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Abstract

The work presented in this thesis examines several aspects of Nonlinear Model
Predictive Control (NMPC) that display and con�rm its promising potentials as
a powerful recon�gurable control scheme. The e�ects of signi�cant nonlinearities
and the intrinsically unstable nature of high performance �ghter aircraft, among
other challenges, have been shown to be well handled in the NMPC framework.
This work illustrates how complex control and stability augmentation measures
(which are normally realized through ad hoc mode switching strategies) can be
formulated and implemented as NMPC objectives and constraints. Further sug-
gestions on robustness strategies for model/plant mismatch and compensation for
coupling e�ects which are not properly accounted for, have been presented and
examined in this work. Results on fault tolerance of NMPC are also presented and
discussed in this thesis. In this direction, NMPC has been shown to have unique
inherent fault detection capabilities due to its e�ective utilization of feedback and
its internal model predictions. Di�erent types of actuator/control surface failures,
including extreme cases of total actuator failure are examined as test cases for
the NMPC recon�gurable fault tolerant control scheme developed in this work.
The NMPC autopilots are designed for an F-16 �ghter aircraft, and the imple-
mentation and simulations were done using ACADO nonlinear ptimization solver,
interfaced with the MATLAB/Simulink environment.
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Chapter 1

Introduction

1.1 Motivation

A signi�cant amount of research on fault-tolerant control systems is motivated
by �ight control system designs [5], where the goal is mostly to provide "self-
repairing" capability in order to ensure a safe landing in the event of severe faults
in the aircraft. A motivational example illustrating the need for recon�gurable
control is the fault scenarios and pilot control attempts leading to the crash of
�ight EL AL 1862. The following description of the crash and deductions are
based on [6] and [7].

On the 4th of October 1992, �ight EL AL 1862 (a Boeing 747-200F freighter)
�ying out of Amsterdam International Airport crashed into an eleven-�oor ap-
partment building after su�ering multiple engine separations on the right wing.
The damage to the aircraft resulting from the loss of two engines on the right
wing was severe. The right-hand wing leading edge was severely damaged and
the attached �aps partially lost. Roll control of the aircraft became limited as a
result of the right-hand outboard aileron �oating at zero hinge moment, partly
lost spoiler system, and failure of outboard trailing edge �aps. The right-hand
inboard aileron also became less e�ective due to disturbed air�ow caused by the
right-wing damage and loss of a pylon. For unknown reasons the aircraft's lower
rudder was lagging behind causing limited directional control.

Even though modern aircrafts are designed to be controllable in the instance of
multiple single-wing failures, the damage to the right wing caused by the dropping
o� of the engines led to signi�cant loss of both lateral and directional control. In
the worst case, wheel de�ections up to 60◦ and full pedal de�ections were needed
to maintain level �ight. The �nal loss of �ight EL AL 1862 was due to a hard-over
right roll to 104◦ and an unrecoverable down pitch of 70◦.

The crash of �ight EL AL 1862 serves as a good test case for studying recon�g-
urable control for several reasons. Firstly, despite the substantial damage and the
consequent control limitations, the crew continued �ying for almost 15 minutes,
giving ample time for automatic failure identi�cation and recon�guration. Sec-
ondly, in spite of the su�cient available time, current emergency procedures could
not handle the failure situation. Finally, there was su�cient damage to make the
aircraft di�cult to �y, thus making it a challenging and interesting problem for
recon�guration.

1



2 CHAPTER 1. INTRODUCTION

The increasing complexity of modern and future �ight control systems inher-
ently demand advanced and reliable control techniques that will ensure safety
and survivability. Several structural design and automatic control methods have
been developed over the years to enhance reliability and fault tolerance in safety-
critical systems, especially in aircraft where a chain of events triggered by minor
faults can be catastro�c. When faults occur, it is very important that system sta-
bility is maintained and an acceptable system performance attained. The primary
objective of a recon�gurable �ight control system will therefore be to redistribute
and optimally coordinate control e�ort among the aircraft's available e�ective
control surfaces and engines [1].

A common feature of most succesful fault tolerant control system designs is the
ability to accommodate component failures automatically within a limited time
frame. For this reason, most fault tolerant control systems rely on or integrate
very e�ective fault detection and diagnosis (FDD) subsystems. The ability to
rapidly detect faults and identify consequent model changes in real time is a key
factor since there is usually limited time for a recon�gurable system to react in
order to successfully deal with an emergency situation. Implementing an e�ec-
tive Fault Detection and Diagnosis module combined with recon�gurable control
module(s) will result in an overall fault tolerant system.

Among the current research interests that are motivated by control surface re-
dundancy and overactuation is Control Allocation (CA). From a practical point
of view, Control Allocation forms a natural part of complex control systems, as
in modern aircrafts, which have several actuators that are capable of realizing the
same commanded control e�ect(forces and moments) [8]. However, in the past few
decades it became apparent that predictive control methods display qualities that
could be utilized in more complex, nonlinear applications [9]. Nonlinear Model
Predictive Control (NMPC) is characterized by multivariable process modelling,
optimization and handling of systems of relatively high complexity. Furthermore,
the NMPC framework is capable of e�ectively accomodating nonlinear faults,
ranging from saturations (due to actuator 'jams') to even severe damages that
change the aerodynamics of the aircraft.

The description of a recon�gurable controller in a fault tolerant control setting is
easily identi�ed to match the inherent properties of NMPC. It can therefore be
anticipated that with the increase in research and development on cutting edge
strategies, NMPC will become a superior platform for modern and future fault
tolerant control systems.

1.2 Problem Statement and Thesis Objectives

The primary objective of this thesis is to study and document Nonlinear Model
Predictive Control (NMPC) and its application to autopilot design for an aircraft
with highly nonlinear dynamics. Special attention is therefore paid to the stabil-
ity characteristics of both the aircraft and the NMPC scheme implemented.
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Background studies are to be made on the 1-DOF and 3-DOF mathematical
models of the aircraft in order to establish a strong knowledge base, and at the
same time, evaluate the need for NMPC. For this purpose, the lateral and longitu-
dinal models of the aircraft are simulated in the MATLAB/Simulink environment.

Thereafter, the NMPC autopilots should be designed to satisfactorily control
both the lateral and longitudinal motions of the aircraft. The �ight envelope
considered must be such that both stable and unstable modes of the aircraft
are covered. Speci�c limitations on control surface/actuator de�ection limits and
servo bandwidth are also to be examined. It is also an objective to study the cor-
relation between control surface limits, servo bandwidth and controllability of the
autopilots. As much as possible, comparisons should be made between the per-
formance of the NMPC autopilots and classical autopilots (for e.g. PID control 1).

Finally, the driving objective of this work is to investigate the recon�gurable
properties of NMPC and its potentials as a fault tolerant controller. The goal of
the recon�gurable control implementations will be to maintain basic functionality
when faults occur. The aircraft should therefore be able to perform turn and
climb maneuvres and attain straight level �ight at desired set points, also in the
event of an actuator/control surface failure.

1.3 Thesis Contributions

This thesis reveals the potentials of NMPC as a stability augmentation con-
troller for inherently unstable systems. Published results [9],[10], that partly
study NMPC performance on the same F-16 �ghter aircraft model used in this
work rely on a stabilizing inner-loop controller, and therefore do not re�ect the
capabilities of NMPC in this area. This thesis provides suggestions on how clas-
sical stability augmentation requirements can be interpreted and implemented as
NMPC objectives and constraints. Speci�cally, e�ective incorporation of angle of
attack and attitude rates into the NMPC objective function, in combination with
attitude limits as constraints are suggested and illustrated in chapters 7 and 8.

Robustness strategies for model/plant mismatch and compensation for coupling
e�ects (due to decoupled dynamics approximations) are suggested. Refer to sec-
tions 8.4.3, 8.5.2 and chapter 9 for the proposed strategies and discussions on
their e�ect on the �ight test results.

This work reveals further superiority of NMPC's minimal reliance on external
Fault Detection Systems and Recon�guration mechanisms, compared to earlier
indications in [11], which uses a linear stable aircraft model in the Model Pre-
dictive Control framework. The main results on this subject are presented and
discussed in sections 8.5 and 9.2, respectively.

The signi�cant advantage of the reduced NMPC tuning task, and increased �ex-
ibility, achieved through splitting of the �ight dynamics into fast and slow dy-

1Proportional-Integral-Derivative control



4 CHAPTER 1. INTRODUCTION

namics, is also highlighted. The autopilots designed and implemented in this
study are based on this splitting strategy. Further research into formulations that
support the separation of system dynamics in the NMPC framework is therefore
proposed. That is, instead of using separate controllers, one for fast dynamics
and the other for slow dynamics, a formulation that incorporates the separation
of fast dynamics from slow ones will be preferable (see chapter 7 and sections 8.4,
9.1.1, for complete design, implementation, and discussions on the work done in
this area).

Last but not least, an attempt is made to introduce a performance/stability en-
hancement strategy that suggests a possible relation between the rate of change
in state trajectories and NMPC stability in general (see section 3.3.4). This sug-
gestion can be related to the �rst contribution stated above, since the use of the
aircraft's attitude rate limits as constraints resulted in signi�cant enhancement of
performance (see section 8.3.3 and the autopilot design summary tables in section
8.4).

1.4 Thesis Outline

This thesis is organised as described below following the introduction chapter:

Chapter 2 gives a presentation of recon�gurable control techniques. It highlights
the main components that are involved in the recon�gurable fault tolerant control
framework, and concludes by introducing NMPC as a recon�gurable controller.
The optimal control allocation formulation based on [12] is also included to serve
as a platform for comparison.

In Chapter 3, a solid base for Nonlinear Model Predictive control (NMPC) is
formed. Presentations in this chapter cover both theoretical formulations and
practical implications of the NMPC scheme in general.

Chapters 4 and 5, can be seen as an aircraft primer, intended to serve as an
introduction to modern high performance aircraft from an automatic control per-
spective. Topics treated include developing the aircraft dynamical model, decou-
pling into longitudinal and lateral channels, approximations for automatic control,
and a brief discussion on stability and control characteristics of an aircraft.

Chapter 6 and 7 follow with formulations of the autopilots based on both classi-
cal control and the NMPC framework, respectively. Together, these two chapters
form a solid base for the �ight control strategies implemented in this work.

The main results of this work are presented and brie�y discussed in chapter 8.
Further discussions are covered in chapter 9. A conclusion is given in chapter 10
as a �nal note for this thesis.

The contents of the Appendix are included in order to make this thesis self con-
tained and to facilitate direct reference to information (or facts) that further
elaborate on some aspects of this thesis.



Chapter 2

Recon�gurable, Optimal, and
Predictive Control

2.1 Recon�gurable Control Techniques

A fault tolerant control system (FTCS) is a closed-loop control system which can
tolerate component malfunctions, while maintaining desirable performance and
stability properties [1]. According to reference [1] fault tolerant control systems
can be classi�ed into two types: passive and active. In the passive type, con-
trollers are �xed and are designed to be robust against a class of presumed faults,
and hence has limited fault-tolerant capabilities. Active fault tolerant control sys-
tems on the contrary react to system component failures actively by recon�guring
control actions so that stability and acceptance performance of the whole system
can be maintained. Active control in this contest also implies that the controller
compensates for the fault's impact by either selecting a pre-computed control law
or by synthesizing a new one on-line.

Active fault tolerant control systems can be further divided into four subsystems:

1. A recon�gurable controller

2. A fault detection and identi�cation scheme

3. A controller recon�guration mechanism

4. A command/reference governor

The critical issue in any active fault tolerant controller is the limited amount
of time available for the FDI system and for the control system recon�guration.
Besides having an easily con�gurable controller and an e�ective FDI system, an
overall recon�guration mechanism which leads as much as possible to the restora-
tion of system stability and acceptable performance is very crucial. Figure 2.1
shows an overall structure of a typical active fault tolerant control system. It
should be noted that, in order to ensure that the closed-loop system tracks a
command input trajectory in the event of faults, a recon�gurable feedforward
controller is often needed. In addition, a command/reference governor (possibly
a recon�gurable guidance system) may also be needed to be able to adjust com-
mand inputs or reference trajectories automatically. The main aim of a reference
governor will be to take into consideration the degraded system performance after
a fault and avoid potential actuator saturation. This work presented in this thesis

5
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Figure 2.1: A general structure of an active fault tolerant control system [1]

focuses mainly on recon�gurable controller design.

There are numerous approaches to recon�gurable control design. A detailed
classi�cation of the design approaches can be found in [1], where the methods
are grouped based on either the mathematical tool used (e.g Linear Quadratic,
Pseudo-inverse, Feedback linearization, Model Predictive Control, Adaptive con-
trol, linear Parameter Varying, H∞, and other robust control techniques), the
design approach (pre-computed control law, or on-line automatic redesign), the re-
con�guration mechanism (e.g optimization, switching, matching, compensation),
or the type of system to be dealt with (linear or nonlinear system). Several of
these methods may be combined in practice to achieve the best overall fault tol-
erant control system. Nevertheless, the performance of the overall system will
depend on many factors, such as the availability of the remaining (functional) ac-
tuators, redundancy in the system, and the type of control strategies adopted in
the recon�gurable controller design. These factors, among other challenges, have
led to several research �elds among which dynamic redundancy management, con-
trol action re-allocation and re-destribution stands out. Redundancy can be seen
as a key ingredient in any fault tolerant system since almost all modern military
and civil aircrafts have triplex- or quadruplex-redundant actuation systems, �ight
control computers, databus systems, air data and motion sensor systems [1].

2.2 NMPC as a Recon�gurable Controller

The recon�gurable fault-tolerant control systems review in [1] highlights impor-
tant limitations on conventional approaches to solving recon�gurable control prob-
lems for constrained multivariable systems and systems with signi�cant nonlin-
earities. In general, how to design fault-tolerant control systems which can work
e�ectively in the entire range of nonlinear systems, and how to distinguish the
changes induced by faults from that by operating condition variations still re-
main to be investigated. In order to handle nonlinear systems beyond using
linearized models, control schemes such as feedback linearization, nonlinear dy-
namic inversion, backstepping, neural networks, adaptive control, and Lyapunov
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methods have been developed. However, e�ective design methods for dealing with
nonlinear fault tolerant control issues are not yet available [1]. Furthermore, a
design strategy to deal with nonlinearities introduced by constraints of input and
state/output variables is another challenging issue.

Model predictive control, in general, has been identi�ed as a method that of-
fers good possibilities for recon�guration and fault-tolerant control [11], [1], [6],
[7], [13]. This claim is simply due to the fact that model predictive control is
capable of handling most of the challenges for recon�gurable control in a generic
and systematic manner. In addition to the challenges mentioned in the previous
paragraph, the following are speci�c and signi�cant di�culties faced when dealing
with recon�gurable �ight control [13]:

� It is a multivariable problem, with strong cross couplings between modes
usually appearing after failures. An aircraft loses its symmetry after sur-
face damage, and conventional simpli�ed control approaches may not be
applicable.

� It is a nonlinear problem, which means that the trim values and the lin-
earized models change after failures, requiring the continuous use of nonlin-
ear or adaptive control algorithm.

� The system may be highly unstable, leaving very little time for recon�gu-
ration.

� Actuator authority is limited, and control saturation problems are aggra-
vated when an aircraft experiences control surface damages.

The most signi�cant challenge in designing control laws for a damaged aircraft is,
perhaps, the capability of accounting for nonlinearities [13]. It is therefore highly
important to conduct active studies and research on the numerous possibilities
and inherent properties o�ered by Nonlinear Model Predictive Control (NMPC)
strategies. Positive results in this direction will de�nitely contribute to �nding
e�ective solutions to the very challenging problems of recon�gurable control men-
tioned above.

The NMPC scheme and its important aspects are discussed in chapter 3. Ba-
sically, a de�ning feature of model predictive control is the repeated constrained
optimization of a performance objective over a prediction horizon, and the general
structure consists an optimizer, a predictor, and an internal model. NMPC relies
on its internal model for predictions and will therefore require a fault model of
the system, if the severity of the damage is such that the dynamics of the system
change. Changes in the internal model can be done in either an adaptive fashion,
or using a multi-model switching scheme, or by relying on an FDI scheme which
provides a fault model. For example, changed stability derivatives and control
aerodynamic coe�cients of a damaged aircraft can be identi�ed online and used
by the NMPC controller as internal model for prediction.

Furthermore, if the failure a�ects the capabilities or performance of the con-
trolled system (i.e. the aircraft), it is possible to change the objectives, or the
constraints, or both, accordingly. It may however be a challenging problem to
know how to change the problem formulation if a failure occurs [11]. In some
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cases, the parameters used in the NMPC algorthm, such as the state and input
weightings, or the prediction and control horzon, may be changed.

In addition, actuator faults can be handled naturally in the NMPC framework
via changes in the input constraints. The result in this case will be similar to
the optimal control allocation approach, where other input channels are used to
produce the same e�ect (see section D.1). It is also interesting to note that, for
an over-actuated system, a model predictive controller can be designed so that it
exhibits some fault-tolerant properties even in the absence of any knowledge of
the failure [11].



Chapter 3

Nonlinear Model Predictive
Control (NMPC)

Model Predictive Control (MPC) is an advanced control methodology that uses
multivariable process models to predict future system- and control behavior. The
formulation of the MPC problem includes constraints on inputs (manipulated vari-
ables) and states (controlled variables). The formulated problem is then solved
by using mathematical programming to optimize predicted future performance.
Optimization in predictive control also means allowing operations closer to con-
straints, which in the process industry implies an increase in pro�tability, while
in a general sense enhances performance and fault tolerance.

There are several speci�c reasons why handling of constraints makes MPC compa-
rably superior to other (especially conventional) control strategies. Traditionally,
control system performance requirements are not formulated in a way which re-
�ects the presence of constraints. MPC on the other hand allows complex control
objectives to be stated by explicitly incorporating constraints as part of the prob-
lem formulation. Another important factor identi�ed [14] is the avoidance of
integrator wind-up problems, which occur with conventional controllers if long-
duration set-point errors cause integrator outputs to exceed the saturation limits.
This situation is known to cause overshoots and even instability [15]. The fact
that the predictive controller is aware of constraints, particularly actuator stura-
tion constraints, and never generates input signals to voilate them, removes the
wind-up problem. In other words, with predictive control, the wind-up problem
does not arise.

As mentioned earlier, the predictive controller has an internal model (process
model) which is used to predict the behavior of the plant (or process). Most
widespread MPC is the type termed linear MPC - using linear process models
for prediction. However, MPC using nonlinear process models, termed nonlin-
ear MPC (NMPC), has gained usage over the past 10-15 years [16]. Typical
reasons for using NMPC are that the process operates in several steady states
with signi�cantly di�erent dynamics, or there are large disturbances that excite
nonlinearities. Handling of important nonlinearities, among others, has increased
research focus on e�cient implementation of nonlinear optimization techniques
tailored for NMPC. The choice of NMPC over well known systematic nonlinear
control methods such as feedback linearization and constructive Lyapunov-based

9
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methods, is again justi�ed by the fact that they are not developed in order to
handle constraints in a systematic manner. In addition, such nonlinear methods
depend on complicated design procedures that do not scale well to large systems
[17].

The signi�cant factors that have limited the industrial impact of NMPC include
challenges of guarateeing a global solution to the resulting nonlinear optimization
problem within real-time requirements [17],[18]. The most obvious reason for this
limitation is that using nonlinear models may result in a non-convex nonlinear
optimization problem, which may in addition have multiple local minima. Solv-
ing such nonlinear programming problems is usually time consuming and error
prone. The positive developments on e�cient NMPC implementation techniques
in recent years make further exploration of the powerful and promising potentials
of NMPC an important research area.

The work presented in this thesis deviates from the traditional and most common
way of NMPC implementation. Predictive control in general is usually imple-
mented on top of traditional local (typically PID) controllers which take care of
fast system dynamics and stabilization (if necessary) [14],[9]. This work, however,
attempts to replace the low-level controllers by directly controlling the actuators
of a high performance, highly nonlinear aircraft with several unstable modes.
The NMPC scheme explores both fast inner-loop and relatively slow outer-loop
autopilot functionalities, and therefore demonstrates the powerful potentials of
predictive control.

This chapter looks at how the NMPC problem is formulated, various techniques
used in solving the NMPC problem, and important control issues such as stability,
dynamic performance and practical implecations.

3.1 Formulation of the NMPC Problem

A very general and simple formulation of the nonlinear model predictive problem
has the control objective of minimizing a cost function J(x, u, t), which takes the
form:

J(x, u, t) =
∫ T

0
`(x(t), u(t), t) dt (3.1)

where `(x(t), u(t), t) is a non-negetive function, termed the stage cost, and T > 0
is the horizon. The stage cost `(.) can be chosen as an l1 or l2 type cost function
[17]

`(x(t), u(t), t) = ‖x(t)− rx(t)‖2Q + ‖u(t)− ru(t)‖2R (3.2)

`(x(t), u(t), t) = ‖Q(x(t)− rx(t))‖1 + (‖R(u(t)− ru(t))‖1 (3.3)

where the properties of the weight matrices Q ≥ 0 and R ≥ 0 are essential for
performance, and in some cases also stabilty (as presented in section 3.3). The
plant to be controlled has a state vector x and an input vector u, and has a
nonlinear behavior governed by the vector di�erential equation

dx

dt
= f(x, u) (3.4)
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In addition to the equality constraints introduced by the nonlinear plant model
(3.4), general inequality constraints jointly on states and inputs can be de�ned as

g(x(t), u(t), t) ≤ 0 (3.5)

and �nally, the control input vector is constrained to some set u(t) ∈ U , where

U = {umin ≤ u(t) ≤ umax} (3.6)

3.1.1 The Receding Horizon Principle

The NMPC principle is to repeatedly solve the formulated �nite-horizon optimal
control problem at each sampling instant, to obtain an optimal sequence of inputs
(or control trjectory). Only the �rst of the optimal input sequence is applied
as input to the plant until the next sample instant.The NMPC principle in its
basic form is illustrated in �gure 3.1. It is interesting to note that time-varying
reference trajectories, known disturbances and other external input signals can
be accounted for in the NMPC formulation since both the control objective and
contraints are time-dependent [17]. The NMPC principle implies discretization of

Figure 3.1: The MPC principle

the plant model represented by f in (3.4) and a �nite number of decision variables
that together de�ne a �nite-dimentional optimization problem. In a general and
simple form, the resulting discrete time NMPC optimization problem optimizes a
truncated objective function (3.7), subject to nonlinear constraints on states and
inputs. The horizon T becomes �nite, and an approximate solution of (3.4) can
be found at N discrete time instants Td = t1, t2, ..., tN ⊂ [0, T ]. The new objective
is to minimize the cost function

J(x(tk), u(tk), tk) =
N−1∑
k=0

`(x(tk+1), u(tk), tk) (3.7)
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subject to

x(tk+1) = f(x(tk), u(tk), tk), k = 0, ..., N − 1 (3.8)

x(t0) = x(0), given (3.9)

g(x(tk), u(tk), tk) ≤ 0, tk ∈ Td (3.10)

umin ≤ u(tk) ≤ umax, tk ∈ Td (3.11)

The predicted behavior of the plant in an NMPC setting depends on an assumed
input trajectory û(k + i|k), (i = 0, 1, ..., N − 1) that is to be applied over the
prediction horizon. A simple case will be to choose the input trajectory such
as to bring the plant output at the end of the horizon to the required reference
value r(k+N). In this case, several input trajectories can ful�ll the requirement.
However, the idea here is to select the (optimal) input which promises the best
predicted behavior. This can for example imply obtaining the input trajectory
which requires the smallest input energy. Once the optimal future input trajec-
tory has been found, only the �rst element of that trajectory is applied as the
input signal to the plant. Then the whole cycle of prediction and trajectory de-
termination is repeated, one sampling interval later. Since the prediction horizon
remains of the same length as before, but slides along by one sampling interval
at each step, the control strategy is termed receding horizon [14].

3.1.2 The Reference Trajectory

The reference trajectory shown in �gure 3.1, de�nes an important aspect of the
closed-loop behavior of the controlled plant. It starts at the current output y(k),
and de�nes an ideal trajectory along which the plant should return to the de-
sired set point. It is usually assumed that the reference trajectory approaches
the set-point exponentially from the current value, with the 'time-constant' of the
exponential, Tref , de�ning the speed of response as illustrated in the following
example [14]:

Suppose the current error, or the deviation of the current output y(k) from the
value of the set-point trajectory s(k) is

ε(k) = s(k)− y(k) (3.12)

then the reference trajectory is chosen such that the error i steps later, if the
output followed it exactly, would be

ε(k + i) = e−iTs/Tref ε(k) (3.13)

where Ts is the sampling interval. The reference trajectory will then be de�ned
to be

r(k + i|k) = s(k + i)− ε(k + i) (3.14)

= s(k + i)− e−iTs/Tref ε(k) (3.15)

The reference trajectory can however be alternatively de�ned by other convenient
functions, and can as well be as simple as a straight line from the current output
and meeting the set-point trajectory after a speci�ed time.
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3.1.3 Control Input Parameterization

The presented NMPC formulation uses future u(tk) as optimization variables, al-
though it can in some cases be a good idea to use "perturbations" c(tk) to some
(possibly nonlinear) feedback control law α(x(tk)) as optimization variables. In
other words, future control moves can be parameterized as u(tk) = α(tk) + c(tk)
[16]. Cases when this might be smart are when the process model has unstable
modes being stabilized by the feedback α(x(tk)). A more general and practical
approach for parameterizing the input signal is to assume that u(tk) is piecewise
constant with regular sampling interval ts such that T is an integer multiple of ts,
and parameterized by a vector U ∈ Rp such that u(t) = µ(t, U) ∈ Rr is piecewise
continuous [17]. Moreover, a general choice is a piecewise constant control input
µ(t, U) = Uk for tk ≤ t ≤ tk+1.

The reformulations made to the original optimal control problem, (3.1) to (3.6),
are generally required in order for numerical integration to be applicable. Var-
ious techniques and further reformulations introduced for numeric solution by
nonlinear optimization solvers are presented in the following section.

3.2 Solving the NMPC Problem

The NMPC formulation presented in section 3.1 usually involves more equations
to be satis�ed than the number of available variables. In cases of this nature, it
is generally impossible to �nd an exact solution, and some kind of approximate
solution will be necessary. Most of the existing approaches to solving the NMPC
problem are based on Sequential Quadratic Programming (SQP) methods, which
make quadratic approximations to the objective function and linear approxima-
tions to the constraints, and iteratively solve a Quadratic Program (QP) to �nd
the search direction leading to the optimal solution [16],[19].

3.2.1 Sequential Quadratic Programming

The basic idea of SQP is presented in [11] by supposing that a general constrained
optimization problem is to be solved, of the form:

min
θ
{V (θ) : Hi(θ) = 0,Ωj(θ) ≤ 0} (3.16)

where {Hi(.)} and {Ωj(.)} are sets of nonlinear functions, and that an iterate θk

has been obtained. The SQP makes a quadratic approximation to V (θk):

qk(d) =
1
2
dT∇2

θθL(θk, λk)d+∇V (θk)Td (3.17)

where L(θk, λk) = V (θ) +
∑

i λiHi(θ) +
∑

j λjΩj(θ) is the Lagrangian. The next
iterate, θk+1, is given by

θk+1 = θk + αkdk, α∈[0, 1] (3.18)

where the search direction dk is found by solving the quadratic programming
problem which results from minimizing qk(d), subject to local linear constraints:

min
d
{qk(d) : Hi(θk) +∇Hi(θk)Td = 0,Ωj(θk) +∇Ωj(θk)Td ≤ 0} (3.19)
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Several variations of this basic SQP idea are now employed in numerical solvers
to achieve e�cient solution to the NMPC problem. Di�erent approaches are used
in for example estimating the Lagrange multipliers, λk, or the Hessian matrix
∇2

θθL(θk, λk).

In order to use numerical solvers to �nd a solution to the nonlinear optimiza-
tion problem, two main reformulation approaches are introduced in the following
section.

3.2.2 Numerical Optimal Control Formulation

The Sequential approach (also called single shooting or reduced space) separates
the QP part of the SQP optimization into two. The model is �rst simulated
using the current value of the control trajectory parameters Uk as optimization
variables, thus removing the intermediate states (x(t1), x(t2), ..., x(tN )) as opti-
mization variables, by substitution into the cost and constraint functions. The
resulting reduced size QP problem is then solved iteratively. An obvious advantage
is achieved through the rather few optimization variables used, which easily lead
to feasible solutions (w.r.t. the nonlinear plant model) at each iteration. How-
ever, the optimization algorithm in a sequential setting has very limited control
over the simulation part, making systems with unstable modes a challenge. This
is mainly because the states tend to diverge for many choices of input variables.
Little control over the simulation part also means that the sequential approach
may use more or less arbitrary and seperate optimization solvers, which may in
some cases be simple and convenient when compared to the simultaneous ap-
proach presented next.

The Simultaneous approach (full space) uses both the control trajectory param-
eters and states as optimization variables. The solution to the di�erential equa-
tions and optimization is obtained simultaneously, and for this purpose di�erential
equations are discretized in time and enter the optimization problem as addi-
tional nonlinear equality constraints. The solution in this case will not generally
be feasible (considering the presence of nonlinear equality constraints) before the
algorithm converges. Obviously, a much larger number of optimization variables
is involved, leading to a comparably bigger problem size. However, the cost and
constraint function evaluation is much simpler, and sparsity of the resulting non-
linear programming problem can be exploited to achieve an e�cient solution. In
addition, nonlinear optimization problems are generally non-convex, and the con-
vergence and success of the optimization algorithm depends largely on the initial
guess provided for the solution. The availability of a good initial guess for the state
trajectory is an advantage that can be exploited by the simultaneous approach.
A continuous update of the initial states can also serve as a means of detecting
divergence of the predicted state trajectories. Typical simultaneous approaches
use collocation methods to parameterize/discretize the di�erential equations, or
the well known Direct Multiple Shooting which is of particular interest to the work
presented in this thesis.

Multiple shooting can be viewed as a combination of the sequential appraoch
and the simultaneous approach in the sense that it divides the horizon into a
few 'sub-horizons' where the model is simulated (as in the sequential approach)
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on each sub-horizon. It then uses the nonlinear equality constraints (similar to
the simultaneous approach) such that the state at the end of each sub-horizon
matches the �rst state at the next sub-horizon. As a consequence of this approach,
the number of optimization variables are reduced (considering each sub-horizon)
while at the same time allowing more control over the simulation. Moreover, the
resulting nonlinear program takes a special sparse structure which can be utilized
for an e�cient solution.

Understanding the underlying factors and basic di�erences between these opti-
mization approaches is vital for making a good choice of options available in nu-
merical solvers and optimization tools specially tailored for NMPC problems. It
is however important to note that the methods presented above result in the same
optimal control trajectory (neglecting errors due to discretization and numerical
approximations) [17]. Numerical properties and computational complexity can
therefore be identi�ed as the main di�erence between the mentioned approaches.
Other important aspects including feasibility, choice of numerical methods, com-
putational cost, and factors that contribute to an e�cient solution are treated in
[17], [20], [21], [19] and their references.

3.3 Stability and Dynamic Performance

Feasibility of the on-line computation, stability, and performance issues are well
covered and treated extensively for linear systems (see for example [14] and refer-
ences therein). Stability (even nominal), in general, is not guaranteed for NMPC
schemes which mainly replace the linear process model with a nonlinear model
[16]. However, several approaches have been proposed introducing necessary mod-
i�cations to the basic NMPC formulation to ensure stability (see references [20],
[22], [23], [24]). For stability, it is necessary (not su�cient) that unstable modes
are detectable through the cost function, as for linear MPC. However, since it is
generally not easy to check detectability (or observability) for nonlinear systems,
one approach that implies detectability is to choose a cost function with magni-
tude greater than the sum of the squared norms of both states and controls, that
is:

`(x, u, t) ≥ ε(‖x‖2 + ‖u‖2), ε > 0 (3.20)

In this way the states and control actions become directly observable through the
cost function and it follows intuitively that minimization of the cost function will
in�uence the states that are controllable.

It is a common practice to augment unstable systems with stabilizing inner-loops
before applying an MPC scheme. Some practical reasons for employing a stabiliz-
ing inner loop in an MPC frame work are presented in [9], where possible sampling
rate reduction advantage is worth mentioning. The sampling rate of the NMPC
scheme can be reduced since the inner-loop will be handling the high bandwidth
disturbances and tracking requirements with its smaller time implementation. It
is, however, important to explore the numerous potentials of NMPC, including its
inherent recon�gurable properties, to examine both stability and dynamic perfor-
mance capabilities, when applied to systems with highly nonlinear and unstable
modes.
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3.3.1 The NMPC Stability Problem

The main aim of most stabilizing NMPC approaches is to show that the �nite
horizon NMPC strategies used in practice can guarantee stability of the resulting
closed-loop system. It is at this stage clear that the NMPC principle leads to
closed-loop control since each new optimized control trajectory is based on the
most recent state information. The numerical optimal control problem solved
at each sampling instant, on the other hand, provides essentially an open-loop
trajectory. The key problem with a �nite horizon results from the di�erence be-
tween the predicted open-loop and the resulting closed-loop behavior [20], [17].
The problem is even worse with unstable plants models since their behavior can
rapidly diverge from the real plant behavior, and numerical errors in the simu-
lation can be rapidly ampli�ed by the instability [14]. The result is a complete
loss of the model's accuracy as a predictor of plant behavior. In this case, the
easiest way of stabilizing the model is to introduce measured states (actual past
plant outputs) and past inputs as initial values (whenever available) to solve the
numerical optimal control problem. This approach does not necessarily lead to a
stable closed loop, implying that other speci�c closed-loop stabilizing strategies
must be implemented to guarantee stability.

The importance of understanding how the design parameters (horizon, weight
matrices, terminal cost and certain constraints) should be chosen to avoid an un-
stable NMPC, especially for open loop unstable systems, are highlighted in [17].
Based on the proper choice of design parameters, a general framework to design
stabilizing nonlinear model predictive controllers is presented in [23]. An outline
of these results are presented here as a basis for the stability analysis of NMPC
used in the work presented in this thesis.

3.3.2 Stability Preserving NMPC formulations

The most common stabilizing NMPC methods implement su�ciently large hori-
zon or a terminal cost and a terminal constraint to increase the chances of stability.
The use of an in�nite horizon means that the open-loop input and state trajec-
tories computed as the solution of the NMPC optimization problem at a speci�c
sampling instant are equal to the closed-loop trajectories of the nonlinear system.
It also implies that the remaining part of the trajectories at the next sampling
instant are optimal. Moreover, convergence of the closed-loop is obtained [20].
However, the use of an in�nite horizon easily leads to an in�nite dimensional
problem which is di�cult (if not impossible) to solve or implement in practice.
Research on more practical approaches (using �nite horizon) led to the introduc-
tion of either a terminal cost S(x(T ), T ) or a terminal constraint or both into the
NMPC problem formulation. The use of a terminal constraint in most stabilizing
NMPC formulations states that the state vector at the end of the horizon, x(tN )
should be inside a set Ω. The reformulated NMPC problem in a general form
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entails minimizing the new cost function

J(x(tk), u(tk), tk) =
N−1∑
k=0

`(x(tk+1), u(tk), tk) + S(x(tN ), T ) (3.21)

subject to

x(tk+1) = f(x(tk), u(tk), tk), k = 0, ..., N − 1 (3.22)

x(t0) = x(0), given (3.23)

g(x(tk), u(tk), tk) ≤ 0, tk ∈ Td (3.24)

umin ≤ u(tk) ≤ umax, tk ∈ Td (3.25)

xN ∈ Ω (3.26)

The variants that implement only a terminal cost can be justi�ed by the use of the
implicit requirement that x(tN ) ∈ Ω is satis�ed for every initial state x in a given
compact set, and this is automatically satis�ed if N is chosen su�ciently large.
It is generally necessary to have a terminal constraint (even if it can be omitted
in the on-line computations for su�ciently large N) if the system is nonlinear
or if the system is linear and constrained but unstable [24]. Also, feasibility
and reduction in the cost function compared to the control trajectory computed
at the previous sample is su�cient for asymptotic stability of NMPC, provided
the terminal constraints are included in the formulation [17],[25]. Furthermore,
for a constrained nonlinear system, stabilizing ingredients found in [22],[26], and
based on the accounts of [24],[16], suggest the use of a local control law u(tk) =
α(x(tk)) = Kx to stabilize the linearized system

x(tk+1) = Ax(tk) +B(tk)u (3.27)

and the choice of Ω to satisfy the set constraint Ω ⊂ X and α(x(tk)) ⊂ U . Where
X and U are the system constraints imposed on the state and control sequences
respectively. By choosing Ω, according to [22], to be a level set of the terminal cost
S(.), where S(.) = (1/2)xTPx is a Lyapunov function for the linearized system
(3.27) and satisfying the Lyapunov equation

S(Ax+Bα(x))− S(x) + ¯̀(x, α(x)) = 0 (3.28)

for all x where ¯̀(x, u) = β`(x, u) and β ∈ (1,∞). Replacing `(.) by ¯̀(.) >
`(.) provides su�cient margin that ensures that f(x, α(x)) ∈ Ω, ∀x ∈ Ω and
Ṡ(x, α(x)) + `(x, α(x)) ≤ 0 are satis�ed when Ω is a su�ciently small level set of
S(.). In the conditions above, it is required that Ω is forward invariant under α(.)
(i.e. x(tk) ∈ Ω =⇒ x(tk+1) ∈ Ω) and that S(.) is a local Lyapunov function.
In addition, the forward invariant requirement automatically holds if Ω is de�ned
as {x : S(x) ≤ c}, for some c > 0. The aim of these conditions (applied to a
regulation problem with origin at zero) is to obtain a terminal cost, S(.) > 0,
that overbounds the rest of the horizon, that is,

S(x(tN )) ≥
∞∑

k=N

`(x(tk), α(x(tk))) (3.29)

The above statement is true if S(.) ful�lls

S(x(tk+1))− S(x(tk)) ≤ −`(x(tk), α(x(tk))), ∀x(tk) ∈ Ω, (3.30)
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by adding together (3.30) for k = N,N + 1, ...,∞ and using that S(x(t∞)) = 0.

To sum up, the resulting NMPC optimization problem (3.21) ensures that the
closed-loop system x(tk+1) = f(x(tk), α(x(tk))) converges to zero as k →∞ if its
initial state lies in Ω. In other words, stability is guaranteed if the terminal cost
S(.) and a local control law α(.) are chosen such that (3.30) holds on a terminal set
constraint Ω where the control law α(.) is unconstrained. The results achieved
using the above approach are usaully refered to as quasi-in�nite since most of
them attempt to construct a �nite horizon objective function that overbounds
the in�nite horizon objective function.

3.3.3 A general Stabilizing NMPC design approach

It should be noted that the use of local linearization is an attempt to introduce
a fairly practical stabilizing NMPC approach, since �nding a terminal cost such
that (3.30) holds for all x(tk) is di�cult, and often impossible for complex non-
linear systems subject to constraints. The idea of local stabilization, however,
limits most quasi-in�nite approaches to only certain class of nonlinear systems
and control objectives, as identi�ed in reference [23]. A practical challenge arises
when dealing with systems for which the resulting linearization is not stabilizable.
The same applies to nonlinear systems that cannot be stabilzed by a continuous
feedback (such as nonholonomic systems). This also leads naturally to the ques-
tion of how well most existing stabilizing NMPC schemes relate to fast trajectory
tracking and time-varying reference problems.

Another motivation for further research is the fact that most practitioners of
MPC methods know that for some systems, by an appropriate choice of some
parameters of the objective function and horizon (usually obtained by trial-and-
error and some imperical rules), it is possible to obtain stabilizing trajectories
without imposing demanding arti�cial constraints. An encouraging development
in this direction combines the results of [23] with a formulation along the lines of
the ideas of [22] to obtain nonlocal results, as presented in [20].

The results in [23] proposes a rather general framework of NMPC for systems
satisfying mild hypotheses and at the same time o�ering an increased �exibility
in the choice of design parameters to reduce the constraints of the optimal con-
trol problem. In brief, stability of the closed-loop system can be guaranteed by
choosing the design parameters (in this context: time horizon T , 'running' cost
`, terminal cost S and terminal constraint set Ω) to satisfy the following stability
conditions [23]:

1. The set Ω is closed and contains the origin.

2. The function `(x(tk), u(tk), tk) is continuous, `(0, 0, .) = 0, and ∃ a contin-
uous positive de�nite and radially unbounded function M : Rn → R+ s.t.
`(x, u, t) ≥ M(x),∀(t, u) ∈ R × Rm. Moreover, the "extended velocity set"
{(v, ¯̀) ∈ Rn × R+ : v = f(x, u, t), ¯̀≥ `(x, u, t), u ∈ U(t)} is convex ∀(t, x).

3. The function S is positive semi-de�nite and continuously di�erentiable
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4. The time horizon T is such that, the set Ω is reachable in time T from any
initial state and from any point in the generated trajectory: that is, ∃ a
set X containing X0 such that for each pair (t0, x0) ∈ R × X ∃ a control
u : [t0, t0 + T ] → Rm satisfying x(t0 + T ; t0, x0, u) ∈ Ω.
Also, for all control functions u in the conditions above
x(t; t0, x0, u) ∈ X, ∀t ∈ [t0, t0 + T ]

5. There exists a scalar ε > 0 such that for each time t ∈ [T,∞) and each
x(t) ∈ Ω, we can choose a control function ũ : [t, t+ ε] → Rm, with ũ(tk) ∈
U(tk),∀tk ∈ [t, t+ ε] satisfying
Ṡ(x(t), t) = St(x(t), t) + Sx(x(t), t) · f(x(t), ũ(t), t) ≤ −`(x(t), ũ, t) and
x(t+ r; t, x(t), ũ) ∈ Ω,∀r ∈ [0, ε]

The above stability conditions �rstly guarantee the existence of solutions to the
optimal control problem, and secondly ensures that the closed-loop trajectory is
actually driven to the origin. The latter is analogous to requiring that S is a con-
trol Lyapunov function. A distinguishing feature in this approach is condition 5 is
only required to be satis�ed on a subset Ω, which gives a considerable freedom of
choice. Also, an appropriate choice of Ω makes it easier to choose the remaining
design parameters.

The stability conditions are greatly simpli�ed by making some standard choices
of part of the design parameters. Condition 1 is necessary to guarantee the exis-
tence of a solution in the open-loop optimal control problem, while the �rst part
of conditions 1 and 2 are trivially satis�ed by choosing the usual quadratic objec-
tive function `(x, u) = xTQx+ uTRu, with Q > 0 and R ≥ 0 and S(x) = xTPx,
with P ≥ 0. The second part of condition 2 is a well-known requirement for
the existence of solution in optimal control problem with integral cost, and it is
automatically satis�ed if ` is convex and f depends linearly on u, or if ` does not
depend on u. Condition 4 is necessary to guarantee the existence of an admissible
control sequence of the optimal control problem, and for instance, by choosing
Ω as the whole space Rn makes condition 4 trivially satis�ed. Moreover, Ω can
be chosen to be a set of points satisfying condition 5, especially for more com-
plex systems where it might be di�cult to �nd parameters satisfying the stability
conditions with a large set as Ω = Rn. Also, the task of choosing S to satisfy
condition 5 can be simpi�ed if the set Ω is restricted to be just a subset of Rn

containing the origin, for instance, a linear subspace, a closed ball centred at the
origin, or a set of trajectories approaching the origin.

In addition to the stability conditions, [23] o�ers a list of hypotheses that in-
volve only the data of the system model, and can be used as initial test on the
adequacy of the method.

3.3.4 Extentions to the general stabilizing approach

The results of [23] and the deductions made above motivate a practical approach
to establishing the existence of a decreasing Lyapunov-like function. Further-
more, using the idea that feasibility implies stability [25], an e�ort to achieve an
admissible control sequence in the sense of condition 4 above, will have a stabi-
lizing e�ect on the NMPC. In the attempt to �nd the set Ω, as points satisfying
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condition 5 for a fairly complex nonlinear system (such as a �ghter aircraft), the
following ideas are proposed for regulation towards time-varying references (which
are expected in rapid maneuvres made by �ghter aircrafts and missiles).

The following approach also reduces the very complex nature of the procedures
that use the complete plant model f(.) directly in their attempts to ful�ll stability
conditions similar to 5 above. It also avoids the use of the linearized plant model
around some equilibrium points at which the plant must be stabilizable.

To simplify the introduction to the idea it is assumed that the plant model func-
tion f(.) is not a�ne in the controls u, and a quadratic objective formulation is
chosen as follows:

J(.) =
N−1∑
i=0

(
‖xk+i|k − rk+i|k‖2Q

)︸ ︷︷ ︸
`

+ ‖xk+N |k − rk+N |k‖2P︸ ︷︷ ︸
S

, i = 0, 1, ..., N − 1

(3.31)
The linear dependence of f(.) on u makes the "extended velocity" set convex,
according to condition 2 of the general stabilizing NMPC approach in section 3.3.3.
It is therefore further assumed that a solution exists for the resulting optimal
control problem. However, the implementation of an objective function with no
cost on inputs may lead to aggressive control, which in some practical cases results
in the loss of stability. It should be therefore noted that the use of (3.31) as the
objective function in this derivation leads to an implementation strategy that will
be shown later as applicable for cost functions that have penalties and constraints
on inputs. The error dynamics of the system takes the continuous form:

ė(t) = ẋ(t)− ṙ(t) (3.32)

where e(t) = x(t)− r(t), and for a constant reference, e(t) = x(t)− r:

ė(t) = ẋ(t) = f(x(t), u(t), t) (3.33)

For simplicity let e(t) = e, x(t) = x and

S(x) =
1
2
eTPe, P = P T > 0, (3.34)

such that S(x) is a control Lyapunov function candidate.

Furthermore:
Ṡ(x) = eTP ė = eTPẋ (3.35)

The main idea in this proposal is to in�uence the rate (as in condition 5) at which
the states are driven towards inner level sets of S by introducing a new terminal
rate constraint based on the idea of �nding the steepest descent. That is, ẋ in
(3.35) is desired such that

ẋ = −Γ∇S(x) , S(x), Γ = ΓT > 0 (3.36)

where Γ is a scaling matrix which can be seen as the rate control gain, and

∇S(x) =
∂eT

∂x
Pe = Pe (3.37)
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The choice (3.36) made for ẋ does not replace the plant dynamics, but leads to an
additional implementable constraint speci�cation. Since the inverse of a positive
de�nite matrix is also positive de�nite, P can be chosen such that Γ−1 = P ,
implying that

∇S(x) = Γ−1e (3.38)

and
ẋ = −ΓΓ−1e = −e (3.39)

Inserting equation (3.39) into (3.35) yields

Ṡ(x) = eTPẋ = −eTPe ≤ 0 (3.40)

The quadratic 'running' cost also takes the simple form

`(x) = eTQe, Q = QT > 0 (3.41)

Resulting in the condition

Ṡ(x) = −eTPe ≤ −eTQe, P ≥ Q > 0 (3.42)

The result (3.42) is comparable to Ṡ = St(.) + Sx(.) · f(.) ≤ −`(.) in condition
5. The use of (3.36) instead of f(x(t), ũ(t), t) (see condition 5) suggests a way
of reshaping the boundary behaviour of the dynamics of the system being con-
trolled. Further investigations will therefore be required to assess the reliability
of this choice. The idea here is to �nd suitable stability-governing functions S
(dependent on x and possibly on u) that will induce a continual descent path for
the control error.

The anticipated reduction in control error is immediately evident in the solution
of the resulting rate constraint (3.39):

ė = −e (3.43)

=⇒ e(t) = e−te(0) (3.44)

which can be written as

|e(t)| = e−t|e(0)|
=⇒ |e(t)| ≤ ρs|e(0)|, ρs = e−t, or 0 < ρs < 1 (3.45)

An implementation strategy can be further deduced as follows:

−ρs|e(0)| ≤ e(t) ≤ ρs|e(0)|
=⇒ r − ρs|e(0)| ≤ x(t) ≤ ρs|e(0)|+ r (3.46)

and applying the condition that P ≥ Q > 0.

This interesting result depicts the induced reduction in control error portrayed by
equation (3.42). In other words, introducing an error reduction rate constraint
adds a possible descent path to the optimization problem, and can be used to
govern the search of feasible (and possibly optimal) solutions. Equation (3.45)
can also be seen as a dynamic (or contracting) constraint that induces a stabiliz-
ing e�ect to the NMPC. The implementation of (3.39) or (3.45) will result in a
dynamic but persistent guidance of the states toward their reference trajectories,



22 CHAPTER 3. NONLINEAR MODEL PREDICTIVE CONTROL (NMPC)

rather than forcing the predicted states to lie in a terminal set Ω at the end the
horizon.

Remark 1:
The above stabilizing approach can be adopted as a systematic way of relaxing
the stability enforcing terminal constraints in practice. However, the choice of the
shaping (or stability-governing) function (3.36) and the objective function (with
no penalty on controls) may lead to a rather aggressive control. It is therefore
necessary to extend the above results for quadratic 'running' costs of the form,

`(x) = eTxQex + eTuReu, Q = QT > 0, R = RT > 0 (3.47)

and equation (3.42) becomes

Ṡ(x) = −eTxPex ≤ −eTxQex − eTuReu (3.48)

=⇒ −eTx (P −Q)ex ≤ −eTuReu (3.49)

The result in (3.49) requires further analysis before any conclusions can be drawn.
Di�erences in scaling between states and inputs is one the reasons for requiring
further work. However, an interesting observation is made when the weighting
matrices are chosen such that (3.49) is always true, and that the largest error-
values (|eL|) become the dominating factors in (3.49). This assumption suggests
that |exL | ≥ |euL |, which will not be true when |exL | = 0 while |euL | > 0 (a
rather common scenario, since control input/e�ort is often needed to maintain
'zero' error in the system states). For this reason, a new variable γs > 0 can be
introduced such that γs + |exL | ≥ |euL |, and implying that

−(γs + |exL |) ≤ euL ≤ (|exL |+ γs), euL = uL − urL

urL − (γs + |exL |) ≤ uL ≤ (|exL |+ γs) + urL (3.50)

where uL is the input resulting in the largest control input error euL at a given
time instance, and urL is the corresponding reference for the largest control input
error. For the situation when |ex| ≈ 0:

urL − γs ≤ uL ≤ γs + urL (3.51)

A reasonable choice of γs will be γs ≥ umax, yielding

urL − umax ≤ uL ≤ umax + urL , (3.52)

which will already be ful�lled if the control inputs are constrained, and since a
very common objective is to minimize the use of control e�ort (suggesting that
urL = 0 or chosen such that urL � umax).

Remark 2:
Another important issue that needs further investigation is feasibility in the sug-
gested design approach. On this note, the gradient function used in the illustration
above is intended to motivate the selection of an appropriate stability-governing
function S that is convex over the space of x(t) within the approximation limits
of an SQP solution framework.

Remark 3:
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Possibilities of introducing slack variables1 to enhance feasibility can also be con-
sidered in this design framework. The use of slack variables may lead to loss of
stability, and therefore requires further scrutiny.

Remark 4:
The choice of Γ can also be modi�ed such that some �exibility of rate control (in
addition to ρs) is implemented.

Remark 5:
Finally, since this approach mainly leads to a boundary speci�cation (which be-
comes narrower over the prediction horizon) on the state and control errors, its
implementation should be regarded as a means of enhancing stability, rather than
guaranteeing stability.

3.4 Robustness and Practical Implications

3.4.1 Dealing with uncertainties

Robustness from both theoretical and practical points of view covers both the in-
herent properties of NMPC and speci�c NMPC designs that take uncertainties and
disturbances into account. The inherent robustness property of NMPC originates
from the close relation of NMPC and optimal control [20], where closed-loop sta-
bilty and performance are inherently maintained in the presence of uncertainties.
This observation is mostly applicable to unconstrained systems, which are easily
studied by examining the descent property of a Lyapunov function for the nomi-
nal closed-loop system. However, when state and control constraints are involved,
it is necessary, in addition, to ensure that disturbances do not cause voilation of
the constraints [24]. An extra level of complexity of NMPC must therefore be in-
troduced since most of the existing NMPC schemes are based on the assumption
that no model/plant mismatch or unknown disturbances are present.

Most robust NMPC schemes that directly account for uncertainties/disturbances
are based on a min-max formulation, in which the cost function takes worst case
uncertainty/disturbance into account. The resulting min-max problem can be
formulated as follows:

minmax
u( · )∆∈D

=
∫ T

0
`(x(t), u(t), t) dt+ S(x(T ), T ) (3.53)

subject to
ẋ(t) = f∆(x(t), u(t), t) (3.54)

where D is the set of uncertainties and f∆ is the system realization including un-
certainties. A big challenge arises when stability constraints are also included since
the resulting open-loop min-max optimization problem may not yield feasible so-
lutions, considering all possible uncertainty/disturbance scenarios. The min-max
formulation is also noted to provide good performance for the worst-case scenario,

1Slack variables are variables used to soften constraints. They are de�ned in such a way
that they are non-zero only if the constraints are voilated. Their non-zero values are heavily
penalized in the cost function, so that the optimizer has a strong insentive to keep them at zero
if possible [14].
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while poor results are typically obtained for the usual nominal operational situ-
ations [20], [17]. These drawbacks and other important reasons have led to the
proposal of many schemes that aim at �nding an acceptable compromise between
performance and robustness. A usual objective function considered is [20]:

J = (1− w)P + wR (3.55)

where P and R are the performance and robustness terms respectively, and w
is the quantifying parameter. Overview of several robust NMPC strategies, in-
cluding min-max NMPC (and its variants), stochastic NMPC, and mechanisms
to avoid steady state errors, are covered in [20], [24], [17] and their references.
It must be noted that the results of many of the research works done on NMPC
robustness are conceptual controllers that work in principle but are too complex
to implement[24]. The main reason for the nonpractical nature of most of the
proposed solutions to the robustness issues is that the resulting decision variables
become in�nite in dimension.

3.4.2 Practical challenges and tuning

An important feature of NMPC which naturally draws both theoretical and prac-
tical attention, is the internal model required and state feedback assumed by most
NMPC formulations. Since all states are usually not measured, a state estima-
tor/observer usually becomes a necessity. The design of observers for NMPC and
its accompanying issues must also be considered in practical implementations. In
addition, if no �rst principle model is available, it is often di�cult (sometimes
impossible) to obtain good nonlinear models based on identi�cation techniques.
In such cases other control strategies like linear MPC become better alternatives
[20]. On the other hand, the possibility to directly use a detailed nonlinear �rst
principles model is advantageous since the performance of the closed loop can be
increased signi�cantly without much tuning. Even though a detailed �rst prin-
ciple model may lead to better performance, practical solutions often require a
compromise, mostly due to the large computational burden involved in the result-
ing optimization.

Optimization algorithms developed for NMPC generally deal with non-convex
problems, implying that only local, rather than global, solutions will be generally
available. In practice, the optimization solvers assume some form of local con-
vexity and guarantee convergence only to good initial guesses for the solution.
Using good initial guesses can be regarded as a warm start strategy, which can
be as simple as using the previous solution of the optimization problem. As a
potentially e�cient warm start technique, some optimization solvers consider the
internal data of the optimization algorithm such as initial estimates of the Hes-
sian approximation (in case exact Hessians are not computed), or initial estimates
of factorizations of the Hessian (approximation). The accuracy of the informa-
tion available for initialization, among other things, determine how bene�cial the
warm start strategy is to the optimization solver [17].

It may also be di�cult to establish a nonconservative hard bound on the num-
ber of iterations required for convergence of the nonlinear optimization problem
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that must be solved at each sampling instant. Lack of adequate computational
resources can therfore limit the performance of NMPC, if good termination crite-
ria are not employed. In such cases sub-optimal NMPC approaches that employ
computationally e�cient and robust implementations, rather than focusing on
optimality, are prefered.

Another key aspect of NMPC is the understanding of how design parameters
such as the prediction horizon, the time constant of the reference trajectory, and
weight matrices are tuned. Satisfactory tuning may not be easy to achieve, and in
worst cases, an unfortunate choice of the design parameters can result in a closed-
loop unstable NMPC. As a starting point, conventional LQR tuning guidelines
can be adapted for NMPC tuning [17]. In terms of e�ects of control weighting, the
increasing of the weights R on the control moves relative to the weights Q on the
tracking errors has the e�ect of reducing control activity. Basically, a stable plant
can be expected to obtain a stable closed-loop by increasing the control weighting
su�ciently, whereas an unstable plant can end up with an unstable feedback loop,
if the elements of R are increased too much [14].

An important note on tuning, and a common strategy used to optimize the con-
ditioning of the optimization problem, is scaling of the NMPC internal model
variables. For tuning purposes, the model variables may be scaled such that
equal errors on each of them are equally important. In that case equal weights
can be assigned to the objective function error variables, as a good starting point
for tuning. In addition, some optimization algorithms are sensitive to poor scaling
2, especially when scale invariance is not incorporated into all aspects of the algo-
rithm. In such cases, scaling of model variables will be necessary. Scaling can also
be regarded as a strategy used to increase the robustness of some controllers to
modelling errors. The reason is that scaling reduces the sensitivity of the output
trajectories to model errors [11].

The important challenges of NMPC discussed in this section can be seen in most
cases as solvable, and the expected improvement of control performance in the
use of nonlinear models provide good motivation for further research and studies
on several unresolved issues (regarding robustness, output feedback, state esti-
mation, etc.). These issues are however not slowing down the rapid growth of
industrial application of NMPC [20], [14].

2For instance, in an unconstrained optimization, a problem is said to be poorly scaled if
changes to a function variable x in a certain direction produce much larger variations in the
function value f than do changes to x in another direction [27].
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Chapter 4

Flight Dynamics and Control

Motion through the earth's atmosphere entails aerodynamic forces and moments.
Some understanding of coordinate transformation, geodesy and the earth's grav-
itation is also reqiured for navigation around the earth. Coordinate transforma-
tions and the use of appropriate reference frames are vital parts of the aircraft
simulation environment used in this project. This chapter introduces the relevant
parts of �ight dynamics and notations used in this work. Aerodynamic modeling
on which most automatic feedback �ight control is based is also brie�y presented.
Finally, the relation between the control system model and actuator input distri-
bution and e�ectiveness is introduced.

4.1 Coordinate frames and Notations

Terrestrial navigation of aircraft involves the use of reference frames and coor-
dinate transformations. The main reference frames for aircraft navigation and
control are denoted by the following abbreviations and notations: ECI {i}, ECEF
{e}, NED {n} and BODY {b}. The ECI (Earth-centered inertial) reference frame
is a nonrotating coordinate system in which Newton's laws of motion apply. The
origin of ECI is located at the center of the earth. The ECEF (Earth-centered,
Earth-�xed) frame also has its origin �xed to the center of the Earth, but its axes
rotate relative to the inertial frame ECI. A geographic coordinate system has its
axes aligned North, East, and Down (NED), or East, North, and Up (ENU),
where "up" or "down" points normal to the earth's surface. The NED frame
moves with the vehicle and has its origin de�ned relative to the earth's reference
ellipsoid. The BODY frame represents a vehicle-�xed coordinate system which
has its origin coinciding with the origin of the NED frame. The origin can be
chosen as the vehicle center of mass, and the coordinate axes aligned with the
vehicles reference directions. Vehicle stability-axes and wind-axes coordinate sys-
tems are also used as body-�xed frames in aircraft applications.

The aircraft equations of motion presented in the next section require coordi-
nate rotation matrices between ECI, ECEF and NED. A plane rotation around
the z-axis is made between ECEF and ECI, using the following rotation matrix:

Re
i =

 cosµ sinµ 0
− sinµ cosµ 0

0 0 1

 (4.1)

27
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where Re
i represents a rotation from ECI to ECEF, and µ is the rotation angle.

After the above rotation has been made, the transformation from ECEF to NED
can be achieved as derived in [2] and shown below:

Rn
e =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 0 0 1
0 1 0
−1 0 0

 cos ` sin ` 0
− sin ` cos ` 0

0 0 1

 (4.2)

Rn
e =

− sinφ cos ` − sinφ cos ` cosφ
− sin ` cos ` 0

− cosφ cos ` − cosφ sin ` − sinφ

 (4.3)

where ` is the terrestrial longitude and φ is the geodetic latitude.

In addition to the earth-related coordinate transformations stated above, the aero-
dynamic forces and moments on an aircraft are produced by relative motion with
respect to the air and depends on the orientation of the aircraft with respect to
the air�ow [2]. To be able to specify the aerodynamic forces and moments, two
orientation angles (with respect to the relative wind) are needed. The aerody-
namic angles used are the angle of attack (α) and the sideslip angle (β), de�ned
as:

α := arctan
(
W

U

)
(4.4)

β := arcsin
(
V

VT

)
(4.5)

where
VT =

√
U2 + V 2 +W 2 (4.6)

is the total speed of the aircraft, consisting of the longitudinal velocity U , lateral
velocity V , and vertical velocity W . The angles α and β de�ne the rotations
necessary to transform BODY coordinates to the aircraft's stability-axes and wind-
axes coordinates respectively. The relation between the body-�xed coordinate
systems are shown in �gure 4.1. The rotation matrices from BODY to stability,
and stability to wind axes are

Rs
b =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 (4.7)

Rw
s =

 cosβ sinβ 0
− sinβ cosβ 0

0 0 1

 (4.8)

and the combined rotation from BODY to wind becomes

Rw
b =

 cosα cosβ sinβ sinα cosβ
− cosα sinβ cosα − sinα sinβ
− sinα 0 cosα

 (4.9)

By applying the rotation matrix (4.9) on the wind axes velocity vector [VT , 0, 0]T ,
the relationship between the velocities in the BODY and wind axes can be written
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Figure 4.1: Illustration of aircraft body-�xed coordinate systems [2]

as:

U = VT cosα cosβ
V = VT sinβ (4.10)

W = VT sinα cosβ

It is worth noting that aerodynamic forces such as lift, drag and cross-wind are
naturally de�ned with wind-axes coordinates and therefore make calculations in
the wind-axes frame desirable. Stability-axes coordinate system on the other
hand is used for analysing the e�ect of perturbations from study-state �ight [2].
In addition, the position of the aircraft are described in relative to the inertial
reference frame while the linear and angular velocities are conveniently expressed
in the body-�xed coordinate system. The need for �exibility and the convenience
of calculations in di�erent coordinate systems make the above coordinate trans-
formations a natural part of the broad �eld of Guidance, Navigation and Control.

4.2 Equations of motion, forces and moments

The mathematical representation of �ight dynamics consists of rigid-body kinet-
ics, aerodynamic forces and moments, and kinematic equations.

4.2.1 Rigid-body kinetics

The aircraft model can be written in matrix form [3], expressed in the BODY
reference frame {b} as:

MRBν̇ + CRB(ν)ν + g(η) = τ (4.11)

ν = [U, V,W,P,Q,R]T (4.12)

η = [XE , YE , ZE ,Φ,Θ,Ψ]T (4.13)
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where U, V,W represent the longitudinal, lateral and vertical velocities respec-
tively, and P,Q,R represent the roll, pitch and yaw rates respectively. The
XE , YE , ZE coordinates represent the Earth-�xed position of the aircraft, and
the Euler angles Φ,Θ,Ψ represent the attitude of the aircraft. MRB and CRB(ν)
take the following form:

MRB =
[
mI3×3 O3×3

O3×3 ICG

]
(4.14)

CRB(ν) =
[
mS(ν2) O3×3

O3×3 −S(ICGν2)

]
(4.15)

where ν has been further divided into ν1 := [U, V,W ]T and ν1 := [P,Q,R]T . The
above equations were derived with the assumption that the BODY coordinate
system origin is in the aircraft's center of gravity (CG). The inertia tensor used
in equation (4.14) above is de�ned as (assuming Ixy = Iyz = 0, which corresponds
to xz-plane symmetry):

ICG =

 Ix 0 −Ixz

0 Iy 0
−Ixz 0 Iz

 (4.16)

τ in equation (4.11) is a generalized vector that includes aerodynamic and control
forces formulated in [3] as:

τRB = −g(η) + τ (4.17)

τRB =
[
X Y Z L M N

]T (4.18)

where g(η) is obtained from the gravitational force fG = [0, 0,mg]T which acts
in the aircraft's CG:

g(η) = −(Rn
b )T

[
fG

03×1

]
=



mg sin(Θ)
−mg cos(Θ) sin(Φ)
−mg cos(Θ) cos(Φ)

0
0
0

 (4.19)

g is the gravity constant and m is the mass of the aircraft. Equation (4.19) consists
of the components of the aircraft's weight vector W , which takes the form:

Wx = −mg sin(Θ)
Wy = mg cos(Θ) sin(Φ) (4.20)

Wz = mg cos(Θ) cos(Φ)

The state vector (4.18) for forces and moments acting on the aircraft consists of
longitudinal force X, transverse force Y , vertical force Z, roll moment L, pitch
momment M and yaw moment N . The resulting aircraft model in component
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form and corresponding to (4.11) becomes:

m(U̇ +QW −RV + g sin(Θ)) = X

m(V̇ + UR−WP − g cos(Θ) sin(Φ)) = Y

m(Ẇ + V P −QU − g cos(Θ) cos(Φ)) = Z

IxṖ − Ixz(Ṙ+ PQ) + (Iz − Iy)QR = L (4.21)

IyQ̇+ Ixz(P 2 −R2) + (Ix − Iz)PR = M

IzṘ− IxzṖ + (Iy − Ix)PQ+ IxzQR = N

4.2.2 Aerodynamic Forces

In addition to the weight vector W , the external forces acting on the aircraft
depend on the aerodynamic force vector R and thrust vector E. Assuming that
the thrust produced by the engine, FT , acts parallel to the aircraft's BODY x-axis,
the components of E becomes:

Ex = XT = FT

Ey = YT = 0 (4.22)

Ez = ZT = 0

where the subscript T indicates thrust e�ects. The components of R along the
body-axes can also be written as

Rx = XA

Ry = YA (4.23)

Rz = ZA

where the subscript A indicates aerodynamic e�ects. The size of the aerodynam-
mic forces XA, YA and ZA is determined by the amount of air diverted by the
aircraft in di�erent directions. The amount of air diverted by the aircraft mainly
depends on the total velocity (or Mach number M), density of the air�ow ρ, the
geometry of the aircraft, the orientation of the aircraft relative to the air�ow (α
and β), the control surface de�ections δs, the angular rates (P,Q,R), altitude (h),
and the propulsion system e�ects (Tc). There are other variables such as the time
derivatives of the aerodynamic angles, but these e�ects are less prominent, since
it is assumed that the aircraft is a rigid body. Based on the above dependencies,
the aerodynamic forces can be modelled in the following general form:

XA = q̄SCX(α, β,M, h, δs, Tc, . . . )
YA = q̄SCY (α, β,M, h, δs, Tc, . . . ) (4.24)

ZA = q̄SCZ(α, β,M, h, δs, Tc, . . . )

S represents the wing total area, and q̄ is the dynamic pressure de�ned by

q̄ :=
1
2
ρV 2

T (4.25)

The coe�cients CX , CY and CZ are usually obtained from wind tunnel data and
�ight tests. Combining the equations in (4.23) with the thrust components (4.22),
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the force equations of (4.21) can be rewritten as:

m(U̇ +QW −RV + g sin(Θ)) = XA + FT

m(V̇ + UR−WP − g cos(Θ) sin(Φ)) = YA (4.26)

m(Ẇ + V P −QU − g cos(Θ) cos(Φ)) = ZA

4.2.3 Aerodynamic Moments

The external moments that a�ect the aircraft are those that are due to aerody-
namics (MA = [`,m, n]T ) and engine angular momentum (MT = Heng). As a
result, the moments are:

L = `

M = m−RHeng (4.27)

N = n+QHeng

where the engine angular momentum (Heng) is assumed to be parallel to the
BODY x-axis of the aircraft. The aerodynamic moments can be expressed in a
similar way as the aerodynamic forces in equation (4.24):

` = q̄SbC`T
(α, β,M, h, δs, Tc, . . . )

m = q̄Sc̄CmT (α, β,M, h, δs, Tc, . . . ) (4.28)

n = q̄SbCnT (α, β,M, h, δs, Tc, . . . )

where b is the wing span, and c̄ represents the mean aerodynamic chord of the
aircraft's wing. Inserting equation (4.27) into the moment equations of (4.21),
yields the complete body-axis moment equautions:

IxṖ − Ixz(Ṙ+ PQ) + (Iz − Iy)QR = `

IyQ̇+ Ixz(P 2 −R2) + (Ix − Iz)PR = m−RHeng (4.29)

IzṘ− IxzṖ + (Iy − Ix)PQ+ IxzQR = n+QHeng

Further elaborations on aerodynamic force and moment coe�eicients are presented
in the following section.

4.2.4 Aerodynamic force and moment coe�cients

The forces and moments acting on a complete aircraft can be de�ned in terms of
dimentionless aerodynamic coe�cients. The aircraft aerodynamic coe�cients are
functions of the aerodynamic angles (α and β), Mach number (M), and altitude
(h). In addition, control surface de�ections (δs) and propulsion system e�ects (Tc)
cause changes in the coe�cients. The dependence of an aerodynamic coe�cient
can therefore be written as

C = C(α, β,M, h, δs, Tc) (4.30)

To model aerodynamic e�ects when an aircraft maneuvers, a di�erential equation
model of the aerodynamic force or moment is required. A linear approximation of
the di�erential equation model can be achieved by considering the aerodynamic
forces and moments to be linearly proportional to the angular rates that produced
them. The resulting coe�cients of proportionality are known as the aerodynamic
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derivatives [2].

For control allocation purposes and speci�cally considering control surfaces, the
aircraft dynamic equations involving rotational rates are of particular interest.
From the equations involving the turn rates (P,Q,R) an explicit relationship be-
tween turn rates and torques (`,m, n) applied to the aircraft can be obtained [28].
However, the rolling, pitching and yawing moments of the aircraft and how they
are in�uenced by control e�ects can be conveniently described using dimensionless
derivatives as presented in [2].

The rolling, pitching and yawing moments are related to their coe�cients through
the following formulations expressed in the aircraft's BODY coordinates, as in-
troduced in section 4.2.3:

` = q̄SbC` (4.31)

m = q̄Sc̄Cm (4.32)

n = q̄SbCn (4.33)

where b is the wing span, S is the wing total area, c̄ represents the mean aerody-
namic chord of the aircraft's wing, and q̄ is the dynamic pressure. The baseline
rolling-moment coe�cient is primarily a function of sideslip, angle of attack and
Mach number, and can be written as C`(β, α,M). Rolling moments are created
by sideslip, by the control action of ailerons and rudder, and as damping mo-
ments resisting rolling and yawing motion. The rolling moment model of a high
performance aircraft is given in [2] as

C` = C`(α, β,M) + ∆C`δa
(α, β,M, δa) + ∆C`δr

(α, β,M, δr)

+
b

2VT
[C`p(α,M)P + C`r(α,M)R] (4.34)

where C`r is the roll-damping derivative, and the quantities Pb/(2VT ) andRb/(2VT )
can be thought of as dimensionless roll and yaw rates respectively. Linearized ver-
sions of the rolling moment dependence on β and a control surface de�ection can
be achieved by linearizing around the origin, yielding:

C`(α, β,M) ≈ C`β
(α,M)× β (4.35)

∆C`δs
(α, β,M, δs) ≈ C`δs

(α, β,M)× δs (4.36)

where C`β
is the dihedral derivative that determines static stability in roll, and

C`δs
consists of roll control derivatives.

Similar formulations can be made for pitching and yawing moment coe�cients
as follows:

Cm = Cm(α,M, h, δF , Tc) + ∆Cmδe
(α,M, h, δe) +

c̄

2VT
[CmqQ+ Cmα̇α̇]

+
xR

c̄
CL + ∆Cmthrust

(δt,M, h) + ∆Cmgear(h) (4.37)

Cn = Cn(α, β,M, Tc) + ∆Cnδr
(α, β,M, δr) + ∆Cnδa

(α, β,M, δa)

+
b

2VT
[Cnp(α,M)P + Cnr(α,M)R] (4.38)
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The corresponding linearized coe�cients for control surfaces are

∆Cmδs
(α,M, h, δs) ≈ Cmδs

(α,M, h)× δs (4.39)

∆Cnδs
(α, β,M, δs) ≈ Cnδs

(α, β,M)× δs (4.40)

and the linearized yawing moment dependence on β is

Cn(α, β,M, Tc) ≈ Cnβ
(α,M, Tc)× β (4.41)

The baseline pitching moment coe�cient consists of both low-speed and high-
speed aircraft variables and can therefore be correspondingly expressed as Cm(α,M, Tc)
and Cm(α,M, h). δF represents the wing-�ap de�ection, which can be treated as
a separate increment. Cmq is the pitch damping derivative, and the purpose of
the (xRCL)/c̄ is to correct for any x-displacement (xR) of the aircraft's center of
mass from the aerodynamic data reference position. The acceleration derivative
Cmα̇ appearing in (4.37) is used to model the delay in the change in sidewash
felt at the tail of the fuselage and wings. The e�ects of engine thrust vector not
passing through the aircraft center of mass and landing-gear moment e�ects are
also included in the last two terms. In the yawing moment coe�cient, Cnr is the
yaw-damping derivative, and Cnβ

represents the yaw sti�ness derivative.

4.2.5 Kinematics

The kinematics involve the aircraft motion when the mechanisms (such as forces
and moments) causing the motion are not regarded. Kinematic equations are
therefore primarily used for translation, rotation and attitude representation. The
kinematic equations of a body-�xed coordinate system {b} with respect to NED
{n} can be expressed in terms of Euler angles as in [3]:ẊE

ẎE

ŻE

 = Rn
b

UV
W

 = Rz,ΨRy,ΘRx,Φ

UV
W

 (4.42)

Expanding equation (4.42) gives:ẊE

ẎE

ŻE

 =

cΨ −sΨ 0
sΨ cΨ 0
0 0 1

 cΘ 0 sΘ
0 1 0

−sΘ 0 cΘ

1 0 0
0 cΦ −sΦ
0 sΦ cΦ

UV
W

 (4.43)

=

cΨcΘ −sΨcΦ + cΨsΘsΦ sΨsΦ + cΨcΦsΘ
sΨcΘ cΨcΦ + sΦsΘsΨ −cΨsΦ + sΘsΨcΦ
−sΘ cΘsΦ cΘcΦ

UV
W

 (4.44)

The result in (4.44) consists of equations that are also refered to as the aircraft's
navigation equations. The aircraft's attitude is determined by:PQ

R

 =

Φ̇
0
0

+ RT
x,Φ

0
Θ̇
0

+ RT
x,ΦRT

y,Θ

0
0
Ψ̇

 (4.45)

which gives: Φ̇
Θ̇
Ψ̇

 =

1 sΦtΘ cΦtΘ
0 cΦ −sΦ
0 sΦ/cΘ cΦ/cΘ

PQ
R

 (4.46)

where s, c, t represent sin, cos and tan respectively.
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4.3 Nonlinear Control Model of a High Performance
aircraft

The equations of motion derived in the previous sections can be gathered into a
complete system of �rst order di�erential equations, categorized into two groups:

Force and Moment equations:

U̇ = RV −QW − g sinΘ +
1
m

(XA + FT ) (4.47)

V̇ = −RU + PW + g sinΦ cos Θ +
1
m
YA (4.48)

Ẇ = QU − PV + g cos Φ cos Θ +
1
m
ZA (4.49)

Ṗ = (c1R+ c2P )Q+ c3`+ c4(n+QHeng) (4.50)

Q̇ = c5PR− c6(Q2 −R2) + c7(m−RHeng) (4.51)

Ṙ = (c8P − c2R)Q+ c4`+ c7(n+QHeng) (4.52)

where

Γc1 = (Iy − Iz)Iz − I2
xz, Γc2 = (Iy − Iy + Iz)Ixz, Γc3 = Iz

Γc4 = Ixz, c5 =
1
Iy

(Iz − Ix), c6 =
Ixz

Iy
, c7 =

1
Iy

Γc8 = Ix(Ix − Iy) + I2
xz, Γc9 = Ix, Γ = IxIz − I2

xz

and

Kinematic and Navigation equations:

Φ̇ = P + tanΘ(Q sinΦ +R cos Φ) (4.53)

Θ̇ = Q cos Φ−R sinΦ (4.54)

Ψ̇ =
1

cos Θ
(Q sinΦ +R cos Φ) (4.55)

ẊE = UcΨcΘ + V (cΨsΘsΦ− sΨcΦ) +W (cΨsΘcΦ + sΨsΦ) (4.56)

ẎE = UsΨcΘ + V (sΨsΘsΦ + cΨcΦ) +W (sΨsΘcΦ− cΨsΦ) (4.57)

ŻE = −UsΘ + V cΘsΦ +WcΘcΦ (4.58)

Since the Earth-�xed z-position axis points downwards, a prefered representation
of equation (4.58) is:

ḣ = UsΘ− V cΘsΦ−WcΘcΦ (4.59)

where h is the altitude of the aircraft.

4.3.1 Wind or Stability-Axes Equations

For control design purposes, it is usually preferable to transform the force equa-
tions (4.47)-(4.49) to the wind-axes coordinate system. The derivatives of VT , α
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and β de�ned by (4.4)-(4.6), according to [2] become:

V̇T =
1
m

(FT cosα cosβ −D + mg1) (4.60)

α̇ = Q− (P cosα+R sinα) tanβ − 1
mVT cosβ

(L+ FT sinα−mg3) (4.61)

β̇ = P sinα−R cosα+
1

mVT
(C − FT cosα sinβ + mg2) (4.62)

where the drag force D, the cross-wind force C and the lift force L are de�ned as:

D = −XA cosα cosβ − YA sinβ − ZA sinα cosβ (4.63)

C = −XA cosα sinβ + YA cosβ − ZA sinα sinβ (4.64)

L = XA sinα− ZA cosα (4.65)

The gravity components are:

g1 = g(− cosα cosβ sinΘ + sinβ sinΦ cos Θ + sinα cosβ cos Φ cos Θ) (4.66)

g2 = g(cosα sinβ sinΘ + cosβ sinΦ cos Θ− sinα sinβ cos Φ cos Θ) (4.67)

g3 = g(sinα sinΘ + cosα cos Φ cos Θ) (4.68)

4.4 Decoupling of the Nonlinear Equations

In aircraft control applications, it is a usual practice to decouple the equations
of motion into longitudinal and lateral modes. The key assumption is that the
length of the aircraft's fuselage is much greater than its width and height, and
also that the longitudinal velocity is much larger than the vertical and transversal
velocities [3]. Another motivation is that most aircrafts spend most of their time
in a wings-level steady-state �ight condition, and since the model of the 3-DOF
motion in the NED vertical plane is much simpler than the complete 6-DOF
model, it is reasonable to adapt and simplify the equations of motion for speci�c
mode control purposes as much as possible.

4.4.1 Longitudinal Equations

To investigate the equations of motion under wings-level �ight condition, and
for small sideslip, the e�ects of the lateral states (β, Φ, P and R) are assumed
negligible in the longitudinal channel. This assumption is also justi�ed by the fact
that, if the roll and yaw rates (P and R) are small, the pitching moment equation
is not coupled to the rolling and yawing moment equations (by inspection of
the moment equations (4.50)-(4.52)). The resulting pure longitudinal motion is
described by the state vector [h, VT , α, Θ, Q]T and the following equations:

ḣ = VT cosα sinΘ− VT sinα cos Θ (4.69)

V̇T =
1
m

(FT cosα−D −mg sin(Θ− α)) (4.70)

α̇ = Q− 1
mVT

(FT sinα+ L −mg cos(Θ− α)) (4.71)

Θ̇ = Q (4.72)

Q̇ =
m

Iy
(4.73)
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A common alternative model uses �ight-path angle (γ) as a state variable instead
of pitch attitude (Θ):

ḣ = VT cosα sin(γ + α)− VT sinα cos(γ + α) (4.74)

V̇T =
1
m

(FT cosα−D −mg sin γ) (4.75)

γ̇ =
1

mVT
(FT sinα+ L −mg cos γ) (4.76)

α̇ = Q− γ̇ (4.77)

Q̇ =
m

Iy
(4.78)

where

γ := Θ− α (4.79)

The above longitudinal equations are used for a variety of purposes, from perfor-
mance analysis to automatic control system design [2].

4.4.2 Lateral Equations

The aircraft's motion in the lateral mode consists of rolling, yawing, and sideslip-
ping, while the angle of attack α, the speed VT , and the pitch angle Θ remain
constant. Assuming the constant longitudinal states α0, VT0, Θ0, and neglecting
Q, the lateral channel equations are obtained:

β̇ = P sinα0 −R cosα0 +
1

mVT0
(C − FT0 cosα0 sinβ + mg2) (4.80)

Ṗ =
Iz

IxIz − I2
xz

`+
Ixz

IxIz − I2
xz

n (4.81)

Ṙ =
Ixz

IxIz − I2
xz

`+
Ix

IxIz − I2
xz

n (4.82)

Φ̇ = P +R tanΘ0 cos Φ (4.83)

Ψ̇ =
1

cos Θ0
R cos Φ (4.84)

where the gravity component g2 takes the form:

g2 = g(cosα0 sinβ sinΘ0 + cosβ sinΦ cos Θ0 − sinα0 sinβ cos Φ cos Θ0) (4.85)

The dominating states in the lateral model are β, Φ, Ψ, P , and R.

4.5 Linear state-space model

For control purposes, a linearized version of of the equations of motion is usually
desirable. Using equation (4.11) as starting point, a linearization about (ν0, η0, τ0)
can be obtained by assuming that ν̇0 = 0. The result is:

CRB(ν0)ν0 + g(η0) = τ0, (4.86)

and the linearized state-space model expressed in matrix form becomes [3]:

MRBν̇ + NRBν + Gη = τ (4.87)
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The linearization is achieved by rede�ning the aircraft's state-space vectors as a
sum of norminal values and perturbations as follows:

τ := τ 0 + δτ =



X0

Y0

Z0

L0

M0

N0

+



δX
δY
δZ
δL
δM
δN

 (4.88)

ν := ν0 + δν =



U0

V0

W0

P0

Q0

R0

+



u
v
w
p
q
r

 (4.89)

The angles are also de�ned according to:Θ
Φ
Ψ

 :=

Θ0

Φ0

Ψ0

+

θ0φ0

ψ0

 (4.90)

The linearized state-space model will therefore consist of the states u, v, w, p, q, r, θ, φ
and ψ. Generally, lowercase variables are used for linear state representations.

Control inputs u, and aerodynamic forces and moments that a�ect the �ight
dynamics can be modelled into the rigid-body kinetics (4.87) as:

τ = −MF ν̇ −NF ν −Bu (4.91)

MF is the aerodynamic added mass, NF represents the aerodynamic damping,
and B is a matrix that describes the aircraft's actuator con�guration and force/-
moment coe�cients. Linear theory has been assumed here in order to reduce the
number of aerodynamic coe�cients [3]. Inserting (4.91) into (4.87) results in:

(MRB + MF )ν̇ + (NRB + NF )ν + Gη = Bu (4.92)

Mν̇ + Nν + Gη = Bu (4.93)

Consequently, the state-space model, considering only the BODY velocity vector
ν = [u, v, w, p, q, r]T , takes the form:

ν̇ = −M−1Nν + M−1Bu (4.94)

and �nally:
ν̇ = Fν + Gu (4.95)

where F = −M−1N and G = M−1B.

As an alternative, a state-space model using wind/stability axes can be obtained
from the nonlinear equations listed in section 4.3, by assuming that α and β are
small such that cosα ≈ 1 and sinβ ≈ β. The equations relating BODY and wind
axes velocities (4.10) can then be written as:

U = VT

V = VTβ (4.96)

W = VTα
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which yields:

U = VT

β =
V

VT
(4.97)

α =
W

VT

The state-space vector for describeing motion in 6 DOF can be chosen as:

x =
[
u β α p q r

]T (4.98)

Further, the relationship between BODY velocity vector ν and the state vector x
can be written as:

ν = Tx = diag{1, VT , VT , 1, 1, 1}x (4.99)

where VT > 0. For constant total speed VT = U0,

VT = 0 (4.100)

β̇ =
1
VT
v̇ (4.101)

α̇ =
1
VT
ẇ (4.102)

It becomes therefore possible to transform the body-�xed state-space model (4.95)
to

ẋ = Ax + Buu (4.103)

where

A = T−1FT (4.104)

Bu = T−1G (4.105)

If a modular structure is adopted, the torques or aerodynamic moments can be
regarded as generalized or virtual control inputs produced by a control law, as
a response to some pilot commands. Virtual control inputs v can therefore be
introduced by reformulating (4.103) as:

ẋ = Ax + Bv(Bu) (4.106)

Bu = BvB (4.107)

The virtual control input is de�ned as:

v := Bu (4.108)

Equation (4.106) then becomes:

ẋ = Ax + Bvv (4.109)
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4.6 Control E�ectiveness

The B matrix in (4.108) describes the aircraft's actuator con�guration and mo-
ment coe�cients. In other words, B can be seen as the control e�ectiveness
matrix, which decides the total control e�ort produced by the actuators. Rewrit-
ing (4.108) as v = (CK)u, introduces the actuator con�guration matrix C and
the force coe�cient matrix K, according to reference [29].

Alternatively, the aerodynamic moments can be assumed to be a�ne in the con-
trols [30], implying that:

Mv = Bu+ c (4.110)

⇒ v = Mv − c (4.111)

where Mv represents the aerodynamic moment coe�cients to be produced in roll,
pitch and yaw. Using this alternative, the model parameters B and c can be
computed by linearizing Mv at each sampling instant t around the current mea-
surement vector, x(t) and the previous control vector, u(t − T ). Where T is the
samplings interval.

A convenient approach is based on the aerodynamic moment derivatives presented
in section 4.2.4. For the control input vector u =

[
δa1 δa2 δe1 δe2 δr Tc

]T ,
a simpli�ed version of the aerodynamic moments can be formulated as follows:

` = q̄SbC`(δa1 , δa2 , δe1 , δe2 , p, r, β) (4.112)

m = q̄Sc̄Cm(δa1 , δa2 , δe1 , δe2 , q, α) (4.113)

n = q̄SbCn(δa1 , δa2 , δe1 , δe2 , δr, p, r, β) (4.114)

where

C` = C`δa1
δa1 + C`δa2

δa2 + C`δe1
δe1 + C`δe2

δe2 + C`pp

+C`rr + C`β
β (4.115)

Cm = Cmδa1
δa1 + Cmδa2

δa2 + Cmδe1
δe1 + Cmδe2

δe2

+Cmqq + Cmαα (4.116)

Cn = Cnδa1
δa1 + Cnδa2

δa2 + Cnδe1
δe1 + Cnδe2

δe2 + Cnδr
δr

+Cnpp+ Cnrr + Cnβ
β (4.117)

It is obvious from the above equations that the aerodynamic coe�cients depend
on the elements of the state vector and the elements of the control input vector u.
The coe�cients depending on the states will therefore become part of the linear
model's A matrix, and those depending on the control surface de�ections will be
part of the Bu matrix. Considering the model (4.109), the virtual control input
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v in terms of aerodynamic coe�cients (i.e. v = [C`, Cm, Cn]Tu ) becomes:

v =

 C`δa1
δa1 + C`δa2

δa2 + C`δe1
δe1 + C`δe2

δe2

Cmδa1
δa1 + Cmδa2

δa2 + Cmδe1
δe1 + Cmδe2

δe2

Cnδa1
δa1 + Cnδa2

δa2 + Cnδe1
δe1 + Cnδe2

δe2

 (4.118)

v =

C`δa1
C`δa2

C`δe1
C`δe2

0 0
Cmδa1

Cmδa2
Cmδe1

Cmδe2
0 0

Cnδa1
Cnδa2

Cnδe1
Cnδe2

Cnδr
0


︸ ︷︷ ︸

B



δa1

δa2

δe1

δe2

δr
Tc


︸ ︷︷ ︸

u

(4.119)

where the dimensionless derivatives for the control input coe�cients in roll pitch
and yaw can be calculated using:

C`δs
=
∂C`

∂δs
(4.120)

Cmδs
=
∂Cm

∂δs
(4.121)

Cnδs
=
∂Cn

∂δs
(4.122)

where δs represents any of the control surfaces which is applicable for the de-
scribed moment.

4.7 Actuator dynamics

A further extension of the �ight dynamics model is to include actuator dynamics
which can be generally modelled as:

δ̇ = g(δ, δc) (4.123)

where δc is the commanded input and δ represents the actual actuator de�ection.
When �rst order actuator dynamics is assumed, the model can take the form:

δ̇ = T−1(δc − δ) (4.124)

where T can be designed as a diagonal matrix with positive time constants:
T = diag{T1, T2, ..., Tr} [3]. However, since the actuator dynamics are often
very fast compared to the remaining aircraft dynamics, the actuator model can
be neglected by using the steady state approximation δ ≈ δc [30].
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Chapter 5

Aircraft Stability and Control
Characteristics

The dynamics of �ight (treated in chapter 4) forms a solid base for the study
of stability and control of aircrafts. The concept of equilibrium or steady state
is also important in the de�nitions of stability and control. The equilibrium of
an aircraft in �ight describes a uniform motion condition. Basically, the equi-
librium of the aircraft is stable if, when the aircraft is slightly disturbed in any
of its degrees of freedom, it returns ultimately to its initial state. Instability in
aircrafts has a rather complex nature in the sense that the aircraft may be stable
with respect to one degree of freedom and unstable with respect to another. Two
kinds of instability are of interest in aircraft dynamics. In the �rst kind, termed
static instability, the aircraft departs continuously from its steady state condi-
tion, while the second kind, termed dynamic instability, is a more complicated
phenomenon in which the aircraft oscillates about its steady state condition with
ever-increasing amplitude [31].

The view on aircraft stability introduced above can be seen as inherent stabil-
ity, since it is a property of the basic airframe with either �xed or free controls.
An inherently unstable aircraft will therefore need a stability augmentation sys-
tem (SAS) to provide synthetic stability. SAS also forms the base or foundation
on which most of the existing modern autopilots are designed. The main reason
is to ensure that the closed loop system is stable in its response to atmospheric
disturbances as well as commands from a navigation system and the pilot. It is
therefore obvious that controls play an important role in stabilizing an aircraft.
At the same time, controls are responsible for both �xing the aircraft in a steady
state condition and producing accelerated motion (or maneuvers). The complex
task of aircraft control, therefore, involves stability investigations of the maneu-
vers and transition from one steady state to another.

The unsteady motions of an aircraft can be separated for convenience into longi-
tudinal (or symmetric) motions and lateral (or asymmetric) motions (see section
4.4). This separation can also be made for both dynamic and static stability
analysis. However, the results of greatest importance for static stability are those
assosiated with the longitudinal analysis [31]. Thus the main focus of the fol-
lowing section (5.1) will be on longitudinal stability and control. Nevertheless,
brief highlights will be given on static aspects of directional and rolling motions.
Dynamic stability properties are also brie�y discussed in section 5.2.
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5.1 Static Stability

Static stability analysis is used to determine whether the aircraft will return to
a steady state �ight condition after being subject to a small atmospheric dis-
turbance. In static analysis, rate-dependent e�ects are not considered, and it is
usually performed for the special case of wing-level, nonturning �ight [2].

5.1.1 Longitudinal Static Stability

Longitudinal static stability analysis considers the pitching moment that acts on
the aircraft when its angle of attack is changed from a steady state condition.
The pitching moment coe�cient, Cm, for a �xed-wing aircraft depends on the
angle of attack, center of gravity (CG) location, and the elevator de�ection. To
achieve longitudinal static stability (positive pitch sti�ness), the sign of the sta-
bility derivative given by the slope of Cm change with respect to angle of attack,

Cmα =
∂Cm

∂α
(5.1)

must be negative [31],[2].

Positive pitch sti�ness ensures a restoring moment if the aircraft is disturbed
from its equilibrium state (trimmed �ight) due to disturbances like wind gusts.
At an equilibrium angle of attack, Cm must be zero (at a balanced state) and the
pitching moment curve must be such that when the angle of attack is increased
(while the speed remains unaltered) the aircraft will respond with a moment that
tends to reduce (or restore) the angle of attack to its equilibrium value. It should,
however, be noted that restriction to angle of attack disturbances when dealing
with stability has limitations, since the aircraft may be unstable with respect to
disturbances in speed. For instance, the aerodynamic characteristics of the air-
craft may change with speed due to compressibility e�ects, structural distortion,
or the in�uence of the propulsive system.

An important aspect of longitudinal stability and control deals with the posi-
tion of the CG with respect to the aircraft's neutral point (NP ). The neutral
point (also known as the aircraft's aerodynamic center) is de�ned as the CG po-
sition for which Cmα is zero, and it represents the boundary between positive and
negative pitch sti�ness. The di�erence between the CG position h and the NP
position hn is termed the static margin,

Kn = hn − h (5.2)

Positive pitch sti�ness requires that Cmα < 0, implying that h < hn or Kn > 0.
In other words the CG must be forward of the NP . The farther forward the
CG the greater is the static margin Kn, hence the more stable the aircraft. Fig-
ure 5.1 illustrates the e�ect of CG location on Cm using a linear Cm vs. α relation.

Infact, the trim condition of the aircraft can be changed by moving CG, which
changes the value of α at which Cm = 0. Moving CG forward reduces the trim
α, and hence produces an increase in the trim speed. An inherent consequence is
that, when the trim speed is reduced, Cmα changes at the same time, resulting in
a reduction of pitch sti�ness and stability of the aircraft [31].
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Figure 5.1: E�ect of CG location on Cm curve [2]

In some cases, the neutral point tends to shift aft (i.e. CG forward in �gure
5.1) when an aircraft moves from high subsonic speeds to supersonic speeds 1.
The result is a large increase in the static margin, which is followed by some un-
desirable consequences such as increased trim drag and reduced maneuverability.
To minimize these penalties, some modern �ghter aircraft (notably F-16) use a
reduced, or negative, static margin at subsonic speeds. Since negative pitch sti�-
ness normally leads to dynamic instability [2] in pitch, the �ghter aircraft must
rely on SAS for longitudinal stability.

5.1.2 Lateral Static Stability

The rotational sti�ness in the longitudinal mode is about one axis only (the y-
axis) and therefore serves as an important criterion for the dynamic behaviour of
the aircraft. On the other hand, the rotational motion in the lateral mode takes
place about two axes (x and z), and the moments assosiated with the rotations are
cross-coupled. In addition, the gravity vector in normal �ight lies in the aircraft
plane of symmetry, eliminating CG position as a dominant parameter for the lat-
eral characteristics. The simplicity of the rotational sti�ness, depicting dynamic
behavior of the aircraft, is lost when considering lateral motions. Therefore, a full
lateral dynamic analysis is normally required.

Nevertheless, the requirement of positive yaw sti�ness (also known as weathercock
stability) is that

Cnβ
=
∂Cn

∂β
(5.3)

must be positve [31]. This implies that when the aircraft is at an angle of sideslip
β relative to the �ight path (i.e. along the relative wind x-axis, shown in �gure
4.1), the yawing moment produced will tend to restore the aircraft to symmetric
�ight. Moreover, if the aircraft has positive yaw sti�ness, and is truely symmet-
rical, it will attempt to maintain the sidelip angle at zero (a desirable control
objective in most �ight conditions [31]).

1Aerodynamic e�ects are classi�ed according to Mach number, M := VT /a, where a is the
speed of sound at the ambient conditions. The Mach number ranges of interest in aerodynamics
are M < 1.0 (subsonic speeds), 0.8 ≤ M ≤ 1.2 (transonic speeds), 1.0 < M < 5.0 (supersonic
speeds), and M ≥ 5.0 (hypersonic speeds) [2].
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Lateral analysis also treats roll sti�ness, but the results give very limited ben-
e�ts to understanding the dynamic stability behavior of the aircraft. The answer
to the question about whether the aircraft will return to wings-level attitude, or
not, can only be provided by full dynamic analysis (see for example [31], [2] and
[32] for details about this subject).

Static stability analysis provides the basic information for con�guring the air-
craft and evaluating its performance, and it is also a foundation for the dynamic
analysis presented in the following section.

5.2 Dynamic Stability

Dynamic stability in all degrees of freedom can be determined from the eigenvalues
of the linearized equations of motion. The eigenvalues λ can be found by solving
the linear equation:

det(λI −A) = 0 (5.4)

where A is the linearized system matrix (see section 4.5), and I is the identity
matrix. The remainder of this section and the following subsections are based on
the dynamic stability discussions in reference [32].

Basically, an aircraft is considered dynamically stable if the real parts of all its
eigenvalues, λi, are negative. The aircraft will be dynamically unstable if it has
zero 2 or positive real part of any complex eigenvalue.

5.2.1 Longitudinal Dynamic Stability

When longitudinal motions are considered, the result of expanding the determi-
nant in (5.4) is a 4th degree polynomial in λ, and for most aircraft types, it takes
the factorized form,

(λ2 + 2ζphωphλ+ ω2
ph)(λ2 + 2ζspωspλ+ ω2

sp) = 0 (5.5)

where the two factors represent the aircraft's phugoid mode and short period
mode, respectively.

The phugoid mode is observed as a long period oscillation with little damping.
If the damping is negative, the phugoid mode is unstable and the oscillations in-
crease with time. The phugoid mode is characterized by the natural frequency ωph

and the relative damping ratio ζph. The short period mode on the other hand is a
fast mode characterized by the natural frequency ωsp, and relatively well-damped
with the damping ratio ζsp.

Supersonic aircraft may have very large and su�ciently negative value of the
stability derivativeMu

3. This results in the term ω2
ph in (5.5) becoming negative.

Both roots (solutions) of the phugoid quadratic equation become real, where one
is negative (stable/convergent) and the other positive (unstable/divergent). The

2A zero real part corresponds to a mode having simple harmonic motion, which, for practical
�ight situations, is considered unstable [32].

3Mu is the change in pitching moment caused by a change in forward speed.
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unstable mode is referred to as the tuck mode, since the phenomenon is observed
as a downward pointing nose (tucking under) as airspeed increases.

A modern �ghter aircraft typically has its center of gravity CG located behind
the neutral point NP . In this case, the stability derivative Mα

4 can take a value
which will result in every root of the characteristic equation (5.5) being real.
When the CG is moved further backwards, one of the real roots of the phugoid
mode, and one of the real roots of the short period mode, become imaginary,
forming a new complex pair. The complex pair is known as the third oscillatory
mode, and it is the main in�uence upon the dynamic response of any automatic
�ight control system.

5.2.2 Lateral Dynamic Stability

The lateral characteristic equation obtained from (5.4) is of 5th degree, and it can
be usually factorized into the following form:

λ(λ+ e)(λ+ f)(λ2 + 2ζDωDλ+ ω2
D) = 0 (5.6)

where the simple term in λ corresponds to the heading mode (ψ̇ = r). The
root λ = 0 (neutral stability) implies that the aircraft does not tend to restore
its heading once it has been disturbed from its steady state. The term (λ + e)
corresponds to the spiral convergence/divergence mode, which is usually a very
slow motion corresponding to a long term tendency either to maintain the wings
level or to 'roll o�' in a divergent spiral. The term (λ + f) describes the rolling
subsidence mode, which is a pure rolling motion. The quadratic term represents
the dutch roll motion for which the damping ratio ζD is usually small, and the
natural frequency ωD depicts oscillatory motion.

4Mα is the change in pitching moment caused by a change in angle of attack α.
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Chapter 6

Flight Control Systems and
Faults

6.1 Automatic aircraft control

The desire of having automatic �ight control can be attributed to the progress
toward longer �ight times, other than placing emphasis mainly on making the
aircraft more controllable by the pilot. Infact, several factors including changes
in aircraft mass and the need to reduce the area of aerodynamic surfaces (for
lower drag at high speed), cause changes in natural modes of the aircraft, making
some aircrafts not easily controllable by the pilot. In hypersonic aircraft control,
for instance, a change in �ight conditions can cause cause localized changes in
air�ow, which can lead to rapid temperature increases at some points on the sur-
face of the aircraft. Manual control of such aircrafts is di�cult or not feasible
in most �ight phases. The aircraft's trajectories can be carefully controlled by
feedback comparison with a precomputed reference trajectory, or with real-time
trajectory-prediction calculations. Feedback control can also be used to modify
the aircraft dynamics when large changes in aircraft dynamics are experienced.
It is interesting to note that a stable dynamic mode which is adequately damped
for one �ight condition may become unstable in another �ight condition. Also, a
slightly damped oscillatory mode may cause discomfort to passenger or make it
di�cult for the pilot to control the aircraft's trajectory precisely [2].

The above examples, among numerous others, show the obvious need of automatic
control in modern aicrafts which are built for speci�c and varied performance
targets, including speed, range, altitude, maneuverability and payload capacity.
The design of modern �ight control systems incorporates guidance and control,
algorithms and simulations, numerical methods and digital implementation. In
addition, �ight control is advancing to many relatively new analytical techniques
such as numerical optimization and multivariable control, adaptive techniques,
and analysis of sensitivity and robustness to parameter variation.

To be able to implement automatic �ight control, signals from rate gyros, ac-
celerometers, air-data computers, and other data sources are processed by a �ight
control computer. The automatic control computer then generates augmentation
signals to control e�ectors through electrical (and mostly hydraulic) means.
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6.2 Augmentation systems and Autopilots

Automatic �ight control systems consists of augmentation systems which either
provide the pilot with a particular response to the control inputs or provide par-
ticular �ight modes with adequate damping and natural frequencies. The former
is termed control augmentation and the latter is known as stability augmentation.
In addition to the augmentation systems, autopilots are usually implemented to
provide "pilot relief" for the aircraft modes that are controllable by the pilot, and
also other special functions. A brief description of classic autopilots that corre-
spond to the NMPC autopilots designed in this project is included in appendix
B. Autopilot applications are however broad and include pitch attitude hold con-
trol, altitude hold, speed/Mach hold, roll-angle hold, turn coordination, heading
hold, automatic take-o� and landing. Autopilots are normally designed to meet
speci�cations on steady-state error and disturbance rejection, with less emphasis
on dynamic response. Dynamic response, however, becomes a requirement when
autopilots are coupled with guidance and navigation systems. A combination of
these properties are incorporated in the design of the autopilots presented in this
thesis.

6.3 Gain Scheduling

Control design using linearization approach has a basic limitation, which is the
fact that the controller is guaranteed to work only in some neighborhood of a
single operating (or equilibrium) point. To implement a linear control law on an
aircraft, it must be gain-scheduled over the �ight envelope where it will be used.
Gain scheduling attempts to extend the validity of the linearization approach to
a range of operating points. In its simplest form, gain scheduling involves lin-
earization of the controlled system at several operating points, design of a linear
feedback controller at each point (for example, �nding optimal control gain for
each one), and implementation of the resulting family of linear controllers as a
single controller. This means that the gains most appropriate for the actual op-
erating point of the aircraft will be used in the controller [2],[33].

The parameters of the gain-scheduled controller are typically varied by monitoring
of some de�ned scheduling variables (either exogenous or endogenous signals with
respect to the plant), by which the system model is parameterized. The most
widely known gain scheduling in autopilot designs is that the autopilot loop gain
is highly dependent on control surface e�ectiveness, due to altitude (or dynamic
pressure) and Mach number (or speed) e�ects [34]. Dynamic pressure, Mach num-
ber, altitude, and angle of attack are therefore typical scheduling variables used
in �ight control systems.

The complete gain-scheduled autopilot design can be summarized as follows [2],
[33], [34]: The nonlinear equations of motion are �rst linearized about selected
operating points that capture key modes of the operation throughout the �ight
envelope (in other words, computing a linear parameter-varying (LPV) model of
the nonlinear plant). Linear controllers are designed (as in section 6.2) to achieve
the desired stability and performance requirements for the linearizations about
the selected operating points. Traditionally, the designs are such that for each
�xed value of the scheduling variables, the closed-loop system exhibits desirable
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performance and stability. The parameters of the controller are then interpolated
as functions of the gain scheduling variables. Finally, the gain-scheduled con-
troller is implemented on the nonlinear system, and checks are made for nonlocal
performance by simulating the nonlinear closed-loop model.

Further discussions, including detailed outline of gain scheduling techniques and
their stability and robustness implications can be found in [34], [33] and [2].

6.4 Control surfaces and actuators

The control of the aircraft is achieved through control e�ectors. The engine pri-
marily provides speed control while the rolling, pitching and yawing motions are
mainly produced by ailerons, elevators and the rudder respectively. Figure 6.1
is an example of a conventional aircraft control surface con�guration. Modern

Figure 6.1: Control surfaces for a conventional aircraft [3]

aircraft typically have more control surfaces than shown in �gure 6.1, and some
are designed with specialized control surfaces and control con�gurations. The
variation in con�guration and number of control surfaces is usually motivated by
performance and redundancy issues or requirements. Among the control surfaces

Figure 6.2: Control surfaces for a �ghter aircraft [3]

not seen in �gure 6.1 are canards, all-moving �ns, �aps, spoilers, and combina-
tions/merging of basic controls such as elevons, �aperons and stabilators. Figure
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6.2 shows the location of some of these control surfaces on a �ghter aircraft.

The control surface de�ections commanded by the �ight control system are re-
alised either through electricservo driven actuation (�y-by-wire), hydraulicservo
mechanism or a combination both. Figure 6.3 illustrates the orientation of the
basic control surfaces. The aerodynamic forces and moments produced by the de-

Figure 6.3: Positive orientation of the control surfaces

�ection of the control surfaces occur basically because of divertion of air�ow. The
e�ects of control surface de�ections on the rotational and translational motion
of the aircraft can be either desirable or viewed as a disturbance. For instance,
since the rudder is intended to provide directional control (yaw), a "cross-control"
e�ect produced on the rolling moment of the aircraft becomes an unwanted ef-
fect [2]. Some of the control surfaces can however be used to produce desirable
redundant e�ects. The di�erential de�ection of the ailerons and spoilers produce
yawing moments due to the di�erence in drag between the two sets. Also, roll
control can be obtained in a number of di�erent ways. The capability of several
control surfaces e�ecting the same aerodynamic motion introduces over actuation
in the aircraft control system. The e�ective utilization of this property in control
system design has become a vital part of modern fault tolerant control.

6.5 Faults - actuator failures

Faults are undesirable events that can occur in di�erent parts of the controlled
system. In automatic aircraft control system environment faults can be classi�ed
as actuator faults, sensor faults, and component faults, according to reference [35].

Actuator faults present partial or total (complete) loss of control action. Com-
plete actuator loss can occur, for instance, as a result of breakage, short circuits,
or broken wiring, and the a�ected actuator can be 'jammed' or locked, producing
no actuation regardless of the input applied to it. One of the worst kind of actua-
tor faults is actuator runaway (or hard-over). Another kind of total actuator loss
is free-play (�oat-type failure) or loss of actuator e�ectiveness. Partially failed
actuators produce only a part of the normal actuation, and this can result from
hydraulic or pneumatic leakage, increased resistance or a fall in the supply volt-
age. Due to their high prices and large size and mass, duplicating of the aircraft's
actuators to increase fault tolerace is often not an option.

Sensor faults represent incorrect readings from the system's sensors. Sensor faults
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can also be either partial (providing readings that are related to the measured
signal) or total (from which on useful information can be retrieved). Due to the
smaller sizes of sensors, they can be duplicated in the system to increase fault
tolerance. Sensor faults are therefore not treated as part of this project.

Component faults on the other hand, are faults in the components of the aircraft
itself. These faults represent changes in the physical parameters of the aircraft,
for example, aerodynamic coe�cients, damping constants, etc., usually caused by
structural damage. Component faults are the most di�cult to deal with, as they
cover a very wide class of unexpected situations. This class of faults are consid-
ered out of scope of this project.

Reference [35] presents and discusses di�erent mathematical representations of
the above mentioned faults. For mathematical modeling purposes, faults can be
classi�ed as additive (representing component faults) and multiplicative (suitable
for actuator and sensor faults). Faults can also be classi�ed according to their
time characteristics as abrupt (occuring instantaneously), incipient (slow para-
metric changes) and intermittent (appearing and disappearing repeatedly). The
following section presents various methods used to detect and identify di�erent
kinds of fault scenarios.

6.6 Fault Detection and Diagnosis/Identi�cation

Detailed information about fault-induced changes in the controlled system is nor-
mally required for a recon�gurable controller to be able to perform its tasks e�-
ciently. A fault detection and identi�cation (FDI) module, in a modern context
will thus consist of algorithms that monitors system performance to detect the
occurance of faults, and to determine their magnitudes.

Many techniques have been developed for detection and identi�cation of di�erent
types of faults. These techniques can be generally grouped into data-based and
model-based methods [1]. These two approaches can be further categorized into
quantitative and qualitative methods. Figure 6.4 shows an overview of classi-
�cation of FDI methods. Data-based methods detect faults by testing speci�c

Figure 6.4: Classi�cation of Fault Detection and Identi�cation methods [1]

properties of measurement signals. Spectral analysis and bandpass �lters are ex-



54 CHAPTER 6. FLIGHT CONTROL SYSTEMS AND FAULTS

amples of several techniques used in data-based methods. Among data-based
methods, neural networks (NN) and its advanced variants have become an active
area of research due to their learning ability.

Model-based methods on the other hand have wider range of application. Since
most of control techniques are model-based, fault tolerant controllers need to be
designed based on mathematical model of the system being analyzed. Among
quantitative model-based methods, state estimation schemes have been identi�ed
as most suitable for fault detection since they are inherently fast and cause a
short time delay in the real-time decision-making process. However, parameter
estimation based schemes become more desirable when the information from the
state estimation based algorithms are not detailed enough for subsequent control
system recon�guration. This is because fault-induced changes in parameters or
even system model need to be determined in some cases.

A very interesting idea for failure mode parameter estimation will be to employ
active/persistent input excitation of dormant degrees of freedom in the controlled
system. A scheme of this nature will have the advantage of not disturbing/in�u-
encing the main tasks of the automatic control system, and also ”hidden” faults
will be detected before an active control of the a�ected degree of freedom is
needed. Fault detection and identi�cation is, however, not treated as an active
part of this project, and indept analysis of any potential FDI method, is defered
to future studies.

Since the recon�gurable control strategy implemented in this project depends
on the existence of an FDI system, a simple parameter identi�cation model is
adopted from which key parameters de�ning actuator performance are easily ob-
tained. This type of FDI scheme is presented in [4], where each actuator is mod-
elled as a single input, single output (SISO) system with rate limits and position
limits as the key parameters to be identi�ed. Figure 6.5 illustrates the actuator
FDI system. Though simple, this FDI system can detect many di�erent faults

Figure 6.5: Illustration of Actuator FDI [4]

such as:

� Control restrictions caused by loss of hydraulic power or a physical restric-
tion on the surface will be detected as a change in the upper and/or lower
limits to new, non-equal values.
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� Surface jams caused by total failure of a stepping actuator will be detected
as a change of upper and/or lower position limits to new equal values.

� Reduced rate limits due to partial loss of actuation power will be detected
as a new upper and/or lower rate limits.

� Surface runaway caused by an error in the signal driving the actuator or
an internal malfunction will be initially detected as a change in upper and
lower rate limits to the same value (being the rate at which the surface is
”running” away). Once the actuator has saturated, the fault will change to
the surface jam case.

� Disconnected or free-�oating surface caused by physical damage (and pos-
sibly total loss of hydraulic power) will be detected as zero upper and lower
rate limits (if the signal fed back to the actuator FDI system is surface
de�ection).

It is worth noting that a �oating surface tends to have a greatly reduced aero-
dynamic e�ect on the aircraft dynamics. This type of fault could therefore be
detected as an aerodynamic fault rather than an actuator fault [4].
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Chapter 7

NMPC Autopilots

The classic autopilot designs presented in chapter 6.2 are based on successive
loop closure guided by a good deal of intuition and experience that assists the
selection of the control system structure. For instance, integral action is used to
eliminate steady-state error, while standard compensator structures are used to
approximate derivative action to stabilize the system. In addition, the e�ect of
parameter variations are reduced by providing inner rate-feedback loops around
the process model. Also, frequency-domain and well developed stability analy-
sis tools (such as Bode and Nyquist plots) enable the visualization of how the
system dynamics can be modi�ed. However, the design procedure based on the
classic one-loop-at-a-time approach become increasingly di�cult when more loops
are added, and does not guarantee success when the system dynamics are mul-
tivariable (that is, when there are multiple inputs, multiple outputs, or multiple
feedback loops) [2]. The need for a modern and advanced multivariable control
strategy that incorporates the aircraft's dynamics over it's entire �ight envelope
is well met by the inherent properties of NMPC (see chapter 3).

Stability augmentation systems, including automatic departure-/spin prevention
and state-limitations are absolutely necessary strategies that must be imple-
mented in order to achieve satisfactory �ying qualities for �ghter aircrafts. The
autopilots presented earlier in chapter 6.2 will therefore rely on additional limit-
ing strategies (discussed in [36]) for good performance. Emphasis can be placed
on the fact that unstable systems can be augmented with stabilizing inner-loops
before applying a model predictive control scheme. Practical reasons, including
possible sampling rate reduction, are mentioned in [9] as additional advantages
for employing a stabilzing inner-loop in an MPC framework. The sampling rate
of the MPC scheme can be reduced since the inner-loop will be handling the high
bandwidth disturbances and tracking requirements (with its smaller time imple-
mentation). It is again important to explore the numerous potentials of NMPC,
to examine both stability and dynamic performance capabilities, when applied to
systems with highly nonlilear and unstable modes. Moreover, the NMPC frame-
work has inherent limitation strategies (such as constraints and set-point manage-
ment) that can be explored for the �ghter aircraft's stability and state-limitation
requirements.

Maintaining the traditional approach in aircraft control system design structure
presented in section 6.2 and appendix B, each autopilot can be replaced with its
corresponding NMPC algorithm. This means the control variables and inputs will
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be kept the same as described for each autopilot in appendix B. Additionally, the
performance speci�cation will be formulated in terms of a mathematically pre-
cise performance criterion as presented in chapter 3. Individual sampling times
and horizons can in this case be employed to re�ect the relative computational
(or closed loop) speeds required for each autopilot dynamics. However, the ex-
tent of coupling that exists between the states of, for intance, the longitudinal
equations of motion (see (4.69)-(4.73) ), makes the separation into individual (or
sub-autopilots) computationally demanding. For later reference, this approach of
NMPC autopilot design is termed design option 1. Speci�cally, in design option
1, the longitudinal motion control is divided into an inner (fast) loop for pitch
or �ight path control and an outer (slow) loop for altitude control. Similarly,
the lateral motion control consists of an inner (fast) roll (or turn coordination)
controller and an outer (slow) heading controller.

To avoid recomputing the same equations in separate NMPC autopilots, two
NMPC autopilots can be conveniently formulated, one controlling the aircraft's
longitudinal dynamics while the other controls to the lateral mode. Besides, one
of the remarkable properties of NMPC is its ability to handle large multivariable
processes in an elegant and e�ective way. The main limitation of this strategy is
that the �exibility of choice of loop rates (and horizon) for altitude h and heading
Ψ control, which do not require high loop rates (or short horizon), become limited
by their usually faster inner loops (i.e. pitch attitude Θ and roll angle Φ). This
can result in aggresive control, but again, adequate choice of weighting matrices
and the use of either set-points or constraints on the rate states (e.g. climb rate)
are relatively simple ways of handling (otherwise) complicated system behavior
in the model predictive control framework [14]. This NMPC autopilot design ap-
proach will also be refered to as design option 2. Design option 2 will therefore
require the implementation of only two NMPC autopilots, whereas design option
1 suggests that four autopilots are implemented.

7.1 NMPC Longitudinal Motion Control

The longitudinal NMPC autopilot has as its main objective to follow time varying
set-points in pitch Θ (or �ight path γ) and altitude h, and at the same time serve
as a longitudinal stability augmentation system. This complicated task can be
formulated as a minimization of the following quadratic function:

JLo(xLo(tk), uLo(tk), tk) =
N−1∑
k=0

(
‖xLo(tk+1)− rxLo(tk+1)‖2QLo

+ ‖uLo(tk)− ruLo(tk)‖
2
RLo

)
(7.1)

subject to

xLo(tk+1) = fLo(xLo(tk), uLo(tk), tk), k = 0, ..., N − 1 (7.2)

xLo(t0) = xLo(0), given (7.3)

xmin ≤ xLo(tk) ≤ xmax, tk ∈ Td (7.4)

umin ≤ uLo(tk) ≤ umax, tk ∈ Td (7.5)

where all terms have the same interpretations as presented in chapter 3. Specif-
ically, xLo = [h, VT , α, γ, Q, δe]T represents the longitudinal state vector. All
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the states in xLo, except the elevator actuator state, are included in the objec-
tive function (7.1). The corresponding setpoints are therefore rxLo = [rh, rVT

=
VT0, rα, rγ = 0, rQ = 0]T . The chosen setpoints imply that straight level �ight
is the desired steady state condition for the aircraft, after a change in altitude rh
and a climb maneuver are accomplished. The last measured total speed VT0 is
used as the speed setpoint, since a minimum change in speed is desired. rα can
be �xed for speci�c �ight conditions or used as a recon�gurable aircraft stabilty
limit (or �ight envelope) reference. The control vector uLo = [δce, Tc]T consists
of elevator de�ection δce and thrust force Tc ≈ FT . The corresponding setpoint
vector for the control inputs is ruLo = [δe0, Tc0]T , which represents the last mea-
sured values of the respective control e�ectors. The function fLo is a collection of
the longitudinal equations of motion and elevator actuator dynamics, which take
the following continuous form (when design option 2 is used):

fLo =



ḣ(t) = VT (t)(cosα(t) sin(γ(t) + α(t))− sinα(t) cos(γ(t) + α(t)))

V̇T (t) =
1
m

(FT (t) cosα(t)−D(α(t), δe(t))−mg sin γ(t))

γ̇(t) =
1

mVT (t)
(FT (t) sinα(t) + L(α(t), δe(t))−mg cos γ(t))

α̇(t) = Q(t)− γ̇(t)

Q̇(t) =
m(α(t), δe(t))

Iy

δ̇e(t) =
1
Te

(δce(t)− δe(t))

(7.6)

All the aircraft variables are explained in chapter 4, and the longitudinal equa-
tions are the same as those presented in section 4.4.1. The use of γ = Θ − α
instead of θ in the performance index JLo introduces an implicit control of both
pitch attitude and angle of attack, and this proves to be a more e�ective way
of altitude control (for the complex �ghter aircraft dynamics examined in this
work). Moreover, the detectability (or observability) criteria (3.20) suggests that,
since the aircraft's longitudinal static stability highly depends on α, the aircraft's
angle of attack needs to be included in the objective function in order to provide
a form of arti�cial pitch stability for the aircraft. In fact, the incorporation of
α feedback and limitations are necessary strategies to provide satisfactory �ying
qualities (see reference [36] for a NASA report on F-16 �ight control).

7.2 NMPC Lateral Motion Control

Similar to the longitudinal NMPC autopilot formulation above, the lateral au-
topilot is designed to follow time varying set-points in roll Φ and heading Ψ.
Turn coordination and directional control are also implicit in the NMPC lateral
control objective. Lateral stability must also be maintained, but in view of the
stability measures taken for the longitudinal mode, the stability augmentation of
the lateral mode is less critical (in the �ight envelope considered in this work).
Moreover, the �ghter aircraft con�guration under study is statically stable in
the lateral channel for a comparably wide range of the aircraft's angle of attack
[36]. Nevertheless, an automatic departure-/spin prevention system e�ect and
yaw stability augmentation can be achieved by including yaw-rate (R) feedback
and limitations in the form of constraints.
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The lateral motion control task can be formulated as a minimization of the fol-
lowing quadratic function:

JLa(xLa(tk), uLa(tk), tk) =
N−1∑
k=0

(
‖xLa(tk+1)− rxLa(tk+1)‖2QLa

+ ‖uLa(tk)− ruLa(tk)‖
2
RLa

)
(7.7)

subject to

xLa(tk+1) = fLa(xLa(tk), uLa(tk), tk), k = 0, ..., N − 1 (7.8)

xLa(t0) = xLa(0), given (7.9)

xmin ≤ xLa(tk) ≤ xmax, tk ∈ Td (7.10)

umin ≤ uLa(tk) ≤ umax, tk ∈ Td (7.11)

where all terms have the same interpretations as presented in chapter 3. In addi-
tion, xLa = [β, Φ, Ψ, P, R, δa, δr]T represents the lateral state vector. All the
states in xLa, except actuator states, are included in the objective function (7.7).
The corresponding setpoints are therefore rxLa = [rβ = 0, rΦ = 0, rΨ, rP =
0, rR = 0]T . The chosen setpoints imply that wings-level �ight is the desired
steady state condition for the aircraft, after a change in heading rΨ and a turn
maneuver are accomplished. The control vector uLa = [δca, δcr]T consists of
aileron de�ection δca and rudder de�ection δcr. The corresponding setpoint vec-
tor for the control inputs is ruLa = [δa0, δr0]T , which represents the last measured
values of the respective actuator (or control surface) de�ection. The function fLa

is a collection of the lateral equations of motion and actuator dynamics, which
takes the following continuous form (when design option 2 is used):

fLa =



β̇(t) = P (t) sinα0 −R(t) cosα0

+
1

mVT0
(C(β(t), δa(t), δr(t))− FT0 cosα0 sinβ(t) + mg2)

Ṗ (t) =
Iz

IxIz − I2
xz

`(β(t), δa(t), δr(t)) +
Ixz

IxIz − I2
xz

n(β(t), δa(t), δr(t))

Ṙ(t) =
Ixz

IxIz − I2
xz

`(β(t), δa(t), δr(t)) +
Ix

IxIz − I2
xz

n(β(t), δa(t), δr(t))

Φ̇(t) = P (t) +R(t) tan Θ0 cos Φ(t)

Ψ̇(t) =
R(t) cos Φ(t)

cos Θ0

δ̇a(t) =
1
Ta

(δca(t)− δa(t))

δ̇r(t) =
1
Tr

(δcr(t)− δr(t))

(7.12)

All the aircraft variables are explained in chapter 4, and the lateral equations are
the same as those presented in section 4.4.2. The gravity component g2 is also
the same as in equation (4.85).

In both longitudinal and lateral NMPC autopilots, adequate sampling times and
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horizons must be selected to re�ect the dominating (or slowest) time constants,
and tuned such that the NMPC algorithm captures the correct system dynamics
during the prediction model simulations. As indicated by the autopilot formu-
lations, no additional stability measures in the form of terminal costs and con-
straints were necessary in the NMPC autopilots. The same applies to the use
slack variables. It was mentioned in section 3.4.2 that the use of detailed �rst
principles model is advantageous since the performance of the closed loop can
be increased signi�cantly without much tuning. This advantage proves to be
signi�cant, by reducing the tuning task to only horizon and weight (or penalty)
adjustments. Speci�cs about tuning, reference trajectory generation, and other
practical/implementation considerations are covered later in cahpter 8.
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Chapter 8

NMPC Autopilot
Implementations

8.1 The �ghter aircraft test model: F-16

The F-16 �ghter aircraft is the test aircraft for the NMPC autopilots designed
and studied in this work. The mathematical model used in this work uses data
from NASA-Langley wind tunnel tests on a subscale model of an F-16 aircraft
[36]. The original aircraft data (referd to as high �delity data) cover a very wide
range of angle of attack α (−20◦ to 90◦), and of sideslip angle β (−30◦ to 30◦).
Due to lack of su�cient pitching moment control for maneuvering at angles of
attack beyond 25◦, the data (found in [2]) has been reduced to −10◦ ≤ α ≤ 45◦

range, and the β dependence is also approximated in some cases. The result is
refered to as low �delity aerodynamic data.

The F-16 model used as the plant in the simulations is a 6DOF completely non-
linear model based on the high �delity data implementations of [37]. The aircraft
model is written in C programming language and includes functions needed to in-
terpolate aerodynamic data from look-up tables. The NMPC autopilot prediction
models are also written in C and interfaced with MATLAB simulation environ-
ment using the ACADO toolkit (see section 8.3.1).

The aircraft equations of motion used for both plant simulations and control
design are the nonlinear models presented earlier in section 4.3 and chapter 7.
The speci�c coe�cient equations used to sum the contributions to a given force
or moment are based on the formulations presented in section 4.2 and can be
found in appendix A. For simplicity and reduction of the required computational
power, the low �delity aerodynamic data tables were used in the NMPC autopilot
prediction model calculations. It should, however, be noted that the approximate
model constructed from the low �delity data exhibits steady state �ight trim con-
ditions, and corresponding dynamic modes, that are close to those of a full high
�delity data model [2].

The geometric properties, dimensions, and limitations of the F-16 model are
shown in tables 8.1, 8.2 and 8.3. The F-16 model data are given in English
units, rather than SI units. English units are, therefore, used throughout this
thesis and the implementation code-�les to maintain consistency and easy refer-
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ence to the data source. In additon to the control surfaces listed in table 8.2, the

Mass Properties
Weight(lbs): W = 20500

Moment of Inertia (slug-ft2): Jxx = 9496
Jyy = 55814
Jzz = 63100
Jxz = 982

Wing Dimensions
Span: b = 30ft
Area: S = 300ft2

mean aerodynamic chord: c̄ = 11.32ft

Reference CG Location XCG = 0.35c̄

Table 8.1: F-16 Geometric Properties

Controls De�ection limit Rate limit Time constant
Elevator ±25.0◦ 60◦/s 0.0495 s lag
Aileron ±21.5◦ 80◦/s 0.0495 s lag
Rudder ±30.0◦ 120◦/s 0.0495 s lag

Table 8.2: F-16 Control Surface Actuator Models

Variable Units Min Max
Altitude ft 5000 40000
Angle of attack deg -10 45
Sideslip deg -30 30
Velocity ft/s 300 900
Thrust lbs 1000 19000

Table 8.3: A summary of the operational range for which the F-16 model is valid

F-16 has a leading-edge �ap δLEF that is automatically controlled as a function
of angle of attack α, static pressure ps and dynamic pressure q̄, according to the
following transfer function [36]:

δLEF = 1.38
2s+ 7.25
s+ 7.25

α− 9.05
q̄

ps
+ 1.45

The above automatic control strategy using the leading edge �ap allows the air-
craft to �y at high angles of attack. Since control at high angles of attack and
the study of stall/post-stall characteristics are not considered in this work, the
leading-edge �ap control transfer function was not included in the internal model
of the NMPC autopilot implementations. Further extension of the �ight enve-
lope, including angles of attack beyond 45◦, will require the implementation of
the δLEF transfer function.

All the actuators of the control surfaces are modeled as �rst order dynamics (see
equation (4.124)) with time constants (which specify the bandwidths), de�ection
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limits and rate limits shown in table 8.2. A positive de�ection of the control sur-
faces results in a decrease in the body-axis rates. Speci�cally, a positive aileron
de�ection gives a decrease in the roll rate, and requires that the right aileron de-
�ect downwards and the left aileron de�ect upwards. A positive elevator de�ection
causes a decrease in pitch rate, implying that the elevator is de�ected downwards.
A decrease in yaw rate will be achieved by a positive rudder de�ection, which
requires that the rudder is de�ected to the right. A visual representation of the
positive orientations for the control surfaces can be found in �gure 6.3 in section
6.4.

The F-16 is powered by an after-burning turbofan jet engine, which has a model
that takes into account both gearing and engine power level lag. The thrust
response is rather simpli�ed by a �rst order dynamic lag model, where the lag
time constant is a function of the current engine power level and the commanded
power. Power level control plays an important role in any complete automatic
�ight control system, but in this work the control surfaces are considered as the
main control e�ectors. The engine thrust force is therefore kept almost constant
in all the test simulations presented later in this chapter.

8.2 Aircraft Stability veri�cations/study

The F-16 is an inherently unstable aircraft. With the center of gravity (CG) at
the reference location of 0.35c̄ and in steady wings-level straight �ight, both sta-
ble and unstable equilibrium (balanced �ight or trim conditions) can be obtained.
Some of the trimmed conditions are achieved with saturated elevator control. In
such conditions the aircraft may be balanced but unstable as well. The graphs of
the pitching-moment coe�cients about the CG versus angle of attack, as well as
the aerodynamic data lookup-table from which they were generated are shown in
�gure 8.1 and table 8.4 respectively. The aerodynamic data represent body-axes
dimensionless coe�cients of the F-16 model at arbitrary values of the indepen-
dent state variables (i.e. variables Cm does not depend on). The angle of attack
range of the lookup-table 8.4 is from −10◦ to 45◦, divided into 5◦ increments, and
the elevator de�ection is �xed at −25◦, −10◦, 0◦, 10◦ and 25◦ as indicated by
the table variables. The interpolation algorithm used with the aerodynamic data
table interpolates linearly between the data points.

Cm−25 0.205, 0.168, 0.186, 0.196, 0.213, 0.251,
0.245, 0.238, 0.252, 0.231, 0.198, 0.192

Cm−10 0.081, 0.077, 0.107, 0.110, 0.110, 0.141,
0.127, 0.119, 0.133, 0.108, 0.081, 0.093

Cm0 -0.046, -0.020, -0.009, -0.005, -0.006, 0.010,
0.006, -0.001, 0.014, 0.000, -0.013, 0.032

Cm10 -0.174, -0.145, -0.121, -0.127, -0.129, -0.102,
-0.097, -0.113, -0.087, -0.084, -0.069, -0.006

Cm25 -0.259, -0.202, -0.184, -0.193, -0.199, -0.150,
-0.160, -0.167, -0.104, -0.076, -0.041, -0.005

Table 8.4: F-16 Cm lookup-table for �xed elevator angles
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(a) Cmα
for δe = 0◦

(b) Cmα for δe = −25◦ (c) Cmα for δe = −10◦

(d) Cmα for δe = 10◦ (e) Cmα for δe = 25◦

Figure 8.1: F-16 pitch moment coe�cients for �xed elevator angles δe
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From the pitching moment coe�cient curves (�gure 8.1), it can be observed
that α = 15◦ is dominant as a transition point between static unstable and stable
�ight conditions. This point and the angle of attack range of −5◦ and 25◦ were,
therefore, chosen for further examination. The choice of the mentioned α-range
is also because it re�ects similar stability behavior as that desired for the tests to
be performed in this project. To verify the stability behavior of the aircraft in the
range under study the F-16 was �rst trimmed for steady-wing �ight at α = 12.5◦

and then at α = 20◦. The trim routines used for this task trims the aircraft to
desired altitude and velocity, while all other state-parameters are varied until level
�ight is achieved. The trim values for negative pitch sti�ness (unstable α-range)
veri�cation test are shown in table 8.5.

thrust 3067.2634 lb
elevator -3.9973 deg
aileron 0 deg
rudder 0 deg
alpha 12.4412 deg
velocity 350 ft/s
altitude 20000 ft

Table 8.5: Trim values for negative pitch sti�ness test

8.2.1 Negative pitch sti�ness test

During straight wing-level �ight the F-16 was disturbed from its equilibrium at-
titude by increasing the angle of attack by 2◦ (for 5s) as shown in �gure 8.2a. As
expected, the angle of attack α (see �gure 8.2d) continues to increase (rotating
the aircraft further from its trimmed attitude) until it enters the stable α-range
(α > 15◦) where the aircraft experiences a restoring moment. However, it can be
observed in the α, velocity and altitude plots of �gure 8.2 that the F-16 is unable
to return to its initial equilibrium condition.

8.2.2 Positive pitch sti�ness test

The trim values for positive pitch sti�ness (stable α-range) veri�cation test are
shown in table 8.6. The α disturbance test was repeated for the angle of attack

thrust 5247.322 lb
elevator -6.0538 deg
aileron 0 deg
rudder 0 deg
alpha 20.2424 deg
velocity 300 ft/s
altitude 25000 ft

Table 8.6: Trim values for positive pitch sti�ness test

range which has positive pitch sti�ness (statically stable). When the angle of
attack disturbance was introduced, the aircraft immediately responded with a
counter moment in the attempt of reducing the angle of attack to its equilibrium
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(a) Constant angle of
attack disturbance

(b) North position and
Altitude

(c) Pitch attitude
response

(d) Velocity and Angle of
attack

Figure 8.2: F-16 negative pitch sti�ness: static instability

value. The α, velocity and pitch attitude plots in �gure 8.3 show that the aircraft
oscillates towards its initial equilibrium condition, as expected.

The preceding illustrations using the aerodynamic data show the demading
control challenges at hand. Similar analysis can be performed using aerodynamic
coe�cient data for roll and yaw sti�ness. However, as explained in chapter 5,
the results of greatest importance for static stability are those assosiated with
the longitudinal analysis. Analysis done in [36] show that the F-16 con�gura-
tion under study is statically stable in the lateral channel for a comparably wide
range of the aircraft's angle of attack. Maintaining lateral stability must also
be included as a control objective, but again, the stability augmentation of the
lateral mode is less critical (in the �ight envelope considered in this work), when
compared with the stability measures that are required for the longitudinal mode.

Preliminary study and discussion of the use of NMPC as both a stability and
control augmentation system for the longitudinal dynamics are presented in fol-
lowing sections.
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(a) Constant angle of
attack disturbance

(b) North position and
Altitude

(c) Pitch attitude
response

(d) Velocity and Angle of
attack

Figure 8.3: F-16 positive pitch sti�ness: statically stable mode

8.3 NMPC and unstable �ight mode control study

The longitudinal dynamics of the F-16 aircraft provides a good platform for study-
ing the issues regarding stability, computational feasibility and performance of
NMPC. The simulations and test results presented in the following sections cover
important aspects of NMPC used in this work. Practical tuning tradeo�s and
choice of constraints and set points or reference trajectories are also examined.
In addition, particular attention is paid to the relationship between control input
saturation, actuator bandwidth and controllability.

The optimization package used in solving the NMPC problems formulated in this
work is ACADO Toolkit. Section 8.3.1 highlights the key features of ACADO and
the optimizer parameters used in this work.
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8.3.1 NMPC optimization solver: ACADO for MATLAB

ACADO Toolkit is an algorithm collection for automatic control and dynamic op-
timization, implemented as self-contained C++ code. ACADO provides a general
framework for using a veriety of algorithms for direct optimal control, including
Nonlinear Optimal Control, Multi-Objective Optimal Control, State and Param-
eter Estimation, Model Predictive Control, and Code Generation for Fast NMPC.
A basic and key feature of ACADO is to provide solution to standard optimal con-
trol problems, which typically consist of a dynamic system with di�erential and/or
algebraic states and control objectives. Several types of constraints, such as con-
trol and state bounds, terminal constraints, general nonlinear path constraints,
and periodic boundary conditions can also be implemented in the ACADO soft-
ware environment.

ACADO provides a MATLAB interface, which makes the ACADO algorithms and
intergrators accessible fromMATLAB. This feature is very convenient when MAT-
LAB/Simulink is used as the main simulation environment as done in this project.
The NMPC autopilots designed in this project were implemented in two parts.
The �rst consisting of the optimization problem, composed in MATLAB using
MATLAB syntax, and the second being the NMPC prediction model implemented
as a C-code black-box. An alternative is to write C/C++ code for both parts as
a MEX-function and compile it using MATLAB's built-in MEX-compiler. This
�exibility provided by ACADO makes the coding of the nonlinear F-16 model, in-
cluding aerodynamic coe�cient calculations and table-lookup/interpolation rou-
tines, become a pleasant task.

The autopilot optimization problems are solved using ACADO's multiple-shooting
SQP-type method combined with Runge-Kutta integrator (of order 4/5) for the
state integration. Multiple-shooting is considered as a discretization-type pa-
rameter option in ACADO. In addition, the KKT 1 tolerance which is used for
the convergence criterion of the SQP algorithm is set to 1e−6 (default value in
ACADO). The default value of the maximum number of iterations (1000) is also
maintained for all simulations and tests. The maximum number of iterations of-
fers a means of specifying a trade o� between result accuracy and computational
time. Smaller values will reduce the execution time, but the result could be far
from optimal. ACADO o�ers several other algorithmic and numerical optimizer
options in the form of simple parameter settings. These settings are selected
based on the background knowledge acquired from NMPC theory (see chapter 3)
and numerical optimization. However, it is important to monitor the resulting
trajectories and tune the optimizer paramters to suit the problem under study.
Further details about the ACADO Toolkit can be found in [38], [39], and [40].

Scaling is also an important factor to consider in order to avoid numerical prob-
lems in the optimization problem solver. Numerical problems can arise as a result
of the optimization problem becoming ill-conditioned, due to poor scaling. The
variables in the optimization problem must be scaled such that the di�erences in
tracking/control errors resulting during maneuvers are not too large. However,
since the changes in the time-varing references considered in this work are not
very large, and considering the autopilot design structure employed (i.e. separat-

1KKT refers to Karush-Kuhn-Tucker �rst order (necessary) optimality conditions.
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ing the aircraft model into relatively well-conditioned sub-models, w.r.t. scaling),
no prescaling of variables was necessary.

8.3.2 Dynamic Performace and Stability

A pitch attitude-hold autopilot is designed and examined as the main objective
of the NMPC and unstable �ight mode study. Each test is initialized with the
aircraft at trimmed �ight state, and perturbations are introduced to excite unsta-
ble modes and nonlinear dynamics in the closed loop control system. The trim
routine implemented trims the aircraft to desired altitude and velocity, while all
other state-parameters are varied until level �ight is achieved. The trim values
used as initial �ight conditions in this study are shown in table 8.7.

Pitch angle Θ, pitch rate Q, and angle of attack α are the aircraft states consid-

thrust 2168.7066 lb
elevator -2.7656 deg
aileron 0 deg
rudder 0 deg
alpha 5.5311 deg
velocity 500 ft/s
altitude 20000 ft

Table 8.7: Trim values for performance tests

ered through the implementation of their corresponding fully nonlinear equations
of motion (4.71)-(4.73). The elevator angle δe (in degrees) is the main and only
active/varying input, assuming a constant speed approximation (that is, a ded-
icated thrust control strategy is assumed). To incorporate actuator dynamics
into the NMPC scheme, a �rst order actuator model with 20.2Hz bandwidth was
implemented. A step response and Bode plot are shown in �gure 8.4. The ele-
vator angle is limited to ±15◦, and the elevator de�ection rate is limited to ±60◦/s.

Unlike passenger aircrafts, which usually have pitch limits for passenger comfort,
the F-16 pitch angle in this study is left unconstrained. Limits of −10◦ and +45◦

are, however, observed as a bound on angles of attack for which the F-16 model
is valid.

Figure 8.5 shows the response of step changes in pitch set-point, governed by
reference trajectories taking the form of smooth curves generated using the pchip
2 function in MATLAB. The pchip function is chosen over spline 3, since compa-
rably less oscillation and no overshoots are obtained with pchip. The reference
trajectory for a step change in pitch attitude from 0 to 10◦ is illustrated in �gure
8.6.

The sampling interval used to obtain the results in �gure 8.5 was Ts = 0.05s
2Piecewise Cubic Hermite Interpolating Polynomial. pchip(X,Y) provides the piecewise poly-

nomial form of a certain shape-preserving piecewise cubic Hermite interpolant, to the values Y
at the sites X.

3Cubic spline data interpolation. spline(X,Y) provides the piecewise polynomial form of the
cubic spline interpolant to the data values Y at the data sites X.
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Figure 8.4: Control surface actuator system dynamics

corresponding to 20Hz, and the prediction horizon and control horizon were kept
equal as Hp = 10 (0.5s). The tracking errors were penalized over the whole pre-
diction horizon with weights diag([1000, 10, 1]) corresponding to the state-vector
[Θ, α, Q]T , and 0.001 as the weight on δe.

It can be observed in �gure 8.5 that none of the constraints were active be-
tween time points from 0s to 10s. The behavior of the resulting controller (in
that time interval) can be easily compared to that of its linear time-invariant
approximation. However, a change demand for the pitch angle and other ma-
noeuver speci�cations, result in some constraints (particularly, elevator limits)
becoming active, making the control action also nonlinear. The total speed pro-
�le (Vel [ft/s]) in �gure 8.5b shows inaccuracies introduced into the prediction
model when constant speed approximation is assumed. Implementing the speed
state VT equation, including thrust control Tc, will therefore be an appropriate
alternative, especially for autonomous �ight control strategies.

A strategy for including angle of attack in the overall control objective is neces-
sary, for both stability and dynamic performance enhancement. The main reason
is the direct dependence of the aircraft's pitching moment on angle of attack,
and most importantly to correctly utilize the nonlinear relation between angle of
attack and pitch moment coe�cients. These measures are appropriate to enhance
stability and performance as discussed in section 3.3. Moreover, it is desirable as
an NMPC strategy to in�uence controllable states through minimization of the
state-errors de�ned in the cost function of the optimization problem (see equation
3.20 in section 3.3 ).
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(a) Pitch attitude and
elevator response

(b) Velocity and
Angle of attack

Figure 8.5: NMPC pitch-attitude hold autopilot response

Predictive pitch control without correct information about the angle of attack
at several operating points in the �ight envelope, results in satisfactory control
only within stable α ranges for obvious reasons. Wrong predictions that result
in an increase of the aircraft's angle of attack within an unstable range naturally
drive the pitch angle away from its desired set point, inducing a disturbance which
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Figure 8.6: Pitch control reference trajectory

again needs compensation through controls. In worst cases the predictive control
can end up destabilizing a well-trimmed �ight condition.

The NMPC implementation tool (ACADO) used in this study facilitates the link-
ing of C/C++ models to the NMPC formulation, making it possible to include
interpolation routines for reading pitch moment coe�cients based on angle of
attack predictions and their corresponding elevator de�ections. Other important
parameters such as dynamic pressure can be allowed to vary to enhance the search
of feasible solutions and optimal input predictions in the ACADO environment.

Observations from the NMPC pitch autopilot simulations con�rm the fact that
complicated behaviors can be obtained by relatively simple speci�cations (like
constraints), without the need to introduce mode-switching logic explicitly 4.

The �exibility achieved through constraint speci�cations should, however, not be
seen as a substitute for set-points. In the pitch control study, it was observed that
introducing set points for angle of attack (as a secondary5 objective) by gradually
guiding the aircraft into stable α regions is a means of utilizing the �exibility of
NMPC to enhance stability and robustness to disturbances. Operating in stable
α range also comes with a drawback of reduced maneuverability, indicating the
need of making trade-o�s between stability and dynamic performance. Simula-

4The di�erence between the MPC approach (declarative programming) and mode-switching
logic (procedural programming) is stated in [14] as follows:
Mode-switching logic speci�es how the controller is to achieve the required behavior, whereas
the use of constraints speci�es what behavior it must achieve.

5Apart from the primary state, for instance Θ in a pitch-hold autopilot, all the other states
in the cost function constitute the secondary objective. They are either allowed to be driven
freely by any cahnge demand in the primary objective (i.e. weight/penalty set to zero) or given
lower priority-weights (which are possibly state-dependent).
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tion tests show that using angle of attack references as a stable mode seeking
control strategy can increase the need of control e�orts in tracking changes in the
pitch reference trajectory, as stable α ranges increase the restoring tendencies 6 of
the aircraft, and hence resisting control e�orts. On the other hand maintaining a
commanded pitch in an unstable α range demands relatively larger control e�orts,
especially in the presence of disturbances (such as wind gusts or turbulence).

8.3.3 NMPC Stability and Infeasibility issues

The only reason for considering NMPC stabilty issues in this work is the rather
short horizons selected in the NMPC autopilot implementations. Considering the
actuator time constant of 0.0495s in the pitch control loop, a horizon of 0.5s gives
the optimizer very limited perspective of the aircraft's response. The tendency of
generating control trajectories that are far from optimal becomes high, and any
numerical problems that arise are very unlikely to be subdued within the short
horizon. The risk of the optimization problem solver terminating with local solu-
tions is also high.

When very demanding maneuvers are required, any wrong predictions easily result
in the aircraft states rapidly departing from their desired reference trajectories
and eventually voilating the F-16 model validity boundary constraints (beyond
which the F-16 model is invalid). The model validity constraints in table 8.3
are rather 'hard' in nature, and allowing them to be voilated due to infeasibility
issues, rather introduces numerical problems, that in worst cases stop the simu-
lation.

Finding parameters that satisfy all the stability conditions of the general sta-
bilizing NMPC design approach (see section 3.3.3), including a well-determined
�nite horizon, proved to be an extensive and time consuming task for the com-
plete F-16 model. An alternative was to employ stability measures according
to the stability preserving NMPC formulations in section 3.3.2, but due to the
time-varying references intended to be used in this work, further extensions will
be necessary. However, simple choices such as using a quadratic objective func-
tion, which has weighting matrices Q = diag([1000, 10, 1]) (for the 'runing' cost),
R = 0.001 (for the elevator error), P = diag([1000, 100, 10]) (for the terminal
cost), and no terminal constraint (i.e. Ω = Rn), tend to keep the system within
its validity boundaries. Similar results were also ovbserved when the implemen-
tation strategy (3.50) in section 3.3.4 was used.

A rather interesting observation was later made when the complete NMPC au-
topilots for the longitudinal dynamics was implemented. The altitude autopilot
which was implemented with a much longer horizon tend to generate well damped
�ight path reference trajectories that e�ectively keep the faster longitudinal state
dynamics in check. In addition, introducing extra secondary objectives and con-
straints (such as climb rate for the longitudinal channel, and yaw rate and roll
rate for the lateral channel) resulted in the generation of very reliable control
trajectories. Because of these reasons, terminal costs and constraints were not

6 Refer to static stability discussions in chapter 5.
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necessary in the �nal NMPC autopilot implementations presented in section 8.4.

8.3.4 Disturbance rejection and tuning

Figure 8.7 shows the responses when wind gusts appear as a disturbance on the
aircraft's angle of attack, causing a 2◦ increase and lasting for over 10s. The dis-
turbance a�ected mainly unstable α range of the aircraft, but it can be observed
from the plots that the resulting pitch control is very close to the results obtained
for the disturbance-free simulation shown in �gure 8.5. An obvious di�erence is
noticed in the angle of attack pro�les in �gures 8.5b and 8.7b, caused by the sim-
ulated wind gust. A closer look at the elevator actions also con�rms the expected
increase in control e�orts needed to accomplish the desired maneuver satisfacto-
rily.

Introducing secondary objectives (for instance, specifying set points for pitch rate
Q and α), may require changing tracking error weights during a maneuver, usually
in favor of the primary objective when appropriate. The recon�gurable nature of
NMPC comes in handy in this kind of situations. A good approach is to make the
weights state-dependent, allowing the secondary objective states to vary freely
within their limits until the primary error has been reduced to some small value.
State-dependent weighting, in addition to a good understanding of the behavior
of relative weighting, makes the NMPC tuning task much easier and relaxed. A
typical (but not general) behavior is noticed when the primary objective (pitch)
tracking error dominates the secondary objective (α and Q) errors during most
transients, so that the secondary states depart from their set-points in order to
allow the pitch error to be reduced. This behavior is a direct consequence of
the relative sizes of the numerical values of the errors that arise. That is, the
(weighted) pitch error becomes su�ciently larger than the other errors, making
its contribution to the cost function most signi�cant.
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(a) Pitch control

(b) Velocity and α

(c) α disturbance pro�le

Figure 8.7: NMPC pitch autopilot response to α disturbances
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8.4 NMPC Autopilot Simulation and Test-setup

The NMPC autopilots described in chapter 7 were implemented and tested in
MATLAB/Simulink simulation environment. The MATLAB/Simulink modules
consist of a Pilot/Control commands unit, a collection of the NMPC Autopilots
as an Automatic Control System unit, and the F-16 Nonlinear Plant. Figure 8.8
shows the MATLAB/Simulink simulation setup. The Longitudinal and Lateral

Figure 8.8: Recon�gurable NMPC autopilots, simulation setup

NMPC autopilots and their actuators are masked under the Automatic Control
System block, shown in �gure 8.9. The simulation details and selected test results

Figure 8.9: F-16 NMPC autopilots and Actuators

of the NMPC autopilots follow in sections 8.4.1 and 8.4.2. Actual F-16 perfor-
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mance limit values were used to obtain the autopilot simulation results presented
in this work.

8.4.1 Longitudinal motion control

An altitude-hold autopilot which relies on a �ight path controller was implemented
for maneuvers in the longitudinal channel, based on NMPC autopilot design op-
tion 1 described in chapter 7. The altitude-hold and �ight path control autopilots
are shown in �gure 8.10. The design option 1 was preferable due to the extra

Figure 8.10: NMPC altitude-hold autopilot and �ight path control implemented
in simulink

�exibility in the choice of sampling time and horizon for the autopilots. In a
classical autopilot design sense, the altitude control is seen as the (slower) outer
loop while the �ight path control is the (faster) inner loop. The NMPC tuning
task also becomes less demanding and more intuitive, when design option 1 is
used. To reduce the computational burden of recomputing the same equations
(including table-lookup interpolations, needed during optimization iterations) in
separate NMPC autopilots, the measured states of the �ight path NMPC prob-
lem were introduced as time-varying parameters in the altitude NMPC problem
formulation (see design summary table 8.9).

In �gure 8.10, the 'MATLAB function' blocks contain all the NMPC problem
formulations implemented as a combination of MATLAB scripts and C-code (see
appendix ??). The ACADO for MATLAB NMPC formulations and design pa-
rameter values are presented in tables 8.8 and 8.9. The continuous time form
of the prediction model was implemented directly using ACADO's continuous
time formulation syntax. Refer to appendix A and ?? for aerodynamic coe�-
cient calculation (or intermediate states) details that are not shown in the NMPC
autopilot design summary tables. The initial values for states and parameters
are the measured values from the last/previous sample time. As discussed in the
NMPC preliminary studies in section 8.3.3, terminal costs and constraints were
not necessary as stability measures in the autopilot designs presented in this sec-
tion and all the sections that follow.

Climb maneuvers and steady �ights at cruise altitude were used to test the
altitude-hold and �ight path autopilots. The results are shown in �gure 8.11.
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The results show pure longitudinal decoupled motion control. The lateral �ight
controls were kept at trim settings (see table 8.7) while the longitudinal �ight ma-
neuvers were performed. The test results in �gure 8.11 can therefore be seen as a
calm cruise of the F-16, and the NMPC autopilot outputs quickly settle to their
optimal trajectories. The �ight tests were initialized at trim-�ight conditions, and
it is interesting to see how the NMPC strategy quickly �nds and maintains opti-
mal trajectories for all states and controls in the 0 − 20s time intervals of �gure
8.11. The seemingly e�ortless control observed only con�rms the reliability and
e�ectiveness of predictive/optimal control when good initial values of the process
are available.

The �ight path autopilot has an additional objective of maintaining low angle
of attack (close to 4◦) as well as zero pitch rate. The corresponding weighting
matrix values (in table 8.8) were therefore selected to ensure that �ight path con-
trol is always prioritized. The dynamic performance observed in the pitch rate
and angle of attack trajectories of �gures 8.11b and 8.11c are considered satisfac-
tory for the objectives of this work.

The demanded change in altitude was carried out smoothly, despite how close
the angle of attack trajectory follows the pitch attitude of the F-16. Figure 8.11b
is an evidence of the challenging task of separating the pitch and angle of attack
trajectories to be able to perform rapid climb maneuvers of the F-16. From the
pure pitch controller studied in section 8.3.2 it was observed that the angle of at-
tack follows pitch very closely at the begining of each attitude change maneuver,
but reduces gradually and takes about 10s to settle close to it's lower reference
value (see �gure 8.5b). Any climb maneuver that requires an optimal separa-
tion of pitch and angle of attack at the begining, followed by zero separation,
under 10s is obviously not an easy task (especially in a classical autopilot design
sense). Using pitch as the main climb maneuver objective and anlge of attack as
a secondary stability enhancing objective, as suggested in section 8.3.2, posed a
very extensive tuning task for the complete longitudinal autopilot implementa-
tion. Direct �ight path control, through simultaneous (optimal) manipulation of
both pitch and angle of attack proved to be more appropriate when altitude-hold
is the primary objective of the longitudinal control augmentation system for the
F-16.

It is also important to note that the 5s horizon chosen for the altitude autopilot
was a necessary trade-o� between computational speed and dynamic performance
of the F-16 (in view of the observed 10s settling time of α). Shorter horizons (less
than 2s) result in aggressive control. Note the di�erence in the �ight path com-
mand reference trajectories generated in the 5s horizon plot (�gure 8.11a) and
the 2s horizon plot (�gure 8.12a). The slight overshoot observed in the altitude
plot 8.11a is also avoided by increasing the horizon.
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(a) Altitude and
�ight path control

(b) Pitch and
Angle of attack

(c) Total speed and
pitch rate

(d) Elevator input
and thrust force

Figure 8.11: F-16 NMPC longitudinal motion control (Th = 5s)
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Di�erential states:
γ �ight path
Q pitch rate
α angle of attack
VT total speed
δe elevator state
δ̇e elevator de�ection rate

Controls:
δce elevator command
Tc (FT ) thrust command

Model Parameters:
q̄ dynamic pressure

Optimization/prediction parameter values:
Ts = 0.05s sample time
Th = 1.0s horizon (start: 0.0s)
N = 20 intervals in horizon

Diagonal weighting matrix values:
Qp(1, 1) = 100.0 h error weight
Qp(2, 2) = 0.010 Q error weight
Qp(3, 3) = 0.100 α error weight
Qp(4, 4) = 0.001 VT error weight
Rp(1, 1) = 0.001 δce error weight
Rp(2, 2) = 1.000 Tc error weight

Objective function parameters:
{γ, Q, α, VT , δce, Tc} states and controls

{rγ , 0, 4◦, 700ft/s, δe0, 2169lb} setpoints

Di�erential equation (prediction model):
γ̇(t) = 1

mVT (t)(FT (t) sinα(t) + L(α(t), δe(t))−mg cos γ(t))
Q̇(t) = m(α(t), δe(t))/Iy
α̇(t) = Q(t)− γ̇(t)
V̇T (t) = 1

m(FT (t) cosα(t)−D(α(t), δe(t))−mg sin γ(t))
δ̇e(t) = (δce(t)− δe(t))/Te

[γ0, Q0, α0, VT0, δe0, δ̇e0], [q̄0] initial values
(last measured values)

Constraints on states, parameters and controls:
−10◦ ≤ α ≤ 45◦ angle of attack

900ft/s ≤ VT ≤ 1000ft/s total speed
−45◦ ≤ γ ≤ 45◦ �ight path

−15◦ ≤ δce ≤ 15◦ elevator de�ection
−60◦/s ≤ δ̇ce ≤ 60◦/s elevator rate

1000lb ≤ Tc ≤ 19000lb thrust force
q̄ = q̄0 dynamic pressure

Table 8.8: NMPC �ight path control design parameters and prediction model
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Di�erential states
h altitude

Controls
γc �ight path command

Model Parameters
α angle of attack
VT total speed

Optimization/prediction
parameter values

Ts = 0.5s sample time
Th = 5.0s horizon (start: 0.0s)
N = 10 intervals in horizon

Weighting matrix values
Qa(1, 1) = 0.01 h error weight
Ra(1, 1) = 0.10 γc error weight

Objective function
parameters

{h, γc} state and control
{rh, γ0} setpoints

(γ0: last measured value)

Di�erential equation
(prediction model)

ḣ = VT cos(α) sin(γc + α)− VT sin(α) cos(γc + α)
[h0], [α0, VT0] initial values

(last measured values)

Constraints on states,
parameters and controls

−833.3ft/s ≤ ḣ ≤ 833.3ft/s climb rate
−25◦ ≤ γc ≤ 25◦ �ight path command

α = α0 angle of attack
VT = VT0 total speed

Table 8.9: NMPC altitude-hold (climb control) autopilot design parameters and
prediction model
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(a) Altitude and
�ight path control

(b) Pitch and
Angle of attack

(c) Total speed and
pitch rate

(d) Elevator input
and thrust force

Figure 8.12: F-16 NMPC longitudinal motion control (Th = 2s)
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8.4.2 Lateral motion control

The NMPC lateral autopilots include a Heading hold controller which performs co-
ordinated turns in conjunction with a roll-angle hold controller. Figure 8.13 show
the simulink models of the Heading hold and roll-angle hold autopilots. Similar to

Figure 8.13: NMPC heading-hold autopilot and turn coordination implemented
in simulink

the longitudinal motion control, design option 1 was used for the lateral NMPC
autopilot implementations. The measured states of the turn-coordination autopi-
lot were introduced as time-varying parameters in the heading NMPC problem
formulation (see design summary table 8.11). The 'MATLAB function' blocks
in �gure 8.13 contain the NMPC problem formulations implemented as a com-
bination of MATLAB scripts and C-code (see appendix ??). The ACADO for
MATLAB NMPC formulations and design parameter values are presented in ta-
bles 8.10 and 8.11.

Coordinated turns and steady �ights on preset headings were performed for
testing the performance of the heading-hold and roll-angle hold autopilots. The
results are shown in �gure 8.14. The results show pure lateral decoupled motion
control. The longitudinal �ight controls were kept at trim settings (see table 8.7)
while the lateral �ight maneuvers were performed. The test �ight began with
a 20◦ heading demand and was stepped down to 10◦ after 30s. The demanded
changes in heading were carried out smoothly, as can be observed in �gure 8.14.

The turn coordination autopilot has an additional objective of maintaining zero
sideslip as well as zero yaw rate and roll rate. The corresponding weighting matrix
values (in table 8.10) were therefore selected to ensure that the roll attitude is
always prioritized. The simple choice of weighting values works perfectly for the
roll rate and yaw rate objectives (observed in �gure 8.14c) since they are directly
related to the change demands in roll and yaw attitudes (or moments). Sideslip
on the other hand depends on speed control, and in addition, the direct e�ect
of sideslip on yaw-dynamics, through yaw rate coupling e�ects, is not properly
accounted for in the turn coordination strategy used. For these reasons further
tuning will be necessary for sideslip if error-free control is required. Nevertheless,
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keeping sideslip close to zero (observed in �gure 8.14b) is considered satisfactory
for the overall performance of the NMPC lateral autopilots.

An important remark on the turn coordination strategy is the use of the non-
linear version of the classical bank-to-turn equation (B.10) (also shown in table
8.11), instead of the original yaw-di�erential equation (4.84) which is part of the
lateral aircraft model (7.12) presented in section 7.2. Equation (B.10) speci�es
the desired bank-to-turn behavior of the aircraft during a turn maneuver. That
is, a roll angle φ di�erent from zero will induce a yaw rate, which turns the air-
craft. An imediate drawback anticipated from the use of the classic bank-to-turn
strategy is the crippling of NMPC's ability to e�ectively coordinate and predict
the e�ects of yaw rate and pitch angle on the turning behavior (described by the
original yaw-equation). In addition, yaw rate R which is the direct coupling state
variable between the yaw Ψ dynamics and the sideslip β dynamics will not be
properly accounted for. The use of classical turn coordination strategy can there-
fore lead to 'suboptimal' results when the e�ects of sideslip becomes prominent
in some maneuvers. However, the original yaw-di�erential equation was found
to present some challenges, such as computational di�culties (leading to wrong
control trajectory generation). This is possibly due to the optimization algorithm
terminating with wrong local solutions, or due to numerical issues with the opti-
mization problem solver.

Similar to observations made in the longitudnal control tests, horizons shorter
than 2s result in very aggressive control. The 5s horizon chosen for the heading
autopilot is also a trade-o� between computational speed and dynamic perfor-
mance of the F-16. The performance of the lateral NMPC autopilots can be
further enhanced by in�uencing the rate of change of the state trajectories of
the turn coordination autopilot. This can be done by introducing constraints on
the yaw rate R, similar to the use of climb rate constraint on altitude control
(in the longitudinal channel). A closer look at the roll Φ trajectory (in �gure
8.14b) and its reference (in �gure 8.14a) reveals that the roll controller tracks its
reference well. The heading (or outer loop) controller can therefore be identi�ed
as an important deciding factor of the overall response of the turning maneuver
accomplished.

An aspect of the NMPC autopilots that o�ers a similar e�ect on the control
performance as that obtained when rate constraints are applied is the internal
reference trajectory 7. The result of reducing the rate at which the reference tra-
jectory approaches the setpoint trajectory (generated by the heading controller)
can be seen in �gure 8.15. The di�erence in reference trajectories used can also
be seen in �gure 8.16. The desired performance, in terms of how fast the refer-
ence trajectory approaches the setpoint trajectory, and the resulting e�ects on
the state trajectories, can therefore be regarded as a tuning and design speci�ca-
tion task. The in�uential roll played by the reference trajectory is very obvious
when �gures 8.14 and 8.15 are compared. The di�erence is a trade-o� between
heading control and rate of change in the aircraft lateral states. A very minimal

7The reference signal issued by a guidance system (or the pilot) is refered to as the setpoint

trajectory. The NMPC reference trajectory de�nes an ideal trajectory along which the plant
should return to the setpoint trajectory, for instance after a disturbance occurs (see section
3.1.2).
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usage of the rudder is rocorded, and the limitations of sideslip β control and the
bank-to-turn strategy no longer become an issue.

(a) Heading and
bank-to-turn control

(b) Roll and
sideslip

(c) Roll rate and
yaw rate

(d) Aileron and
rudder inputs

Figure 8.14: F-16 NMPC lateral motion control (Reference trajectory Tref1 im-
plemented)
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(a) Heading and
bank-to-turn control

(b) Roll and
sideslip

(c) Roll rate and
yaw rate

(d) Aileron and
rudder inputs

Figure 8.15: F-16 NMPC lateral motion control (Reference trajectory Tref2 im-
plemented)

Figure 8.16: Reference trajectories compared.
Tref1 (�), Tref2 (−−)
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Di�erential states:
β sideslip
Φ roll
P roll rate
R yaw rate

δa, δ̇a aileron states
δr, δ̇r rudder states

Controls:
δca aileron command
δcr rudder command

Model Parameters:
q̄ dynamic pressure
α angle of attack
VT total speed
Θ pitch
FT thrust force

XT , ZT total force in X and Z
Optimization/prediction parameter values:

Ts = 0.05s sample time
Th = 1.0s horizon (start: 0.0s)
N = 20 intervals in horizon

Diagonal weighting matrix values:
Qt(1, 1) = 1.00 β error weight
Qt(2, 2) = 10.0 Φ error weight
Qt(3, 3) = 1.00 P error weight
Qt(4, 4) = 1.00 R error weight
Rt(1, 1) = 0.05 δca error weight
Rt(2, 2) = 0.10 δcr error weight

Objective function parameters:
{β, Φ, P, R, δca, δcr} states and controls
{0, rΦ, 0, 0, δa0, δr0} setpoints

Di�erential equation (prediction model):
β̇(t) = P (t) sinα0 −R(t) cosα0 + 1

mVT0
(C(β(t), δa(t), δr(t))−

FT0 cosα0 sinβ(t) + mg2)
Φ̇(t) = P (t) +R(t) tan Θ0 cos Φ(t)
Ṗ (t) = Iz

IxIz−I2
xz
`(β(t), δa(t), δr(t)) + Ixz

IxIz−I2
xz
n(β(t), δa(t), δr(t))

Ṙ(t) = Ixz
IxIz−I2

xz
`(β(t), δa(t), δr(t)) + Ix

IxIz−I2
xz
n(β(t), δa(t), δr(t))

δ̇a(t) = (δca(t)− δa(t))/Ta, δ̇r(t) = (δcr(t)− δr(t))/Tr

[β0, Phi0, P0, R0, δa0, δ̇a0, δr0, δ̇r0] state initial values
[q̄0, α0, VT0, Θ0, FT0, XT0, ZT0] parameter initial values

(last measured values)
Constraints on states, parameters and controls:

−308◦/s ≤ P ≤ 308◦/s roll rate
−15◦ ≤ δca ≤ 15◦ aileron de�ection

−80◦/s ≤ δ̇ca ≤ 80◦/s aileron rate
−15◦ ≤ δcr ≤ 15◦ rudder de�ection

−120◦/s ≤ δ̇cr ≤ 120◦/s rudder rate
q̄ = q̄0 dynamic pressure

α = α0, VT = VT0 angle of attack, speed
Θ = Θ0, FT = FT0 pitch, thrust force

XT = XT0, ZT = ZT0 total force in X and Z

Table 8.10: NMPC turn coordination autopilot parameters and prediction model
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Di�erential states
Ψ heading

Controls
φc roll command

Model Parameters
VT total speed

Optimization/prediction
parameter values

Ts = 0.5s sample time
Th = 5.0s horizon (start: 0.0s)
N = 10 intervals in horizon

Weighting matrix values
Qh(1, 1) = 10.10 Ψ error weight
Rh(1, 1) = 0.100 φc error weight

Objective function
parameters

{Ψ, φc} state and control
{rΨ, Φ0} setpoints

Di�erential equation
(prediction model)

Ψ̇ = g sin(φc)/VT , g = 32.17ft/s2

[Ψ0], [VT0] initial values
(last measured values)

Constraints on states,
parameters and controls

−65◦ ≤ φc ≤ 65◦ roll command
VT = VT0 total speed

Table 8.11: NMPC heading-hold autopilot parameters and prediction model
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8.4.3 Aircraft coupled-motion control

A complete simulation of the F-16 using the decoupled autopilots posed some
challenges due to the strong coupling e�ects of the longitudinal motion on the
lateral channel, and vice versa. The coupling e�ects are most obvious when ac-
tive control is desired simultaneously in the longitudinal and lateral channels.
Handling such coupling e�ects in a classical linear autopilot design scheme can
easily increase the complexity of the implementation and result analysis (consid-
ering nonlinearities that can be introduced into the closed loop system). In some
cases it becomes necessary that both decoupled-motion autopilots a�ect all the
available control surfaces (typically through a separate control allocator) to be
able to function satisfactorily. When the complexity increases heavily, reliability
of the resulting automatic control system usually becomes questionable.

The F-16 coupled motion control challenge was, however, handled elegantly in
the NMPC framework by treating the coupling e�ects of the longitudinal control
as time-varying measured parameters (or disturbances) in the lateral NMPC for-
mulation, instead of assuming they are 'constant' or 'zero'. The measured angle
of attack α, total speed VT , pitch Θ, total force in X and Y , and thrust force
FT were therefore fed to the turn-coordination autopilot prediction model at each
sample instance. The results of the �ight test maneuvers of the coupled control
system are shown in �gures 8.17 and 8.18. After making the lateral controller
aware of the activities of the longitudinal controller, no further parameter tuning
was necessary to achieve the results in the coupled-motion control tests.

The test maneuvers began with a 20◦ heading change demand to the heading
and turn coordination autopilots, while the altitude autopilot was commanded
to maintain 20000ft altitude for 20s. The heading change maneuver induced a
'bumpy' disturbance in the altitude, appearing before the 5s time mark in �g-
ure 8.11a. The observed disturbance is an indication of the limitations of the
classic design strategy, which almost always involves controlling decoupled (and
simpli�ed) process/plant dynamics. The e�ect is similar to introducing pertur-
bations beyond a linear controller's validity limit. It should be recalled that the
pure (or decoupled) longitudinal dynamics was obtained based on a wings-level
�ight assumption (see section 4.4.1). However, the altitude autopilot detected
the induced disturbance quickly and commanded corresponding �ight path con-
trol actions (see changes in the reference signal in �gure 8.17a), which resulted
in the use of elevator actions to subdue the disturbance. These observations are
made when comparing �ight path reference and elevator actions, for the �rst 20s,
in the pure longitudinal control plots and the coupled motion control plots (com-
pare �gure 8.11d with �gure 8.17d, and �gure 8.11a with �gure 8.17a). It can
also be seen that the corresponding heading change maneuvers of �gure 8.18a are
not as smooth as those of �gure 8.14a.

The F-16 coupled maneuvers were alternated after 20s, as was done in the pure
decoupled motion control case. The altitude change demand introduced a similar
'bumpy' disturbance in the heading (�gure 8.18a), when the control trajectories
of the ailerons and rudder started settling to their optimal values (see the 20s -
30s interval of �gure 8.18d). The e�ect of the rather 'sluggish' sideslip control
strategy used (through the pure bank-to-turn implementation) became more ev-
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ident in the coupled motion control results, observed in the size of sideslip (in
�gure 8.18b) and the slight deviation noticed in the heading control up to the 20s
time mark (in �gure 8.18a). Shortly after, a new 10◦ heading change was com-
manded while the climb maneuver and altitude-hold control were still in progress.
The result is similar to the observations made earlier. The altitude settling time
became longer, and the heading change maneuver was not as smooth as in the
case of the pure lateral motion control maneuver.

The need of adequate tuning of the reference trajectory (or the direct in�uence of
rate-states through the use of constraints) can be illustrated even clearer by com-
paring the responses obtained when the two reference trajectories in �gure 8.16
are implemented for the coupled motion control tests. Compare the trajectories
of �gures 8.17, 8.18, with those of �gures 8.19, 8.20. It is obvious that the less
aggressive lateral motion control makes its coupling e�ects on the longitudinal
motion control almost unnoticeable.

(a) Altitude and
�ight path control

(b) Pitch and
Angle of attack

(c) Total speed and
pitch rate

(d) Elevator input
and thrust force

Figure 8.17: F-16 NMPC coupled motion control: Climb maneuvers
(Reference trajectory Tref1 implemented)
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(a) Heading and
bank-to-turn control

(b) Roll and
sideslip

(c) Roll rate and
yaw rate

(d) Aileron and
rudder inputs

Figure 8.18: F-16 NMPC coupled motion control: Turn coordination
(Reference trajectory Tref1 implemented)



94 CHAPTER 8. NMPC AUTOPILOT IMPLEMENTATIONS

(a) Altitude and
�ight path control

(b) Pitch and
Angle of attack

(c) Total speed and
pitch rate

(d) Elevator input
and thrust force

Figure 8.19: F-16 NMPC coupled motion control: Climb maneuvers
(Reference trajectory Tref2 implemented)
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(a) Heading and
bank-to-turn control

(b) Roll and
sideslip

(c) Roll rate and
yaw rate

(d) Aileron and
rudder inputs

Figure 8.20: F-16 NMPC coupled motion control: Turn coordination
(Reference trajectory Tref2 implemented)
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8.5 NMPC Recon�gurability and Fault Tolerance

A primary objective of this thesis is to investigate the recon�gurability and fault
tolerance of NMPC. The preceding implementation sections have touched on some
inherent recon�gurability properties of NMPC, where, for instanse, time-varing
parameters were easily introduced for cross-coupling e�ect adjustments in the
lateral NMPC autopilots. Updating the prediction model through aerodynamic
coe�cient lookup-table interpolations can also be regarded as a recon�guration
strategy, which is easily incoorporated in the NMPC framework. This section
therefore focuses on using control surface (or actuator) fault simulations to pri-
marily verify the fault tolerant capabilities expected of NMPC as a recon�gurable
controller (see section 2.2).

The simulation setup used assumes that a fault detection system is available,
reduces the fault detection and identi�cation (FDI) part of the implementation
to only failure simulation and diagnostic recon�guration. The control surface or
actuator faults are described in section 6.5, and the FDI scheme on which the
fault simulation is based is described in 6.6. The simulated faults were catego-
rized into to main modes: Actuator Position failure mode and Rate failure mode.
A position fault refers to any of the following conditions:

1. a signi�cant change in the de�ection limits or saturation.

2. locked/jammed actuator, including actuator runaway (or hard-over).

To simulate the faults mentioned above, the upper and lower limits for the faulty
actuator are changed during a maneuver. The control surface is regarded as locked
when the lower position limit is set equal to the upper limit.

The de�ection rate failure also takes two forms, namely:

1. a signi�cant change in actuator de�ection rate.

2. free-play/�oat-type failure, or loss of actuator e�ectiveness.

The actuator is �oating when both upper and lower de�ection rate limits are set
to zero, according to the FDI scheme described in section 6.6. Both locked actu-
ator and a �oat-type failure render the control surface uncontrollable. However,
a locked actuator introduces a signi�cant disturbance (adverse yaw/roll/pitch)
which needs dynamic compensation to restore stable �ight conditions, and if pos-
sible perform �ight maneuvers satisfactorily.

It is worth mentioning that the autopilot simulation results presented in the pre-
ceding sections were performed with 'harder' limitations on the control surfaces
(±15◦) than the normal F-16 actuator de�ection ranges given in table 8.2. Only
70% aileron range, 60% elevator range, and 50% rudder working range were con-
sidered, and the situation can actually represent a multiple fault case. However,
actuator saturation was not observed as a hinderance for the performance of the
NMPC autopilots. The signi�cant change in actuator de�ection limit fault-type
is therefore considered already examined. An early conclusion is therefore timely
since signi�cant change in actuator de�ection induces only an insigni�cant e�ect
on the NMPC autopilot's reaction. This is obviously due to NMPC inbuilt prop-
erty of handling constraints.
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The simulation results presented in the following sections cover mainly locked/-
jammed actuators and �oat-type failures. The main objective is to stabilize the
aircraft and attempt to perform turn and climb maneuvers as well as attaining
straight level �ight in the presence of control surface faults. The control surfaces
(or actuators) involved in the F-16 recon�gurable fault tolerant control tests are
the left aileron (a1), the right aileron (a2), the rudder (r), and the tail stabilator
di�erential controls (i.e. left elevator (e1) and right elevator (e2)). The relation-
ship between the use of symmetric and asymmetric control surface actuation was
realized through the control input strategy: δs = 1/2(δsL + δsR). Where δsL

and δsR are the left and right control surface de�ections, combined into a single
control surface input δs. This strategy applies to aileron and elevator (or tail
stabilator di�erential) control.

8.5.1 Aileron failures

The same maneuvers used earlier in the 'fault-free' simulations were repeated, but
this time with the left aileron locked at −15◦. The reaction of the F-16 to the
jammed-actuator failure and the recovery actions of the recon�gurable NMPC
autopilots are shown in �gure 8.21.

It can be noted from �gure 8.21f, that in order to perform the commanded coor-
dinated turn, the right aileron (a2) and the rudder were actively involved. The
inherent recon�guration property of NMPC comes to light nicely in the control
plots, where corrective actions of the right aileron (a1) are held very close to
its upper limit (15◦), and e�ectively supported by rudder actions. The result is
a successful execusion of the commanded heading change maneuvers (see �gure
8.21b), compared to the 'fault-free' maneuver in �gure 8.18a.

The altitude-hold plot in �gure 8.21a reveals corresponding disturbance from the
aileron failure situation, but limited change in overall performance was recorded
(compared to 'fault-free' results in �gure 8.17a). This is a good indication of
optimal utilization of attainable moments produced by all remaining functional
control e�ectors. However, a small steady-state error is observed in the altitude
control plot, whereas a much smaller error noticed in the corresponding plot,
8.17a, of the 'fault-free' coupled motion control case). The source of this er-
ror can be immediately identi�ed as the decoupling assumptions made in section
4.4.1. The longitudinal control dynamics implemented entirely neglects the e�ects
of sideslip β and roll Φ. The wings-level �ight assumption's validity ceases when
handling the aileron failure situation, since some roll angle (see �gure 8.21d) is
required to maintain the commanded heading. The sideslip is also not zero as
assumed. Obviously, the extent of standard NMPC robustness to modling errors
(or approximations) is a subject that requires further discussion.

The results presented in �gure 8.21 (refered to as case 1 ) assumes the existence
of an FDI system that updates the turn coordination NMPC autopilot with the
aileron's position, when stuck. It was interesting to �nd out what happens when
NMPC has no knowledge about the failure. Another interesting remark is that no
recon�guration mechanism was implemented to achieve the results in �gure 8.21.
Further tests were therefore performed on the locked left aileron (a2), where in
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one case no FDI system was assumed (case 2 ), and in another test (case 3 ), the
following simple recon�guration mechanism was introduced (FDI assumed).

1. for each actuator, scan for locked/jammed actuator by checking for changes
in lower and upper limits (worst case δsmin = δsmax)

2. if an actuator is locked, decrease the weight of all the 'healthy' actuators in
the same channel (longitudinal or lateral), by a prede�ned factor.

3. �nally, reduce the weight on any secondary objectives that share the same
remaining 'healthy' actuators (that are capable of achieving similar e�ects
as the jammed actuator), by a prede�ned factor.

It can be noted that the above recon�guration mechanism is similar to the strat-
egy that was used to obtain good results for an optimal control allocator in [12]
(see appendix D.3).

The results of the three test cases are compared in �gure 8.22. Apart from di�er-
ences noticed in the rudder input actions (�gure 8.22f) and their accompainying
sideslip trajectories (in �gure 8.22d), the trajectories of Case 1 and Case 2 fol-
low each other very closely. In Case 2, the NMPC turn coordination controller
quickly realizes through model simulations and input updates (as initial values)
that the left aileron is not reponding to its commands. In other words, the con-
troller perceives a situation similar to when it has driven the aileron to its limit,
and starts to move other control surfaces. Without any knowledge of the failure
case, the results of Case 2 can be considered as excellent performance, compared
with those of Case 1 and Case 3.

It can be emphasized that in Case 1, the locked aileron fault was reported to
the controller (by setting δa1min = δa1max = −15◦) and, in addition, the weights
(error penalties) were adjusted in Case 3. The weights on keeping set-points for
roll rate, yaw rate, and sideslip were reduced by a factor of 10, to further prioritize
the use of roll angle to achieve the desired heading. The same reduction was made
on the weight for the right aileron, with the intention of making it more active.

Another interesting result was obtained when the weight on keeping set-points
for heading was reduced from 10 to 2.5. The intention was to relax the objective
of fast control from a guidance system point of view. The results are shown in
�gure 8.23. The remarkable performance improvement recorded indicates that
some change in the overall performance objective that re�ects the fault situation
may be necessary in the event of an extreme control surface failure.
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(a) Altitude and
�ight path control

(b) Heading and
bank-to-turn control

(c) Pitch and
Angle of attack

(d) Roll and
sideslip

(e) Elevator input
and thrust force

(f) Aileron and
rudder inputs

Figure 8.21: NMPC fault tolerance: F-16 left aileron (a1) locked at −15◦

(Case 1 )
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(a) Altitude and
�ight path control

(b) Heading and
bank-to-turn control

(c) Pitch and
Angle of attack

(d) Roll and
sideslip

(e) Elevator input
and thrust force

(f) Aileron and
rudder inputs

Figure 8.22: NMPC fault tolerance: F-16 left aileron (a1) locked at −15◦.
Case 1 (− · ), Case 2 (−), Case 3 (−−)
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(a) Altitude and
�ight path control

(b) Heading and
bank-to-turn control

(c) Pitch and
Angle of attack

(d) Roll and
sideslip

(e) Elevator input
and thrust force

(f) Aileron and
rudder inputs

Figure 8.23: NMPC fault tolerance: F-16 left aileron (a1) locked at −15◦

(Case 2 ) Relaxed heading control objective
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8.5.2 Rudder failures

The rudder was also locked at −15◦, and the heading change and climb maneuvers
were repeated as before. The reaction of the F-16 to the jammed rudder situation
and the recovery actions of the recon�gurable NMPC autopilots are shown in �g-
ure 8.24. Since no signi�cant di�erence was noticed between Case 1 and Case 2
for the aileron hard-over test, only test Case 2 and Case 3 results are presented
for the rudder failure.

The results of test Case 2 in �gure 8.24, which were taken without any infor-
mation about the rudder fault reported to the NMPC autopilots, and with no
recon�guration mechanism implemented, is rather impressive. The huge sideslip
disturbance induced by the jammed rudder, which was later ampli�ed by the
climb maneuver (after 20s) did not prevent the heading and turn coordination
autopilots from achieving the performance level shown in the plots of �gure 8.24.
Again, increasing the fault awareness of the NMPC autopilots through fault re-
porting and additional recon�guration (as in Case 3 ) did not yield any remarkable
improvement in the responses observed.

During the rudder failure tests, an intresting modi�cation was made to the NMPC
heading autopilot to illustrate some corrective measures that can be easily intro-
duced to compensate for model approximations. It was pointed out earlier (in
section 8.4.2) that the bank-to-turn dynamics used in the lateral autopilot de-
sign introduces some approximation errors into the complete aircraft dynamics.
The e�ects of such errors become obvious when the sideslip magnitude becomes
signi�cant. Notice the steady-state error in the heading plot (10s - 20s interval)
of �gure 8.18a, and its corresponding sideslip magnitude in �gure 8.18b. The
heading autopilot was made aware of the sideslip disturbance βd by correcting
the yaw-angle prediction Ψp, using Ψ = Ψp − ρβd, where 0 ≤ ρ ≤ 1 decides the
extent of correction required. The Case 3 plot of �gure 8.24b shows the e�ect of
changing ρ from 0.5 to 0.25.
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(a) Altitude and
�ight path control

(b) Heading and
bank-to-turn control

(c) Pitch and
Angle of attack

(d) Roll and
sideslip

(e) Elevator input
and thrust force

(f) Aileron and
rudder inputs

Figure 8.24: NMPC fault tolerance: F-16 rudder locked at −15◦.
Case 2 (−), Case 3 (−−)
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8.5.3 Elevator (or tail stabilator) failures

The free-�oating type failure was tested on the right elevator (e2), and the heading
change and climb maneuvers were repeated. The left and right elevators on the F-
16 are normally operated together within their upper and lower limits. They also
serve as horizontal tail stabilators which accept di�erential de�ection commands
upto ±5.38◦. The elevator failure test attempts to simulate a situation where the
right elevator is broken, and moves freely without restricting the movement of the
left elevator.

The plots in �gure 8.25 show the results of Case 2 -type test where the F-16
relies only on the recon�gurable fault tolerance capabilities of NMPC. This test
case is rather mild compared to the hard-over failure tests, since no signi�cant dis-
turbance was introduced by the '�oating' control surface. The results are almost
identical to those obtained for the 'fault-free' condition.
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(a) Altitude and
�ight path control

(b) Heading and
bank-to-turn control

(c) Pitch and
Angle of attack

(d) Roll and
sideslip

(e) Elevator input
and thrust force

(f) Aileron and
rudder inputs

Figure 8.25: NMPC fault tolerance: F-16 left elevator (e2) �oating freely
Case 2
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Chapter 9

Result analysis and discussion

The NMPC studies and autopilot results achieved in chapter 8 illustrate the ele-
gance of combining multivariable, nonlinear, and constrained controller behavior
into a well structured and powerful NMPC framework. In this chapter, the ex-
tensive study done on NMPC and its implementation issues are highlighted in a
comparative discussion of expected performance and corresponding results. The
discussions cover NMPC design choices made and their consequences on the dy-
namic performance of the overall automatic �ight control system. The advantages
and disadvantages of the implemented NMPC scheme are also discussed. Discus-
sions on NMPC inherent recon�gurability, fault detection capabilities, and fault
tolerance, are given attention.

It is important to emphasize that the results of this work are in�uenced by the
design parameter choices made in a very limited computational power resource
environment. The results are, therefore, mainly intended to illustrate the power-
ful potentials of NMPC and, at the same time, to serve as a platform for realistic
discussions on the subject. For clarity and immediate result assessment, most of
the implementation sections are supported with explanations and discussion of
design options and result observations made. The discussions made in this chap-
ter are therefore generalized, compared to the speci�c remarks and comparisons
made for individual results in chapter 8.

9.1 Performance and Design Consequences

Several aspects of the NMPC performance have been touched through the studies
done in this work. NMPC proves to excell in almost all its expected performance
requirements. The coupled motion tests, and the measures taken to ensure satis-
factory control can be seen as simple measures that enhance the inherent robust-
ness of NMPC. It is comparable to handling known disturbances, by introducing
the disturbance model as part of the NMPC prediction model. Any accurate infor-
mation about the plant's behavior is always well utilized in the NMPC framework.

The extensive reliance on an internal model for accurate predictions and control,
can in some cases become a weak point of the control scheme. Modeling errors,
which usually occur due to approximations and underestimations, can limit the
performance of the resulting controller, as observed through the use of a classical
turn coordination dynamics instead of the aircraft's original yaw-dynamics. The
use of detailed simulations will be adequate as an NMPC design aid, in order to

107
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uncover any vulnerabilities introduced by model errors.

Any detected (or expected) model anomalies can normally be compensated for in
a simple way, as was done for the decoupled autopilots. For instance, it can be
seen that the nonzero sideslip contributes as a 'constant' drift disturbance in the
heading controller, since sideslip is not directly accounted for in the bank-to-turn
strategy. A possible compensation is to correct the turn coordination model pre-
dictions with the measured sideslip disturbance (similar to heading-course com-
pensations, using sideslip angle), and using the corrected heading (yaw) angle in
the objective function for error minimization. This compensation strategy was
implemented in order to obtain the error-free results obtained in section 8.5.2 (in
spite of the magnitude of sideslip induced by the rudder hard-over failure.) Nev-
ertheless, the recon�gurability property of NMPC almost always triggers some
'corrective' actions (sometimes erratic) in attempt to compensate for behaviors
that are not properly accounted for in neither the internal model nor constraint
speci�cations. The result is normally a brief voilation of constraints, followed by
a 'learning' phase, which can eventually lead to satisfactory performance. Careful
observations of all state and, especially, control trajectories are needed to identify
most modeling or design errors.

Producing local optimal solutions was mentioned as a possible source of conpu-
tational di�culties leading to unpredictable control activities, when the aircraft's
nonlinear yaw-dynamics was used. This is a notable possible drawback of the
NMPC scheme, but an implementation strategy, such as using the classic turn
coordination dynamics as an initial trajectory generator for the original yaw-
dynamics, can be suggested in this case as a possibly viable 'warm start' strategy.

The performances recorded for both pure decoupled motion (longitudinal/lateral)
control and coupled motion control can be compared to the performances of the
NMPC and Linear Parameter Varying (LPV) controllers in [10]. The main results
are included in appendix C for easy reference. The results show that the NMPC
scheme yields a better performance compared to the LPV control approach. It is,
therefore, reasonable to anticipate that an autopilot based on a gain scheduling
strategy (for example using gain scheduled PID control) will yield similar results
as the LPV controller. The results of [10], which were obtained for the prestabi-
lized F-16 aircraft, give an indication that the performances recorded in this work
(especially, the 'fault free' test cases) can be considered as satisfactory. Apart
from using an LPV controller for prestabilizing the F-16 aircraft, the control ob-
jective in [10] is to regulate state perturbations to a set, whereas the corresponding
inner loop controllers in this work have an additional objective of tracking time-
varying references from their outer loop controllers. Further, the results obtained
on NMPC fault tolerance rely on the performance objectives selected in this work.

9.1.1 NMPC tuning and real-time considerations

Another very desirable property of NMPC was observed during the simulation and
test process. The tuning task became much less demanding, after the dynamics
of the system was well studied and analysed through simulations (mostly by sim-
ple step response tests). When a good starting point for sampling frequency and
horizon length are determed (usually by considering the largest time constants),
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the remaining tuning task reduces to �nding adequate weight ratios for the state
and controls (not forgetting variable scaling). The tuning task also appears to be
less demanding when a detailed nonlinear model is used.

Despite the complex nature of a detailed nonlinear aircraft model, the tuning
process becomes very predictable, and even more intuitive when the dynamics
(fast/slow modes) are well grouped as subsystems. Splitting the autopilots into
an inner (faster) loop and an outer (slower) loop prevented the need to compute
the whole aircraft model for the selected (5s) horizon using the smallest required
sampling time (0.05s). In addition to the intuitive tuning advantage, using subsys-
tems can be regarded as advantageous when operating with limited computational
power. A more elegant formulation of NMPC which supports the separation of fast
dynamics from slow ones will be preferable - for instance, through state-dependent
variable step-size (or horizon intervals) speci�cations, similar to existing input (or
manipulated variable) blocking1 strategies.

The choice of horizon and its consequences was illustrated in �gures 8.11 and
8.12. Attempts to operate with shorter horizons are normally made due to real-
time computational limitations, and this results mostly into stability issues that
require modi�cations to the standard NMPC formulation (see section 3.3). The
studies made in this work con�rm the fact that longer horizon lengths allow the
NMPC algorithm to acquire richer knowledge about the system behaviour to a
given input. The result is a better decision made on optimality for every control
trajectory generated. When the horizon is too short for the NMPC algorithm to
properly observe the response of the aircraft to a given control input, the risk
of generating a sequence of consistent large control inputs becomes high. Longer
horizons (greater than 2s) on the other hand lead to the generation of less ag-
gressive control trajectories and, as observed in �gure 8.11, the state trajectories
became smoother and more optimal. In addition, NMPC stability did not become
an issue since, for instance, optimization over a longer horizon reduces the contri-
bution of the terminal cost on the overall cost being minimized. This is also due
to the fact that the terminal cost serves as an approximation that is greater than
the value of the truncated integral, and reducing the contribution of the terminal
cost yields a total cost that is closer to the optimal.

In view of the promising results obtained, and the preceding discussions, real-
time considerations can be named as the main challenge of implementing the
NMPC scheme. Solving the nonlinear programming problems formulated in this
work places a signi�cantly large computational burden on the implementation
platform, but real-time implementation is not considered as a primary objective
for this work. Nevertheless, simulation times up to 60s were recorded for a 1s
simulation time on a computer with Intel® Core� i3 CPU, 2.27GHz, running a
64-bit Windows 7 operating system. The simulation time was recorded for the
complete NMPC autopilot simulation setup. That is, four NMPC autopilots and
the full nonlinear F-16 model (or plant) running in a MATLAB/Simulink environ-
ment. It can be however emphasized that, using fast NMPC solutions or hardware
with adequate computational capacity (with respect to the control application),

1Non-uniform intervals between control decisions, which allow control adjustments to be
made throughout the predicted transient period without having too many decision variables in
the optimization problem.
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real-time implementation of the NMPC autopilots is possible.

Avoiding infeasibility and numerical problems was considered as an important
part of the autopilot optimization problem formulations. Both physical input
constraints and operational constraints of a real F-16 aircraft were used in the
problem formulations. In addition, the F-16 model validity limitations were also
incorporated in the problem formulation to ensure feasibility. Constraint relax-
ation through the use of slack variables was not necessary in this work. Careful
design and simulations led to the complete skipping of any conservative stability
enforcing terminal constraints, and therefore avoiding any accompanying feasibil-
ity issues. The use of last measured states and control input feedback as initial
values (or warm start) for each optimization run is also a way of enhancing both
problem feasibility and convergence of the optimization algorithms. Initialization
with the last measured values is justi�ed by the fact that the sampling intervals
used are short compared to the dynamics of the F-16 (plant) model, and there-
fore making the nonlinear problem at one sampling instant closely related to the
nonlinear problem at the previous sampling instant.

A known source of numerical problems is scaling (see section 3.4.2). It was men-
tioned in section 8.3.1 that prescaling of the model variables, in order to limit the
relative tracking/control error di�erences, was not necessary in this work. How-
ever, it is worth mentioning that the importance of mentaining a well conditioned
optimization problem (w.r.t. scaling) was experienced when some simulations
were aborted due to wrong unit (i.e. degrees instead of radians) interpretations
for reference trajectories. The situation in that case became similar to posing
a poorly scaled problem to the optimization solver. It can also be noted that
the choice of 0.01 weight on the altitude error (instead of 1) is intended to keep
the weighted tracking error small compared to the error values of the �ight path
control reference generated.

9.2 Inherent Fault Tolerance

Fault tolerance of NMPC has been shown, through autopilot implementation re-
sults, to be achievable through an e�ective combination of inherent fault detection
capabilities and recon�guration. Observations made in the results of section 8.5.1
indicate a clear tendency of NMPC to e�ectively utilize its limited resources, and
attempt to accomplish the set objectives, even with no knowledge of the fault.
In cases where the failure a�ects the capabilities of the aircraft, it is possible
to change the objectives, or the constraints, or both, accordingly. An external
recon�guration mechanism is therefore only a means of re-adjusting the control
objectives, by using priority shifting strategies.

It is possible to introduce changes on-line mainly because the control signal is re-
computed at each time step by solving an optimization problem, allowing changes
to be made to the problem formulation. It may however not be an easy task to
re-tune the NMPC on-line if a failure occurs, since an appropriate change may
not be known for an arbitrary failure situation. It can be further argued that
in cases where fault detection is not available or the available FDI system is not
reliable, it will be a good alternative to allow the NMPC to utilize its inherent
robustness.
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In comparison to earlier linear MPC results (in [11]), indicating the inherent
fault detection property of predictive control, a clear response improvement was
obtained through changing of weights (or error penalties). NMPC shows further
superiority on this subject, since results of section 8.5.1 show that only insignif-
icant results were obtained in the attempt to improve the results obtained by
only NMPC (i.e. without external FDI). NMPC (with no failure information) is
capable of achieving good responses in the failure cases in this study. This is can
be due to the detailed information of process dynamics used (compared to linear
MPC).

When a classical autopilot is implemented, a way of achieving recon�gurabil-
ity is to augment the system with an Optimal Control Allocator (OCA). This
approach has been demonstrated in an earlier project [12](and in reference [41])
to be a very e�ective control strategy that enhances fault tolerance in existing
aircraft control systems. However, OCA as a recon�gurable controller depends
entirely on both an external FDI system and some kind of recon�guration mech-
anism to achieve its results, since it has no inherent feedback. In the classical
autopilot-OCA framework, all available actuators are usually combined into one
module (i.e. all control e�ectiveness coe�cients must be available in one unit) for
e�ective control re-distribution to be possible. Results in this thesis show that
good results can be obtained in the NMPC framework even when the separate
NMPC autopilots do not have direct access to all the control surfaces through
one unit.

An important factor in recon�gurable fault tolerant control is the extent of control
e�ector redundancy present on the plant. For the F-16, only a minimal number of
control surfaces have been considered in the work. Further �exibility/redundancy
can be achieved, for instance in the lateral channel, by incorporating di�erential
tail de�ections as control inputs in addition to the ailerons and rudder. This ad-
ditional degree of freedom can be naturally utilized by NMPC when aileron and
rudder failures occur simultaneusly. Even in the absence of an explicit di�erential
tail control implementation, NMPC inherent recon�guration capability can result
in automatic asymmetric control of the stabilators to battle out induced distur-
bances of high proportions experience in the longitudinal channel.

Another interesting observation made is that signi�cant change in actuator (or
control surface) position limits and de�ection rate limits have very minimal e�ect
on NMPC performance, since actuator constraints are handled e�ectively as part
of NMPC's primary objectives.

9.3 Control design complexity

On handling fast and unstable system dynamics, the preliminary studies in section
8.3 and the performance of the complete NMPC autopilots indicate that NMPC
is a promising control scheme that can replace traditional low level controllers.
The main task is to �nd the appropriate control objectives and constraints that
handle the stability augmentation requirements of the complete automatic control
system.
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Speci�cally, the NASA technical paper [36] that touches on F-16 stability aug-
mentation speci�es strategies necessary for angle of attack limiting and prevention
of departures resulting from excessive pilot rudder usage at high angles of attack.
Furthermore, an automatic departure-/spin prevention system, which uses yaw-
rate feedback to drive the roll-control surfaces to oppose any yaw-rate buildup, was
suggested. The classical approach used in the NASA paper depends on switching
logic for engaging/disengaging several stability and control augmentation sub-
systems (or modes). Implementing all the suggested F-16 stability and control
speci�cations, in a classical way, leads to control structure/design complexity of
the magnitude shown in appendix B.5 (taken from [36]).

NMPC strategy, on the contrary, allows the same speci�cations to be formulated
in precise mathematical objectives and constraints, with inbiult recon�guration
capabilities. As an example, the limiting strategy used to prevent angle of attack
depature in the NMPC preliminary studies (in section 8.3) was to use state de-
pendent weight (or penalty) adjustments in conjuction with the angle of attack
constraints imposed on the optimization problem. Another example is to incor-
porate the command gradient curves, shown in �gure B.11 (see appendix B.5),
into the speci�cation of the reference trajectories of the NMPC autopilots.
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Conclusion and Further Work

It has been shown from the results of this work that NMPC can be used to control
highly nonlinear, multivariable, and unstable systems. In brief, NMPC simpli�es
control design for very complex systems, and can o�er a complete control design
package, including conrol augmentation, stability augmentation, control e�ector
redistribution, inherent robustness (to some extent), and an overall e�ective fault
tolerant control system. These desirable properties of NMPC make it a good
choice for high performance and autonomous �ight control.

Unlike ad hoc heuristics based methods for fault tolerant control design, NMPC
has inherent recon�gurable control capabilities due to e�ective use of an internal
plant model for prediction, an online optimization with input and state con-
straints, penalties (or weights) on tracking/control errors, and horizons that can
be adjusted to account for resquirement changes imposed by failure conditions.
The performances recorded for NMPC inherent fault detection and recon�gura-
bility, compared to its corresponding 'fault-free' �ight control performances, make
NMPC superior to most existing fault-tolerant control schemes.

This work also highlights the fact that, performance of the overall fault toler-
ant system depends on many factors, such as the availability of the remaining
'healthy' actuators, the recon�guration mechanism used, and the type of control
strategies adopted. The speed and accuracy of the fault detection and identi�ca-
tion scheme is also a deciding factor on the success of the recon�guration attempt.
Further, the integration of all the modules in the overall recon�gurable fault tol-
erant control system is very vital for the aircraft to survive any extreme control
e�ector damages. However, the results of this work show that the reliance of
NMPC on external FDI modules, external recon�guration mechanisms, and their
e�ective coordination is minimal.

A notable advantage of NMPC, and model predictive control in general, is the
possibility of in�uencing the performance of the controller by direct on-line recon-
�guration. This property allows the introduction of new information at each time
step, either from estimation, or some adaptation strategy. The robustness and
fault tolerance of NMPC can, therefore, be further enhanced when accurate data
of disturbances is available. The same applies to critical model updates when
severe damages, other than actuator (or control surface) faults, occur.

In addition, the results show that very fast (possibly unstable) dynamics that

113
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are usually handled by classical PID controllers are well handled by NMPC. At
the same time, NMPC o�ers a well structured formulation and speci�cation of
stability augmentation requirements/strategies that are otherwise implemented
as complex mode switching tasks. The advantages of using NMPC for control-
ling both inner (fast) loops and outer (slow) loops were also demonstrated by the
implemented autopilots in this work. Using NMPC to control the outer loop (or
slow dynamics) of the aircraft can be seen as performing a guidance task with a
controller that is capable of generating both feasible and optimal trajectories for
the tracking tasks of the fast dynamics NMPC autopilots.

One notable disadvantage of using constrained NMPC is the danger of running
into infeasibility. Especially in the case of model/plant mismatch, hard constraints
and large disturbances that are not accounted for in the NMPC formulation. In
this case, some e�ective measures have been suggested and shown to enhance the
performance and overall stability of the control system. In particular, extending
the horizon to the maximum computationally possible limit is advisable, since it
gives the controller more time to satisfy the constraints.

Further work and remarks:
The implementation scope of this work was limited to the studies of the limitations
associated with classical control design strategies (in terms of simpli�cations/as-
sumptions considered in decoupling the aircraft dynamics) and the associated
consequences faced when the coupled motion e�ects become signi�cant. Even
though NMPC handles coupling e�ects well, further investigations can be per-
formed, where the fully coupled nonlinear model of the F-16 is implemented as
the internal model of one NMPC autopilot (which incorporates all the objectives
of the four NMPC autopilots implemented in this work). This will reveal (and
also con�rm) the advantages and the challenges that are associated with the use
of an accurate (or high �delity) model (of highly nonlinear, unstable, and multi-
variable plant) in the NMPC framework.

A classical autopilot of similar detailed design considerations was not available
for direct performance comparisons in order to show the performance extents of
using the NMPC design schemes explored in this work. Besides the numerous
illustrated advantages, including the inherent �exibility and recon�guration of
NMPC, a measure of performance compared to a well established (and tested)
benchmark will be an ultimate project objective. The work load of designing
and implementing a classical/conventional controller that captures the signi�cant
nonlinearities and stability properties of the F-16 (at the same time, exhibiting
comparable design and performance objectives), proved to be very extensive. In
view of the limited time frame for the master's project work, emphasis was there-
fore placed on acquiring the high knowledge level required to successfully handle
all the aspects of NMPC and aerodynamics involved in this work.

This work also highlighted on optimal reference trajectory generation as an impor-
tant aspect of the NMPC scheme that determines the overall performance of the
autopilots. It was also pointed out that similar response/behavior was observed
for the use of rate constraints. A common result is a damping e�ect introduced
into the closed loop system, which enhances the overall stability and reliability of
the control system. It will be, therefore, interesting to investigate further on the
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relation between the use of rate constraints to enhance (and possibly guarantee)
stability in the NMPC framework. A related proposal is the performance/stabil-
ity enhancing strategy introduced in section 3.3.4, which also o�ers an avenue for
further scrutiny.

A project work that examines the real-time computational/implementation re-
quirements and strategies for the NMPC autopilots can also be mentioned as an
interesting proposal for further work.

Using the detailed model of the F-16 aircraft as the target plant made it possible
to encounter most of the challenging NMPC implementation issues highlighted
in this work. The F-16 model (including the available high/low �delity data) is,
therefore, recommended as a good platform for studying control designs that aim
at handling highly nonlinear and unstable system dynamics.
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Appendix A

F-16 Aerodynamic Coe�cients

The various aerodynamic contributions to a given force or moment coe�cient are
summed, according to [36], as follows.
For the X-axis force coe�cient CXT

:

CXT
= CX(α, β, δe) + δCXLEF
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For the Y-axis force coe�cient CYT
:

CYT
= CY (α, β) + δCYLEF

(1− δLEF

25
)

+
[
δCYδa

+ δCYδaLEF
(1− δLEF

25
)
](

δa
20

)
+ δCYδr

(
δr
30

)
+

rb

2VT

[
CYr(α) + δCYrLEF

(α)(1− δLEF

25
)
]

+
pb

2VT

[
CYp(α) + δCYpLEF

(α)(1−
δLEF

25
)
]

where

δCYLEF
= CYLEF

(α, β)− CY (α, β)
δCYδa

= CYδa
(α, β)− CY (α, β)

δCYδaLEF
= CYδaLEF

(α, β)− CYLEF
(α, β)− δCYδa

δCYδr
= CYδr

(α, β)− CY (α, β)

For the Z-axis force coe�cient CZT
:

CZT
= CZ(α, β, δe) + δCZLEF
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(α, β)− CZ(α, β, δe = 0)
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For the rolling-moment coe�cient C`T
:

C`T
= C`(α, β, δe) + δC`LEF

(1− δLEF

25
)

+
[
δC`δa

+ δC`δaLEF
(1− δLEF

25
)
](

δa
20

)
+ δC`δr

(
δr
30

)
+

rb

2VT

[
C`r(α) + δC`rLEF

(α)(1− δLEF

25
)
]

+
pb

2VT

[
C`p(α) + δC`pLEF

(α)

(
1− δLEF

25

)]
+ δC`β

(α)β

where

δC`LEF
= C`LEF

(α, β)− C`(α, β, δe = 0)
δC`δa

= C`δa
(α, β)− C`(α, β, δe = 0)

δC`δaLEF
= C`δaLEF

(α, β)− C`LEF
(α, β)− δC`δa

δC`δr
= C`δr

(α, β)− C`(α, β, δe = 0)

For the pitching-moment coe�cient CmT :

CmT = Cm(α, β, δe)ηδe(δe) + CZT
[xcgref

− xcg] + δCmLEF (1− δLEF

25
)

+ δCmsb
(α)

(
δsb
60

)
+

qc̄

2VT

[
Cmq(α) + δCmqLEF

(α)(1−
δLEF

25
)
]

+ δCm(α) + δCmds
(α, δe)

where
δCmLEF = CmLEF (α, β)− Cm(α, β, δe = 0)

For the yawing-moment coe�cient CnT :

CnT = Cn(α, β, δe) + δCnLEF (1− δLEF

25
)− CYT

[
xcgref

− xcg

] c̄
b

+
[
δCnδa

+ δCnδaLEF
(1− δLEF

25
)
](

δa
20

)
+ δCnδr

(
δr
30

)
+

rb

2VT

[
Cnr(α) + δCnrLEF

(α)(1− δLEF

25
)
]

+
pb

2VT

[
Cnp(α) + δCnpLEF

(α)

(
1− δLEF

25

)]
+ δCnβ

(α)β

where

δCnLEF = CnLEF (α, β)− Cn(α, β, δe = 0)
δCnδa

= Cnδa
(α, β)− Cn(α, β, δe = 0)

δCnδaLEF
= CnδaLEF

(α, β)− CnLEF (α, β)− δCnδa

δCnδr
= Cnδr

(α, β)− Cn(α, β, δe = 0)

The low �delity aerodynamic data does not include leading edge �ap. Therefore,
all terms multiplied by δLEF will be zero. The same applies to all higher terms in
the total coe�cient equations. The ηδe(δe) must be set equal to 1 when the low
�delity data is used. Refer to [36] for any further details.



Appendix B

Classical Autopilot design

The following sections about autopilot design are based on references [2] and [3].

B.1 Pich-Attitude Hold Autopilot

The controlled variable for pitch control is θ, which is related to the �ight-path
de�ned as:

γ := θ − α (B.1)

Figure B.1 shows a block diagram of an attitude-hold autopilot. The design

Figure B.1: A pitch-attitude autopilot [2]

includes a dynamic compensator, Gc(s), which is necessary if a small steady-state
error and good transient response are required. A PI (Proportional Integral) com-
pensator can be used to ensure that steady-state pitch error is removed. Because
of the very dynamic characteristics of the pitch-attitude hold autopilot, it is most
suitable as an inner feedback loop for other autopilots, such as altitude hold.

B.2 Altitude Hold Autopilot

The altitude hold autopilot allows an aircraft to be held at a �xed altitude in an
air-route corridor, serving as an important relief to the pilot. This autopilot can
also include features that allow climb rate limiting. The feedback loops involved
in altitude-hold control are shown in �gure B.2. In addition to the compensator
Gc, the e�ective lag of the pressure-altitude measurement is GF is also included.
Gc can be designed with the goal of achieving high loop gain, for good rejection of
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Figure B.2: An altitude-hold autopilot [2]

low-frequency altitude disturbances and small altitude error. It is also desirable
that an altitude response is deadbeat and relatively slow for both energy e�ciency
and passenger comfort.

The equation for altitude control can be derived by considering the equation
for vertical acceleration in the center of gravity expressed in NED coordinates,
given in [3] as:

azCG = Ẇ + V P −QU − g cos(Θ) cos(Φ) (B.2)

Assuming that Ẇ0 = 0, and using acceleration perturbation according to azCG =
az0 + δaz, the following equilibrium condition is obtained

az0 = V0P0 −Q0U0 − g cos(Θ0) cos(Φ0) (B.3)

Equation (B.2) can therefore be perturbed as:

az0+δaz = ẇ+(V0+v)(P0+p)−(Q0+q)(U0+u)−g cos(Θ0+φ) cos(Φ0+φ) (B.4)

Further assumption that the altitude is changed by symmetric straight-line �ight
with horizontal wings, such that V0 = Φ0 = Θ0 = P0 = Q0 = 0, gives:

az0 + δaz = ẇ + vp− q(U0 + u)− g cos(φ) cos(φ) (B.5)

Neglecting 2nd-order terms, vp and uq, and subtracting the equilibrium condition
(B.3) from (B.5) results in:

δaz = ẇ − qU0 (B.6)

Di�erentiating the altitude twice with respect to time gives the relationship:

ḧ = −δaz = qU0 − ẇ (B.7)

Integrating (B.7) under the assumption that ḣ(0) = U0θ(0) − w(0) = 0, results
in:

ḣ = U0θ − w (B.8)

which �nally yields the di�erential equation for altitude control:

ḣ = U0γ (B.9)

where γ is the �ight path de�ned in (B.1) and w = αU0 has been used.
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B.3 Roll-Angle Hold Autopilot

The roll-angle hold autopilot in a similar manner as the pitch attitude hold au-
topilot serve as an inner loop for other autopilots that allow the aircraft to �y on
a �xed compass heading. The aircraft can however be steered in any direction by
a single control if a means of varying the roll reference is provided. The roll-angle
hold autopilot can also be used to hold the aircraft wings level, providing a pilot-
relief function for long �ights. Figure B.3 shows a block diagram of a roll-angle
hold autopilot. Roll-rate gyro can be used to provide inner-loop damping for the

Figure B.3: A roll-angle control system [2]

autopilot, in addition to the compensator Gc placed in the roll-angle error path.
There is usually no requirement for precise tracking of roll-angle commands, so a
proportional gain for Gc can be used.

B.4 Turn Coordination and Heading-hold Autopilot

Turn coordination is desirable for several reasons among which is passenger com-
fort, minimizing undesirable aerodynamic loading of the aircraft structure, and
enhancement of pilot e�ectiveness in high performance aircrafts. In coordinated
turn, the aircraft maintains the same pitch and roll attitude with respect to the
reference coordinate system, but the heading changes continuously at a constant
rate. This implies that φ̇ = θ̇ = 0, and ψ̇ is the turn rate. The acceleration in
y-direction is also zero, and sideslip β = β̇ = 0. A similar exercise as done in
the derivation of the altitude control equation is done to derive the equation for
coordinated turn, given in [3] as:

ψ̇ =
g

U0
sin(φ) (B.10)

where it has been assumed that the aircraft is trimmed such that α0 = W0/U0 = 0
and that VT = V0 =constant. g is the gravitational acceleration. For small angles
of φ, the equation for coordinated turn (B.10) becomes:

ψ̇ =
g

U0
φ (B.11)

The above result states that a roll angle φ di�erent from zero will induce a yaw
rate which again turns the aircraft (bank-to-turn).

A collection of the above described autopilots can be used for automatic naviga-
tion, which is an important autopilot function for both military and civil aircraft.
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One such combination is a heading-hold autopilot, which was implemented in this
project for e�ective testing of �ight control performance in di�erent fault modes.
The conventional method of implementing a heading-hold autopilot is to close an
additional yaw-angle feedback loop around the roll-angle control system (includ-
ing turn compensation). Figure B.4 shows the described arrangement. Moreover,

Figure B.4: A heading-hold control system [2]

it can be noted from the block diagram that the turn coordination equation (B.11)
is used in the transfer function relating heading angle to roll angle.

B.5 Classical Control and Stability Augmentation sys-
tem for F-16

The following �gures were taken from [36], to illustrate the magnitude of design
complexity involved in the implementation of a well functioning control and sta-
bility augmentation system for an F-16 �ghter aircraft. Refer to [36] for detailed
description of all aspects of the complete control system.

Figure B.5: Pitch control system (longitudinal) [36]
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Figure B.6: Roll control system (lateral) [36]

Figure B.7: Yaw control system (directional) [36]
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(a) Pitch axis modi�cation

(b) Roll axis modi�cation

(c) Yaw axis modi�cation

Figure B.8: Axes modi�cations [36]
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Figure B.9: Role rate limiting scheme [36]
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(a) Schedule of pitch-loop
gain with q̄

(b) Schedule of pitch-rate
gain with q̄

(c) Schedule of negative
"g" with q̄

(d) Variation of δαp

Figure B.10: Scheduling schemes [36]
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(a) Pitch command gradi-
ent

(b) Roll command gradi-
ent

(c) Rudder command gra-
dient

Figure B.11: Command gradients [36]
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Appendix C

Relevant F-16 NMPC results

Some results from published work, [10], on Nonlinear Model Predictive Control
(NMPC) for the same F-16 model used in this work are included here to present
an alternative view on NMPC performance.

The NMPC problem investigated in [10] is a regulation-based problem, and the
objective is to regulate state perturbations of the F-16 to a target set (in this case,
the origin). Further, a Linear Parameter Varying (LPV) controller was used to
obtain a Control Lyapunov Function (CLF), which was used as a terminal cost in
the formulation of the optimization problem for NMPC. This approach allowed
NMPC stability to be ensured for the short horizon lengths (0.1s and 1.0s) inves-
tigated in the paper. The LPV controller was also used for prestabilizing the F-16
and for comparing the performance of the NMPC scheme. A sampling time of
0.05s was used for the NMPC, while 0.01s was used for the LPV controller. The
F-16 was trimmed at an altitude of 10000ft and 7◦ angle of attack. The control
signals generated by the LPV and NMPC controllers are synthetic inputs. Refer
to the paper for design and simulation details.

The performance of the NMPC scheme and that of the LPV controller are shown
in �gure C.1. The results show the response of the aircraft when 15◦ and 10◦

perturbations are applied to the angle of attack and sideslip, respectively.
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(a) State perturbation
trajectories

(b) Control perturbation
trajectories

Figure C.1: Trajectories for 1.0s horizon length.
NMPC (�), LPV (−−) [10]



Appendix D

Optimal CA as a recon�gurble
controller

The multiple actuation system (over actuation) in modern aircrafts can be well
managed through Control Allocation (CA). The control allocation problem in a
�ight control context can be de�ned as the determination of control e�ector de�ec-
tions which generate a given set of desired moments speci�ed by a pilot through
the control stick or by a guidance system. In the case of actuator failures, it is
desirable to recon�gure the control allocation scheme in order to make the best
use of the remaining functional actuators. Among the existing control allocation
algorithms, optimization methods based on linear programming or quadratic pro-
gramming have been identi�ed as having potential to be used for recon�gurable
control [43]. The control allocation problem, formulated based on optimization,
is presented in section D.1.

D.1 The Optimal Control Allocation Problem

The primary objective of a Control Allocator can be formulated as an optimaza-
tion problem where limits on actuator position and de�ection rate are included
as constraints. An optimal problem formulation is motivated by the fact that the
exact solution of the Control Allocation problem might not exist, and that the
solution might not be unique [43].

The virtual control input v presented in section 4.5 is restated here as:

vd(t) = Bu(t) (D.1)

Given the matrix B and a vector vd of desired aerodynamic moments, the true
control input u can be found such that

J = ‖W1(Bu(t)− vd(t))‖22 + γ‖W2(u(t)− ud(t))‖22 (D.2)

is minimized subject to:

umin ≤ u(t) ≤ umax (D.3)

ρdown ≤ ρ(t) ≤ ρup (D.4)
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where:
ρ(t) = u̇(t) (D.5)

The proposed optimization objective solves equation (D.1) for actuator position
combinations that minimize 1) deviation from the desired moment and 2) control
surface de�ection. The objective can alternatively be a combination of the for-
mer (error minimization) and either the minimization of drag, wing load, radar
signature or any other prefered optimal control objective. The vector ud(t) rep-
resents some prefered position or de�ection of the actuators (for example, zero
de�ections). Penalizing the extent of control surface de�ection in this proposal
implicitely includes drag minimization as an objective. It is also worth noting
that the combined objective problem can be solved faster than several individual
minimization problems solved sequentially. An optimal problem with comparably
better numerical properties is also achieved by using the proposed formulation
[43].

Also, from a fault tolerant system perspective, when an actutor failure occures,
the up(t) vector can be generated from estimates of nominal actuator positions
calculated from position and rate limit constraints corresponding to "healthy"
aircraft conditions. Choosing ud(t) as the previous sampled position of the actu-
ator yields a cost function which penalizes actuator rates as proposed in [30] for
dynamic control distribution.

Error minimization is however a vital objective of the fault tolerent control scheme.
Dynamically adjusting the design parameter 0 ≤ γ ≤ 1 in equation (D.2) will give
priority to error minimization in the event of control e�ector failure.

The primary Control Allocation problem (D.1) which is usually regarded as a
collection of linear equality constraints is also included in the proposed cost func-
tion as part of the error minimization objective. W1 and W2 can be designed as
diagonal weighting matrices whose (i, i)-entries speci�y the priority or importance
of correction measures taken for the ith actuator ui to reach its desired de�ection
point, or priority for corrections made to achieve desired moments in roll, pitch
and yaw. Speci�cally, W1 a�ects the prioritization among virtual control inputs
when (D.1) can not be attained due to actuator constraints. W2 on the other hand
allows for actuator priortization, i.e., which actuators should be used primarily.

For digital implementation purposes, the actuator de�ection rate (D.5) can be
rewritten as:

ρ(t) = u̇(t) =
u(t)− u(t− T )

T
(D.6)

where T is the sampling interval. The de�ection rate constraint can be reformu-
lated into a time-varying position constraint by inserting (D.6) into (D.4):

ρdown ≤
u(t)− u(t− T )

T
≤ ρup (D.7)

ρdownT ≤ u(t)− u(t− T ) ≤ ρupT (D.8)

⇒ ρdownT + u(t− T ) ≤ u(t) ≤ ρupT + u(t− T ) (D.9)
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The constraints in the Optimal Control Allocation problem can therefore be ex-
pressed as actuator position constraints at time t:

max{umin, ρdownT + u(t− T )} ≤ u(t) ≤ min{umax, ρupT + u(t− T )} (D.10)

The choice of using l2-norm in the optimal control allocation objective (D.2) is
motivated by the fact that the l2-norm favors the use of e�ective control inputs
[41]. Generally, an lp-norm gives a measure of how 'good' a solution or an ap-
proximation is. The lp-norm of a vector u ∈ Rm is de�ned as

‖u‖p =

(
m∑

i=1

‖ui‖p

)1/p

for 1 ≤ p ≤ ∞ (D.11)

Comparing the use of l2-norm (p = 2) with l1-norm (p = 1), for instance, shows
clear advantages for the choice of l2-norm. The l2-norm distributes virtual control
demand among all the control inputs, while the l1-norm results in a solution that
utilizes as few control inputs as possible to satisfy the virtual control demand. A
unique solution to the control allocation objective can be achieved for an l2-norm
case if the weighting matrices W1 and W2 are nonsingular. Since the optimal
problem formulation using l2-norm entails the minimization of a strictly convex
function over a convex set, solving (D.2) leads to a unique solution. The use of
l1-norm on the other hand does not always lead to a unique solution, even if the
weighting matrices are nonsingular [41],[43].

D.2 Solving the Optimal CA problem

The optimization problem formulation (D.2) speci�es the control allocation ob-
jective or the desired solution, but does not include how the solution is obtained.
For l2-optimal control allocation in general, a number of numerical methods are
available, including Pseudoinverse methods, �x-point methods, Ellipsoidal Con-
straints method, and active set methods. In reference [41], active set methods
have been identi�ed as a viable choice for solving optimal control allocation prob-
lems. The main motivation is that approximation schemes such as pseudoinverse
methods and the �x-point method are not guaranteed to �nd an optimal solu-
tion in a �nite number of iterations, whereas active set methods can be shown to
�nd the optimal solution in a �nite number of iterations [41],[42]. The maximum
number of iterations can also be set to re�ect the computation time, since in each
iteration of active set methods a feasible ui+1 is produced that yields a lower
value of the objective function than the previous iterate, ui. This special prop-
erty makes active set methods more reliable and therefore a good and reasonable
choice for a recon�gurable fault tolerant control scheme.

Reference [41] formulates the optimal control allocation problem in a similar form
as (D.2), but uses rather large values of γ (as in γ‖Wv(Bu− v)‖p

p) to emphasize
that Bu−v should be primarily minimized. Based on this formulation the control
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allocation objective (D.2) can be rewritten as

‖W1(Bu(t)− vd(t))‖22 + γ‖W2(u(t)− ud(t))‖22 =

∥∥∥∥∥
(
W1B

γ
1
2W2

)
︸ ︷︷ ︸

A

u−
(

W1vd

γ
1
2W2ud

)
︸ ︷︷ ︸

b

∥∥∥∥∥
2

2

(D.12)
and the weighted least squares (WLS) problem to be solved becomes

u = arg min
u
‖Au− b‖ (D.13)

umin ≤ u ≤ umax

Equation (D.13) can be solved using proposed active set method algorithms in
[41] or [42]

D.3 Recon�gurable Optimal CA implementation notes

An on-line parameter adjustment strategy is required to enable fault tolerance
when optimal control allocation is used as a recon�gurable controller. A pro-
posed and tested controller recon�guration strategy [12] involves accumulating
prede�ned damage-weights for each type of actuator, by running through the
following simpli�ed steps:

1. for each actuator : check for changes in lower and upper limits

2. if a limit change is detected: set damage-weighted count for that actuator
(for calculation of new γ).

3. �nd percentage/fractional decrease in the limits with respect to the healthy
state limits.

4. make corresponding percentage increase of the nominal W element for the
failed actuator.

5. make corresponding decrease to W -elements of the remaining control sur-
faces (which are redundant e�ectors to the faulty control surface)

6. after visiting each actuator : decrease the value of γ using the accumulated
damage-weights (reduces the importance/priority of control e�ort minimiza-
tion)
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