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Problem Description

Background

In an oil and gas production system, where wells are connected to manifolds
with multiple pipelines, a complex optimization problem arises. The ob-
jective is often to maximize the oil production while respecting constraints
on the system, such as limited capacity of processing facilities. The pro-
duction is dependent on advanced flow dynamics and closing/routing of the
wells, which result in nonlinearities and integer variables, respectively. The
problem thus belongs to the class of Mixed Integer Nonlinear Programming
(MINLP) problems. Furthermore, the nonlinearities in the problem are given
by high-fidelity flow simulators and derivative information is unavailable.

In the recent work IFAC (2012)1, a derivative-free optimization algorithm
was implemented and tested on a small instance of the above problem. The
algorithm approximates the non-linear simulator models with surrogate mod-
els that are fitted to a number of data points from the simulators. In an iter-
ative manner, these models are used to form a MINLP problem that is solved
by Bonmin (IBM). The work in IFAC (2012) suggests several improvements
of the algorithm, in example incorporating a trust-region and investigating
other classes of surrogate models and their convexity properties. It has later
been postulated that the algorithm should be modified so that the (local)
surrogate models are fitted when solving the NLP subproblems (in the inner
loop where the binary variables are fixed). It would be interesting to measure
the modified algorithm against the original algorithm in IFAC (2012).

Description

A literature study on MINLP programming and convexity theory should
be conducted as part of the research. The student may also write a short

1(IFAC 2012) Bjarne Grimstad, Vidar Gunnerud, Dag Ljungquist, Håvard Ausen, and
Victoria Lervik. Optimization of a Simulated Well Cluster using Surrogate Models. Pend-
ing paper. Automatic Control In Offshore Oil and Gas Production, IFAC Workshop,
2012.
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survey on MINLP-solvers (history, development, and application), but this
is optional.

The research should be a continuation of previous work IFAC (2012) with
focus on refining and testing the proposed algorithm. Since this is ongoing
research, the main goal will be to get more insight into the problems outlined
above. Hopefully, the thesis might answer some questions and rise new ones.

Task Description

• Literature study on convex optimization and MINLP programming.
Focus should be on topics related to the above description, e.g. MINLP
algorithms (interior point) and trust region.

• Investigate different strategies/schemes for approximating simulator
models using convex or non-convex surrogate models. Provide a dis-
cussion on different classes of surrogate models and at which point in
the algorithm they should be updated (fitted to the simulator data).

• Implement the proposed scheme(-s) and apply it(them) on a simple
optimization problem as well as the full optimization problem with
binary variables.

• Discuss optimization results and propose further refinements.
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Abstract

To aid in faster and better decision making it is interesting to couple ad-
vanced simulators with optimization tools. Most simulators however does
not offer gradients, therefore derivative-free methods must be used. In this
thesis optimization of and oil and gas field with free routing is considered.
By embedding the structural information in the optimization problem and
approximating the simulators by polynomials a MINLP problem is formed
which can be solved by gradient based solvers. This approach requires that
the polynomial models are updated frequently to fit the simulators. Each
update requires several simulations and creates a trade-off between robust-
ness and computation time. Different updating strategies for the models are
considered in this thesis. By solving a separate optimization problem to up-
date the models the MINLP problem can be formulated as a convex problem
which is solved in a branch and bound framework and with an interior-point.
Two approaches to updating the models in respect to the branch and bound
method are explored, and it is found to be more robust to update the mod-
els for each node of the branch and bound tree, ensuring a local fit before
branching.



Sammendrag

For å lage et verktøy som kan hjelpe til med raskere og bedre avgjørelser
er det interessant å prøve og koble sammen avanserte simulatorer med opti-
maliserings verktøy. De fleste simulatorer tilbyr midlertidig ikke informasjon
om gradienter, derfor må gradient frie metoder benyttes. Denne avhandlin-
gen tar for seg produksjons optimalisering på et olje og gass felt med fri
routing av brønner. Ved å bygge inn den strukturelle informasjonen i op-
timaliseringsproblemet og tilnærme simulatorene med polynomer dannes et
MINLP problem som kan løses med gradient baserte metoder. Denne tilnær-
mingen krever at polynom modellene oppdateres ofte for å tilnærme simula-
torene. Hver oppdatering krever flere simuleringer og skaper en kompromiss
mellom robusthet og beregningshastighet. Ulike oppdaterings strategier for
modellene er vurderte i denne avhandlingen. Ved å løse et eget optimalis-
eringsproblem for å oppdatere modellen kan MINLP problemet formuleres
som et konvekst problem som løses med en branch-and-bound metode og
en interior-point løser. To tilnærminger til å oppdatere modellene i forhold
til branch-and-bound metoden er utforsket, og det ble funnet å være mest
robust å oppdatere modellene for hver node av branch-and-bound treet, noe
som sikrer en lokal tilpasning før branching.
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Chapter 1

Introduction

In engineering advanced simulators have become commonplace to aid in prob-
lem solving and for training purposes. Simulators are often used in "what-
if" analyses, but problems quickly grow in size to a level where it becomes
too time consuming to explore all possible scenarios. To aid in the "what-
if" analysis it is interesting to try and couple simulators with optimization
techniques. In optimization the possible solutions can be explored in a struc-
tured manner, thus guaranteeing an optimal solution. Having a computer
tool which can give recommendations together with simulation data can aid
in better and faster decision making, the returns can be in the order of hun-
dreds of millions of USD [1].
The most efficient optimization techniques require that the derivatives from
the simulators are available. This is often not the case for black-box sim-
ulators where a set of input variables produces an output, common when
simulators are provided as compiled computer code. Derivative free methods
exist for this purpose, they tend to fall into one of two categories: Model-
based methods which builds a quadratic or lower order polynomial model of
the problem by perpetuating the simulators, and applies line-search or trust-
region based methods to calculate the next step. The other category consist
of direct search methods which uses a set of tabulated points to determine the
next step while implicitly handling the problem structure. Although there
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CHAPTER 1. INTRODUCTION

are many examples of simulator-based optimization the maturity of the ap-
plications varies a lot [2].
In production optimization problems tend to have a clear structure in the
form of production chains, where a product move in one direction through
many processes before it if finished and model based methods should be more
suitable [2]. Model-based methods can use the structure to quickly converge
towards an optimal solution [3].

In oil and gas production the wells are routed through a network of pipes
before it reaches processing equipment. This creates a complex optimization
problem with non-linear flow dynamics in the wells and pipelines. The objec-
tive is to maximize the oil production while upholding capacity constraints
such as gas and water handling capacities. The production is given by the
discrete routing/closing of the wells. The problem belongs to the class of a
mixed integer non-linear programming (MINLP) problems.

1.1 Motivation

Production optimization for oilfields can be classified as long-term and short-
term optimization, the long term includes decisions on well placements,
drainage strategies, design of processing equipment, export strategies etc.
The goal is to maximize the net present value of the field [4].
This thesis will focus on short-term optimization; the day to day optimiza-
tion of oil production. The production has to satisfy production constraints.
The constraints tend to move over the lifetime of the field: In the beginning
there might be capacity restrictions in the pipelines, while for the tail pro-
duction it might be the water handling capacity as wells tend to produce a
larger amount of water towards the end of the field lifetime.
Today optimization is done by cross-disciplinary teams located onshore and
offshore. Decisions are based on well tests, measurements and current per-
formance. An optimization tool can help teams by providing suggestions on
how to increase production rates and by giving information on active con-

2



1.2. SCOPE

straints, such as capacity constraints for a given pipeline. It is important to
note here that the reliability of the optimization is limited by the accuracy of
the simulators and suggestions from the optimization tool could be ignored
if there are large uncertainties associated with the reservoir or wells. Several
simulators are available to simulate multiphase flow and reservoir dynam-
ics. Some popular ones are PIPESIM and ECLIPSE by Schlumberger [5]
[6], LedaFlow by Kongsberg Oil & Gas Technologies [7] and Flow Manager
by FMC Technologies [8]. Teams might have access to several of these, and
it is therefore desirable to make a general purpose optimization which can
combine several simulators in one optimization procedure. Recent advances
in MINLP algorithms have made solvers more robust to non-convex prob-
lems and they have become readily available for academic and commercial
use. Optimization on simulators could be performed by pure derivative free
methods, treating the whole system as a black-box. But by splitting the
system into separate components, creating many small black-boxes, and ex-
plicitly handling the mass and energy balances between each component, a
hybrid derivative free optimization method can be created. This should be
more efficient than a model-based optimization method as it can exploit the
problem structure directly.

1.2 Scope

This thesis is a continuation of work performed by the IO center in Trondheim
in close collaboration with NTNU. The thesis will explore different formula-
tions of the optimization problem and the best formulation will be used to
test how the models should be updated in respect to the integer handling
of the optimization procedure. The implementations will be evaluated on
performance and robustness criteria.

3
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Chapter 2

Problem Description

In production optimization the value chain often consist of a series of process-
ing equipment or stations the product has to move through. Even though the
processes which happen inside each station can be very complex, for example
the pressure loss in a multiphase pipeline, reactions in a chemical reactor or
the development of an oil and gas reservoir, the connections between each
station can be modelled by simple energy and mass balances. Or in the case
of oil and gas processing; pressure and volumetric flow. By incorporating as
much of the structural information as possible in the optimization formula-
tion, the solver can take advantage of this information in each step to bring
it closer to the optimum. The complex equipment can be by handled by
approximations based on perturbation of the simulators. This creates a hy-
brid method somewhere between a model-based derivative free method and
a gradient based method. The problem can be described as

5



CHAPTER 2. PROBLEM DESCRIPTION

min
x,b

J(x)

s.t.

F (x, b) ≤ 0

g(x, b) = 0

h(x, b) ≤ 0

x ∈ Rn b ∈ {0, 1}m

(2.1)

Where all the structural information is given by g and h with known deriva-
tives. F (x, b) is the simulator, and the derivatives are not available. (2.1)
will be referred to as the master problem. As the derivatives of F (x, b) are
not available an approximation of the simulator which is independent of the
binary variables and valid for a short interval around the current iterate, xi,
is made.

f(xi + δ) ≈ F (xi + δ, bi) ∀|δ| ≤ ∆ (2.2)

For some ∆ greater than zero. The model error is defined as the difference
between the model and the simulator at the current iterate.

εi = |f(xi)− F (xi, bi)| (2.3)

When f is an analytical and smooth function the subproblem can be solved
by traditional optimization techniques:

min
x,b

J(x)

s.t.

f(x) ≤ 0

g(x, b) = 0

h(x, b) ≤ 0

x ∈ Rn b ∈ {0, 1}m

(2.4)

By updating the models after each subproblem, or iteration, the model error
is expected to decrease and (xi, bi) should converge towards the optimal point

6
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of the master problem. To guarantee the same (local) optimal solution for
the master problem and the subproblem it is required that the model and
the simulator are equal in the optimal point (x∗, b∗)

f(x∗) = F (x∗, b∗) (2.5)

(2.5) is not a sufficient condition for optimality of the master problem, the
KKT conditions must be satisfied as well. Therefore it is required that f is
also a good approximation in a region around x∗ to yield accurate estimates of
the derivatives for F , as stated in (2.2). This allows us to form a termination
criterion for the algorithm: When a solution to (2.4) is found and (2.5) is
fullfilled the algorithm has reached a local optimum (x∗, b∗).

Binary variables

The binary variables form discontinuities in the problem. As the models only
form an accurate description in a small area around the current iterate the
binary variables can cause the next iterate to be in a completely different area
of the feasible region, this causes large model errors, and further optimization
without correcting the models will yield a solution that have no relation
to the master problem. A challenge is to find a good way to handle the
integer variables together with the model updates to increase the chances
for the algorithm to quickly converge towards a solution without excluding
candidates for the optimal point.

2.1 Previous Work

Early work includes [4], where Gunnerud used mixed-integer linear program-
ming to maximize the oil production on a semi-realistic model of the Troll
west oil rim containing several well clusters and manifolds. Troll is a chal-
lenging field due to gas-coning effects which causes rate dependent GOR.
The non-linear behavior in the wells and pipelines were handled by linear
constraints creating a MILP problem. The linear constraints causes a very

7
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high number of integer variables, but a linear problem has the advantage
of providing a duality gap with the solution and very efficient solvers exist
for these problems. The problem was solved with two different decompo-
sition strategies to exploit the special structure of the problem were both
approaches proved better than a global method for larger problems. The key
differences between [4] and this thesis are the coupling with the simulators.
In [4] the entire feasible area has to be explored to build linear constraints,
this causes excessive amounts of simulations to build tables and breakpoints.
For example the pipeline pressure drop is parameterized with three different
flow rates, oil, gas and water. This causes the number of breakpoints to
increase with the power of three and the number of binary and continuous
variables grows extremely rapidly. Further the space was only discretized in
respect to pressure drops, the inlet pressure was not considered which could
lead to errors.

Later work includes [9], performed by Ausen, Grimstad and Lervik where
the models approximating the simulators where updated iteratively, thus
only part of the feasible area is simulated. A well routing problem was
solved successfully on a simulated oilfield with four wells, one manifold and
two pipelines. The simulators were approximated by quadratic functions
which lead to a series of non-convex MINLP problems. After a MINLP
problem was solved the model with the largest model error was updated to
fit around the current optimal point to create a new MINLP problem, which
was then solved again, this process was repeated until the model errors came
within predefined tolerances. By solving a MINLP problem with free routing
between each model update the optimization might fail to explore all possible
candidates for a global optimum because the models only offer a local fit of
the simulators, this challenge will be described more in detail later in the
thesis. The model update was performed as an exact solution to a set of
linear equations which provides an exact match between the model and the
tabulated points from the simulator but gives no control on convexity or
robustness to noise.

8



2.2. CASE STUDY

Figure 2.1: Field overview, three wells are routed through a manifold to two
pipelines leading to a topside separator.

2.2 Case Study

The production optimization is applied to a simulated oilfield with a fixed
separator pressure and constant gas-to-oil ratio(GOR), for simplicity it is
assumed that no water is present in the system and no capacity constraints
for the gas handling capacity. Three wells with different GOR are connected
to a manifold and two pipelines lead to the separator located topside as seen
in figure 2.1. This is a similar set-up to the one used in [9]. The goal is to find
the optimal routing which maximizes oil production. To test the robustness
of the algorithm for larger problems more wells will be connected through
the same manifold to the two pipelines.

9
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Chapter 3

Theoretical Background

Early optimization theory dates back to the beginning of the 20th century
[3]. Among the first applications of optimization were resource allocation
during WWII [1]. With the advent of computers and algorithmic advances
optimization is now commonplace in control theory, such as MPC [10], op-
erations research [1] and logistics planning for firms like FedEx and UPS [1].
LP problems can be solved extremely quickly even for very large problems
containing thousands of variables and constraints [3]. Mixed integer pro-
gramming (MIP) is challenging due to discontinuity and the vast number
of possible solutions [1][11]. But some methods have been proven effective
and reliable, among them are the Branch and bound method which will be
presented in this chapter. In non-linear programming (NLP) SQP has long
been very popular, but as the understanding and proofs for interior point
algorithms they have been developed it has become equally popular [3], a
brief comparison will be given in this chapter.

3.1 Convexity

A convex optimization problem guarantees that a global solution is found,
and not only a local optimum, and is therefore extremely attractive for op-
timization purposes. A convex problem also means that the algorithm will

11



CHAPTER 3. THEORETICAL BACKGROUND

behave in a predictable manner, and not get stuck in stationary points. Con-
vexity is best defined by a convex set, and a set is convex if the line segment
joining any two points in the set also lies within the set. Formally it can be
stated by letting C be a convex set then

ax1 + (1− a)x2 ∈ C

0 ≤ a ≤ 1

for any x1, x2 ∈ C [12].
A general optimization problem stated as minx∈Rn J(x), subject to c(x) ≤ 0,
is convex if the feasible set is a convex set, and the objective function J(x)
is convex. This requires that the hessian of fulfils ∇2J(x) ≥ 0. In the same
way we can define the convexity of the feasible set. c(x) ≤ 0 forms a convex
set if ∇2c(x) ≥ 0 or similarly, c(x) ≤ 0 forms a convex set if ∇2c(x) ≤ 0.
From this is should be obvious that equality constraint only form a convex
set if ∇2c(x) = 0 which means that equality constraints must be linear in
order to ensure convexity. Constraints on the form

xTQx+Rx+ s ≤ 0 (3.1)

are convex if and only if Q ≥ 0, this means that the eigenvalues of Q has to
satisfy λ ≥ 0, λ ∈ R.

3.2 Branch and Bound

Integer programming is very difficult in nature compared to normal convex
linear and non-linear programming. While continuous problems have an
infinite number of feasible points integer problems have a finite number of
possible solutions. Intuitively this might lead one to think that MIP is easier,
as only a finite number of points needs to be evaluated to guarantee a global
optimum. But the number of possible solutions can be astronomically large.
Consider a problem with n binary variables the number of possible solutions
would be 2n, a relatively small problem with 50 variables will have more

12
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than 1015 possible solutions. So the difficulty of an optimization problem
is largely determined by how constrained it is, not the size of the feasible
area. And integer variables impose severe constraints on the problem. To
solve this some structured way of searching through the possible solutions
and excluding a large amount of non-optimal points need to be used. Branch
and bound (BB) is one such method. It is well known within the field of IP
[1]. As the name indicates it bounds the problem such that only a part of
the solutions space is considered. And by branching out it can split a large
problem up into many smaller subproblems which can be solved separately.
This makes BB very suited for parallelization on computers with multiple
cores. To better understand the branch and bound algorithm consider the
MILP problem on the form:

min
x∈Rn,y∈Zl

cTx+ dTy

s.t.

Ax+By = b

x, y ≥ 0

(3.2)

The description that follows is based on [11] and [1]. The algorithm starts
by solving a relaxed version of the problem, relaxation here means that the
integer constraints on the y variables are removed creating an LP problem.
This first relaxed problem is known as the root node.
Next the algorithm selects an element of y from the solution with a non-
integer value to branch on. The selection of branching variables can have a
big impact on the algorithms performance. No robust method for variable
selection exists[11], but a common practice is to use a set of user defined pri-
orities or some form of heuristics [11]. When a branching variable is chosen,
two subproblems are generated and added as children to the root node. The
child nodes will have constraints added to the problem. Let for example the
solution to the root problem be y = 2.8, then the first child has the constraint
y ≤ 2 added to the problem and y ≥ 3 added to second child. If the solution
is integer or the relaxed problem is infeasible, no branching is performed.
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This process divides the solution space into subspaces, while the part be-
tween the two subspaces which does not contain any feasible integer solutions
is cut off.
This process is continued with the children inheriting its parents constraints
until there are no more unsolved nodes.

When adding more and more constraints as the BB moves down into the
search tree created by the making the feasible area smaller BB earns the
second part of its name: When the optimal point is left outside of the new
feasible region it will, for convex problems, guarantee that all children will
have worse optimal solutions than the parent. This allows a bounding to be
performed: If a node produces a solution which is worse than the current
best integer solution, its children will not yield any better integer solutions,
and all its children can be cut off. In other words no branching should be
performed on that node. The worst case performance of BB is similar to a
brute force algorithm, but in practice it performs much better. For a more
thorough introduction including a step-by-step description the author would
like to recommend [1] for further reading.

3.2.1 Search Strategies

When a branching variable has been chosen and the new nodes created, it
still has to determine which node to explore next. Different strategies for
searching the tree and picking which node should be considered next have a
great influence on the time it takes to find feasible and optimal solutions. If
the right choices are made, many nodes can be cut off. Some common search
strategies are listed below.

Depth-first

Depth-first searches down into the tree, quickly adding more and more con-
straints. This allows the depth-first search to quickly find feasible solutions
to the MIP. These solutions can in turn be used to bound the tree. The
strategy can risk to search extensively in a part of the feasible area which
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contains few good solutions and thus increasing the number of nodes which
has to be explored before and optimum is found.

Breadth-first

Breadth-first searches the feasible area quickly; this can be beneficial when a
good bound is known before the search is started. It can allow the breadth-
first search to quickly eliminate large parts of the feasible area. In general
a breadth-first search takes longer to find feasible solutions than depth-first
and therefore might risk to explore larger parts of the BB tree.

Last solved problem first

Lets the algorithm take advantage of a warm start as children are not very
different from the parent node and a lot of the information computed can be
reused, such as estimates of active constraints.

Best bound

Chooses the node which has the best bounds. As this is more likely to yield
a good solution.

As both the choice of branching variable and search strategy greatly influ-
ence BB performance the choice for both strategies can be made by closely
studying the problem structure, but might as well be determined by trail and
error.

3.3 Non-Linear Optimization

Two methods for non-linear optimization will be described briefly: Active-set
and interior-point. The descriptions given here are based on [3] and[12]. The
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description will focus on key differences, advantages and disadvantages for
each method.

3.3.1 Active-Set Method

Active-set sequential quadratic programming (SQP) was developed in the
1970s. The name refers to how the method handles constraints; an estimate
of the active set is used to find candidates for optimal solutions. It solves the
non-linear problem by calculating the step direction from a QP problem using
linearised constraints, feasibility is handled by line search or trust region
methods. Active-set methods are well suited to use together with BB as
each problem is very similar to the previous and good estimates of the active
set are easy to give.

3.3.2 Interior-Point Method

Often called a barrier method, it solves the problem by computing a solution
the the primal dual problem based on the KKT conditions. The method
earns its name from how it moves towards an optimal point; the method
moves along a strictly feasible central path. This makes it better to handle
non-convexities [3] and makes interior-point very attractive for real-time im-
plementations such as MPCs [10]. But it is less suited to take advantage of
precalculated information, such as estimates of the active se,t which make
them less suited to use with BB [3]. Interior-point methods tend to outper-
form active-set methods in large scale applications, but as they consider all
constraints for each step the calculations can be very expensive.

3.4 Derivative Free Optimization

Optimization techniques are very robust and efficient when the problem is
well formulated, but in many applications the need arises to use optimiza-
tion where the explicit function and its derivatives are unknown. Derivative
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free optimization techniques differ from traditional optimization in the fact
that sampled function values are used to determine the next step instead of
gradient information and KKT conditions. Model based methods construct
a model, usually based on polynomials, by interpreting the sampled values.
This is effective in many cases, especially if the underlying problem contains
a clear structure [3]. Model based methods are especially sensitive to round
off errors and errors due to finite difference models common when solving
PDEs with computers.

More general purpose DFO methods exist, the most popular methods
are perhaps simulated annealing and Nelder Mead [13]. They use a set of
sampled variables to determine a new iterate. The main drawback for DFO
methods is that the number of function evaluations can be excessive [3]. They
also tend to be very sensitive to scaling.

3.5 Chapter Summary

In [9] and [2] the basis were laid out for a hybrid derivative free-method
which aims to exploit the structural information in a production network by
embedding structural information in the optimization formulation. As the
problem belongs to the class of MINLP problems an SQP solver might be
more suitable but IPOpt, a interior-point solver, was chosen to handle all
NLP optimization due to previous experience and readiness of this solver.
Branch and bound was used to handle integer constraints, a BB method is
available through BONMIN, but a separate BB method was written by the
author to achieve a more customizable method. The BB method was written
in Python and employs a breadth-first search strategy. A complete list of
options passed to BONMIN and IPOpt is found in appendix A.4.

17



CHAPTER 3. THEORETICAL BACKGROUND

18



Chapter 4

Data Sets and Approximated
Models

In this chapter the simulator data will be presented and a brief discussion
on different methods for interpolating techniques will be given. Finally a
method for updating the models while controlling convexity is described.

4.1 Simulator Data

The simulator data was attained using a commercially available simulator
on a simulated oilfield equal to the field described in figure 2.1. The data
was stored as tables during the optimization. First the concept of water-cut
(WC) and gas-to-oil ratio (GOR) is introduced:

Gas to oil ratio

GOR is the relation between the amounts of gas flowing from a well divided
by the oil flow.

qgas
qoil

= GOR (4.1)

Water cut

WC is used as a measure of how much of the liquid produced is water
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Table 4.1: List over well GOR

Well GOR
1 100
2 150
3 200

qwater = WCqliquid
qoil = (1−WC)qliquid

(4.2)

4.1.1 Well Performance Curve

The reservoir, well and pipeline leading up to the manifold are all lumped
together in one model, called the WPC (Well Performance Curve). It gives
the pressure as a function of flow rate, or vice versa. With a fixed GOR and
WC the wellhead pressure can be plotted as a function of oilrate, as seen in
figure 4.1. The GOR for each well is listed in table 4.1

4.1.2 Pipeline

The pressure drop in a pipeline is in general very complex, as it is a function
of inlet pressure, viscosity, flow speed, temperature and density as well as
the diameter and roughness of the pipe. Different flow regimes can also
create different pressure drops even for the same set of input parameters.
By fixing the outlet pressure with fixed separator pressure and keeping the
WC constant and simulating 10 different flow rates and 3 different values for
GOR the pressure loss can be plotted as a function of oilflow for different
GORs. The resulting plot can be seen in figure 4.2.

By discretizing the space in terms of GOR and WC instead of using phase
flow, there is no need to build tables for non-existing scenarios. For example
a table might include the pressure drop for a pipeline with just gas flow,
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Figure 4.1: The well pressure as a function of oil flow, GOR and WC are
constant

although this will never occur in the optimization problem since no wells
have a GOR equal to zero.

4.2 Different Interpolation Techniques

There are several different ways of approximating data with continuous func-
tions. The most common is probably using polynomial interpolation. The
challenge is to capture all the relevant dynamics from the simulator but at
the same time, the models must be simple enough to be used in optimization.
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Figure 4.2: The pressure loss in the pipeline for different GOR and a constant
WC

4.2.1 Polynomial Interpolation

Linear models are the simplest kind of polynomials, these are widely used,
as in SQP where constraints are linearised in each step. The shortcoming of
these is that the models are (possibly) only valid within a short deviation
from the start point, and does not offer any information on second derivatives.
For polynomial interpolation the error decreases as the order increases, but
only up to a certain point. Increasing the order beyond this results in the
error exploding [14].

Higher order Taylor approximations are possible, but often not necessary.
It is rare to use higher order than 4th to 5th order polynomials, as the
polynomial has a tendency to oscillate wildly between the tabulated values
[14].
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4.2.2 Rational Function Interpolation

Rational functions are sometimes more suited for interpolation than poly-
nomials, as they can model poles. Most commonly they are expressed as a
quotient of polynomials [14]. The most famous rational function for interpo-
lation is perhaps the Padé approximation. Rational functions are well suited
for high order approximations, as the error tends to decrease as the order is
increased [14].

4.2.3 Splines

Splines are a special case of polynomial interpolation: The spline is performed
by fitting many curves, each valid within a set range. In addition the function,
and for higher order splines; the derivatives, are required to be continuous.
The most common splines are cubic and linear splines. Splines are most
common in cases where the derivatives of the original function are known
[14].

Summary

In optimization the main concern is convexity of the feasible area created by
the model, this is controlled by either making models convex or concave. This
makes rational functions unsuited for optimization purposes as the convexity
becomes unnecessarily complicated to control. Splines provide continuous
derivatives but as they are made up of several functions, they are overly
complex. Polynomial interpolation provides the best type of fit. A quadratic
fit provides sufficient model accuracy as well as easily detectable convexity.
A quadratic constraint can be written on the form:

xTQx+Rx+ s ≤ 0 (4.3)

Assuming the matrix Q is written in a triangular form, the convexity can be
asserted by

diag(Q) ≥ 0 (4.4)
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where diag(Q) is a vector containing the elements of Q’s diagonal.

4.3 Updating the Models

First some variables are introduced

Variable name Description
xk The points used to tabulate the simulator with
yk The resulting values from running the simulator with xk
x0 The point which the simulator is tabulated around
y0 The resulting value from running the simulator with x0

The simplest way to perform a polynomial interpolation is to find the solution
to Ax = b, where for a 2nd degree polynomial y = ax2 + bx+ c

A =


1 x0 (x0)2

1 x1 (x1)2

1 x2 (x2)2

 , b =


y0

y1

y2

 , x =


c

b

a

 (4.5)

As was done in [9]. If more points where used, a least squares solution
could be used which gives some robustness to noise, but does not offer any
control on convexity. Instead an optimization problem is formulated. The
optimization problem is defined as

min
Q,R,s

∑
k=0

((
xTkQxk +Rxk + s

)
− yk

)2

s.t.

x0
TQx0 +Rx0 + s = y0

diag(Q) ≥ 0

Q triangular

(4.6)

The equality constraint is added to ensure equality between the model and
simulator when using more points than required. diag(Q) ≤ 0 can be used
if the model has to be a concave.
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4.3.1 Model Update Robustness in the Presence of
Noise

To test the robustness of (4.6) to noise, the number of points for each well
simulator was doubled by using interpolation and a small noise signal was
added to introduce non-convexity. The noise causes the model to be linear
when only three points are used. The linearity is due to the convexity con-
straint. From figure 4.3 it is clear that robustness to noise can be increased
by increasing the number of points used to update the models. It smooths
out noise and thus acts as a filter. Choosing how these points should be
spaced around x0 is a very difficult problem, but a common way to do it is
a fixed grid with equal distance between each point [14]. In this case the
simulators are smooth and only a minimum number of points are used to
update each model. If the presence of noise is known, a larger number of
points should be used.
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Figure 4.3: Model update robustness to noise
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Chapter 5

Different formulations

In optimization a lot of emphasis is often put on finding a good solver. But
reformulating the problem can prove more effective than changing solver. In
this chapter three different formulations of the same problem will be given,
all with different properties. Towards the end of the chapter the formulations
are tested for robustness and performance. To make the formulations easier
to compare with other work, and expanded, the water phase is used in the
formulations even when it is assumed no water is present in the system. First
two techniques are described for reformulating optimization problems.

Linearizing mixed integer constraints

Non-linear constraints are more difficult to handle than linear and it is a big
advantage to have linear constraints. Consider a constraint on the form

xy ≤ 0 (5.1)

Where y is a binary variable ensuring that x ≤ 0 only if y = 1. It can be
rewritten as

x−M(1− y) ≤ 0 (5.2)

This is called a big-M formulation, where M is a constant. As long as M
is greater than x this is the same constraint. At first glance it might seem
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like a good idea to use a large as possible value for M , but this can cause
the problem to be poorly scaled. This not only affects performance, but can
cause the problem to be ill conditioned to a level where the solver fails to
find a solution.
A large value for M increases the solution space and hence the way the algo-
rithm behaves. ThereforeM should be chosen as small as possible, while still
guaranteeing that the original feasible area remains unchanged. To achieve
the best formulation, different values have to be used for the different in-
equalities. Optimization problems are in general bounded and a bound on
M is normally possible to find.

Elimination of variables

Equality constraints can be used to eliminate variables, this is straight for-
ward for linear constraints, and most solvers have methods for handling this
[3]. But non-linear constraints can impose implicit bounds on variables. For
example the constraint

(x1 − 1)3 = x2
2 (5.3)

Implicitly holds the constraint x1 ≥ 1 and if x2
2 is eliminated by substitution

x1 ≥ 1 has to be added to the problem to ensure mathematical equality.

5.1 Sets and Notation

To define the problem, sets of variables are used. The definitions are given
in table 5.1, 5.2 and 5.3. All variables are defined as non-negative. It is
assumed that the convexity of the models is controlled by using the method
described in section 4.3.
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Table 5.1: Indexes and sets

Index and set Description
j ∈ J = {1, 2, 3} Wells
l ∈ L = {1, 2} Pipelines
p ∈ P = {oil, gas, water} Phases

Table 5.2: Variables. All variables are non-negative

Variable Description Units
bj,l Binary routing variable for flow []

from well j to pipeline l
qWell
j,p Flowrate of phase p from well j [m3/h]
qPipel,p Flowrate of phase p in pipeline l [m3/h]
qMan
j,l,p Flowrate of phase p from well j to pipeline l [m3/h]
pWell
j Wellhead pressure for well j [bar]
pMan
l Manifold pressure for pipeline l [bar]

∆pPipel Pressure drop over pipeline l [bar]

5.2 Basic Formulation

This formulation is called basic because it is intuitive to set up and under-
stand, but it is not suited for optimization due to many non-linear equality
constraints, making the problem non-convex. Apart from minor differences
it is the same formulation which was used in [9].

Objective

The objective is to maximize the oil production.

max
∑
l∈L

qPipel,oil (5.4)
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Table 5.3: Constants

Parameter Description Units
PSep Separator inlet pressure [bar]
Cgas Topside gas handling capacity [m3/h]
Cwater Topside water handling capacity [m3/h]
rGORj Gas to oil ratio for well j []
rWC
j Water cut for well j []
M q

p big-M for volumetric flow of phase p [m3/h]
MP big-M for pressure [bar]

Topside production restrictions

The production facilities have constraints on how much water and gas they
can treat ∑

l∈L
qPipel,gas ≤ Cgas (5.5)

∑
l∈L

qPipel,water ≤ Cwater (5.6)

A fixed separator pressure is required

pMan
l −∆pPipel = PSep ∀l ∈ L (5.7)

Pipeline

The pressure loss in the pipeline is given by the quadratic model and is a
function of phase flow.

∆pPipel = Pl(qPipel,oil , q
Pipe
l,gas, q

Pipe
l,water) ∀l ∈ L (5.8)

Pl(qPipel,oil , q
Pipe
l,gas, q

Pipe
l,water) =β0,l + β1,lq

Pipe
l,oil + β2,lq

Pipe
l,gas + β3,lq

Pipe
l,water

+ β4,l(qPipel,oil )2 + β5,l(qPipel,gas)2 + β6,l(qPipel,water)2

+ β7,lq
Pipe
l,oil q

Pipe
l,gas + β8,lq

Pipe
l,oil q

Pipe
l,water + β9,lq

Pipe
l,gasq

Pipe
l,water

(5.9)
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This can also be written as a matrix formulation on the form xTQx+Rx+ s

Pl =


qPipel,oil

qPipel,gas

qPipel,water


T 

β4,l β7,l β8,l

0 β5,l β9,l

0 0 β6,l



qPipel,oil

qPipel,gas

qPipel,water

+


β1,l

β2,l

β3,l


T 

qPipel,oil

qPipel,gas

qPipel,water

+ β0,l (5.10)

The manifold

The flow in to the manifold has to be equal to the flow out from the manifold,
this is handled by a simple mass balance

qPipel,p =
∑
j∈J

bj,lq
Well
j,p ∀l ∈ L, p ∈ P (5.11)

The outlet pressure from the manifold cannot be greater than the pressure
from the wells routed to that pipeline:

pMan
l bj,l ≤ pWell

j ∀l ∈ L, j ∈ J (5.12)

The routing variables are used to turn the constraints on and off. In the
case that there exist a pressure loss between the well and manifold pressure
this difference could be used to calculate the correct choke position. Thus
the chokes are implicitly handled. This is a great advantage as chokes would
introduce more nonlinearities to the problem. Routing constraints ensures
that a well can only be routed to a maximum of one pipeline.

∑
l∈L

bj,l ≤ 1 ∀j ∈ J (5.13)

The wells

qWell
j,oil ≤M q

oil

∑
l∈L

bj,l ∀j ∈ J (5.14)

Ensures that the flow from the well is zero if it is not routed to any pipelines.
Because of the fixed GOR and WC, the relationship between the phases is
linear

qWell
j,gas = rGORj qWell

j,oil ∀j ∈ J (5.15)
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qWell
j,water = rWC

j qWell
j,oil ∀j ∈ J (5.16)

rWC can be defined as rWC = WC
1−WC

to be equal to the definition of WC
given in (4.2) which complies with the industry understanding of water cut.
As the relationship between oil, gas and water flow is linear the well and
reservoir models are reduced to

pWell
j = Wj(qWell

j,oil ) ∀j ∈ J (5.17)

Wj(qWell
j,oil ) = α0,j + α1,jq

Well
j,oil + α2,j(qWell

j,oil )2 (5.18)

5.3 Reduced Formulation

By exploiting the many equality constraints in the basic formulation the
number of variables and constraints can be reduced greatly. A close look at
the basic formulation reveals that all the pressure variables are functions of
flow (the topside separator pressure is a constant parameter, not a variable).
It should therefore be possible to reduce the problem to a form without
pressure variables. The most important property of the reduced formulation
is that it is a convex problem when all the binary variables are fixed.

Objective

max
∑
l∈L

qPipel,oil

Pressure

By inserting (5.8) into (5.7) pMan
l can be eliminated.

(∆pPipel + PSep)bj,l ≤ pWell
j ∀l ∈ L, j ∈ J (5.19)

(5.8) and (5.17) are non-linear equalities by eliminating these, the problem
becomes more convex. This is achieved by inserting (5.8) and (5.17):

(
Pl(qPipel,oil , q

Pipe
l,gas, q

Pipe
l,water) + PSep

)
bj,l ≤ Wj(qWell

j,oil ) ∀l ∈ L, j ∈ J (5.20)
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As mentioned earlier the elimination of variables must be done with some
care, as the pressure variables were non-negative, a bound has to be placed
on the models

Pl(qPipel,oil , q
Pipe
l,gas, q

Pipe
l,water) ≥ 0 ∀l ∈ L (5.21)

Wj(qWell
j,oil ) ≥ 0 ∀j ∈ J (5.22)

The pressure variables have now successfully been eliminated. The rest
of the problem is formulated in the same way as for the basic formulation.

Topside production restrictions

∑
l∈L

qPipel,gas ≤ Cgas

∑
l∈L

qPipel,water ≤ Cwater

The manifold

qPipel,p =
∑
j∈J

bj,lq
Well
j,p ∀l ∈ L, p ∈ P

∑
l∈L

bj,l ≤ 1 ∀j ∈ J

The wells

qWell
j,oil ≤M q

oil

∑
l∈L

bj,l ∀j ∈ J

qWell
j,gas = rGORj qWell

j,oil ∀j ∈ J

qWell
j,water = rWC

j qWell
j,oil ∀j ∈ J
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5.4 Convex Formulation

The non-convexity that existed in the basic formulation was in the models
and in the mass balance equation. A partial solution to this is given in the
reduced formulation which is convex for fixed routing. But the problem can
be further improved to make the problem convex.

Objective

max
∑
l∈L

qPipel,oil

Pressure

Again the need to eliminate the nonlinear equality constraints is present.
But to simplify the equation further, and thereby simplifying the Jacobian
of the constraints, a rewriting of (5.12) is needed

pMan
l bj,l ≤ pWell

j ∀l ∈ L, j ∈ J

can be rewritten to

pMan
l ≤ pWell

j +MP (1− bj,l) ∀l ∈ L, j ∈ J (5.23)

Following the same procedure as for the reduced problem by inserting (5.7),
(5.8) and (5.17) we arrive at

Pl(qPipel,oil , q
Pipe
l,gas, q

Pipe
l,water) + PSep −Wj(qWell

j,oil ) +MP (bj,l − 1) ≤ 0 ∀l ∈ L, j ∈ J
(5.24)

Which is a convex constraint given that Pl is a convex function and Wj is
concave. As with the reduced formulation the pressures must be positive

Pl(qPipel,oil , q
Pipe
l,gas, q

Pipe
l,water) ≥ 0 ∀l ∈ L

Wj(qWell
j,oil ) ≥ 0 ∀j ∈ J
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The manifold

The mass conservation in (5.11) is the last remaining non-convex function.
This can be rewritten to a linear function by introducing a new variable, the
flow within the manifold, qMan

j,l,p , the flow from well j to pipe l of phase p. A
graphical representation is given in figure 5.1.

Figure 5.1: A graphical interpretation of the manifold flow

Flowing into the manifold we have

qWell
j,p =

∑
∀l∈L

qMan
j,l,p ∀j ∈ J , p ∈ P (5.25)

And similarly out of the manifold

qPipel,p =
∑
∀j∈J

qMan
j,l,p ∀l ∈ L, p ∈ P (5.26)

The routing is handled by

qMan
j,l,p ≤M q

p bj,l ∀j ∈ J , l ∈ L, p ∈ P (5.27)

Note that all these constraints are linear. The rest remains as in the basic
problem:
Routing constraints ∑

l∈L
bj,l ≤ 1 ∀j ∈ J
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Topside production restrictions∑
l∈L

qPipel,gas ≤ Cgas

∑
l∈L

qPipel,water ≤ Cwater

The wells

qWell
j,oil ≤M q

oil

∑
l∈L

bj,l ∀j ∈ J

qWell
j,gas = rGORj qWell

j,oil ∀j ∈ J

qWell
j,water = rWC

j qWell
j,oil ∀j ∈ J

5.5 Big-M

The big-M notation is used extensively through the convex formulation, but
also for ensuring the closing of wells in the other formulations. The transfor-
mation from xy ≤ 0 to x+M(y − 1) ≤ 0 is only valid if M ≥ max{x}.
Two M’s have been used in the formulationM q

p for volume flow with subscript
p determining the phase, and MP for pressure.

Volume flow

From (5.14) and (5.27) it should be clear that

M q
p ≥ max

j∈J
{qWell

j,p } ∀p ∈ P (5.28)

M q
p ≥ max

j∈J ,l∈L
{qMan

j,l,p } ∀p ∈ P (5.29)

but as qWell
j,p = ∑

l∈L q
Man
j,l,p it is clear that qWell

j,p ≥ qMan
j,l,p and (5.28) and (5.29)

can be reduced to just M q
p ≥ maxj∈J {qWell

j,p }. The maximum value can be
found by using the fact that we cannot have negative pressures, we can say
that M q

oil ≥ qmaxoil where qmaxoil is solution to:
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max q

s.t.

max
j∈J
{Wj(q)} ≥ 0

q ≥ 0

(5.30)

Or qmaxoil could be calculated directly from the roots of Wj(q). The limits
for the other two phases are easily found by applying the linear relationship
between them:

M q
gas ≥ max

j∈J
{rGORj }qmaxoil (5.31)

M q
water ≥ max

j∈J
{rWC

j }qmaxoil (5.32)

Pressure

For pressure it is slightly more complex, to simplify the notation, the binary
variables are left out. From (5.24) it is clear that MP has to be bigger than
the largest pressure:

MP ≥ max
qP ipe

l,p
,qW ell

j,p ∈J ,L,P
{Pl(qPipel,oil , q

Pipe
l,gas, q

Pipe
l,water) + PSep −Wj(qWell

j,oil )} (5.33)

As we cannot have negative pressures max{−Wj(qWell
j,oil )} = 0. The pressure

loss in the pipeline cannot be higher than the pressure supplied by the wells.
This can be proven by rearranging (5.24) to

Pl(qPipel,oil , q
Pipe
l,gas, q

Pipe
l,water) + PSep ≤ Wj(qWell

j,oil ) ∀l ∈ L, j ∈ J (5.34)

Using this it is possible to write

MP ≥ max
qW ell

j,oil
,j∈J
{Wj(qWell

j,oil )} (5.35)

As Wj is a concave 2nd order polynomial the maximum can be calculated
directly by

MP ≥ max
j∈J

{
Wj(−

α1,j

2α2,j
)
}

(5.36)
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Table 5.4: Table for number of variables and constraints for different formu-
lations

Basic Reduced Convex
Variables 23 16 28
Constraints 26 24 42
Non-linear constraints 15 15 11

or if − α1,j

2α2,j
< 0

MP ≥ max
j∈J
{Wj(0)} (5.37)

Equation (5.29) and (5.35) lets us form tight bounds on the values for
big-M. These bounds will change after each model update but they remove
the need for a user set value, and make the algorithm much more reliable.
This is very useful in a setting where the user has little, or no knowledge of
optimization.

5.6 Comparison of Different Formulations

Table 5.4 shows that the reduced number of variables for the reduced problem
does not lead to a significant reduction in the number of constraints, this is
due the implicit bounds which were held by the non-negative variables. The
convex formulation displays more variables and constraints than the other
formulation. This is an example of how the feasible area can be improved by
introducing more variables and constraints.

The formulations were tested by solving a subproblem using models with
a known optimum. The problems where formulated in AMPL [15] and solved
with BONMIN, a powerful MINLP solver released by COIN-OR [16]. The
results are shown in table 5.6 and 5.5. For table 5.5 it should be noted that
with the routing locked, BONMIN found the optimal point for all three for-
mulations with heuristics, therefore no information is given on the number
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of iterations or nodes. The basic formulation fails in the start-point and
performance test. Ausen, Grimstad and Lervik argues in [9] that a feasible
start point will in general be available for oilfields as it is possible to use the
current implementation of routing and choke positions as a starting point for
the algorithm. It would also be possible to do some simple precalculations
to find a feasible starting point. But it is clear that the basic and reduced
formulations are far less robust than the convex formulation even though
some computational advantage is seen in table 5.5. The convex formulation
guarantees to find the global optimum for each subproblem, as long as this
property is maintained any errors which occur will be due to true infeasibility
of the problem or errors due to model updates. Although the reduced for-
mulation is convex for a fixed routing it is still non-convex which means that
the bounding property in BB is not preserved. This means that children for
a given node might yield better solutions than the parent node. As a result
bounding cannot be performed in the same way as for convex problems. This
makes the convex problem the best suited for further implementation.

Table 5.5: Comparing the performance for the different model formulations.
Number of interior-point iterations/Number of nodes searched

Routing Basic Reduced Convex
Free 367/18 357/18 637/34
2 free wells Failed 70/2 179/10
1 free well Failed 37/2 35/0

5.7 Exploiting Problem Structure

Even though the branch and bound algorithm is effective in solving MINLP
problems, it still has to explore a large number of nodes to find integer
solutions. In order to help the solver, problem structure can be exploited to
reach good integer solutions quickly.
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Table 5.6: Testing for robustness with respect to starting-points

Basic Reduced Convex
Strictly feasible point OK OK OK
Feasible point Failed Failed OK
Infeasible Failed Failed OK

5.7.1 Search Direction

Because each well can only be routed to one pipeline, the problem is left with
a special structure which could be exploited to quickly find integer solutions.
To demonstrate start with a simple version of the routing constraint (5.13):

b1 + b2 ≤ 1

In BB b1 and b2 will be handled as continuous variables in the root node.
When the branching is performed on either one of the binary variables they
will be locked to either one or zero. But if b1 = 1 b2 must be zero. On the
other hand when b1 = 0 b2 can take any value less than one. In summary by
locking binary variables to one, the problem structure implicitly locks two
binary variables, which makes it more efficient to search in this direction as
integer solutions are higher up in the search tree.

5.7.2 Heuristics

To quickly find a good feasible solution close to the optimum, heuristics can
be employed before BB is run. This would allow BB to quickly cut away large
portions of the feasible region. Two things can be assumed by an optimal
solution: First it is suboptimal to close all wells, by taking this statement to
its extreme it can be claimed that all wells should be open. Second the wells
should be spread evenly across the pipelines in an effort to minimize the flow
rates through each pipeline thus minimizing pressure loss due to friction. A
simple heuristics for using these principles is stated below.
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5.8. EXTENSION

Heuristics:
bJ ,L ← 0 Initialize routing
for j ∈ J :
| for l ∈ L:
| | if ∑j∈J bj,l ≤ minl∈L{

∑
j∈J bj,l}:

| | | bj,l ← 1
| | | break for
| | end if
| end for l
end for j
return bJ ,L Return routing

5.8 Extension

In a commercial application a certain flexibility is required of the software.
This is to allow users to explore different solutions and uphold demands set
by maintenance or HSE issues. In this section a short description of some
such scenarios are represented.

5.8.1 Target Production Rate

Some fields have objectives to meet target production rates instead of maxi-
mum production, often due to long term drainage strategies. This can easily
be implemented by specifying the target production rate qTargetoil and adding
the constraint ∑

l∈L
qPipel,oil ≤ qTargetoil (5.38)

Or by changing the objective function to

min
∑
l∈L

qPipel,oil − q
Target
oil

2

(5.39)

(5.38) is probably preferred as this does not introduce more nonlinearities to
the problem.
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5.8.2 Gas lift

Gas lift is a common way to increase production rates, and it is important
that a production optimization scheme can handle this. The simplest way is
to add a term qLiftj to the well flow:

qWell
j,gas = rGORj qWell

j,oil + qLiftj ∀j ∈ J (5.40)

Other fluids which are common to inject can be handled in the same manner.
For example water injection used to reduce viscosity and anti-freeze agents
used to prevent the formation of hydrates. It should also be possible to
formulate the problem to optimize on gas lift.

5.8.3 Specific Routing

This is perhaps most easily handled. It simply implies to put extra con-
straints on the binary variables and is very straight forward.

5.8.4 Compressors and Pumps

Other subsea equipment could be added to the formulation by simple pressure
gains or by including more approximated models. This is outside the scope
of this master thesis but there is nothing in the formulations given that
prohibits this type of equipment to be included.

5.8.5 Daisy Chains

To provide accurate field descriptions the formulation must be able to handle
daisy chains and well clusters where several manifolds are connected in series
to reach the topside processing facilities.
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Chapter 6

Solution Methodology

In [9] the models were updated after each complete run of the MINLP prob-
lem. This is very easy to implement when a MINLP solver, such as BONMIN
is available. The greatest disadvantage of this approach is that by not ensur-
ing a good model fit before choosing to lock well routing, branching might
exclude parts of the problem since the model fit there is poor. An example
of what can happen is shown in figure 6.1, here a model fit was performed
prior to a changed routing. While the simulators clearly shows that this
is a feasible routing the models does not create a feasible area, recall that
Wj ≥ Pl + PSep.

A solution to this problem is to make sure the models fit the simulator
before branching. This can be achieved by updating the models for each
NLP problem. This should give better robustness. An added benefit is that
once an integer solution has been found it is guaranteed to be a valid solution
for the master problem and if the algorithm has to be aborted this solution
could be implemented. As there are very many NLP problems to be solved
for each MINLP problem, the number of simulator calls and model updates
are expected to be a lot higher for this approach.
For simplicity the two approaches will be referred to as the MINLP and NLP
approach. The basic differences should be clear by studying figure 6.2. Com-
plete flowcharts for both approaches are given in appendix A.3. To separate
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Figure 6.1: An example of what can happen when the routing is changed after
a model fit is performed. The master problem has a feasible solution but the
models make the subproblem infeasible. (Recall that the well pressure must
be larger than the pressure drop in the pipeline.)

the MIP and the NLP part of a BB method a simple BB program was written
in python, the NLP problems were solved by IPOpt. The convex formulation
was implemented in AMPL with a connection to python to update the mod-
els, add constraints and bounds on big-M. The model updates are performed
by updating all the models which does not meet a predefined tolerance, this
is different from what was done in [9] where only the worst model was up-
dated. Both approaches were solved with the same solvers, tolerances and
options using the convex formulation from section 5.4. A complete overview
over implementation specifics can be found in appendix A.
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Figure 6.2: Implementation strategy for the two approaches

6.1 Preliminary Results

Both approaches successfully found the global optimum for the 3 well case.
As predicted, updating the models for each NLP uses many more simulations,
a total of 1674 simulations were used for the NLP approach while only 73
was used for the MINLP approach. Heuristics could help bring down the
number of simulator calls. It is important to note that simulations in this
respect mean component simulations; one pipeline or one well, not the entire
system which consists of several pipelines and wells. The greatest model
error in each iteration is shown in figure 6.3. The data for the NLP approach
is represented as an average and standard deviation. It is not entirely fair
to compare the two cases as the MINLP approach only contains one sample.
But by assuming this is valid for other cases as well, the models for the NLP
approach converges faster on average, although some large errors occur these
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s

Figure 6.3: Model errors, the y axis represent the maximum absolute error
for all the surrogate models. For the NLP approach the data is displayed
using statistics, where 97.8% of the nodes are below the +2 std line.

drop quickly. The search tree generated by the BB method for the NLP
approach is shown in figure 6.4, the grey nodes represent integer solutions
for the master problem. The special problem structure becomes clearer here
as nodes can be found fairly high up in the tree at the bottom, while a
deeper search is required elsewhere in the tree. The maximum tree depth
is 6 levels and a total of 41 out of a total of 63 nodes were searched. The
MINLP approach encountered several problems when trying to solve the NLP
problem in each node, among them infeasibility and exceeding maximum
number of interior-point iterations.
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Figure 6.4: Search tree from the branch and bound algorithm. The grey
nodes are integer solutions. The numbers are the optimal value in [m3/h]
found in each subproblem when the model fit is within tolerances
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Chapter 7

Performance and Robustness

To test both approaches for performance and robustness they are tested with
multiple wells and with non-convex simulators, creating a non-convex master
problem. Updating the models for each NLP is the most robust method, but
due to the high number of simulator calls the NLP method was also tested
with heuristics in an attempt to bring down the number of calls.

7.1 Oscillations

For the NLP approach model oscillations where detected in some of the
nodes. The model updates oscillated between two or more solutions. This
poses a major problem as oscillations in general are extremely hard to detect.
The algorithm was written in a way which allows the algorithm to continue
branching when the maximum number of model updates has been performed.
The oscillations did not occur for any integer solutions, and the local solution
found in the NLP problem was closer to the optimum than the start point in
all cases. The oscillations were only observed for the pipeline model, and only
with one free integer variable, the others were either implicitly or explicitly
locked. It is unknown why this pattern emerges, but it is noted that the
pipeline flow is extremely sensitive to changes in routing.
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7.2 Non-Convex Simulators

In the problems up to now the simulators have created a convex-hull for the
master problem. This is not true in general, in many cases the simulators
form non-convex hulls, this could be a change in flow-regime, numerical errors
due to discretization of PDEs or round-off errors.
A relatively large non-convexity was added to the well simulators by manually
inserting a data point in a region which would not change the global optimum,
the resulting simulator data for well 1 can be seen in figure 7.1. This was
done for all three wells. The NLP approach successfully found the global
optimum, even when some model updates were performed on non-convex
data, this was detected by checking for linear models. It demonstrates that
the NLP approach shows some robustness to non-convex simulators. The
MINLP approach failed to converge to a solution altogether, the pipeline
models oscillated between two different models and failed to reduce the model
error further. It is important to note that this was not caused by the non-
convex simulators directly, as no linear models were detected. However this
shows that both approaches are prone to model oscillations.

7.3 Multiple Wells

The extra wells where simply added by copying the three existing wells so
that well 1, 4 and 7 are equal the same goes for well 2, 5 and 8 and well 3,
6 and 9. Although this is an artificial way of including more wells it should
test the robustness of the algorithm for bigger problems.

7.3.1 Heuristics

In section 5.7 two methods where proposed to decrease the number of nodes
which has to be explored, prioritizing search direction and a simple heuristics
scheme. By looking at the tree in figure 6.4, the effect of the two methods can
be assessed. As the two pipelines are equal only three different combinations
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Figure 7.1: Non-convex well simulator for well 1, the non-convexity was
added manually

are candidates for the heuristic: Two wells routed to the same pipeline, and
one well to the other. The optimal solutions to these routings are 179, 178
and 176 m3/h, or 100%, 99% and 98% of the optimal solution. It is not
possible for the prioritized search method to find better bounds than these.
The heuristics is also far easier to implement and therefore the prioritized
search has not been considered.

7.3.2 Results

The NLP approach was solved both with and without heuristics to test the
effect it had on the number of simulator calls. In all cases the algorithm
successfully terminated with the model error within tolerances. The results
are listed in table 7.1. Iterations in this context means the number of times
the models where updated, and several models can be updated at once. The
number of nodes searched is given as an average for each iteration for the
MINLP approach to be comparable to the NLP approach. The improvement
gained by applying the heuristic is 39% for 3 wells, and 48% and 19% for 6
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and 9 wells respectively, calculated as the average reduction in the number
of nodes and simulator calls used.
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Chapter 8

Discussion

This chapter aims to summarize the key discussion points presented through-
out this thesis. The case studied in this thesis is very simple, and offers a
minimum of complexity for optimization purposes. This allows easy analyses
as the total number of possible solutions and dimensions can be explored
manually. By dividing the field into its basic components, wells, pipelines
and manifolds, and treating each competent as a black-box, the simulators
can be treated individually. The relations between each component can then
be modeled explicitly by linear constraints and the solver can exploit the
structure directly. This means that each component can be treated individ-
ually and there is no need to simulate the entire system, just the separate
components. This formulation is very well suited for parallelization of the
simulators and could give significant speed-ups compared to other methods.
Both these properties should make this hybrid derivative free optimization
technique superior to normal derivative free methods, a comparison of dif-
ferent optimization methods is outside the scope of this thesis and is left for
further work. Three different problem formulations were developed to de-
scribe the case; a basic, reduced and convex formulation, each with different
properties. The basic formulation is easy to understand and set up but yields
a non-convex optimization problem. The reduced formulation has a reduced
number of variables and constraints and is convex for a fixed routing. It
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offers some computational advantage over the convex formulation but does
not offer sufficient robustness or convex properties, such as bounding in BB.
The convex formulation guarantees a global optimum for each subproblem,
which lets us abstract away this part of the optimization as any error which
occurs during optimization will happen due to errors originating in the model
update or infeasibility of the master problem.

The formulations includes tight bounds on big-Ms, the value for each
big-M can be calculated during runtime and does not rely on user-set values
which might cause the problem to be poorly scaled. This is an advantage
since poorly scaled problems can cause problem infeasibility and numerical
instability. An added bonus is less tuning and reduced knowledge of optimiza-
tion is required of the user which reduces training time, reduces uncertainty
and can make the users more confident in the results. The convexity of the
reduced and convex formulations was made possible by the method described
in section 4.3. The best fit is ensured by solving a convex optimization prob-
lem, which results in a convex or concave model, depending on what is needed
to form a convex feasible set for the subproblem. The method was shown to
provide some robustness to noise and local non-convexities by including more
points in the model fit. The number of points used in each update was kept
at the minimum for simplicity as the simulators formed smooth curves. But
as oscillations where observed for the pipeline models for the NLP and the
MINLP approach, this is clearly not a robust way to update the models. The
pipeline flow is very sensitive to changes in routing as a small change in the
binary variables will cause large changes in pipeline flow. This could mean
that the pipeline models must be fitted over a larger area and possibly with
more points, to ensure a smaller error when changes in the routing occur.

The MINLP approach to updating the models, where an entire BB tree
is searched between each model update, fails to find the optimal value when
more wells are introduced. This is most likely because some parts of the
feasible area were never explored due to a large model error in this area.
This effect was illustrated in figure 6.1. It is also possible to see some of this
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effect reflected in table 7.1 where the average number of nodes searched for
each tree is different from the number of nodes explored by the NLP approach
without heuristics. This means that MINLP approach has searched the tree
differently and therefore does not explore the same routing combinations.
Further for three wells there where three candidates for an optimal solution
ranging at 100%, 99% and 98% of the optimal value, so the effect of having
an optimization tool is likely to be no more than a couple percent, and by
finding a solution at 99% for 6 wells and 99.5% for 9 wells. It is clear that
the MINLP approach does not offer sufficient gains or robustness to be used
as an optimization tool.

Updating the models for each node in the BB tree is more robust as a
perfect fit is ensured with the simulators before any parts of the feasible
area is excluded. As stated earlier this approach also has the benefit that
all integer solutions will be valid solutions for the master problem, so if the
algorithm is aborted during runtime the best solution found so far could
be implemented, this makes this approach more suited for time sensitive
applications. The excessive number of simulations required has to be reduced
if it is to be used in commercial applications. The total number of simulations
for 9 wells was over 840 000, if each simulation took an average of 0.01 seconds
the total runtime of the simulations alone would exceed two hours, which
makes time sensitive applications severely limited. The heuristics was very
successful by nearly halving the number of simulations needed in the 6 well
case. The number of simulations needed is closely related to the number
of nodes explored, so an efficient branch and bound algorithm capable of
exploiting the problem structure more efficiently could also bring down the
total number of simulations. Storing results from the simulations in tables
which could be used instead of calling the simulators would probably be most
effective. For the wells a total of 20-100 points, the number of points used
by Gunnerud in [4], would be able to capture all relevant dynamics, and the
total number of well simulations needed in the 9 well case could be reduced
from 375 318 to 180-900, a very significant reduction.
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Chapter 9

Conclusion and Further Work

The main contribution of this thesis is the formulation of a convex optimiza-
tion problem, made possible by solving a separate optimization problem to
fit the quadratic models to the simulators. Updating the polynomial approx-
imations for each MINLP problem was shown to lack robustness and failed
to find the optimal point for larger problems. Updating the models for each
node in the BB tree and resolving the NLP problem until the model error was
below a predefined value proved more robust and was able to find better op-
timal values than the MINLP approach. By updating the models iteratively,
as was done in [9], it was hoped that the number of simulations could be
reduced compared to the method used by Gunnerud [4], where an excessive
amount of simulations were needed to build piecewise linear constraints. But
the number of simulations was still excessive, especially for larger problems.
A simple heuristics proved very effective by nearly halving the number of
simulations and the number of NLP problems solved. The number of sim-
ulations could be brought down considerably by storing results from each
simulation and by exploiting the problem structure more efficiently.

Model oscillations were detected for both approaches to updating models;
the models oscillated between two or more solutions and failed to bring the
model error within tolerances. Model oscillations were only observed for the
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pipeline models. The pipeline flow is known to be very sensitive to changes
in routing and a new approach to selecting the number of points, and which
points to tabulate the simulators with, might be needed to solve this problem.

9.1 Further Work

The author would not recommend any further work on the MINLP approach
to updating the models as it was found to be unsuitable to use in an optimiza-
tion tool for production chains. The convex formulation should be expanded
to support daisy-chains and other types of processing equipment while still
remaining convex. To solve the problem with model oscillations it would
be interesting to use some sort of merit function or filter to use together
with the model update strategy to pick points or weights in each update.
The number of simulations must be brought down considerably before this
method can be used every day by the oil and gas industry. The heuristic was
very effective and improved heuristics and better branching strategies should
be tested together with storing values from the simulators to bring down the
number of simulator calls. New implementations might want to use an SQP
solver to take advantage of ’warm-start’ capabilities.

Trust-region is used in many other types of optimization algorithms and
could help to increase the robustness by limiting the maximum model error in
each step. The size of the trust region could be calculated from the quadratic
error found in the objective function after updating each model.

The convergence of the model updates is not proved in any sense, but it
should be of academic interest to develop one. Likewise a termination proof
should be of interest. An informal termination proof was given in this thesis,
but formal poofs would legitimate this simulator based optimization method
as a viable optimization technique for production chains.

To validate this method it should be tested against other derivative free
methods preferably against commercial production optimization tools al-
ready in use by the oil and gas industry.
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Appendix A

Implementation

When implementing an algorithm many issues tend to arise. This chapter
will try to clarify said issues in and a way that the results presented in this
thesis can be reproduced.

A.1 Problem Formulation

To make the problem simpler to work with a series of assumptions was per-
formed. All capacity constraints where eliminated, thus the problem is pres-
sure constrained, which is common for mature fields.
For simplicity it is also assumed that there is no water present in the system.
Interestingly this gives the same mathematical formulation as a WC of 50%
or rWC

j = 1. This can be seen by setting qoil = qwater. As was done in [9].

A.2 Updating Surrogate Models

The simulators where stored as tables during the optimization. This leads
to a discrete simulator. To check if a model was within tolerances a simple
interpolation was performed between neighboring points. This interpolated
value was used in the equality constraint for the model update method given
in section 4.3.
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A.3 Algorithm

Although BONMIN is an MINLP solver it lacks the ability to divide the
MIP and NLP layers. Therefore a simple branch and bound algorithm was
written in python. The NLP problem was solved using the same NLP solver
as BONMIN; IPOpt. It uses a breadth first search to explore the tree. For
the MINLP approach, the model updates are performed after the branch and
bound algorithm has found an optimal node, a flowchart is given in figure
A.1. In contrast the NLP approach makes sure the models fit the simulator
before branching, this can be seen in the flowchart given in figure A.2. If the
heuristics is applied it is applied before the root problem is solved. Other
types of tree searches could be used by manipulating the "Get next node
from queue" block in the flow chart. The python implementation requires
the python libraries NumPy, SciPy and matplotlib to be installed on the
system.
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Figure A.1: Flowchart for the MINLP approach
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Figure A.2: Flowchart for the NLP approach
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A.4 Tolerances and Options

An overview over tolerances and constants is given in table A.1. The options
passed to BONMIN and IPOpt are listed in table A.2. Apart from these the
default settings where used. A list of possible options can be found on the
COIN-OR website [16].

Table A.1: Tolerances and constants

Value
Maximum number of model updates 20
Integer tolerance 10−3

Model tolerance 1 [bar]
PSep 20 [bar]

Table A.2: Solver options

Option passed Value
nlp_scaling_method none
hessian_approximation limited-memory
bonmin.algorithm B-BB
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Appendix B

Folder Structure

The code used in this thesis is organized on the beehive.ad.itk.ntnu.no com-
puter located at NTNU.

B.1 Different Formulations

The different formulations are found in
/media/STORAGE/master_thesis_ausen/different_formualtions. The for-
mulations can be executed by typing ampl name.run in the terminal, for
example ampl basic.run runs the basic formulation.

Name Path
Basic basic.run
Reduced reduced.run
Convex convex.run

B.2 MINLP Optimization

The problems are organized in the structure given in table B.1 and can be
found in the folder /media/STORAGE/master_thesis_ausen/MINLP_optimization.
Each folder contains the structure given in table B.2. In addition to these
the folder MINLP/model_fit contains a script which only performs a model
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updates at user specified points. The folder MINLP/static is a pure BB
method without model updates. The classes and functions can be found in
the MINLP/classes_and_functions folder.

Table B.1:

Folder name Description
MINLP/dyn Base case with 3 wells
MINLP/multiple_wells/6wells Case with 6 wells
MINLP/multiple_wells/9wells Case with 9 wells
MINLP/non_convex Robustness test with

non-convex well simulators

To turn the heuristics on or off, uncomment or comment in line 76 in bb_NLP.py.
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Table B.2:

File or folder name Description
figures figures from model updates
simulator simulator data stored as *.csv
tab contains *.tab files used for start

and optimal points
tab/backup backup of tab folder
tab/startpoint *.tab files for the startpoint
2pipe3well.dat *.dat file used to specify the

problem size
AMPLout.txt text file generated by

bb_MINLP.py or bb_NLP.py
bb_MINLP.py solves the problem using the

MINLP approach
bb_NLP.py solves the problem using the

NLP approach
convex.mod the mathematical formualtion

of the optimization problem
convex.run specifies how the NLP problem should

be executed and which files to include
extra_binary_const.mod extra constraint on the binary

variables added by BB
extra_param.dat contains values for αj, βl, M q

p and MP

output\ output file generated by bb_NLP.py
pipe_opt.run specifies the optimization problem

needed to fit pipeline models
well_opt.run specifies the optimization problem

needed to fit well models
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