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Abstract

The NTNU Test Satellite (NUTS) project, is part of the Norwegian Student Satellite pro-
gram ANSAT. The goal of the project is to design and launch a double CubeSat by the end
of 2014. During earlier satellite projects at NTNU, solid work on design of the attitude
determination and control for a small satellite has been done.

One of the considered estimation methods for the attitude determination is the ex-
tended quaternion estimation method (EQUEST). Further development and testing of the
method is described in this thesis. In addition to the new EQUEST method, a nonlinear
observer has been implemented and tested. The simulation results for the two methods are
compared in order to find the attitude estimation method best suited for the NUTS satellite.

The new EQUEST method has several advantages over the more common Kalman
filtering for use in small CubeSats. It is less computationally costly, and has a fast start-
up and settling time. Magnetorquers, which affect the local magnetic field, are used as
actuators for the satellite. This makes a fast algorithm preferable, since the attitude esti-
mation and the attitude control should be performed separately. The nonlinear observer is
slower than the EQUEST method, but it can guarantee global exponential stability and it
is less vulnerable to disturbances. It is therefore introduced as an alternative solution for
the attitude determination problem.

The original EQUEST method builds upon the QUEST method which has been ex-
tended to include non-vectorized terms for gyroscope measurements and attitude predic-
tion in the method’s cost function. In these terms, subtractions between the estimated and
measured quaternions are used. The result is not entirely mathematically correct, even
though previous testing of the method has been successful. The subtractions in the in-
cluded terms will not result in new attitude error quaternions.

In this thesis, the method is further developed by replacing the subtraction terms with
quaternion products. The new method is tested and compared to the original EQUEST
method and an extended Kalman filter. It is also compared to the implemented nonlinear
observer. If the computational power of the NUTS satellite is sufficiently large, a combina-
tion of the developed EQUEST method and the nonlinear observer could be considered for
the estimation. A combination of these two attitude estimation methods is implemented
and the simulation results are analyzed.





Sammendrag

NTNU’s testsatellitt (NUTS) er en del av det nasjonale studentsatellittprogrammet ANSAT.
Prosjektets mål er design og oppskyting av en dobbel kubesatellitt innen utgangen av 2014.
I løpet av tidligere satellittprosjekter ved NTNU har mye arbeid blitt gjort innen utforming
av attitydebestemmelse og attityderegulering for en liten satellitt.

En av estimeringsmetodene som vurderes for attitydebestemmelsen, er en utvidet kvater-
nionestimator, kalt EQUEST. Utvikling og testing av metoden er beskrevet i denne mas-
teroppgaven. I tillegg til den nye EQUEST-metoden, har en ulineær observer blitt imple-
mentert og testet. Simuleringsresultatene for de to metodene er sammenlignet for å finne
den metoden som egner seg best for NUTS-satellitten.

Den nye EQUEST-metoden har flere fordeler sammenlignet med det mer vanlige Kalman-
filteret for bruk i en liten kubesatellitt. Den krever færre regneoperasjoner, og har en
kortere oppstarts- og innsvingningstid. Magnetiske spoler som vil påvirke det lokale mag-
netiske feltet, er brukt i attitydereguleringssystemet til satellitten. Dette gjør det ønskelig
med en rask algoritme, siden attitydebestemmelsen og attitydereguleringen ikke bør ut-
føres samtidig. Den ulineære observeren er tregere enn EQUEST-metoden, men den kan
garantere global eksponentiell stabilitet, og den er mindre følsom for forstyrrelser. Den er
derfor introdusert som en alternativ løsning for attitydeproblemet.

Den originale EQUEST-metoden bygger på QUEST-metoden, som har blitt utvidet til
å inkludere ikke-vektoriserte ledd for gyroskopmålinger og attitydeprediksjon i metodens
kostfunksjon. I disse leddene er subtraksjoner mellom de estimerte og målte kvaternionene
brukt. Resultatet blir en metode som ikke er helt matematisk korrekt, selv om tidligere
testing har vist gode resultater. Subtraksjonene i de inkluderte leddene, resulterer ikke i
nye attitydefeil-kvaternioner.

I denne masteroppgaven er metoden utviklet videre ved å bytte ut subtraksjonsleddene
med kvaternionemultiplikasjoner. Den nye metoden er testet og sammenlignet med den
originale EQUEST-metoden og et utvidet Kalmanfilter. Den er også sammenlignet med
den implementerte ulineære observeren. Hvis regnekraften til NUTS-satellitten er stor
nok, kan en kombinasjon av den utviklede EQUEST-metoden og den ulineære observeren
bli vurdert for estimeringen. En kombinasjon av disse to attitydeestimerings-metodene er
implementert, og den nye metodens egenskaper er analysert.
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Chapter 1
Introduction

This master thesis describes the design, analysis and development of two estimation meth-
ods for an attitude determination system used in a small CubeSat. One of the presented
methods is a modification of the extended quaternion estimator (EQUEST), which builds
on the quaternion estimator (QUEST). The other investigated method is a nonlinear ob-
server, with stability properties based on Lyapunov analysis. The estimation methods are
simulated in Matlab, and the test results are compared. The work has been part of the
NTNU satellite project during the spring of 2012.

1.1 Motivation

An attitude determination and control system (ADCS) is important for orientation control
of a satellite. Without reliable attitude estimates, mission objectives may be severely com-
promised. Estimation methods are needed to determine the current attitude. An extended
quaternion estimation (EQUEST) method and a nonlinear observer have been developed
and implemented for comparison of the test results. Due to limited space, weight and
power, estimation methods used for larger satellites are less suited for implementation in
CubeSats.

1.2 The NTNU Test Satellite project

The final estimation method is intended for use in the ADCS of a CubeSat. The satellite
project at the Norwegian University of Science and Technology (NTNU) is part of the
Norwegian Student Satellite Program run by the Norwegian Centre for Space-related Ed-
ucation (NAROM). The goal of the program is to build and launch three student satellites
by the end of 2014. Students from NTNU, the University of Oslo and Narvik University
College are each building a CubeSat. The NTNU Test Satellite (NUTS) is the last of the
satellites to be launched, late in 2014.

The first students started working on the NUTS project in the spring semester of 2011,
and 9 students from 5 different departments at NTNU have been involved in the project
during the spring of 2012. Weekly meetings have enabled the group to share information
and discuss the progress of the project. The team work required in the project has been
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2 CHAPTER 1. INTRODUCTION

both interdisciplinary and international. In addition to weekly meetings, an effort to recruit
new students to the project led to student involvement in design and production of stand
material, PR work and the development of a new web site: www.nuts.cubesat.no. Each
semester, the project and master work has been presented for other students, teachers and
sponsors. In February, the annual European CubeSat Symposium were held in Brussels,
and 5 students went to the conference to hold presentations and get feedback from space
communities around the world. The submitted abstract and presentation can be found in
appendix B.

The CubeSat dimensions are 10 × 10 × 20 cm, and the weight is limited to 2.6 kg.
The CubeSat will have a polar orbit with an inclination close to 90◦. The payload will be
a small IR camera which will take pictures of the atmospheric gravity waves, in addition
to a wireless internal databus.

1.3 Previous work

Two CubeSat projects at NTNU were launched unsuccessfully before the current NUTS
project was initiated, and a lot of work has been done on the attitude estimation prob-
lem during these previous projects. Work on a discrete Kalman filter has been done by
Svartveit [1] and Ose [2], and an extended Kalman filter was described by Rhode in 2007
[3]. In 2011, the difficulties related to these estimation methods led Jenssen and Yabar [4]
to compare a new estimation method to the extended Kalman filter, described by Sabatini
[5]. They extended the quaternion estimation (QUEST) method, based on work from Psi-
aki [6] and Markley [7], to include non-vectorized gyroscope measurements and prediction
terms. The extension has been further developed with the introduction of quaternion prod-
ucts in the method’s cost function. Analysis of the method and convergence properties is
presented in this thesis.

Work on a nonlinear observer was first introduced in 2008 by Mahony et al. [41]. The
method provides both attitude and gyro bias estimates. For stationary reference vector
measurements or for unbiased gyro, this observer is globally exponentially stable. Further
development has been done by Grip et al. [42]. By adding a parameter projection and
a vector bias estimation, the result is a globally exponentially stable nonlinear observer
for time-varying reference vectors. Such an observer is implemented and compared to the
developed EQUEST method.

1.4 Main contribution

The work presented in this thesis, can be divided into two main parts. The first part is con-
cerned with the further development of an extended quaternion estimator (EQUEST) [4],
based on the quaternion estimator (QUEST), first introduced by Shuster and Oh in 1981
[34]. The EQUEST method was extended to include attitude predictions and gyroscope
information in the cost function. The work done in this thesis is based on that extension.
The included terms consist of quaternion subtractions, but in order to get a mathematically
correct model, these subtractions must be replaced by multiplications. The cost function
for the model has been modified, and the new method has been tested and compared to the
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old original EQUEST method. The convergence properties of this new method has also
been analyzed, and a proof for the result is presented.

The second part of the thesis includes a comparison of the new developed EQUEST
method to another relatively new estimation method, a nonlinear observer, which was first
introduced by Mahony et al. in 2008 [41]. This nonlinear observer has global exponential
stability properties, and is therefore highly suitable for attitude estimation. Both methods
are implemented and simulated for several test cases. The results are useful for determin-
ing which estimation method to use for the NTNU Test Satellite project. A final method,
combining the developed EQUEST method and the nonlinear observer, has been imple-
mented and tested.

1.5 Outline of thesis

Chapter 1: An introduction on the motivation for the thesis and the background work is
given.

Chapter 2: Several aspects of attitude determination are introduced. The coordinate
frames used for the estimation methods are described, and attitude representations in-
cluding quaternion theory are presented. Understanding the behavior of quaternions is
important when working with the estimation methods described in this thesis, particularly
for the development of the extended quaternion estimator (EQUEST). Some background
material for stability analysis is covered in this chapter.

Chapter 3: The chapter gives a presentation of the sensors used to obtain attitude in-
formation for the satellite. The magnetometer, gyroscope and sun sensor are described.
When the satellite is in orbit, varying reference vector models must be used. Such models
for the magnetometer and the sun sensor are presented.

Chapter 4: The design of the estimation methods considered for the NUTS CubeSat are
described. Their convergence properties are investigated, along with comments on nor-
malization and singularity problems for the quaternions and Euler angles.

Chapter 5: Parameters and models used for the Matlab implementation for the estima-
tion methods are presented.

Chapter 6: Included test results from the implemented Matlab code presented in sec-
tion 5 are shown, in addition to detailed descriptions of the test cases and the test results.

Chapter 7: The chapter contains a discussion and an evaluation of the work presented
in this thesis.

Chapter 8: Concluding remarks are given.

Chapter 9: Future work on the attitude determination and control system for the NUTS
CubeSat is described.
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Chapter 2
Preliminaries

This chapter introduces several concepts regarding attitude determination. Frames and
notations used for the estimation methods are presented. To fully understand the theory
behind the estimation methods, quaternion theory and relevant quaternion properties are
needed. Background information on some stability concepts used in this thesis is de-
scribed.

2.1 Coordinate frames

For the attitude determination, the measurement vectors and the corresponding reference
vectors used in the estimation methods are represented in different coordinate frames. A
frame is a system which determines a point on a manifold using coordinates [8]. Defini-
tions of the coordinate systems used in the attitude determination and control system for
the NUTS satellite are described in the following pages. This theory can be found in many
books, but most of the material has been obtained from Fossen [9].

2.1.1 ECI frame
The Earth Centered Inertial frame has its x-axis pointing towards the vernal equinox, and
its z-axis pointing along the rotation axis of the Earth at some initial time. The y-axis
completes a right handed orthogonal coordinate system. The frame’s origin is at the center
of the Earth.

2.1.2 ECEF frame
This frame also has its origin at the center of the Earth, but the Earth Centered Earth
Fixed frame has its x-axis pointing towards the point where the intersection between the
longitude and latitude have zero value. It can also be described as the intersection between
the Greenwich meridian and the Equator. The frame’s z-axis is pointing along the Earth’s
rotation axis. The y-axis completes the right handed orthogonal system. The ECEF frame
is not an inertial frame, it rotates relative to the ECI frame along the Earth rotation.

5
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2.1.3 NED frame
The North East Down frame has its z-axis pointing downwards, perpendicular to the tan-
gent plane of the Earth’s reference ellipsoid. The ellipsoid is mathematically defined and
fitted for approximation of the Earth. The x-axis points towards true north and the y-axis
points East. The NED frame is an inertial frame.

2.1.4 BODY frame
This frame is attached to the satellite, and is moving and rotating with it. The origin
coincides with the origin of the NED frame. The axes coincide with the principle axes
of inertia; the x-axis is pointing forwards, the y-axis is pointing to the right side and the
z-axis is pointing downwards through the camera side of the satellite.
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2.2 Attitude representations

Several representations for describing attitude are available, the most common being Euler
angles. More complicated attitude representations are quaternions. Quaternions are used
for all the estimation methods presented in this thesis. They are singular-free, and are
therefore well suited for attitude determination.

2.2.1 Euler angles
Euler angles were first described by Leonhard Euler in 1776, and are used to represent the
orientation of a body [10]. Three parameters are required for a full understanding of the
orientation between two frames, one angle for the rotation around each of the axes. The
angles are called roll, pitch and yaw and are usually written as φ, θ and ψ. The Euler
angles are often used for the definition of rotation matrices about the x, y and z-axis. In
R3, the coordinate system rotations in a counter-clockwise direction looking towards the
origin are given from:

Rx(φ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 (2.1)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 (2.2)

Rz(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2.3)

2.2.2 Quaternions
Quaternions were first described by Sir William Rowan Hamilton in 1843 [11]. His inten-
sion was to find an extension of vector algebra, and in 1845 Arthur Cayley published an
article where he used multiplication of quaternions to describe rotations [12]. Three of the
four elements of a quaternion give the coordinates for the axis of rotation, while the fourth
is described by the angle of rotation [13].

A quaternion can be written as a four-dimensional vector:

q :=


q0
q1
q2
q3

 (2.4)

The real part of the quaternion behaves like a scalar in the three-dimensional vector space.
Using a rotation angle ν, the real part can be written as:

q0 = cos(ν/2) (2.5)
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The imaginary part uses a unit vector given from n = n
‖n‖ where the norm of the vector,

‖n‖, is defined as the square root of each of the squared elements of n added together.
Throughout the thesis, vectors and matrices will be written in bold print.
The imaginary part can be written as a vector:

qvec :=

q1q2
q3

 =
[
n sin(ν/2)

]
(2.6)

There are several ways to write quaternions. Sometimes it is convenient to think of a
quaternion as the sum of a scalar and a vector written as:

q := q0 + qvec = q0 + q1i+ q2j + q3k (2.7)

Complex numbers can be represented as matrices, and so can quaternions. A quaternion
describes a point in 4D space, and can be represented by a 4 × 4 matrix by using a left-
isoclinic rotation as proved in [14], and used in [16] and [17]:

Q =


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

 (2.8)

The transpose of the matrix is the same as the conjugate of the quaternion:

q∗ := q0 − qvec = q0 − q1i− q2j − q3k (2.9)

Two quaternions are conjugate if they are orthogonal with respect to their inner product.
[15]. The inverse of a quaternion q is defined as q−1 = 1

q . In this report, the mathematics
are based on unit quaternions, which satisfies the constraint:

q>q = 1 (2.10)

The length of a unit quaternion is 1, which leads its inverse to be its conjugate.
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2.3 Quaternion properties

2.3.1 Advantages of quaternions
The unit quaternion notation is compact, and round off errors are easier to handle than for
matrix representation. The nearest orthonormal matrix to one that is not quite orthonormal,
is difficult to find. Multiplying unit quaternions may similarly lead to quaternions that are
no longer of unit length, but these can easily be normalized to make sure they correspond
to valid rotations. The computational cost of normalizing a quaternion is much less than
for normalizing a matrix.

Quaternions are safe from a phenomenon called gimbal lock. When the pitch angle
in a pitch/roll/yaw-system is rotated 90◦ up or down, and the yaw and roll correspond to
the same motion, a degree of freedom of rotation can be lost. In a gimbal-based aerospace
inertial navigation system, this could have disastrous results if the aircraft is in a steep
dive or ascent [16]. The quaternion elements vary continuously over the unit sphere in R4,
(denoted by S3) as the orientation changes, avoiding this problem.

Due to the possible spin in the CubeSat, combined with the singularity problem for
Euler angles, an attitude estimation method based on unit quaternions is preferred [4].
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2.3.2 Multiplication of quaternions
In the developed EQUEST method, quaternion multiplications are used instead of quater-
nion subtractions. The result is a mathematically correct attitude quaternion. The quater-
nion product is more complicated than a vector or matrix product. In order to do the
multiplication, the following rules for the imaginary operators are required [11]:

i2 = j2 = k2 = −1 (2.11)

ij = k (2.12)

ji = −k (2.13)

jk = i (2.14)

kj = −i (2.15)

ki = j (2.16)

ik = −j (2.17)

The multiplication of two quaternions is not commutative, and can be shown to consist of
the cross product between the vector parts of the quaternions, and the dot product of the
two quaternions [17].

The two quaternions used in the multiplication are defined as q := q0 + q1i+ q2j + q3k︸ ︷︷ ︸
qvec

and r := r0 + r1i+ r2j + r3k︸ ︷︷ ︸
rvec

.

The quaternion product is defined as:

q× r = qvec × rvec − q · r (2.18)

Written in matrix form, the multiplication of the two quaternions is given from [7] and
[18]:

q⊗ r =

[
q0r0 − qvec · r

q0rvec + r0q + q× r

]
=


q0r0 − q1r1 − q2r2 − q3r3
q0r1 + q1r0 + q2r3 − q3r2
q0r2 + q2r0 + q3r1 − q1r3
q0r3 + q3r0 + q1r2 − q2r1

 (2.19)
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2.3.3 Quaternions and rotations
Since quaternion multiplication is non-commutative, it is closely related to three-dimensional
rotations. The multiplication of two quaternions can be substituted by rotation matrix mul-
tiplication for less computing [16]. A unit quaternion is defined as described in equations
(2.5) and (2.6), and can be written as:

q(ν,n) = cos(ν/2) + n sin(ν/2) = e(n(ν/2)) (2.20)

where e is the exponential function defined as the solution of the integral
∫ x
1
dt
t . This gives

a correspondence between unit quaternions and proper orthogonal matrices as representa-
tions of rotations:

q(ν,n)↔ R(ν,n) (2.21)

Rotation matrices using Euler angles are defined in equations (2.1),(2.1) and (2.1). Using
a rotation angle ν, a general rotation matrix can be written as:

R(ν,n) = eνS(n) := I3×3 + (sin ν)S(n) + (1− cos ν)(S(n))2 (2.22)

where I3×3 is the 3 × 3 identity matrix consisting only of zeros, with elements of value 1
on the diagonal. In this thesis, the matrix S will represent a skew symmetric matrix given
from:

S(n) :=

 0 −n3 n2
n3 0 −n1
−n2 n1 0

 (2.23)

where n is a unit vector defined as:

n :=

n1n2
n3

 (2.24)

A rotation matrix representing a rotation from frame b to n, can be expressed with unit
quaternions as [19]:

Rnb (q) = (q2
0 − ‖qvec‖

2
)I3×3 + 2qvecq

>
vec − 2q0S(qvec) = Ξ>(q)Ψ(q) (2.25)

where

Ξ(q) :=

[
q0I3×3 + S(qvec)]

−q>vec

]
(2.26)

Ψ(q) :=

[
q0I3×3 − S(qvec)]

−q>vec

]
(2.27)

The skew symmetric matrix S(qvec) is given in the same way as equation (2.23) as:

S(qvec) :=

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (2.28)

Using the the quaternion notation from equation (2.4) with q := q0 + qvec, where qvec :=
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[
q1 q2 q3

]>
, another way of writing the rotation matrix is:

Rbn(q) :=

q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 − q21 + q22 − q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q20 − q21 − q22 + q23

 (2.29)

This matrix is orthogonal, which means it is a square matrix with its transpose equal to
its inverse: RT = R−1. Note that this rotation matrix and the representation in equation
(2.30) are transposed compared to the rotation matrix in (2.25). The transpose of a matrix
is obtained by interchanging the elements of the rows and columns. This matrix represent
therefore a rotation from frame n to b.

A third way of writing the rotation matrix used in the implementation of the nonlinear
observer described in chapter (4.5) is [9]:

Rbn(q) := I3×3 + 2q0S(qvec) + 2S(qvec)
2 (2.30)

Note that the last rotation matrix notation in (2.29), along with the representation in equa-
tion (2.30) is the inverse of the rotation matrix in (2.25).

A quaternion can be found from the diagonal elements of a rotation matrix, by the fol-
lowing formulas [20]:

q0 =

√
1

4
(1 + R11 + R22 + R33) (2.31)

q1 =

√
1

4
(1 + R11 − R22 − R33) (2.32)

q2 =

√
1

4
(1− R11 + R22 − R33) (2.33)

q3 =

√
1

4
(1− R11 − R22 + R33) (2.34)

From the off-diagonal elements, the following formulas are obtained:

q0q1 =
1

4
(R32 − R23) (2.35)

q0q2 =
1

4
(R13 − R31) (2.36)

q0q3 =
1

4
(R21 − R12) (2.37)

q1q2 =
1

4
(R12 − R21) (2.38)

q1q3 =
1

4
(R13 − R31) (2.39)



2.3. QUATERNION PROPERTIES 13

q2q3 =
1

4
(R23 − R32) (2.40)

Since the quaternions q and −q are the same, either sign of the square root can be com-
puted. After solving for one qk for k ∈ 0, 1, 2, 3 in equations (2.31)-(2.34), the three
equations which contain qk on the left hand side in equations (2.35)-(2.40) can be solved
for the remaining elements of q.
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2.4 Wahba’s problem

The developed extended QUEST method described in this report builds upon the principles
of Wahba’s problem. The problem was first stated by Grace Wahba in 1965 [21]. Given
two sets of vector observations, a rotation matrix M can be found which minimizes the
orientation error. This is an optimization problem, where the cost function is:

n∑
j

‖rj −Mbj‖ (2.41)

For satellite attitude determination, the vectors rj for j ∈ {1, n} are the reference sensor
data given in the NED frame. The vectors bj for j ∈ {1, n} are the measured sensor data
in the BODY frame. M is the least squares estimate of the rotation matrix which carries
the known frame of reference into the satellite fixed frame of reference.

The QUEST method uses this problem in order to minimize the attitude estimation
error, as described in section 4.1.
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2.5 Cholesky factorization

In order to find the eigenvalues of the matrices in the EQUEST method, Matlab uses
Cholesky factorization. For a matrix A ∈ Rn×n which is symmetric positive definite, a
specialized factorization method called Cholesky factorization is possible. For a unique
lower triangular matrix L ∈ Rn×n with elements only in the lower left triangle, the
Cholesky factor is produced as [22]:

A := LL> (2.42)

The cost of this factorization is n3

3 + O(n2) flops and n square roots, where a flop rep-
resents any of the four elementary operations +,−, ∗, /. The symmetry properties ensure
that updating of the elements are only needed on and below the diagonal.

The algorithm is specified according to [23] as

for i = 1:n
Lii←

√
Aii

for j = i+1:n
Lji← Aji/Lii
for k = i+1:j

Ajk ← Ajk − LjiLki
end

end
end

Since the matrix A is positive definite, the argument of the square root will always be
positive, and the matrix L has real and positive elements on the diagonal [24].

The Cholesky factorization is a numerically stable factorization algorithm [22]. Using
the inequality l2ij ≤

∑i
k=1 l

2
ik = aii, the entries of L are bounded [25]. Written in a

different way, using norm notation, the Cholesky factor can never grow too large [24].

‖L‖ =
√
‖A‖ (2.43)
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2.6 Lyapunov analysis

The second estimation method described in this thesis is a nonlinear observer, which can
be proven to be exponentially asymptotically stable. The proof of the stability properties
makes use of Lyapunov analysis. This section describes the general theory of the Lyapunov
stability concept.

The idea is that if all solutions that start near an equilibrium point stay close to this
equilibrium point in the future, the equilibrium point is Lyapunov stable. If all the solutions
that start near the equilibrium point, also converge to the equilibrium point, asymptotical
stability is proved. If this convergence is faster than the rate α ‖xe(0)− xe‖ e−βt, the
equilibrium point is exponentially asymptotically stable. The equilibrium point is denoted
by xe an the initial solution is xe(0). Time is denoted by t, and α and β are constants.

The most common method for proving Lyapunov stability makes use of a Lyapunov
function [26]. Such a function is given from V (x) : Rn → R such that V (x) ≥ 0 and
V̇ (x) ≤ 0. Both equations have equality only if x = 0. It is required that V (0) = 0.
A Lyapunov function candidate might not satisfy the conditions needed to prove stability.
This does not mean that the equilibrium point is instable, it just means that other Lyapunov
functions might be tried, or that other methods for proving instability can be used.



Chapter 3
Sensors

Sensors are used to measure the vector components in the BODY and NED frames. An
attitude determination system requires at least two vectors in order to estimate the attitude.
Three types of sensors are used in the attitude determination and control system for the
NUTS CubeSat. A magnetometer will be used, in addition to a sun sensor and a gyroscope.
Sensor information is combined in the attitude determination system to provide the best
possible estimates at all times. There are two classes of sensors commonly used in attitude
determination systems; inertial sensors and reference sensors.

Inertial sensors are sensors that measure rotation or translational acceleration relative
to an inertial frame. The sensors experience random drift and bias errors, and as a result,
the errors are not bounded. Regular updates based on references such as the Sun, stars, or
the Earth can be used in order to correct the errors. The gyroscope is an example of an
inertial sensor.

Reference sensors typically provides noisy vector observations at a low frequency. A
reference sensor measures the direction of a known vector. The vector measurement is
a function of spacecraft attitude, but one sample from a reference sensor does not pro-
vide full attitude information. Therefor, two vector directions are needed for a complete
estimation. Both the sun sensor and the magnetometer are reference sensors.

3.1 Magnetometer

A magnetometer measures the local magnetic field of the satellite. Magnetometers are
inexpensive, reliable and light-weight which make them suitable for small satellites. The
difference between computed and measured magnetic field components is a function of
the spacecraft attitude, which means that the attitude vector can be estimated. The satellite
must know the real magnetic field for every position in its orbit. The attitude is determined
from a magnetometer by comparing the measured geomagnetic field with a reference field
determined by a reference model [27]. Several models of the Earth’s magnetic field ex-
ists, and a balance between a simple and accurate model is required for the estimation
of attitude. The field model most often used is the International Geomagnetic Reference
Field (IGRF) which is described in chapter (3.4.1) [28]. The Earth’s magnetic field will
influence the accuracy of the magnetometer. An altitude of 200 km will typically give an

17



18 CHAPTER 3. SENSORS

accuracy of 1◦, but the accuracy will improve for higher altitudes [29].

3.2 Gyroscope

Gyroscopes measure the angular velocity. Theoretically a gyroscope can track the ori-
entation of the satellite by integrating the change in velocity. In order to provide good
estimation the initial orientation must be correct and the measurement errors should be
small. All gyroscopes have some measurement error, called bias. Biases are usually con-
stant or slowly varying. Because of the bias, the orientation can not be tracked by only
using gyros. With time, the attitude estimation will drift. The drift rate vary according to
the choice of sensor, but will typically be less than 1 deg/s. [9]. An advantage is that many
gyroscopes are small and can provide quite good measurement data.

3.3 Sun sensor

Sun sensors are popular, accurate and reliable, but require clear fields of view. The main
idea is to measure the direction to the Sun. Small and cheap sun sensors can be bought and
placed on each side of the satellite in order to detect the Sun angle. For the NUTS CubeSat,
the solar cells might be used. Solar cells are not really sensors, but can be used to detect
the direction to the Sun by monitoring the output current. The output from a solar cell
depends on the angle between the solar panel and the sun rays. The sun sensors mounted
on the satellite will be sensitive to every light source in space. Because of light reflected
from the Earth, it is important to use an Earth albedo compensation when computing a sun
vector, or else a large angular deviation might occur [30]. A sun sensor reference model
is needed for the attitude determination, and such a model is presented in chapter (3.4.2)
[31]. The typical field of view for a sun sensor is±30◦, with an accuracy of approximately
0, 01◦ [29].

3.4 Time-varying reference vectors

Previous testing of the implemented estimation methods has focused on the static case with
the reference vectors as constant values. Since the CubeSat has been tested in Trondheim,
the magnetometer reference vector has been implemented as the magnetic field vector for
this site. The vector was found at the website for the National Geophysical Data Center
(http://www.ngdc.noaa.gov/), as: r2 =

[
13598.5 444.7 −49854.8

]>
. The sun sensor

reference vector has been implemented as: r1 =
[
0 0 9.81

]>
. The vector r1 represents

the sum of the mass attraction gravity term and the centripetal term resulting from the Earth
rotation along the z-axis [45]. This corresponds to an output from an accelerometer, which
can be used for testing the prototype as seen in [4]. It will eventually be replaced by a sun
sensor.

When the satellite is in orbit, the reference vectors will vary with the position of the
satellite relative to the Earth. A model of the Earth’s magnetic field and a sun sensor
reference model are needed to get time-varying reference vectors in the NED frame. These
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models are described below, and test results are presented in chapter 6.8. In addition to the
sun sensor reference model, an albedo compensation for light reflections from the Earth is
needed. Such a model is not investigated in this thesis.

3.4.1 Magnetic field model
The model for the Earth magnetic field is called the International Geomagnetic Reference
Field, and the parameters for the model is updated every five years by IAGA (the Interna-
tional Association of Geomagnetism and Aeronomy) [32]. The version used in this thesis
was updated in 2011, and is called IGRF11.

The magnetic field around the Earth cannot be modeled accurately, because of vari-
ations in the magnetic field. One of the most important variations consists of temporal
changes, due to periods of solar activity facing the Earth. Diurnal variations are caused
by particle movement in the ionosphere. In addition to these variations, magnetic storms
appear during solar flares, and will have an impact on the magnetic field. For the most part
such storms occur in the same periodic pattern as the temporal changes.

To describe the magnetic field, a harmonic model using the negative gradient of the
scalar potential function V can be implemented [27].

V (r, µc, l) = rE

k∑
n=1

(
rE
r

)n+1
n∑

m=0

(gmn cos(ml) + hmn sin(ml))Pmn (µc) (3.1)

The reference radius of the Earth is denoted by a with the value of rE = 6371200 m. The
geocentric coordinates are r, µc and l, where r is the radius in km, µc is the co-latitude
(given by 90◦ − µ, where µ is the latitude) and l is the longitude. The geocentric model
assumes that the Earth is the center of the universe, which can be useful when dealing with
space-related problems or navigation issues. The Gaussian coefficients gmn and hmn are
given from the IGRF11 model. The parameter Pmn (µc) is the Schmidt quasi-normalized
Legendre function. The function has order m and degree n. The calculation of Pmn (µc) is
described in appendix A.

The reference model consist of the following equations [27]:

Br =
−∂V
∂r

=

k∑
n=1

(
rE
r

)n+2(n+ 1)

n∑
m=0

(gmn cos(ml) + hmn sin(ml))Pmn (µc) (3.2)

Bµc
=
−1

r

∂V

∂r
= −

k∑
n=1

(
rE
r

)n+2
n∑

m=0

(gmn cos(ml) + hmn sin(ml))
∂Pmn (µc))

∂µc
(3.3)

Bl =
−1

r sinµc

∂V

∂r
=
−1

sinµc

k∑
n=1

(
rE
r

)n+2
n∑

m=0

m(−gmn cos(ml) + hmn sin(ml))Pmn (µc))

(3.4)
The parameters Br, Bµc

and Bl are the field strength in local tangential coordinates. The
output of the model is changed into geocentric inertial coordinates using the following
equations:

Bx = (Br cosµ+Bµc sinµ) cosαt −Bl sinαt (3.5)
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By = (Br cosµ+Bµc sinµ) sinαt +Bl cosαt (3.6)

Bz = (Br cosµ+Bµc
sinµ) (3.7)

where µ is the latitude and αt is the local sidereal time of the location of the satellite.
The magnetometer reference vector is therefore changed from the static vector into the
time-varying vector: r2 :=

[
Bx By Bz

]>
.

3.4.2 Sun reference model
The Sun’s position relative to the satellite’s orbital position is needed for utilization of the
Sun vector measurement. The reference model described is based on work by Svartveit
[1] and Sunde [31], and is simplified by assuming an Earth-based position (geocentric),
where the Sun revolves around the Earth.

The elevation of the Sun varies periodically through the year and is given by:

εsun =
2π

180
sin(

Tsun
365

2π) (3.8)

The parameter Tsun is the time in days since the Earth passed the vernal equinox. For
this thesis, the vernal equinox is defined as the spring equinox as seen from the Northern
Hemisphere.

The The azimuth angle between the satellite and the Sun is given from:

λsun =
Tsun
365

2π (3.9)

The time-varying sun sensor reference vector is:

r1 := Rθ(εsun)Rψ(λsun)r01 (3.10)

where r01 =
[
1 0 0

]>
and the rotation matrices are expressed using Euler angles from

equations (2.2) and (2.3) as:

Rθ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (3.11)

Rψ =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (3.12)

It should be noted that an albedo compensation model should be implemented to avoid
errors caused by reflections from the Earth [30]. Such a model is not implemented in the
test cases investigated in this thesis.



Chapter 4
Estimation methods

The attitude determination problem is unique, because it is both under- and overdeter-
mined. Two vectors are needed for determination of the attitude, but because of the unit
constraint, a unit vector will only contain to parameters. The requirement is therefore for
more than one, but less than two vector measurements [29]. Accurate determination is not
possible, but estimation methods must be utilized.

Numerous methods for attitude determination are based on minimizing the Wahba loss
function described in section 2.4. These point estimation methods will fail when only one
vector measurement is available, or when the observations are parallel [33].

As these solutions are relatively simple and as most spacecraft have at least two ref-
erence vector measurements available, such single frame solutions are widely used. They
are, however, not easily adapted to handle faults or periods of poor observability.

The estimation methods considered for the NUTS CubeSat must be fast and have a lim-
ited number of operations. The sensors used in the satellite will have measurement noise
for high frequencies, which means that the chosen estimation method should be robust and
not too sensitive to disturbances. For these reasons, a new extended quaternion estimator
(EQUEST) has been developed and compared to a nonlinear observer. The observer has a
slower response, but is at the same time more robust than the developed EQUEST method.

This chapter describes the background theory for the following estimation methods:

• QUEST

• original EQUEST

• developed EQUEST

• Nonlinear observer

Potential problems with maintaining unit quaternions and converting quaternions into Eu-
ler angles are also discussed.

21
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4.1 Quaternion estimation (QUEST)

The quaternion estimation (QUEST) method first introduced by Shuster and Oh [34] is a
fast and popular estimation method. The QUEST method builds on the q-method devel-
oped by P. Davenport in 1968, cited in [35] and [36]. The main reason for developing the
quaternion estimator, is to obtain a faster way of finding the optimal eigenvalue for the
cost function. The method reformulates an eigenvalue problem to a problem of solving a
characteristic equation. An algorithm is used to find the optimal rotation, which integrate
all the different sensor measurements for the attitude [6]. Finding the optimal rotation ma-
trix between two known vectors, can be written as an optimization problem as described
in section 2.4. The idea is to minimize the cost function, which is defined as:

J(q) =
1

2

n∑
j=1

1

σ2
j

(bj − Rib(q)rj)>(bj − Rib(q)rj) =

1

2

n∑
j=1

1

σ2
j

(b>j bj − 2b>j Rib(q)rj + r>j rj) (4.1)

In this equation, rj and bj are known sensor data vectors, and these vectors must be of
equal length for the algorithm to work well. The vector, rj is given in the NED frame,
while bj is given in the fixed BODY frame. The parameter σj is the standard deviation of
the measurement error. Because of the unit length requirement, the cost function can be
reduced to:

J(q) =

n∑
j=1

1

σ2
j

(1− b>j Rib(q)rj) (4.2)

One of the advantages with the QUEST method is that it does not depend on initial condi-
tions, and the exact solution can be found after just one time-step. The method explicitly
preserves the quaternion normalization.

One disadvantage is that the method can only estimate the attitude quaternions, which
leave the sensor biases unknown. Because point estimation methods, like QUEST only
utilize the vector measurements obtained for a single time-step to determine the attitude,
information contained in past measurements is lost. This leads to a high sensitivity to
noise. The QUEST method requires vectorized direction input vectors. Measurements
from a gyroscope will be useless because this is non-vectorized data. This limits the range
of application of the method.
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4.2 Extended Quaternion estimation (EQUEST)

The QUEST method can only deal with very simple dynamic models, and cannot estimate
anything apart from the attitude quaternion. An extension of the method, has been made
by Psiaki [6], in order to include a priori information and effects of other state vector
measurements. The improvements in performance led Jenssen and Yabar [4] to develop
an extended quaternion estimator (EQUEST) method based on the results of Psiaki.

For the extension of the QUEST method, the cost function is modified to include terms
with gyroscope measurements and attitude prediction. Two new quaternions are included
in the equation. A linear prediction term, q̂pre is based on previous samples. The other
extension denoted by q̂gyro is the next quaternion estimated by tracking the gyroscope.
The original cost function described by equation (4.1) is extended to:

J(q) =
1

2

n∑
j=1

{
1

σ2
j

(bj − Rib(q)rj)>(bj − Rib(q)rj)

}
+

1

2
(q− q̂gyro)

>D(q− q̂gyro) +
1

2
(q− q̂pre)

>S(q− q̂pre) (4.3)

Two new symmetric weight matrices, D and S are introduced. The added terms penalizes
deviations both from the predicted attitude, and the rotation matrix estimated by the gy-
roscope measurements. It is possible to predict the orientation based on previous attitude
calculations, as long as the change in attitude is slow. The change will be minimal for a
short period of time. In this period, several attitude calculations are made, and a linear
relation can be established between the change in attitude and time [4].

The extension of the QUEST method does not solve the problem of estimating the
biases, but this could be solved by other techniques before subtracting the results from the
measurements in the cost function. This will, however, be computationally expensive.

The method is developed and implemented for the use of an accelerometer, a gyroscope
and a magnetometer, but the accelerometer will eventually be replaced by a sun sensor
measuring the direction towards the sun. This replacement will only influence the input of
the method, and the reference vector. Both are easily manipulated.

Jenssen and Yabar [4] used subtractions in the two added terms, which makes it easy
to minimize the cost function because the minimum value will be zero. However, the
subtraction of two quaternions does not result in a new attitude quaternion. To achieve
this, the quaternion subtraction terms must be replaced with quaternion products. The
mathematics for the replacement is presented below, and test results for the implemented
method are presented in chapter 6.1. Throughout the rest of this thesis, the new EQUEST
method with quaternion products instead of quaternion subtractions will be referred to
as the developed EQUEST method. The method with subtraction terms, developed by
Jenssen and Yabar, will be referred to as the original EQUEST method.

The quaternion representation leads to a useful formula for finding the shortest rotation
from one orientation to another, as seen in [18] and [37] . By letting the error quaternions
be egyro = q̂∗gyro⊗q and epre = q̂∗pre⊗q, the conjugated quaternions q̂∗gyro and q̂∗pre will
rotate into q by the shortest rotations. Intuitively, it is possible to think about multiplication
of one quaternion by the conjugate of the other as a "subtraction", though remembering
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that it is not commutative [38]. The quaternion product replacement, transforms the cost
function of the extended QUEST method into:

J(q) =
1

2

n∑
j=1

{
1

σ2
j

(bj − Rib(q)rj)>(bj − Rib(q)rj)

}
+

1

2
(q̂∗gyro ⊗ q)>D(q̂∗gyro ⊗ q) +

1

2
(q̂∗pre ⊗ q)>S(q̂∗pre ⊗ q) (4.4)

The quaternions and matrices in this new optimization problem are the same as before,
given by the original EQUEST cost function in equation (4.3). As seen from equation
(2.8), the conjugated quaternions in the product terms of equation (4.4), can be replaced
by matrix representations:

J(q) =
1

2

n∑
j=1

{
1

σ2
j

(bj − Rib(q)rj)>(bj − Rib(q)rj)

}
+

1

2
(Q̂
∗
gyroq)>D(Q̂

∗
gyroq) +

1

2
(Q̂
∗
preq)>S(Q̂

∗
preq) (4.5)

The order of the factors is reversed when transposed. This can be used for the attitude
quaternion matrices, and the corresponding predicted quaternions. This general property
can be written as:

(Q̂
∗
q)> = q>Q̂

∗>
(4.6)

Using this for the two last terms, the cost function is rearranged into:

J(q) =
1

2

n∑
j=1

{
1

σ2
j

(bj − Rib(q)rj)>(bj − Rib(q)rj)

}
+

1

2
q>(Q̂

∗>
gyroDQ̂

∗
gyro)q +

1

2
q>(Q̂

∗>
preSQ̂

∗
pre)q (4.7)

The three matrices in each of the two last terms can be multiplied together using matrix
multiplication:

J(q) =
1

2

n∑
j=1

{
1

σ2
j

(bj − Rib(q)rj)>(bj − Rib(q)rj)

}
+

1

2
q>Ndq +

1

2
q>Nsq (4.8)

Nd = Q̂
∗>
gyroDQ̂

∗
gyro and Ns = Q̂

∗>
preSQ̂

∗
pre

The minimization of the cost function can now be found, by utilizing the fact that the
multiplication of two unit quaternions preserves their dot product. When the two quater-
nions in the error quaternion point in the same direction, the cost function is minimized.
The dot product ensures maximal directional matching [38]. Minimization of the whole
cost function is described in section (4.3).
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4.3 Optimization of the cost function

Jenssen and Yabar [4] used Lagrange multipliers to solve the minimization problem for
the original EQUEST method. This can also be used for the developed EQUEST method
with the cost function given from equation (4.8).

The Lagrange method requires an equation on the form:

L(x) =
1

2
x>Gx + x>c (4.9)

The first part of the developed EQUEST method cost function is identical to the QUEST
method cost function in (4.1). It can be written on the quadratic form [7]:

g(q) = −q>Vq (4.10)

V is a symmetric matrix written as [4]:

V :=

[
U− ϕI3×3 Z

Z> ϕ

]
(4.11)

The matrix elements are:
U := Ls + L>s (4.12)

Ls :=

n∑
j=1

1

σ2
j

(bjr>j ) (4.13)

Z :=

Ls,23 − Ls,32Ls,31 − Ls,13
Ls,12 − Ls,21

 (4.14)

ϕ := Trace(Ls) (4.15)

where the trace of the matrix sums the elements on the main diagonal. Using the entire cost
function in equation (4.8), the two last terms must be included. This leads the Lagrange
equation withouth constraints to be:

L(q) =
1

2
q>(Nd + Ns − V)q (4.16)

The matrices Nd and Ns are symmetric because they can be written in the general form:

N = Q̂
∗>

HQ̂
∗

(4.17)

where Q̂
∗

is a symmetric quaternion matrix given from equation (2.8), and H represents
a symmetric weight matrix. The weight matrices are given from equation (4.8), as D and
S. From this result, it can be found that the matrix G in the quadratic equation (4.9) is real
and symmetric:

G = Nd + Ns − V (4.18)
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As each of the quaternions described throughout this thesis are unit quaternions, the con-
straint for the resulting cost function is still:

q>q = 1 (4.19)

The entire resulting Lagrange equation is:

L(q) =
1

2
q>Gq− λ

2
(q>q− 1) (4.20)

Setting the derivative of this equation to zero, gives the eigenvalue problem for the func-
tion:

dL
dq

(q) = Gq− λIq = 0 (4.21)

This leads to the standard eigenvalue equation:

Gq = λIq (4.22)

The equation can be solved by using eigenvector mathematics [17]. The optimal unit
quaternion which minimizes the function in (4.20), is the eigenvector corresponding to the
most positive eigenvalue of the matrix G, as seen in [4], [17] and [38]. This eigenvector
will maximize the directional match between the quaternions.

The product of two unit quaternions is still a unit quaternion, which means that the
quadratic term 1

2q>Gq will be smaller than the highest eigenvalue of G [39].
The attitude quaternions which produce stationary values of equation (4.20) are the

eigenvectors of G. Substitution of equation (4.22) into equation (4.16), results in:

L(q) =
1

2
q>Gq =

1

2
q> ·

[
λ q

]
= λ (4.23)

Since the quaternions consist of four elements, q0, q1, q2 and q3, the stationary values in
decreasing order will be:

L(q0) = λ0

L(q1) = λ1

L(q2) = λ2

L(q3) = λ3 (4.24)

Another way of describing the solution of the minimization problem, is to see it as a se-
quential solution method for the cost function in (4.8). At each iteration all the quaternions
are fixed, except one. This quaternion is determined in order to minimize the equation. The
cost function is upper bounded by the sum of the largest eigenvalues of the fixed matrix
G, which ensures convergence towards a local minimum [40].
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The matrix G is a 4 × 4 symmetric matrix, and will sometimes be full, which makes
solving the eigenvalue problem computationally expensive. Since the matrix is symmetric,
it can be decomposed to:

G = C


−λ0 0 0 0

0 −λ1 0 0
0 0 −λ2 0
0 0 0 −λ3

C> (4.25)

where C is an orthogonal eigenvector matrix. The elements on the diagonal are the eigen-
values of G, and they will have corresponding eigenvectors e0, e1, e2 and e3. The eigen-
vectors span the four-dimensional space, and an arbitrary quaternion can be written as:

q := a0e0 + a1e1 + a2e2 + a3e3 (4.26)

Together with the constraint in (4.19), the following equation is obtained:

q>q = a20 + a21 + a22 + a23 = 1 (4.27)

This results in:
1

2
q>Gq =

1

2
(a20λ0 + a21λ1 + a22λ2 + a23λ3) (4.28)

Note that the eigenvalues are arranged in the same way as for equation (4.24):

λ0 ≥ λ1 ≥ λ2 ≥ λ3 (4.29)

It can be shown that
(λ0 + λ1 + λ2 + λ3)

‖(λ0 + λ1 + λ2 + λ3)‖
= 1 (4.30)

The optimal value is obtained, by choosing a0 = 1, and the rest zero. This corresponds to
choosing q = e0.

The computations for finding the right eigenvector can be simplified by using singular
value decomposition, as seen in [38], or using the matrix of cofactors, as seen in [17]. In
the implementation of the developed EQUEST method, Cholesky factorization is used as
this is the standard eigenvalue solver used in Matlab. This method is proved to be stable
according to section 2.5.

The matrix G has been shown in equation (4.18) to be a symmetric matrix, and the
identity matrix I is of course both symmetric and positive definite. Solving the optimiza-
tion problem is achieved by finding the largest eigenvalue and the corresponding eigen-
vector of G for each iterate of the algorithm. It should be noted that the G matrix, needs
only to be symmetric, not positive definite when using the algorithm.

In order to understand how the eigenvalues and eigenvectors are computed, the al-
gorithm for the Cholesky factorization for the minimization problem is described by the
following equations. The eigenvalue problem is repeated again, since it is the starting point
of the factorization:

Gq = λIq (4.31)
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The problem can be solved by using a factorization of the symmetric and positive definite
identity matrix I:

I = LL> (4.32)

where L is a lower triangular matrix, as described in chapter 2.5. The eigenvectors of the
equation are those of

Hce = λe (4.33)

where
Hc = L−1GL> (4.34)

and
e = L>q (4.35)

The eigenvectors of the original problem in (4.31), can then be retrieved by using

q = L−>e (4.36)

Since Cholesky factorization is used, the computations of eigenvalues and eigenvectors
are efficient and stable. The requirement that L from equation (4.32) should have positive
diagonal entries, can be extended to include positive semi-definite matrices. The factor-
ization will then not be unique in general.



4.4. DEVELOPED EQUEST CONVERGENCE PROPERTIES 29

4.4 Developed EQUEST convergence properties

The convergence properties of the developed EQUEST method are presented in this chap-
ter. Local convergence is obtained, but a global result cannot be expected for all possible
attitude determination scenarios.

In order to investigate the convergence properties, the trace of the matrices G and V
is used. The trace of a matrix sums the elements on the main diagonal of the matrix, and
it can also be used to find the sum of all the eigenvalues of the matrix. The characteristic
equation det(G− λI = 0) can be found by using the trace of the matrix G as:

det(G− λI3×3) = −λ3 + λ2Trace(G) + λ
1

2
(Trace(G2)− Trace2(G)) + det(G) (4.37)

According to [35], it can be shown from equations ( (4.10), (4.12) and 4.15), that the trace
of V is zero. The trace of the matrix G is however not zero, because the matrices Nd and
Ns have positive diagonal entries. This leads to the following equation:

Trace(G) = Trace(Nd + Ns) = n0 + n1 + n2 + n3 (4.38)

where the diagonal elements from the two matrices Nd and Ns are combined to get the
elements n0, n1, n2 and n3.

It can be shown that the eigenvalues of the matrix V consist of combinations of three
elements s0 ≥ s1 ≥ s2 ≥ 0:

λV0
= s0 + s1 + s2 (4.39)

λV1 = s0 − s1 − s2 (4.40)

λV2
= −s0 + s1 − s2 (4.41)

λV3 = −s0 − s1 + s2 (4.42)

where sk for k = 0, 1, 2 are given from s :=
[
s0 s1 s2

]>
=
√

eig(L>s Ls), where Ls
is defined in equation (4.13). Since the trace of V is zero, the four eigenvalues must sum
to zero:

λV0
+ λV1

+ λV2
+ λV3

= 0 (4.43)

The introduction of the two symmetric matrices Nd and Ns, leads to shifts in these eigen-
values. The lowest eigenvalue of this function becomes the largest eigenvalue of the de-
veloped EQUEST method cost function from equation (4.20). Each of the eigenvalues of
G, denoted by [λ0, ..., λ3] are given from:

λk = nk − λVk
(4.44)

for k = 0, 1, 2, 3.

The sum of the eigenvectors for the G matrix is:

(n10− λV0) + (n1 − λV1) + (n2 − λV2) + (n3 − λV3) = 0 (4.45)
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Note from equation (4.24) that the eigenvalues still have the property: λ0 ≥ λ1 ≥ λ2 ≥
λ3. All the eigenvalues of the matrix G cannot be zero, which leads λ0 > 0 and λ3 < 0.
The condition |λ0| > |λk| for k ∈ 0, 1, 2, 3 will be encountered for all situations except
for the case where |λ0| = |λ3|.

Global convergence is only obtained if |λ0| > {|λ1| , |λ2| , |λ3|} as seen in [35]. By
assuming diagonal positive elements of the matrices Ns and Nd, it can be seen from equa-
tions (4.39)-(4.42) that the absolute values of λ0 and λ3 are equal if only one reference
vector of the developed EQUEST method exists, or if the two reference vectors are par-
allel. This means that the developed EQUEST method has global convergence in almost
all cases, but cannot guarantee it. This is one of the reasons why the nonlinear observer is
considered as an alternative estimation method for the CubeSat.
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4.5 Nonlinear observer

A nonlinear observer has been implemented, and compared to the developed EQUEST
method. The simulation results are presented in chapter 6.3.

The observer, described as an explicit complementary filter with stationary reference
vectors was first presented by Mahony et al. in 2008 [41]. It was proven that this observer
has global stability if the reference vectors are stationary, or if the gyroscope measurements
are unbiased. An extension of the method was introduced by Grip et al. in 2012 [42].
Global exponential stability was proven even with the inclusion of time-varying reference
vectors and gyro bias, provided an uncoupled vector estimation. Apart from the excellent
stability properties, the nonlinear observer has the advantage that it is less sensitive to
disturbances than the developed EQUEST method.

The observer equations are presented below with the same notation as in previous
chapters, with q0 and qvec :=

[
q1 q2 q3

]>
as the scalar and vector parts of the quater-

nion. As described in equation (2.23), S represents a skew symmetric matrix. For the
nonlinear observer equations, the estimated parameters will be written with roof accents.

The estimated rotation matrix is given from equation (2.30):

R̂
b

n(q) := I3×3 + 2q0S(qvec) + 2S(qvec)
2 (4.46)

The observer equations are:

˙̂Rbn(q) = R̂
b

n(q)S(ωm − b̂g + ωinj) (4.47)

˙̂bg = Proj(b̂g,−kIωinj) (4.48)

where ωm is the measured gyroscope data and b̂g is the estimated gyroscope bias. The
parameter kI is an injection gain to be designed. The implemented value for kI is 0,1 for
all the test scenarios in chapter 6.

The injection term, ωinj , is given by:

ωinj = −vex(

n∑
j=1

kj
2

(bj(b̂j)> − b̂
>
j (bj)>)) (4.49)

where kj ≥ kP > 0, j = 1, ..., n are observer gains. The gains should be small, typically
between 0 and 1. The observer is implemented and tested both with constant and varying
values for the gains, k1 and k2 as described in chapter 6.6. The injection term uses the
estimates of the sensor vector measurements in the BODY frame, which are given as:

b̂1 = R̂
b

n(q)>r1 (4.50)

b̂2 = R̂
b

n(q)>r2 (4.51)
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The vectors r1 and r2 are the sensor data reference vectors in the NED frame. The function
vex is defined as the inverse of the cross product. This can be illustrated by taking vex of
a skew symmetric matrix, which gives:

vex(S(n)) = vex

 0 −n3 n2
n3 0 −n1
−n2 n1 0

 =

n1n2
n3

 (4.52)

One of the main improvements made by Grip et al. [42], is the improvement of the bias
estimation. A parameter projection algorithm is introduced, which ensures semi-global
exponential stability with time-varying reference vectors. Combination with an uncoupled
vector estimation give a globally exponentially stable result. The projection algorithm was
first described by Krstić et al. in 1995. It ensures that the gyroscope bias remains within a
compact, convex set and is written as [43]:

˙̂bg = Proj
{

b̂g,Ψ
}

=
{

Ψ if
∥∥∥b̂g
∥∥∥ < wp or (

∥∥∥b̂g
∥∥∥ = wp and∇P(b̂g))Φ ≤ 0)Ψ−Ψ

γ∇P(b̂g)∇P(b̂g)>∥∥∥∇P(b̂g)
∥∥∥2
γ

otherwise (4.53)

In the algorithm, P(b̂g) = b̂g
>

b̂g − wp ≤ 0, and ∇P(b̂g) is the gradient of P(b̂g). The

constant wp is chosen such that
∥∥∥b̂g
∥∥∥ ≤ wp. The constant matrix γ is symmetric and

positive definite. The parameter Ψ is given from Ψ = −kIωinj .

Implemented with the use of quaternions instead of rotation matrices, the observer be-
comes:

˙̂q = T(q̂)(ωm − b̂g + ωinj) (4.54)

˙̂bg = Proj(b̂g,−kIωinj) (4.55)

where

T(q̂) =
1

2

[
−q̂>vec

q̂0I3×3 + S(q̂vec)

]
(4.56)

The injection term is still given from equation (4.49), and the projection algorithm is de-
scribed in equation (4.53).

For the implementation, the observer equation must be discretized. Euler discretization
with time-step h gives:

q̂(k + 1) = q̂(k) + hT(q̂(k))
[
ωm(k)− b̂g(k) + ωinj(k)

]
(4.57)

b̂g(k + 1) = Proj(b̂g(k),−kIωinj(k)) (4.58)
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The observer can also be implemented on an EKF-like corrector-predictor form, according
to [44]. This way, the observer can handle different measurement sampling rates and dead-
reckoning. Calibration of the magnetic field for the magnetometer will be less accurate for
high frequencies. With a corrector- predictor implementation, a lower frequency for the
sensor data from the magnetometer can be obtained without influencing the general sam-
pling time. By using the nonlinear observer equations in (4.54) and (4.55), the same effect
could be achieved by for instance setting the gain for the magnetometer in the injection
term, k2, to have a low value for every ten or twenty time- steps. After discretization, the
corrector-predictor equations for the nonlinear observer are:

Predictor equations:
q̂(k) = q̄(k) + hT(q̄(k))ωinj (4.59)

b̂g(k) = b̄g(k)− hωinj (4.60)

Corrector equations:

q̄(k + 1) = q̂(k) + hT(q̂)
[
ωm(k)− b̂g(k)

]
(4.61)

b̄g(k + 1) = b̂g(k) (4.62)

Bias in the sensor data vector measurements can be handled by using a separate observer,
independent from the gyroscope bias estimation. In order to describe the vector bias es-
timation, a single vector measurement bj , which consists of the true value btrue and the
bias bbias. The vector measurement is in the BODY frame, and it is not longer required
that it has unit length.

The difference between the squared norms of the reference vectors and the correspond-
ing measurement vectors can be written:

d = ‖rj‖2 − ‖bj‖2 (4.63)

Using the property ‖rj‖ =
∥∥∥Rbnbj

∥∥∥ = ‖bj‖, the difference is:

d = ‖rj‖2 − ‖btrue + bbias‖2 = ‖bbias‖2 − 2b>j bbias (4.64)

A constant vector is defined as ρ =
[
‖bbias‖2 b>bias

]>
and a time-varying vector is given

from δ =
[
1 −2b>j

]>
. The difference can now be written as

d = δ>ρ (4.65)

The observer equation is:
˙̂ρ = Γδ(d− δ>ρ̂) (4.66)
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where a symmetric positive definite matrix is denoted as Γ.

With this extra observer for the vector measurement bias estimation, it can be proved
that the nonlinear observer is globally exponentially stable. This result is much stronger
than for the developed EQUEST method, which cannot guarantee global convergence for
all cases.



4.6. STABILITY PROPERTIES FOR THE NONLINEAR OBSERVER 35

4.6 Stability properties for the nonlinear observer

Stability means how much the algorithm will be affected if small numerical errors are
introduced and accumulated. Numerical stability is the central criterion for judging the
usefulness of implementing an algorithm on a computer with roundoff.

The nonlinear observer with time-varying reference vectors and gyroscope bias esti-
mation is globally exponentially stable, provided a parameter projection and a decoupled
vector bias estimation is used for the implementation. The whole proof is given in [42]. A
simplified proof is given in this chapter. For this, a Lyapunov function based on the error
dynamics for the system is presented. The background theory for the Lyapunov analysis
is given in chapter 2.6. The error dynamics of the nonlinear observer is described, using
the same notation as in chapter (4.5):

˙̃q0 =
1

2
q>vecR

b
n(b̃g + ωinj) (4.67)

˙̃qvec = −1

2
(q̃0I3×3 − S(q̃vec))Rbn(b̃g + ωinj) (4.68)

˙̃bg = −Proj(b̂g,−kIωinj) (4.69)

A parametrized set is introduced: R̃ :=
{

Rbn(q̃0, q̃vec) | |q̃0| ≥ ε
}

where 0< ε <1. A sta-
bility theorem are given for the equations as [42]:

Theorem 1.
For each 0< ε <1, there exist a constant k̄P > 0 such that, for all kP > k̄P , the equilib-
rium point of equations (4.67),(4.68) and (4.69) is exponentially stable with all the initial
conditions such that R̃

b

n(0) ∈ R̃ and b̂g(0) ∈ B̂g contained in the region of attraction.

Proof of Theorem 1.
Let M be the bound on the compact set B̃g :=

{
b̃g|bg ∈ Bg, b̂g ∈ B̂g

}
. Since b̂g(0) must

be contained by B̂g , and because of the properties of the projection term, it follows that for
all t ≥ 0, b̂g(t) ∈ Bg and therefore b̃g(t) ∈ B̃g .

Next, a Lyapunov function is defined as:

V = ‖q̃vec‖
2

= 1− q̃20 (4.70)

The derivative of the function is:

V̇ ≤ −q̃0q̃>vecR
b
nb̃g − kP c2obsq̃

2
vec(1− q̃20) ≤ M− kP c2obsq̃20(1− q̃20) (4.71)

where cobs is a constant which fulfil the requirement that for each t ≥ 0, the inequality∥∥rij × rik
∥∥ ≥ cobs holds for a pair of indices j, k ∈ 1, ..., n. It can be seen according to

[42], that |q̃0| = ε gives V̇ < 0, and the property |q̃0| ≥ ε is used throughout the rest of
the proof.
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A new Lyapunov function is introduced:

W = V + 2lw q̃0q̃>vecR
b
nb̃g +

lw
2kI

b̃
>
g b̃g (4.72)

It can be shown that there exists positive constants α1 and α2 such that α1

∥∥∥(q̃vec, b̃g)
∥∥∥2 ≤

W ≤ α2

∥∥∥(q̃vec, b̃g)
∥∥∥2. After simplifications using different properties and bounds given

from [42], the derivative of W can be written as:

Ẇ = −(kPaw − lwM2) ‖q̃vec‖
2 − lwε2

∥∥b̄g
∥∥2 + (1 + 2lwω̄) ‖q̃vec‖

∥∥∥b̃g
∥∥∥ (4.73)

where ω is the angular velocity without bias and lw is defined such that
0 < lw < min

{
1/(2kI), c

2
obsε

2/(12nM + 8kIn)
}

. The parameter aw is defined as aw =
c2obsε

2 − lw(12nM + 8kIn).
It can be shown that the expression is negative definite, but it will still give a semiglobal

result. This is because Theorem 1 specifies that the initial angle must be less that 180◦ by
a margin, and in addition the initial bias estimate must be in the set B̂g . Wrong attitude
estimates can occur if the initial error angle is close to 180◦. One way of handling this

is periodically resetting of the estimated rotation matrix R̂
b

n. For the entire proof, see ap-
pendix B of Grip et al. [42].

For the vector bias estimation, which can be included in order to achieve global stabil-
ity, a second theorem is introduced:

Theorem 2.
If two constants εbias > 0 and Tb > 0 exists, such that, for each t ≥ 0,∫ t+Tb

t

δ(τ)δ>(τ)dτ ≥ εbiasI (4.74)

Then the origin is a globally exponentially equilibrium point for (4.66).

Proof of Theorem 2. Let N be the bound on ‖δ‖. The Lyapunov function candidate is
chosen as:

Vbias =
1

2
ρ̃>
(
Γ−1 − lbias

∫ ∞
t

et−τδ(τ)δ(τ)>dτ

)
ρ̃ (4.75)

where lbias < min
{
λmin(Γ)−1/N2, 2e−T εbias/(N6λ2max(Γ) + e−T εbias)

}
. A constant

positive definite matrix is still denoted by Γ. The largest and smallest eigenvalues of the
matrix is written as λmax and λmin . With the bounds for Vbias given from [42], the
derivative of the Lyapunov function is:

V̇bias ≤ −(1− 1

2
lbias)

∥∥∥δ>ρ̃∥∥∥2 + lbiasN3λmax(Γ) ‖ρ̃‖
∥∥∥δ>ρ̃∥∥∥− 1

2
lbiase

−T εbias ‖ρ̃‖2

(4.76)
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This function is negative definite and will give global exponential stability. The error dy-
namics of the attitude estimation, the gyroscope estimation and the vector bias estimation
in cascade will cause the attitude and gyroscope bias error to be influenced by the vector
bias error, but not the other way around. A regional stability result can be achieved by the
cascade implementation, as the attitude estimate can be outside the region of attraction.
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4.7 Normalization

It is not guaranteed or likely that the measured quaternions are of unit length. One option
is to normalize the result, which is simple, but not ideal because errors might occur in the
result due to the mathematical complexity. In the EQUEST and QUEST algorithms, the
constraint q>q = 1 is included in the algorithm, and the search space will always be the
set of quaternions of unit length according to [6] and [18].

A round-off error in the matrix representation will cause drift from an orthogonal ma-
trix. Renormalization of this matrix will be computationally expensive, because of the
large number of variables. The Gram-Schmidt algorithm [38] might be used for "renor-
malization" of the matrix, but the quaternions should be normalized before turned into
matrix representations, when possible. It might also be noted that another method for find-
ing the shortest rotation between matrices called interpolation, will be tricky, due to the
six constraints needed to enforce three degrees of freedom.

The nonlinear observer also requires normalization of the quaternions, except for the
vector estimation bias, which compares the norm of the measurement vector to the norm of
the reference vector. The norms of the two vectors will be equal if the measurement vector
is bias-free. Apart for this special requirement, care must be taken in the implementation
of all the estimation methods to ensure that the quaternions have unit length.

4.8 Quaternions to Euler angles

The plotted estimated attitude will be given in Euler angles partly because this represen-
tation was used by Jenssen and Yabar in [4]. The developed EQUEST method is imple-
mented and compared to their simulations. In addition, Euler angles are more intuitive and
easy to understand than the quaternion representation. For continuity in the plotting, the
implemented nonlinear observer and the developed EQUEST method are also compared
using Euler angles.

When the calculations in quaternion representation are converted into Euler angles,
care must be taken to ensure singularities do not appear. In other words, the pitch angle
cannot be ±90◦ in the following equation [45]:φθ

ψ

 =

arctan2((2q0q1 + 2q2q3), 1− (2q21 + 2q22))
arcsin(2q0q2 − 2q3q1)

arctan2((2q0q3 + 2q1q2), 1− (2q22 + 2q23))

 (4.77)

To convert matrices to quaternions, linear combinations of the entries in the matrix can be
used to find the square of the quaternion components. In order to convert matrices to Euler
angles, the inverse of trigonometric functions are required. Only cosine and sine of the
angles can be computed directly [17].

In the code for the original and developed EQUEST methods, the optimal eigenvectors
determine the next optimal attitude quaternions used in the algorithms, and the conversion
from quaternions to Euler angles is made without use of the matrix representations. The
output from the nonlinear observer also gives four-dimensional quaternions which can be
converted directly into Euler angles.



Chapter 5
Matlab implementation

Four estimation methods are implemented in Matlab and compared to each other. The
implemented methods are

• original EQUEST

• developed EQUEST

• extended Kalman filter

• Nonlinear observer

The code for the original EQUEST method and the EKF was originally written by Jenssen
and Yabar [4]. The code has been developed further to include quaternion products instead
of subtractions. New code for the calculation of the optimal lambda value and the corre-
sponding eigenvector has been written. Only the Matlab implementation is tested in this
thesis, but hardware implementation of the developed EQUEST method and the nonlinear
observer will be made by one of the other master students involved in the NUTS project.
Testing of the prototype will eventually result in a final choice of estimation method for
the satellite.

Note that the scalar element of the quaternion in the code is q4, not q0, with the notation
q :=

[
q1 q2 q3 q4

]>
, instead of q :=

[
q0 q1 q2 q3

]>
which is used in the rest of

the report. Both the EKF and the original EQUEST method have been modified and made
more efficient. They are tested and compared to the new developed EQUEST method and
the nonlinear observer. The methods have been implemented in Matlab (version R2010a),
where different input signals and changes for parameters can easily be simulated.

5.1 Sensor data

A new data set for the vector measurements have been implemented for the comparison of
the developed EQUEST method and the nonlinear observer. This has enabled testing of
different input responses, which makes it possible to review several scenarios without too
much reprogramming. For test cases 1-7 and test case 9, the new data set have stationary
reference vectors r1 =

[
0 0 9.81

]>
and r2 =

[
13598.5 444.7 −49854.8

]>
, where

39
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r1 is the sun sensor vector and r2 is the magnetometer vector. For testing of the satellite
at the Earth, an accelerometer can be used instead of a sun sensor, but this will eventually
have to be replaced. The replacement will however be trivial [4]. Therefore, the sensor is
referred to as a sun sensor in this thesis, but it is denoted as an accelerometer in the Matlab
code. In test case 8 in chapter 6, the reference vectors are varying as described in chapter
3.4.1 and 3.4.2. The angular velocity input has been modeled both as a sine wave and as a
step input, as described in test case 3 of chapter 6.

The attitude dynamics is given from [45]:

q̇ = T(q)(ωm − bg) (5.1)

ḃg = 0 (5.2)

The implementation require discretized equations. Euler discretization with a sample time
of 0.01s is implemented. This gives the attitude dynamics:

q(k + 1) = q(k) + hT(q)(ωm(k)− bg(k)) (5.3)

bg(k + 1) = 0 (5.4)

5.2 Reference vector models

Models for the magnetometer reference vector and the sun sensor reference vector have
been implemented and tested. The nonlinear observer can handle time-varying reference
vectors and still have good stability properties. The implemented models are described in
chapter 3.4.1 and 3.4.2.

The magnetometer reference model requires latitude and longitude information from
the satellite. In order to acquire this, a simulation program called STK (Satellite Tool Kit)
has been used. The program is fairly intuitive and allows for several parameter settings,
like an arbitrary height and inclination of a satellite. The STK is an analysis software,
where the different aspects of a satellite mission can be modeled. One of the modeling
options is to make an orbit or trajectory for the satellite, with different input parameters
and get data for the position, speed and altitude as output.

The latitude and longitude have been computed with a satellite of inclination 90◦ and
height of 500 km. The satellite was simulated with start values of 0◦ for the latitude
and −30◦ for the longitude. It was simulated to circulate 1,5 times around the Earth. A
Julian time scale, J2000 is used by the simulator, and the corresponding UTC time for the
simulation was May 22 from 10:00-12:00.

Screenshots from the STK program are shown in figures (5.1) and (5.2), where the
green line is the simulated orbit, and the satellite is denoted by "NUTS". The graph in
figure (5.3) shows the change in latitude (red graph), longitude (green graph) and height
(blue graph) during the simulation. The orbit time is seen to be approximately 90 min,
which correspond to the assumed orbital time for the NUTS CubeSat.
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Figure 5.1: Test orbit for the NUTS satellite.

Figure 5.2: Test orbit for the NUTS satellite.
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Figure 5.3: Graph for latitude, longitude and height.

5.3 Prototype code

The final implementation of the chosen estimation method will be written in C language,
and implemented on a prototype with a microcontroller. The chosen microcontroller is
an ATMEGA2561 running at 16MHz [4]. The sensor for the prototype is chosen as a
CIMU IMU, and is powered through a USB connection to the computer. Another student
involved in the satellite project will implement both the developed EQUEST method and
the nonlinear observer for further real-time testing by the summer of 2012.

5.4 Extended Kalman filter

The nonlinear observer and both the original EQUEST method and the new developed
EQUEST method are tested along with an extended Kalman filter. This filter is a nor-
mal Kalman filter exteded to cope with nonlinear problems, through linearizations of the
nonlinear terms for each iteration. The extended Kalman filter may diverge if the system
model is inaccurate. This implementation was originally made by Jenssen and Yabar [4].
The implemented EKF uses a zero-order hold discretization with a time constant of Ts =
0.0011s. The Kalman filter equations are given for the state vector defined as

x :=
[
q bbias1 bbias2

]>
(5.5)

where bbias1 is the bias for the sun sensor and bbias2 is the bias for the magnetometer.
Both are assumed constant. After discretization, the new state vector is given from

xk+1 =

e
 1

2

S(ω) ω
−ω> 0

Ts


0 0

0 I3×3 0
0 0 I3×3

 xk (5.6)
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where the parameter ω in this equation is the angular velocity without bias.
The measurement model which is linearized as described in appendix D of [4] is

z =

[
Rbn(q) 0

0 Rbn(q)

] [
r1
r2

]
+

[
bbias1
bbias2

]
(5.7)

The prediction equations for the EKF are:

x̂−k = f(x̂k−1,uk−1) (5.8)

P−k = FkPkF>k + Qkal (5.9)

The update equations are:

Kk = P−k H>k (HkP−k H>k + Rkal)−1 (5.10)

x̂k = x̂−k + Kk(zk −Hkx̂−k ) (5.11)

Pk = (I−KkHk)P−k (5.12)
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Chapter 6
Testing

Test results for the implemented estimation methods are presented in this chapter. Each
section describes a test case for evaluation of the performance of the developed EQUEST
method and the nonlinear observer. The test cases are chosen to be realistic scenarios for
the NUTS CubeSat. Test case 1 and 2 compares the new developed EQUEST method with
quaternion products to the original implementation with quaternion subtractions.

Test case 3 investigates the general performance of the implemented nonlinear ob-
server, while test case 4-8 compares the behavior for the developed EQUEST method and
nonlinear observer for different scenarios. Loss of sensor data is simulated, in addition to
implementation of several time- varying parameters and sensor measurement noise.

Test case 9 tests the general behavior of a combination of the developed EQUEST
method and the nonlinear observer, in order to get estimations where the strengths from
both methods are utilized. All the test cases are described in detail below, and the results
for each test case are discussed in chapter 6.10.

In all the cases, the reference quaternions have the initial values qref =
[
0 0 0 1

]>
and the implemented methods have initial values of qmethod =

[
0 0 1 0

]>
, except

for in test case 4, where the implemented methods have the same initial value as the refer-
ence quaternions. The gyroscope estimated bias has the initial value b̂g =

[
0 0 0

]>
.

No sensor vector measurement noise for the sun sensor and magnetometer is assumed,
except for in test case 7. This will ensure global exponential stability for the nonlinear ob-
server, but for further testing, a bias estimation for the sensor vector measurements should
be included. Gyroscope bias is implemented and estimated for the nonlinear observer in
test case 3-9. The gyroscope measurements in test case 1 and 2 are assumed to be ideal.

All the simulations are made for a geostationary satellite placed over Trondheim, ex-
cept for in test case 8, where reference vector models are implemented. The implementa-
tion is described in chapter 5.1. For all other test cases, the sensor reference inputs will
have constant values.

It should be noted that the original and developed EQUEST methods are implemented
without attitude prediction for all scenarios. This makes the method more sensitive to
disturbances. The original EQUEST method implementation was made by Jenssen and
Yabar [4], and for easy comparison of the methods, the developed EQUEST method is also
implemented without the attitude prediction term. The extended Kalman filter is included

45
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for comparison to the other estimation methods in test case 1-2 and test case 7-9.
The different test cases and descriptions of implemented parameters and models are

presented in the following pages. The sample time used for the simulations is 0.01s, which
corresponds to a frequency of 100Hz. The sample time may change for the final imple-
mentation on the prototype, which can have a maximum frequency of 16MHz. Using such
a high frequency when running the code is not ideal, because it may lead to instabilities.
For previous testing of the original EQUEST method done by Jenssen and Yabar [4], a
frequency of 8MHz was used. The implemented Matlab code can easily be manipulated
for other frequencies and corresponding sample times.

For the plotting of the simulations, Euler angles are used. It can be argued that errors in
the rotation directions can be hidden by using Euler angles, but continuity in the testing is
obtained, since the original implementation uses this representation. Euler angles are also
much more intuitive to understand than quaternions, and this makes it easier to understand
the plotted simulation outputs.

The different test cases used for the simulations are presented below. The test results
are evaluated in chapter 6.10.

• Case 1: Developed EQUEST
The developed EQUEST method is implemented with quaternion products replac-
ing the quaternion subtractions in the cost function, and compared to the original
EQUEST method. The result is mathematically correct, and the performance of the
new modified method is tested in order to see if there are any changes in perfor-
mance from the original method. Both EQUEST implementations are compared to
an implemented extended Kalman filter (EKF). The code for the original EQUEST
method and the EKF builds on the implementation done by Jenssen and Yabar [4].
The data set for the test case is raw data from a 9-DOF Razor IMU, which was con-
nected to the computer using a USB connection. The data was stored in a txt.-file,
which makes it possible to compare the new developed EQUEST method to the old
original EQUEST method and the EKF implementation.

• Case 2: Developed EQUEST with loss of sun sensor data
The CubeSat will have a sun sensor or use the solar panels to find one of the vector
measurements needed for the attitude estimation. Such measurements often consist
of only one or two vector elements, because parts of the satellite (and the sun sensor)
will be in shade. Therefore, the developed EQUEST method have been tested with
loss of sun sensor data along each of the three directional axes. Like for test case
1, the data is given from a 9-DOF Razor IMU. The developed EQUEST method
response is compared to the EKF response for loss of the sensor data. It is very
unlikely that loss in magnetometer data will occur, unless the sensor is faulty. Such
a scenario is not investigated in this thesis.
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• Case 3: Nonlinear observer
The implemented nonlinear observer is compared to the developed EQUEST method
for two different angular velocity outputs. A gyroscope will give real-time values
for this measurement when the satellite is in orbit. In test case 1 and 2, the data from
a 9-DOF Razor IMU was used for the simulations. In the following cases a new data
set is used, as described in chapter 5.1. The new data set makes it easier to test how
the implemented methods will react for different sensor vector measurements. Two
gyroscope measurement outputs are tested for the nonlinear observer, a sine wave
output, given from ω = 0.1 sin(00.1t), and a step response output where the value
changes from −π to π, 20 seconds into the simulation time. After the detumbling
phase, the CubeSat will be rotating slowly or not at all, and a slow change in the
sine input is therefore more realistic than a fast changing sine wave. Both gyroscope
measurement outputs are simulated with a constant bias of 0,007 degrees. The re-
sponse for the EKF is not tested in this test case (along with test case 4-6), because
the main focus is the difference in performance between the nonlinear observer and
the developed EQUEST method. Note that the nonlinear observer is implemented
with a bias estimation for the gyroscope, but not a vector estimation for the other
sensor measurements. The measurements from the magnetometer and sun sensor
are assumed to be bias-free, which still makes the method globally exponentially
stable. For the final implementation, all the sensor biases should be estimated.

• Case 4: Nonlinear observer with loss of sun sensor data
This is the same scenario as in test case 2, where simulations of loss in sun sen-
sor data along each axis are presented. The behavior for the developed EQUEST
method is compared to the behavior for the nonlinear observer. The results are com-
puted with the new data set described in chapter 5.1. This makes the response for
the developed EQUEST method different from the response in test case 2, because
of other reference quaternions. The gyroscope measurement output is modeled as a
sine wave with period 0.001s as described in test case 3. Note that the implemented
methods and the reference quaternions have the same initial values in this test case,
given from qmethod =

[
0 0 0 1

]>
. This will give less deviations from the ref-

erence quaternions for the start-up phase of the simulations. By having equal initial
values, the developed EQUEST method and the nonlinear observer get the same
starting point for the simulations, and the effect of the sensor data loss can easily be
seen.

• Case 5: Nonlinear observer bias
The estimated bias for the nonlinear observer is presented for the gyroscope mea-
surement outputs described in test case 3. The gyroscope bias is a known constant
value, chosen to be bg = 0.007 deg/s = 0.0001 rad/s. The initial guess for the
estimated bias is b̂g =

[
0 0 0

]>
rad/s, and this value is updated through the

projection term in the nonlinear observer equations from chapter 4.5. The final bias
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value is plotted, in addition to the estimated bias response.

• Case 6: Nonlinear observer with variable gains.
In the injection term used for the nonlinear observer equations from chapter 4.5, the
influence of the magnetometer data and the sun sensor data are weighted with the
gains k1 and k2. By having large initial values for the gains with decreasing time re-
sponses, the speed of the nonlinear observer can be improved for the start-up phase
of the simulation time [42]. Since a larger gain will make the method more vul-
nerable to disturbances, the gains are made exponentially decreasing towards their
stationary values. The gain for the sun sensor is given from k1 = e5−t with a final
stationary value of 0.5, and the magnetometer gain is given from k2 = e3−t with
the same stationary value of 0.5. The response of the nonlinear observer with the
varying gains are compared to the response of the developed EQUEST method. The
gyroscope measurement output is modeled as a sine wave, as described in test case
3.

• Case 7: Nonlinear observer with disturbances.
One of the most important test objectives is to investigate how sensitive and vulner-
able the estimation methods are to disturbances. The sensors in the IMU are likely
to be sensitive to noise, especially for high frequencies [42]. The nonlinear observer
is compared both to the developed EQUEST method and the extended Kalman fil-
ter where white noise has been implemented for the sun sensor and magnetometer
measurement data. The white noise is modeled as w = 0.1randn(1) in the sensor
data along the x-axes for both sensor measurements. The gyroscope measurement
output was modeled as a sine wave described in test case 3. The gyroscope output
is modeled without any measurement noise. It should be noted that the developed
EQUEST method is implemented without a prediction term, which will make it less
robust. A better performance can be expected with the method implemented in its
entirety. The reason for modeling the measurement noise along only one axis, is to
get a more fair test scenario for the developed EQUEST method. The nonlinear ob-
server and the developed EQUEST method are compared to the EKF, because this
is a well-known and thoroughly tested estimation method. By comparing the test
results to this method, more information on the performance can be obtained than
for comparison of only the two relatively new methods.

• Case 8: Nonlinear observer with time-varying reference vectors.
For all the other test cases, the reference vectors have been assumed constant for a
geostationary satellite. In reality they will be time-varying because the satellite will
orbit around the Earth, which means that the magnetic field and the reference model
for the sun sensor will change along with the position of the satellite. The imple-
mented reference vector models are described in chapter 3.4.1 and 3.4.2. In this test
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case, the input parameters for the models are latitude and longitude values for an
example orbit, described in chapter 5.2. In addition, a time input for each of the
models is required. The magnetometer reference model needs the time in days since
January 1 2000, and the sun sensor reference model needs the sidereal time since
the Earth passed the vernal equinox. The test orbit for the time-varying reference
vectors was done at May 22 2012 from 10:00-12:00, and the corresponding inputs
for this specific time have been implemented in Matlab. For a longer simulation
period, the time input will be varying, but for this test case, only varying latitude
and longitude parameters influence the reference vectors. The nonlinear observer is
compared to both the developed EQUEST method and the implemented EKF.

• Case 9: Combination of EQUEST and nonlinear observer.
The developed EQUEST method has the advantage of being fast, and will find the
optimal attitude quaternion in one time step. However, it is less robust towards dis-
turbances than the nonlinear observer. This is the reason for the implementation of
a combination of the two methods. The developed EQUEST method provides an
initial condition for the nonlinear observer. This way, a fast response at the start-up
phase, and robustness against disturbances can be achieved. The gyroscope mea-
surement output was modeled as a sine wave as described in test case 3. The com-
bination method has also been tested with disturbances in the sensor measurements.
The disturbances have been implemented as described in test case 7. In addition
to this, white noise along all the axes (not just the x-axis) for the sensor measure-
ment vectors have been tested. The combination method has been compared to the
implemented extended Kalman filter.
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6.1 Developed EQUEST

The extended Kalman filter code and the EQUEST code have been modified in order to be
more efficient and computationally less expensive. As described in chapter 4, the original
EQUEST method has been implemented with quaternion products instead of quaternion
subtractions. Both EQUEST algorithms are implemented without the prediction terms,
implicating a higher sensitivity to disturbances [4]. The results are shown in figure (6.1)
and (6.2). The red graph shows the performance of the implemented EQUEST method,
the blue graph shows the performance of the extended Kalman filter and the green graph
shows the correct attitude from the sensor data. As seen in the figures, there is no differ-
ence in performance for the EQUEST method and the developed EQUEST method. The
new implementation is however theoretically correct, with the use of quaternion products
instead of subtractions. Similar plots can be found in [4], but in this thesis different ini-
tial values in the implementations are used, leading to different responses for the start-up
phase in the simulations.

In order to investigate the difference between the two methods more closely, the de-
viations from the sensor data for the three estimation methods, EKF, original EQUEST
and developed EQUEST are shown in figures (6.3)-(6.5). It can be seen that the largest
difference between the EKF and the EQUEST methods is in the start-up phase, where the
performance of the EQUEST methods has a larger deviation form the sensor data than the
EKF has. No difference between the two implemented EQUEST methods can be spotted.
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Figure 6.1: Attitude estimation using the original EQUEST method and the EKF.
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Figure 6.2: Attitude estimation using the developed EQUEST method and the EKF.
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Figure 6.3: Sensor data and deviation for the extended Kalman filter.
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Figure 6.4: Sensor data and deviation for the original EQUEST method.
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Figure 6.5: Sensor data and deviation for the developed EQUEST method.
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6.2 Developed EQUEST with loss of sun sensor data

The developed EQUEST method and the EKF are tested with loss in the measurements
from the sun sensor data. If the solar panels are used, no sensor data from the side where
the panels are in shadow, can be used. This may cause loss in data from one, or several of
the directional axes. The plots below, show the performance of the EKF (blue graph) and
the developed EQUEST methods, (red graph) for loss of data along the x-, y- and z- axis.
The sensor data is also plotted (green graph).

It can easily be seen that the EKF handles the data loss better than the developed
EQUEST method. The deviation between the sensor data and the developed EQUEST
method is plotted for each of the three axes in figure (6.8), (6.11) and (6.14). The deviation
for the EKF is shown in figure (6.7), (6.10) and (6.13).
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Figure 6.6: Attitude estimation using the developed EQUEST method and the EKF, with
loss in sun sensor data along the x-axis.
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Figure 6.7: Sensor data and deviation for the EKF, with loss in sun sensor data along the
x-axis.
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Figure 6.8: Sensor data and deviation for the developed EQUEST method, with loss in sun
sensor data along the x-axis.
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Figure 6.9: Attitude estimation using the developed EQUEST method and the EKF, with
loss in sun sensor data along the y-axis.
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Figure 6.10: Sensor data and deviation for the EKF, with loss in sun sensor data along the
y-axis.
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Figure 6.11: Sensor data and deviation for the developed EQUEST method, with loss in
sun sensor data along the y-axis.
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Figure 6.12: Attitude estimation using the developed EQUEST method and the EKF, with
loss in sun sensor data along the z-axis.
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Figure 6.13: Sensor data and deviation for the EKF, with loss in sun sensor data along the
z-axis.
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Figure 6.14: Sensor data and deviation for the developed EQUEST method, with loss in
sun sensor data along the z-axis.
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6.3 Nonlinear observer

The nonlinear observer from [41] and [42] is implemented in Matlab and compared to the
performance of the developed EQUEST method. A new data set has been implemented in
order to control the sample time and be able to test different kinds of satellite movements.

6.3.1 Sine wave
A sine wave with period 0.01s was implemented to simulate the gyroscope measurement
vector, and the results are shown in figure (6.15). The red graph shows the performance
for the developed EQUEST method, and the black graph shows the performance for the
nonlinear observer. The green graph shows the plotted sensor data.

It can be seen from this plot and the deviation from the sensor data for the nonlinear
observer and the developed EQUEST method in figure (6.16) and (6.17) that the developed
EQUEST method finds the correct value faster than the nonlinear observer. The method
computes the correct value in just one time-step, which will give a faster response in the
start-up phase. Note that the scaling of the plots for the deviation are different than the
plots for the sensor data.
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Figure 6.15: Attitude estimation sine wave response for the developed EQUEST method
and the nonlinear observer.
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Figure 6.16: Sensor data and deviation for the nonlinear observer.
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Figure 6.17: Sensor data and deviation for the developed EQUEST method.
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6.3.2 Step function
The gyroscope measurements has also been modeled with a step from −π ot π at time
t = 20. The developed EQUEST method is compared to the nonlinear observer. The
results are presented in figure (6.18). The developed EQUEST method is plotted with
a red graph, the nonlinear observer with a black graph and the sensor data with a green
graph. The plots for the deviation from sensor data in figure (6.3.2) and (6.3.2) show that
the nonlinear observer has less overshoot when adjusting to the new stationary value, but
that the developed EQUEST method finds the new value faster. Note that the scaling in
the plots for the sensor data and the deviations are the same, unlike for the other test cases.
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Figure 6.18: Attitude determination step response for the developed EQUEST method and
the nonlinear observer.
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Figure 6.19: Sensor data and deviation for the nonlinear observer.
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Figure 6.20: Sensor data and deviation for the developed EQUEST method.
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6.4 Nonlinear observer with loss of data

The nonlinear observer is compared to the developed EQUEST method, with loss in the
sun sensor data along each of the three directional axes. Plots of the methods and the sensor
data are presented in figure (6.21), (6.24) and (6.27). The deviations from the sensor data
for the nonlinear observer are shown in the figures (6.22), (6.25) and (6.28). The deviations
from the sensor data for the developed EQUEST method are shown in figure (6.23), (6.26)
and (6.29). The red graph shows the response for the developed EQUEST method, the
black graph shows the response for the nonlinear observer and the green graph shows the
sensor data.

The nonlinear observer has hardly any change in performance for the loss of sensor
data, but the developed EQUEST method is less robust. Note that the scaling in the plots
for the deviation are different than in the plots for the sensor data. The reason for less de-
viations from the reference quaternions for early time-steps are the choice of initial values
which are different from the other test cases. Both methods have the same initial value as
the sensor data, which give them a better response for the start-phase of the simulations.
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Figure 6.21: Attitude determination for the nonlinear observer and the developed EQUEST
method with loss of sun sensor data along the x-axis.
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Figure 6.22: Sensor data and deviation for the nonlinear observer, with loss of sun sensor
data along the x-axis.
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Figure 6.23: Sensor data and deviation for the developed EQUEST method, with loss of
sun sensor data along the x-axis.
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Figure 6.24: Attitude determination for the nonlinear observer and the developed EQUEST
method with loss in sun sensor data along the y-axis.
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Figure 6.25: Sensor data and deviation for the nonlinear observer, with loss in sun sensor
data along the y-axis.
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Figure 6.26: Sensor data and deviation for the developed EQUEST method, with loss in
sun sensor data along the y-axis.
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Figure 6.27: Attitude determination for the nonlinear observer and the developed EQUEST
method with loss of sun sensor data around the z-axis.
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Figure 6.28: Sensor data and deviation for the nonlinear observer, with loss in sun sensor
data along the z-axis.
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Figure 6.29: Sensor data and deviation for the developed EQUEST method, with loss in
sun sensor data along the z-axis.
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6.5 Nonlinear observer bias

The nonlinear observer provides a gyro bias estimation, which makes it more suitable for
attitude determination than the developed EQUEST method. Plots for the estimated bias
for the nonlinear observer are presented in figure (6.30) and (6.31). The blue dotted lines
show the actual gyroscope bias and the black graphs show the estimated bias. The bias
estimation for the sine wave response and the step response described in test case 3 is
plotted. Both bias estimations converge towards the correct values of 0.007 degrees.
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Figure 6.30: Sine wave response for the estimated bias of the nonlinear observer.
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Figure 6.31: Step response for the estimated bias of the nonlinear observer.
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6.6 Nonlinear observer with variable gains

The nonlinear observer with variable gains in the injection term is compared to the re-
sponse of the developed EQUEST method in figure (6.33). The red graph shows the devel-
oped EQUEST method repsonse, the black graph shows the nonlinear observer response
and the green graph shows the sensor data. A plot for the varying gains is presented in
figure (6.32). The blue line shows the gain for the sun sensor and the black line shows the
gain for the magnetometer. Both gains start at fixed values (e5 and e3), before decreasing
exponentially towards value 0.5. The deviation between the sensor data and the two esti-
mation methods are given in figure (6.34) and (6.35). Note that the scaling in the plots for
the deviation are different than in the plots for the sensor data.
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Figure 6.32: Gains in the injection term for the sun sensor and magnetometer measurement
vectors.
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Figure 6.33: Atittude determination for the developed EQUEST method and the nonlinear
observer with variable gains in the injection term.
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Figure 6.34: Sensor data and deviation for the nonlinear observer with variable gains in
the injection term.
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Figure 6.35: Sensor data and deviation for the developed EQUEST method with variable
gains in the injection term.
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6.7 Nonlinear observer with disturbances

The nonlinear observer is compared to both the developed EQUEST method and the EKF
with disturbances for the sensor vectors in figure (6.36). The blue graph shows the re-
sponse for the EKF, the red graph shows the response for the developed EQUEST method
and the black graph shows the response for the nonlinear observer. The green graph shows
the sensor data. The deviations between the estimation methods and the sensor data are
given in figure (6.37), (6.38) and (6.39). The nonlinear observer performs remarkably
much better than both the EKF and the developed EQUEST method when disturbances
are introduced. Especially the developed EQUEST will have erratic results. Note that the
scaling in the plots for the deviation are different than in the plots for the sensor data.
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Figure 6.36: Attitude determination for the developed EQUEST method, the EKF and the
nonlinear observer with disturbances in the sensor data.
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Figure 6.37: Sensor data and deviation for the nonlinear observer with disturbances.
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Figure 6.38: Sensor data and deviation for the developed EQUEST method with distur-
bances.



96 CHAPTER 6. TESTING

0 20 40 60 80

−100

0

100

Time (s)

R
ol

l

Sensor data

0 20 40 60 80

−100

0

100

Time (s)

P
itc

h

Sensor data

0 20 40 60 80

−100

0

100

Time (s)

Y
aw

Sensor data

0 20 40 60 80

−50

0

50

Time (s)

R
ol

l

Deviation EKF

0 20 40 60 80

−50

0

50

Time (s)

P
itc

h

Deviation EKF

0 20 40 60 80

−50

0

50

Time (s)

Y
aw

Deviation EKF

Figure 6.39: Sensor data and deviation for the EKF with disturbances.
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6.8 Nonlinear observer with time-varying reference vec-
tors

The nonlinear observer with time-varying reference vectors is compared to both the EKF
and the developed EQUEST method in figure (6.40). The blue graph shows the EKF, the
red graph shows the developed EQUEST method and the black graph shows the nonlinear
observer. The green graph shows the sensor data. The deviations from the sensor data for
the estimations methods are presented in figure (6.41), (6.42) and (6.43). The time-varying
reference vector implementation does not influence the simulation results to a large degree
because they are changing very slowly. The largest change in behavior can be seen for the
implemented EKF.
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Figure 6.40: Attitude determination for the developed EQUEST method and the nonlinear
observer with time-varying reference vectors.



6.8. NONLINEAR OBSERVER WITH TIME-VARYING REFERENCE VECTORS 99

0 20 40 60 80

−100

0

100

Time (s)

R
ol

l

Sensor data

0 20 40 60 80

−100

0

100

Time (s)

P
itc

h

Sensor data

0 20 40 60 80

−100

0

100

Time (s)

Y
aw

Sensor data

0 20 40 60 80

−50

0

50

Time (s)

R
ol

l

Deviation Nonlin. observer

0 20 40 60 80

−50

0

50

Time (s)

P
itc

h

Deviation Nonlin. observer

0 20 40 60 80

−50

0

50

Time (s)

Y
aw

Deviation Nonlin. observer

Figure 6.41: Sensor data and deviation for the nonlinear observer with time-varying refer-
ence vectors.
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Figure 6.42: Sensor data and deviation for the developed EQUEST method with time-
varying reference vectors.
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Figure 6.43: Sensor data and deviation for the EKF with time-varying reference vectors.
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6.9 Combination of developed EQUEST and Nonlinear
observer

A combination of the developed EQUEST method and the nonlinear observer is compared
to the EKF. The red graph shows the combination method response, the blue graph shows
the EKF response and the green graph shows the sensor data. The deviation for the com-
bination method from the sensor data are plotted in figure (6.45) and the deviation for the
EKF from the sensor data is plotted in figure (6.46). The response for the combination
method can be seen to be faster than the nonlinear observer response, since the developed
EQUEST method is used for finding the initial value. Simulation results for the combi-
nation method and the EKF with disturbances along only the x-axis of the sensor data is
presented in figure (6.47). An extra simulation with noise along all the axes is presented
in figure(6.50). The response for the nonlinear observer is slower with the disturbances,
but it converges towards the correct value and is more smooth than the EKF. Deviation
from the sensor data both for the EKF and the combination method are presented in figure
(6.48) and (6.49). An extra plot with disturbances along each of the axes in the sensor data
is shown in figure (6.50). Note that the scaling in the plots for the deviation are different
than than in the plots for the sensor data.
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Figure 6.44: Attitude determination for the combination method and the EKF.
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Figure 6.45: Sensor data and deviation for the combination of the developed EQUEST and
the nonlinear observer.
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Figure 6.46: Sensor data and deviation for the EKF.
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Figure 6.47: Attitude detemination for the combination method and the EKF with distur-
bances in the sensor data.
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Figure 6.48: Sensor data and deviation for the combination of the developed EQUEST and
the nonlinear observer with disturbances.
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Figure 6.49: Sensor data and deviation for the EKF with disturbances.
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Figure 6.50: Attitude determination for a combination method and the EKF with noise
along all the axes for the sensor data.
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6.10 Test cases conclusion

The test results for all the test cases are analyzed in the following pages. The main focus is
comparison of the different implemented methods in order to find the estimation method
best suited for the NUTS CubeSat mission.

• Case 1: Developed EQUEST
The developed EQUEST method is compared to the original EQUEST method
and an extended Kalman filter. From chapter 6.1, the plots show that no differ-
ence in performance for the two methods can be seen. Both the new developed
EQUEST method with quaternion products in the cost function, and the old origi-
nal EQUEST method with quaternion subtractions, perform slightly worse than the
extended Kalman filter for the implemented data set. No change in performance
can be achieved with quaternion products instead of quaternion subtractions. The
new method with quaternion products can be written on the same form as the old
method, only with different matrices in the cost function. This will cause a shift in
the eigenvalues of the method, but it will not change the next quaternion used in the
solution. It should be noted that only one test for these two methods is done in this
thesis, and more tests should be made in order to cover all possible scenarios, for
instance the response for multiple eigenvalues or parallel eigenvectors.

The sensor data is plotted with the developed EQUEST method, the original EQUEST
method and the Kalman filter. The deviations from the sensor data for the methods
show that the EKF has the best results, and it finds the correct value faster than the
two EQUEST methods. Using the same initial values for both the reference quater-
nions and the implemented methods will give better performance for the EQUEST
methods as shown in [4]. However, the main object of this test case is to compare
the developed and the original EQUEST methods, and see if the behavior changes
with the mathematical correct notation.

• Case 2: Developed EQUEST with loss of sun sensor data
The developed EQUEST method response is compared to the response for the EKF
with loss of sun sensor data along each of the directional axes. The two methods
are similar for loss of data along the x-axis, but figures (6.9), (6.11), (6.12) and
(6.14) show that the EKF performs better for loss along the y-axis and the z-axis
than the developed EQUEST method. This is probably because the loss in sun sen-
sor data along these axes cause a steeper change in the sensor data. The EKF can
handle such fast changes better than the developed EQUEST method because it uses
the previous attitude when calculating the next attitude quaternions. The developed
EQUEST method starts over for each time-step and will be slower to perceive the
fast attitude change.
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• Case 3: Nonlinear observer
The implemented nonlinear observer is compared to the developed EQUEST method
for different models of the angular velocities. For a sine wave gyroscope mea-
surement, the performance of the developed EQUEST method is better in the start-
up phase than the nonlinear observer. The EQUEST method is a point estimation
method which solves for the next input quaternion in one single time-step. The non-
linear observer will however use more time before converging to the correct attitude.
This might cause problems for the CubeSat as mentioned earlier 4.3. Since the mag-
netic field of the satellite will be influenced by the magnetorquers, the estimation of
the attitude and the control of the attitude must be separated. The performance of
the chosen estimation method should be a trade-off between a short start-up time
and robustness against disturbances. From the plots in the figures (6.15) and (6.16),
it can be seen that the nonlinear observer uses between 30 and 40 seconds before
converging towards the correct value, which makes the developed EQUEST method
a more optimal method for this scenario.

For the step response, the difference in the performance of the two methods are
more subtle. The nonlinear observer has slightly smaller overshoot before finding
the right value, than the developed EQUEST method. No real preference of one
method over the other can be found in this case, but it should be noted that the over-
shoot for the developed EQUEST is more than 180◦, which might be problematic
in certain situations, for instance when the satellite is supposed to point the infrared
camera payload towards the Earth.

• Case 4: Nonlinear observer with loss of data
This is the same test scenario as in test case 2, with loss of data along each axis for
the sensor data. It should be noted that the data set is different than the one in test
case 2, and that the initial values are the same for the reference quaternions and the
implemented methods, making the deviations for the start-up time smaller than in
the other test cases. The performance of the developed EQUEST method is worse
for loss of data than the nonlinear observer. The nonlinear observer performs just
as good without the sensor data along each of the axes, but the developed EQUEST
method struggles with the fast changes, especially along the z-axis. Since the initial
values for this test case are the same for both the estimation methods and the ref-
erence quaternions, the nonlinear observer performs better than it might have done
for a different start value. Even with another initial value for the nonlinear observer,
the performance for the developed EQUEST method is not good enough. It can be
concluded that the preferred choice for the estimation method for such a test case
would be the nonlinear observer.

• Case 5: Nonlinear observer bias
This test case is included to show the performance of the bias estimation for the
nonlinear observer. The gyroscope bias is chosen as 0.007 degrees, and for the sine
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wave, and the step function implementation, the estimated values can be seen to
converge towards their true values. The gyroscope bias estimation for the nonlin-
ear observer is one of the main arguments for using it for the satellite instead of the
developed EQUEST method, which is unable to estimate any of the sensor measure-
ment biases.

• Case 6: Nonlinear observer with variable gains
The injection term for the nonlinear observer is described in chapter 4.5. The sen-
sor measurements from the magnetometer and the sun sensor are weighted with the
gains k1 and k2. This test case shows how the gains are set to be time-varying and
how the nonlinear observer performance changes. The main idea is to make the
nonlinear observer converge faster, but it can be seen from the figures (6.33) and
(6.34) that the nonlinear observer has a faster response of only a few seconds by
using this approach. The overshoot for the nonlinear observer is slightly smaller
than with constant gains. The developed EQUEST method is still much faster in the
start-up phase than the nonlinear observer, at least for this test case with a modeled
sine wave gyroscope measurement.

• Case 7: Nonlinear observer with disturbance
Since the developed EQUEST method is implemented without the attitude predic-
tion term, it is more sensitive towards disturbances and noise. Therefore, only the
x-axis sensor data is implemented and tested to illustrate a mild influence from mea-
surement noise. The results show that even if the noise for the measurement vectors
are small, the performance of the developed EQUEST method is highly erratic. Be-
cause the method computes the solution in one time-step, it discards all previous
information, and will not be able to filter out noise. The response for the EKF is
also shown in the plots. It performs better than the developed EQUEST method,
but slightly worse than the nonlinear observer. The nonlinear observer would be
more prone to disturbances, if the convergence time was made shorter. This test
case shows how much the choice of estimation method will influence the attitude
determination. To avoid erroneous attitudes, the nonlinear observer should be the
implemented method for the NUTS satellite.

• Case 8: Nonlinear observer with time-varying reference vectors
The time-varying reference vectors will not have much influence on the simulated
estimation methods. The change of the vectors will be slow and not much change is
visible in the behavior for the methods. The stability properties will change for the
nonlinear observer, but the implemented method will still be globally exponentially
stable as long as the measurement vectors remain unbiased. The largest difference
can be seen for the EKF, which have a larger deviation in the beginning of the simu-
lation period, because it filters out some of the signals. For the final implementation,



6.10. TEST CASES CONCLUSION 113

time-varying reference vectors must be tested more extensively, especially for the
nonlinear observer since it is a relatively new method for use in satellites.

• Case 9: Combination of EQUEST and nonlinear observer
A combination of the developed EQUEST method and the nonlinear observer give
very successful results. For all the other test cases (except for test case 4), the initial
value for both the developed EQUEST method and the nonlinear observer and the
initial value for the reference quaternions were different. The developed EQUEST
method finds the correct initial value for the nonlinear observer during the first time-
step and the nonlinear observer follows the sensor data without any deviations.

By introducing noise into the implementation, no deviation for the nonlinear ob-
server can be seen, unless there is so much noise that the developed EQUEST
method is unable to find the right initial value, as seen in figure (6.50). The nonlin-
ear observer will automatically behave as if the initial value is wrong, and converge
towards the correct reference. The effects of much noise is therefore much smaller
than for the developed EQUEST method alone. Compared to the EKF, the combi-
nation method would be preferred because of the simplicity of the implementation
and its good perfomance.
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Chapter 7
Discussion

The thesis is divided into two main parts. The first part is concerned with changing the cost
function for the original EQUEST method developed by Jenssen and Yabar [4]. The con-
vergence properties of this method is inspected, and the simulation results for the new de-
veloped EQUEST are compared to the original EQUEST method and an extended Kalman
filter. Testing of the implementation of this method is made, for comparison to the original
EQUEST method and an implemented extended Kalman filter.

The developed EQUEST method requires a few more matrix multiplications than the
original EQUEST method, because of the matrix representations in the cost function. The
number of operations is still less than for the extended Kalman filter, even though the
eigenvalues and eigenvectors of a 4 × 4 matrix must be found. The added number of
operations are not expected to be a problem, since the previously developed EQUEST
method requires only about 8% of the operations of the EKF.

When substituting quaternion products for quaternion subtractions, several issues arise.
The minimization problem is not intuitively as easy, because the minimal value for the
product is no longer zero, but has value 1. By making use of a matrix representation, the
cost function can still be written as a minimization problem. This problem can be solved
by use of eigenvector mathematics, to find the optimal eigenvalue and the corresponding
eigenvector. The original EQUEST method was implemented using Lagrange multipliers,
which means a large part of the existing code can be used when implementing the new
developed EQUEST method.

The convergence analysis shows that the method converges locally. The eigenvalues
are shifted for the new method, but convergence for the method can still only be proven
under certain conditions. Global results can only be assumed if there are more than one
vector measurement and these are non-parallel. This result is mathematically weak, but
testing of the method in this thesis and in [4] show that the developed EQUEST method
most often will converge towards the correct reference quaternion. However, using this
method means that stability for the entire attitude determination and control system cannot
easily be proved.

The simulation results show that there is no real difference in behavior for the de-
veloped EQUEST method and the original EQUEST method. The performance for the
two methods appear to be identical, but more testing for the developed EQUEST method
on the microcontroller on the prototype is expected to give an unequivocal result. The
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method is compared to the well-known extended Kalman filter, which can be seen to have
better simulation results, especially for fast change in the attitude. The new developed
EQUEST method is also compared to the implemented extended Kalman filter for the sit-
uation where loss in the sensor data along one of the directional axes occurs. Especially in
the z-direction, the results for the EKF are better, but these results are not critical. The ex-
tended Kalman filter will be too complex to implement for the satellite, and the developed
EQUEST method can be shown to respond fast in the start-up phase and the deviation from
the sensor data is within reasonable bounds.

Part two of the thesis uses the new developed EQUEST method and compares the sim-
ulation results to a nonlinear observer described in Grip et al. [42]. Several test scenarios
are simulated in Matlab. The main goal is to investigate the developed EQUEST method
properties, and discuss the qualities of the method compared to this relatively new, but sim-
ple estimation method. Because of the few equations needed for the observer, and the lack
of matrix multiplications, fewer operations are needed. This will save even more power
for the ADCS of the satellite. The nonlinear observer does not require the computation
of eigenvalues, and it is proved to be globally exponentially stable for unbiased reference
vectors or if a vector bias estimation is implemented. This makes it a relevant alternative
estimation method for use in the NUTS CubeSat.

The investigated test scenarios are described in chapter (6). Several responses for
angular velocities are simulated, in addition to test cases with implemented noise and
time-varying gains or reference vectors. The most important tests for comparison between
the methods are the test cases which show the responses for typical satellite movements.
Test case 3 shows the response for a typical satellite scenario with slow change in the
attitude, and an example of a typical detumbling phase where the satellite suddenly need
to change its orientation. The influence of disturbances are described in test case 7, and
test case 2 and 4 illustrate what will happen in the simulations for loss of sun sensor data.
The nonlinear observer performs better than the developed EQUEST method in almost all
these cases, but the main drawback with the observer is the slow adaptation to the reference
quaternions in the start-up phase of the simulations. The developed EQUEST method is
much quicker, but it is not as robust against disturbances and fast change.

The sensor vector measurements will most likely be affected by noise, which tends to
be particularly severe at high frequencies. The implemented methods are simulated with
a sample time of 0,001s which corresponds to 100Hz. The microcontroller used can have
frequaencies of up to 16MHz. Disturbances in the gyroscope measurements or model noise
might also occur, but only sensor vector measurement noise is tested in this thesis. The
robustness towards noise is a very important quality for the estimation method, because
it might be unable to estimate the correct attitude if the performance is too affected by
noise. This is one of the reasons why Kalman filtering is used so extensively in attitude
determination systems for larger satellites. This method has good filtering properties and
the performance is not compromised by the influence of disturbances. The test results show
that the developed EQUEST method will be very erratic, and does not cope well with the
introduction of noise from the sensor measurements. The performance is so compromised
that the nonlinear observer seem an obvious choice for the chosen estimation method. It
can be argued that the developed EQUEST method might be preferred when the satellite
is rotating slowly, but only if low sensitivities for the sensors are assumed.
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Since the developed EQUEST method calculates the solution in one time-step, it can
be used to find the initial value for the nonlinear observer. Such a combination method is
implemented, and the results are shown in test case 9. A combination of the two methods
will be more computationally expensive, but the methods combined will not exceed the
number of operations of the extended Kalman filter. The original EQUEST method uses
only about 8% of its number of operations, and few operations for the new method and
the nonlinear observer will be added to this. The test results for the combination method
is very promising, since the response is fast and still robust towards disturbances. It has
also been considered to have the developed EQUEST method as a fall-back method for the
attitude determination, but if both methods are implemented, the method might as well be
used to find the correct start value for the nonlinear observer.

Another important challenge when using quaternions are the conversion back to Euler
angles. Care must be taken to ensure no singularities appear during the transformation.
Both in the developed EQUEST method and the nonlinear observer, precautions are made
in the implemented code in order to prevent this.
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Chapter 8
Conclusions

The quaternion subtraction terms in the previous EQUEST method have been replaced
by quaternion product terms. The result is a mathematically correct model. Testing shows
that there is no difference in the simulation results for the new developed EQUEST method
and the old original implementation made in [4]. The methods are compared to an im-
plemented extended Kalman filter, and can be seen to perform slightly worse than this
method.

The convergence properties for the developed EQUEST method is investigated and the
method can be proven to converge globally, except for certain situations which will rarely
be experienced in real life.

A nonlinear observer is implemented and tested. The results are compared to the de-
veloped EQUEST method and for some scenarios it is also compared to the extended
Kalman filter. The test results show that the developed EQUEST method is faster in the
start-up phase, but the nonlinear observer performs better for loss of sensor data and when
disturbances are introduced.

A combination of the developed EQUEST method and the nonlinear observer is im-
plemented and tested. The combination method reacts fast, and is robust against noise. For
too much disturbances, the developed EQUEST method will be unable to find the correct
initial value for the nonlinear observer. The method will still converge towards the correct
reference quaternions, but it will have a slower response for the start-up phase.

It can be concluded that the nonlinear observer seems like the best choice of estimation
method for the attitude determination and control system in the NUTS CubeSat. A point
estimation algorithm like the developed EQUEST method for calculation of the initial
value will improve the start-up time. More testing for the implementation on the proto-
type, and calculations for how many operations the estimation method can have should be
investigated before making a final decision.
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Chapter 9
Further work

Further work involves testing and analyzing the performance of the developed EQUEST
method and the nonlinear observer on the actual prototype with code written in the C
programming language. Work on this has been done by another NUTS project member
during the spring of 2012. Rewriting the code for the original EQUEST method from
floating to fixed point variables has been done. This code works as a basis for the new
implementation of the developed EQUEST method. For the nonlinear observer code, a
vector bias estimation must be implemented to ensure global exponential stability for all
possible scenarios. An albedo compensation for the sun sensor must also be implemented
for the chosen estimation method. The implemented new data set is only used for the
Matlab testing, and the prototype will be tested with real-time data from an IMU. Realistic
scenarios should be chosen.

Tests for the chosen estimation method together with the rest of the attitude determi-
nation and control system must be performed and analyzed. Communication with other
modules in the satellite must also be tested, especially with regard to the sleep mode code
implemented for the microcontroller as described in [4].

For the control and actuator parts of the ADCS for the NUTS satellite, a lot of work
still remains. The coil design for the actuators are yet to be decided. The system needs a
switching algorithm which changes from the detumbling controller to the reference con-
troller at the correct time. A power connection for the prototype is also needed, since a
USB connection cannot be used in flight mode.

A final choice of sensors must be made, with focus on robustness against temperature
changes, vacuum and radiation. The sensors must also be small and be in a reasonable
prize-range. It has been suggested by previous NUTS project members to try to estimate
the local magnetic field created by all the different electronic components of the satellite.
This way, the estimate can be feed-forwarded to the estimation method and subtracted for
the sensor output. This solution will be complicated and not very flexible for changes in
the design of the satellite modules. The final results from such an estimation cannot be
used until a late stage of the satellite development, and might be erroneous even then. A
more robust estimation method which can filter out noise is therefore preferred.
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design", John Wiley and Sons, Inc, New York, 1995.



126 BIBLIOGRAPHY

[44] H. Nøkland, "Nonlinear observer design for GNSS and IMU integration", Master
thesis, Department of Engineering Cybernetics, NTNU, June 2011.

[45] B. Vik, "Integrated satellite and inertial systems", Lecture Compendium, Department
of Engineering Cybernetics, NTNU, 2009.



Appendix A
Schmidt quasi-normalized Legendre func-
tion

The magnetic field equations uses the Schmidt quasi-normalized Legendre functions, which
are defined according to [27] as:

Pmn =

[
2(n−m)!

(n+m)!

]1/2
Pn,m (A.1)

where the associated Legendre polynomial without normalization is given from

Pn,m(v) = (1− v2)1/2m
dm

dvm
(Pn(v)) (A.2)

The cosine of the co-latitude for the magnetic field calculations is denoted by v, and the
regular Legendre polynomial Pn(v) can be written as:

Pn(v) =
1

2nn!
(
d

dv
)n(v2 − 1)n (A.3)

The derivatives of the associated Legendre functions must be calculated, since the deriva-
tive of the Schmidt quasi-normalized Legendre function is used in the calculation of the
magnetic field strength for the co-latitude µc. The derivation can be done recursively by
using the following three equations:

∂P 0,0

∂µc
= 0 (A.4)

∂Pn,n

∂µc
= sinµc

∂Pn−1,n−1

∂µc
+ cosµcP

n−1,n−1, n ≥ 1 (A.5)

∂Pn,m

∂µc
= cosµc

∂Pn−1,m

∂µc
− sinµcP

n−1,m −Kn,m ∂P
n−2,m

∂µc
(A.6)
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Appendix B
European CubeSat Symposium abstract
and presentation

This abstract was submitted to the European CubeSat Symposium in Brussels 30 January-
1 February 2012. The abstract was accepted, and a 15 min oral presentation was prepared
for the session: Attitude determination and control. More information can be found on the
website: https://www.vki.ac.be/CubeSatWorkshop/index.php
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Development on the EQUEST method for attitude determination

Toril Bye Rinnan, Roger Birkeland, Jan Tommy Gravdahl
Department of Engineering Cybernetics

Norwegian University of Science and Technology (NTNU)
N-7491 Trondheim, Norway

A new extended quaternion estimator (EQUEST) method is being developed for the Nor-
wegian University Test Satellite (NUTS). The attitude is calculated by minimization of
a cost function relating sensor measurements with known references. The method is in-
tended for use in the ADCS of a CubeSat.

The satellite is being built in a student CubeSat project at the Norwegian University
of Science and Technology. The project was started in September 2010 and is part of
the Norwegian student satellite program run by NAROM (Norwegian Centre for Space-
related Education). The NUTS project goals are to design, manufacture and launch a
double CubeSat by 2014. As payload, an IR-camera observing waves in the air-glow layer
is planned, as well as a short-range RF experiment. The satellite will fly two transceivers
in the amateur radio bands. Final year master students from several departments are the
main contributors in the project.

The work is based on a quaternion estimator (QUEST) method which is extended to
include non-vectorized measurements, such as gyroscope data. The main idea behind this
extension is to modify the cost function by including terms for the gyroscope measure-
ments and attitude prediction. An early version of the algorithm used quaternion sub-
traction for evaluating error in attitude in the cost function. This cost function has been
developed further by changing the quaternion subtraction terms into quaternion products.
When multiplied, the quaternions will represent proper rotations, and form new attitude
quaternions. Ways of minimizing the new cost function are analyzed. Because of the lim-
itations of CubeSats, the electronic components need to be optimized in regard to size,
financial budgets and power use. This in turn influence which estimation method to use.
The quaternion product is more computational expensive than the quaternion subtraction,
but the former leads to a more accurate mathematical model. For the intended hardware
and sampling time for the satellite, the added number of software operations for the quater-
nion product are not expected to be a problem.
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Development on the EQUEST method 
for attitude determination

Toril Bye Rinnan
Norwegian University of Science and Technology

The NTNU Test Satellite (NUTS)

• Double cubesat

• Launch planned in 2014

• 10‐15 master students at NTNU

• Infrared camera payload for 
observation of gravity waves

Outline:

• Quaternions

• QUEST and EQUEST

• Developed EQUEST

• Simulations

• EKF vs EQUEST

Introduction

http://nuts.iet.ntnu.noToril Bye Rinnan, torilbye@stud.ntnu.no

Attitude determination

http://nuts.iet.ntnu.noToril Bye Rinnan, torilbye@stud.ntnu.no

Attitude:

• Orientation control

• Determine attitude

Estimation methods:

• Kalman filter

• Quaternion estimator

• Developed extended quaternion 
estimator

Quaternions

http://nuts.iet.ntnu.noToril Bye Rinnan, torilbye@stud.ntnu.no

Quaternions:

• Avoid singularities

• Represent rotations

• A quaternion product gives a new 
attitude quaternion
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Parameters:

• b‐ measured direction values in spacecraft coordinates

• r‐ known direction values in inertial coordinates

• σ‐ standard deviation of measurement error

QUEST‐ quaternion estimation

http://nuts.iet.ntnu.noToril Bye Rinnan, torilbye@stud.ntnu.no

QUEST method cost function:

EQUEST‐ extended quaternion estimation

http://nuts.iet.ntnu.noToril Bye Rinnan, torilbye@stud.ntnu.no

Motivation:

• Include terms for gyroscope 
measurements and linear 
attitude prediction

EQUEST‐ extended quaternion estimation

http://nuts.iet.ntnu.noToril Bye Rinnan, torilbye@stud.ntnu.no

Extended QUEST method cost function:

Developed EQUEST

http://nuts.iet.ntnu.noToril Bye Rinnan, torilbye@stud.ntnu.no

Developed EQUEST method cost function:

• Subtraction terms replaced with 
quaternion products
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Developed EQUEST

http://nuts.iet.ntnu.noToril Bye Rinnan, torilbye@stud.ntnu.no

Developed EQUEST method cost function:

• Quaternions replaced with matrix 
representation

Developed EQUEST

http://nuts.iet.ntnu.noToril Bye Rinnan, torilbye@stud.ntnu.no

Developed EQUEST method cost function:

• Rearranging of terms and matrix 
multiplication

Developed EQUEST

http://nuts.iet.ntnu.noToril Bye Rinnan, torilbye@stud.ntnu.no

Developed EQUEST method cost function:

Implementation

http://nuts.iet.ntnu.noToril Bye Rinnan, torilbye@stud.ntnu.no

9‐ DOF IMU Prototype 
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EKF vs developed EQUEST

http://nuts.iet.ntnu.noToril Bye Rinnan, torilbye@stud.ntnu.no
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EKF:

• Well known

• Estimates sensor bias

• Good filtering effect

• Requires about 4000

arithmetic operations

Developed EQUEST:

• Finds solution in one operation

• Requires about 3200 arithmetic 

operations

• About 5 times faster than 

implemented EKF

• More intuitive tuning parameters

http://nuts.iet.ntnu.no

Sponsors:

Kongsberg Seatex, 
supporting the trip to 
this conference

QUESTIONS?

Toril Bye Rinnan, torilbye@stud.ntnu.no



Appendix C
Code

C.1 Code for the developed EQUEST method

The following code is an extension of the code made by Jenssen and Yabar [4]. The file
optimal_lambda has been eliminated by using the function eig for calculating the eigen-
values of the developed EQUEST method cost function. Computing the matrix G from
chapter 4.3, denoted by KK in the code has been modified. The extended Kalman filter
code is mainly unchanged. The code is also included on a CD.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Toril Bye Rinnan
3 % Engineering Cybernetics - June 2012
4 %
5 % This code is based on the implementation for the
6 % original EQUEST method made by Yabar & Jenssen in April 2011.
7 %
8 % Further development of the algorithm is implemented, with the
9 % use of multiplications instead of subtractions in the

10 % method's cost function.
11 %
12 % This file runs the new developed EQUEST method and the EKF
13 % on saved data from the sparkfun IMU
14 % "data_read2.m" is required to run the file.
15 % This files draws the Euler angles for the estimated attitude
16 % both for the EKF and the new developed EQUEST method
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 data_read2
20

21 %Local magnetic field for Trondheim
22 magnetometer=[13598.5;444.7;-49854.8];
23

24 %Normalized reference vector magnetometer
25 magnetometer=magnetometer/norm(magnetometer);
26 m1 = magnetometer(1);
27 m2 = magnetometer(2);
28 m3 = magnetometer(3);
29
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30 %Normalized gravity vector
31 a=[0 0 1];
32 a1=a(1);
33 a2=a(2);
34 a3=a(3);
35

36 %Initialization
37 q=[0,0,0,1]';
38 x = zeros(10,1);
39 x(1:4,1) = [0,0,1,0]';
40 qq=[0,0,1,0]';
41 P = 0*eye(10);
42 go = true;
43 count=1;
44 t=0;
45 euler_ang1=[0,0,0]';
46 euler_ang2=[0,0,0]';
47 Ts = 0.0011;
48

49 %Covariance matrix for process and sensors
50 r1 = 0.05;
51 r2 = 0.08;
52 R = diag([r1,r1,r1,r2,r2,r2]);
53

54 % %Estimate only for each 4. step
55 for i=1:4:2483
56

57 %Normalized vector measurements read from txt- file
58 acc = dataM(3:5,i);
59 acc = acc/norm(acc);
60

61 mag = dataM(9:11,i);
62 mag = mag/norm(mag);
63

64 omega_real = dataM(6:8,i)-[260 257 260]';
65 omega_real = omega_real*0.92*(pi/180);
66

67 %EKF
68 z = [acc;mag];
69 omega_skew=[0 -omega_real(3) omega_real(2);
70 omega_real(3) 0 -omega_real(1);
71 -omega_real(2) omega_real(1) 0];
72 Omega = 0.5 * [omega_skew omega_real; -omega_real' 0];
73

74 A = [expm(Omega*Ts) zeros(4,3) zeros(4,3);
75 zeros(3,4) eye(3) zeros(3,3);
76 zeros(3,4) zeros(3,3) eye(3)];
77

78 %Extended Kalman Filter Equations
79 %Time update eq
80 x = A*x;
81 x(1:4)=x(1:4)/norm(x(1:4));
82

83 q1 = x(1);
84 q2 = x(2);
85 q3 = x(3);
86 q4 = x(4);



C.1. CODE FOR THE DEVELOPED EQUEST METHOD 137

87 q_13=[0 -q3 q2;q3 0 -q1;-q2 q1 0];
88 E=[q4*eye(3)+q_13;-q1 -q2 -q3];
89 Y=[q4*eye(3)-q_13;-q1 -q2 -q3];
90 Rot=E'*Y;
91

92 %Linearization of measurment matrix
93 num = (q1^2+q2^2+q3^2+q4^2)^(3/2);
94

95 daxdq1 = a1*q1^3+3*a1*q1*q2^2+3*a1*q1*q3^2+a1*q1*q4^2-
96 2*a2*q1*q3*q4+2*a2*q2^3+2*a2*q2*q3^2+2*a2*q2*q4^2+
97 2*a3*q1*q2*q4+2*a3*q2^2*q3+2*a3*q3^3+2*a3*q3*q4^2;
98

99 daxdq2 = -3*a1*q1^2*q2-a1*q2^3-a1*q2*q3^2-3*a1*q2*q4^2+
100 2*a2*q1^3+2*a2*q1*q3^2+2*a2*q1*q4^2-2*a2*q2*q3*q4-
101 2*a3*q1^2*q4-2*a3*q1*q2*q3-2*a3*q3^2*q4-2*a3*q4^3;
102

103 daxdq3 = -3*a1*q1^2*q3-a1*q2^2*q3-a1*q3^3-3*a1*q3*q4^2+
104 2*a2*q1^2*q4-2*a2*q1*q2*q3+2*a2*q2^2*q4+2*a2*q4^3+
105 2*a3*q1^3+2*a3*q1*q2^2+2*a3*q1*q4^2+2*a3*q2*q3*q4;
106

107 daxdq4 = -(-a1*q1^2*q4-3*a1*q2^2*q4-3*a1*q3^2*q4-
108 a1*q4^3-2*a2*q1^2*q3+2*a2*q1*q2*q4-2*a2*q2^2*q3-
109 2*a2*q3^3+2*a3*q1^2*q2+2*a3*q1*q3*q4+2*a3*q2^3+
110 2*a3*q2*q3^2);
111

112 daydq1 = 2*(a1*(q1*q3*q4+q2^3+q2*(q3^2+q4^2))+
113 a3*(q4*(q2^2+q3^2+q4^2)-q1*q2*q3))-
114 a2*q1*(q1^2+3*q2^2+q3^2+3*q4^2);
115

116 daydq2 = 2*a1*q1^3+2*a1*q1*q3^2+2*a1*q1*q4^2+
117 2*a1*q2*q3*q4+3*a2*q1^2*q2+a2*q2^3+3*a2*q2*q3^2+
118 a2*q2*q4^2+2*a3*q1^2*q3-2*a3*q1*q2*q4+2*a3*q3^3+
119 2*a3*q3*q4^2;
120

121 daydq3 = -2*a1*q1^2*q4-2*a1*q1*q2*q3-2*a1*q2^2*q4-
122 2*a1*q4^3-a2*q1^2*q3-3*a2*q2^2*q3-a2*q3^3-3*a2*q3*q4^2+
123 2*a3*q1^2*q2-2*a3*q1*q3*q4+2*a3*q2^3+2*a3*q2*q4^2;
124

125 daydq4 = -2*a1*q1^2*q3-2*a1*q1*q2*q4-2*a1*q2^2*q3-
126 2*a1*q3^3+3*a2*q1^2*q4+2*a2*q2^2*q4+3*a2*q3^2*q4+
127 a2*q4^3+2*a3*q1^3+2*a3*q1*q2^2+2*a3*q1*q3^2-2*a3*q2*q3*q4;
128

129 dazdq1 = -(2*a1*q1*q2*q4-2*a1*q2^2*q3-2*a1*q3^3-
130 2*a1*q3*q4^2+2*a2*q1*q2*q3+2*a2*q2^2*q4+2*a2*q3^2*q4+
131 2*a2*q4^3+a3*q1^3+a3*q1*q2^2+3*a3*q1*q3^2+3*a3*q1*q4^2);
132

133 dazdq2 = 2*(a1*(q1^2*q4-q1*q2*q3+q3^2*q4+q4^3)+
134 a2*(q1^2*q3+q1*q2*q4+q3^3+q3*q4^2))-
135 a3*q2*(q1^2+q2^2+3*(q3^2+q4^2));
136

137 dazdq3 = 2*a1*q1^3+2*a1*q1*q2^2+2*a1*q1*q4^2-
138 2*a1*q2*q3*q4+2*a2*q1^2*q2+2*a2*q1*q3*q4+2*a2*q2^3+
139 2*a2*q2*q4^2+3*a3*q1^2*q3+3*a3*q2^2*q3+a3*q3^3+a3*q3*q4^2;
140

141 dazdq4 = -(-2*a1*q1^2*q2+2*a1*q1*q3*q4-2*a1*q2^3-
142 2*a1*q2*q3^2+2*a2*q1^3+2*a2*q1*q2^2+2*a2*q1*q3^2+
143 2*a2*q2*q3*q4-3*a3*q1^2*q4-3*a3*q2^2*q4-a3*q3^2*q4-a3*q4^3);
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144

145 dmxdq1 = m1*q1^3+3*m1*q1*q2^2+3*m1*q1*q3^2+m1*q1*q4^2-
146 2*m2*q1*q3*q4+2*m2*q2^3+2*m2*q2*q3^2+2*m2*q2*q4^2+
147 2*m3*q1*q2*q4+2*m3*q2^2*q3+2*m3*q3^3+2*m3*q3*q4^2;
148

149 dmxdq2 = -3*m1*q1^2*q2-m1*q2^3-m1*q2*q3^2-3*m1*q2*q4^2+
150 2*m2*q1^3+2*m2*q1*q3^2+2*m2*q1*q4^2-2*m2*q2*q3*q4-
151 2*m3*q1^2*q4-2*m3*q1*q2*q3-2*m3*q3^2*q4-2*m3*q4^3;
152

153 dmxdq3 = -3*m1*q1^2*q3-m1*q2^2*q3-m1*q3^3-3*m1*q3*q4^2+
154 2*m2*q1^2*q4-2*m2*q1*q2*q3+2*m2*q2^2*q4+2*m2*q4^3+2*m3*q1^3+
155 2*m3*q1*q2^2+2*m3*q1*q4^2+2*m3*q2*q3*q4;
156

157 dmxdq4 = -(-m1*q1^2*q4-3*m1*q2^2*q4-3*m1*q3^2*q4-m1*q4^3-
158 2*m2*q1^2*q3+2*m2*q1*q2*q4-2*m2*q2^2*q3-2*m2*q3^3+
159 2*m3*q1^2*q2+2*m3*q1*q3*q4+2*m3*q2^3+2*m3*q2*q3^2);
160

161 dmydq1 = 2*(m1*(q1*q3*q4+q2^3+q2*(q3^2+q4^2))+
162 m3*(q4*(q2^2+q3^2+q4^2)-q1*q2*q3))-
163 m2*q1*(q1^2+3*q2^2+q3^2+3*q4^2);
164

165 dmydq2 = 2*m1*q1^3+2*m1*q1*q3^2+2*m1*q1*q4^2+
166 2*m1*q2*q3*q4+3*m2*q1^2*q2+m2*q2^3+3*m2*q2*q3^2+
167 m2*q2*q4^2+2*m3*q1^2*q3-2*m3*q1*q2*q4+2*m3*q3^3+
168 2*m3*q3*q4^2;
169

170 dmydq3 = -2*m1*q1^2*q4-2*m1*q1*q2*q3-2*m1*q2^2*q4-
171 2*m1*q4^3-m2*q1^2*q3-3*m2*q2^2*q3-m2*q3^3-3*m2*q3*q4^2+
172 2*m3*q1^2*q2-2*m3*q1*q3*q4+2*m3*q2^3+2*m3*q2*q4^2;
173

174 dmydq4 = -2*m1*q1^2*q3-2*m1*q1*q2*q4-2*m1*q2^2*q3-
175 2*m1*q3^3+3*m2*q1^2*q4+2*m2*q2^2*q4+3*m2*q3^2*q4+m2*q4^3+
176 2*m3*q1^3+2*m3*q1*q2^2+2*m3*q1*q3^2-2*m3*q2*q3*q4;
177

178 dmzdq1 = -(2*m1*q1*q2*q4-2*m1*q2^2*q3-2*m1*q3^3-
179 2*m1*q3*q4^2+2*m2*q1*q2*q3+2*m2*q2^2*q4+2*m2*q3^2*q4+
180 2*m2*q4^3+m3*q1^3+m3*q1*q2^2+3*m3*q1*q3^2+3*m3*q1*q4^2);
181

182 dmzdq2 = 2*(m1*(q1^2*q4-q1*q2*q3+q3^2*q4+q4^3)+
183 m2*(q1^2*q3+q1*q2*q4+q3^3+q3*q4^2))-
184 m3*q2*(q1^2+q2^2+3*(q3^2+q4^2));
185

186 dmzdq3 = 2*m1*q1^3+2*m1*q1*q2^2+2*m1*q1*q4^2-
187 2*m1*q2*q3*q4+2*m2*q1^2*q2+2*m2*q1*q3*q4+2*m2*q2^3+
188 2*m2*q2*q4^2+3*m3*q1^2*q3+3*m3*q2^2*q3+m3*q3^3+m3*q3*q4^2;
189

190 dmzdq4 = -(-2*m1*q1^2*q2+2*m1*q1*q3*q4-2*m1*q2^3-
191 2*m1*q2*q3^2+2*m2*q1^3+2*m2*q1*q2^2+2*m2*q1*q3^2+
192 2*m2*q2*q3*q4-3*m3*q1^2*q4-3*m3*q2^2*q4-m3*q3^2*q4-m3*q4^3);
193

194

195 H = 1/num*[daxdq1 daxdq2 daxdq3 daxdq4 num 0 0 0 0 0;
196 daydq1 daydq2 daydq3 daydq4 0 num 0 0 0 0;
197 dazdq1 dazdq2 dazdq3 dazdq4 0 0 num 0 0 0;
198 dmxdq1 dmxdq2 dmxdq3 dmxdq4 0 0 0 num 0 0;
199 dmydq1 dmydq2 dmydq3 dmydq4 0 0 0 0 num 0;
200 dmzdq1 dmzdq2 dmzdq3 dmzdq4 0 0 0 0 0 num];
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201

202 %(Ts/2)^2*E*10*eye(3)*E'
203 Q = [0.001*eye(4) zeros(4,3) zeros(4,3);
204 zeros(3,4) 0.00000001*eye(3) zeros(3,3);
205 zeros(3,4) zeros(3,3) eye(3)*0.00000001];
206

207 P = A*P*A'+Q;
208

209 %Measurement update eq
210 %Iteratively updating of the estimated quaternion
211 K = P*H'*inv(H*P*H'+R);
212 x = x+K*(z-[Rot*[0 0 1]';Rot*magnetometer]-x(5:10));
213 P = (eye(size(K*H))-K*H)*P;
214

215

216 %Converting from quaternions to
217 %euler angles(pitch,roll,yaw)
218 qq = x(1:4)/norm(x(1:4));
219 euler_ang1=qua_to_euler(qq);
220

221 %Developed EQUEST
222 q_13=[0 -q(3) q(2);q(3) 0 -q(1);-q(2) q(1) 0];
223 E=[q(4)*eye(3)+q_13;-q(1) -q(2) -q(3)];
224 ∆_q=0.5*E*omega_real;
225 q=q+∆_q*0.01;
226 q=q/norm(q);
227

228 B=(1/0.001)*acc*[0 0 1] + (1/0.001)*mag*magnetometer';
229 %(1/0.05)*(mag/norm(mag))*magnetometer
230 S=B+B';
231 Z=[B(2,3)-B(3,2);B(3,1)-B(1,3);B(1,2)-B(2,1)];
232 o=trace(B);
233 V=[S-o*eye(3) Z;Z' o];
234 %Q'*N*Q
235 Q = [q(4) -q(1) -q(2) -q(3); q(1) q(4) -q(3) q(2);
236 q(2) q(3) q(4) -q(1); q(3) -q(2) q(1) q(4)];
237 N = Q'*eye(4)*Q*100;
238 %KK = -V + N
239 KK = -V+N;
240

241 %Using eigenvalues to find optimal q
242 I = eye(4);
243 [v,d] = eig(KK, I, 'chol');
244 y = v(:,1);
245

246 %Converting from quaternions to euler
247 %angles(pitch,roll,yaw)
248 q=y(1:4);
249 q = q/norm(q);
250 euler_ang2 = qua_to_euler(q);
251

252

253 %Plot for Euler angles
254 subplot(3,1,1)
255 hold on;
256 plot(t,euler_ang2(1)*180/pi,'color','red');
257 plot(t,euler_ang1(1)*180/pi,'color','blue');
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258 axis([0 inf -180 180]);
259 h_legend = legend('dev. EQUEST','EKF');
260 xlabel('Time [s]','Fontsize',14);
261 ylabel('Roll [Deg]','Fontsize',14);
262 set(h_legend,'FontSize',12);
263

264 subplot(3,1,2)
265 hold on;
266 plot(t,euler_ang2(2)*180/pi,'color','red');
267 plot(t,euler_ang1(2)*180/pi,'color','blue');
268 axis([0 inf -180 180]);
269 xlabel('Time [s]','Fontsize',14);
270 ylabel('Pitch [Deg]','Fontsize',14);
271

272 subplot(3,1,3)
273 hold on;
274 plot(t,euler_ang2(3)*180/pi,'LineWidth',1,'color','red');
275 plot(t,euler_ang1(3)*180/pi,'LineWidth',1,'color','blue');
276 axis([0 inf -180 180]);
277 xlabel('Time [s]','Fontsize',14);
278 ylabel('Yaw [Deg]','Fontsize',14);
279

280 %Time update
281 t=t+0.04;
282

283 end
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C.2 Code for the nonlinear observer

New code for a nonlinear observer has been implemented in addition to the modifications
of the EQUEST code. A new data set is implemented, which makes it easier to model
different vector measurement responses, and compare the simulation results. The code
for the nonlinear observer with the developed EQUEST method and the EKF is included
below. The code is also included on a CD. The code for a combination of the nonlinear
observer and the developed EQUEST method can also be tested by accessing the files on
this CD.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Toril Bye Rinnan
3 % Engineering Cybernetics - June 2012
4 %
5 % A nonlinear observer is implemented, along with
6 % the developed EQUEST method and the EKF.
7 % This files draws the Euler angles for the estimated
8 % attitude for all three methods and the sensor data
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 %Local magnetic field for Trondheim
12 magnetometer=[13598.5;444.7;-49854.8];
13

14 %Normalized reference vector magnetometer
15 magnetometer=magnetometer/norm(magnetometer);
16 m1 = magnetometer(1);
17 m2 = magnetometer(2);
18 m3 = magnetometer(3);
19

20 %Normalized gravity vector
21 accelerometer=[0 0 1]';
22 a1=a(1);
23 a2=a(2);
24 a3=a(3);
25

26

27 %Initialization
28 qr = [0,0,0,1]';
29

30 x = zeros(10,1);
31 x(1:4,1) = [0 0 1 0]';
32 Ts = 0.0011;
33 go = true;
34 count=1;
35

36 q=[0,0,1,0]';
37 qq=[0,0,1,0]';
38 q_hat =[0,0,1,0]';
39 b_g = [0.0001 0.0001 0.0001]';
40 b_g_hat = [0,0,0]';
41

42 euler_ang1=[0,0,0]';
43 euler_ang2=[0,0,0]';
44 euler_ang3=[0,0,0]';
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45 euler_ang4=[0,0,0]';
46

47 k = [1 1];
48 w = 0.1*rand(1);
49 simdata = zeros(2483,13);
50

51 %Covariance matrix for process and sensors
52 r1 = 0.05;
53 r2 = 0.08;
54 R = diag([r1,r1,r1,r2,r2,r2]);
55 P = 0*eye(10);
56

57 %Sampling time
58 dt = 0.01;
59 t=0;
60 N = 2484;
61

62 % %Estimate only for each 4. step
63 for i=1:1:N-1
64

65 %Gyroscope measurements
66 omega = [0.1*sin(0.01*t) 0.1*sin(0.01*t) 0.1*sin(0.01*t)]';
67 omega_real = omega + b_g;
68 omega_real = omega_real*180/pi;
69

70 q_vecr = [qr(1); qr(2); qr(3)];
71 S=[0 -qr(3) qr(2);qr(3) 0 -qr(1);-qr(2) qr(1) 0];
72 Rr = eye(3) + 2*qr(4)*S + 2*(S*S);
73

74 %Normalized vector measurements
75 mag = Rr'*magnetometer;
76 acc = Rr'*accelerometer;
77 mag = mag/norm(mag);
78 acc = acc/norm(acc);
79

80 %Attitude dynamics
81 T = 0.5*[-q_vecr'; (qr(4)*eye(3) + S)];
82

83 qr = qr + dt*T*(omega_real-b_g);
84 qr = qr/norm(qr);
85

86 euler_ang1 = qua_to_euler(qr);
87

88 %Observer gains
89 k_i = 0.1;
90 k = [0.5; 0.5];
91 q_vec_hat = [q_hat(1); q_hat(2); q_hat(3)];
92 S_hat = [0 -q_hat(3) q_hat(2);q_hat(3) 0 -q_hat(1);
93 -q_hat(2) q_hat(1) 0];
94 R_hat = eye(3) + 2*q_hat(4)*S_hat + 2*(S_hat*S_hat);
95

96 v_hat_1= R_hat'*accelerometer;
97 v_hat_2= R_hat'*magnetometer;
98 v_1 = acc;
99 v_2 = mag;

100

101 %Injection term
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102 sum1 = 0.5*k(1)*((v_1*v_hat_1')-(v_hat_1*v_1'));
103 sum2 = 0.5*k(2)*((v_2*v_hat_2')-(v_hat_2*v_2'));
104 sum = sum1 + sum2;
105

106 sigma = -[sum(3,2) sum(1,3) sum(2,1)]';
107 %Observer equations
108

109 T_hat = 0.5*[-q_vec_hat'; q_hat(4)*eye(3) + S_hat];
110 q_hat = q_hat + dt*T_hat*(omega_real - b_g_hat + sigma);
111 b_g_hat = proj(b_g_hat,(-k_i*sigma));
112

113 q_hat = q_hat/norm(q_hat);
114 euler_ang2 = qua_to_euler(q_hat);
115

116 %EKF
117 z = [acc;mag];
118 omega_skew=[0 -omega_real(3) omega_real(2);
119 omega_real(3) 0 -omega_real(1);
120 -omega_real(2) omega_real(1) 0];
121 Omega = 0.5 * [omega_skew omega_real; -omega_real' 0];
122

123 A = [expm(Omega*Ts) zeros(4,3) zeros(4,3);
124 zeros(3,4) eye(3) zeros(3,3);
125 zeros(3,4) zeros(3,3) eye(3)];
126

127 %Extended Kalman Filter Equations
128

129 %Time update eq
130 x = A*x;
131 x(1:4)=x(1:4)/norm(x(1:4));
132

133 q1 = x(1);
134 q2 = x(2);
135 q3 = x(3);
136 q4 = x(4);
137 q_13=[0 -q3 q2;q3 0 -q1;-q2 q1 0];
138 E=[q4*eye(3)+q_13;-q1 -q2 -q3];
139 Y=[q4*eye(3)-q_13;-q1 -q2 -q3];
140 Rot=E'*Y;
141

142 %Linearization of measurment matrix
143 num = (q1^2+q2^2+q3^2+q4^2)^(3/2);
144

145 daxdq1 = a1*q1^3+3*a1*q1*q2^2+3*a1*q1*q3^2+a1*q1*q4^2-
146 2*a2*q1*q3*q4+2*a2*q2^3+2*a2*q2*q3^2+2*a2*q2*q4^2+
147 2*a3*q1*q2*q4+2*a3*q2^2*q3+2*a3*q3^3+2*a3*q3*q4^2;
148

149 daxdq2 = -3*a1*q1^2*q2-a1*q2^3-a1*q2*q3^2-3*a1*q2*q4^2+
150 2*a2*q1^3+2*a2*q1*q3^2+2*a2*q1*q4^2-2*a2*q2*q3*q4-
151 2*a3*q1^2*q4-2*a3*q1*q2*q3-2*a3*q3^2*q4-2*a3*q4^3;
152

153 daxdq3 = -3*a1*q1^2*q3-a1*q2^2*q3-a1*q3^3-3*a1*q3*q4^2+
154 2*a2*q1^2*q4-2*a2*q1*q2*q3+2*a2*q2^2*q4+2*a2*q4^3+
155 2*a3*q1^3+2*a3*q1*q2^2+2*a3*q1*q4^2+2*a3*q2*q3*q4;
156

157 daxdq4 = -(-a1*q1^2*q4-3*a1*q2^2*q4-3*a1*q3^2*q4-
158 a1*q4^3-2*a2*q1^2*q3+2*a2*q1*q2*q4-2*a2*q2^2*q3-
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159 2*a2*q3^3+2*a3*q1^2*q2+2*a3*q1*q3*q4+2*a3*q2^3+
160 2*a3*q2*q3^2);
161

162 daydq1 = 2*(a1*(q1*q3*q4+q2^3+q2*(q3^2+q4^2))+
163 a3*(q4*(q2^2+q3^2+q4^2)-q1*q2*q3))-
164 a2*q1*(q1^2+3*q2^2+q3^2+3*q4^2);
165

166 daydq2 = 2*a1*q1^3+2*a1*q1*q3^2+2*a1*q1*q4^2+
167 2*a1*q2*q3*q4+3*a2*q1^2*q2+a2*q2^3+3*a2*q2*q3^2+
168 a2*q2*q4^2+2*a3*q1^2*q3-2*a3*q1*q2*q4+2*a3*q3^3+
169 2*a3*q3*q4^2;
170

171 daydq3 = -2*a1*q1^2*q4-2*a1*q1*q2*q3-2*a1*q2^2*q4-
172 2*a1*q4^3-a2*q1^2*q3-3*a2*q2^2*q3-a2*q3^3-3*a2*q3*q4^2+
173 2*a3*q1^2*q2-2*a3*q1*q3*q4+2*a3*q2^3+2*a3*q2*q4^2;
174

175 daydq4 = -2*a1*q1^2*q3-2*a1*q1*q2*q4-2*a1*q2^2*q3-
176 2*a1*q3^3+3*a2*q1^2*q4+2*a2*q2^2*q4+3*a2*q3^2*q4+
177 a2*q4^3+2*a3*q1^3+2*a3*q1*q2^2+2*a3*q1*q3^2-2*a3*q2*q3*q4;
178

179 dazdq1 = -(2*a1*q1*q2*q4-2*a1*q2^2*q3-2*a1*q3^3-
180 2*a1*q3*q4^2+2*a2*q1*q2*q3+2*a2*q2^2*q4+2*a2*q3^2*q4+
181 2*a2*q4^3+a3*q1^3+a3*q1*q2^2+3*a3*q1*q3^2+3*a3*q1*q4^2);
182

183 dazdq2 = 2*(a1*(q1^2*q4-q1*q2*q3+q3^2*q4+q4^3)+
184 a2*(q1^2*q3+q1*q2*q4+q3^3+q3*q4^2))-
185 a3*q2*(q1^2+q2^2+3*(q3^2+q4^2));
186

187 dazdq3 = 2*a1*q1^3+2*a1*q1*q2^2+2*a1*q1*q4^2-
188 2*a1*q2*q3*q4+2*a2*q1^2*q2+2*a2*q1*q3*q4+2*a2*q2^3+
189 2*a2*q2*q4^2+3*a3*q1^2*q3+3*a3*q2^2*q3+a3*q3^3+a3*q3*q4^2;
190

191 dazdq4 = -(-2*a1*q1^2*q2+2*a1*q1*q3*q4-2*a1*q2^3-
192 2*a1*q2*q3^2+2*a2*q1^3+2*a2*q1*q2^2+2*a2*q1*q3^2+
193 2*a2*q2*q3*q4-3*a3*q1^2*q4-3*a3*q2^2*q4-a3*q3^2*q4-a3*q4^3);
194

195 dmxdq1 = m1*q1^3+3*m1*q1*q2^2+3*m1*q1*q3^2+m1*q1*q4^2-
196 2*m2*q1*q3*q4+2*m2*q2^3+2*m2*q2*q3^2+2*m2*q2*q4^2+
197 2*m3*q1*q2*q4+2*m3*q2^2*q3+2*m3*q3^3+2*m3*q3*q4^2;
198

199 dmxdq2 = -3*m1*q1^2*q2-m1*q2^3-m1*q2*q3^2-3*m1*q2*q4^2+
200 2*m2*q1^3+2*m2*q1*q3^2+2*m2*q1*q4^2-2*m2*q2*q3*q4-
201 2*m3*q1^2*q4-2*m3*q1*q2*q3-2*m3*q3^2*q4-2*m3*q4^3;
202

203 dmxdq3 = -3*m1*q1^2*q3-m1*q2^2*q3-m1*q3^3-3*m1*q3*q4^2+
204 2*m2*q1^2*q4-2*m2*q1*q2*q3+2*m2*q2^2*q4+2*m2*q4^3+2*m3*q1^3+
205 2*m3*q1*q2^2+2*m3*q1*q4^2+2*m3*q2*q3*q4;
206

207 dmxdq4 = -(-m1*q1^2*q4-3*m1*q2^2*q4-3*m1*q3^2*q4-m1*q4^3-
208 2*m2*q1^2*q3+2*m2*q1*q2*q4-2*m2*q2^2*q3-2*m2*q3^3+
209 2*m3*q1^2*q2+2*m3*q1*q3*q4+2*m3*q2^3+2*m3*q2*q3^2);
210

211 dmydq1 = 2*(m1*(q1*q3*q4+q2^3+q2*(q3^2+q4^2))+
212 m3*(q4*(q2^2+q3^2+q4^2)-q1*q2*q3))-
213 m2*q1*(q1^2+3*q2^2+q3^2+3*q4^2);
214

215 dmydq2 = 2*m1*q1^3+2*m1*q1*q3^2+2*m1*q1*q4^2+
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216 2*m1*q2*q3*q4+3*m2*q1^2*q2+m2*q2^3+3*m2*q2*q3^2+
217 m2*q2*q4^2+2*m3*q1^2*q3-2*m3*q1*q2*q4+2*m3*q3^3+
218 2*m3*q3*q4^2;
219

220 dmydq3 = -2*m1*q1^2*q4-2*m1*q1*q2*q3-2*m1*q2^2*q4-
221 2*m1*q4^3-m2*q1^2*q3-3*m2*q2^2*q3-m2*q3^3-3*m2*q3*q4^2+
222 2*m3*q1^2*q2-2*m3*q1*q3*q4+2*m3*q2^3+2*m3*q2*q4^2;
223

224 dmydq4 = -2*m1*q1^2*q3-2*m1*q1*q2*q4-2*m1*q2^2*q3-
225 2*m1*q3^3+3*m2*q1^2*q4+2*m2*q2^2*q4+3*m2*q3^2*q4+m2*q4^3+
226 2*m3*q1^3+2*m3*q1*q2^2+2*m3*q1*q3^2-2*m3*q2*q3*q4;
227

228 dmzdq1 = -(2*m1*q1*q2*q4-2*m1*q2^2*q3-2*m1*q3^3-
229 2*m1*q3*q4^2+2*m2*q1*q2*q3+2*m2*q2^2*q4+2*m2*q3^2*q4+
230 2*m2*q4^3+m3*q1^3+m3*q1*q2^2+3*m3*q1*q3^2+3*m3*q1*q4^2);
231

232 dmzdq2 = 2*(m1*(q1^2*q4-q1*q2*q3+q3^2*q4+q4^3)+
233 m2*(q1^2*q3+q1*q2*q4+q3^3+q3*q4^2))-
234 m3*q2*(q1^2+q2^2+3*(q3^2+q4^2));
235

236 dmzdq3 = 2*m1*q1^3+2*m1*q1*q2^2+2*m1*q1*q4^2-
237 2*m1*q2*q3*q4+2*m2*q1^2*q2+2*m2*q1*q3*q4+2*m2*q2^3+
238 2*m2*q2*q4^2+3*m3*q1^2*q3+3*m3*q2^2*q3+m3*q3^3+m3*q3*q4^2;
239

240 dmzdq4 = -(-2*m1*q1^2*q2+2*m1*q1*q3*q4-2*m1*q2^3-
241 2*m1*q2*q3^2+2*m2*q1^3+2*m2*q1*q2^2+2*m2*q1*q3^2+
242 2*m2*q2*q3*q4-3*m3*q1^2*q4-3*m3*q2^2*q4-m3*q3^2*q4-m3*q4^3);
243

244

245 H = 1/num*[daxdq1 daxdq2 daxdq3 daxdq4 num 0 0 0 0 0;
246 daydq1 daydq2 daydq3 daydq4 0 num 0 0 0 0;
247 dazdq1 dazdq2 dazdq3 dazdq4 0 0 num 0 0 0;
248 dmxdq1 dmxdq2 dmxdq3 dmxdq4 0 0 0 num 0 0;
249 dmydq1 dmydq2 dmydq3 dmydq4 0 0 0 0 num 0;
250 dmzdq1 dmzdq2 dmzdq3 dmzdq4 0 0 0 0 0 num];
251

252 %(Ts/2)^2*E*10*eye(3)*E'
253 Q = [0.001*eye(4) zeros(4,3) zeros(4,3);
254 zeros(3,4) 0.00000001*eye(3) zeros(3,3);
255 zeros(3,4) zeros(3,3) eye(3)*0.00000001];
256

257 P = A*P*A'+Q;
258 %Measurement update eq
259 %Iteratively updating of the estimated quaternion
260 K = P*H'*inv(H*P*H'+R);
261 x = x+K*(z-[Rot*[0 0 1]';Rot*magnetometer]-x(5:10));
262 P = (eye(size(K*H))-K*H)*P;
263

264

265 %Converting from quaternions to Euler
266 %angles(pitch,roll,yaw)
267 qq = x(1:4)/norm(x(1:4));
268 euler_ang3=qua_to_euler(qq);
269

270 %developed EQUEST
271 q_13=[0 -q(3) q(2);q(3) 0 -q(1);-q(2) q(1) 0];
272 E=[q(4)*eye(3)+q_13;-q(1) -q(2) -q(3)];
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273 ∆_q=0.5*E*omega_real;
274 q=q+∆_q*0.01;
275 q=q/norm(q);
276

277 B=(1/0.001)*acc*[0 0 1] + (1/0.001)*mag*magnetometer';
278 %(1/0.05)*(mag/norm(mag))*magnetometer
279 S=B+B';
280 Z=[B(2,3)-B(3,2);B(3,1)-B(1,3);B(1,2)-B(2,1)];
281 o=trace(B);
282 V=[S-o*eye(3) Z;Z' o];
283 %Q'*N*Q
284 Q = [q(4) -q(1) -q(2) -q(3);
285 q(1) q(4) -q(3) q(2);
286 q(2) q(3) q(4) -q(1);
287 q(3) -q(2) q(1) q(4)];
288 N = Q'*eye(4)*Q*100;
289 %KK = -V + N
290 KK = -V*20+N;
291

292 %Using eigenvalues to find optimal q
293 I = eye(4);
294 [v,d] = eig(KK, I, 'chol');
295 y = v(:,1);
296

297 %Converting from quaternions to Euler
298 %angles(pitch,roll,yaw)
299 q=y(1:4);
300 q = q/norm(q);
301 euler_ang4 = qua_to_euler(q);
302

303 simdata(i,:) = [t euler_ang4'*180/pi euler_ang3'*180/pi
304 euler_ang1'*180/pi euler_ang2'*180/pi];
305 t=t+0.04;
306

307 end
308

309 %Plot for Euler angles
310

311 t = simdata(:,1);
312 Equest = simdata(:,2:4);
313 Kalman = simdata(:,5:7);
314 q = simdata(:,8:10);
315 Nonlinear = simdata(:,11:13);
316

317 clf
318 figure(gcf)
319

320 subplot(311),plot(t,q(:,1),'g',t,Equest(:,1),'r',
321 t,Nonlinear(:,1),'k',t,Kalman(:,1),'b')
322 xlabel('Time (s)','Fontsize',14),
323 ylabel('Roll','Fontsize',14),grid
324 h_legend = legend('Sensor data',
325 'dev. EQUEST','Nonlinear observer','EKF');
326 axis([0 inf -180 180]);
327 set(h_legend,'FontSize',12);
328

329
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330 subplot(312),plot(t,q(:,2),'g',t,Equest(:,2),'r',
331 t,Nonlinear(:,2),'k',t,Kalman(:,2),'b')
332 xlabel('Time (s)','Fontsize',14),
333 ylabel('Pitch','Fontsize',14),grid
334 h_legend = legend('Sensor data',
335 'dev. EQUEST','Nonlinear observer','EKF');
336 axis([0 inf -180 180]);
337 set(h_legend,'FontSize',12);
338

339 subplot(313),plot(t,q(:,3),'g',t,Equest(:,3),'r
340 t,Nonlinear(:,3),'k',t,Kalman(:,3),'b')
341 xlabel('Time (s)','Fontsize',14),
342 ylabel('Yaw','Fontsize',14),grid
343 h_legend = legend('Sensor data',
344 'dev. EQUEST','Nonlinear observer','EKF');
345 axis([0 inf -180 180]);
346 set(h_legend,'FontSize',12);
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C.2.1 Code for the projection algorithm used for the nonlinear ob-
server

The nonlinear observer requires a projection algorithm for updating the gyroscope bias
estimation. The code for the projection function is included below, and on the handed in
CD.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Toril Bye Rinnan
3 % June, 2012
4 %
5 % Projection algorithm used for the nonlinear observer
6 %
7 % Input to the fuction is the estimated gyro bias
8 % and the negative value of k_I multiplied
9 % with the injection term

10 %
11 % Output is the next estimated bias value
12 %
13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14

15 function [bg] = proj(b_g_hat,neg_ksigma)
16

17 x = (norm(b_g_hat))^2;
18 k = neg_ksigma;
19 wm = 1;
20 if (x > wm)
21 wm = x;
22 end
23

24 P_grad = b_g_hat;
25

26 if (x<wm) || (x==wm && P_grad'*k≤0)
27 p = k;
28 else
29 p = k -(k*(P_grad'*P_grad))*((norm(P_grad)^2))^(-1);
30 end
31 bg = p;
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C.3 Contents of CD

combination.m
data_read2.m
igrf.m
igrfSg.txt
igrfSh.txt
LatLongTabell.txt
msph2cart.m
msph2inert.m
nonlinear.m
proj.m
qua_to_euler.m
spark_Kalman_Equest_new.m
sparkfun.txt
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