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Abstract

This thesis is a contribution to the Unmanned Aerial Vehicle (UAV) project at
the Department of Engineering Cybernetics, which is a project where contribu-
tions from master students and Phd students will result in an autonomous aerial
vehicle. The unmanned vehicle laboratory has its own UAV, the Odin Recce D6
delta-wing aircraft which is to be considered in the overall project.

When the UAV is in the air on a mission, one important thing is to ensure that the
UAV detects obstacles, such as mountains, buildings and other aircrafts. No-�y
areas should be avoided by the path planner. This thesis considers a guidance
system that will set up a path from the initial position to the �nal destination,
and make sure that the generated trajectory is safe.

One problem with the design of the optimal path has been that the designed
path gives corner cutting when obstacles from the environment is included in the
path-planner. To avoid this problem, which happens because discrete time is con-
sidered, two di�erent solutions to avoid this problem have been discussed closer.

Implementation of constraints and di�erent cost functions for path planning with
collision avoidance using the Mixed Integer Linear Programming (MILP) is one of
the purposes of this thesis. The MILP algorithm is developed for the case of planar
motion where the UAV has to �y around the obstacle, and can't �y over or under it.

The design of the path path planner using MILP is done in two di�erent ways.
One where obstacles are known at the beginning of the optimization, and one
where obstacles are added as information to the path planner when they are in
the range of the UAVs radar. It is shown that the implementation with obstacle
radar detection is more realistic, and that it also improves the computation time.
As the author knows this method has not been published in articles up to this date.

Two di�erent approaches for search of a de�ned area with an arbitrary number of
UAVs with camera systems have been developed and implemented through this
thesis. As far as the author of this thesis knows these approaches for search
have not been published up to this date. E�cient search and low computational
complexity has been important design factors during the development of these ap-
proaches.

The �nal systems are simulated in MATLAB for some test-scenarios. Also, re-
�ection and discussion on further improvement on the path planning system are
included in the report. This includes further improvement of the guidance system
using receding horizon strategies.

A literature study on path planning with receding horizon has been done.





Abstract

Denne masteroppgaven er et bidrag til det ubemannede �y prosjektet, som er
et forskningsprosjekt på Institutt for Tekniske kybernetikk på NTNU. Bidrag fra
mastergradstudenter og doktorgradsstudenter skal resultere i et autonomt ube-
mannet fartøy. Prosjektets laboratorium har sitt eget �y av typen Odin Recce D6
deltavinge �y. Dette �yet vil bli betraktet i det overordnete prosjektet.

Når �yet er i ute oppdrag er viktig å sørge for at �yet har nødvendige sys-
temer slik at det kan unngå hindringer som fjell, bygninger og andre hindringer.
Forbudte �ysoner må �yet holde seg unna. Denne masteroppgaven omhandler
et baneplanleggingssystem som skal �nne en bane fra en startposisjon og til en
sluttposisjon og sørge for at denne banen er trygg.

En av utfordringene med systemet har vært at den optimale banen �yr over
hjørnene til hindringene som er i omgivelsene nå hindringene har blitt modellert
som rektangler. For å hindre dette problemet, som oppstår fordi systemet er på
diskret form, har to ulike løsninger for å unngå dette problemet blitt inngående
diskutert.

Implementasjon av begrensninger og ulike kostnadsfunksjoner for baneplanleg-
ging med kollisjonshindring ved bruk av MILP (Mixed Integer Linear Program-
ming) er et av formålene med denne masteroppgaven. MILP algoritmen er utviklet
for det tilfellet der kun horisontal �ybevegelse kommer i betraktning. Dette med-
fører at �yet må �y rundt hindringer i banen og kan ikke �y over eller under disse.

Designet av baneplanleggeren er gjort på to ulike måter. I det ene designet
er alle hindringer i omgivelsene kjent for baneplanleggeren når baneplanleggingen
starter. I det andre designet blir informasjon om nye hindringer i omgivelsene gitt
til baneplanleggeren når disse er innenfor rekkevidden til �yets radar. I denne
oppgaven blir det vist at designet der hindringer blir tatt med i baneplanleggeren
når de er i en viss avstand fra �yet, er en mer realistisk antagelse, og at det i tillegg
forbedrer beregningstiden for å �nne en optimal løsning.

To ulike måter for å søke et de�nert område med et vilkårlig antall �y med
kamera, har blitt utviklet og implementert i denne oppgaven. E�ektivt søk og
liten beregningstid har vært viktige faktorer å få nærmere belyst under arbeidet
med disse metodene.

De utviklede metodene har blitt simulert i MATLAB for ulike scenarioer. Re-
�eksjon og diskusjon som omhandler videre utvikling av baneplanleggeren er en
del av denne oppgaven. Dette inkluderer videre forbedring av baneplanleggeren
ved bruk av receding horizon strategier. Et litteratursøk på receding horizon har
blitt har blitt gjort.
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Path Planning by applying Mixed
Integer Linear Programming
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Chapter 1

Introduction

The use of Unmanned Aerial Vehicles (UAVs) is a �eld with a lot of potentials. In
recent years UAVs have been used for both military operations as well as civilian
operations. In the USA, UAVs with a camera system has been established for
surveillance purposes of the continent. The challenge has been to detect and
register guideposts along the roads, and collect the registered information in a
database. This process would have been very time consuming and expensive if
one were to use manual labor to do this registration. Other situations where the
application of UAVs can be of substantial interest, is in cases where documentation
or con�rmation of conatamination and pollution on earth is of importance for
further evaluation, both nationally and globally. As an example, the threat of ice
melting in both Artic and Antartic areas is of importance to observe. Use of UAV
technology would probably o�er the best resource for an indisputable scienti�c
verdict of the situation in both polar regions.

Applications of UAVs described in literature include localization of radars, wild-
�re management, polar climatology, agricultural monitoring, border surveillance,
reconnaissance, geophysical survey, environmental and meteorological monitoring,
aerial photography, and search-and-rescue tasks as described in [Grøtli and Jo-
hansen, 2011b]. In general, autonomous vehicles are chosen for tasks that are
either dirty, dull or dangerous, or to missions where there is a cost reduction
[Grøtli and Johansen, 2011b].

Many more areas for the use of UAV will probably arise when commercial
actors learn about the possibilities and bene�ts with UAVs, and the use of UAV
in di�erent operations will probably be an important industry in the future.

To get permission to operate with UAVs, the UAV has to operate in an Equiva-
lent Level of Safety (ELOS), in the same way as for manned vehicles. "Commercial
use of UAVs is currently limited by their inability to detect, sense and avoid air-
borne hazards" [Hutchings et al., 2007].

Figure 1.1 shows a picture of the Odin Recce D6 delta-wing aircraft, which is
considered in the overall UAV project.

1.1 The contributions to the project up to this

date

The Unmanned Vehicle Laboratory is a laboratory at the Department of Engi-
neering Cybernetics, where master students working on this topic are gathered.
The overall goal is to use the research from master students and Phd student to

3



4 1.1. THE CONTRIBUTIONS TO THE PROJECT UP TO THIS DATE

Figure 1.1: Illustration of the Odin Recce D6 delta-wing aircraft (from
www.odin.aero)

get the Odin aircraft to be an autonomous UAV. The objective of the research is
to create conditions for commercial investment.

The UAV project is still young, and the �rst master students started with
projects and master thesis's in this �eld in the fall semester of 2009 and spring
semester of 2010, respectively. According to Professor Thor I. Fossen many more
people will work on this project (master students and Phd student) for the next
years.

In the spring of 2011 [Dønnestad, 2011] developed a mathematical model of
the equations of motion for the UAV. From these equations he made a simulator
in MATLAB, which illustrates the behaviour of the UAV when it gets di�erent
inputs from the actuators (�aps, propeller and engine), and when it is a�ected
by disturbances. Dønnestad [2011] also describes other topics which his fellow
students worked on in the project thesis (TTK4550) fall 2010:

1. Inertial Navigation Systems (INS), Observer design and Extended Kalman
Filter (EKF).

2. Framework for Operating System and Peripheral Interfacing related to UAS.

3. Flight simulator framework, and aircraft modeling.

4. Modeling of Global Navigation Satellite System (GNSS) for Hardware-in-the
loop (HIL) testing.

5. Hardware and software integration of the UAV.
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Some students also worked on the UAV project as a summer internship in 2011,
and improved some of the work done before and corrected errors in the models.

In the fall of 2011, Master students at the Department of Cybernetics wrote
project thesis's about di�erent topics related to the UAV project. The topics which
were considered at the Unmanned Lab where the following items:

1. Implement di�erent control structures and see which one performs best as
an autopilot for take o�.

2. Improvement and correction of errors in the assumptions done in Dønnestad
[2011].

3. Literature study on the L1 adaptive control method.

4. Theory on guidance and control which guarantees stability.

5. Hardware "in the loop" test-platform for hardware in the loop testing.

6. Guidance system and collision avoidance.

The last item was the topic the author of this thesis worked on in the fall 2011.

1.2 Motivation

Related to the UAV project, there are a lot of topics that needs to be explored and
systems that need to be designed to make it possible for the UAV to operate in
an equivalent level of safety to that of manned aerial vehicles. At the Unmanned
Vehicle Laboratory the following topics related to the UAV, among others, has
been worked on has been worked on by graduate students during the spring of
2012:

1. Develop a guidance system for take-o�, and implement sliding mode control
for pitch and altitude.

2. Develop a system identi�cation experiment and do implementation such that
the UAV model parameters can be found when the Odin aircraft has been
on a �ight and system data has been collected.

3. Implementation of L1 adaptive control law for UAV, and simulate the results
in a �ight simulator.

4. Guidance system for optimal path and development of path for e�cient
search missions.

The Odin aircraft has not been on a test �ight to collect data for system iden-
ti�cation. The model parameters have therefore been unknown for the students
at the Unmanned Lab, and the derivations have therefore been based on guessed
values.
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1.3 Contribution

The objective of this thesis is to do a literature study on optimal guidance with
collision avoidance using Mixed Integer Linear Program (MILP), and implement
this in order to perform simulations for di�erent test-cases. The main motivation
research the possibility of applying MILP in the guidance system on the Odin
aircraft. Simpli�ed aircraft dynamics, where the UAV is assumed to be a point
mass which moves in a geographic reference frame will be shown to be a good
approximation. Main contributions to the UAV project in this thesis:

� Implementations of obstacles are done with the assumption that every de-
tected obstacle is a point in the geographic frame, and a safety margin is
included around each obstacle to ensure that unmodeled aircraft dynamics,
will not lead to collision when the real UAV uses the guidance system.

� Di�erent ways to design the cost function in the optimization problem, to get
an optimal trajectory with respect to minimum arrival time to destination,
and minimum fuel consumption is discussed and implemented for di�erent
cases. The optimization of the trajectory is done for the case where initial
position, �nal position and di�erent waypoints, which the UAV should visit
on the way from initial to �nal position, is given a priori. The UAV is
required to move from an initial state to a �nal state, through di�erent
waypoints, without colliding with static obstacles.

� Static obstacles are included in two di�erent ways, one where all the obstacles
are known a priori by the guidance system, and another way where the
obstacles are assumed to be observed and taken into account by the guidance
system when the UAV is some certain distance from the obstacle. This is
done to simulate that obstacles are detected from an UAV with a radar
system which has limited range. It is also pointed out how this technique
can be applied to let the guidance system take into account obstacles which
moves slowly in the area.

Two approaches for e�cient search of an de�ned area has been designed and
implemented for a relevant rescue mission:

1. One of the method uses MILP optimization, and an algorithm has in this
case been developed to generate waypoints such that the de�ned search area
is covered by the UAVs camera system. The design and implementation
has been done for a general case, such that an unlimited number of UAVs
with arbitrary base stations can take part in the same search mission and
allocate di�erent parts of the search grid. The time the MILP optimizer
needs to compute the path for the search area is important if it is urgent to
start the search mission immediately. Di�erent factor that have been found
dominant for the computation time has therefore been investigated, and is
closer discussed in this thesis.

2. A path planning system which searches an arbitrary area without using MILP
optimization is developed, and this algorithm uses classical trigonometric
relations. The equation for an Archimedes spiral, simpli�ed UAV dynamics
and the camera range is the parameters that are applied to generate a spiral-
path for the UAV in search and rescue area. A discussion about the area
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of application for the MILP approach and the spiral approach for search
missions is included in this thesis.

Some discussion on how the guidance system, which is based on MILP, can be
further improved with the use of receding horizon is pointed out at the end of this
thesis.

1.4 Thesis outline

In chapter 2 of this thesis, the MATLAB interface YALMIP and the solver, Gurobi,
is presented. YALMIP is used to formulate the optimization problem, while Gurobi
is used to solve it. Chapter 3 describes the implementation of the aircraft dynamics
and constraints which will be used in the optimization problem. This include con-
straints in the aircraft dynamics and implementation of constraints to make sure
that waypoints are visited and that obstacles are avoided. Di�erent approaches for
�nding a cost function has been implemented. Some simulations are included in
this chapter to illustrate some important issues. In Chapter 4, simulations of the
implemented system will be presented and the results will be further discussed.
Chapter 5 describes the usefulness of UAVs in search and rescue missions, and
presents a case-study which will be considered in Chapter 6 and Chapter 7. Chap-
ter 6 and Chapter 7 describes two approaches for the guidance system for search
and rescue missions. Finally 8 includes some remarks and further improvements
on path planning for the UAV are pointed out in this chapter.

1.5 Main assumptions

� In this thesis it is assumed that the UAV only can navigate in the x- and y
coordinates within a geographic frame, and therefore, only planar motion is
considered. This means that the UAV has to �y around obstacles and can
not �y over or under them. According to [Bicchi and Pallottimo] "planar
motion is common assumption because air space is structured in layers". If
a simple radar is going to be used on the UAV for obstacle detection, this
will result in a two dimensional picture, and based on this, the UAV will
do planar motion. Also, with respect to computation time to solve the path
problem, a two dimensional case is preferred instead of a three dimensional
problem. Computation time has to be considered since the optimization
problem has to be solved in real time, locally on the UAV or by a ground
station which communicates with the UAV. If the problem can be solved
locally on the UAV this will give bene�ts since this eliminates the need for
ground stations in the operation area. This will be bene�cial for a rescue
mission out in the ocean for example.

� As described in [Fossen, 2011b] The yaw rate of the UAV can be controlled
by either using the rudder, or by applying the ailerons on the UAV. If the
ailerons are used to change the roll angle (φ) this will result in a banked to
turn. It is in this thesis assumed that the rudders are not applied to control
the yaw rate, but rather that the yaw rate of the UAV is limited by the
maximum roll angle and maximum speed as will be derived in Chapter 3.
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� The optimal path is found by minimizing the cost function in the optimiza-
tion problem with respect to the restrictions. The cost function in this thesis
has been designed to minimize the arrival time at the destination, to mini-
mize the energy consumption of the UAV during �ight, or a combination of
energy and time consumption. A measurement of energy consumption has
been the forces that is applied on the UAVs point mass. If time consump-
tion was the only optimization objective in the cost function, it is obvious
that this will be achieved by �ying at the maximum speed, if there are no
obstacles between start and the goal. However, due to drag (air friction)
this will not be economical with respect to fuel consumption. Drag forces
are not considered in the simulations, since these are unknown for the UAV
considered.

� Static obstacles are considered, but dynamic obstacles can be included in
the model by assuming them to be stationary obstacles at every time step if
they are moving slowly.

� In this thesis wind forces, and other unknown forces will not be taken into
account by the path planner. This is a reasonable assumption since the
path-planner only uses a very simpli�ed model of the aircraft, with a lot of
uncertainties. The regulator has to be robust enough to be able to follow
the path regardless of these uncertainties.

� The path planning has been done over a limited range, because a �xed hori-
zon approach has been used.



Chapter 2

Guidance system applied on UAVs

2.1 A Literature Study

This section is based on [Goerzen et al., 2009] which covers a survey of motion
planning algorithms for UAVs

Di�erent methods for solving a guidance problem where the objective is to
move an object through an obstacle �eld to a goal state is discussed in the lit-
erature. The movers problem solves this problem by modeling the vehicle as a
rigid body, and may result in a state space model with up to 12 variables: Three
position variables, three velocity variables, three orientation variables and three
orientation rate angles. The con�guration space has then a larger dimension than
the geographic frame in which the vehicle moves. When a geographic frame is
considered the position and the translation of the vehicle will be described with
three position variables and the derivative of these two describes the motion.

As argued in [Goerzen et al., 2009], UAVs do not have to �t into tight spaces
while �ying, and therefore describing the UAV as point mass compared to a rigid
body, will have little e�ect on the trajectory generated by the guidance algorithm.
The movers problem therefore has more complexity than what is actually needed
for UAV tasks.

UAV-motion planning is especially strikingly due to several complexities not
considered by earlier planning strategies, such as vehicle constraint, and atmo-
spheric turbulence which makes it impossible to follow a pre-computed path pre-
cisely. Uncertainty in the vehicle state and limited knowledge of the environment
due to inadequate sensor capabilities are other disturbing factors. These di�er-
ences have motivated an increase in use of feedback and other control engineering
techniques for motion planning.

An UAV is typically modeled as having velocity and acceleration constraints,
and higher order di�erential constraints given by the equation of motion. Also
accounting for aerodynamic e�ects may be an important issue. The objective is to
guide the vehicle towards a target through a �eld which may contain obstacles. In
problems with di�erential constraints, states have to satisfy the equations of mo-
tion of the vehicle. By approximation the vehicle to by a point mass the equation
of motions for UAV can be found by applying Newtons Second Law. The states

9
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are constrained by hard limits on velocity and acceleration, and sometimes also on
higher-order derivatives of position.

Di�erent methods for trajectory planning described in the literature, considers
planning strategies where di�erential constraints such as the equations of motions
is not considered. If the object is to plot the optimal path of a car across a conti-
nent, there is no need to apply dynamic-constraints in the guidance system, since
only the route is considered, not position as a function of time.

Most trajectory planning problems which is relevant for UAV applications have
to consider the vehicle dynamics. The behaviour of aerial vehicles is often not suf-
�ciently well approximated by their kinematics, which is the case for ground vehi-
cles. Taking into account the equation of motion of an UAV, is directly relevant
for guaranteeing the soundness of the planner. The equation of motion are also
relevant in details of the vehicle manoeuvring a�ecting energy or duration of the
trajectory. This class of planning problems can be expected to be more di�cult
to solve due to the dependency between time and the equations of motion given
by the di�erential constraints.

Mathematical programming methods treat the trajectory planning problem as
a numerical optimization problem. Popular methods described in the literature
include Mixed Integer Linear Programming (MILP) and non-linear programming
approaches. These methods are known as trajectory optimization methods, since
they �nd a trajectory to a goal point that is optimal with respect to a de�ned
cost criteria. For this type of problem, one strategy is to enforce the equation of
motions as constraints.

2.2 Mixed Integer Linear Programming using YALMIP

and Gurobi

In this thesis the Mixed Integer Linear Programming (MILP) algorithm will be
used in �nding the path for the UAV, that minimizes the time or fuel consumption,
or a combination of these, from the initial position to the destination. MILP has
been applied since this method makes it possible to solve non-convex problems.
This makes the guidance system more robust, and gives the reader more choices
when it comes to further improvements of the path planner.

Mixed integer linear programming (MILP) methods have attracted attention
because of their modeling capability, and because powerful solvers are available.
"Powerful software packages such as CPLEX or Gurobi can solve MILPs e�ciently
for problems in which the number of binary variables is of a reasonable size. One
major disadvantage of MILP is that the method is NP-hard, and therefore com-
putational requirements can grow signi�cantly as the number of binary variables
needed to model the problem increases" [Matthew and Ra�aello, 2005]. In this the-
sis the optimization problem and the constraints will be written in the YALMIP
language and the solver will be the Gurobi optimizer.

This section gives some background information of the YALMIP and Gurobi
packages. There are also other packages available which o�ers the same functional-
ity as YALMIP and Gurobi. The AMPL and the CPLEX optimizer are mentioned



CHAPTER 2. GUIDANCE SYSTEM APPLIED ON UAVS 11

a lot in the literature, but they are not considered in this thesis. The reason for
choosing the YALMIP language and the Gurobi solver is because the author of
thesis was �rst introduced to these packages.

2.2.1 YALMIP

In this thesis the optimization problem is described in the YALMIP language.

"YALMIP is a modeling language for advanced modeling and solution
of convex and non-convex optimization problems. It is implemented as
a free of charge toolbox for MATLAB" Löfberg [2004].

The YALMIP variables can be written in a m-code �le in MATLAB if the path
to the YALMIP package has been set in MATLAB. YALMIP o�ers di�erent func-
tionalities which can be used for di�erent purposes. In this section the functions
which is applied in this thesis is presented. A list of all functionalities YALMIP
can o�er can be found in Löfberg [2004].

binvar() is used to de�ne decision variables constrained to be binary (0 or 1)
YALMIP notation:

x = binvar(n)

x = binvar(n,m,)

x = binvar(n,m,'type'

x = binvar(n,m,'type','field')

binvar x

In this thesis binary variables will be declared for many purposes, and some of
them are:

� To tell if a waypoint is visited or not

� To tell if one of the four restrictions which describes obstacles are enforced
or not

� To tell if one of the restriction which gives the minimum and maximum speed
is enforced or not.

The sdpvar() function is used to de�ne YALMIPs symbolic decision variables:

x = sdpvar(n)

x = sdpvar(n,m)

x = sdpvar(n,m,'type')

x = sdpvar(n,m,'type','field')

x = sdpvar(dim1,dim2,dim3,...,dimn,'type','field')

sdpvar x

Decisions variables in this thesis is applied on x- and y- position and velocity
of the UAV.
Some important remarks:



12
2.2. MIXED INTEGER LINEAR PROGRAMMING USING YALMIP AND

GUROBI

� Decision and binary variables in YALMIP can be casted to MATLAB vari-
ables using the double(); operator. This is useful since the MATLAB vari-
ables can be plotted, which makes it possible to visualize the results, which
is done is this thesis.

� If the size of a matrix de�ned by binvar() or sdpvar() is quadratic, YALMIP
will think that the matrix is diagonal. To avoid problems with this it is
therefore important to include 'full' as type element in the sdpvar() and
binvar() functions.

Examples:
To give an example of the implementation of a binary variable, the binary variable
which tells if a waypoint is visited or not will be used as an example. The binary
variable is declared in the following way:

wpi = binvar(W,N, ′full′); (2.1)

where W is the number of waypoints which are included in the optimization
problem, N is number of discrete time samples the optimization should calculate
position and velocity. The ′full′ notation is included to tell that the binary vari-
able wpi is not a diagonal binary matrix, but a binary matrix with full rank. If W
= N the binary variable could have been declared as wpi = binvar(N,N). In this
case the binary variable should be declared as wpi = binvar(N,N,′ full′) such that
YALMIP don't think that wpi is a quadratic matrix with binary variables only at
the diagonal.

If waypoint c is visited at time step k, then wpi(c, k) = 1 for this value. In some
of the implementation in this thesis more than one UAV will be used for the same
mission. To distinguish between the UAVs which visits the waypoints the binary
variable is extended with one more dimension, such that the UAVs are included:

wpi = binvar(W,N, np,
′ full′); (2.2)

where np is the number of UAVs which are considered in the problem.

To give an example of an implemented decision variable the following decision
variable which declares the state variables for the UAV:

si = sdpvar(4,N,′ full′); (2.3)

where the �rst argument in sdpvar() is used to indicate that there are four
state variables: x- and y-position and velocity in x- and y- direction. The constant
N indicates how many samples that need to be generated for all variables. The
decision variable (2.3) can be restricted such that feasible values for the solution
for x- and y- positions is limited to be inside some boundaries. This can be
implemented in the following way:

F = F + [xlow ≤ si(1, :) ≤ xheigh] (2.4)

F = F + [ylow ≤ si(2, :) ≤ yheigh] (2.5)

∀xlow, xheigh, ylow, yheigh ∈ R (2.6)
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where F is the matrix which includes all restrictions which is a part of the
optimization problem. The decision variables for the x- value has been restricted
to be lower and upper bounded by xlow and xheigh respectively. The y- position has
been restricted to be lower and upper bounded by ylow and yheigh respectively. It
is good programming convention to insert upper bounds on the decisions variables
to make the decision space smaller, which again can have a positive e�ect on the
computational complexity.

2.2.2 Gurobi

The Gurobi solver is used to solve the mixed-integer linear program (MILP), which
in this thesis is written in the YALMIP language.

"The Gurobi Optimizer is a state-of-the-art solver of linear program-
ming (LP), quadratic programming (QP) and mixed-integer program-
ming (MILP and MIQP)." as described in [Gurobi, 2011].

The Gurobi optimizer is deterministic, which means that two separate runs on the
same model results in identical solution paths.

The Gurobi solver is in this thesis downloaded as a free academic license. The
terms of agreement for the academic license is as follows [Gurobi, 2011]:

� They can only be used by faculty, students, or sta� of a degree-granting
academic institution.

� It can only be used for research or educational purposes.

� They must be validated from a recognized academic domain.

The Gurobi optimizer was called in the in MATLAB with the following line:

diag = solvesdp(F,J,sdpsetting('solver',gurobi));

Where F is the array with the constraints, and J is the cost function.
Table A.1 in Appendix A shows the supported platforms for Gurobi Optimizer

4.5.

2.2.3 Gurobi mex and c++ compiler

A C/C++ compiler for the for the actual MATLAB copy needs to be downloaded
an installed on the computer which is applied for the simulations. For the simula-
tions done in this thesis, Visual Studio 2012 was used. Also Gurobi Mex, which is
a MATLAB interface for Gurobi needs to be downloaded on the computer. More
details about the installation can be found in mex [2012].
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Chapter 3

Implementation of Dynamics and
Constraints

In this chapter the model dynamics and the constraints that will be considered for
the UAV by the guidance system, will be derived. It will further be explained how
these dynamics can be described and implemented in the Mixed Integer Linear
Program (MILP). An approximate model of the aircraft dynamics in a geographic
reference frame using only linear constraints is developed, enabling the MILP
approach to be applied as the guidance system with collision avoidance. The
equation of motion in the geographic reference frame will be derived from the
equations of motion in the Body frame and then transformed to discrete form.
Assumptions on maximum UAV speed, maximum roll angle, and lift coe�cient will
be done to be able to model constraints in yaw rate, under the assumption that lift
force equals gravity force. The equation for drag force will be shown, but the drag
will not be included in the model due to little knowledge about the e�ect it will have
on the UAV. It will be discussed how physical constraints in the actuator dynamics
can be modeled, and how minimum speed can be implemented as an constraint
in the problem. A lower restriction on the speed is an important restriction to
keep the UAV up in the air. It can, however, be challenging to implement this
restriction since it will depend on the current situation of the aircraft. During take
o� and landing the UAV should be allowed to stand still (zero speed). During the
�ight, the lower restriction on the speed has to be physically justi�ed such that
the aircraft does not stall. During the �ight the lower restriction on the speed can
obvious not be zero. Implementation of waypoints, obstacles and strategies for
design of the cost function will be presented for a �xed horizon path planner.

3.1 Equation of motion in geographic coordinate

frame

For a guidance problem it is interesting to describe the equations of motions in
the NED frame or another geographic coordinate system as the tangent frame (t-
frame) for instance. The t-frame is �xed at the Earth's surface with the x-axis
pointing to the north and the y-axis pointing to the east, and the z-axis pointing
downward perpendicularly to a local reference ellipsoid. The reference ellipsoid
is more accurate than the global ellipsoid in the area of interest. This makes is
possible to relate GPS and INS measurements to the actual terrain and local maps
as described in [Vik, 1999]. Therefore, it is probably bene�cial to use a t-frame

15
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for the case with guidance and collision avoidance of the UAV in a local area, and
include GPS and INS measurements. In the following derivations, the NED frame
is considered, but the geographic frame can easily be changed to another frame by
the reader.

3.1.1 Equation of motion in continuous form

The equations of translational motions about the Center of Gravity (CG) expressed
in the body {b} frame of the UAV, can in the three dimensional space be written
as (based on equation (3.16) in [Fossen, 2011a]):

m
(
v̇bg/n + ωbb/n × vbg/n

)
+Dvb = mRTgn + τ b + τ bwind + τ bother (3.1)

where m is the mass of the UAV, D ∈ R3x3 is a positive de�nite damping
matrix, and is further assumed to be diagonal. gn ∈ R3 is the gravity vector in the
NED frame, vb ∈ R3 is the velocity in body frame, τ b ∈ R3 is the control inputs
on the aircraft which a�ects the translational motions. τwind ∈ R3 is forces on the
aircraft body a�ected by the wind, and τother ∈ R3 is all other forces that a�ects
the UAV. R = Rn

b ∈ R3x3 is the rotation matrix from the body frame to the NED
frame.

Using the skew-symmetric matrix, (3.1) this can be written as:

m
(
v̇bg/n + S(ωbg/n)vbg/n

)
+Dvb = mRTgn + τ (3.2)

where the property S(ωbg/n)vbg/n = ωbb/n×vbg/n has been used. In the following,

the derivation will be based on (3.1),

The derivative of the velocity component in the NED frame can be written as:

v̇n = R
(
v̇b + ωb × vb

)
(3.3)

Inserting (3.3) in equation (3.1) gives:

mRT v̇n +DRTvn = mRTgn +RTτ n +RTτ nwind +RTτ nother (3.4)

By multiplying (3.4) with the rotation matrix R from the left, this gives:

RmRT v̇n +RDRTvn = RmRTgn +RRTτ n + τ nwind + τ nother (3.5)

Since m is a scalar, the equation of motions in the NED frame becomes:

mv̇n +RDRTvn = mgn + τ n + τ nwind + τ nother (3.6)

where the property of a rotation matrix, RRT = 1 has been used.

By dividing by m on both sides, (3.6) can be written as:

v̇n = − 1

m
Ωvn + gn +

1

m
τ n +

1

m
τ nwind +

1

m
τ nother (3.7)

where

gn = [0 0 − g]T (3.8)

is the gravity vector in the NED frame, and
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Ω := RDRT (3.9)

is a positive de�nite damping matrix.
As described an argued in Section (1.5), wind forces and other unknown forces are
not included in the path planner, and therefore τn

wind = 0 and τn
other = 0.

Since the gn term in (3.7) only e�ects the system in the z-direction in the
geographic frame, it can be removed from the equation. Equation (3.7) can be
written in the following way, by considering x- and y- motion in the geographic
frame only. In the following, all symbols are given in the NED frame.[

v̇x
v̇y

]
=

1

m

(
−ΩT

[
vx
vy

]
+

[
τx
τy

])
(3.10)

Using the �rst and the second derivative of position, (3.10) can be written in
the following way for planar motion:[

ẍ
ÿ

]
=

1

m

(
−ΩT

[
ẋ
ẏ

])
+

[
τx
τy

]
(3.11)

v̇ = − 1

m
Ωv +

1

m
τ (3.12)

D is a 2x2 diagonal damping matrix which will depend on the aerodynamic
coe�cients of the UAV. It can be assumed that the damping matrix is diagonal,
meaning that motion in x-direction only will give drag force in the x-direction and
motion in y-direction only will give drag in y-direction.

D =

[
Xu 0
0 Yv

]
(3.13)

To model drag when assuming a point mass that moves in a geographic frame,
a suggestion is to set Xy = Xx where Xx is the drag force that a�ects the aircraft
in the body frame.

In this thesis, optimal path planning and collision avoidance is the main focus,
and for simplicity the equations of motion is modelled without the damping term,
that is D = 0. This is of course not physically justi�able since, in this case, the
vehicle never will stop by itself, if the initial velocity is di�erent from zero, and it
has to use an external force to stop. The following Lyapunov function is used to
analyze the stability properties:

V (t) =
1

2
vTv > 0, ∀v 6= 0 (3.14)

where v ∈ R2. V(t) is positive de�nite, and it is zero only when v = 0 The
derivation of (3.14) is found to be:

V̇ (t) = vT v̇ = vT (− 1

m
Ωv +

1

m
τ ) = −vT 1

m
Ωv +

1

m
vTτ (3.15)

As can be seen from (3.15) the derivative of the unforced system (τ = 0) is:

V̇ (t) = −vT 1

m
Ωv ⇒ V̇ (t) < 0 ∀v 6= 0 (3.16)

The system is in this case globally exponentially stable (GES) [Khalil, 2002].



18 3.1. EQUATION OF MOTION IN GEOGRAPHIC COORDINATE FRAME

If damping is removed from the equation (Ω = 0), the Lyapunov derivative
(3.15) will be:

V̇ (t) =
1

m
vTτ (3.17)

In this case stability will depend on the chosen control force. This has to be
designed such that stability is achieved in a Lyapunov sense. It can be designed
such that the GES property is achieved for example by requiring that τ = −v

When assuming no damping, (3.11) can be written as:
ẋ
ẏ
ẍ
ÿ

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



x
y
ẋ
ẏ

+


0 0
0 0
1
m

0
0 1

m

[fxfy
]

(3.18)

where the state vector from from (3.11) has been extended to include x- and y
position as well.

Equation (3.18) can be written as:

ṡ = As+Bu (3.19)

where:

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 (3.20)

B =


0 0
0 0
1
m

0
0 1

m

 (3.21)

where s := [x y ẋ ẏ]T .

Remark: This equation could also have been found by applying Newtons Second
Law on a point mass. The derivation of the equation of motion from the body
frame to the geographic frame proves that the UAV can be viewed as a point mass
in the geographic frame. The input vector in the geographic frame will be bounded
by the inputs applied on the UAV and the kinetics of the UAV.

3.1.2 Comments

In this thesis it is assumed that there is no damping that a�ects the UAV. This
is of course not a realistic case, but the main goal for this thesis is to develop
an optimal path planner. The system equation and constraints can be further
developed when the real parameters and constraint to the UAV are known due to
parameter estimation.

However, the damping will be described here such that parameters that need
to be found, to include damping in this guidance system, during parameter esti-
mation of the UAV, is known for the reader. Stevens and Lewis [2003] describes



CHAPTER 3. IMPLEMENTATION OF DYNAMICS AND CONSTRAINTS 19

damping that a�ects an aircraft, and a simple form of this included here. All
variables are given in wind-axes.

The drag force (D) that a�ects an aircraft can be described as:

D = qSCD (3.22)

where q is the dynamic pressure, S is the total wing area and CD is the drag
coe�cient, which will be a function of several variables: Angle of attack (α), Mach
number (M) and the elevation to mention some. The dynamic pressure is written
as:

q =
1

2
ρV 2

T (3.23)

where ρ is the density of air and VT is the speed in wind-axes [Fossen, 2011b] .

Remark: One important remark which can be viewed from (3.23) is that the
drag increases quadratic with the speed. When implementing drag in the UAV's
equation of motion the equation will be non-linear. The Mixed Integer Linear
Programming (MILP) method which is applied in this thesis is, as the name tells,
an optimization technique which describes optimization problems with only linear
restrictions. When implementing the drag to the equations of motion the non-linear
terms has to be "removed" from the equations. The author of this thesis suggests
to linearize the the drag about some "working-speed" and apply the linearized drag
in the equations. Another proposal is to use feedback linearization so that the input
move the non-linearities that comes in the equations of motion because of the drag.

3.1.3 Equations of motion in discrete form

The equations of motion in continuous form that was given in (3.19) need to be
transformed to discrete form to be implemented on a computer. The discrete
dynamics of the UAV can be written as:

∀i ∈ [0, . . . , T ]

si+1 = Adsi +Bdui (3.24)

s0 = sI

where Ad is the discrete system matrix and Bd is the discrete input matrix, si
is the discrete state vector for each time-step i, and sI is the initial state of the
UAV.

The continuous time equation in (3.18) can be written in the discrete form
[Chen, 1999]:


xk+1

yk+1

vx,k+1

vy,k+1

 =


1 0 Td 0
0 1 0 Td
0 0 1 0
0 0 0 1



xk
yk
vx
vy

+


(Td)2

2m
0

0 (Td)2

2m
Td
2m

0
0 Td

2m


[
fx,k
fy,k

]
(3.25)
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x(0)
y(0)
vx(0)
vy(0)

 =


x0

y0

vx,0
vy,0


In the implementation in MATLAB, the discretization is done with the MAT-

LAB command [Ad,Bd] = c2d(A,B, Td), as described in [Chen, 1999]. A and B
are the continuous A and B matrices, and Td is the discretization time. In this
thesis the discretization time Td has been guessed to be 3 seconds.

3.2 Modelling constraints in yaw rate

In the geographic frame, the forces that e�ects the vehicle can be viewed as forces
that a�ects a point mass in the x- and the y directions, according to Newtons sec-
ond law. However, the UAV can not move as a point mass, because of its kinetics.
The UAV has to use either the ailerons to change the roll angle which will give
a banked turn because of the centripetal force, which will point towards the given
turning circle, or use the rudder to set up yaw moment about body the z-axis,
which will change the direction of the force vector from the engine and result in a
changed velocity vector of the UAV in the geographic frame.

In the following, only yaw rate caused by using the aileron will be considered,
because it can be derived quite easy by physical consideration of the UAV.

3.2.1 Yaw rate caused by the use of Aileron

When considering the use of aileron to give a banked turn, the change in roll angle
results in a decomposed lift vector, one which will point in the opposite direction
of the gravity vector, and the centripetal force which will point towards the center
of the turning circle (in the x-y plane in the geographic frame), which the UAV
turns around. The maximum value of the centripetal force for the UAV, can be
found if the maximum speed, the aerodynamic lift force and the maximum roll
angle is known. The maximum absolute value of the centripetal force can be used
to give an indication of the maximum turning rate of the UAV. The greater the
centripetal force is, the greater will the turning rate be.

Information of the maximum turning rate can be included as a constraint to
give restrictions on the forces that the path planner is allowed to apply on the
modelled point mass, and can justify the modelling of the UAV as a point mass in
the MILP optimization problem.

Figure 3.1 shows a plot of the path when there are no restrictions on the forces
that can be applied to the UAV.

As can be seen from the �gure, the corners are sharp and it is not guaranteed
that the path will be feasible for the UAV. Since the modelling of the UAV is
done by considering a point mass (which does not rotate in the geographic frame
) the kinetics of the UAV is not included in the model. Allocations of inputs
to the UAV in body frame relative the geographic reference frame is lost when
transforming from body frame to a geographic frame. Therefore, the restrictions
on the forces applied on the point mass, which the path planner will consider,
has to be upper bounded by the maximum centripetal force, to ensure a feasible
turning rate. Before one inserts limitations on the applied forces in the guidance
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Figure 3.1: Infeasible trajectory for the UAV. There are no constraints on the
forces in the x- and y direction. The corners are not feasible because limitations
in turning rate is not considered.

system, the forces that a�ects the UAV has to be analyzed in more details. There
are two situations that has to be considered before one conclude on the maximum
force which should be implemented in the model:

1. The maximum centripetal force is bigger than the maximum force from the
propeller, which moves the UAV forward. The maximum centripetal force
can be found at the maximum speed and at the maximum roll angle (φmax).

2. The maximum force from the propeller is found to be bigger than the max-
imum centripetal force. The maximum force from the propeller is given by
the engine and propeller parameters and the angular speed of the propeller.

Before one conclude on which value that should be considered as the maximum
value for the forces in the model, one should �nd out which of the two situations
above that is correct.

1. If the absolute value of the centripetal force that e�ects the UAV is smaller
than the maximum force from the engine, this value should be included in
the model. This will however also represent an unwanted upper restriction
on the forces that can be applied by the propeller. This will be problem-
atic if the UAV is �ying along a straight line and if it is preferable to use
as much power from the propeller as possible. For this cases a bound on
the force to the maximum centripetal force, will be the bound on the force
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from the propeller as well, since the bound on the force represent a bound to
all forces which a�ects the UAV by actuators. The guidance system do not
distinguish between if the UAV is �ying along a straight line (power from
the engine only), or if it is �ying along a curvature (power from both engine
and the centripetal force). This can give problems if the maximum force
from the engine is much bigger than the maximum centripetal force that
the real UAV is a�ected by. This is because the the path planner will put
restrictions on the engine which is not desirable. An example of this can be
if the optimization problem is to minimize the time consumption from start
to goal along a straight line where there is no need to turn the UAV.

2. If the maximum force from the engine is found to be smaller than the max-
imum centripetal force, the maximum engine force has to be the force con-
straint applied by the path planner, to ensure a feasible path when only
motion from start to goal along a straight line is considered. In this case the
turning rate will get an unwanted upper restriction, which in more restric-
tive that the physical constraint on the UAV. This is not bene�cial, since
the restriction on the turning rate becomes more restrictive then the physical
restrictions in given by the UAV dynamics. But, also here, since the model
does not distinguish between if the UAV is �ying in a curvature or along a
straight line this restriction needs to be included.

It is important that the lowest force value between all the forces that e�ects the
UAV in the planar motion area, are implemented in the model. It is more impor-
tant that the guidance system will generate a feasible path, than it is to minimize
time consumption by utilizing the actuators full potential. Running actuators at
full speed over long time may also cause excessive wear and tear on the actuator
components.

In the following sections in this thesis, it will be assumed that the absolute value
of the centripetal force is smaller then the force from the engine, and therefore has
to be the limited force in the path planner.

When the roll angle is di�erent from zero (φ 6= 0), the lift vector can be de-
composed in two vectors, one which will be parallel to the z-axis in the geographic
frame, opposite of the gravity vector (which will keep the UAV up in the air), and
one vector perpendicular to the geographic z-axis which will point in the x-y plane
in the geographic frame, which will give centripetal acceleration. In the following,
the expression for this force will be derived.

If the UAV is �ying with constant velocity, with constant altitude and the roll
angle is zero (φ = 0), the forces that a�ects the UAV, can be simpli�ed to only
consider the gravity force, the lift force and the drag force. The lift force will be
further discussed in the following section.

According to [Stevens and Lewis, 2003] the lift force on an aircraft can be
written as:

L =
1

2
ρV 2

T SCL(α) (3.26)
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where ρ is the density of air, VT is the speed of the UAV measured in wind-axes
and CL is the lift coe�cient, which will among other factors, be dependent of the
angle of attack .

In the following calculations the forces from the wind will be neglected (τwind =
0), as described earlier in this chapter, and the velocity vector of the UAV is
assumed to be along the body x-axis. We can then write V = VT , where V is the
speed of the UAV in body frame. Therefore (3.26) can be written as:

L =
1

2
ρV 2SCL(α) (3.27)

In (3.27) the coe�cients apart from CL(α) can be found by calculating the area
of the wing on the UAV and by assuming a speed and that roll angle equals zero,
such that the lift force equals the gravity force, L = mg. CL(α) can then be found
from

CL(α) = 2 · L

ρV 2S
= 2 · 9.81 ·m

1.225 · V 2 · S
=

16 ·m
V 2 · S

(3.28)

The largest possible value for V should be used in the calculations to guarantee
that the yaw rate is always feasible. A large speed will give a larger turning circle,
which implies that the yaw rate decreases with an increased speed. In the follow-
ing, the values for the total wing-surface S for the Odin delta-wing, assumed by
[Dønnestad, 2011] will be used in the calculations to �nd a value of the maximum
centripetal force, fc,max.

In [Dønnestad, 2011] the following values was assumed:

Vmax = 25
[
m
s

]
, S = 2 · 0.3815 [m2]

In the following derivation, it is assumed that the UAV is �ying with a speed,
V = 20

[
m
s

]
before the banked turn. It is further assumed that the UAV will

increase the speed during the bank turn to keep the altitude constant, and that
the maximum roll angle is, φmax = 10◦.

The value of CL(α) before the banked turn can then be calculated from (3.28).

CL(α) =
16 · 2.8

202 · 2 · 0.3815
≈ 0.15 (3.29)

If it can be assumed constant altitude during the banked-to-turn, the following
derivation to �nd fmax can be done. The assumption can be realistic if the speed
of the UAV increases when the roll angle is changed.

Lift before banked turn starts, φ = 0:

L =
1

2
ρV 2 · S · CL (0) (3.30)

Lift when the roll angle is di�erent from zero:

Lφ =
1

2
ρV 2

φ · CL(φ) · cos (φ) (3.31)

If it can be assumed that CL(φ) ≈ CL, then for Lφ = L to be valid when
φ = 10◦, (3.30) and (3.31) gives
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1

2
ρV 2 · S · CL =

1

2
ρV 2

φ S · CL · cos (φ) (3.32)

which again gives that

Vφ =
V√

cos (φ)
(3.33)

V10
20√

cos (10)
= 20.15

[m
s

]
(3.34)

The maximum centripetal force (fc,max) can then be found by:

fc,max = L cos (φmax) =
1

2
ρV 2

φCL(φmax) cos (φmax) (3.35)

By inserting the equation for Vφ in (3.33) into (3.35) gives the following equation
for the centripetal force.

fc,max =
1

2
ρ(

V√
cos (φmax)

)2CL(φmax) sin (φmax) = V 2CL tan (φmax) (3.36)

Inserting for φmax gives

fc,max = 202 · 0.15 tan (10◦) = 10.5N (3.37)

This calculated force is unreasonable high, and the guessed values of lift, speed,
surface area and aerodynamic values are in this thesis concluded to be unreasonable
assumptions.

Since the UAV parameters are not estimated, no reasonable values for the forces
that a�ects the UAV can be calculated exactly. Further in this thesis it will be
assumed that the maximum force that e�ects the UAV is 1.5N. Figure 3.2 shows
simulations of the trajectory when the restriction of the absolute value of applied
forces is restricted to be less than or equal to 1.5N.

3.2.2 Comments

Since this thesis considers a point mass which travels in a geographic frame, the
equations of motion in the body frame are not a part of the optimization problem.
Therefore, it is not known if the forces applied comes from the engine or as a
resulting centripetal force, because of roll angle. Therefore the forces from the
engine also has to be limited to 1.5N in the optimization problem, as described
above.

According to [Stevens and Lewis, 2003], the forces from a propeller-engine in
the longitude direction can be written as:

ft =
1

2
CTρ|n|nD4 (3.38)

where CT is an engine-constant ρ, is the density of air, n is the rotation ve-
locity of the propeller in revolution per minute [ rev

min
] and D is the diameter of the

propeller.
According to [Dønnestad, 2011] the parameters in his work has been chosen to

be:
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Figure 3.2: Feasible trajectory for the UAV. Constraints on the force is imple-
mented

CT = 0.033
[
m2

s2

]
, ρ = 1.2928

[
kg
m3

]
, D = 0.3[m].

The values in [Dønnestad, 2011] for the angular velocity for the propeller have
been around 180

[
rev
min

]
.

If one insert the engine parameters and the propeller speed from [Dønnestad,
2011] in (3.38) the following value for the force which a�ects the UAV from the
propeller is calculated:

ft =
1

2
· 0.033 · 1.2928 · |180|180 · 0.34 = 11.19N (3.39)

When considering the Recce delta-wing aircraft this can obvious not be cor-
rect, since this will result in an acceleration of 0.4g when the mass is 2.8 kg and
the damping is neglected! Better measurements of the propeller and system iden-
ti�cation has to be performed to identify the dominating forces that a�ects the
UAV. The calculation of maximum centripetal acceleration which was derived in
this section needs to be redone, when correct UAV parameters has been derived.
The parameters used further in this thesis is just bases on guesses.

It is however assumed that for some cases, trajectory will not give any unwanted
limitations to the engine, since when considering minimum fuel consumption it
will be suitable to use as small engine force as possible. This will not be the case,
however, when the objective of the optimization problem is to minimize the arrival
time to destination, since then it is natural to assume that the forces will be in
the upper bound of the force restriction.
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3.3 Implementation of velocity- and force-constraints

Both the velocity and the forces acting on the UAV will have magnitude con-
straints. As described in last section, the force-constraint was assumed to be 1.5N
to get a feasible path with respect to both the curvature path and the straight
line path. Since the orientation of the UAV is not considered in the geographic
frame, the forces that a�ects the UAV in {b} frame has to be transformed to the
{n} frame. This means that the absolute value of the forces (fx and fy) in {b}
should be less than 1.5 N when the transformation to the {n} frame has been
performed. In a two dimensional coordinate system, where the axes are fx and
fy, this constraint will enclose a circle on the X-Y plane with radius 1.5. This
restriction can be mathematically described as:

fnx = f cos(ω) ∀ω ∈ [0, 2π] (3.40)

fny = f sin(ω) ∀ω ∈ [0, 2π] (3.41)

f 2
x + f 2

y ≤ f 2
max (3.42)

Inserting for fx and fy from (3.46) and (3.47) gives

f 2 cos2(ω) + f 2 sin2(ω) ≤ f 2
max (3.43)

f 2(cos2(ω) + sin2(ω)) ≤ f 2
max (3.44)

|f | ≤ fmax (3.45)

where the identity cos2(ω) + sin2(ω) = 1 has been applied.
The restriction for the maximum speed can be described in the same way

vnx = V cos(ω) ∀ω ∈ [0, 2π] (3.46)

vny = V sin(ω) ∀ω ∈ [0, 2π] (3.47)

v2
x + v2

y ≤ V 2
max (3.48)

V 2 cos2(ω) + V 2 sin2(ω) ≤ V 2
max (3.49)

V 2(cos2(ω) + sin2(ω)) ≤ V 2
max (3.50)

|V | ≤ Vmax (3.51)

The representations in (3.45) and (3.51) are non-linear and can therefore not
be implemented in MILP directly. One simple way to approximate this to linear
constraints is to use magnitude limit on each element, which will restrict the forces
within a square inside the circle [Richards and How, 2002].

A simple linear magnitude limit on the the forces and the velocity in both x-
and y- direction restricts the values within the square inside the circle.
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This restrictions can be written as:

|fxi| ≤ fmax and |fyi| ≤ fmax (3.52)

|vxi| ≤ Vmax and |vyi| ≤ Vmax (3.53)

where fxi and fyi is the force and, along the x- and y axes respectively for each
time-step, in the geographic frame. vxi and vyi is the velocity in x- and y- direction
respectively.

As shown in Figure 3.3, it can be see that this is a bad approximation. As
described in [Richards and How, 2002] a better way to do this is to useM number of
constraints to get a better approximation. For both velocity and force constraints,
these are given by:

∀i ∈ [0, . . . , N − 1]∀m ∈ [1, . . . ,M ]

fxi sin

(
2πm

M

)
+ fyi cos

(
2πm

M

)
≤ fmax (3.54)

∀i ∈ [1, . . . , N ]∀m ∈ [1, . . . ,M ]

Vmin ≤ vxi sin

(
2πm

M

)
+ vyi cos

(
2πm

M

)
≤ Vmax (3.55)

In this thesis, the maximum velocity (vmax) is set to be 20
[
m
s

]
and the min-

imum velocity (vmin) is further guessed to be 5
[
m
s

]
. However, in some of the

implementations in this thesis the minimum velocity vmin has been set to zero,
because it is assumed in some missions that the UAV starts and stops in it's base
station where the speed is zero. In implementation on an UAV the minimum speed
during �ight should be set to a minimum value Vmin > 0 such that it do not loose
elevation or stall. During take-o� and landing, it should be allowed to have zero
speed. The best way to solve this problem is probably to have a guidance system
which only considers take-o� and landing, and the path planner developed in this
thesis only consider the path between take-o� and landing.

The approximation to the actual constraint consists of a set of linear approx-
imations. The number M de�nes the number of linear constraints, and in this
thesis, M = 10.

Figure 3.3 shows the the actual non-linear constraint, and two linear approxi-
mations using 4 and 10 linear constraints. The approximation using 4 linear con-
straints is the square approximation. The linear approximation using 4 constraints
is the constraint given by equation (3.52), and the M constraint approach is given
by (3.54). As can be seen from Figure 3.3, the square approximation is a bad
approximation compared to the approximations using 4 and 10 linear constraints.
The more linear restrictions that is used the better will the approximation to the
actual non-linear restriction be. As M → ∞ the approximation in (3.54) will
approximate the real non-linear constraint. As M gets bigger, there will be many
constraints but the approximation will be more accurate. According to [Richards
and How, 2002] this will have little e�ect on the computational complexity since
they include only linear variables. However the author of this thesis does not agree
with this statement, since more linear variables will result in more binary variables
for each time-step, and the number of binary variables will be important for the
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Figure 3.3: Illustration: The actual restriction is plotted against the two ap-
proaches for linear approximation to the actual non-linear restriction

computation time, which also is stated in [Matthew and Ra�aello, 2005]. The
author of this thesis suggest to investigate the use of quadratic programming in
this case, since it will more easy to apply when restrictions becomes circles.

In section 7.4 the e�ect the approximation of the speed and forces are discussed
for a case where the force and speed limitations are active.
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3.4 Implementation of Multiple Waypoints

It is assumed that it is desirable to have the possibility for the UAV to visit
waypoints on its way from start to goal. In this section it is shown how this is
included in the optimization problem. According to [Richards and How, 2002],
this can be implemented as:

∀i ∈ [1, . . . , N ]∀c ∈ [1, . . . ,W ]

xi − xWc ≤Mbig(1− bic)
xi − xWc ≥ −Mbig(1− bic)
yi − yWc ≤Mbig(1− bic)
yi − yWc ≥ −Mbig(1− bic) (3.56)

∀c ∈ [1, . . . ,W ]
T∑
k=1

bkc = 1

where N is the number of time steps, W is the number of waypoints, xi, yi is
the position of the UAV at time step i and xWc, yWc is the x- and y- position of
waypoint number c. bic is an binary variable which indicates whether a waypoint c
is visited at time step i or not. Mbig is a large positive number which is much bigger
than any di�erence between all waypoint positions and UAV positions such that
(3.56) is feasible. In the simulations in Chapter 4 Mbig is set to be, Mbig = 1000.
Later in this thesis, Mbig will be changed due to a bigger operation area.

The last equation in (3.56) is an hard constraint which ensures that the UAV
visit each waypoint once during the time horizon. In the equation it is not de�ned
in which order the waypoint should be visited.

Remark: The restriction in (3.56) forces the time step on the generated path
to be placed exactly at the coordinates of the waypoint. In some situations this
restriction is probably too restrictive, and the constraint described in [Richards and
How, 2002] is therefore, in this thesis, suggested to be modi�ed to view a waypoint
as visited, if the time step on the generated path is in a range ∆ from the waypoint.
∆ is an arbitrarily positive number which determines the minimum range from the
waypoint, the time step has to be to be registered as visited. When the ∆ value is
implemented in the MILP optimization, this may give a smoother �ight path.

∀i ∈ [1, . . . , N ]∀c ∈ [1, . . . ,W ]

xi − xWc −∆ ≤Mbig(1− bic)
xi − xWc −∆ ≥ −Mbig(1− bic)
yi − yWc −∆ ≤Mbig(1− bic)
yi − yWc −∆ ≥ −Mbig(1− bic) (3.57)

∀c ∈ [1, . . . ,W ]
T∑
k=1

bkc = 1 ∆ ≥ 0
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In the simulations in Chapter 4, the ∆ value is set to be 5 meters. This means
that a waypoint will be viewed as visited if the time sample generated in the opti-
mization problem is 5 meters from the waypoint. However, the UAV might actually
also get closer to the waypoint than 5 meters between two time-samples, but this
will not be registered by the guidance system, since it only performs calculations
at each time-step. If the waypoints are implemented with ∆ = 0, this can in many
cases probably be too restrictive, since one often assume that a waypoint is visited
if the visitor is in some region around the waypoint, due to for example the range
of the camera, if this is applied on the mission. If there is no slack included in the
restrictions the optimizer will force one of the samples to be placed exactly at the
waypoint, which in many cases will be a unnecessary hard requirement. If the ∆
variable is included with ∆ ≥ 0 this will give the optimization problem more pos-
sible places to "insert" the time-sample inside the ∆ radius around each waypoint.
It it therefore reasonable to assume that this will result in a longer computation
time. The path planner can however be able to a �nd a new path, with respect
on the new restriction, which makes the cost function smaller. The restrictions in
(3.57) only enforce each waypoint to be visited one time and no more than one
time. The cost function will �nd the most e�ective order to do the visitation, with
respect to the cost function.

We propose to select the variable ∆ with care, such that it no becomes a re-
striction on the path. If ∆ is to big compared to the velocity the UAV is travelling
with it will not be possible for the path to cross the ∆ circle since restriction (??)
does not enable more than one sample to be inside the ∆ square. We suggest
therefore that ∆ should be upper bounded by the following restriction:

∆ ≤ V · Td
2

(3.58)

where V is the speed of the UAV and Td is the discretization time.

3.5 Implementation of obstacles

3.5.1 Stationary obstacles

When the UAV is in the air it has to consider no-�y areas, mountains and other
obstacles. The obstacles can be non-convex, but can be implemented as a convex
obstacle by putting a rectangular square around the obstacle. The square has to
be big enough such that the actual obstacle is contained inside the square and this
square will be viewed as the obstacle constraint in the MILP optimization prob-
lem. The position of the obstacle can be denoted by the coordinates of its lower
left and upper right corner points: (xmin, ymin) and (xmax, ymax). At every time
step i the position (xi, yi) of the vehicle must lie in the area outside of the obstacle.

This can be formulated as [Schouwenaars et al., 2001] :
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∀i ∈ [1, . . . N, ] ,∀c ∈ [1, . . . , O]

xi ≤ xmin

or xi ≥ xmax (3.59)

or yi ≤ ymin

or yi ≥ ymax

(3.60)

The or constraints in (3.60) can be transformed to and -constraints when intro-
ducing binary slack variables [Schouwenaars et al., 2001]. Let the tik be a binary
variable (0 or 1) and letMbig be a large arbitrary positive number. The constraints
in (3.60) may then be replaced by the following mixed-integer linear constraints:

∀i ∈ [1, . . . , N ] ,∀c ∈ [1, . . . , O]

xi ≤ xmin,c +Mbigtic1

and − xi ≤ −xmax,c +Mbigtic2

and yi ≤ ymin,c +Mbigtic3

and − yi ≤ −ymax,c +Mbigtic4 (3.61)

4∑
k=1

tik ≤ 3

where N is the number of time steps, O is the number of obstacles, and ticu∀u ∈
[1, . . . , 4] is a binary variable.

If the kth original or-constraint is not satis�ed on the ith time step, the corre-
sponding binary variable tik equals 1. The last and -constraint ensures that at least
one of the original or -constraints is satis�ed, which ensures that the path always
is outside the de�ned obstacle area. The constraints (3.61) can be formulated for
every obstacle in the manoeuvrable space. The constraints are not enforced at the
initial state (i=0) because the position is at the initial state at this time, and this
has to be assumed to be a feasible state. An arbitrarily shaped planar obstacle can
be described in this way. Also non-convex constraint will be handled by the MILP
optimizer. An example is shown in Chapter 4. It is straight forward to extend this
technique to also include 3D-obstacles [Schouwenaars et al., 2001], but this is not
considered in this thesis.

In Chapter 4 it is shown how the implemented MILP can be modi�ed to also
let this obstacle avoidance take into account obstacles which changes slowly in the
area.
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OPTIMIZATION

3.6 Techniques to avoid corner cutting in the MILP

optimization

Obstacles which are in the operational area of the UAV are included in the MILP
optimizer, but as has been discussed earlier the path between time samples can
result in corner cutting. This means that the path between two feasible discrete
time-steps intersects the obstacle, and this problem has to be taken into account
such that the calculated path from the MILP never lead to a collision between
the UAV and any obstacle. In the simulations in Chapter 4, the obstacles are
implemented as a single point in the geographic frame, and are further enclosed
by a square with arbitrarily sides which are considered as the obstacle-boundaries
by the MILP optimizer. However, in a real environment, obstacles will not be
single points in the operation area, but rather objects which covers a part of this
area. The problem with corner cutting will increase with the speed of the UAV
and the discretization time which has been applied in the discretization of the
UAV dynamics. This coherence enables that two time samples are at feasible
positions, and also that the path is allowed to pass the obstacle. In the following,
two approaches to avoid corner cutting is discussed:

1. In [Reinl and Stryk, 2007] an approach to avoid corner cutting is described by
inserting more constraint which introduces more restrictions in the feasible
areas for the generated x- and y- time-samples. The method suggest to in-
clude the original obstacle in the MILP optimizer and to include more restric-
tions on x and y such that the straight line between (xk, yk) and (xk+1, yk+1)
do not intersect the obstacle. To implement this approach, more binary
variables must be added to determine which obstacle that is considered, and
which of the four corners in the obstacle that is considered by the MILP.
This approach to avoid corner cutting introduces additional binary variables
for each time step and for each obstacle. As described in [Matthew and
Ra�aello, 2005] more binary variables will make the problem more complex,
which will have a negative e�ect on the computation time in the MILP op-
timization. Since it is preferred to keep the optimization problem as simple
as possible due to lack of processing power on-board the UAV, it is prefer-
able to �nd other methods to avoid collision with obstacles caused by corner
cutting.

2. In some of the literature that describes MILP optimization in areas where
obstacles has to be avoided, suggests to "increase" the obstacle before it is
implemented in the MILP optimizer. The increase in the size of the obstacle
represents a "safety margin" compared to the real obstacle, and has to be
big enough such that corner cutting in this increased obstacle don't result
in a collision with the real obstacle in the environment. In [Matthew and
Ra�aello, 2005] a safety margin for obstacles which is implemented as circles
in the environment was discussed. In the following a method for de�ning
a safety margin for obstacles which are formed as a square or rectangle are
discussed and developed.

Generally, the real obstacle with the safety margin around should be big enough
such that it is not feasible for the path planner to make a path directly through
the obstacle. This means that (3.62) and (3.63) should to be ful�lled.
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xmax − xmin > Vmax · Td (3.62)

ymax − ymin > Vmax · Td (3.63)

Further the size of the safety margin must be determined. For simplicity the
following derivation will assume that all obstacles in the environment are formed
as squares with equal size. The distance from the real obstacle's boundaries and
to the obstacles which will be implemented in the MILP optimizer, is de�ned to
be the safety-margin, δ. Since the obstacle is a square this safety margin will be
the same for all four restrictions which represents the boundaries around the ob-
stacle. The length of the δ value is in the following calculated to ensure that the
shortest path between two points that will be in a feasible area, do not intersects
the obstacle. This is illustrated in Figure 3.4.

Obstacle

45 δo

s

lørdag 26. mai 12

Figure 3.4: The �gure shows how one can de�ne the safety margin, δ such that
the path between two waypoints will not intersect the obstacle. The outermost
boundaries are the "obstacle" which is implemented in the MILP

The distance the UAV can travel between each time-step can be described by
the following equation
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s > Vmax · Td (3.64)

where s is the travelled distance, Vmax is the maximum speed of the UAV, and
Td is the discretization time.

As can be viewed from Figure 3.4 the distance s, can be described as a function
of the safety distance, and by applying calculus, this this relation can be found by
the following equation

s =
2δ

sin (Υ)
(3.65)

where δ is the safety margin and Υ is the angle between the boundary and the
path between the waypoints. In Figure 3.4 the angle, Υ, is set to be 45◦, since
this gives the shortest path between the two waypoints and therefore is the most
extreme situation which the safety margin has to be designed for.

Inserting (3.65) in (3.64) and solving for δ gives

δ >
Vmax · Td

2
· sin (45◦) (3.66)

where the value for Υ from Figure 3.4 has been used. Equation (3.66) is the
lower bound on the safety-margin for a given value of Vmax and Td.

3.7 Restrictions on the positions state variables

When the optimization problem is solved on a computer, all parameters which
describes the dynamics of the UAV are included as restrictions in the optimization
problem. Also, waypoints and obstacles are included as restrictions to ensure that
these areas are visited and not visited, respectively. Depending on the area which
are going to be searched, a restriction which de�nes upper bounds on the x- and
y- decision variables should be included to narrow the solution area. A realization
of this restriction was shown as an example in Chapter 2.2.
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3.8 Fixed Horizon Cost Functions

A �xed horizon controller can be implemented where the objective is to minimize
the arrival time or minimize energy consumption or a combination of both energy
and time consumption. For the case of the UAV, the situation of minimizing time
or energy consumption will depend on the situation. In some cases a combination
can be preferred, because a combination of both minimizing time and minimizing
fuel can be the most reasonable. If the cost function in the optimization problem
only considers fuel consumption, the path planner will use as small amount of
energy as possible, and this will result in a situation where the whole horizon will
be used to reach the goal if the initial velocity is zero. Because the input to the
system will be calculated to be as small as possible the goal is reached at the last
time step. If the initial velocity is di�erent from zero and the velocity vector is
pointing towards the goal, the goal can be reached before the last time step if the
drag force is not included in the optimization, and if there are no obstacles in the
way.

If only minimum arrival time is considered in the cost function, the fuel con-
sumption will not be considered at all, and the use of forces will be as large as
possible to reach the goal in the shortest time. This is in many cases not preferred,
and it turns out that a combination of both minimum time and minimum energy
consumption can be the best way to design the cost function. Penalty can be
added to the part of the cost function which is assumed to be most important.

In the following, the objective of the cost function is designed to minimize
energy consumption and to arrive at the destination as fast as possible. In chapter
4 the objective of the cost function is to minimize the energy consumption and in
the rescue scenario in Chapter 6 the objective is to minimize the arrival time at
the destination.

3.8.1 Minimum Time Controller

According to [Grøtli and Johansen, 2011a] a cost function to minimize the time it
takes to arrive the base station is given by

∀i ∈ {1, ..., N}
θfinish ≤M finish (1− bwpiw ) + ibwpiw

θfinishp ≥ i (1− bwpiw ) (3.67)

WhereM finish is constant which is su�ciently large, for instance asM finish :=
N as described in [Grøtli and Johansen, 2011a]

The objective is to minimize

Jfinish = θfinish (3.68)

such that the aircraft arrives at the destination as fast as possible.

This cost function will be further discussed and implemented in Chapter 6.
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3.8.2 Minimum energy consumption

The cost function can also be designed to minimize energy consumption. The
simulations in this thesis is done with respect to energy use.

The cost function can be written as:

J =
N∑
i=1

|fi,x|+ |fi,y| (3.69)

where fi,x and fi,y are the forces in x- and y direction applied at time step i.
It is not preferable to have an absolute value in the cost function, since this

introduces non-linearities in the cost function, and the MILP method is only able
to solve linear programs. Equation (3.69) is therefore transformed to linear form
by using slack variables and additional constraints [Bertsimas and Tsitsiklis, 1997].

J =
N∑
i=1

wi,1 + wi,2

s.t

fi,x ≤ w1

−fi,x ≤ w1 (3.70)

fi,y ≤ w2

−fi,y ≤ w2

Where w1, w2 are slack variables.

3.9 Discussion

The UAV will �y to reach the desired waypoints and has to avoid obstacles and
restricted regions. Obstacles the UAV has to avoid can be buildings, mountains
and other air planes. Buildings and mountains will be stationary obstacles, but
other aerial vehicles has to be modelled as dynamic obstacles, since they will change
position every time step. If the other vehicles are following a prede�ned path which
is known, this can be included in the MILP optimization problem. Otherwise, if the
path of the other aerial vehicles is not known they can be assumed to be stationary
at every time step if the obstacle position is updated in the optimization at every
time step. This method will probably work bad if the obstacles are moving fast
and the computer which solves the path planning is slow.

In this report, dynamic obstacles will not be considered and only stationary
obstacles will be implemented in the test cases. Every obstacle is represented as
a point with a safety margin to each side. The safety margin is implemented as
a square, where each side is 100 meters, and the center is located at the obstacle
(x,y) point. The safety margin should also take into account that the unmanned
aerial vehicle is not a point mass, but has a wing span which need to be considered.

In the �rst test case in this report, all the obstacles are known a priori, and the
optimal trajectory is based on this information. In the second case, the implemen-
tation of the problem is modi�ed, such that only the waypoints is known a priori,
and the optimal trajectory is based on this. Obstacles are in this case detected
when the UAV is a certain distance from the obstacle, to make the test case more
realistic because of the range of the radar, (Rrange). When an obstacle is detected
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it will be included as a constraint in the optimization problem to ensure collision
avoidance. This is implemented in a similar way as a receding horizon approach.
The di�erence is that the horizon in this case is �xed, but the optimization prob-
lem is re-optimized the �rst time a new obstacle is detected by the radar. This is
done because it is interesting to see the response of the optimization algorithm to
�nd out which range the radar should have, and how the Gurobi optimizer handles
new obstacles. The range of the radar has to be adapted to be long enough in rela-
tion to the aircraft dynamics to avoid a situation where the optimization problem
becomes infeasible. All detected obstacles is saved in an database such that the
guidance system can take the obstacles into account, if they have been detected
earlier, even if they are outside the range of the radar. This database should then
only consider stationary obstacles, since obstacles as other aircraft will change as a
function of time and this will give problems with the registration. If it is preferable
to detect moving obstacles as well, the implementation of the obstacle avoidance
system will handle the moving obstacle as a stationary obstacle at every time step.
In this case the guidance system should "forget" the position of obstacles which
has been detected earlier. This implementation can be improved if it is assumed
that the moving obstacle is following a prede�ned path which can be modelled and
implemented in the optimization problem. This will make the optimization more
e�ective, since the generated optimal trajectory will be depending on the direction
of the moving obstacle. This is not considered in this thesis.

The radar will make a picture of the environment in some limited region around
the UAV. The speci�cation of the radar used in this case is not known. The range of
the radar will be an important speci�cation for the anti-collision system. A greater
travelling speed will require a radar with a longer range. Also the manoeuvrability
of the UAV has to be considered when de�ning the requirements for the radar
range, to make sure that the guidance system has enough time to compute a new
trajectory, when the inertia of the UAV is taken into account.

In this thesis simulation with radar obstacle detection is simulated with a
radar range, Rrange = 130m. The simulation was also tested with a radar range of
Range = 80m, but this gave infeasible solutions with the implemented equations of
motion, and restrictions.
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Chapter 4

Simulation and Results

This chapter shows the optimal path, calculated using the MILP from Chapter 3,
for the UAV when linear vehicle dynamics and physical restrictions are applied as
approximations to the aircraft dynamics. Results from simulations of path plan-
ning with obstacle avoidance will be presented and discussed. A general result
from the simulations is that the trajectory cut's the corners of the obstacles if
the operating area gets large and the relationship between time horizon and dis-
cretization time is small. This is because collision avoidance is only enforced at
each discrete time step as was discussed in Chapter 3. Therefore, the obstacle
regions in the optimization must be larger than the real obstacles to make a safety
margin. A suggestion about how this safety margin can be implemented was given
in section 3.5.

In the simulations in this chapter, the path was generated with a horizon of
150 seconds, and the the discretization time was 3 seconds. This results in 50 time
samples.

The simulations was done on a computer with the following speci�cations:

� Operating System: Windows 7 Enterprise 64-bit

� Processor: Intel(R) Core(TM)i5-2500 CPU @ 3.30GHz (2 CPUs),

� Memory : 8,00 GB RAM

The Optimization has been done with the Gurobi solver speci�ed in A.1.

4.1 Test cases where obstacles are known a priori

In this case the position of the obstacles are known before the vehicle is �ying from
the initial position to the �nal position, and the optimization is done only once
to �nd the optimal path with respect to minimum energy consumption. In the
simulation shown in Figure 4.1 one can see that the path cuts the corners of the
obstacles. The path generated in Figure 4.1 took 110 seconds to be generated. In
this simulation the initial position vector was s0 = [x0, y0, vx,0, vy,0]T = [0, 0, 4, 4]T ,
the minimum speed restriction was 5

[
m
s

]
and the restriction on the absolute value

of the forces was 1.5N. The speci�cation for this path-planning was:

39
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Figure 4.1: The �gure shows generated path with horizon 150 second and Dis-
cretization time 3 seconds, resulting in 50 time steps. The simulation took 110
seconds.

Visit two way points at the locations (400,100) and (200,300) respectively, and
�nish at time step N, with the following speci�cation: sN = [xN , yN , vx,N , vy,N ]T =
[0, 0,−4,−4]. The obstacles are placed at the following coordinates: (50, 110), (250, 150)
and (350, 200).

Figure 4.2 shows the absolute value of the desired forces applied on the UAV,
and the desired UAV speed. The �gure shows that both the force and velocity
constraints are held, except for certain cases where the desired limit is exceeded.
This is due to the linear approximation of the non-linear constraints which was
done in (3.54) and (3.55), where the value M describes how well the approximation
is. In this thesis, M = 10. If M increases, the linear constraints will be a better
approximation to the non-linear constraints, and the problem with values that
exceeds the desired constraints will be smaller.
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Figure 4.2: The �gure shows applied forces and the speed of the UAV. As one can
see the force exceeds the force constraint and this is due to the linear approximation
of the non-linear constraint.
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Figure 4.3 shows almost the same scenario as above. The only di�erence is that
one waypoint and one obstacle are moved to (425, 175) and (425, 140) respectively.
When the obstacle and the waypoint are moved closer to each other, the optimiza-
tion took more time. In this case, the computation took 830 seconds. Figure 4.4
shows the applied force and the speed in this case.
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Figure 4.3: The �gure shows generated path with horizon 150 second and dis-
cretization time 3 seconds, resulting in 50 time steps. The simulation took 830
seconds.
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Figure 4.4: The �gure shows applied forces and the speed of the UAV. As one can
see the force never exceeds the force constraint, and the speed never exceeds the
upper an lower speed constraint.
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Figure 4.5 shows another scenario. In this case the UAV is supposed to go from
s0 = [0, 0, 0, 0] visit two way points located at (200, 300) and (400, 100), and end
at the destination (xN , yN) = (425, 300).
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Figure 4.5: Desired optimal fuel trajectory. The horizon is 150 seconds, discretiza-
tion time is 3 seconds. Simulation took 72 seconds to reach the goal (425,300)

The obstacles has been placed at (50, 110),(250, 150) and (350, 250). Note that
in this case the UAV has no initial velocity, and there are no speci�ed values for
the velocity at the goal. The minimum value for the speed (Vmin) is in this case
set to zero. This can not be justi�ed physically, because the UAV path needs
a lower restriction on the speed such that the UAV has enough lift along the
path. However, in the case of testing responses, simulation time and debugging
the design, it is sensible to do tests for di�erent cases. Figure 4.6 shows the applied
forces and the speed along the path for this case.
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Figure 4.6: Desired optimal speed and trajectory. The horizon is 150 seconds, dis-
cretization time is 3 seconds. Simulation took 630 seconds to reach goal (425,300)
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Figure 4.7 shows a complex path-planning where the UAV is trapped inside
two obstacles and a no-�y area. This illustrates that the MILP technique is a
good tool to solve complex guidance problems.
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Figure 4.7: The optimal path when the UAV is surrounded by obstacles and no-�y
areas. The computation time took 885 seconds
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4.2 Path-planner with radar detection for obstacle

avoidance

In this situation, only the waypoints the UAV is supposed to visit is assumed to
be known before the optimization starts. This implementation is done such that
the optimization problem is re-optimized when the the position of the UAV is in a
speci�c distance from an obstacle Rrange, and the obstacle is then included in the
optimization problem. The motivation for doing this, is to make the optimization
more realistic with respect to a real �ight, and how the optimization problem will
deal with obstacles that are added to the problem during the �ight.

When system identi�cation has been applied to the Odin delta-wing aircraft,
the path planning model derived in this thesis could be further improved. The
path planning with radar detection can be applied to simulate the system, and to
detect responses with use of radar with di�erent ranges. If the range is too short
the optimization problem will become infeasible, because there is not enough time
to avoid obstacles. The minimum radar range can be found for which the UAV
can detect and avoid obstacles. In the test simulation, obstacles is added to the
optimization if they are detected by the radar, and the optimization will be done
again with the obstacles included. The implementation can easily be done in two
di�erent ways for di�erent purposes as described under. In the implementation the
design is done for the �rst scenario, and a simpli�ed �ow chart for this developed
design is illustrated in Figure 4.8.

In the simulation the range of the radar is set to be, Rrange = 130m. Two
di�erent approaches to implementation of the radar detection is presented below:

1. If an obstacle is detected by the radar, it will be added to the ObstacleDe-
tectedArray and it will be there for all time, as long as the program is running.
This will be a sensible way to do the implementation if only stationary ob-
stacles are added, since the obstacles that are detected already have been
taken care of by the optimization problem and the optimization does not
need to be alerted again before a new obstacle is detected. However, this
implementation will give problems if dynamic obstacles are considered. Each
time step when the obstacle moves, a new obstacle will be added to the opti-
mization problem, but previous positions of the obstacle will not be deleted
and will therefore still be viewed as obstacles by the guidance system, even
though the dynamic obstacle has moved away from this position.

2. The design as previously described, can easily be changed to view every de-
tected obstacle as a "new" obstacle for each time step. This can be done
by de�ning the array ObstacleDetectedArray in the Matlab code inside the
while()- loop. The motivation for doing this is due to the reason that ob-
stacles are allowed to change position. If an obstacle is detected along the
optimal path, it will be included in the optimization problem and the op-
timization will be re-optimized. At the same time, previously discovered
obstacles will be forgotten. The UAV will move to the next state generated
by the optimization, and if an obstacle is still detected by the radar, it will
do the optimization again(even if a previously discovered obstacle is still in
the same position). This implementation will take care of slowly varying ob-
stacles in the environment. However, the time horizon should be short if this
method should be applied to ensure a reasonable computation time. This
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method will possibly be e�cient if a receding horizon strategy is applied in
the implementation.

4.3 Test case with the obstacle radar detection against

design with a priori obstacle information

In this section the designed optimal path planner with radar obstacle avoidance
will be tested against the optimal path planner with a priori knowledge about all
the obstacles in the area. The same test scenario is applied on both designs. The
initial state vector is given as:

s0 = [x0, y0, vx,0, vy,0]T = [0, 0, 0, 0]T (4.1)

The issue is to move from s0 to the waypoint at position (xw, yw) = (0, 300).
In the area there are obstacles at the following positions: (0, 200), (150, 150) and
(−30, 243). In the test case with a priori obstacle information the path planner
will identify all obstacles when designing the optimal path. The test case with
obstacle radar detection will recognize the obstacles as they are detected by the
radar. In the simulations obstacles that are added to the optimization problem is
shown with a safety margin around the obstacle. Obstacles that are not added to
the optimization problem will only show the position of the obstacle with a red
circle to illustrate that they are not a part of the optimization problem.

Figure 4.9 shows the optimal path when all obstacles are known a priori. As
one can see, all the obstacles are included with a safety margin around the actual
obstacle. Figure 4.10 shows the optimal path when obstacles are added to the
path planner as they are detected by the radar.

When radar with a limited range is applied to sense the obstacles, it can be
observed that only two obstacles are detected. The obstacle at position (150, 150)
is not detected by the radar, because it is too far away from the UAV. The path
becomes di�erent in the case of obstacle avoidance with radar detection compared
to the path when obstacles where known a priori. The reason for this is that the
obstacle at the position (0, 200), is detected when the UAV is on its way to the
goal, and the path planner did not have previous knowledge about this obstacle
when the �rst path optimization was done. When the obstacle is detected the
MILP re-optimizes with the detected obstacle included in the problem. As one
can see in Figure (4.10) the new path turns to the left. When the UAV detects
yet another obstacle in (−30, 243), the optimizer has to re-optimize again with the
new obstacle included in the MILP. The path now turns to the right around the
obstacle and to the goal.

This can be better viewed in Figure 4.11 where the where the positions where
the UAV detects the two obstacles are included in the plot.

At this position the radar will detect the obstacle. As one can see, the path
direction is not changed immediately. This is for the reason that the modeled UAV
dynamics can't change immediately, and need some time change direction due to
conservation of inertia of the modeled UAV.
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4.3.1 Discussion

In the test case both time horizons were 150 seconds and the discretization time
was 3 second. The computation time of the test case where all obstacles were
known a priori, took 680 seconds. The test case were obstacles where detected by
radar took only 3 seconds! The design which considers obstacle avoidance with
radar detection is shown to be signi�cantly better approach to solve the problem,
compared to the case where all obstacles are known a priori. The approach with
radar detection makes the optimization problem smaller, since only obstacles in a
certain area from the UAV are considered, which makes the MILP program easier
to solve. The obstacle avoidance with radar detection is not is not an optimal
solution with respect to minimum energy consumption due to the lack of a priori
information, but it can be said to be sub-optimal.
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Figure 4.8: Flow Chart of the designed path planner which includes obstacle avoid-
ance with radar detection.
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Figure 4.9: Path planning, obstacle avoidance a priori obstacle information. Com-
putation time: 680 seconds.
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Figure 4.10: Path planning, obstacle avoidance with radar detection. The �gure
shows that two obstacles are considered by the MILP during the path. The path
turns because obstacles are detected during the path, and the MILP is than re-
optimized. As one can see the obstacle at (150,150) is not included in the path
planner during the mission since it is outside the radar range. Three computations
was done and the total computation time was 3 seconds.
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Figure 4.11: Path planning, obstacle avoidance with radar detection. The places
where the respective obstacles are detected by the radar is given in the �gure.
The blue line illustrates when the obstacle at (0,200) is detected, and the red line
illustrated when the obstacle at (-30,243) is detected by the radar.
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Chapter 5

Introduction

Its evident that the use of UAVs can be of relevance in a wide range of domains,
varying from general search missions to speci�c military operations. The UAV
technology can thus be applied in investigating the location of the enemy or per-
form other surveillance tasks of strategic importance to the army in general. An-
other speci�cally important area for Norway, is of course the monitoring of oil
installations. Surveillance of the Northern Regions will obviously be a challenge
for the country in the years to come. In many areas that today are closed for the
general public, and have a guard force to protect the area, could also need UAVs to
search the area regularly in order to recognize unauthorized persons, and inform
the guard force.

There are furthermore civilian search missions where the use of UAVs can be
more e�cient, less expensive and it could also reduce the risk for the human
operator. Today many search missions take place in complicated areas such as
sea- and mountain regions where search crews frequently are facing challenging
and dangerous situation. Therefore, to reduce the risk and the cost of a rescue
mission, it could be bene�cial to apply an UAV for some applications as described
in Chapter 1.

In this chapter, the author propose methods which can be applied for e�cient
search missions, when considering one speci�c search and rescue mission. The
overall goal is to search a speci�c area as fast as possible. The UAV is assumed to
be equipped with a suitable camera system which can detect and analyze the area
under and around the UAV in a given sector.

Below is two suggested methods to be applied for the search and rescue mission:

1. One search method that will be used, is to apply MILP optimization to design
the search path for the whole search mission. This method will be designed
such that an arbitrary number of UAVs can take part in the mission. When
more than one UAV is considered in the search mission, mainly two di�erent
strategies for coordinating the search mission can be used. They can brie�y
be described as [Inalhan et al., 2002]:

� Centralized Optimization Problem: One computer which has access to
all system information. Brie�y this means that one cost function is
applied, to coordinate the path for the overall system by collecting
optimization variables from each vehicle.

� Decentralized Optimization Problem: One optimization problem in each
vehicle (subsystem) are calculated, and there are restrictions and com-
munication to the neighbour subsystems.
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When using MILP optimization for more than one UAV, the centralized
Optimization Problem will be applied in this thesis.

The author purpose an algorithm to automatic generate waypoints which
ensures that a de�ned area is searched by the UAV.

2. Another method to be considered for search and rescue mission is to apply
an Archimedes spiral to cover the de�ned area. The use of a spiral for search
and rescue purposes is described brie�y in [Al-Helal and Sprinkle, 2010].
The author purpose methods for automatic design of an Archimedes spiral
for di�erent search missions.

In this part of the thesis the following scenario will be considered:

Case: The main rescue center in Bodø (Northern Norway) receives
a mayday signal from a �sherman who has fallen overboard from his
boat somewhere in the ocean outside Bodø. The conversation between
the �sherman and the rescue center is very short, and the operator at
the rescue center does not receive any information of the �sherman's
position before the connection to the �sherman is broken. The weather
in the area is calm, but the ocean is very cold at this time of the year.
It is therefore urgent to �nd the �sherman before he dies as a result of
the cold water. The operator fortunately knows that the rescue center
has UAVs available through the company "Rescue Vehicles AS" which
also has made software for e�cient search of a de�ned area. The UAVs
are sent on the search-mission in a limited area in the coast outside
Bodø with a suitable IR-camera for locating the �sherman. When the
position is located a rescue boat will go directly to this position and
save the frozen �sherman. It is assumed that the �sherman is located
inside the de�ned search area, and that there is no places inside the
search area where it is more likely to �nd the �sherman than in other
sections.



Chapter 6

Path-planning for search and rescue
mission using MILP

This Chapter will describe a method to do the search in the de�ned area with
the use of MILP optimization. The design and implementation of this search
algorithm has been done for a general case, such that an unlimited number of
UAVs with arbitrary base stations can take part in the same search mission and
allocate di�erent parts of the search grid. However, in the simulations discussed
in this thesis a maximum number of two UAVs will be considered for simplicity.
In the implementation, the cost function will be de�ned to minimize the time it
takes to search the de�ned area, and return back to the base station(s).

6.1 Implementation of multiple vehicles

The search of the area where the �sherman is expected to be found must be done
in a systematic way, such that the whole area will be covered by the camera on the
UAV. If there are more than one UAV available, it will be natural to expect that
the time spent for searching the area can be done faster than if only one UAV has
been used. However, coordination issues arise when using more than one UAV for
the search mission. The UAVs must be coordinated such that:

1. The UAVs does not collide with each other.

2. The UAVs does not search the same areas. A situation with too much overlap
will be cause the search mission to be sub-optimal when it comes to search
time.

3. When the UAVs have �nished the search mission, they should return back
to their respective base stations.

Based on these requirements, the optimal path planner should generate a path
for all available UAVs, such that they are being used in the most e�cient way to
search the area where the �sherman is assumed to be located.

6.2 Implementation of search area

The operator of the UAVs has to know the area where the search mission should
be performed. In the design developed in this thesis. this is done by assuming four
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6.3. IMPLEMENTATION OF AN ANTI-COLLISIONS SYSTEM FOR

MISSIONS WITH MORE THAN ONE UAV.

boundaries in the {n} frame, which will limit the search area. The limits are given
by xnmin, x

n
max, y

n
min and y

n
max , which the operator has to input in the path planner.

The developed path planning system will automatically generate waypoints inside
the search area based on the UAVs equations of motions and the camera system
on-board the UAV. The waypoints should be close enough such that all the area
between the waypoints are covered by the camera system, regardless of the order
the waypoints are visited in. The distance between the waypoints will depend on
the speci�cations on the camera system implemented on the UAV, and the number
of waypoints will depend of the size of the search area. In this implementation it
is assumed that the camera can search in the range rcam meters around the the
UAV in all directions.

6.3 Implementation of an anti-collisions system for

missions with more than one UAV.

In this implementation it is not assumed that there are any stationary obstacles
such as mountains, buildings and similar objects in the area where the search
mission takes place. For some search mission in the ocean this can be a reasonable
assumption. It is however possible to include obstacles in the MILP optimizer in
the same way as was done in Chapter 3, it will only lead to more restrictions in the
optimization problem. The main motivation with this chapter is to �nd methods
which can be used to search a de�ned area, and for simplicity, obstacles will not
be included in the path planner.

Since this implementation is designed to coordinate more than one UAV, the
guidance system has to guarantee that the generated path will not lead to a colli-
sion between the UAVs.

To avoid collision between UAVs for situations where the number of UAVs on
mission is more than one, the following restriction from [Richards and How, 2002]
is implemented:

∀i ∈ [1, . . . , N ]∀p, q|q > p

xip − xiq ≥ d−Rcipq1
and xiq − xip ≥ d−Rcipq2
and yip − yiq ≥ d−Rcipq3 (6.1)

and yiq − yip ≥ d−Rcipq4

and
4∑

k=1

cipqk ≤ 3

Remark: The UAVs should never get close to each other during the search
mission, since they are covering parts of the same area if they are coming to close.
they are covering parts of the same area. This will not be e�cient. Therefore, the
restriction in (6.2) should indirectly be a part of the system which generates the
path. The restriction (6.2) should be included to make sure that the MILP does not
generate a path which leads to a collision between the UAVs. If the UAVs are using
the same base station, a restriction which provides that the UAV leaves the UAV
base, and arrives at the UAV base at di�erent times could also be implemented in
order to avoid that the UAVs collide during take-o� and landing.
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6.4 Assumption

Since the weather is calm, it is further assumed that the currents in the ocean can
be neglected, and therefore the �sherman is being assumed to be located at the
same coordinates all the time during the search mission. This can be described by
the following equations:

xnfisherman(t) = xnfisherman(0) (6.2)

ynfisherman(t) = ynfisherman(0) (6.3)

where xnfisherman(0) and ynfisherman(0) are the initial x- and y- coordinates in {n},
which is the position when the �sherman fell over board).

Remark: If there actually are small currents in the ocean and if the search op-
eration can be done very fast compared to the currents, then the currents can be
neglected by the path planner. If the currents are a dominating factor they should
be taken into account by the path planner, such that the search area changes as
a function of the currents during the search. One approach would be to include
an extra safety margin for the search area. If the direction of the wind and cur-
rents are known, the search area should be increased in that direction such that it
is considered that the search-object can move during the UAV search mission. A
safety margin should also be included, which takes into account that there are dis-
turbances such as wind and currents, unknown and unmodeled UAV dynamics and
error in the given camera speci�cations. It should also be taken into account that
the control system on-board the UAVs should be able to track the path generated by
the path-planner, and that this represents an uncertainty, and therefore should be
taken into account by the path planner. It is important to know that the camera
range depends on the elevation of the UAV, since the camera will cover a sector
to each side of the UAV, and this area will increase with an increase in the UAV
elevation. If the camera is installed in the hull on the underside of the aircraft such
that it rotates with respect to the {n} frame when the UAV accelerates or is doing
a turning, this will have an e�ect on which area that is covered by the camera. The
impact of these events must be considered when the guidance system is designed.
In this part of the chapter it is further assumed that the UAV has a de�ned eleva-
tion which it should use during the search mission. It is further assumed that the
camera is mounted on a �exible rig with a stabiliser such that the camera is not
rotated with respect to the {n} frame when the UAV moves.

6.5 Development of a search algorithm to �nd the

�sherman

In the following, an algorithm for search of a de�ned area will be presented. It
is assumed that the operator at the rescue center has some idea of where the
missing �sherman is located. The operator will insert the boundaries of the area
where it is assumed that the �sherman will be found into the path planner. This
area is described as a closed area with four restrictions, and the whole area inside
the restrictions must be searched. When the search area is de�ned, the path
planner will generate waypoints inside this area which makes sure that, when
all the waypoints are visited, the whole area inside the square is covered by the
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camera system which is available on the UAV. The distance between each waypoint
therefore has to be given by the range of the camera on the UAV, and the dynamics
of the UAV. It is important that the distance between the waypoints are as far
as possible, to avoid that the same area is searched more than one time. It is
also bene�cial to use as few waypoints as possible to reduce the number of binary
variables which has a negative e�ect on the computation time as described in
Chapter 2.2. The cost function in the optimization algorithm will minimize the
time used by the available UAV to arrive the search area, visit the waypoints and
return back to base station when the search is completed. It is reasonable to apply
a cost function which minimizes the search time, such that the �sherman is found
as fast as possible.

6.6 Generation of waypoints

In this thesis the following algorithm for generation of waypoints has been devel-
oped, to ensure that the hole search area is covered by the UAVs camera system.
The algorithm will ensure that the there are enough waypoints such that the
de�ned search area is covered when the UAV has visited all the waypoints, in-
dependent of the order the waypoints are visited in. In the waypoint generation
algorithm the only information that will be considered is the xmin, xmax, ymin and
the ymax value of the search area which is given by operator. As described earlier in
this chapter, it may be suitable to include a restriction which forces the waypoints
to be visited in a given order. Therefore the waypoint generation algorithm is
developed in such a way that a restriction which forces the waypoints to be visited
in speci�c order can be implemented in the problem.

The waypoints are generated and added in the table wpset in the
following way:

1. The following calculation is done to �nd the coordinates of the �rst waypoint:

(wpset,x,1 − xmin)2 + (wpset,y,1 − ymin)2 ≤ r2
cam · γ (6.4)

This can be written as

(∆x)2 + (∆y)2 ≤ r2
cam · γ (6.5)

where ∆x := wpset,x,1 − xmin and ∆y := wpset,y,1 − ymin is the distance to
the x- and y- coordinates to the �rst waypoint from the boundaries xmin and
ymin respectively.

The distance to the �rst waypoint from xmin and ymin has been set to be
equal, this means that (6.5) can be rewritten, and the coordinate of the �rst
waypoint can be found:

∆x =
rcam√

2
⇒ wpset,x,1 = xmin + rcam

√
γ

2
(6.6)

and

∆y =
rcam√

2
⇒ wpset,y,1 = ymin + rcam

√
γ

2
(6.7)
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2. As long as not all the area from ymin to ymax is covered at the actual x-
position by the camera, more waypoints will be added until ymax and the
upper left corner is covered. This is done in the following way:

wpset,y,i+1 = wpset,y,i + 2 · rcamγ (6.8)

where wpset,y,i+1 is the y-coordinate for the next waypoint and wpset,y,i is the
y-coordinate of the last previously generated waypoint.

3. When the area at the actual x-coordinate is covered by the camera, the next
waypoint is added at the same y-value, but on the next x-value given by the
algorithm:

wpset,x,i+1 = wpset,x,i + 2 · rcamγ (6.9)

and the waypoints will be added from ymax to ymin in the following way:

wpset,y,i+1 = wpset,y,i − 2 · rcamγ (6.10)

To decide if the waypoints are added from low y-values to high y-values or from
high y-values to low y-values, the modulo operator has been applied:

xcounter ·mod(2) = xcounter −
⌊xcounter

2

⌋
· 2 (6.11)

xcounter · mod(2) will return 0 if xcounter is an odd number, and will return 1
if xcounter is an even number. This property is used in the waypoint generation
algorithm to decide if the waypoints should be added with increasing y-values or
with decreasing y-values, since for odd numbers the waypoints are added from
lower y- boundary (ymin) to the upper y-boundary ymax and for even numbers
the waypoints are added from the upper y-boundary (ymax) to lower y-boundary
(ymin). If the waypoints are visited in the same way as they are ordered in the
wpset table, this will result in a zig-zag path. The algorithm which is developed for
waypoint generation is given as a �owchart in Figure (6.1). The implementation
in MATLAB is given in Appendix (C)
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Figure 6.1: Flowchart which shows the developed algorithm for waypoint genera-
tion
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6.7 The optimization problem in MILP

Since the search area has been de�ned and waypoints have been generated to
ensure complete cover of the search area, one need to de�ne the MILP such that
the UAV behaves as desired. In this section the desired behaviour will be described
and implemented.

In this implementation it is important to �nd optimal solution which minimizes
the time the UAV uses from it's base, through all the waypoints and back to the
UAV base, to ensure that the �sherman is found as fast as possible. Therefore, in
this implementation one needs to de�ne the cost function, such that it minimizes
the search and rescue time. Since this implementation should be able to handle
multiple aircrafts, equation (3.67) from [Grøtli and Johansen, 2011a] is applied in
extended form to take into account multiple aircrafts:

∀p ∈ {1, ..., np}, ∀i ∈ {1, ..., N} (6.12)

θfinishp ≤M finish
(
1− bwppiw

)
+ ibwppiw (6.13)

θfinishp ≥ i
(
1− bwppiw

)
(6.14)

Where M finish is a constant which is su�ciently large, for example M finish :=
N as suggested in [Grøtli and Johansen, 2011a].

ηfinish ≥ θfinishp (6.15)

The objective is to minimize

Jfinish = ηfinish (6.16)

such that all available aircrafts returns to the base as fast as possible.

In the implementation, the waypoints which are going to be visited are inserted
in the wpset table as described in the algorithm above. At the end of the table
the UAV base for each of the UAVs participating on the mission are included. If
it is only one UAV on the mission only one UAV base will be included in the
table. If there are two UAVs, the last two rows in wpset will contain the x- and
y- coordinates for both UAVs respectively. The restriction (3.57), which makes
sure that all waypoints in the search are visited, has to be modi�ed since the
last element(s) in Wc includes the base station(s). It is not desirable to include
a restriction that allows the UAV base to be visited for only one time sample.
It is therefore reasonable to modify this restriction such that the UAV is allowed
to stay at the base station for more than one time sample. Equation (6.17) is a
restriction which enforces all waypoints and base stations to be visited, and (6.18)
is a restriction which allows each waypoint to only be visited once by one of the
UAVs. This means that only one time sample is allowed to be inside the range ∆
around each waypoint, and that is desirable.

∀i ∈ [1, . . . , N ]∀c ∈ [1, . . . ,W ]∀p ∈ [1, . . . , np]

xip − xWc −∆ ≤Mbig(1− bicp)
xip − xWc −∆ ≥ −Mbig(1− bicp)
yip − yWc −∆ ≤Mbig(1− bicp)
yip − yWc −∆ ≥ −Mbig(1− bicp) (6.17)
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∀c ∈ [1, . . . ,W − np]
np∑
p=1

T∑
i=1

bicp = 1 (6.18)

The following restriction (6.19) is included to make sure that the UAV's base
station is visited, by the respective UAVs, and that there are no upper bound for
how long it can stay there.

∀p ∈ [1, . . . , np] ∀c ∈ [W − np + 1, . . . ,W ]

T∑
i=1

bicp ≥ 1 (6.19)

The following restriction is included to restrict the UAV to stay at the base
station for all future time steps, when it arrives the base.

∀p ∈ [1, . . . , np] ,∀i ∈ [1, . . . , N − 1]∀w ∈ [W − np + 1, . . . ,W ]

b(i+1)cp ≥ bicp (6.20)

The reader might think that the restrictions given in (6.19) and (6.20) pro-
hibit the UAV for leaving the base station. since these restrictions are ful�lled
when the program starts, one could think that the binary variable for the base
station than equals one, and that restriction (6.20) prohibits the UAV to leave the
base. However, the other restrictions (6.17) which tell us that the waypoints in the
search area needs to be visited results in a feasible program only if the UAV leave
it's base station and visit these waypoints. Therefore the only feasible solution in
the overall MILP optimization is that (6.19) and (6.20) are ful�lled after all the
waypoints has been visited.

The constraints described in (3.54) and (3.55) has to be extended to include
more aircrafts. It is further assumed that the search and rescue mission will consist
of three phases which in this chapter will be implemented in the path planner. It
is assumed that the �rst 3 time steps is a part of the take-o� phase. In this part
the UAV should be allowed to have a lower limit on the speed, Vmin = 0

[
m
s

]
. The

steps from 4 and to N-3 is the phase when the UAV is airborne and in this part
Vmin = 5

[
m
s

]
. The last tree time steps will be the landing phase and at this phase

Vmin = 0
[
m
s

]
. The implementation is done as follows:

Constraints phase 1:

∀i ∈ [1, . . . , 3]∀m ∈ [1, . . . ,M ]

Vmin,1 ≤ vxi sin

(
2πm

M

)
+ vyi cos

(
2πm

M

)
≤ Vmax (6.21)

Constraints phase 2:
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∀i ∈ [4, . . . , N − 3]∀m ∈ [1, . . . ,M ]

Vmin,2 ≤ vxi sin

(
2πm

M

)
+ vyi cos

(
2πm

M

)
≤ Vmax (6.22)

Constraints phase 3:

∀i ∈ [N − 2, . . . , N ]∀m ∈ [1, . . . ,M ]

Vmin,3 ≤ vxi sin

(
2πm

M

)
+ vyi cos

(
2πm

M

)
≤ Vmax (6.23)

Where Vmin,1 = Vmin,3 = 0
[
m
s

]
and Vmin,2 = 5

[
m
s

]
.

6.8 Discussion

The time it takes from the operator inserts the de�ned search area in the program,
and until the program has found the optimal path, and are ready to start on
the mission, is important. It is therefore reasonable to �nd ways to minimize
the computation time. The computation time to �nd the optimal route is time
consuming if the number of waypoints in the problem is very large, as described
in Chapter 2.2. If the search area becomes large, and the camera range (rcam) is
small, the time to calculate the optimal path can be very time consuming. In these
cases it it can be sensible to discuss if it is worth the spent time it takes to �nd the
optimal route, since in the �xed horizon approach MILP applied in this thesis has
to be solved before the UAV can start on the mission. The author purpose that
the question about optimality also has to take into account the time it takes to
calculate the optimal path, since the overall objective is to search and rescue the
�sherman as fast as possible. If it takes longer time to calculate the optimal path,
and �y that path, then it takes to do visit the waypoints in some arbitrary order,
it would be not be optimal to do the optimization since the search could than have
been done in a more e�cient way with respect to time. If the optimization problem
can be simpli�ed in some ways which reduces the computation time, this could be
the preferable solution. One suggestion given in this section was to implement one
more restriction in the optimization problem, which determines the order of the
waypoint visitation. It was argued earlier in this chapter that this could result in
a reduced computation time for the optimization problem.

To make the number of possible paths in the problem smaller, a restriction
which forces the order the waypoints should be visited could be included in the
model. The following restriction (6.24) tells that the waypoints should be visited
in the same order as they where included in the path planner [Grøtli and Johansen,
2011a].

θc+1 ≥ θc (6.24)

where θc is the time it takes to reach waypoint c.

When the restriction (6.24) is included in the optimization problem, it is sensi-
ble to assume that this will result in a a cost function which has the same or higher
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value as before the restriction was included, since the objective is to minimize the
cost function. Since the cost function in this case study represents the time it takes
to ful�l the the mission, one should expect that the solution will be a path which
it can take longer time to travel. If the decreased computation time achieved by
implementing (6.24) is lower than the the extra time it takes to travel the new
path, the author propose this restriction to be included, since it will reduce the
overall time to complete the search.

If the UAV is stationed on a base station and the the mission is to search a
�xed area regular, it would be preferable to solve the optimization problem without
restriction (6.24), since this will ensure as low cost function as possible. Since the
same are is going to be search many times, it would be sensible to do �nd the path
which minimize the time consumption, even if it takes some time to compute this
path. Since the UAV for these missions are �ying the same route many times, will
it be preferable to �nd an optimal path once, even if it takes some time do solve
the optimization problem. For the purposes in this case-study, the search area will
change between the various missions, and therefore the optimization problem has
to be solved just before take o�.

The available computing power on-board the UAV is assumed to be very lim-
ited. Large optimization problems which needs to be computed before the UAV
leaves the base, will take a long time, compared to the time it takes to solve the
same problem on a computer with higher computing power. In the approach which
is considered in this thesis, the whole path from initial position and to the �nal
position is found before the UAV leaves the base station. It may therefore be ap-
propriate to solve the optimization problem on a computer with high computing
power at the base station and transfer the solution to the UAV when it is found. If
the approach used to generate the path is further developed to also recompute the
path during the �ight, this could be implemented such that the computer on-board
the UAV can re-optimize the original path during the �ight.

6.9 How to design the horizon, T in the MILP

The only operation the UAV operator should have to do, is do de�ne the lower and
the upper values of the x- and y- boundaries in the search area as described earlier
in this chapter. Since the implementation in this thesis considers a �xed horizon,
it should be expected that the program is able to design the necessary horizon for
each respective search mission. The horizon has to be long enough such that the
UAV is able to get out to the search mission, do the search and get back to the
UAV base. Otherwise the MILP will become infeasible. As will become clear in
the next section, the horizon length has substantial in�uence on the computation
time, and it is therefore bene�cial to initialize the optimization problem with as
small a time horizon as possible to get the computation time as small as possible.
If a restriction is included to determinate the order of the waypoint visitation,
as given in (6.24) the author propose the following approach for �nding the time
horizon, T:

� Find the total length of the path from the UAV base, through all the way-
points in the given order, and back to the UAV base. This length will be
denoted spath.

� Since the objective of this mission is to minimize the time spent on the
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mission, it is natural to assume that the speed of the UAV will be close to
the maximum speed during the search mission.

� The lower bound on the time horizon can then be found by considering the
following calculation:

T ≤ spath
Vmax

Γ1 Γ1 ≥ 1 (6.25)

where T is the time horizon which one wants to �nd an upper bound on,
spath is the distance given by straight lines from the UAV base, through
the waypoints in the determined order, and back to UAV base. Vmax is the
maximum speed the UAV can have. Γ1 is a constant which gives a safety
margin on the upper bound for the time horizon.

� The lower bound can be found with the following calculation:

T ≥ spath
Vmin

Γ2 Γ2 ≥ 1 (6.26)

where Γ2 is a constant which gives a safety margin on the lower bound for the
time horizon.

It is important that the time horizon does not become too short, since the
optimization problem might become infeasible. Therefore a safety margin should
be included to take into account situations where the UAV do not �y at maximum
speed all the time (needs to have acceleration for take-o� and when it arrives the
UAV base). A Γ constant which gives a safety margin on 10% (this gives Γ = 1.10)
can be included. The γ variable should be found during experiments to �nd out

Remark: For the case where the optimization problem �nds the optimal path
with no restrictions on the order of waypoint visitation the restriction in (6.25)
can still be used as an upper bound, since an optimization problem with one less
restriction included will have higher degree of freedom, and will therefore have
an optimum which is equal or better then the optimum which was found with the
restriction included.

6.10 Simulation

In this section simulations from search and rescue missions will be presented and
discussed. The following items have been considered during the simulation:

� Simulations of a search mission when one UAV is applied in a search mission

� Simulations of a search mission where two UAVs are applied in a search
mission, to show that the path planner handles more than one UAV. One
of the UAVs is located in (x, y) = (0, 0) and the other UAV is located in
(x, y) = (400, 0)

� Identify the time it takes to solve the optimization problem when the restric-
tion (6.24) is implemented and when it is not implemented.
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� Identify the time it takes from the Gurobi solver starts computation on the
optimization problem, and until the UAV has ful�lled the search along the
generated path. These results will be applied in the discussion on the overall
time it takes to complete a search mission, for the case where the restriction
on waypoint visitation is included in the problem, and for the case when it's
not included in the problem. The time it uses to �nish the search has been
found by investigating the time the UAV arrives at the base station. This is
found by checking if the binary value describing if the base station is visited
or not, is set to 1. The sample number (k), the UAV arrives the base station
on, is multiplied by the discretization time Td to calculate the �ight time in
seconds.

� Identify that the camera system on the UAV covers the de�ned search area to
verify that the waypoint generation algorithm described in Section 6.6 works
e�ciently. The camera range, rcam, is changed to verify that the waypoints
is placed in a di�erent way to cover the search area.

The implementation has been done such that a waypoint is registered as visited
when a time sample is placed exactly at the waypoint. This means that ∆ = 0 in
equation (6.17). The discretization time (Td) is 3 seconds in all simulations in this
section.

6.10.1 Case 1 - one UAV and no restriction on the order of

waypoint visitation

The �rst search mission considers a search and rescue mission where one UAV
participate in the search, and it's base is located in the following coordinates: (x,y)
= (0,0). The operator assumes that the missed �sherman is inside the rectangle
given by the boundaries xmin = 0, xmax = 850, ymin = 50 and ymax = 550.
The camera range rrange has been set to 200 meters, and the value β in the waypoint
generation algorithm has been set to 0.8.

The optimal path when there are no restrictions on what order the waypoints
are visited in is given in Figure (6.2).

The time it takes to solve the optimization problem and �y the calculated path
took in this case 209 seconds.

In the simulation the time horizon was set to be 150 seconds. The MILP
problem took 74 seconds to be solved. The UAV is back in it's base after 135
seconds, which means that the total search time took 209 seconds. Figure (6.3)
shows the same path with the camera range included as blue circle around each
time sample. As can be seen from the plot, the whole search area is covered by
the UAV camera system.
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Figure 6.2: Simulation for a search with one UAV with base in (0,0). The search
area is de�ned by xmin = 0, xmax = 850, ymin = 50 and ymax = 550. The compu-
tation time took 74 sec. Time horizon, T = 150 seconds, discretization time Td =
3. Camera range = 200 meters, γ = 0.8 Reaches base on sample 45
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Figure 6.3: Simulation for a search with one UAV with base in (0,0). The search
area is de�ned by xmin = 0, xmax = 850, ymin = 50 and ymax = 550. The computa-
tion time took 74 sec. Time horizon, T = 150 seconds, discretization time Td = 3.
Camera range = 200 meters, γ = 0.8 Reaches base on sample 45 The blue circles
shows the camera range at every time sample.
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Remark: If the horizon was increased to 180 seconds, the MILP optimizer used
327 seconds to solve the same problem. This illustrates that the time horizon is an
important factor for the computation time

6.10.2 Case 2 - one UAV and a restriction on the order of

waypoint visitation

This Case considers the same scenario as Case 1, but in this case the restriction
on waypoint visitation (6.24) is included in the optimization problem. The time
horizon (T) was in this case increased to 180 seconds, to be able to solve the
optimization problem. The computation time took in this case 24 seconds and the
UAV used 156 seconds to �y the search mission. This means that the overall time,
when both computation time and �ight time is included, took 180. seconds. The
path is shown in Figure (6.4). In this case one can see that it takes longer time
to do the �ight search compared to the case where no restrictions in the waypoint
order is added. This make sense because when one add one more constraint to the
optimization problem the time it takes to do the �ight should be longer or equal to
the time when the constraint was not included. Figure (6.5) shows the generated
path with the camera range included around each time sample.

The time it takes to solve the optimization problem and �y the calculated path
took in this case 180 seconds.
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Figure 6.4: Search with one UAV with base in (0,0). xmin = 0, xmax = 850, ymin =
50 and ymax = 550 Computation took 24 sec. T = 180, Td = 3. rcam = 200,
γ = 0.8 Reaches UAV base at time step 52
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Figure 6.5: Search with one UAV with base in (0,0). xmin = 0, xmax = 850, ymin =
50, ymax = 550 Computation took 24 sec. T = 180, Td = 3. rcam = 200, γ = 0.8
Reaches UAV base at time step 52



CHAPTER 6. PATH-PLANNING FOR SEARCH AND RESCUE MISSION

USING MILP 73

−200 0 200 400 600 800 1000
−200

−100

0

100

200

300

400

500

600

700

800

900

UAV x−position [m]

U
A

V
 y

−
po

si
tio

n 
[m

]

 

 
Discrete points
Path between discrete points
Waypoints
Boundaries on search area

Figure 6.6: Search with one UAV with base in (0,0). xmin = 0, xmax = 850, ymin =
50, ymax = 550 Simulation took 29. T = 180, Td = 3. rcam = 178, γ = 0.8 Reaches
base station at time step 58

6.10.3 Case 3- the camera range, rcam, is changed

If the camera on the UAV has a smaller range, this will result in closer waypoints
which is given from the from the waypoint generation algorithm. In Figure (6.6)
the search area was de�ned to be the same as in the simulations above, but the
camera range has been set to be 178 meters, which is 22 meters smaller than
the simulations in Case 1 and Case 2. As can be seen from Figure (6.6), this
new camera range results in more waypoints which has to be visited to ensure
that the area is covered by the camera. In this case the horizon was changed to
be 180 seconds, since a time horizon on 150 second would result in an infeasible
optimization problem. The computation time took 185 seconds.

The time it takes to solve the optimization problem and �y the calculated path
took in this case 354 seconds.
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Figure 6.7: Search with one UAV with base in (0,0). xmin = 0, xmax = 850, ymin =
50, ymax = 550 Simulation took 29. T = 180, Td = 3. rcam = 178, γ = 0.8 Reaches
base station at time step 58
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6.10.4 Case 4 - Two UAVs, no restriction on the waypoint

visitation

In some search missions there might be more than one UAV available. In the
implementation of the MILP optimizer it is taken into account that it can be
arbitrarily UAV taking part in the search mission. A simulation with two UAVs
are shown in Figure (6.8). In Figure (6.9) the camera range has been plotted with
a circle around each UAV sample to show that the whole search area has been
covered by the camera during the search. There is no upper restriction on how
many UAVs that can be implemented in the model, but the base station for each
UAV must be included.
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Figure 6.8: Search with UAV number one with base in (0,0) and UAV number two
in (400,0). The search area was bounded by: xmin = 0, xmax = 850, ymin = 50 and
ymax = 550 Optimization took 7 seconds. T = 90, Td = 3. rcam = 178, γ = 0.8
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Figure 6.9: Search with UAV number one with base in (0,0) and UAV number two
in (400,0). The search area was bounded by: xmin = 0, xmax = 850, ymin = 50 and
ymax = 550 Simulation took 7 seconds. T = 90, Td = 3. rcam = 178, γ = 0.8
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6.10.5 Case 5 - Two UAVs and a restriction on the order of

waypoint visitation

In Figure (6.10) there is included a restriction which tells that the UAV with base
in (0, 0) should visit the �rst half-part of waypoints in chronological order, and that
the UAV with base in (400, 0) will should the last half-part of waypoints. When
the horizon was 90 seconds the optimization took 6 seconds. The main reason for
this short optimization time with two UAVs is because it is than possible to use a
shorter horizon since the mission is divided between two UAVs.
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Figure 6.10: Search with one UAV with base in (0,0) and one in (400,0). xmin = 0,
xmax = 850, ymin = 50, ymax = 550 Simulation took 80 sec. T = 90, Td = 3. rcam
= 178, γ = 0.8.
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Figure 6.11: Search with one UAV with base in (0,0) and one in (400,0). xmin = 0,
xmax = 850, ymin = 50, ymax = 550 Simulation took 80 sec. T = 90, Td = 3. rcam
= 178, γ = 0.8 .



Chapter 7

Search-mission by applying an
Archimedes Spiral

When designing a path for a search and rescue mission it can be suitable to try
some other methods than the one with MILP optimization. As was shown, the
optimization was time consuming when the MILP approach was applied with many
waypoints in the optimization problem. As was discussed in Chapter 6, the overall
time spent to �nd the �sherman, from the mayday is received, and to the search
is �nished is important, since the overall object is to �nd the �sherman as fast as
possible. When the path was generated by the MILP optimizer, it took some time
to compute the optimal path, and the computation time becomes more dominant
as the search area becomes big, and the number of waypoints becomes large. Since
the time it takes from an actual search is determined and to the search is completed
is the essential factor, the author is motivated to �nd other less time-consuming
approaches to determine the path for a search and rescue mission. In [Al-Helal and
Sprinkle, 2010] it is argued that a spiral could be a good approach to be a path in
search missions. In this chapter the Archimedes Spiral will be further investigated,
and it will be developed such that it automatically is adapted to di�erent search
and rescue missions.

7.1 The Archimedes Spiral

The Archimedes spiral can in polar coordinated be described as

r = a+ b · θ ∀a, b, θ ≥ 0 (7.1)

where r is the distance from the center of the spiral after θ successive turnings.
In this case the spiral starts at the distance a from the spiral center and ends after
θ rotations. the impact the a and the b constants has on the spiral can be seen in
Figure 7.1. The following calculation has been done to �nd this relationship:

r(θ + tπ)− r(θ) = (a+ b(θ + 2π))− (a− bθ) = 2πb

(7.2)

79



80
7.2. ADAPTATION OF THE ARCHIMEDES SPIRAL FOR THE SEARCH

MISSION

−250 −200 −150 −100 −50 0 50 100 150 200 250
−250

−200

−150

−100

−50

0

50

100

150

200

x−axis

y−
ax
is a

b2

mandag 4. juni 12

Figure 7.1: The Archimedes Spiral and the properties of the a and b constants. In
this �gure a = b = 50.

7.2 Adaptation of the Archimedes spiral for the

search mission

If one wants to de�ne the spiral such that it instead start on the outermost point
and ends at the innermost point it can be written as

r = ρ− (a+ b · θ) ∀a, b, θ, r ≥ 0 (7.3)

where the last restriction on r in (7.3) gives the following upper bound on θ

r = ρ− (a+ b · θ) ≥ 0 =⇒ θ ≤ ρ− a
b

(7.4)

where ρ is the distance to the outermost part of the spiral from the search
center,a is a constant which determine at which radius from the origin the spiral
should end, and b determine the distance between the successive turnings. These
constants has to be decided such that the spiral, which is the path the UAV is
suppose to follow, is feasible.

The parameters also has to be decided in proportion to the camera-system on
the UAV, which searches the surface of the earth. This has to be done such that
the hole area between the successive turnings are covered by the camera system.
Since the dynamics of the UAV are �xed, the camera has to be designed such
that it covers the area between the successive turnings, since the UAV can not be
designed to satisfy the camera speci�cations.
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When (7.3) is implemented this will give a spiral which starts at the outermost
point of the search area, and the radius to the center of the spiral decreases with
increased θ.

7.3 Assumption

� It is assumed that the probability to �nd the �sherman is equal in the whole
search area. In this thesis the implementation of the search mission has been
chosen to start at the outermost point, and work towards the innermost
point. However, if the reader wants to start the search in the center instead,
this will only result in a small modi�cation of the implementation.

� In some search missions, it is perhaps more suitable to start in the center
of an area and do the search outwards until one locates the object one is
searching for. In other search mission the search area can be de�ned to be
inside some arbitrary boundaries in the {n} frame. And this is assumed for
this case study.

� Since the issue of the search and rescue mission is to locate the �sherman
as fast as possible, the object of the path planner is to make a path which
can search the de�ned area as e�cient and as fast as possible. It obvious
that it is preferable to let the UAV �y as fast as possible. If it starts at the
outermost point of the search area it obvious that it is less probable that the
UAV needs to slow down the speed, than if it starts at the innermost part
of the search area since the curvature κ is smaller there. κ is given by (7.5)
[Edwards and Penny, 2002]. If the guidance system was implemented such
that the UAV should start the search at the innermost point, one unwanted
e�ect of this could be that the UAV has to slow down to be able to follow
the path, since the curvature of the spiral is biggest at this point. When
the radius from the center increases the curvature will become smaller and
the UAV can again increase the speed. Taking into account that the fuel
consumption also should be considered, it will be most economic to start at
the outermost point of the search area. The curvature is given by:

κ =
1

r
(7.5)

where r is the distance from the center of the spiral to the point of the spiral
given by (7.3).

Another approach the reader could think about, is to apply optimization tech-
niques which �nds the optimal value for κ such that the curvature is developed
such that it is optimal with respect to the UAV dynamics. If the curvature on the
innermost point is such that the UAV can �y at maximum speed, then it will be
bene�cial to start the search at the innermost point.

7.4 Implementation of the spiral-search approach

In the spiral search approach, the Archimedes Spiral is applied r = ρ− (a+ b · θ),
where a and b are decided constants, and θ is the angle to the point on the spiral
at the distance r from the center.
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Figure 7.2: Illustration of a bad oriented spiral path with respect to the UAV base
.

The constants a and b has to be decided such that the spiral path is ful�lled
with respect to both the UAV dynamics and the range of the camera which is used
in the rescue search. The UAV operator needs to insert a center for the search
operation in coordinate system {n}, and a radius around this center, where it is
likely to �nd what one is looking for within. The base station is the UAVs initial
position and it is known by the guidance system. The center for the search will
be the center of the spiral path.

The author propose that the spiral is designed such that the orientation is
adapted to the UAV base station. As one can see from Figure 7.2, the orientation
is not adapted to the UAV base in this case. The spiral should be designed such
that the UAV can �y directly into the spiral when it arrives the search area from
the UAV base.

In the following the author propose an algorithm for automatic de-
sign of the Archimedes spiral:

The center for the search area has a local reference coordinate system {s}
which is rotated with an angle ψ with respect to the earth �xed coordinate system
{n}. The spiral will in the following be generated in this frame. The issue of
the algorithm is to rotate {s} such that the outermost point on the spiral starts
on a point which is related to the UAV base station. In Figure 7.3, a spiral is
oriented such that the UAV is able to �y straight into it when it arrives the search
area. This angle ψ is decided such that the vector product of the vector from the
UAV base to the spiral center in {n} and the vector from the spiral center to the
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Figure 7.3: Illustration of a good shaped search spiral. a = 250, b = 250

outermost point of the spiral in {s} is zero.
The following calculation is done:

Cn := Snc −UAVn
base (7.6)

where Snc = [xnc y
n
c ]T is the center for the search given by the x- and y coordi-

nates in {n}, and UAVn
base = [xnb y

n
b ]T is the x- and y coordinates to the UAV base

station in {n}. C is than the vector from the base station to the spiral center.
By de�ning

Rs =:

[
xsr
ysr

]
(7.7)

where Rs is the vector from the center of the spiral to the outermost part of
the spiral given in {s}.

By requiring that

(Cn)T Rs = 0 (7.8)

and that

||Rs||2 = ρ2 (7.9)

it is possible to �nd the start point of the spiral. ρ is the radius of the searching
area.

By applying the two equations (7.8) and (7.9) it is possible to �nd the unknown
vector Rs.
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(Cn)T Rs = [xnc y
n
c ]

[
xsr
ysr

]
= 0 (7.10)

This gives the following equation

xnc · xsr + ync · ysr = 0⇒ xsr = −y
n
c

xnc
ysr (7.11)

||Rs||2 = (xsr)
2 + (ysr)

2 = ρ2 (7.12)

By inserting (7.11) into (7.12)

(
−y

n
c

xnc
ysr

)2

+ (ysr)
2 = ρ2 (7.13)

((
−y

n
c

xnc

)2

+ 1

)
(ysr)

2 = ρ2 (7.14)

(ysr)
2 =

ρ2(
ync
xnc

)2

+ 1
(7.15)

We get the coordinates for ysr as a function of the spiral center and the radius
ρ.

ysr = ±

√√√√ ρ2(
ync
xnc

)2

+ 1
(7.16)

By inserting (7.16) in (7.12), an expression for the xsr components can be found:

xsr = ±

√√√√ρ2 − ρ2(
ync
xnc

)2

+ 1
= ±

√√√√√√
(
ync
xnc

)2

1 +
(
ync
xnc

)2 (7.17)

As one can see from (7.16) and (7.17) there are two di�erent solutions for both
equations. But only two of the x- and y- solution are feasible, since the tangent
to the spiral at the outermost point should intersect the UAV base. Which of
the solutions that should be applied to generate the search spiral is given by the
position of the search center relative to the UAV base.

In the implementation the following combination of x- and y- can be used. The
di�erent quadrants are shown in Figure 7.4
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This means that there are two possible solution for the position the outermost
part of the spiral to ful�l the equations given in (7.8) and (7.9).

In the implementation, the following solutions have been applied:
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In this case the quadrant is de�ned when the UAV base is in the origin in the
earth �xed coordinate system {n}. The orientation of the spiral is shown in Figure
7.4 for situations where the search area is in di�erent quadrants realative to the
UAV base.
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7.5 The time it takes to search along the spiral

To calculate the time it takes to search the area, when the UAV is �ying along
the spiral, the average speed of the UAV during the search has to be known as
well as the distance which will be travelled. In this section the distance the UAV
has to travel during a given search mission will be derived. The motivation is to
apply the distance and the average speed of the UAV to calculate the time it uses
to complete the search in the area.
As illustrated in Figure 7.5 the relationship between ds, r and θ can be described
by the following equation:

ds =

√
(rdθ)2 + (dr)2 (7.18)

The time it takes to �y the spiral can be found by calculation the following
equation

t =
s (θmax)

vavr
(7.19)

where s (θmax) is the distance which is travelled after θmax successive turns and
vavr is the average speed the UAV will have along the spiral path.

s(θmax) can be found by integrating (7.18) from 0 to θmax.

The value (θmax) can be found since it is known that r (θmax) = a. The equation
then becomes

a = r (θmax) = ρ− (a+ b+ θmax)⇒ θmax =
2 · a− ρ

b
(7.20)

When dθ becomes in�nite small the summation one �nds when integrating
along ds from θ = 0 to θ = θmax will be the length of the spiral.
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Figure 7.5: Illustration of the method to �nd the length of the spiral.

This can be written as
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ds =

√
r2 +

(
dr

dθ

)2

dθ (7.21)

Inserting the equation for the radius r from (7.3) gives

ds =

√
(ρ− (a+ bθ))2 + b2dθ (7.22)

By taking the b- constant outside the square root, the equation can be written
as

ds = b

√(
(ρ− (a+ bθ))

b

)2

+ 1dθ (7.23)

By de�ning

x :=
(ρ− (a+ bθ))

b
(7.24)

a variable change in (7.23) can be done. By di�erentiating x with respect to θ
the following is obtained:

dx = 1 · dθ (7.25)

Inserting this into (7.23) gives

ds = b
√

1 + x2dx (7.26)

To �nd the length of the spiral, one integrate 7.26:

s =

∫
ds (7.27)

Inserting for ds gives:

s = b

∫ √
1 + x2dx (7.28)

The integral in (7.28) is solved by using calculus and the details in this work
is shown in Appendix B. The solution of the integral is:

b

∫ √
1 + x2 =

b

2

{
x
√

1 + x2 + ln
∣∣∣x+

√
1 + x2

∣∣∣}+ C (7.29)

where C is an arbitrary integration constant depending on the initial values.

Since x was de�ned to be

x =
(ρ− (a+ bθ))

b
(7.30)

it can be inserted in (7.29) to get the equation as a function of θ.
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s (θ) = b

∫ √
1 +

(
(ρ− (a+ bθ))

b

)2

dθ (7.31)

=
b

2

(ρ− (a+ bθ))

b

√
1 +

(
(ρ− (a+ bθ))

b

)2

+ ln

∣∣∣∣∣∣(ρ− (a+ bθ))

b
+

√
1 +

(
(ρ− (a+ bθ))

b

)2

∣∣∣∣∣∣
+ C (7.32)

Since the term inside the absolute value brackets always will be positive (since
a,b, and θ always is non-negative), the absolute value brackets can be removed,
and the equation can be now written as

s (θ) =
b

2

(ρ− (a+ bθ))

b

√
1 +

(
(ρ− (a+ bθ))

b

)2

+ ln

(ρ− (a+ bθ))

b
+

√
1 +

(
(ρ− (a+ bθ))

b

)2
+ C (7.33)

Since s(0) = 0, implies that C = 0. The expression can now be written as

s (θ) =
b

2

{
A (θ)

√
1 + A (θ)2 + ln

(
A (θ) +

√
1 + A (θ)2

)}
(7.34)

where

A (θ) :=
(ρ− (a+ bθ))

b
(7.35)

The time it takes to search the area can now be expressed by using (7.19).
The time it takes to do the search, when the UAV has arrived the search area

is given by

tspiral =
b

2
·

{
A (θmax)

√
1 + A (θmax)

2 + ln

(
A (θmax) +

√
1 + A (θmax)

2

)}
vavr

(7.36)
where the value for s (θmax) from (7.33) has been inserted into (7.19).

7.5.1 Strategy to decide the camera speci�cations

The a- and b- constants in the search spiral can be decided if the range of the
camera is known.

The a- constant is the distance from the center of the search area to the in-
nermost point of the spiral, and the b constant describes the distance between the
successive turnings as was illustrated in Figure 7.1 . To avoid that the same area
is covered more than one time by the camera, the spiral path will be generated a
function of the camera range.
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Since the object can be assumed to be stationary, the path should be generated
such that the distance between each successive turning should be twice the range
of the camera, such that the same area are not covered twice by the camera.

The distance to spiral as a function of θ is given by:

r = ρ− (a+ bθ) (7.37)

The distance between each turning is given by

∆ri = (ρ− (a+ bθi))− (ρ− (a+ bθi+1)) = b(θi − θi+1) (7.38)

where i is the number of turnings

Since ∆ri = 2 · rcam, and since b(θi − θi+1) = 2π, (7.38) can be written as

2 · rcam = b · 2π ⇒ b =
rcam
π

(7.39)

a = rcam (7.40)

Where rcam is the range of the camera (this is a requirement). The range of
the camera to each side of the UAV will be given by the sector the camera covers,
and the elevation of the UAV.

rcam = h tanφ (7.41)

Then the a- and b- constants can be written as:

a = h tanφ (7.42)

b =
h tanφ

π
(7.43)

where φ is the sector the camera on the UAV can detect, relative to the focus
line, and h is the elevation of the UAV. It is assumed that the camera always will
be oriented such that the focus line is aligned to the z- axis in {n}, and such that
the search range φ is symmetric around the z-axis. This is the same assumption
as was presented in the algorithm developed in Chapter 6.

In this search and rescue mission the elevation of the UAV and the angle of the
camera (φ) will be the decision variables.

The the expressions for A in (7.35) can be written as a function of θ and the
UAVs elevation (h), by inserting for a and b in (7.42) and (7.43):

A (θ, h) =

(
ρ−

(
h tanφ+ h tanφ

2
θ
))

h tanφ
2

(7.44)

Since φ was assumed to be constant, the only variables that can a�ect the time
it takes to �y around the spiral-path tspiral is the elevation (h) and the speed of
the UAV. This can be shown by inserting (7.44) into (7.36). One can then see that
tspiral increases with an increase in vavr and with an increase in the elevation h.
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7.5.2 Searching for moving elements

If the object one is searching for is moving in the {n} frame, this information needs
to be taken into account by the spiral path planner. In the implementation so far,
there have been no overlap in the area which have been searched by the UAV. If
the object which one is searching is moving with a given speed in some arbitrary
direction, the result can be that the object will never be found.

If it can be assumed that the object is moving with a speed which is bounded
below by ||v(t)|| ≤ vmax

where v(t) is the velocity vector of the moving object, and vmax is the maximum
speed the object can move with in an arbitrary planar motion in {n}.

In the worst case the velocity vector of the object will intersect the spiral center.
The maximum distance the object can move, in the period of one successive turn,
is then given by

sobject = vmax · tturn,max (7.45)

where tturn,max the maximum time it takes to do one rotation, and that will be
the �rst turn (from θ = 0 to θ = 2π), since the length of the spiral is greatest at
the �rst turn which is furthest away from the center of the spiral.

The a- and b- constants in (7.42) and (7.43) can be modi�ed to take into
account that objects are moving in the area. This has been is done with the
following de�nition:

â := a− β = h tanφ− β (7.46)

b̂ := b− β =
h tanφ

π
− β (7.47)

where β is an design variable that depends on the maximum speed of the object
one is searching for and the range of the search area. The parameter tells how
much overlap there should in the area which the camera covers in each rotation.

The distance between the successive turnings can be written as:

∆r := ρ− â− b̂θturn (7.48)

where â = a− β = rcam − β and b̂ = rcam
2
− β.

Then the equation (7.36) can be written as

tspiral =
vmax
vavr

1

2
{G
√

1 +G2 + ln
(
G+
√

1 +G2
)
} (7.49)

where

G =
ρ− â− b̂θ

b̂
(7.50)

7.5.3 Methods which can be used to let the UAV arrive the

start point on the spiral

The UAV has to arrive at the starting point the spiral path, and follow the spiral
until the end point of the spiral is reached. When the search area has been searched,
the UAV will will return back to it's base. The search mission can be divided in
three parts:
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1. The path planner which takes the UAV from the base to the starting point
in the search area.

2. The path planner which makes the path the UAV should follow in the search
area.

3. The path planner which takes the UAV from the search area and back to it's
base station.

The overall guidance system will change between the di�erent path planners.
In this chapter it is assumed that the developed path using an Achimedes Spiral
will be applied as the spiral in the search area. The path planner which takes the
UAV from the base to the starting point in the search area and the path planner
which takes the UAV from the search area and back to it's base station, has to be
desinged.

In the following two di�erent methods will be discussed.

7.5.3.1 Implementation with MILP

The path from the base station to the search area can be generated by solving a
MILP problem, as done earlier in this thesis. The objective of the optimization
problem will be to minimize the time to get to the search area. The path from
the search area and back to the UAV base do need not need to be optimized
with respect to time consumption. It is not urgent to get back to the base, and
a more natural approach can be to �y with a cruise speed to minimize the fuel
consumption. The speed can either be de�ned to be a constant speed, or be found
by solving the MILP optimization problem which also takes into account the fuel
consumption.

This approach, with solving the MILP optimization problem will be a good
approach if there are obstacles in the environment between the base and the search
area. If there are no obstacles in the area, the shortest path between the base and
the start point on the spiral will obvious be the straight line between these two
points. To arrive the spiral as fast as possible the UAV should �y as fast as
possible. It should not be necessary to solve an optimization problem to �nd this
path. Therefore a guidance system which is implemented with a Line of Sight
approach is suggested.

Remark: When �nding the path from the UAV base station to the start the
search area, one could solve the MILP optimization. If the objective is to mini-
mize the time consumption, the optimizer will �nd out that it is optimal to let the
UAV �y as fast as possible. In Figure (7.6) the optimal path with respect to the
constraints and the cost function is plotted. In Figure (7.7) the camera range in
the search area is plotted. As one can see, the optimal path is not a straight line
between the UAV base and the starting point in the search area, as would be the
most intuitive solution. The reason for this is because the non-linear constraints
on the UAV velocity and the constraints on the input (given in equation 3.52 and
3.53 ) are approximated by the linear constraints given in (3.54) and (3.55). Since
the objective is to arrive the search area as fast as possible, the optimizer will let
the commanded force and speed be as close as possible to the restrictions. This can
result in a situation where the optimal path in the beginning is not moving directly
towards the arrival point on the spiral, such that the the speed and the force will be
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in a corner between two linear constraints. At this point the values of the speed and
the commanded input can be at it's greatest with respect to the constraints. If this
corner is not pointing in the same direction as the straight line between the base
and arrival point, then the path will be generated by following one corner solution
in linear constraint approximation, and change to other corners during the path,
such that the UAV arrives the destination. The main reason for this situations is
that the non-linear constraints for speed and inputs on the UAV, are approximated
with linear constraints. Another problem is that one or two of the constraintsare
active most of the time. In the approximation the non-linear restrictions (3.45)
and (3.51) was approximated with 10 linear constraints. The approximation can
be done better by increasing the number linear constraints, which will give a more
correct model and give a more sensible path. However, if the number of linear
constraints are increased, this will introduce more binary variables to the problem
which again will give a more complex problem, resulting in longer computation
time. In Figure (7.8) a path which is generated when the non-linear constraints
are approximated with 20 linear constraints are shown. As one can see, the path
is much straighter in this case. If the cost function in the optimization problem is
designed in a way, such that the restrictions on force and speed is never activated,
the path will be a straight line. This can be shown by using a cost function which
for examples minimizes the fuel consumption, since in this case the input and the
speed will never push the restrictions. This is shown in Figure (7.9) .
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Figure 7.6: MILP is used to �nd the optimal path from the base and to the start
point in the search area. In the linear speed and force approximations M = 10.

The UAV also needs to return from the search area and get back to it's base
station. In the design of the spiral the direction of the innermost point of the
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Figure 7.7: MILP is used to �nd the optimal path from the base and to the start
point in the search area. In the linear speed and force approximations M = 10.
The blue circles shows the camera range. As one can see the de�ned search area
is covered by the camera system.

spiral have not been given any restriction about which direction is should point.
It would be reasonable to know the direction of the innermost point of the spiral,
since another guidance system will take the UAV from this position and back to
the UAV base. The following derivation gives the position of the UAV when it is
at the innermost point of the spiral, where θ = θmax:

x = (ρ− (a+ bθmax)) · cos (θmax) (7.51)

y = (ρ− (a+ bθmax)) · sin (θmax) (7.52)

dx

dθmax
= −(ρ− (a+ bθmax)) · sin (θmax)− b cos (θmax) (7.53)

dy

dθmax
= (ρ− (a+ bθmax)) · cos (θmax)− b sin (θmax) (7.54)

To �nd the velocity vector the UAV will have at this point, the following
calculation has to be done:[

vx
vy

]
=

1√(
dx

dθmax

)2

+
(

dy
dθmax

)2

[ dx
dθmax
dy

dθmax

]
· V (θmax) (7.55)
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Figure 7.8: In this simulation the non-linear restriction which describes the force
and speed constraints are each approximated by M = 20.
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Figure 7.9: MILP is used to �nd the optimal path from the base and to the start
point in the search area. In this case minimum fuel is the objective of the cost
function, and therefore the non-linear approximations are never enforces which
results in a straight line path.
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vx and vy should be implemented as the initial velocity by the guidance system
that takes the UAV back to base from the search area.

7.5.3.2 Implementation with velocity-reference model and line-of-sight
methods

If there are no obstacles in the area from the UAV base and the starting point in
the search area, other methods should be applied to take the UAV from the base
and to the start of the search area.

When the UAV stays in it's base station and are sent on the search mission,
the operator will give the UAV order to �y at the maximum speed.

As described in Fossen [2011a] the guidance system should low-pass �lter the
commanded speed such that the reference speed, which goes to the regulator, is
feasible compared to the UAV dynamics. The low-pass �lter should at least be of
order two to obtain smooth reference signals for the desired velocity vd and the
acceleration v̇d. Based on Fossen [2011a], a desired velocity for the UAV can be
given as

v̈d + 2∆Ωv̇d + Ω2vd = Ω2rb (7.56)

where vd is the desired velocity, v̈d is interpreted as the desired "jerk", to get
the low-pass �lter as a second order �lter. ∆ is the relative damping ratio and Ω
is the natural frequencies of the UAV.

In this thesis, the implementation has not been done with the damping in-
cluded, because of little information about the damping on the actual UAV which
is considered in the UAV-project.

Therefore, in the following, the damping term ∆ will be set to zero.
The equation can now be written as

v̈d + Ω2vd = Ω2rb (7.57)

Taking the Laplace transform of this equation gives

s2vd + Ω2vd = Ω2rb (7.58)

This can be written as (
s2 + Ω

)
vd = Ω2rb (7.59)

Which gives

vd =
Ω2

s2 + Ω2
rb (7.60)

As one can see, when time goes to in�nity, vd = rb. The response of vd depends
on Ω, which again depends on the UAV dynamics.

When there are no obstacles in the area between the UAV base and the starting
point of the spiral, the shortest path between the UAV base and the spiral will
be the straight line between the between the two points. As described in Fossen
[2011a], LOS Steering Laws can be applied. Two methods are described:

1. Enclosure-based steering

2. Lookahead-based steering
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In this thesis the lookahead-based steering scheme will be applied because it is
less computationally intensive than the enclosure-based approach.

In Lookahead-Based Steering, the course angle assignment is separated into
two parts:

χd(e) = χp + χr(e) (7.61)

where

χp = α (7.62)

is the path-tangential angle, while

χr(e) := arctan

(
−e
∆

)
(7.63)

is a velocity-path relative angle, which ensures that the velocity is directed
toward a point on the path that is located a lookahead distance ∆(t) > 0 ahead
of the direct projection of pn(t) on the path.

e(t) is the cross-track error (normal to path) which is described in Fossen
[2011a], and is calculated by solving:

e(t) = − [x(t)− x1] sin(α1) + [y(t)− y1] cos(α) (7.64)

αk is the rotation the path-�xed reference frame has been rotated relative to
the x-axis, such that it is aligned with the path.

There are only necessary with two waypoints to make a path from the UAV
base and to the starting point in the search area. Therefore, in (7.64), xk and yk
will be the x and y values for the UAV base station. Since the origin is placed
here, these values will be zero.

This means that (7.64) can be written as

e(t) = −x(t) sin(α) + y(t) cos(α) (7.65)

The angle αk can be found when the destination point in the search area is
known. If this is denoted x2 and y2, this can be calculated as

tan (αk) =
y2 − y1

x2 − x1

⇒ α = arctan

(
y2 − y1

x2 − x1

)
(7.66)

The value χr(e) will be the reference signal which goes into the regulator.

7.5.4 Discussion

The speed the UAV has along the spiral path should be to close as maximum to
possible, but the curvature of the path will force an upper limit on the speed.
According to newtons second law for a object which is rotating around a given
center, the centripetal force, which is pointing towards the center, given by

Fc = mV 2κ = m
v2

r
(7.67)

where Fc is the centripetal force, V is the tangential speed, and r is the distance
from the center to the point in the spiral where the UAV currently is located. The
equation in (7.67) has to ful�ll (3.36), since this equation contains the limitations
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in the maximum centripetal-force which the UAV can have due to modeled UAV
dynamics and aerodynamics.

To ensure that the UAV can follow the spiral path, the speed can be described
as a maximum speed as a function of the radius. The follow restriction needs to
be included:

Fc ≤ fc (7.68)

m
V 2(r)

r
≤ V 2

maxCL tan (φmax)⇒ V (r) ≤ Vmax

√
m

rCL tan (φmax)
(7.69)

As long as the restriction (7.69) is ful�lled, it will be possible for the UAV to
follow the path.



100 7.5. THE TIME IT TAKES TO SEARCH ALONG THE SPIRAL



Chapter 8

Further Improvement of the
Optimal Path Planning Design

� The path planning with collision avoidance, is in this thesis, optimized from
the initial state to the the �nal state. This approach with a �xed time hori-
zon, gives a large optimization problem, since every time step from the start
to the goal has to be included and calculated in the optimization problem.
The complexity of the optimization problem increases with the distance from
the initial state to the �nal state, number of way points which should be vis-
ited and the number of obstacles and no-�y areas. The simulations in the
previous chapters where done in a �xed horizon strategy, and provides good
results in a limited area. It could be satisfactory for a car operating in a
relatively small area. For an UAV however, it has to be assumed that the
area of operation must be reasonably large when compared to the simula-
tions done in this thesis. This implies that the time horizon has to be large
in order to �nd a feasible solution to the optimization problem. At the same
time, the optimization has to make a su�cient amount of time steps such
that problems with corner cutting of obstacles will not cause too much prob-
lems. The solution to this problem is discussed and pointed out in the in
the following subsection. The author suggests that a receding horizon path
planner is developed for the UAV project.

� The path planning design developed in this thesis needs to be updated with
the best estimates of the UAV coe�cients, to make sure that the path plan-
ner generates a feasible and optimal path for the considered UAV. It also
needs information about which forces that is the restraining one, between
the engine and maximum centripetal acceleration due to roll angle. This
should be considered by the path planner to make a feasible path, as is dis-
cussed closer in Chapter 3. Also the rudder could further be included in the
model.

� The author suggests that the actuator dynamics is implemented in the MILP.
As one can see from the �gures in this thesis that considers the forces, one will
notice that they can do relatively large changes in magnitude between time
steps. This is because no restriction related to this has been implemented in
this thesis. It is very important to include a restriction on the actuator to
model it's dynamics, because the generated path will not be feasible when
considering a real UAV.
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� Damping due to air friction should be further included in the path planner.
In Chapter 3 two methods for incorporating the damping term was discussed.

� Improve the path planner to also consider a three dimensional guidance sys-
tem.

� Other modelling languages as AMPL and the CPLEX solver could be applied
to describe the optimization problem and solve it respectively, to �nd out if
they work better than the combination og the YALMIP language and the
Gurobi solver.

� The methods described in this thesis for search missions could be further
improved. The path planner which is generated by applying an Archimedes
spiral could be improved additionally.

8.1 Receding Horizon Control

This section is based on information from [Bellingham et al., 2002]

To reduce the computation time required by MILP for large trajectories, a
receding horizon framework could be used. Receding horizon control (also called
Model Predictive Control) designed an input trajectory that optimizes the plant's
output over a period of time, called the planning horizon. The input trajectory is
implemented over a shorter execution horizon, and the optimization is performed
again starting from the state that is reached.

The receding horizon strategy incorporates feedback to account for distur-
bances and plant modeling errors. To further develop the �xed horizon MILP
to a receding horizon one needs to have a cost to goal path, which indicates in
what direction the target is. The MILP will solve small optimization problems
along this cost to goal path. As described in Chapter 2.2 , the MILP method is
NP-hard which indicate that the computation required to solve the problem grows
non-linearly with the number of binary variables. To keep the number of binary
variables low, it is preferred to have as short horizon as possible. Therefore, to
reduce the computation time required by MILP, the problem can be formulated
as many small problems along the cost to goal path, which is the receding horizon
framework.

The major di�erence between the �xed arrival time and the receding horizon
is the approach in the optimization criteria. In �xed arrival time the �nal states
and the arrival time is speci�ed in the constraints. When using receding horizon
the solution is locally optimal on every segment. The total receding horizon path
will probably require more fuel than a vehicle would consume if the path was cal-
culated over the entire time range [Schouwenaars et al., 2001].



Chapter 9

Summary and Conclusion

In this thesis the equations of motion for an UAV described in a geographic frame
was derived from the equations of motion in the body frame and discretized. Re-
strictions on the forces has been included, due to limitation in maximum speed and
maximum roll angle of the UAV. The rudder was not considered in formulating
constraints in yaw rate, and it was assumed that yaw rate is a result of roll angle.

The equation for restrictions in forces was derived, and maximum forces that
a�ects the UAV was guesses concerning maximum speed, wing area and aerody-
namic coe�cients. The calculated value was found to be unreasonably high, and
another guessed values where was used instead. When the parameters of the Odin
Recce D6 delta-wing aircraft has been estimated, it can readily be changed in this
model to improve the path planner developed in this work. Drag forces where
not implemented in the simulations due to unknown aerodynamic coe�cients, but
this can be implemented without problems in the model once a more sensible be-
haviour of the UAV path planner is assured. Restrictions on initial state, �nal
state, waypoints to visit, UAV dynamics, inputs to the UAV, obstacles, and no-
�y area included in the Mixed Integer Linear Program. It was demonstrated that
problems with corner cutting could be avoided in a systematic way, by introducing
a safety margin around the obstacles.

Two di�erent ways of path planning where designed. The �rst one was con-
sidering that the obstacles where known a priori, and the optimization was done
once. The second one was designed presuming that only waypoints and �nal po-
sition was known by the optimization problem when the optimization takes place.
Obstacles where implemented in the optimization problem when UAV was in a cer-
tain distance from the obstacle, to model that obstacles where detected by a radar
with a limited range. Both designs where done using the YALMIP programming
language, and it was concluded that the design with radar detection was more
realistic, and a simple change in the code, will make the design suitable for slowly
varying dynamic obstacles as well. The path planner with radar detection was
proven to have faster computation time than the design where the obstacles where
known a priori. The improved computation time is an important result, since
there will be limited computing power available for the Odin Racce D6 delta-wing
aircraft.

The path planner using MILP was further improved to be capable to do path
planning for an arbitrary number of UAVs and it was shown how UAVs could
take part in di�erent search missions. An algorithm for automatic generation
of waypoints to ensure e�cient search of a de�ned area was developed. It was
argued that the time it takes to compute the optimal solution also has to be taken
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into consideration, since the UAV can not start on the search mission before the
computation is computed.

Another path planner for e�cient search was developed by applying an Archimedes
spiral. The spiral was generated to change its position, radius, distance between
the successive turnings depending on the range of the UAV camera. The spiral
was also designed to account for moving obstacles.
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Appendix A

Supported platforms for Gurobi
Optimizer 4.5. From [Gurobi, 2011]

Platform Operating System Compiler
Windows 32-bit (win32) Windows XP®, Windows

Vista®, Windows 7,Win-
dows Server 2008 R2®

Visual Studio 2008®,Visual Studio 2010®

Windows 64-bit (win64) Windows XP®, Windows
Vista®, Windows 7,Win-
dows Server 2008 R2®

Visual Studio 2008®,Visual Studio 2010®

Linux 32-bit (linux32) Red Hat® Enterprise
Linux® 5.3, 5.4, 5.5, 5.6

gcc 4.1

SUSE® Enterprise Linux
11

gcc 4.3, 4.4

Ubuntu® 8.04, 10.04, 10.10 gcc 4.2, 4.3, 4.4
Linux 64-bit (linux62) Red Hat® Enterprise

Linux® 5.3, 5.4, 5.5, 5.6
gcc 4.1

SUSE® Enterprise Linux
11

gcc 4.3, 4.4

Ubuntu® 8.04, 10.04, 10.10 gcc 4.2, 4.3, 4.4
Mac OS 64-bit (mac64) Mac OS X® 10.6 (Snow

Leopard®)
Xcode® 3.2, 4.0

AIX® 64-bit (power64) AIX® 5.3, 6.1, 7.1 XL C 9

Table A.1: Supported plattforms for Gurobi Optimizer 4.5
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Appendix B

Derivation of integral

s = b

∫ √
1 + x2dx (B.1)

The time it takes to search the de�ned area is given by the distance which is
travelled and the average speed of the UAV.

√
1 + x2 = sec (α) (B.2)

(B.3)

x = tan (α) (B.4)

(B.5)

dx = sec2 (α) dα (B.6)

This gives

s = b

∫
sec3 (α) dα (B.7)

Solving this with integration by parts gives

b

∫
sec (α)︸ ︷︷ ︸

u

sec2 (α)︸ ︷︷ ︸
dv

dα = b

sec (α)︸ ︷︷ ︸
u

tan (α)︸ ︷︷ ︸
v

−
∫

sec (α) tan (α)︸ ︷︷ ︸
du

tan (α)︸ ︷︷ ︸
v

dα

 (B.8)

b

∫
sec3 (α) dα = b

{
tan (α) sec (α)−

∫ [
sec (α)

(
sec2 (α)− 1

)]
dα

}
(B.9)

= b

{
tan (α) sec (α) +

∫
sec (α) dα−

∫
sec3 (α) dα

}
(B.10)

2b

∫
sec3 (α) dα = b

{
sec (α) tan (α) +

∫
sec (α)

(
tan (α) + sec (α)

tan (α) + sec (α)

)
dα

}
(B.11)

By de�ning

z = tan (α) + sec (α) (B.12)

We �nd that
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dz =
(
sec2 (α) + tan (α) sec (α)

)
dα (B.13)

2b

∫
sec3 (α) dα = sec (α) tan (α) +

∫
dz

z
(B.14)

b

∫
sec3 (α) dα =

b

2
{sec (α) tan (α) + ln |z|}+ C (B.15)

Inserting for tan (α), sec (α) and z gives

b

∫ √
1 + x2 =

b

2

{
x
√

1 + x2 + ln
∣∣∣x+

√
1 + x2

∣∣∣}+ C (B.16)



Appendix C

Matlab - MILP �xed horizon, a
priori obstacle information

C.1: UAV speci�cation and initial values

1 %% CLEAR ALL %%
2

3 yalmip('clear');
4 clc;
5 clear all;
6 close all;
7

8 %% PARAMETERS %%
9 T = 300; %Horizon

10 Td = 3; %Discretixation time-step
11 N = T/Td; %Number of steps
12 M = 10; %Number of constraints
13 M_big = 1000; % Big number applied in the constraints
14

15 %% UAV assumed spesification
16 v_max = 20; %Max speed
17 v_min = 5; %Min speed
18 f_max = 1.5; %Max control force
19 m = 2.8; % UAV mass
20

21

22 %% Initial values
23 x_uas_0 = 0; %Initial position UAV x
24 y_uas_0 = 0; %Initial position UAV y
25 v_x_uas_0 = 0; %Initial velocity UAV x
26 v_y_uas_0 = 0; %Initial velocity UAV y

C.2: Adding waypoints and obstacles

1 %% Adding waypoints (x-and y position)
2 wp_set = [];
3 wp_set(:,1) = [100;10];
4 wp_set(:,2) = [50,0];
5 %wp_set(:,3) = [400,100];
6 %wp_set(:,2) = [200,300];
7 %wp_set(:,2) = [100,200];
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8

9 %% Obstacles
10 % Adding small obstacles
11 O_set = [];
12 %O_set(:,1) = [0;-40];
13 %O_set(:,2) = [0;40];
14 %O_set(:,3) = [40;40];
15 safety_margin = 20;
16

17 % Adding bigg obstacles
18 O_setBig = [];
19 %O_setBig(:,1) = [40;0];
20 safety_margin_big = 60;
21

22 % approximation of obstacle to be a square
23 numberofSidesObstacle = 4;

C.3: YALMIP decision and binary variables

1 %% Defining YALMIP decision variables and YALMIP binary variables %%
2

3 % decision variables
4 f_i = sdpvar(2,N); %Control force vector
5 s_i = sdpvar(4,N); %State vector
6 speed = sdpvar(1,N); % Used to spesify
7

8 w_slack = sdpvar(2,N); %Variable which is used to avoid absoulute value
9 %in the cost function.

10

11 %binary variables
12 b_uas_i = binvar(length(wp_set(1,:)),N); %UAS reaches a waypoint 1/0
13 b_m = binvar(M,N)
14

15 % Binary variables used in obstacle avoidance, small obstacles
16 if(length(O_set)>0)
17 o_uas_i = binvar(length(O_set(1,:)),numberofSidesObstacle,N);
18 end
19 % Binary variables used in obstacle avoidance, big obstacles
20 if(length(O_setBig)>0)
21 o_uas_Big = binvar(length(O_setBig(1,:)),numberofSidesObstacle,N);
22 end

C.4: Discretization of UAV dynamics

1 %% UAV model in geographic frame, from continuous to dicrete %%
2

3 A = [0 0 1 0;
4 0 0 0 1;
5 0 0 0 0;
6 0 0 0 0];
7

8 B = [0 0;
9 0 0;

10 1/m 0;
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11 0 1/m];
12

13 Ad = [];
14 Bd = [];
15

16 %Discretisation
17 [Ad,Bd] = c2d(A,B,Td);

C.5:

1 %% Adding constraints
2

3 F = [];
4 % Adding initial constraints (and constraints for state N)
5 F = F + [s_i(1,1) == x_uas_0,...
6 s_i(2,1) == y_uas_0,...
7 s_i(3,1) == v_x_uas_0,...
8 s_i(4,1) == v_y_uas_0];%,...
9 %s_i(1,N) == x_uas_0,...

10 %s_i(2,N) == y_uas_0,...
11 %s_i(3,N) == -v_x_uas_0,...
12 %s_i(4,N) == -v_y_uas_0];%,...
13 %f_i(1,1) == 0,...
14 %f_i(2,1) == 0];
15

16 % Adding model dynamics
17 for k = 1:N
18 if k < N
19 F = F + [s_i(:,k+1) == (Ad*s_i(:,k) + Bd*f_i(:,k))];
20 end
21 end

C.6: Adding acceleration and velocity constraints

1 %% Acceleration and velocity constraints
2

3 for k = 1:N
4 for m = 1:M
5 F = F + [((f_i(1,k)*sin((2*pi*m)/M)) + ...
6 (f_i(2,k)*cos((2*pi*m)/M))) ≤f_max];
7

8 F = F + [((s_i(3,k)*sin((2*pi*m)/M)) + ...
9 (s_i(4,k)*cos((2*pi*m)/M))) ≤ speed(1,k)];

10

11 F = F + [((s_i(3,k)*sin((2*pi*m)/M)) + ...
12 (s_i(4,k)*cos((2*pi*m)/M))) ≥ speed(1,k) - ...
13 80*(1-b_m(m,k) )];
14 end
15 end
16

17 for k = 1:N
18

19 F = F + [sum(b_m(:,k)) == 1];
20 F = F + [v_min ≤ speed(1,k) ≤ v_max];
21

22 end
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C.7: Adding waypoint constraints

1 %% Waypoint constraints
2

3 ∆ = 5; % A slack-variable wich specify that a waypoint
4 %is wisited if the UAV is 5m from it
5

6 % Adding waypoints to visit
7 for c = 1:length(wp_set(1,:))
8 for k = 1:N
9

10 F = F + [(s_i(1,k) - wp_set(1,c) -∆) ≤...
11 (M_big*(1 - b_uas_i(c,k)))];
12

13 F = F + [(s_i(1,k) - wp_set(1,c) -∆) ≥...
14 - (M_big*(1 - b_uas_i(c,k)))];
15

16 F = F + [(s_i(2,k) - wp_set(2,c) -∆) ≤...
17 (M_big*(1 - b_uas_i(c,k)))];
18

19 F = F + [(s_i(2,k) - wp_set(2,c) -∆) ≥...
20 - (M_big*(1 - b_uas_i(c,k)))];
21

22

23 end
24 % Enforces that each waypoint shall be visited
25 F = F + [(sum(b_uas_i(c,:))) == 1];
26

27 end

C.8: Adding small and big obstacles

1 %% Obstacles
2

3 ObstacleArray = [];
4 ObstacleBigArray = [];
5

6 % Making safetymargins around obstacles, if there are any
7 if(length(O_set)>0)
8 for c=1:length(O_set(1,:))
9 kollonnevektor = [O_set(1,c) - safety_margin; O_set(1,c) + ...

10 safety_margin; O_set(2,c) - safety_margin; O_set(2,c) + safety_margin];
11

12 ObstacleArray = [ObstacleArray kollonnevektor];
13

14 end
15

16 % Adding obstacles with safety margin
17 % to the optimization problem
18 for c = 1:length(O_set(1,:))
19 for k = 1:N
20

21 F = F + [s_i(1,k) ≤...
22 ObstacleArray(1,c) + M_big* o_uas_i(c,1,k)];
23

24 F = F + [-s_i(1,k) ≤...
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25 -ObstacleArray(2,c) + M_big*o_uas_i(c,2,k) ];
26

27 F = F + [s_i(2,k) ≤...
28 ObstacleArray(3,c) + M_big* o_uas_i(c,3,k)];
29

30 F = F + [-s_i(2,k) ≤...
31 -ObstacleArray(4,c) + M_big*o_uas_i(c,4,k)];
32

33 end
34

35 F = F + [o_uas_i(c,1,:) + o_uas_i(c,2,:) + o_uas_i(c,3,:) + ...
36 o_uas_i(c,4,:) ≤ 3];
37 end
38 end
39 % Adding big obstacles
40 if(length(O_setBig)>0)
41 for c=1:length(O_setBig(1,:))
42 kollonnevektor = [O_setBig(1,c) - sikkerhet; O_setBig(1,c) + ...
43 sikkerhet; O_setBig(2,c) - safety_margin_big; O_setBig(2,c) +...
44 safety_margin_big];
45

46 ObstacleBigArray = [ObstacleBigArray kollonnevektor];
47

48 end
49

50 for c = 1:length(O_setBig(1,:))
51 for k = 1:N
52

53 F = F + [s_i(1,k) ≤...
54 ObstacleBigArray(1,c) + M_big* o_uas_Big(c,1,k)];
55

56 F = F + [-s_i(1,k) ≤...
57 -ObstacleBigArray(2,c) + M_big*o_uas_Big(c,2,k) ];
58

59 F = F + [s_i(2,k) ≤...
60 ObstacleBigArray(3,c) + M_big* o_uas_Big(c,3,k)];
61

62 F = F + [-s_i(2,k) ≤...
63 -ObstacleBigArray(4,c) + M_big*o_uas_Big(c,4,k)];
64

65 end
66

67 F = F + [o_uas_Big(c,1,:) + o_uas_Big(c,2,:)+ ...
68 o_uas_Big(c,3,:) + o_uas_Big(c,4,:) ≤ 3];
69 end
70 end

C.9: Adding cost function and optimization with GUROBI

1 % %% Cost function minimizing forces with a penalty
2 J = 0;
3 for k = 1:N
4

5 J = J + w_slack(1,k) + w_slack(2,k);
6

7 F = F + [f_i(1,k) ≤ w_slack(1,k)];
8 F = F + [-f_i(1,k) ≤ w_slack(1,k)];
9 F = F + [f_i(2,k) ≤ w_slack(2,k)];
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10 F = F + [-f_i(2,k) ≤ w_slack(2,k)];
11 end
12

13

14

15 %% Cost function minimum time to end position
16

17 % theta = sdpvar(1);
18 % eta = sdpvar(1);
19 % J = 0;
20 % for k = 1:N
21 %
22 % J = J + eta(1);
23 %
24 % end
25 %
26 % for k=1:N
27 % F = F + [theta(1) ≤ M_big*(1-b_uas_i(1,k))];
28 % F = F + [theta(1) ≥ k*(1-b_uas_i(1,k))];
29 % F = F + [eta(1) ≥ theta(1)];
30 % end
31

32 %% optimization
33 diag = solvesdp(F,J,sdpsettings('solver','gurobi'));
34

35 %casting from sdpvar to matlab-language
36 res.s_i = double(s_i);
37 res.f_i = double(f_i);
38

39 finiteHorizonPlot;
40 %finiteHorizonPlotWithLegend;

C.10: Adding cost function and optimization with GUROBI

1

2 wp_set = [];
3

4 x_min = 0;
5 x_max = 850;
6 y_min = 150;
7 y_max = 550;
8

9 r_cam = 177;
10 dummy_x = x_min;
11 dummy_y = y_min;
12 waypoint_number = 1;
13 next_x_waypoint = 1;
14 next_y_waypoint = 1;
15

16 first_x_waypoint = 1;
17 first_y_waypoint = 1;
18 gamma = 0.8;
19 y_start = dummy_y + (1/sqrt(2))*r_cam*gamma;
20

21 x_counter = 0;
22

23 while(next_x_waypoint == 1)
24
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25 if(first_x_waypoint == 1)
26 dummy_x = dummy_x + (1/sqrt(2))*r_cam*gamma;
27 elseif(x_max - dummy_x < r_cam*2*gamma)
28 dummy_x = x_max;
29 else
30 dummy_x = dummy_x + r_cam*2*gamma;
31 end
32 disp('done x')
33 while(next_y_waypoint == 1)
34 if(mod(x_counter,2) == 0 )
35

36 if(first_y_waypoint==1)
37 dummy_y = y_start;
38 first_y_waypoint = 0;
39 wp_set(:,waypoint_number) = [dummy_x; dummy_y];
40 waypoint_number = waypoint_number +1;
41 disp('1 x')
42 elseif((y_max - y_start) > r_cam*2*gamma)
43 dummy_y = dummy_y + r_cam*2*gamma;
44 wp_set(:,waypoint_number) = [dummy_x; dummy_y];
45 waypoint_number = waypoint_number +1;
46 disp('2 x')
47 elseif(sqrt( (dummy_x - x_min)^2 + (y_max - y_start )^2 )...
48 > r_cam*gamma && dummy_x - x_min ≤ r_cam*gamma)
49 dummy_y = y_max;
50 wp_set(:,waypoint_number) = [dummy_x; dummy_y];
51 waypoint_number = waypoint_number +1;
52 next_y_waypoint = 0;
53 disp('3 x')
54 elseif( sqrt( (x_max - dummy_x)^2 + (y_max -

y_start )^2 ...
55 ) > r_cam*gamma && x_max - dummy_x ≤ r_cam*gamma)
56 dummy_y = y_max;
57 wp_set(:,waypoint_number) = [dummy_x; dummy_y];
58 waypoint_number = waypoint_number +1;
59 next_y_waypoint = 0;
60 disp('4 x')
61 else
62 next_y_waypoint = 0;
63 disp('5x')
64 end
65

66

67 else
68 if(first_y_waypoint==1)
69 dummy_y = y_start;
70 first_y_waypoint = 0;
71 wp_set(:,waypoint_number) = [dummy_x; dummy_y];
72 waypoint_number = waypoint_number +1;
73 disp('1 x ned')
74 elseif( (dummy_y - y_min) ≥ r_cam*gamma )
75 dummy_y = dummy_y - r_cam*2*gamma;
76 wp_set(:,waypoint_number) = [dummy_x; dummy_y];
77 waypoint_number = waypoint_number +1;
78 disp('2 x ned')
79 elseif( sqrt( (x_max - dummy_x)^2 + (dummy_y -

y_min )^2 )...
80 > r_cam*gamma && x_max - dummy_x ≤ r_cam*gamma)
81 dummy_y = y_min;
82 next_y_waypoint = 0;
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83 wp_set(:,waypoint_number) = [dummy_x; dummy_y];
84 waypoint_number = waypoint_number +1;
85 disp('3 x ned')
86 else
87 next_y_waypoint = 0;
88 disp('4 x ned')
89 end
90

91

92 end
93 y_start = dummy_y;
94 end
95

96 x_counter = x_counter +1;
97 first_y_waypoint = 1;
98 next_y_waypoint = 1;
99 first_x_waypoint = 0;

100 if( (x_max- dummy_x) < r_cam )
101 next_x_waypoint = 0;
102 end
103

104 end



Appendix D

Digital Appendix

1 CD is attached with two folders: One which contains the Fixed horizon path
planner design with obstacles known a priori and the obstacle radar detection

design. Also a �le which plots the results is attached. The other �le contains the
the implementation which was done for the two di�erent search missions.
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