
Motion Planning Framework for
Industrial Manipulators using the Open
Motion Planning Library (OMPL)

Martin Barland

Master of Science in Engineering Cybernetics

Supervisor: Anton Shiriaev, ITK
Co-supervisor: Uwe Mettin, ITK

Department of Engineering Cybernetics

Submission date: June 2012

Norwegian University of Science and Technology

Problem Description

Consider a robotic work cell with a 6-DOF industrial robot manipula-
tor, a conveyor, obstacles and objects. The task is to design an intu-
itive and easy to use motion planning framework for which only a few
task primitives are required. The environment around the robot ma-
nipulator shall be modified without having to make other big changes
to the framework. In particular the following functionality shall be
implemented:

• Generation of smooth collision-free paths for the kinematic model
of the robot based on task primitives and the current robot state
(DH parameters must be provided, obstacle polygons described,
Task query and state is input);

• Generation of optimal trajectories based on a path coordinate
subject to kinematic or dynamic constraints.

A visualization of the robot in its environment shall be provided for
standard scenarios.

i

Acknowledgements

First I would like to thank my supervisor Professor Anton Shiriaev for
letting me work on this project. It has brought many challenges from
which I have learned a lot over the time spent working on this project.

Second, I would like to thank my co-supervisor Dr. Uwe Mettin for
his valuable inputs and ideas which has been able to guide me in the
right direction when I needed a push in the back.

I would also like to thank Torstein Anderssen Myhre for always being
available to answer questions and discuss with, as well as letting me
use some of his earlier work with robot manipulators for example when
it comes to visualization of a found path.

Finally, I would like to thank Kristina Keseler for her patience, support
and reviewing during the time spent on this project. And all my co-
students, friends and family for making the last five years some of the
best in my life so far.

Martin Barland, June 2, 2012

ii

Abstract

Robotic manipulators are used in many different scenarios these days.
If one of these manipulators is moved from one location to another it
may require a total reprogramming of that manipulator because of the
new environment the robot is working in. This is because the path
planning and trajectory planning scheme which works in one environ-
ment might not be suitable in another. This text takes a look at how
an intuitive and easy to use motion planning framework for finding
paths in different static environments or scenarios can be made. The
use of the Open Motion Planning Library has been used for the path
planning and second-order cone programming solved by SeDuMi in
Matlab has been used for finding the time-optimal trajectory.

iii

Sammendrag

Robot manipulatorer er brukt i mange forskjellige scenarioer disse
dager. Hvis en av disse robotene blir flyttet fra et sted til et annet
kan det kreve en total reprogrammering av roboten. Dette er fordi
baneplanleggingen og bevegelsesplanlegging som fungerer et sted ikke
nødvendigvis fungerer et annet sted. Denne oppgaven ser p̊a hvor-
dan et intuitivt rammeverk, som er enkelt å bruke, for å finne baner i
forskjellige miljøer kan lages. For å finne en bane har ”Open Motion
Planning Library” blitt brukt. For å finne en bevegelse har det blir
brukt andre-ordnes kjegle programmering for å sette opp et minimum-
tid optimaliseringsproblem. Dette har s̊a blitt løst i Matlab ved hjelp
av SeDuMi.

iv

Contents

1 Introduction 1
1.1 Scope . 1

2 Problem Formulation 3
2.1 Importance of Path Planning 3
2.2 Trajectory Generation Problem 4

3 Path Planning 5
3.1 Path Planning Concepts and Terminology 5
3.2 Methods of Path Planning 6
3.3 Quick Introduction to The Open Motion Planning Library 8
3.4 Path Planning with The Open Motion Planning Library 9

3.4.1 State validation and Collision Detection 12
3.4.2 Collision Models 13
3.4.3 Available Planners 17
3.4.4 Finding a Valid Path 20
3.4.5 Path Post-Processing 21

4 Framework in the Open Motion Planning Library 25
4.1 Overview of Framework 25
4.2 Benchmarking of Planners in OMPL 27
4.3 Visualization of Paths 30

5 Trajectory Generation for Found Path 33
5.1 Two Step Trajectory Planning 33
5.2 Second-Order Cone Programming 35
5.3 Optimization by Second-Order Cone Programming . . 36

5.3.1 Object function 36

v

5.3.2 Reformulation from non-linear optimization prob-
lem to second-order cone program 37

5.4 Solving the Optimization Problem Using SeDuMi in Mat-
lab . 40

5.5 Finding the Time-Optimal Trajectory 41
5.5.1 Illustration of Obstacle-free point-to-point motion 41
5.5.2 Illustration of obstacle-”clouded” point-to-point

motion . 45

6 Discussion and Future Work 51

A 55
A.1 Simple Examples of Path Planning With and Without

SimpleSetup . 55

B 59
B.1 An example of a .RAW file for an environment 59

Bibliography 62

vi

List of Figures

3.1 An example of how the RRT algorithm works by spread-
ing out in a plane using 10, 100 and 500 nodes. Plot is
created by running RRT in Matlab and plotting the re-
sults. 8

3.2 The Open Motion Planning Library API overview. The
blocks in dark blue are blocks the user has to declare to
be able to solve a path planning problem. The light blue
blocks with lined edges have to be declared in addition
if SimpleSetup is not used. Light blue blocks can be
declared, but have default implementation if the user
does not include them. 10

3.3 Flow chart of the order of a path planning problem. The
goal for the framework that will be built is that, given a
model of the robot and the environment, the only thing
the user has to do is give a start and a goal position in
the files with the same name. 14

3.4 One of six link models built with triangular polygons in
order to be easy to use with the Proximity Query Package 16

3.5 Steps of building an environment in Blender. Objects
are created by adding simple meshes around the robot
and customizing them, whereas the robot was imported
from a CAD file . 18

3.6 IRB140 Robot Manipulator, Kinematic structure . . . 20
3.7 Simplification of path shown as number of states 22

4.1 Overview of path planning framework 26
4.2 Path planning framework with inputs and outputs . . . 28
4.3 Environment used for benchmarking of planners 29

vii

4.4 Visualization of a path in Blender 32

5.1 Cone Constraint visualization 36
5.2 Full framework consists of both path planning and tra-

jectory planning. 42
5.3 Visualization of the path used to find a trajectory in a

obstacle free environment. 43
5.4 Joint angles on a path in obstacle-free environment. . . 43
5.5 Joint velocities on a path in obstacle-free environment. 44
5.6 Joint accelerations on a path in obstacle-free environment. 44
5.7 Joint torques on a path in obstacle-free environment.

The dotted lines are torque constraints. 44
5.8 Path coordinate with respect to time on path in obstacle-

free environment. 45
5.9 Velocity profile for a path in an obstacle-free environment. 45
5.10 Visualization of the path used to find a trajectory in an

obstacle-clouded environment. 46
5.11 Joint angles on a path in an obstacle-clouded environment. 47
5.12 Joint velocities on a path in an obstacle-clouded envi-

ronment. 47
5.13 Joint accelerations on path in an obstacle-clouded envi-

ronment. 47
5.14 Joint torques on a path in an obstacle-clouded environ-

ment. The dotted lines are torque constraints. 48
5.15 Path coordinate with respect to time on a path in an

obstacle-clouded environment. 48
5.16 Velocity profile for a path in an obstacle-clouded envi-

ronment. 48

viii

Chapter 1

Introduction

1.1 Scope

The modern era of robotics began around 1959. Since then robot ma-
nipulators have been an important factor in industry to be able to
relief humans from doing repetitive labor, such as for example assem-
bling, grinding and welding. The need for robot manipulators is still
big as they are able to do more and more advanced tasks and thereby
increasing productivity and reducing the need for human operators in
dangerous environments to reduce damage on personell. One of the
challenges with these robot manipulators is the task of finding the
path it should be going when solving a task, especially when the robot
is relocated from one place to another. Such a relocation may need a
complete reprogramming of the robot from a human operator.

In this text we will investigate a method for doing path-planning, and
after that trajectory-planning, for a robot where it is easy to tell the
robot about the environment it is working in, so no huge reprogram-
ming is needed. If all the user has to give the program is small task
primitives such as start and goal position, and perhaps time, it will
be easier to use and more intuitive than the traditional way of having
a trained application engineer reprogram the robot for every problem
to be solved. There are path-planning tools which can help with this
problem, but many of them are outdated or rarely updated. We will

1

in this text therefore take a closer look at how a relatively new tool
for path-planning, called the Open Motion Planning Library 1, can be
used to help solving this problem.

Chapter 2 is the problem formulation for this project. Some difficul-
ties and challenges with path planning and trajectory generation is
introduced.

In Chapter 3 we will take a closer look at path planning for robotic
manipulators. The main feature of this chapter is to see how the use
of the Open Motion Planning Library can help with solving a classic
path-planning problem. It give a short introduction of this library and
then some of its useful features.

In Chapter 4 a framework for path planning based around OMPL will
be presented. It also shows a benchmarking of some of the available
planners in OMPL in order to see how they perform on one specific
path planning problem. Finally in this chapter it is shown how a
visualization of a path found can be done in a 3D graphics program.

Chapter 5 will discuss a method for calculating optimal trajectories
for robot manipulators. It will then attempt to take the path found
from the framework described in Chapter 4 and turn it into an optimal
trajectory by using the method discussed.

The path-planning is done in C++ while the trajectory planning is
done in Matlab. The visualization of the paths found is made in the
open source program for 3D graphics called Blender2. This program
is used both to show how the user easily can create new environment
models without having to reprogram the entire robot and for the vi-
sualization of a found path. Files related to path-planning, trajectory
planning and visualization are attached to this text.

1http://ompl.kavrakilab.org/
2http://www.blender.org/

2

Chapter 2

Problem Formulation

2.1 Importance of Path Planning

Path planning for industrial robot manipulator is a very important
task that has to be done correct to avoid damage on personell, other
equipment in the work area or the robot manipulator itself. These days
industrial robot manipulators are working in different environments
with different challenges. There might be tight spaces, humans working
in same environment or other challenges that the manipulator has to
be aware of in order to find a collision free path.

When planning for the ABB IRB140 the problem quickly becomes very
complex, because this robot manipulator has six degrees-of-freedom.
It requires a lot of computational power when solving a path plan-
ning problem because there can be infinitely many paths between the
starting position and goal position of the robot. If the robot itself and
the environment has complicated collision models, even more compu-
tational power is needed.

There are several tools that can be used to help solve path planning
problems. In this text a framework for path planning for the ABB
IRB140 robotic manipulator has been developed using a relatively new
tool, the Open Motion Planning Library [1].

3

2.2 Trajectory Generation Problem

Trajectory planning for robot manipulators share many of the same
difficulties as the path planning. The more degrees-of-freedom the
robot has, the more complex the system gets. There is also infinitely
many trajectories for the path found, just as there are infinitely many
paths between a starting position and a goal position. The goal of
the trajectory planning is to take the path which is the solution of
the path planning problem and find the time history of the position,
velocity and acceleration for each link so this can be provided to the
tracking controllers which are embedded in the robot control software.
It is important to find the optimal trajectory in order to save both
time and possibly energy, or any other factors the user wants to take
into consideration. It is also very important to make sure none of
the constraints of the robot is broken. Typical constraints on a robot
manipulator can for example be how much torque can be applied to
each joint.

There are several methods for solving an optimal trajectory problem.
Some of them include using polynomials of different degrees to ensure
that the constraints on the robot manipulator is not broken. To find an
optimal trajectory it is possible to set the problem up as a optimization
problem with for example the time or energy as the object function.
This depends purely on what the user wants to optimize. In this project
the optimal time-trajectory will be found by using second-order cone
programming and the second-order cone program solver SeDuMi 1 in
Matlab.

1http://sedumi.ie.lehigh.edu/

4

Chapter 3

Path Planning

3.1 Path Planning Concepts and Termi-

nology

The goal of a path planning problem is to find a collision-free path
from an initial state to a goal state in the world space, denoted by W .
This world space is a 3 dimensional Euclidian space, which is the space
where all physical objects are defined. The collection of these objects
are gathered in the obstacle space, O.

The robot itself consists of links which also are represented inW . These
links are described in the world space by position and orientation. If
the position and orientation is known for each link, then the robot is
fully described in the world space.

The robot used in this project is an ABB IRB140 which has six degrees-
of-freedom, corresponding to one revolute joint for each link. When we
collect all of these joint values in order we get a representation of the
robot itself as a vector of real numbers in the configuration space C.
The configuration space C is dependent on what type of robot the user
is working with. A rotational join adds a dimension to the robot which
is homeomorphic to a circle, S1. A prismatic joint corresponds to a
dimension that is homeomorphic to an interval in the real numbers,
[a, b] ∈ R. The ABB IRB140 consists of six rotational joints and

5

therefore has a configuration space which is a product of six circles,
which is the six dimensional torus, S × · · · × S = S6. The set of
configurations that avoids collision with obstacles in the world space,
W , is called the free space, Cfree, and a valid path consists purely of
configurations located in Cfree.

3.2 Methods of Path Planning

There are many different methods that can be used to find a valid
collision-free path and all of them has their weaknesses and strengths.
In this section we will take a quick look at some of these methods
before looking at what methods the Open Motion Planning Library
provides to the user.

One strategy that has been used to explore Cfree is using an artificial
potential field, [2, page 168]. When using this method the idea is to
treat the robot as a point particle in the configuration space under the
influence of an artificial potential field. This field is then constructed
such that the robot is attracted to the final configuration and repelled
from the obstacles and boundaries on the space. By representing this
potential field as a potential function this problem becomes an opti-
mization problem. One big problem with this method is that the robot
can easily get trapped in local minimums if the potential field is not
constructed properly.

It is also possible in some instances to partition the workspace into
descrete cells corresponding to the obstacle free portion of the envi-
ronment, for example in [3, Chapter 6.2.2]. This can then be turned
into a graph where the vertices represent the individual cells and the
edges indicate adjancency among the cells. By doing this the problem
becomes a classical search problem from the cell with the starting po-
sition to the cell with the end position. This does however prove to
be difficult in practice if the robot has complex non-linear dynamics,
where it is not clear how to move the system from one cell to another.
It is also difficult, and impractical, to partition high-dimensional con-
figuration spaces into free cells.

One of the newer methods for path planning which there recently

6

has been much research on is so called sampling-based path planning.
These methods samples the configuration space and remembers the
configurations that lie in Cfree. These configurations are then made
into a roadmap by connecting two points if the line segment between
them is completely in Cfree. The algorithms for this kind of path
planning usually works well for high-dimensional configuration spaces
because their running time is not exponentially dependent on the di-
mension of C.

One of these methods is called Probabilistic Roadmap Method, PRM[4].
This is one of the most efficient methods today for a robot working in a
static workspace. It has two phases, one learning phase and one query
phase. In the learning phase it finds collision-free configurations and
bind them together. In the query phase the method actually finds the
path by connecting the initial and goal configuration by finding a way
between them on the roadmap made in the learning phase.

Another fairly popular sampling based path planning method is called
Rapidly-exploring Random Tree, or RRT[5]. It builds a graph in the
form of a tree from the starting position which expands until it reaches
the goal position. One of the reasons that RRT is well-suited for path
planning is that it reduces the computational time by expanding faster
in a direction with few other points and therefore covers the entire con-
figuration space relatively fast. How RRT spreads in a plane without
obstacles can be seen in Figure 3.1. From left to right RRT has been
run with 10, 100, 500 nodes to search the plane.

All the planners available in The Open Motion Planning Library are
sampling based planners. They are all powerful when it comes to
systems with differential constraints or systems with many degrees of
freedom. One of the drawbacks of sampling based methods however is
that they cannot recognize if a problem does not have a solution. This
is why, in OMPL, the user has to define for how long the planner is
allowed to search for a solution. More about this use of OMPL will be
covered in Section 3.4.

7

Figure 3.1: An example of how the RRT algorithm works by spreading
out in a plane using 10, 100 and 500 nodes. Plot is created by running
RRT in Matlab and plotting the results.

3.3 Quick Introduction to The Open Mo-

tion Planning Library

The Open Motion Planning Library, OMPL, has been developed by
the people at the Kavraki Lab[6] at Rice University under direction by
Lydia E. Kavraki. It consists of many state-of-the-art sampling-based
motion planning algorithms and also includes other functionality to
help users solve path planning problems. The library does not contain
any code related to collision detection or visualization so the user is
free to use whatever tools for this as he prefers. This also means that
OMPL can be used to find paths for all kind of robotic manipulators,
be it industrial robot manipulators with six degrees-of-freedom, as the
ABB IRB140, robots with fewer or more degrees of freedom, mobile
robots or path planning for rigid bodies.

OMPL uses some other terminology than what is used in section 3.1
when it comes to path planning. The configuration space, C, is in
OMPL called the state space as each configuration found is a state on
a path found. The world space, W , is called the work space, which is
the physical space that the robot operates in. The free configuration
space, Cfree is now called the free state space since the configuration
space is called the state space, and a path is a continuous mapping of
states in the state space. A path is collision free if each element of the
path is an element of the free state space.

8

Since OMPL does not include any explicit representation of the ge-
ometry of the workspace or the robot operating in it the user can,
and must, select computational representation for both the robot and
the environment.The user must also provide an explicit state valid-
ity checker or collision detection method. The Open Motion Planning
Library does however provide the user with an abstract representa-
tion for all the core concepts in motion planning, including the state
space, control state, state validity checking, sampling, goal representa-
tions and planners. The application programming interface of OMPL
is shown in Figure 3.2.

The Open Motion Planning Library lets the user have the opportunity
to customize many of the blocks shown in Figure 3.2. If OMPL does
not include a ready to use state space for the problem to be solved
in, it is easy to create. In this project the robot manipulator has six
degrees-of-freedom and therefore we need a six dimensional state space.
This is created by making a six dimensional RealVectorStateSpace.
It is also possible to add and subtract available configuration spaces in
OMPL to make new ones.

The state validity checker is something that has to be implemented by
the user so this can be written in any way the user choose to. When
these two blocks have been declared their information is gathered in
the SpaceInformation which contains all the information about the
space that the path planning is done in. In this project only planners
already available in OMPL have been used. However if the user wants
to create or test new planners this can be done by defining the new
planner as a class that inherits from the Planner class in OMPL.
Overall OMPL has a lot of opportunities already implemented, but if
the user wants to use something that is not available in OMPL it can
easily be customized to serve most needs.

3.4 Path Planning with The Open Mo-

tion Planning Library

Path planning in this project is done with the use of the Open Mo-
tion Planning Library, OMPL. The Open Motion Planning Library is

9

Figure 3.2: The Open Motion Planning Library API overview. The
blocks in dark blue are blocks the user has to declare to be able to
solve a path planning problem. The light blue blocks with lined edges
have to be declared in addition if SimpleSetup is not used. Light blue
blocks can be declared, but have default implementation if the user
does not include them.

10

a great resource for this task as it has several different planners avail-
able and can be used on any problem since state validation has to be
implemented by the user. Because the user decides what is a valid
state or not it can be used for all kinds of problems such as rigid body
path planning, as well as for mobile robots, or in this case industrial
robot manipulators.

When setting up for a path planning problem the user has to make sure
to create all objects needed for solving a path planning problem. This
includes an instance of a StateSpace that the user will be planning
in, a SpaceInformation that contains all information about the space
where the planning is done and a ProblemDefinition which is the
definition of the problem to be solved. The user also have to create a
start and goal states and select a Planner that is to be used to solve
the problem.

The user can however choose to use a class called SimpleSetup to
simplify the setup procedure. This class makes it so that the user only
has to create the state space, start state and goal state. SimpleSetup
then instantiates the SpaceInformation and the ProblemDefinition.
It also allows for the retrieval of all of these subcomponents for further
customization. The use of SimpleSetup ensures that all objects are
properly created before the planning begins. C++ code for a simple
example of how a path planning problem can be implemented with,
and without, SimpleSetup is shown in Appendix A.1. In this project
SimpleSetup has been used for all code as there was not found any
problems which could not be solved by SimpleSetup

This text uses the ABB IRB140 robotic manipulator together with
OMPL to be able to find a valid path that then can be used to create
a trajectory for the robot manipulator. This is all done offline with
no changes in the environment during runtime, but OMPL can also be
used for online path planning. This may however cause difficulties if
there are hard time constraints as the planner has to be restarted every
time the environment model has been updated or a new obstruction
has been found.

11

3.4.1 State validation and Collision Detection

State validation is very important when finding a path in OMPL, as in
any path planning problem. If no method of defining what a valid state
is made OMPL sets all states to be valid. This is of course not wanted
behaviour, so it is up to the user to define what makes a state valid
depending on what type of problem is to be solved. In this project
a valid state is defined as a state where the robot avoids self-collision
and collision with obstacles in the workspace as well as staying inside
the boundaries of the state space. To achieve this the Proximity Query
Package, PQP [7], has been used to check for collisions.

The Open Motion Planning Library has two abstract classes available
in order to allow the user to specify the notion of state validity. The
first is the actual state validity checker that checks if a state is valid
and can be used on a path. The other part is a motion validator. The
motion validator evaluates the validity of motions between two given
states. The user can either implement his own motion validator as
a class or he can use the default motion validator which is a discrete
motion validator. The advantage of using this discrete motion validator
is that it uses functionality from the state validity checker that the user
has to make. The disadvantage is that if the resolution is set too high
the program will have the risk of skipping too many states and therefore
it might not detect a collision even though there is one. If it is set to
low however it may check so many states it may be impractical when
looking for a solution because the time usage will be a lot higher. In
this project the default discrete motion validity checker has been used.

The state validity checker the user has to implement can either be
implemented as a class that inherits from the abstract class
StateValidityChecker or as an isValid function. If the user decides
to create a state validity checker class the only thing that is absolutely
necessery to have in this class is a function called isValid. This project
has created a class to be able to gather all information needed to check
for valid states, such as collision detection with the use of PQP, in one
class. When either the isValid function in a state validity checker
class or the function for validity checking has been implemented it is
used by telling the defined spaceinformation pointer where it can
find the function.

12

Algorithm 1 Set state validity checker without SimpleSetup

base::SpaceInformationPtr si(space);
//Call if a state validity checker class has been declared
si->setStateValidityChecker(base::StateValidityCheckerPtr(new
myStateValidityCheckerClass(si));
//Call if only a state validity function has been declared
si->setValidityChecker(boost::bind(&myStateValidityCheckerClass(si)));

si->setStateValidityCheckerResolution(0.03);
si->setup();

Algorithm 1 shows how to set the state validity checker if SimpleSetup
has not been used. If SimpleSetup, described in 3.3, has been used
when setting up the planning problem the state validity checker is set
by telling SimpleSetup wwhere the isValid function is located and
then tell what the SpaceInformation is, since SimpleSetup automat-
ically creates the SpaceInformationPtr for the user. simpleSetup

sets a default state validity checker resolution, but the user is also free
to change this if desired. Figure 3.3 show, in order, all steps needed in
order to solve a path planning problem.

3.4.2 Collision Models

To create a state validity checker with collision detection in this project
a simplified collision model for the ABB IRB140 robotic manipulator
has been made. The CAD, Computer Aided Design, model that is
available from ABB’s webpage 1 for this robot is too complex to be used
for state validity checking as it has too many details and the computa-
tional time would therefore be too long for practical use. Therefore a
simplified collision model has been made to make the computation of
state validity faster. This model models the robot manipulator as six
boxes, one box for each link. If the robot is working in an non-empty
environment a model for the environment is also needed in order to
detect collisions with the environment. This model can for example be

1http://www.abb.com/product/seitp327/7c4717912301eb02c1256efc00278a26.aspx

13

Figure 3.3: Flow chart of the order of a path planning problem. The
goal for the framework that will be built is that, given a model of the
robot and the environment, the only thing the user has to do is give a
start and a goal position in the files with the same name.

14

built in Blender and then be exported in the .RAW file format which
can be read by the path planning framework made in this project. This
makes it possible to quickly create many different environments which
the robot can operate in.

Both the model of the robot links and the environment is represented
by polygonal meshes, which in this case are triangles. This is a delib-
erate choice as it makes it easy to use the Proximity Query Package
for collisions detection. The Proximity Query Package, PQP, creates
PQP models and checks for collisions between them. The models are
created by making triangles with x, y and z coordinate for each of the
three points making the triangle which is then added to a model. PQP
has three different ways to inform the user about how these models
are related. The first one is noticing if there is a collision between two
triangles. When a model is built and the user is adding triangles to the
model every triangle has to be given a unique number when it is being
added. This makes it so that the user can check which triangles that
are colliding and this can be very useful for debugging, for example
if two triangles on the same model have collided there is definitively
something wrong as this should be impossible. It also gives the user
an easy way to see which links are colliding with other links or the
environment if a collision is detected. The two other methods to check
for proximity includes the option to check the distance between the
models or check if two models are closer than some tolerance set by
the user.

In this project a collision is detected when two or more triangles collide
with each other. How PQP checks for a collision is shown in Algorithm
2. When PQP checks for collisions between two models the user also
has to supply a rotation matrix, R, and a translation vector, T, to tell
PQP where the models are located. Since the PQP models for the
robot are calculated at their current position in the workspace with
the current rotation, the position vector T equals the origin and the
rotation matrix R equals an identity matrix in this project.

As mentioned in the beginning of Section 3.4.1 it is up to the user
to define what a valid state in the Open Motion Planning Library is.
In this project a valid state is defined as a state where there are no
collisions and the state does not break any of the given boundaries. A

15

Figure 3.4: One of six link models built with triangular polygons in
order to be easy to use with the Proximity Query Package

Algorithm 2 Collision checking in PQP between two links

#include ”PQP.h”

PQP Model m1, m2;
m1.BeginModel();
m2.BeginModel();

//Create 12 triangles per link, 24 altogether
PQP REAL p1[3], p2[3], p3[3];
PQP REAL q1[3], q2[3], q3[3];
...
//Initialize the points and then add them to the models
m1.AddTri(p1, p2, p3, 0);
m2.AddTri(q1, q2, q3, 1);
...
m1. EndModel();
m2.EndModel();

//Perform collision check between two models
PQP CollideResult cres;
PQP Collide(&cres, R1, T1, &m1, R2, T2, &m2);
//The result of the collision check is saved in a result structure
int colliding = cres.Colliding(); // colliding ==1 if a collision accured

16

collision is defined as a self collision if two or more links on the robot
collide with each other, and as a collision with the environment if one
or more links on the robot collide with the environment it is working in.
Each link has its own file where the coordinates of the triangles making
up the box-model is and this is read to the program via a user created
function called importLink. Since each link is a simple box every link
model consists of 12 triangles, 2 for each side, as is demonstrated in
Figure 3.4.

The environment is built in Blender around a model of the ABB
IRB140. The progress of creating an environment is done by opening a
file with a model of the robot and adding meshes available in Blender
around the model. These meshes can easily be modified to change
size and location so the environment can represent many different en-
vironments for the robot manipulator to work in. The making of one
environment is shown in Figure 3.5. A short film of how to create a new
environment is attached and named howToCreateEnvironment.wmv.

When an environment is made it can be exported in the .RAW file
format from Blender by marking all the objects the user wants to
include in the environment. Exporting in this file format makes it so
that the environment file consist of triangles, an example of how such
a file looks is shown in Appendix B.1. The file then gets read by the
user created function importEnvironment and since the file consists
of triangles it is easy to create a PQP model for the environment. The
environment can have as many or as few objects as the user wants it
to have.

3.4.3 Available Planners

The Open Motion Planning Library has as already mentioned many
planners available for the user to use. Additionally the user has the
opportunity to add new planners if that is wanted. All the planners
available in OMPL are sampling-based planning algorithms. As of this
moment there are 11 different planners available for geometric path
planning, all shown in Table 3.1.

In this project however the main focus has been on the planner called

17

Figure 3.5: Steps of building an environment in Blender. Objects are
created by adding simple meshes around the robot and customizing
them, whereas the robot was imported from a CAD file

18

PRM RRT EST
SBL KPIECE BKPIECE

LBKPIECE LazyRRT RRTCONNECT
RRT BallTreeRRT SyCLoP (coming soon)

Table 3.1: Planners available for geometric planners in OMPL

Rapidly-exploring Random Tree, RRT, created by Steve LaValle. RRT
is, as mentioned in section 3.2, a sampling based planner that creates
many states that have to be checked for collisions on its way to find a
valid path. At every new state the planner creates in the state space
the function isValid, in our state validity checker class, is run to check
if this state is valid or not.

When a new state is made the first thing isValid does is to calcu-
late where each robot link is located and which rotation it has in the
workspace at this state. This is done by using forward kinematics and
the Denavit-Hartenberg convention, [2, page 76]. A kinematic model
for the ABB IRB140 is shown in Figure 3.6 and DH parameters for
this manipulator are shown in Table 3.2.

When the position and rotation of each link is found a PQP model
is made for each link at its current position. When all links have
their own PQP model the collision detection is done by checking for
collision between every pair of links and then between every link and
the environment. If a collision is detected the state is invalid and if no
collision is found the state is valid and can possibly be a state on the
path that is found as a solution to the planning problem that is trying
to be solved.

d θ a α
352 θ∗1 70 −90◦

0 θ∗2 − π/2 360 0
0 θ∗3 0 −90◦

445 θ∗4 0 90◦

0 θ∗5 0 −90◦

0 θ∗6 + π 0 0

Table 3.2: DH parameters for ABB IRB 140

19

Figure 3.6: IRB140 Robot Manipulator, Kinematic structure

3.4.4 Finding a Valid Path

A planner is created by using the command ompl::base::PlannerPtr

planner(new og::RRT(spaceInformation)), where RRT can be switched
with any planner available if that is wanted. It is then also necessary
to tell the planner which problem is to be solved and then run setup on
the planner, planner->setup. If the user uses SimpeSetup a specific
planner does not have to be set because OMPL will use a default plan-
ner if none is given. However since this project wants to take a closer
look at how RRT will be able to solve the problem we have to tell the
planner that we want to use RRT as the planner. When a planner is
set it is time to let OMPL try to solve the problem given.

Since all the planners are sampling based they will not be able to find
out if a solution does not exist, as mentioned in Section 3.2. The
user therefore has to decide how long the planner is allowed to search
for a solution. bool solved = ss.solve(int time) lets the planner
search for a solution for the amount of seconds given in the integer
time. solved is equal to 1 if a solution is found.

20

If no solution is found within the time period given, OMPL often finds
an approximate solution. This solution is, with the experience gained
in this project, not advisable to use. It is very often not even close to
the solution the user is looking for, since the state space for the robot
manipulator used in this project is high dimensional, in this case it is six
dimensional. Whether or not an approximate solution is found can be
checked by bool approx = ss.getGoal()->isApproximate(). In
this project an approximate solution has not been approved as a valid
solution of the path planning problem. A valid path is therefore only
found, and approved, if solved==1 and approx != 1.

3.4.5 Path Post-Processing

When a path is found OMPL has several methods of processing this
path or provide more information to the user if that is wanted. One of
the most useful path processing mechanisms in OMPL is the function
called simplifySolution which is a function in SimpleSetup. This
function attempts to simplify the path found, by running two other
functions available in OMPL and then try to smooth it.

The first function to which tries to remove vertices, or states, on the
path found while still keeping the path valid is called reduceVertices.
It does this by so called ”short-cutting”. Short-cutting is done by
checking if it is possible to go from non-consecutive way-points on the
path. If this is possible the path is shortened by removing the way-
points in between.

The other function that is used in simplifySolution is called collapseCloseVertices.
This function tries to remove vertices that are close to each other from
the path found while still keeping the path valid. If some vertices
for example are on the same straight line only the ones on the ends
are really needed as the others do not contribute to avoiding obsta-
cles in the work space. The user created function isValid is used for
checking for collisions when using simplifySolution to make sure all
simplifications are valid.

To see how simplifySolution works the path planning has been run
without any environment. The smoothest path between only the start-

21

Figure 3.7: Simplification of path shown as number of states

ing position and the goal position is a straight line so this is what we
want to get as our output. Since all planners in OMPL are sampling-
based a path will almost always consist of several states before anything
has been done with the path. In Figure 3.7 it is shown which states
the path consist of before and after simlifySolution when the path
planning program is run. In this example all redundant states has been
removed so we get the result we wanted.

After removing verices simplifySolution also tries to smooth the
path as good as it can. In the previous example the path ended up
being a straight line, and a path can not become any smoother than
that. However if the resulting path from the path planning program has
curves or other non-smooth properties simplifySolution will try to
add new states into the path by using a function called smoothBspline.
This function may add only a few states to make the path more smooth
or it may increase the number of states significantly. A smooth path
is wanted when trying to create a good trajectory for the robot, so in
this case we are not worried about the potential for adding many states
to our path as long as the path gets smoother. This can be seen in
Table 3.3 where five successfully found paths, with the use of Rapidly-
exploring Random Trees, has been processed with simplifySolution.

22

The environment used is the same as the one being used in benchmark-
ing of planners shown in Figure 4.3. It shows how many states the path
found initially had, how many it has after it has been simplified and
smoothed and how long time the simplification of the path took. A
measurement for how long time the planners used to find the initial
path is found in section 4.2, Table 4.1, where a benchmarking of some
of the planners found in OMPL has been run. There is a big difference
in how many states that are needed to smooth out the path.

An increase from 7 states to 81 as shown in run 3 is a big increase
in number of states, but in this project we just want the path to get
smoothed out so we can use it for trajectory generation. Simplification
does take time, usually over a second, so if there is a tight time limit
on the path planning and it is not needed with a very smooth path the
user can always choose to not smooth it in order to save time.

Run 1 2 3 4 5
Initial number of states 9 10 7 7 12
After simplifySolution 53 45 81 45 45

Time spent (s) 1.1798 1.508807 1.15022 0.991133 1.068794

Table 3.3: Number of states before and after simplifySolution

Another useful path processing mechanism is the ability to create more
states along the path. Even though the path is long it may only consist
of a couple of states. One example is if there is no obstacles in the work
space at all, then the path found will come out as just the starting
position and the goal position. However if the path is to be used for
creating a trajectory we may want more points in order to set the joint
velocity and acceleration more places. Therefore when a path is found
it may be useful to use the function interpolate(int states). If
the path found has less then the number of states given by the integer
sat by the user OMPL will create more states in between the states
already found so we end up with more via points. interpolate can
in some way be described as the opposite of collapseCloseVertices.
If collapseCloseVertices is run after interpolate all the newly
created states will be removed.

23

24

Chapter 4

Framework in the Open
Motion Planning Library

4.1 Overview of Framework

The framework created during this project is created with the pro-
gramming language C++ in the Ubuntu operating system. In Figure
4.1 it is shown what the Open Motion Planning Library, which is a
big part of this framework, does for the user in this project. It is ar-
guable that collision detection, or state validity in this case, is inside
the OMPL block as the user has to create the function that checks for
this, the isValid function, but when the user has implemented this
function OMPL does the rest of the work as in checking every state
created by the planner if it is a valid one or not. OMPL also has
several state spaces available for the user to choose from, or the user
can create its own state spaces. In this project the state space is a six
dimensional RealVectorStateSpace since the robot has six degrees of
freedom. New planners can be made by the user, but in this project
only planners already available in OMPL have been used. And the last
block, path processing, is a very valuable feature that is included in
OMPL.

In Figure 4.2 it is shown what the inputs and outputs of the OMPL
framework that is made are. For the program to find a valid path it

25

Figure 4.1: Overview of path planning framework

26

needs a starting position and a goal position. These positions can easily
be set in the files called start and goal and has to include six floats,
one for each link. The framework also needs a model of the environment
which will be the work space of the robot. The environment can be
set in the file called environment while the model for the robot is
pre-made since this framework is made for use with the ABB IRB140
robot manipulator. There is one file for each of the six links on this
robot. The model of the robot and the environment is then made into
collision models as described in Section 3.4.2 so PQP can find out if
there is a collision or not. If the environment does not change the user
can simply change start and goal positions to find a valid point-to-
point path. If another robot is to be used the robot files have to be
exchanged with new ones, and additionally the part of the framework
that calculates the forward kinematics of the robot will have to be
rewritten.

The output is a valid, collision-free path with at least 20 states, or via
points. It is saved in the file called validPath which then can be read
by either a visualization program or by a program which will create the
trajectory for the robot. Since the trajectory planner uses a simplified
model of the robot manipulator the framework also outputs a valid
path which only consists of the configurations of the first three links.
This decision will be explained more in detail in Chapter 5.

4.2 Benchmarking of Planners in OMPL

The Open Motion Planning Library has a benchmarking class,
ompl::Benchmark, which opens up for the possibility of solving a mo-
tion planning problem several times with different planners, samplers
or different version of the same planning algorithm if the user wants to
try and improve an existing planner. This feature may therefore show
if some planners are better suited for the problem trying to be solved.

The path planning problem to be solved in this benchmark is to have
the robot move from −π to π on the first joint, a rotation of 360
degrees, in the work space. It is possible to set the number of times
each planner shall run and for how long it is allowed to run. This means

27

Figure 4.2: Path planning framework with inputs and outputs

that we can run each algorithm several times and then calculate for
example the average runtime, or check if some planner is struggling
more than the others with the problem it is trying to solve.

In Table 4.1 the planners RRT, LazyRRT, RRTConnect [8], KPIECE
(Kinematic Planning by Interior-Exterior Cell Exploration)[9] and LazyK-
PIECE have been used to create a benchmark for the planning problem
with the ABB IRB140 in the environment shown in Figure 4.3 as the
work space. In this benchmarking every planner has been run 100
times with a maximum time of 5.0 seconds. It is also possible to set
the maximum amount of memory usage per computation, but in this
benchmarking only time is the factor to be investigated.

Planner RRT LazyRRT RRTConnect KPIECE1 LBKPIECE1
Average runtime (s) 2.48276 1.401135 1.355275 2.24983 3.17213
Slowest runtime (s) 4.99842 4.76461 4.70642 4.99569 4.86868
Fastest runtime (s) 0.744722 0.209158 0.142457 0.187119 0.571448
Solution not found 73 26 14 30 69

Table 4.1: Result from benchmarking of planners in OMPL

28

Figure 4.3: Environment used for benchmarking of planners

From Table 4.1 we see that in general the planners based on RRT have
a higher solution rate than those based on KPIECE. It is clear that on
this problem, during this specific benchmarking the KPIECE planners
struggles to find a correct solution in the time given. If the maximum
time allowed to search for a solution had been longer we might have
seen a better solution rate. However it may seem as the time usage will
still be worse for KPIECE planners than the time used with RRT based
planners. KPIECE is specifically designed for use with physics-based
simulation. The problem in this case has not taken in consideration
the specific use of KPIECE planners so that may be why the results
are so bad. In [10] it is shown that KPIECE can indeed produce better
results than planners based on RRT if the problem is built up to take
advantage of this type of planner. It should also be noted that time
is the only thing that has been investigated, thus KPIECE might be
better when it comes to for example memory usage, but this has not
been taken into consideration in this benchmark.

We can also see from Table 4.1 that the planner with the best results
over 100 runs in this case proves to be RRT-Connect. Since RRT
clearly produces good result it should not come as a big surprise that

29

RRT-Connect will produce at least as good result, or in this case better
results. RRT-Connect builds two trees rooted at the start and goal
states which then explore the space around them and also advances
towards each other by using a simple greedy heuristic. Since there
are two trees exploring the state space at the same time it will use
a shorter amount of time finding a valid path. When the two trees
connect with each other the shortest path is easily computed by using
the graph created. There is quite a spread in the time used for finding
a solution, so if time is very important the user should investigate to
see if there are areas the code can be optimized. During the work on
this project the environment used in this benchmarking was the one
environment the planners struggled the most to find a valid path in,
so the time limit of 5 seconds may be quite strict, but it still gives a
good indication on how different planners performed for this specific
problem. Another environment might have given different results.

4.3 Visualization of Paths

In order to see what the path found will look like when run on a robot
a way to visualize the path has been made. The environment that gets
imported during the path planning phase is made in a program called
Blender, which is a free, open-source software for 3D graphics. It can
be used for all kinds of 3D graphics including movies, visual effects and
animations. In this case it is used for making several environments a
robot can possibly work in. The environment models represent for
example a table with some objects around it. When a path is found
the visualization of the path can also be done in Blender which is very
convenient.

In Blender it is possible to attach an armature to a CAD model. It is
therefore possible to download the CAD model from the ABB website
for the ABB IRB140, load it into Blender and attach an armature by
following a procedure made by Herman Bruyninckx 1. Thereafter a
Python script is written to be able to receive paths from an open port.
This script is activated by pressing ’P’ in Blender. Another script is

1http://people.mech.kuleuven.be/b̃ruyninc/hb46/blender/chapter robotmodelling.html

30

then made to send a path to Blender for visualization. This script is
called runVisualization.py and have to be run from the command
line. Every 0.1 second a new via point is sent to the open port and the
Blender model of the robot gets updated. The result is that the user
gets to see what path the robot will take before turning this path into
a trajectory. Since all planners used are sampling based most paths
will be different, so this can be a good way to see if the path found
from the path planning is a good one.

Several runs have been saved to show different paths found from a
starting position to goal position which in this case is from −π to π on
link one, so the robot is to turn 360 in the work space. The saved runs
include different environments with different planners in order to find a
collision free path. In Figure 4.4 one of these runs are shown. There is
no collision with the environment and no links colliding into each other
so the path found is correct. A short film of several paths visualized
in different environments is attached and called visualization.wmv.

31

Figure 4.4: Visualization of a path in Blender

32

Chapter 5

Trajectory Generation for
Found Path

5.1 Two Step Trajectory Planning

The problem of finding a good trajectory for a robot manipulator is not
a simple task. The more degrees of freedom the robot manipulator has
the more demanding and complex the problem of finding a suitable
trajectory gets. This has already been mentioned in Chapter 3 and
the trajectory generation has many of the same problems as the path
generation since there might be infinitely many paths between two
points in the configuration space. Therefore it is not straight forward
to find the optimal path or trajectory for the robot.

The demands on robot manipulator are big when it for example comes
to time spent doing a job or the energy efficiency of the robot while
doing some work. Therefore it is generally a good idea to look for not
just the first trajectory found, but to try to find the optimal trajectory.
Then less time and/or energy can be used to perform the action.

One way of solving the overall trajectory generation is to divide it into
two separate sub-problems as done in this project. The first step is to
generate a desired path and the second step is to turn this path into
a trajectory by assigning velocities along the path. It is possible to do

33

both steps in one calculation, but by dividing it into two sub-problems
the multi-dimensional state space can be reduced to a two-dimensional
state space with only the the path coordinate, s, and the derivative of
the path coordinate, ṡ.

When a path, q, is found it is then parametrized as
q(s) = [q1(s) q2(s) . . . qn(s)]T where s is the path coordinate that goes
from 0 to 1. The velocity and the acceleration can then be parametrized
in the same way to produce q̇(s) = q′(s)ṡ = [q′1(s) q

′
2(s) . . . q

′
m(s)]T ṡ

and q̈(s) = q′′(s)s2 + q′(s)s̈.

The equation for a robots dynamics is:

n∑
j=1

mij(q)q̈j +
n∑
j=1

n∑
j=1

cijk(q)q̇j q̇k + hi(q) = τi (5.1)

By using the parametrization above along a found path in the equation
for the robot dynamics we end up with

n∑
j=1

mij(q(s))q
′
j(s)s̈+ gi(q(s))

+

(
n∑
j=1

mij(q(s))q
′′
j (s) +

n∑
j=1

n∑
j=1

cijk(q(s))q
′
j(s)q

′
k(s)

)
ṡ2 = τi

(5.2)

In equation 5.2 the dynamics are now on the form

αi(s)s̈+ βi(s)ṡ
2 + γi(s) = τi (5.3)

where

34

αi(s) =
n∑
j=1

mij(q(s))q
′
j(s)s̈ (5.4)

βi(s) =
n∑
j=1

mij(q(s))q
′′
j (s) +

n∑
j=1

n∑
j=1

cijk(q(s))q
′
j(s)q

′
k(s) (5.5)

γ = gi(q(s)) (5.6)

5.2 Second-Order Cone Programming

In [11] a procedure for optimization is proposed by the use of Second-
order cone programming. A second-order cone program is a convex
optimization problem on the form

minfTx (5.7)

subject to Fx = g (5.8)

‖Mjx+ nj‖ ≤ pTj x+ qj (5.9)

for j = 1 . . .m (5.10)

A cone constraint used in this method of optimization is on the form

‖Ax+ b‖2 ≤ cTx+ d (5.11)

By constraining the decision variables to lie within such a cone more
efficient solvers can be used to solve the optimization problem. As
shown in Figure 5.1 the transformation Ax + b transforms a point x
in the cone to the cone with its top in the origin. cTx + d determines
the width of the cone and the point x is projected onto the stapled ray
given by cTx+ d.

35

Figure 5.1: Cone Constraint visualization

5.3 Optimization by Second-Order Cone

Programming

5.3.1 Object function

When a path is found and parameterized as a function of s, it is possible
to calculate the time it will take to execute a motion along this path
given a velocity assignment ṡ(s). By observing that dt = dt

ds
ds = 1

ṡ(s)
ds

it is then possible to formulate integrals of how long time the motion
takes.

T =

∫ T

0

dt =

∫ 1

0

1

ṡ(s)
ds (5.12)

This can then be used to optimize the time which the robot manipu-
lator will use on the motion along the path q that is already found. If
the user wants to optimize the energy usage of the robot manipulator

36

the following energy integral can be used.

Ei =

∫ 1

0

τ 2i (s)

ṡ(s)
ds (5.13)

By combining these two integrals it is possible to find a function that
measures a combination of time and energy. To be able to decide
what we want to weight the most, speed or energy consumption, a
parameter, γ, can be used in front of the energy integral.

J = T + γ
n∑
i=1

Ei (5.14)

By representing ṡ as a function of s the velocity of the system can
be specified explicitly. The bounds for each joint are usually given in
datasheets and this is also the case for the ABB IRB140 [12].

‖q̇(s)‖ ≤ ‖q′i(s)ṡ‖ ≤ ¯̇q (5.15)

By using this and that ¯̇q is the maximum speed of joint i the maximum
value of ṡ along a path can be found as

max‖ṡ‖ = min
i

¯̇q

‖q′i(s)‖
(5.16)

5.3.2 Reformulation from non-linear optimization
problem to second-order cone program

One of the big advantages of using second-order cone programming is
that there exists dedicated solvers for these types of problems which are
more efficient then trying to solve the optimization problem with any
nonlinear solver. To be able to use these types of solvers the problem
has to go through a not so straightforward reformulation to get the
optimization problem on the form of a second-order cone programming
problem.

37

The method used to reformulate the original optimization problem
from a non-linear optimization problem into a convex second-order
cone program below is found in [11]. The original time-optimal path
tracking problem subject to lower and upper bounds on the torques
can be expressed as

min
T,s(·),τ(·)

T (5.17)

subject to (5.18)

s(0) = 0, (5.19)

s(T) = 1, (5.20)

ṡ(0) = ṡ0, (5.21)

ṡ(T) = ṡT (5.22)

ṡ(t) ≥ 0, (5.23)

τ(s(t)) ≤ τ(t) ≤ τ̄(s(t)) for t ∈ [0, T] (5.24)

where s(0), s(T), ṡ(0) and ṡ(T) is the initial and ending position and
velocity and the bounds on the torque may depend on s.

It is then possible to rewrite 5.17 - 5.24 in order to make the entire
problem convex. A convex optimization problem is desirable because
we know that if we find a solution to the convex problem the solution
we find is a global solution. The first step is to use equation 5.12 and
5.13 to make equation 5.14 and use this as our objective function. This
objective function is then discretized to create

J =

∫ 1

0

1 + γ
∑n

i=1 τi(s)
2

ṡ
ds ≈

K−1∑
k=0

[
1 + γ

n∑
i=1

(τ ki)2

]∫ sk+1

sk

1√
b(s)

ds

(5.25)

where K is the number of discretization points. The last integral can
then be rewritten by using the parametrization of the squared velocity

ṡ(s)2 = b(s) = bk +

(
bk+1 − bk

sk+1 − sk

)
(s− sk) (5.26)

38

which is piecewise linear and where bk is the value of b(s) at sk, into

J =
K−1∑
k=0

2∆sk(1 + γ
∑n

i=1(τ
k
i)2)√

bk+1 +
√
bk

(5.27)

This nonlinear objective function can then be converted into a linear
objective function and a hyperbolic constraint by making to substitu-
tions. We introduce the variables ck and dk so the objective function
becomes linear

K−1∑
k=0

2∆skdk (5.28)

with the two hyperbolic constraints

1 + γ
∑n

i=1(τ
k
i)2

ck+1+ck
≤ dk (5.29)

ck ≤
√
bk (5.30)

It is then possible to rewrite these two hyperbolic constraints to convert
them into a second-order constraint. By using

w2 ≤ xy, x ≥ 0, y ≥ 0⇔
∥∥∥∥[2w

x− y

]∥∥∥∥ ≤ x+ y (5.31)

we get the second-order constraints

∥∥∥∥∥∥∥∥∥∥
2

2
√
γτ k1 /τ̄1
. . .

2
√
γτ kn/τ̄n

ck+1 + ck − dk

∥∥∥∥∥∥∥∥∥∥
≤ ck+1 + ck − dk (5.32)

for k = 0 . . . K − 1 (5.33)

39

and

∥∥∥∥ 2ck

bk − 1

∥∥∥∥ ≤ bk + 1 (5.34)

for k = 0 . . . K (5.35)

5.4 Solving the Optimization Problem Us-

ing SeDuMi in Matlab

When we have the final form of the optimization problem we can use
a robust numerical algorithm to solve the second-order cone program.
The best solver would have been one based on C++ in order to solve
the path planning and trajectory generation in the same program, un-
fortunately no such good solver is available for free. Because there was
not enough time to create a second-order cone program solver in C++
in this project, a solver that runs in Matlab has been used. There
are several freely available solvers to do this. In this project the solver
chosen is called SeDuMi, which stands for Self-Dual-Minimization, and
runs under Matlab on most operating systems. SeDuMi contains func-
tions for solving many types of optimization programs, but the one we
will be using to solve our second-order cone program is sedumi(A, b,

c, K) which tries to solve the optimization problem

min
x
cTx

subject to Ax = b

x ∈ K

The A, b and c in sedumi(A, b, c, K) is the matrix A and the vectors
b and c in the optimization problem. The K is used to define the cone
constraints. The three most important properties in K are K.f which
is the number of free components, K.l which is the number of non-
negative components and K.q which is needed to define the dimensions
of the quadratic cones.

40

Because the dynamics of the ABB IRB140 is not easily available this
project has made some simplifications when it comes to the calcula-
tion of the optimal trajectory. Only the three first joints are being
investigated as they are the ones that do most of the movement in the
work space. The three last joints are used for for example rotating a
gripper, and does not cover a big area in the work space. The only
reason there is movement on the three last links in this project when a
path is found, is because of the use of sampling-based planners. This
makes it so the configurations the path is made out of often includes
movement in all joints. By only looking at the three first joints, and
setting no movement on the three last joints, we look at the part that
is the most important when trying to avoid collisions.

5.5 Finding the Time-Optimal Trajectory

5.5.1 Illustration of Obstacle-free point-to-point
motion

The optimal-time trajectory program first reads a path found from
Chapter 4. This path includes only the configuration of the first three
links since this was part of the simplification made in order to be able
to calculate an optimal trajectory. The program then evaluates q(s),
q′(s) and q′′(s) at discrete points along the path so that the dynamics
can be evaluated along the path. This creates αi(s), βi(s) and γi(s).
It should be noted that αi, βi and γi is not totally correct since the
real dynamics of the ABB IRB140 are unknown. This is an estimate
by using some parameters found in the ABB manual for the robot
manipulator. The last thing that is done is to find the matrices needed
by SeDuMi to solve the optimization problem by using second-order
cone programming. Figure 5.2 shows what the finished framework
looks when we add the trajectory planning to the path planning.

41

Figure 5.2: Full framework consists of both path planning and trajec-
tory planning.

In figure 5.3 the visualization of a path in an environment without
obstacles, except for a table is shown. The start position is set to
−π and the goal position is π, on the first joint, that so the robot
manipulator is to turn 360 degrees. Figure 5.4 - 5.7 shows the joint
angles, joint velocities, join accelerations and the joint torques for this
path. Figure 5.8 shows the path coordinate s with respect to time
while Figure 5.9 shows the relationship between the path coordinate s
and the path velocity ṡ. When observing the results it is noteworthy
that the torque is always maxed out on at least one joint, in this case
joint one since that is the only one that has to do any movement. For
a very short period of time no torque is maxed, when the torque on
joint one goes from maximum to minimum, but this is simply because
the joint does not change infinitely fast. If there was a period of time
where none of the joint where saturated the trajectory found would
not have been optimal as it would have been possible to apply more
torque to a joint and thereby make the movement go faster. It is also
possible to see that the acceleration of the joint behaves quite similar
to the torque on the same joint.

42

Figure 5.3: Visualization of the path used to find a trajectory in a
obstacle free environment.

Figure 5.4: Joint angles on a path in obstacle-free environment.

43

Figure 5.5: Joint velocities on a path in obstacle-free environment.

Figure 5.6: Joint accelerations on a path in obstacle-free environment.

Figure 5.7: Joint torques on a path in obstacle-free environment. The
dotted lines are torque constraints.

44

Figure 5.8: Path coordinate with respect to time on path in obstacle-
free environment.

Figure 5.9: Velocity profile for a path in an obstacle-free environment.

5.5.2 Illustration of obstacle-”clouded” point-to-
point motion

When the trajectory is calculated for a path where the robot is working
within an environment, the result gets more complicated because there
is more movement in the joints as they can not go straight from their
starting position to their goal position. The start and goal position
is the same as in the illustration with a obstacle-free environment,
starting position is −π and the goal position is π on joint one to turn
the manipulator 360 degrees in the work space.

Figure 5.10 shows the visualization of a path in an environment with
more objects than just the table, which was in the environment in
Section 5.5.1. Figure 5.11 - 5.14 shows joint angles, joint velocity, join

45

acceleration and joint torque for this path. Figure 5.15 shows the path
coordinate with respect to time and Figure 5.16 shows the relationship
between the path coordinate s and the path velocity ṡ. We can see
that one of the joint torques in this case also is always in saturation so
a time-optimal trajectory has been found. By looking closer at parts
of the paths we can also see that the behaviour of acceleration and
torque is quite similar in this trajectory as well.

Figure 5.10: Visualization of the path used to find a trajectory in an
obstacle-clouded environment.

46

Figure 5.11: Joint angles on a path in an obstacle-clouded environment.

Figure 5.12: Joint velocities on a path in an obstacle-clouded environ-
ment.

Figure 5.13: Joint accelerations on path in an obstacle-clouded envi-
ronment.

47

Figure 5.14: Joint torques on a path in an obstacle-clouded environ-
ment. The dotted lines are torque constraints.

Figure 5.15: Path coordinate with respect to time on a path in an
obstacle-clouded environment.

Figure 5.16: Velocity profile for a path in an obstacle-clouded environ-
ment.

By looking at both trajectories found it is possible to see that the
result from the trajectory planning seems correct for both paths. The

48

time used for the robot manipulator to go from the start position to
the end position in an obstacle-free environment is shorter than in an
environment with obstacles. This makes sense since in the environment
with obstacles the robot manipulator has to go around the objects
and therefore there is more movement on several joints so the overall
torque has to be distributed amongst them. This leads to the robot
manipulator using longer time on the entire movement.

By looking at Figures 5.16 and 5.9 we can see the maximum velocity
profile for both paths. There can be infinitely many trajectories that
are slower than the one found, but no trajectory will be able to find a
path velocity that is higher than the graphs shown. We can see that
the maximum path velocity is higher for the obstacle-free trajectory
and also a lot smoother because there are less switches between the
active torque constraints. Since we in both cases can observe that the
torque is saturated in at least one joint at every point in time, it is
advisable to not run the robot manipulator at maximum speed. If this
is done the control authority to correct things such as disturbances,
is used up. It is possible, and should be done in most cases, to scale
down the velocity profile by some percent depending on how critical
the user wants to run the system.

49

50

Chapter 6

Discussion and Future Work

In Chapter 3 it was investigated how path planning for an industrial
robot manipulator can be done. Several different methods to find a
valid path was discussed with most focus on sampling-based planners,
as all planners in the Open Motion Planning Library are sampling-
based. After a quick introduction to OMPL it was shown how path
planning is done by using this relatively new path planning tool. One
of the most important things about the use of OMPL is how the state
validation or collision detection is done. In this project state valid-
ity was done by implementing a state validation class. Additionally
PQP was used to detect self collisions when two or more links on the
robot manipulator collides with each other, or when a collision with
environment was detected.

A framework for path planning was created in Chapter 4. What the
framework needs and what it does for the user is shown in Figures
4.1 and 4.2. This framework is made so the user has to use few task
primitives in order to be able to find a valid path. Given a robot
model and an environment model the only thing the user has to tell
the program is a start position and a goal position. It is easy to create
new environments in for example Blender. The only thing the user has
to do to find a path in this new environment is to export this program
as a .RAW file and update the file that tells the program where it
should read the environment from. The output of this path planning
framework is a valid path with several via points that can easily be

51

used for trajectory planning. A visualization of the path found can be
run in Blender. Several runs with different environments and planners
have been saved and turned into a short film attached to this project
in order to be able to show correct behaviour from the framework.

The last part of Chapter 4 shows a benchmarking of some of the plan-
ners available for the user in OMPL. For the problem that was needed
to be solved during this benchmark it was clear that the planners
based on Rapidly-exploring Random Trees, RRT, where a lot faster
and more accurate then the planners based om Kinematic Planning by
Interior-Exterior Cell Exploration, KPIECE. RRT is a fast algorithm
that quickly covers big parts of the work space and therefore produces
good results in this case. KPIECE is still a good algorithm, but it
excels in results when the problem has taken into consideration what
planners are to be used to solve it. In [10] it is shown an example of a
problem where KPIECE produces better results than RRT.

Chapter 5 described a method for solving the problem of finding the
optimal trajectory of one of the paths found in Chapter 4. This method
used second-order cone programming, SOCP, to solve the optimization
problem. To be able to use this method the original objection function
and its constraints had to be rewritten quite a bit to create a second-
order cone program. When the correct form is found it is possible to
use mature solvers which exploit the SOCP structure very efficiently.

It was then shown how this optimization method can be used on a path
found by using SeDuMi, which is an efficient solver for solving SOCP
in Matlab. When finding the optimal trajectory a simplification of the
dynamics of the ABB IRB140 had to be used since the real dynamics
are not easily available. The robot manipulator was therefore modeled
as a 3-link robot arm when finding the trajectory. An illustration
of a trajectory found for one path in an obstacle-free environment as
well as a path in an obstacle-clouded environment was shown. When
the optimal trajectory was found it was possible to see that one of
the torque constraints where always in saturation. If this had not
been the case it would have been possible to get a faster trajectory by
increasing the torque on one of the joints. It was also observed that the
torque and acceleration graphs behave quite similar. Figures 5.9 and
5.16 show that the velocity profile is higher for the trajectory made in

52

the collision-free environment. This is as expected since there is less
movement on the robot and its joints so this is also a good indicator
that the trajectory calculation works as it should. It is also important
to observe that at least one of the joint torques are saturated at every
point in time. Because of this it is advisable to not run the robot
manipulator at its maximum speed. If this is done the control authority
to correct things such as disturbances is used up. It is possible to scale
down the velocity profile by some percent depending on how critical
the user wants to run the system, which should be done in most cases.

The framework created in this project is only an example of how a
framework can be created for path planning and trajectory generation.
It is made to be simple to use, and needs few task primitives from a
user in order to be able to find a path and its trajectory. It would have
been nice to be able to do both these steps by the use of C++ so there
would only be one file to run to find both the path and trajectory. To be
able to do this, the need of a solver for a second-order cone program is
needed in C++. It should also be noted that the framework is specially
designed for the ABB IRB140. It is easy to change environment, but if
the user wants to use another robot manipulator most of the framework
can be used, but the calculation of the forward kinematics have to be
exchanged with new Denavit-Hartenberg parameters as well as new
collision models for the new robot.

After using OMPL during this project it seems to have a bright future
with its user-friendliness for anyone with a programming background.
Additionally its continuous updates will make it even better in the
future. The Open Motion Planning Library is already under consider-
ation to be used for path planning problems on robotic systems used
by SINTEF.

The trajectories found in Chapter 5 have unfortunately not been tested
on a real robot manipulator. For this to be done it is most likely
necessary to calculate the real dynamics of the ABB IRB140 and use
them to create a trajectory for the full robot with six links instead of
the simplifications used in this project.

53

54

Appendix A

A.1 Simple Examples of Path Planning

With and Without SimpleSetup

55

Algorithm 3 Path Planning With the Use of SimpleSetup

namespace ob = ompl::base;
namespace og = ompl::geometric;

bool isStateValid(const ob::State *state)

void planWithSimpleSetup(void)
{

ob::StateSpacePtr space(new ob::SE3StateSpace());

ob::RealVectorBounds bounds(3);
bounds.setLow(-1);
bounds.setHigh(1);

space->as<ob::SE3StateSpace>()->setBounds(bounds);

og::SimpleSetup ss(space);

ss.setStateValidityChecker(boost::bind(&isStateValid, 1));

ob::ScopedState<> start(space);
start.random();
ob::ScopedState<> goal(space);
goal.random();

ss.setStartAndGoalStates(start, goal);

bool solved = ss.solve(1.0);

if (solved)
{

std::cout << ”Found solution:” << std::endl;
ss.simplifySolution();
ss.getSolutionPath().print(std::cout);

}
}

56

Algorithm 4 Path Planning Without the Use of SimpleSetup

namespace ob = ompl::base;
namespace og = ompl::geometric;

bool isStateValid(const ob::State *state)
void plan(void)
{

ob::StateSpacePtr space(new ob::SE3StateSpace());

ob::RealVectorBounds bounds(3);
bounds.setLow(-1);
bounds.setHigh(1);

space->as<ob::SE3StateSpace>()->setBounds(bounds);

ob::SpaceInformationPtr si(new ob::SpaceInformation(space));

si->setStateValidityChecker(boost::bind(&isStateValid, 1));

ob::ScopedState<> start(space);
start.random();
ob::ScopedState<> goal(space);
goal.random();

ob::ProblemDefinitionPtr pdef(new ob::ProblemDefinition(si));

pdef->setStartAndGoalStates(start, goal);

ob::PlannerPtr planner(new og::RRTConnect(si));
planner->setProblemDefinition(pdef);
planner->setup();

bool solved = planner->solve(1.0);

if (solved)
{

ob::PathPtr path = pdef->getGoal()->getSolutionPath();
std::cout << ”Found solution:” << std::endl;
// print the path to screen
path->print(std::cout);

}
}

57

58

Appendix B

B.1 An example of a .RAW file for an en-

vironment

Each line has nine coordinates to describe three different points in the
space with its x, y and z value. Every line therefore describes one
triangle to be used when making a collision model. A box has six faces
in the shape of a square. Two triangles makes one square so for a box
a model file will have 2 ∗ 6 = 12 lines, one for each triangle. The file
below is for the environment file airbox which has three objects, so
the file consists of 36 lines, 12 for each object.

3.713757 2.738049 0.414542 3.713757 2.424479 0.414542 1.713757 2.424480 0.414542

1.713757 2.424480 0.414542 1.713758 2.738050 0.414542 3.713757 2.738049 0.414542

3.713758 2.738049 5.324363 1.713757 2.738050 5.324363 1.713757 2.424480 5.324363

1.713757 2.424480 5.324363 3.713757 2.424479 5.324363 3.713758 2.738049 5.324363

3.713757 2.738049 0.414542 3.713758 2.738049 5.324363 3.713757 2.424479 5.324363

3.713757 2.424479 5.324363 3.713757 2.424479 0.414542 3.713757 2.738049 0.414542

3.713757 2.424479 0.414542 3.713757 2.424479 5.324363 1.713757 2.424480 5.324363

1.713757 2.424480 5.324363 1.713757 2.424480 0.414542 3.713757 2.424479 0.414542

1.713757 2.424480 0.414542 1.713757 2.424480 5.324363 1.713757 2.738050 5.324363

1.713757 2.738050 5.324363 1.713758 2.738050 0.414542 1.713757 2.424480 0.414542

3.713758 2.738049 5.324363 3.713757 2.738049 0.414542 1.713758 2.738050 0.414542

1.713758 2.738050 0.414542 1.713757 2.738050 5.324363 3.713758 2.738049 5.324363

4.819256 -0.468421 1.639082 4.819256 -1.664419 1.639082 3.803806 -1.664419 1.639082

3.803806 -1.664419 1.639082 3.803807 -0.468420 1.639082 4.819256 -0.468421 1.639082

59

4.819257 -0.468421 2.890932 3.803807 -0.468421 2.890932 3.803806 -1.664418 2.890932

3.803806 -1.664418 2.890932 4.819255 -1.664419 2.890932 4.819257 -0.468421 2.890932

4.819256 -0.468421 1.639082 4.819257 -0.468421 2.890932 4.819255 -1.664419 2.890932

4.819255 -1.664419 2.890932 4.819256 -1.664419 1.639082 4.819256 -0.468421 1.639082

4.819256 -1.664419 1.639082 4.819255 -1.664419 2.890932 3.803806 -1.664418 2.890932

3.803806 -1.664418 2.890932 3.803806 -1.664419 1.639082 4.819256 -1.664419 1.639082

3.803806 -1.664419 1.639082 3.803806 -1.664418 2.890932 3.803807 -0.468421 2.890932

3.803807 -0.468421 2.890932 3.803807 -0.468420 1.639082 3.803806 -1.664419 1.639082

4.819257 -0.468421 2.890932 4.819256 -0.468421 1.639082 3.803807 -0.468420 1.639082

3.803807 -0.468420 1.639082 3.803807 -0.468421 2.890932 4.819257 -0.468421 2.890932

6.177412 5.409776 -0.411176 6.177412 -4.093324 -0.411176 3.105231 -4.093324 -0.411176

3.105231 -4.093324 -0.411176 3.105231 5.409777 -0.411176 6.177412 5.409776 -0.411176

6.177413 5.409776 -0.156034 3.105231 5.409776 -0.156034 3.105230 -4.093323 -0.156034

3.105230 -4.093323 -0.156034 6.177411 -4.093325 -0.156034 6.177413 5.409776 -0.156034

6.177412 5.409776 -0.411176 6.177413 5.409776 -0.156034 6.177411 -4.093325 -0.156034

6.177411 -4.093325 -0.156034 6.177412 -4.093324 -0.411176 6.177412 5.409776 -0.411176

6.177412 -4.093324 -0.411176 6.177411 -4.093325 -0.156034 3.105230 -4.093323 -0.156034

3.105230 -4.093323 -0.156034 3.105231 -4.093324 -0.411176 6.177412 -4.093324 -0.411176

3.105231 -4.093324 -0.411176 3.105230 -4.093323 -0.156034 3.105231 5.409776 -0.156034

3.105231 5.409776 -0.156034 3.105231 5.409777 -0.411176 3.105231 -4.093324 -0.411176

6.177413 5.409776 -0.156034 6.177412 5.409776 -0.411176 3.105231 5.409777 -0.411176

3.105231 5.409777 -0.411176 3.105231 5.409776 -0.156034 6.177413 5.409776 -0.156034

60

Bibliography

[1] Homepage of the open motion planning library. [Online].
Available: http://ompl.kavrakilab.org/

[2] M. W. Spong, S. Hutchinson, and M.Vidyasagar, Robot Modeling
and Control. John Wiley Sons, Inc, 2006.

[3] S. M. LaValle, Planning Algorithms. Cambridge,
U.K.: Cambridge University Press, 2006, available at
http://planning.cs.uiuc.edu/.

[4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE Trans. on Robotics and Automation,
1996.

[5] S. M. LaValle, “Rapidly-exploring random trees: A new tool for
path planning,” Department of Computer Science, Iowa State
University, Oct. 1998.

[6] Homepage of the open motion planning library. [Online].
Available: http://kavrakilab.org/

[7] The proximity query package. [Online]. Available: http:
//gamma.cs.unc.edu/SSV/

[8] J. James J. Kuffner and S. M. LaValle, “Rrt-connect: An effi-
cient approach to single-query path planning,” IEE Int’l Conf. on
Robotics and Automation, 2000.

[9] I. A. Sucan and L. E. Kavraki, “Kinodynamic motion planning
by interior-exterior cell exploration,” in Algorithmic Foundation

61

http://ompl.kavrakilab.org/
http://kavrakilab.org/
http://gamma.cs.unc.edu/SSV/
http://gamma.cs.unc.edu/SSV/

of Robotics VIII (Proceedings of Workshop on the Algorithmic
Foundations of Robotics), vol. 57, STAR. Guanajuato,
Mexico: STAR, 2009, pp. 449–464. [Online]. Available:
http://www.springerlink.com/content/gm47pt40p0740125/

[10] ——, “On the performance of random linear projections for
sampling-based motion planning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, St. Louis,
11/10/2009 2009, pp. 2434–2439. [Online]. Available: http:
//dx.doi.org/10.1109/IROS.2009.5354403

[11] D. Verscheure, B. B. Demeulenaere, J. Swevers, J. D. Schutter,
and M. Diehl, “Time-energy optimal path tracking for robots: a
numerically efficient optimization approach,” Automatic Control,
IEEE Transactions, 2009.

[12] Irb140 industrial robot datasheet. [Online]. Available:
http://www05.abb.com/global/scot/scot241.nsf/veritydisplay/
d7dfcc72e3fd760dc12579c7002ce1e0/$file/PR10031EN%20R14%
20LR.pdf

62

http://www.springerlink.com/content/gm47pt40p0740125/
http://dx.doi.org/10.1109/IROS.2009.5354403
http://dx.doi.org/10.1109/IROS.2009.5354403
http://www05.abb.com/global/scot/scot241.nsf/veritydisplay/d7dfcc72e3fd760dc12579c7002ce1e0/$file/PR10031EN%20R14%20LR.pdf
http://www05.abb.com/global/scot/scot241.nsf/veritydisplay/d7dfcc72e3fd760dc12579c7002ce1e0/$file/PR10031EN%20R14%20LR.pdf
http://www05.abb.com/global/scot/scot241.nsf/veritydisplay/d7dfcc72e3fd760dc12579c7002ce1e0/$file/PR10031EN%20R14%20LR.pdf

	Title Page
	Introduction
	Scope

	Problem Formulation
	Importance of Path Planning
	Trajectory Generation Problem

	Path Planning
	Path Planning Concepts and Terminology
	Methods of Path Planning
	Quick Introduction to The Open Motion Planning Library
	Path Planning with The Open Motion Planning Library
	State validation and Collision Detection
	Collision Models
	Available Planners
	Finding a Valid Path
	Path Post-Processing

	Framework in the Open Motion Planning Library
	Overview of Framework
	Benchmarking of Planners in OMPL
	Visualization of Paths

	Trajectory Generation for Found Path
	Two Step Trajectory Planning
	Second-Order Cone Programming
	Optimization by Second-Order Cone Programming
	Object function
	Reformulation from non-linear optimization problem to second-order cone program

	Solving the Optimization Problem Using SeDuMi in Matlab
	Finding the Time-Optimal Trajectory
	Illustration of Obstacle-free point-to-point motion
	Illustration of obstacle-"clouded" point-to-point motion

	Discussion and Future Work
	
	Simple Examples of Path Planning With and Without SimpleSetup

	
	An example of a .RAW file for an environment

	Bibliography

