14(g) and (j). Even though
we have now based our interpretation on the radiation of
an oscillating dipole in free space for the sake of simplic-
ity, it is straightforward to verify these assertions based
on the expressions of the amplitudes given in Eq. (30).
For example, it is clear that for θ0 = θc, the total zero
order field E

(0)
1,p(p0) is along ê3 and the dot product in

Eq. (30c) vanishes for all p.
For θ0 > θc, it is convenient to expand the right-hand

side in Eq. (49). By inserting Eq. (30) into Eq. (49), the
reduced first order reflection amplitude, ρ̂

(1)
σ±p, for σ±-

polarized light scattered from incident p-polarized light
is then given by

ρ̂
(1)
σ±p(p |p0) =

1√
2
[γ(p) ê+p,2(p)± i ês(p)] ·E

(0)
1,p(p0) .

(50)
Here we have used the short-hand notation γ(p) =
(ê+p,2(p) · ê

+
p,1(p))

−1. For θ0 > θc, the total zero or-
der field amplitude E

(0)
1,p(p0) is complex. Therefore nei-

ther ρ
(1)
pp nor ρ

(1)
sp can be zero for propagating waves. We

have seen in Section IV D that a zero intensity p → p
scattering point can be found in the evanescent region
since ê+p,2(p) becomes complex. However, a zero point
in p → σ± scattering may be found in the propagat-
ing region. Indeed, the fact that the square bracket in
Eq. (50) is complex even for purely real values of ê+p,2(p)
and ês(p) may compensate for the fact that E

(0)
1,p(p0) is

complex and make the dot product in Eq. (50) vanish.
Note the similarity with the right-hand side in Eq. (44)
for the case of the radiation emitted by a rotating dipole,
with the important difference that the p polarization vec-
tor is that of the Snell-conjugate wave. Since E

(0)
1,p(p0)

represents a state of polarization of the media in which
the dipole rotates in the plane of incidence (cf. discussion
in Section IV D), we expect to find a zero in the σ± scat-
tering intensity on each side (ϕr = ±π/2) of the plane of
incidence. This is indeed what we observe in Figs. 15(a)
and (d) in the |ρ(1)σ±p|

2 distribution of p → σ± scattering.
Finally, let us comment on s → σ± scattering. In

Figs. 12-16 it can be observed that the distribution for
|ρ(1)σ±s|

2 stays identical, up to an overall factor, as the an-
gle of incidence varies. This can be understood from the
dipole picture. For s-polarized incident light, the inci-
dent and zero order waves are s-polarized, so the dipoles
oscillate along the x2-direction independently of the an-
gle of incidence. For scattering in the plane of incidence
the first order waves are purely s-polarized and the two
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σ± components have equal intensity. For scattering at
ϕr = ±π/2, the first order waves are purely p-polarized
and the two σ± components have again have equal in-
tensity. We obtain the largest contrast between σ+ and
σ− for ϕr being a multiple of 45◦ since then the p- and
s-polarized components are of similar amplitudes.

V. CONCLUSION

Based on a perturbative solution of the reduced
Rayleigh equations to first order in the surface profile
function, we have achieved a detailed mathematical and
physical analysis of the scattering of polarized light by
a weakly rough interface between two dielectric media.
The first order amplitudes are factorized as a product
of a scalar component, mainly representing the relative
phases of the different scattering paths, and a polariza-
tion component. The polarization component can be in-
terpreted as the signature of the polarization state of the
dipoles in the media induced by the incident and zero
order fields.

We have seen that the Yoneda phenomenon can be
explained simply based on a scalar wave, single scatter-
ing picture as an intensity enhancement induced by the
evanescence of the component of a scattered couple mode
existing in the lesser dense medium, while all the energy
allocated to the couple mode is radiated away by the
component existing in the denser medium. This mech-
anism clearly answers previous questions put forward in
the literature: we conclude that the phenomenon results
from a so-called single scattering mechanism, and is not
associated with surface (eigen) modes. In particular, the
Yoneda phenomenon is nothing else but the continuous
analogue of a Rayleigh anomaly for periodic dielectric
grating, in the sense that the diffuse light here plays the
role of probing what the efficiency of a diffracted order
would be if it were tracked as the period of the grating
would vary. This claim is easily verified with straight-
forward numerical calculation and the exact same per-
turbation analysis we have exposed here but adapted to
gratings.

By factorizing the scalar behavior from that specific
to a polarized wave, we have identified the geometrical
criterion for the Brewster scattering phenomenon for p-
polarized excitation, and more generally, for predicting
the zeros of scattered intensity and amplitude for any po-
larization state. Simply put, these zeros are not different
from those found for the radiation from a tilted oscillating
dipole in free space, when the polarization of the emitted
radiation is adequately measured in a fixed frame of refer-
ence. To be more accurate one may say that the physical
essence is that of oscillating dipoles, but one must include
the fact that arrays of dipoles yield conjugate waves as
was described by e.g. Ewald and Doyle [26, 29]. The
directions of zero scattering (also for evanescent waves)
can then be easily interpreted geometrically in terms of
Snell-conjugate waves. Moreover, we have discovered an

interesting phenomenon of circularly-polarized Brewster
scattering in the reflected and transmitted light scattered
out of the plane of incidence when the light is incident
in the dense medium and the zero order wave undergoes
total internal reflection. The physical mechanism respon-
sible for this effect was explained based on the emission of
dipoles rotating in the plane of incidence (and by Snell-
conjugate waves), which are induced by the fact that
the reflected and transmitted zero order waves are out
of phase with the incident wave.

In the present work, particular attention is given to
the average phase of the scattered waves compared to
previously published works on the Yoneda and Brewster
scattering phenomena. We have seen that the Brewster
scattering phenomenon is associated with a phase jump,
while the region of polar scattering angles beyond the
Yoneda threshold is associated with a gradually changing
phase. These considerations on the phase of the scattered
waves can be of particular interest for testing the theory
against experiment, e.g. the phase behavior could be
tested by the use of interferometry techniques. A simple
way to measure the phase behavior associated with the
Yoneda and the Brewster scattering effects is to study the
scattering of light by a thin dielectric film deposited on
a dielectric substrate, as was recently suggested and ob-
served numerically in Ref. 30. For such a system, Selényi
rings, which are interference rings in the intensity of the
diffusely scattered light, are expected to exhibit: (i) a re-
versal of angular positions of the maxima and minima of
intensity of the rings for p-polarized light as the Brewster
scattering angle is surpassed; (ii) a gradual shift of the
angular positions of the rings with respect to those pre-
dicted by the simple path difference argument for light
scattered at angles beyond the Yoneda threshold due to
the additional gradual phase change associated with the
Yoneda phenomenon. In addition, a scattering experi-
ment such as the one achieved in Ref. 16, but where the
outgoing circularly-polarized light is measured instead of
the linearly polarized light, would be of particular inter-
est to verify the existence of a circularly-polarized Brew-
ster scattering phenomenon out of the plane of incidence
as it would strengthen the rotating dipole interpretation
from which it originates.

Finally, we emphasize that the results presented in this
work are approximate and are expected to be valid only
for weakly rough surfaces. Additional experimental and
theoretical investigations are therefore welcome to assess
the range of validity of the presented hypotheses.
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Appendix A: Perturbative solution

This appendix is devoted to the derivation of the method known as small amplitude perturbation theory (SAPT)
for obtaining approximate solutions of the reduced Rayleigh equations. The basic principle of the method is to expand
the kernel factor J b,a

l,m in a series of Fourier transforms of the power of the surface profile function ζ and to expand
the unknown reflection and transmission amplitudes in a similar series and matching terms of the same order. The
expansions can be expressed as follows

J b,a
l,m (p |q) = [bαl (p)−aαm (q)]−1

∫
exp[−i(p−q) · x∥] exp[−i(bαl (p)−aαm (q)) ζ(x∥)] d

2x∥

=
∞∑

n=0

(−i)n

n!
[bαl (p)−aαm (q)]n−1 ζ̂(n)(p−q) (A1a)

R (q |p0) =
∞∑
j=0

(−i)j

j!
R(j) (q |p0) (A1b)

T (q |p0) =
∞∑
j=0

(−i)j

j!
T(j) (q |p0) . (A1c)

In equation Eq. (A1a), we have defined the Fourier transform of the nth power of ζ, which we will refer to as the nth

Fourier moment of the surface profile, as

ζ̂(n)(q) =

∫
ζn(x∥) exp[−iq ·x∥] d

2x∥ . (A2)

We are now ready to proceed with the perturbative method.

Reflection: We start by inserting Eqs. (A1a,A1b) into the reduced Rayleigh equation Eq. (17) in the case of
reflection (see Eq. (18)). We obtain

∞∑
n=0

∞∑
j=0

(−i)n+j

n! j!

∫
[α2 (p)−α1 (q)]

n−1 ζ̂(n)(p−q)M+,+
2,1 (p |q) R(j) (q |p0)

d2q

(2π)2

= −
∞∑

m=0

(−i)m

m!
[α2 (p)+α1(p0)]

m−1 ζ̂(m)(p−p0) M+,−
2,1 (p |p0) . (A3)

A summation over all (n, j) ∈ N2 is equivalent to a summation over subsets Sm = {(n, j) ∈ N2 |n+ j = m} of pairs of
constant sum m = n+ j, i.e. that we have

∑∞
n,j=0 ≡

∑∞
m=0

∑
(n,j)∈Sm

, therefore the previous equation can be recast
as

∞∑
m=0

(−i)m

m!

m∑
n=0

(
m

n

) ∫
[α2 (p)−α1 (q)]

n−1 ζ̂(n)(p−q) M+,+
2,1 (p |q) R(m−n) (q |p0)

d2q

(2π)2

= −
∞∑

m=0

(−i)m

m!
[α2 (p)+α1(p0)]

m−1 ζ̂(m)(p−p0) M+,−
2,1 (p |p0) . (A4)

Note that here we have used that 1
n! (m−n)! = 1

m!

(
m
n

)
by definition of the binomial coefficients. The perturbation

procedure consists in matching orders in both side of the equation. The order zero only consists of one term n = m = 0
and gives ∫

[α2 (p)−α1 (q)]
−1 ζ̂(0)(p−q) M+,+

2,1 (p |q) R(0) (q |p0)
d2q

(2π)2

= −[α2 (p)+α1(p0)]
−1 ζ̂(0)(p−p0) M+,−

2,1 (p |p0) . (A5)
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By using that ζ̂(0)(p−q) = (2π)2 δ(p−q), we finally obtain the zero order reflection amplitude

R(0) (p |p0) = (2π)2 δ(p−p0)
α1(p0)− α2(p0)

α2(p0) + α1(p0)

[
M+,+

2,1 (p0 |p0)
]−1

M+,−
2,1 (p0 |p0) = (2π)2 δ(p−p0) ρ

(0)(p0) (A6)

We have just obtained that the zero order of the reflection amplitude corresponds exactly to the reflection amplitude
for a planar surface and it is straightforward to show that ρ(0)(p0) is a diagonal matrix containing the Fresnel
amplitudes. This was to be expected in the sense that the zero order of the surface profile corresponds to its averaged
plane. For orders m ≥ 1, we have

m∑
n=0

(
m

n

) ∫
[α2 (p)−α1 (q)]

n−1 ζ̂(n)(p−q) M+,+
2,1 (p |q) R(m−n) (q |p0)

d2q

(2π)2

= −[α2 (p)+α1(p0)]
m−1 ζ̂(m)(p−p0) M+,−

2,1 (p |p0) , (A7)

which by isolating the term of interest, n = 0 gives R(m) as a function of R(m−1) · · ·R(0), in other words we have a
recursive relation for determining all orders,

R(m) (p |p0) =[α1 (p)−α2 (p)]
[
M+,+

2,1 (p |p)
]−1

[
(α2 (p)+α1(p0))

m−1 ζ̂(m)(p−p0) M+,−
2,1 (p |p0)

+
m∑

n=1

(
m

n

) ∫
[α2 (p)−α1 (q)]

n−1 ζ̂(n)(p−q) M+,+
2,1 (p |q) R(m−n) (q |p0)

d2q

(2π)2

]
. (A8)

In general, the evaluation of high orders would require the evaluation of as many integrals as the order and can become
costly. For the first order, only one such integral is to be evaluated and is straightforward thanks to the fact that
R(0)(q |p0) ∝ δ(q−p0). Applying the above equation for m = 1 gives

R(1) (p |p0) = [α1 (p)−α2 (p)]
[
M+,+

2,1 (p |p)
]−1

[
ζ̂(1)(p−p0) M+,−

2,1 (p |p0)

+

∫
ζ̂(1)(p−q) M+,+

2,1 (p |q) R(0) (q |p0)
d2q

(2π)2

]
= [α1 (p)−α2 (p)] ζ̂

(1)(p−p0)
[
M+,+

2,1 (p |p)
]−1

[
M+,−

2,1 (p |p0)+M+,+
2,1 (p |p0) ρ(0)(p0)

]
= [α1 (p)−α2 (p)] ζ̂

(1)(p−p0) ρ̂
(1) (p |p0) = ζ̂(1)(p−p0) ρ

(1) (p |p0) . (A9)

In Eq. (A9), we define the amplitude ρ̂(1) (p |p0) and ρ(1) (p |p0) = (α1 (p)−α2 (p)) ρ̂
(1) (p |p0). The reason for

these two alternative expressions is that the first one gives a factorization which is more easily interpreted from a
physical point of view while the latter factorization aims at separating what depends on the realization of the surface
profile, which is just ζ̂ here, and the amplitude factor ρ(1) (p |p0) which remains independent of the specific realization
of the surface profile (see Section III).

Transmission: Repeating the reasoning for the transmission amplitudes, we start by inserting Eqs. (A1a,A1c) into
Eq. (17) for transmission (see Eq. (18)) and get

∞∑
n=0

∞∑
j=0

(−i)n+j

n! j!

∫
[−α1 (p)+α2 (q)]

n−1 ζ̂(n)(p−q) M−,−
1,2 (p |q) T(j) (q |p0)

d2q

(2π)2

=
2
√
ϵ1ϵ2 α1(p0)

ϵ2 − ϵ1
(2π)2 δ(p− p0) I2 . (A10)

By using the same re-summation argument as for reflection, the previous equation thus becomes

∞∑
m=0

m∑
n=0

(−i)m

m!

(
m

n

) ∫
[−α1 (p)+α2 (q)]

n−1 ζ̂(n)(p−q) M−,−
1,2 (p |q) T(m−n) (q |p0)

d2q

(2π)2

=
2
√
ϵ1ϵ2 α1(p0)

ϵ2 − ϵ1
(2π)2 δ(p− p0) I2 . (A11)
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Next we match the zero order to the right hand side and the other orders to zero. The zero order only consists of one
term n = m = 0 and gives

T(0) (p |p0) =
2
√
ϵ1ϵ2α1(p0)

ϵ2 − ϵ1
(2π)2 δ(p− p0) [α2(p0)− α1(p0)]

[
M−,−

1,2 (p0 |p0)
]−1 (A12)

= (2π)2 δ(p− p0) τ
(0)(p0) (A13)

Here we have used that ζ̂(0)(p−q) = (2π)2 δ(p−q). As observed for the reflection amplitudes, we have just obtained
that the zero order of the transmission amplitudes corresponds exactly to the transmission amplitudes for a planar
surface, i.e. that τ (0)(p0) is a diagonal matrix containing the Fresnel transmission amplitudes. For orders m ≥ 1, we
have

m∑
n=0

(
m

n

) ∫
[α2 (q)−α1 (p)]

n−1 ζ̂(n)(p−q) M−,−
1,2 (p |q) T(m−n) (q |p0)

d2q

(2π)2
= 0 , (A14)

which by isolating the term of interest, n = 0 gives T(m) as a function of T(m−1) · · ·T(0), in other words we have a
recursive relation for determining all orders,

T(m) (p |p0) =[α1 (p)−α2 (p)]
[
M−,−

1,2 (p |p)
]−1

m∑
n=1

(
m

n

) ∫
[α2 (q)−α1 (p)]

n−1 ζ̂(n)(p−q) M−,−
1,2 (p |q) T(m−n) (q |p0)

d2q

(2π)2
. (A15)

Applying the above equation for m = 1 and using that T(0) (q |p0) ∝ δ(q−p0) gives

T(1) (p |p0) =[α1 (p)−α2 (p)] ζ̂
(1)(p−p0)

[
M−,−

1,2 (p |p)
]−1

M−,−
1,2 (p |p0) τ (0)(p0)

=[α1 (p)−α2 (p)] ζ̂
(1)(p−p0) τ̂

(1) (p |p0) = ζ̂(1)(p−p0) τ
(1) (p |p0) . (A16)

Appendix B: Differential reflection coefficient

Assuming we have obtained the reflection amplitudes Rαβ(p |p0) either by using the perturbative approach or by
the purely numerical simulation, we can now proceed to express the differential reflection coefficient (DRC) defined as
the time-averaged flux radiated around a given scattering direction (θr, ϕ) per unit solid angle and per unit incident
flux and denoted ∂R/∂Ωr(p |p0). Let a virtual hemisphere of radius r ≫ c/ω lie on the plane x3 = 0 on top of
the scattering system. The support of this hemisphere is a disk of area S = πr2. We consider the scattering from
a truncated version of the scattering system in which the surface profiles are set to be flat outside the disk support.
Consequently, the field amplitudes we will manipulate are not strictly speaking those of the full system of interest but
will converge to them as r → ∞. We will nevertheless keep the same notations as that from the full system introduced
in Section III for simplicity. The time-averaged flux incident on this disk is given by

Pinc/S = −Re
c

8π

∫
S

[
E∗

0(p0)×
( c

ω
k−
1 (p0)×E0(p0)

)]
· ê3 exp

[
−i(k−∗

1 (p0)− k−
1 (p0)) · x

]
d2x∥

= − c2

8πω
Re

∫
S

[
|E0(p0)|2 k−

1 (p0)−
(
E∗

0(p0) · k−
1 (p0)

)
·E0(p0)

]
· ê3d2x∥

= S
c2

8πω
α1(p0) |E0(p0)|2

= S
c2

8πω
α1(p0)

[∣∣E0,p∣∣2 + ∣∣E0,s∣∣2] . (B1)

Here, the ∗ denotes the complex conjugate, and incident field amplitude E0(p0) = E0,p ê−p (p0)+E0,s ês(p0) as defined
in Eq. (13), the vector identity a× (b× c) = (a · c)b− (a · b)c and the orthogonality between the field and the wave
vector E∗

0(p0) · k−
1 (p0) = 0 have been used. Note that the flux incident on the disk is proportional to the disk area.

Let us now consider the outgoing flux crossing an elementary surface dσ = r2 sin θrdθrdϕ = r2dΩr around a point
r = r (sin θr cosϕ ê1 + sin θr sinϕ ê2 + cos θr ê3) = r n̂. The flux crossing this elementary surface is given by

Pdσ =
c

8π
Re
[
E+∗

1 (r)×H+
1 (r)

]
· n̂ dσ. (B2)
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We then use the well-known asymptotic expansion of the field in the far-field given by (see Refs. 44 and 45)

E+
1 (r) ∼ −i ϵ

1/2
1

ω

2π c
cos θr

exp(iϵ
1/2
1

ω
c r)

r
E+

1 (p) (B3a)

H+
1 (r) ∼ −i ϵ1

ω

2π c
cos θr

exp(iϵ
1/2
1

ω
c r)

r
n̂×E+

1 (p) (B3b)

where p =
√
ϵ1

ω
c (sin θr cosϕ ê1+sin θr sinϕ ê2). This asymptotic approximation will become more and more accurate

as we let r → ∞. Plugging Eq. (B3) into Eq. (B2) we obtain

Pdσ = ϵ
3/2
1

( ω

2π c

)2
cos2 θr

c

8π
|E+

1 (p)|2 dΩr = ϵ
3/2
1

( ω

2π c

)2
cos2 θr

c

8π

(
| E+

1,p(p)|2 + | E+
1,s(p)|2

)
dΩr. (B4)

The total differential reflection coefficient is then given by

∂R

∂Ωr
(p |p0) = lim

r→∞

Pdσ

Pinc/S dΩr
= lim

r→∞

ϵ1
S

( ω

2π c

)2 cos2 θr
cos θ0

| E+
1,p(p)|2 + | E+

1,s(p)|2

| E0,p |2 + | E0,s |2
. (B5)

From the total differential reflection coefficient given by Eq. (B5), we deduce the differential reflection coefficient when
an incident plane wave of polarization β, with lateral wave vector p0 is reflected into a plane wave of polarization α
with lateral wave vector p given as

∂Rαβ

∂Ωr
(p |p0) = lim

r→∞

ϵ1
S

( ω

2π c

)2 cos2 θr
cos θ0

|Rαβ(p |p0)|
2
= lim

r→∞

∂R
(S)
αβ

∂Ωr
(p |p0). (B6)

As we are interested in averaging the optical response over realizations of the surface profiles, we consider the following
ensemble average ⟨

∂R
(S)
αβ

∂Ωr
(p |p0)

⟩
=

ϵ1
S

( ω

2π c

)2 cos2 θr
cos θ0

⟨
|Rαβ(p |p0)|2

⟩
. (B7)

A similar derivation for the differential transmitted coefficient yields⟨
∂T

(S)
αβ

∂Ωt
(p |p0)

⟩
=

ϵ
3/2
2

ϵ
1/2
1 S

( ω

2π c

)2 cos2 θt
cos θ0

⟨
|Tαβ(p |p0)|2

⟩
. (B8)

By decomposing the reflection amplitudes as the sum of the mean and fluctuation (deviation from the mean)

Rαβ(p |p0) = ⟨Rαβ(p |p0)⟩+ [Rαβ(p |p0)− ⟨Rαβ(p |p0)⟩] , (B9)

we can decompose the MDRC as the sum of a coherent term and an incoherent term⟨
∂R

(S)
αβ

∂Ωr
(p |p0)

⟩
=

⟨
∂R

(S)
αβ

∂Ωr
(p |p0)

⟩
coh

+

⟨
∂R

(S)
αβ

∂Ωr
(p |p0)

⟩
incoh

, (B10)

where ⟨
∂R

(S)
αβ

∂Ωr
(p |p0)

⟩
coh

=
ϵ1
S

( ω

2π c

)2 cos2 θr
cos θ0

|⟨Rαβ(p |p0)⟩|
2 (B11a)⟨

∂R
(S)
αβ

∂Ωr
(p |p0)

⟩
incoh

=
ϵ1
S

( ω

2π c

)2 cos2 θr
cos θ0

[⟨
|Rαβ(p |p0)|2

⟩
− |⟨Rαβ(p |p0)⟩|

2
]
. (B11b)

If we now use the expression found in A for the reflection amplitudes to first order in the product of surface profiles,

R (p |p0) ≈ R(0) (p |p0)−iR(1) (p |p0) , (B12)

where R(0) (p |p0) is the response from the corresponding system with planar interface, Eq. (A6), and R(1) (p |p0)
is given in Eq. (A9), we obtain that the factor in the square bracket in Eq. (B11b) reads⟨

|Rαβ(p |p0)|2
⟩
− |⟨Rαβ(p |p0)⟩|

2
=

⟨∣∣∣R(1)
αβ(p |p0)

∣∣∣2⟩ =
⟨
|ζ̂S(p−p0)|2

⟩
|ρ(1)αβ (p |p0) |2. (B13)
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Note here that we are still dealing with a scattering system whose surface profiles are flat outside the disk of radius
r, hence the subscript S. For the statistical properties attributed to the surface profiles in Sec. II, we have⟨

ζ̂S(q)ζ̂
∗
S(q)

⟩
=

⟨∫
S

∫
S

ζ(x)ζ(x′) exp [iq ·(x−x′)] d2x d2x′
⟩

=

∫
S

∫
S

⟨ζ(x)ζ(x′)⟩ exp [iq ·(x−x′)] d2x d2x′

=

∫
S

∫
S

σ2 W (x−x′) exp [iq ·(x−x′)] d2x d2x′. (B14)

Here we have used the definition of the Fourier transform, and the fact that ensemble average commutes with the
integration of the surfaces and the definition of the correlation function. Via the change of variable u = x−x′ we
obtain ⟨

ζ̂S(q)ζ̂
∗
S(q)

⟩
= S σ2

∫
S

W (u) exp(iq ·u) d2u = S σ2 gS(q). (B15)

Thus ⟨
|Rαβ(p |p0)|2

⟩
− |⟨Rαβ(p |p0)⟩|

2
= S σ2 gS(p−p0)

∣∣∣ρ(1)αβ (p |p0)
∣∣∣2 . (B16)

Finally, by plugging the above equation into Eq. (B11b), the surface area S cancels and letting r → ∞, gS → g (where
we remind the reader that g is the power spectrum of the surface profiles) and we finally obtain the expression for
the incoherent component of the MDRC for the entire (infinite) system under the first order approximation of the
reflected amplitudes in product of the surface profiles⟨

∂Rαβ

∂Ωr
(p |p0)

⟩
incoh

= ϵ1

( ω

2πc

)2 cos2 θr
cos θ0

g(p−p0) σ
2
∣∣∣ρ(1)αβ (p |p0)

∣∣∣2 . (B17)

Similarly, for the transmitted light we obtain⟨
∂Tαβ

∂Ωt
(p |p0)

⟩
incoh

=
ϵ
3/2
2

ϵ
1/2
1

( ω

2πc

)2 cos2 θt
cos θ0

g(p−p0) σ
2
∣∣∣τ (1)αβ (p |p0)

∣∣∣2 . (B18)
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“We are, you and I, at least one of the ways the universe knows
itself.

— Carl Sagan


