
Development and assessment of a novel
model for artificial neural networks.

Per Roald Leikanger

Master of Science in Engineering Cybernetics

Supervisor: Amund Skavhaug, ITK

Department of Engineering Cybernetics

Submission date: May 2012

Norwegian University of Science and Technology

Development and Assessment of a Novel
Model for Neural Simulation

Per R. Leikanger

May 8, 2012

Abstract

When simulating a spiking neuron, numerical integration of synaptic
input is often utilized to compute the neuron’s depolarization. This
report shows that the Numerical Integration Model(NIM) for spiking
neuron simulations have a cumulative error that diverges unless the
expectancy value for the local truncation error is zero. An alternative
neuron simulation scheme, κM , was developed and is presented in this
text. Experimental and theoretical results shows that the κM error
varies within a bounded domain.

Experiments have been conducted on sample–and–hold implemen-
tations of the two models. A κM100 simulation, a κM simulation with
100 iterations per forcing function period, was compared with NIM
simulations with finer temporal resolutions. It is shown that before 15
periods of a sinusoidal depolarizing input current has been simulated,
the κM100 simulation produced a smaller error than a NIM10.000 sim-
ulation. Since the NIM simulation has a number of time steps that
is two orders of magnitude larger than the κM simulation, this repre-
sents a significant efficiency improvement.

Contents

1 Introduction 1

2 Background Theory 6
2.1 Biological Neural Systems 7

2.1.1 The Neuron . 8
2.1.2 The Axon and the Action Potential 9
2.1.3 The Synapse . 11

2.2 Artificial Neural Systems : A Review of ANN History . 12
2.3 Spiking Artificial Neural Networks 14

3 Neural Modelling 19
3.1 The κ Formalism for Neural Activity 20

3.1.1 Algebraic Solution for the LIF Neuron’s Depo-
larization . 20

3.1.2 The Action Potential Discontinuity 22
3.1.3 Synaptic Flow 23

3.2 Implications of κ–Mathematics 25

4 Design/Implementation and Theoretical Comparison 27
4.1 General Design of the Simulation Software 28

4.1.1 Simulator Design 29
4.1.2 Time . 31

i

4.2 The Artificial Neuron 34
4.3 Class Hierarchy – Differentiation by Inheritance 37

4.3.1 NIM – Design and Implementation 38
4.3.2 κM – Design and Implementation 41

4.4 A Theoretical Comparison of the two Models 44
4.4.1 On Computational Complexity 44
4.4.2 Time and Error for the Two Models 45

5 Efficiency; Experimental Comparison 49
5.1 Design of Experiments to Assess Efficiency 50

5.1.1 Experiment 1: Idealized Situation 52
5.1.2 Experiment 2: More Realistic Input Flow 53

5.2 Results . 55
5.2.1 Static Input Flow 55
5.2.2 Dynamic Activation level 57

5.3 Discussion of Experimental Results 61

6 Discussion and Conclusion 63
6.1 Summary . 63
6.2 Discussion . 64
6.3 Conclusion . 66

A Mathematical Derivations 68
A.1 Algebraic Solution to the LIF Neuron’s Depolarisation 68
A.2 Refraction time and simulator time scale 69
A.3 Activation level recalculation 71

B Implementation Details 73
B.1 Log, for Comparison 73
B.2 The Sensory Neuron 75

ii

C Other Results 77
C.1 An experiment where κ ∈ [0.5τ, 2.5τ] 78
C.2 Difference in absolute error in experiment 2b, NIM10.000

and κM100 . 79
C.3 Result from ‘time’ command, section 4.4.1 80

D UML Class Diagrams 81
D.1 Time Class . 82
D.2 Node Subelement Classes 83

iii

List of Figures

2.1 Illustrative model of the neuron 8
2.2 The transient axon membrane potential from an action

potential . 10
2.3 Synaptic transmission in an excitatory synapse 12
2.4 The sigmoid curve that is often used to compute the

output of a node in second generation ANNs 13
2.5 A schematic diagram of the LIF neuron model 15
2.6 An artificial neural circuit to illustrate numerical in-

tegration of the LIF neuron. Schematic model and
simulation results. 18

3.1 Illustration of how time windows can be utilized to sim-
ulated the neuron by the algebraic equation 21

3.2 Illustration of neural integration of synaptic input . . . 24

4.1 Time simulation by alternating task lists 29
4.2 UML class diagram of auroSim, the neuron simulator

designed to compare NIM and κM 30
4.3 A schematic model of time propagation in auroSim . . 33
4.4 A sketch of the subelement design of a node in the ANN,

enabling the intracellular communication scheme used
for signal propagation in the artificial neuron 34

iv

4.5 UML class diagram for the auron subelement of a node,
NIM and κM . 39

5.1 The depolarization of a sensory neuron with a sinusoidal
algebraic sensory function. 51

5.2 Sensory functions for the two efficiency experiments. . . 54
5.3 Simulation results of experiment 1: static forcing function 56
5.4 Simulation results of experiment 2: dynamic forcing func. 58
5.5 Spike time error for all 26 spikes of experiment 2 59
5.6 Spike time error for all spikes from an extended run of

experiment 2. The simulation time interval is ten times
as long as the forcing function in experiment 2 to make
the accumulation of error prominent. 60

A.1 Firing frequency of a neuron, with and without absolute
refraction period. 70

A.2 Plot of the altered sigmoid function (A.7), used for de-
termination of the interval to the next recalculation of
κ in a κM node . 72

C.1 Experiment 3, where κ varies between 0.5τ and 2.5τ . . 78
C.2 Difference in spike time error for NIM10.000 and κM100

in an extended run of experiment 2 (ten times as long
as the forcing function in experiment 2) 79

C.3 Result of ‘time’ command for ten executions of auronSimKM

and auroSimNIM . 80

D.1 UML class diagram for time class 82
D.2 UML class diagram for dendrite subelement 83
D.3 UML class diagram for auron subelement 84
D.4 UML class diagram for axon subelement 85
D.5 UML class diagram for synapse subelement 86

v

Chapter 1

Introduction

While the digital computer processes information by algorithms, net-
works of neurons can be said to process information by pattern recog-
nition [30]. Thus, the two computational systems utilize different com-
putational schemes, with different capabilities and limitations. Each
can, however, emulate the computational scheme of the other to ac-
complish certain tasks. By classification of input and producing out-
put based on previously learned patterns, biological neural systems are
capable of performing algorithmic tasks. Digital systems are likewise
able to emulate neural abilities by simulating networks of neurons.
This is referred to as Artificial Neural Networks(ANNs) and is an ex-
ample of bionics, technology inspired by nature.

Neurons propagate information by discrete output transmissions.
An action potential is initialized after the depolarization of the neuron,
defined as a leaky integral of input, goes beyond the firing threshold [1].
When the action potential reaches a synapse, a synaptic transmission
causes the postsynaptic neuron to be depolarized or hyperpolarized,
depending on the synapse. The size of a transmission does not vary
with the magnitude of the neuron’s input, but can to a certain extent
be defined by the strength of the synaptic connection alone[14]. It is

1

debated whether neurons propagate information mainly as the action
potential frequency (“the firing frequency”), or if the exact timing of
spikes also is important[4, 5, 9, 30]. The main branch of ANN tech-
nology models information propagation as a floating point number,
defined by the neuron’s immediate input[31]. These ANNs can be
said to simulate the neuron in the frequency domain, where the float-
ing point number represents the firing frequency of the neuron[22, 31].

Simulating the neuron in the frequency domain is a major simpli-
fication of the system, and all information about timing is lost. Such
models can therefore not be used for exact simulations of the neuron
or where the relative spike time of neurons is important[5, 19]. An
element of particular importance is synaptic plasticity, seen as the
foundations of learning and memory in neuroscience[2, 15, 19–22]. In
frequency based ANNs, local learning rules are defined by the presy-
naptic and postsynaptic neuron’s firing frequency, r′j and ri.

∆ωij = Crir
′
j ,

r′j is the presynaptic neuron’ s firing frequency

ri is the receiving neuron’s firing frequency

ωij it the synaptic weight between neuron j and i

C > 0

(1.1)

where ωi,j represents the magnitude of the synaptic connection be-
tween neuron j and neuron i [31]. This is a mathematical interpre-
tation of what is referred to as “Hebbian learning” after Donald A.
Hebb who first proposed this mechanism. Hebb’s postulate states:

When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or
both cells such that A’s efficiency, as one of the cells firing
B, is increased. [8]

Both Hebb’s postulate and the mathematical interpretation pre-
sented in equation (1.1) describes a monotonic increase in synaptic

2

weight and is obviously unstable; any correlation between the two neu-
rons’ firing frequencies makes the connection between them stronger,
thus increasing the correlation. Numerous attempts have been made
to develop stable learning rules in frequency based ANNs, with still
increasing complexity(See e.g. [10, 28, 29]).

In 1987, Gustafsson et al. proposed that the increase in synap-
tic weight after a transmission varies with the postsynaptic neurons’s
depolarization[6]. At about the same time, Levy and Steward found
that synaptic transmission could cause Long–Term Depression(LTD),
a decrease in synaptic weight, after a single transmission[24]. These
two findings explain how it is possible with a graded synaptic plasticity
ranging from negative to positive weight change after a transmission.
The resulting learning rule has later been referred to as Spike–Timing
Dependent Plasticity(STDP), as the postsynaptic depolarization at
the time of transmission often correlates with the relative spike time
of the pre– and postsynaptic neuron[33]. The biological background
for STDP is discussed in sec. 2.1.3.

ANNs that operate in the frequency domain do not contain any
information about timing, and STDP can not be used. Possible tem-
poral elements in signal processing are also lost. A networks of nodes
that emulate neurons in the time domain, by simulating the depolar-
ization of the neuron, propagate information as spikes. Such ANNs are
therefore referred to as Spiking Artificial Neural Networks (SANNs)[5].

Despite the listed advantages, SANN is not often used for practical
applications. The main reason might be the computational complexity
of these simulations and the chaotic nature of neural networks. Small
errors in each node can have large effects on how the whole network
behaves. It is shown in section 4.4.2 that the error in simulations that
utilize numerical integration becomes large unless the computational
time step is very small, or the simulated period is short. In an at-
tempt to avoid a cumulative error, a simulation model that utilizes
the algebraic equation for the neuron’s depolarization was developed

3

and is presented in this report. The novel model is compared to the
existing neuron simulation scheme, to assess whether the model is an
improvement with respect to the total simulation error.

This report is written for an audience with some knowledge from
cybernetics and systems theory, as well as those who study the field of
computational neuroscience. Parts of chapter 4 requires some knowl-
edge of object oriented programming. These parts can be considered
as documentation for auroSim, implemented in C++ and distributed
under GPL[23] , and may be ommited. A deep insight into the mech-
anisms of biological neural systems is not required, as the most im-
portant aspects for signal processing are introduced in chapter 2.

Chapter 3 gives an overview of mathematics and concepts used in
the novel spiking neuron simulation model, κM . The system’s value
equation is found by solving the differential equation for the Leaky
Integrate–and–Fire(LIF) neuron’s depolarization. The novel simula-
tion scheme can also be used for simulating other neuron models, by
utilizing this model’s value equation instead of the LIF model’s.

In chapter 4, the design of software intended for a theoretical com-
parison of the two spiking neuron simulation schemes is presented.
The design and implementation is done in such a way that as many
elements as possible are common between the two implementations, in
order to make principal differences prominent. The resulting software
is referred to as auroSim in this text.

Chapter 5 presents two experiments for auroSim. One considers
an idealized situation, and is intended as a test of the design and error
analysis of the two simulation models. The second experiment consid-
ers a more complex input pattern, defined by a sinusoidal activation
level. This can for example represent an applied stimuli through an
electrode or Local Field Potential Oscillations of cortical neurons. The
results from the experiment is used in an efficiency comparison of the
two models.

The report concludes with a discussion of the differences in design,

4

implementation, error mechanisms and efficiency of the two models.
Most chapters end with a discussion of the presented elements, and
the final chapter can be seen as a conclusion of all the chapters’ sum-
maries. The interested reader can find some additional information
in the appendix. These elements are excluded from the main text to
increase readability.

5

Chapter 2

Background Theory

The biological brain can be thought of as the computational system
of an animal. It receives information from sensors located at various
locations in the body and sends output to its various manipulators.
This includes e.g. muscles and the being’s endocrine system.

A biological computational system is fundamentally different from
digital technology. Instead of having a few, computationally power-
ful processing units, the biological brain has a huge amount of weak
processing units, called neurons. The neuron processes information by
doing a leaky integration of input, and sending output when the value
goes beyond some threshold[30]. Large networks of such cells, with
dynamic connections between them, comprise the biological brain and
is seen as the basis of memory, thought and intelligence.

Biological neural systems can in some respects outperform the dig-
ital computer. Tasks that involve associative computations or learning
are performed much better by a neural network than by algorithms.
An example of this is the pattern recognition of a two week old baby
that recognizes the mother’s face, a task that only recently has been
accomplished by digital computational systems. In the computer, this
can be accomplished by an Artificial Neural Network, ANN .

6

Before the mechanisms of neural simulators and ANNs can be dis-
cussed, the original system has to be introduced. This chapter is re-
served for this purpose, and starts by introducing the most important
aspects of neural signal processing mechanisms. After the biological
neuron has been introduced, a short review of the history of ANNs
is presented. This section concludes with introducing Spiking Artifi-
cial Neural Networks, neural network simulators with nodes where the
neuron’s depolarization is considered.

2.1 Biological Neural Systems

In the late 1800s, Camillo Golgi developed a way of staining nervous
tissue so that complex networks became apparent in nervous tissue.
Santiago Ramòn y Cajal used Golgi’s technique in such a way that in-
dividual neurons could be separated, and it was observed that nervous
tissue was not a continuous web but a network of discrete cells. Ramòn
y Cajal proposed what has later been known as the neuron doctrine;
that the computational capabilities of the brain comes from a network
of individual “brain cells” that process incoming transmissions and
sends output when its input history has a certain pattern. For their
contribution, Ramòn y Cajal and Golgi shared the 1906 Nobel’s price
in Physiology and Medicine [2, 11].

Modern neuroscience follows the neuron doctrine. Each node in a
neural network is called a neuron, and the connection between neurons
are called synapses. When the presynaptic neuron “fires” an action
potential, the following synaptic transmission cause the postsynaptic
neuron to become excited or inhibited. Transmissions in excitatory
synapses increase the postsynaptic membrane potential, causing that
neuron to approach firing. Inhibitory transmissions does the opposite,
and inhibits the postsynaptic neuron with respect to firing. Firing
of an action potential causes transmission in all the neuron’s output

7

synapses, and a resetting of the depolarization to the reset potential
vr [1, 11, 13].

Figure 2.1: Illustrative model of the neuron. The signal propagation goes from
left to right in this figure; Synaptic integration at the dendrites, action potential
through the axon and finally transmission through the neuron’s output synapses.
(Figure from http://biomedicalengineering.yolasite.com/neurons.php)

In this section, the most important elements of neural signal pro-
cessing are presented, enabling the reader to become more familiar
with how neural networks process information.

2.1.1 The Neuron

In terms from graph theory, a biological neural network is a directed,
cyclic graph. The nodes are called neurons and the edges between
nodes are called synapses. In addition to the synapse, the neuron
contains some elements that are fundamental for signal processing.
The most important element is the neuronal membrane.

Each neuron is surrounded by a phospholipid bilayer cell mem-
brane with a low permeability to ions, enabling a different concentra-
tion of ions over the membrane. All neuron membranes have ionic
pumps dedicated to uphold an ionic concentration gradient over the

8

membrane. Different ionic pumps push the corresponding ions “up-
stream” in relation to the ionic concentration gradient, resulting in an
electrochemical potential over the membrane. The resting membrane
potential of a neuron generally lies at about −65mV [2, 16].

When specialized ionic gates permeable to certain ions are opened,
these ions can flow freely through the gate. Depending on which ions
are let thought, the neuron membrane is either hyperpolarized(more
negative membrane potential) or depolarized(more positive membrane
potential). When the membrane potential becomes more positive than
the firing threshold of the neuron, an action potential is initiated at
the axon hillock, the base of the neuron’s axon. [1, 14, 17].

2.1.2 The Axon and the Action Potential

Voltage–gated sodium and potassium channels are located along the
membrane of the axon. If the membrane potential is more positive
than the “firing threshold” of the neuron, these channels open, caus-
ing the membrane to have a transient positive increase in membrane
potential. Through passive transmission of the electrical charge, due
to diffusion of ions, the membrane potential at the next site of voltage
gated channels becomes more positive than the firing threshold and
the process is repeated. The size of the signal arriving at the synapse,
at the distal end on the axon, is therefore independent of the total
distance traveled [17].

The two most important voltage gated channels for the action po-
tential is the sodium and the potassium channels. The Na2+ channel
is most responsive and opens and closes faster than the K+ channel.
The highest concentration of Na2+ ions is on the outside of the neu-
ron, resulting in an inflow of positively charged ions that depolarize
the neuron. The potassium ion has the highest concentration inside
the cell, and activation of the K+ channel cause a flow of positively
charged ions out of the cell, repolarizing the neuron. Because the K+

9

channel is slightly less responsive than the Na2+ channel, and that
both channels only stay open for a short while, the transient mem-
brane potential of the action potential has the form shown in fig. 2.2
[17].

Figure 2.2: The action potential. Activation of the Na2+ channel cause positively
charged ions to flow into the neuron, depolarizing the neuron. The slower K+

channel has the opposite effect. Both channels close after a short while, and the
membrane potential returns to the resting value after a small undershoot [17].

After a successful opening of the voltage–gated channels in the
axon membrane, internal mechanisms close the ion channels after a
little while. The channels stay closed long enough to enable the active
sodium–potassium pump to reestablish some of the ionic concentration
gradient over the membrane. During this time, it is impossible to
elicit a new action potential. This time interval is called the absolute
refraction time for the neuron, and is important to prevent the action
potential form “travelling back” along the axon[2]. as well as limiting
the maximal firing frequency of the neuron(see appendix A.2).

An important part of the active propagation of the action poten-
tial is that the signal is independent of the distance travelled. Because
of this, the synapses located at various locations along the axon re-

10

ceives the same transmission–initiating signal. The importance of this
becomes clear when the mechanisms of synaptic transmissions are in-
troduced.

2.1.3 The Synapse

When the action potential reaches an axon terminal, voltage–gated
Ca2+ channels in the active zone of the terminal opens and Ca2+ en-
ters the cytosol of the axon terminal. The axon terminal contains
bag–like organelles called synaptic vesicles filled with different neu-
rotransmitters. Free intracellular Ca2+ cause these organelles to be
pulled toward the neuron membrane. The synaptic vesicles fuse into
the neuron membrane when close enough, causing its content to be re-
leased into the synaptic cleft on the outside of the membrane. The neu-
rotransmitters diffuse out in the fluid of the synaptic cleft, and some
come in contact with postsynaptic receptors. When the right neuro-
transmitter bind to a specific group of receptors, called ligand–gated
channels, an ionic channel is opened in the postsynaptic membrane.
Depending on the channel(and thus the ions that are let through), this
can either depolarize(excite) or hyperpolarize(inhibit) the postsynap-
tic neuron[14].

The N-methyl-D-aspartic acid(NMDA) receptors are of a partic-
ular importance for learning in biological neural systems[34]. As op-
posed to non-NMDA receptors, these channels enable Ca2+ ions to
flow into the neuron. This is thought to take part in regulating the
synthesis of new AMPA receptors, and is considered important for
synaptic plasticity as well as transmission[26]. Because NMDA chan-
nels are blocked by a Mg2+ ion covering the opening, the membrane
potential has to be sufficiently depolarized to remove this block and let
ions through[12]. Due to the number of NMDA receptors and vari-
ations around the Mg2+ blocks, this creates a graded magnitude of
the Ca2+ inflow and thus a graded synaptic plasticity. Synaptic plas-

11

Figure 2.3: Synaptic transmission in an excitatory synapse; An action poten-
tial arriving at the terminal of the presynaptic axon enables Ca2+ to enter the
presynaptic cytosol, causing synaptic vesicles to fuse with the membrane. The
containing neurotransmitters are released into the synaptic cleft. These diffuse
passively across the synaptic cleft and bind to transmittor–specific receptors in the
postsynaptic membrane [14].

ticity can be modelled as a function of the postsynaptic membrane
potential at the time of transmission[12, 20, 33]. Since this is closely
linked with the relative time of firing for the pre– and postsynaptic
neurons, this mechanism is referred to as Spike Timing Dependent
Plasticity(STDP).

2.2 Artificial Neural Systems : A Review

of ANN History

The pragmatic use of neural network simulations started with the
“McCulloch–Pitts neuron” in 1943. Warren McCulloch, an early neu-
roscientist, and the young mathematician Walter Pitts initiated a for-
malized discussion about the mechanics of the neuron and the use of

12

neuron simulations in technology. This resulted in the first neuron
emulator(artificial neuron). Artificial Neural Networks based on the
McCulloch–Pitts neuron model has later been referred to as the first
generation ANN[25]. Each node is modelled as a boolean device(with
an on–off response), where the node sends output if the immediate
level of input is large enough. The first generation ANN can therefore
be said to be a network of simple threshold gates, and does not take
into consideration the depolarization state of each node. One famous
example of a first generation ANN is Rosenblatt’s Perceptron[7].

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4

Sigmoid Curve : 1/(1+exp(-x))

Sigmoid Curve

Figure 2.4: Sigmoid curve 1
1+e−x , often used as the activation funtion in second

generation ANNs.

A better simulation of the neuron is done in the nodes of a sec-
ond generation ANN[19, 25]. Each node computes the output level
as a floating point number based on the immediate level of input to
the node. From sec. 2.1, we have that the biological neuron sends
discrete output pulses when its depolarization level goes above the fir-

13

ing threshold. A continuous propagation of a floating point number
can therefore be said to represent the frequency of such transmissions
as a function of the present input. The function used for comput-
ing the output is referred to as the activation function of the node,
and is found to give the best results if it is given by the continuously
differentiable sigmoid function[7].

σ(x) =
1

1 + e−x
(2.1)

As the biological neuron has a state, defined by the depolarization
value of the neuron, the stateless computation of the McCulloch–Pitts
neuron is a gross simplification of the original system. It is more cor-
rect to consider the neuron as being stateless in the frequency domain,
and the stateless computation of a second generation ANN can there-
fore be said to be more correct than in a first generation ANN[22, 25].
Since the concept of mean frequency only makes sense for time in-
tervals of a certain size, precise simulations with small computational
time steps does not necessarily give accurate simulation results for
an ANN of the second generation. For more precise simulations of
the neuron or simulations where temporal mechanisms are important,
one has to simulate the neuron in the time domain by considering its
depolarization.

2.3 Spiking Artificial Neural Networks

A node in a SANN simulates the neuron with respect to its depolar-
ization. When the depolarization value crosses the firing threshold, a
spike is initiated and the signal is propagated in the neural network.
Many formal spiking neuron models exist, where the most common is
the LIF neuron model[3].

14

(f)
(t – t)j

synapse

axon

from neuron j

I

R C ϑ

I

(f)
(t – t)

i

(t)

α

soma

soma

(f)
j(t – t)

δ

δ

Figure 2.5: A schematic diagram of the LIF neuron model. Each node can
be modelled as the circuit inside the dashed circle on the right–hand side of the
figure. Depolarizing input is represented by the input current I(t), and when the

potential over the capacitor is larger than the firing threshold at time t
(f)
i , a spike

δ(t− t(f)i) is generated. The left–hand side of the figure shows a model of synaptic

transmissions as a low–pass filtering of the presynaptic action potentials δ(t
(t)
j),

generating a input current α(t− t(f)j) to neuron i [5].

15

The LIF model is a simple phenomenological model of the bio-
logical neuron, and is highly popular due to its simplicity. The leaky
integration of the LIF neuron model can be modelled by the electrical
circuit shown in fig. 2.5. When the membrane potential v(t) crosses
the neuron’s firing threshold τ , a spike is initiated and transmissions
through all the neuron’s output synapses is the result. The neuron’s
membrane potential is then reset to the resting membrane potential
vr < τ [5].

lim
t→t(f);t>t(f)

v(t) = vr (2.2)

To the author’s knowledge, the LIF neuron has previously only
been simulated by numerical integration in the computer. The de-
polarization is integrated numerically by summing all synaptic input
transmissions, and subtracting the leakage after each computational
time step. If the efficiency of the synapse from neuron j to neuron i
is modelled by ωij, the total input current during a time interval can
be found by

Ii(tn) =
∑
j

ωij
∑
f

a(tn − t(f)
j) + ξi(tn) (2.3)

where a(t−t(f)
j) is defined by the neuron’s synaptic input currents and

ξi(tn) comes from other sources of depolarizing input[3]. Examples of
this can be a current inserted through a probe, or the sensed signal of
a sensory neuron.

Leakage can be simulated by subtracting a fraction of the present
membrane potential every time step. Because computational resources
are limited, a finite temporal resolution(discrete time) is utilized. This
involves discrete steps in simulation time, and the previously computed
depolarization level has to be used to find the leakage l(tn). This
introduces a delay, with the size of the computational time step, and

16

establishes an error source for the simulation.

l(tn) = αv(tn−1) (2.4)

Thus, the discretization of time introduces an error defined by the
computational time step — if the size of the computational time step
is increased, the simulation error becomes larger. More accurate sim-
ulations can therefore be accomplished by making the computational
time steps smaller, but this simultaneously increase the computational
load of the simulation.

17

(a) Model of Spiking ANN Connec-
tions

0

200

400

600

800

1000

1200

0 500 1000 1500 2000

A
c
ti
v
it
y
 v

a
ri
a
b
le

Time

Activity variable for auron E

Activity variable

(b) Depolarisation Time Course

Figure 2.6: (2.6a) A schematic model of the synaptic connections in an artificial
neural circuit intended to illustrate neural integration. The synaptic connections
in fig. 2.6a are represented as a factor of the firing threshold. A single trans-
mission through a synapse with ωij = 1 therefore cause the postsynaptic artificial
neuron (“auron”) to fire. Thus, the neural circuit [A1, A9] is self sustaining, and
causes synaptic transmissions through the synapse from auron [A∗] to auron E.
(2.6b) The resulting depolarization curve for auron E. Every auron but A7 is con-
nected to auron E, making the effect of leakage prominent. Note the small decrease
in auron E’s depolarization, every ninth time step. (Figure 2.6b is generated by
auroSimN , the part of auroSim with numerical integration) [22]

18

Chapter 3

Neural Modelling

Numerical integration involves an accumulation of error, since the er-
ror is integrated alongside the considered variable. A simulator based
on numerical integration therefore involves an accumulation of local
truncation errors, the error from each computational time step. In
an attempt to avoid a diverging error, a neural simulator based on
algebraic equations is developed and presented in this chapter.

To utilize continuous equations in a neural simulator, it is found in
the preliminary project that depolarizing input has to be represented
as a continuous flow [22]. After the algebraic solution to the LIF
neuron’s depolarization has been presented in sec. 3.1.1 and 3.1.2, the
concept of synaptic transmission as a continuous flow is discussed in
sec. 3.1.3.

19

3.1 The κ Formalism for Neural Activity

One system that behaves like a leaky integrator is a bucket with a
set of small holes at the bottom. If the LIF neuron is visualized as a
leaky bucket with input from a gutter, excitatory synaptic input can
be represented by an agent pouring cups of water into that gutter.
When the number of agents pouring water into the gutter becomes
very large and the size of each transmission is small, this can again be
visualized as rain.

The resulting water level in the leaky bucket can either be sim-
ulated by counting the number of raindrops(and computing the size
of the leakage in every computational time step) or by estimating the
corresponding flow through the gutter and utilizing the algebraic so-
lution to the system’s differential equation to find the water level. For
simulations with a bounded temporal resolution(discrete time), more
accurate simulations can be achieved by utilizing an algebraic equa-
tion than by numerical integration. This is tested in chapter 5. In this
section, the mathematics and necessary concepts of a flow simulation
is presented.

3.1.1 Algebraic Solution for the LIF Neuron’s De-
polarization

Subthreshold integration in the LIF neuron is defined by the general
leaky integrator’s differential equation[5]:

v̇(t) = v̇in(t)− v̇out(t)
= I(t)− αv(t)

(3.1)

The inflow is represented by v̇in(t) = I(t), and “leakage” is represented
by v̇out(t) = αv(t). The algebraic solution to 3.1 is derived in appendix
A.1. For time intervals where κ and α are constant, it is found that

20

the system’s subthreshold depolarization is defined by

v(tv) = κ− (κ− v0) e−atv , κ =
I

α
(3.2)

The variable v0 represents the neuron’s initial depolarization value and
tv represents the time from the start of the considered time interval(tv = t− t0).
Recall that equation 3.2 is only valid for time intervals where κ and α

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t
p
 (time from start of period)

d
e

p
o

la
ri
z
a

ti
o

n

Demonstration of the value function for changing neural input.

Figure 3.1: The figure shows how the concept of time windows enables the use of
(3.2) for simulating the neuron’s depolarization. In the time interval tp = [0, 100],
κ0 = 0.7 is valid. At time tp = 100, κ is changed to κ1 = 0.5, before being set to
κ2 = 1 at time tp = 150. [22]

remain constant. To formalize such an interval for later discussions,
the concept of time windows is introduced.

Definition 1. A time window is a time interval where κ and α are
constants, within one inter–spike period.

When the neuron’s input flow is changed or the neuron fires an
action potential, a new time window is initialized. The initial value v0

21

can be found by computing the last value of the previous time window,
and t0 is acquired by saving the time of initiation for the new time
window.

3.1.2 The Action Potential Discontinuity

As introduced in sec. 2.1, the neuron fires an action potential when
the depolarization value crosses the firing threshold. The firing time
for a neuron can therefore be found by the equation v(t

(f)
w) = τ , where

t
(f)
w is the firing time and τ is the firing threshold of the neuron.

v
(
t(f)
w

)
= τ

κ− (κ− v0) e−at
(f)
w = τ

e−αt
(f)
w =

κ− τ
κ− v0

t(f)
w = −α−1 ln

(
κ− τ
κ− v0

) (3.3)

If an absolute refraction time tr is defined for the neuron, where
the depolarization remains constant after firing, this value has to be
part of the equation for the estimated firing time. Another way of
viewing the resulting equation is as the remainder of current inter–
spike interval, pr(κ, v0).

pr(κ, v0) = −α−1 ln

(
κ− τ
κ− v0

)
+ tr (3.4)

Since eq. (3.4) is derived from (3.2), the same constraints are valid.
The estimate for the remainder of the current inter–spike interval is
only valid until a new time window is initialized. If depolarizing inflow
is defined to be constant during a computational time step, a firing

22

time estimate during the current time step can not change before the
estimated time. The estimated firing time can therefore be utilized
as the artificial neuron’s firing time. If the double precision floating
point format is utilized in the simulator, this gives a near–continuous
temporal resolution for the neuron’s firing times.

An inter–spike interval is finalized by the neuron firing an action
potential, after which the neuron’s depolarization is reset to the mem-
brane resting potential before the process starts anew. The immediate
estimate of the total inter–spike interval can be computed by eq. (3.4),
from the neuron’s reset potential vr.

pisi(κ) = pr(κ, vr) (3.5)

This equation is important when we next consider synaptic flow of
action level.

3.1.3 Synaptic Flow

Let all synaptic input be modelled as the flow κij, where j represents
the presynaptic neuron and i the receiving neuron. Other input that
changes neuron i’s depolarization is represented by ξi(t). The final
value for the neuron’s depolarization, κi = Ii

α
, is defined by the sum

of all the neuron’s input flows. If D is the set of integers represent-
ing neuron i’s presynaptic neurons, the total inflow during the n’th
iteration can be written as

Ii,tn = κi,tn · α

=

(∑
j

κij,tn + ξi(tn)

)
α , j ∈ D

(3.6)

Synaptic input, κij, is the most important element for neural sig-
nal processing[14], and is the main focus of this section. The function

23

ξi(t), representing other input, can have different forms for different
depolarizing sources. This element therefore has to be modelled sep-
arately for each such source.

Figure 3.2: A simulation of neural integration of synaptic input. Excitatory
Postsynaptic Potentials(EPSP) increase the membrane potential of the postsynap-
tic neuron and excite the neuron toward firing. Inhibitory Postsynaptic Poten-
tials(IPSP) hyperpolarize the postsynaptic neuron, thus inhibiting the neuron with
respect to firing. When the membrane potential at the axon hillock crosses the fir-
ing threshold, set to −10mV in this simulation, an action potential is fired. (The
figure is from the website, http://techlab.bu.edu/resources/software view/epsp ipsp/, of the edu-
cational “ EPSP IPSP” software, intended for illustration of EPSP and IPSP after
synaptic transmissions).

Let the synaptic weight ωij be defined as the postsynaptic change
in depolarization after one synaptic transmission. Synapse j’s contri-
bution to the total change in depolarization after a time interval ∆t

24

can be written as the number of transmissions in that interval scaled
by the synaptic weight ωij.

∆vi(∆tn) = Nj,∆t · ωij,tn−1 , j ∈ D (3.7)

where Nj,tn represents the number of transmissions in the synapse from
neuron j to neuron i in the time interval ∆tn. The variable ωij,tn−1

represents the synaptic weight, updated at time tn−1.
In κM , a continuous variable representing the present estimate of

the inter–spike interval can be used instead of the integer number of
transmissions. This enables a higher resolution for the propagated sig-
nal and thus a smaller simulation error. For a time interval where the
presynaptic activation level κj is constant, synaptic flow of activation
level can be written as

κij,tn =
ωij,tn

pisi(κj,tn)
∆t , j ∈ D (3.8)

For a simulation with constant computational time steps ∆t =
Ct, this constant can further be incorporated into the variable that
represents synaptic weight ωij. We arrive at the equation for synaptic
flow of activation level for constant time steps:

κij =
ωij

pisi(κj)
, j ∈ D (3.9)

When synaptic plasticity is introduced, it is important to remem-
ber that synaptic weight is scaled by the constant Ct. For consistency,
it is important to scale synaptic plasticity by the same factor.

3.2 Implications of κ–Mathematics

Algebraic analysis of a node’s activation level is possible when neural
input is represented as a continuous flow. The propagation of infor-
mation is represented by the distribution of a changed κ. This makes

25

it possible to utilize a less confusing jargon when talking about neural
activation level. Algebraic transfer functions can also be set up, mak-
ing it possible to do computations on the filter properties of a neural
network.

Combined with the concept of synaptic flow and time windows,
the κ formalism enables a novel neural simulation scheme, the κ sim-
ulation model(κM). By letting the activation level, κ, be propagated
as a mechanistic function of the presynaptic neuron’s firing frequency,
neural network dynamics can be simulated, and eq. 3.2 can be used
to find the neuron’s depolarization. Thus, the κM simulation model
has elements from second as well as third generation ANNs.

The concept of time windows from definition 1 makes it possible
to utilize equation 3.2 to simulate the neuron’s depolarization. Every
time the neuron’s activation level is altered, a new time window is
initialized by updating the initial depolarization value v0 and saving
the time of initiation, t0. The depolarization value can be found for
any time tv in a time window, by the equation

v(tv) = κ− (κ− v0) e−atv , tv = t− t0 (3.10)

The next firing time can be estimated by eq. 3.4. This makes it
possible to have spike times with an intra–iteration time accuracy, and
a near–continuous resolution for possible spike times can be accom-
plished.

26

Chapter 4

Design/Implementation and
Theoretical Comparison

To assess whether κM can be used to simulate a spiking neuron, and
to compare the resulting design/implementation with one that utilize
numerical integration, both models were designed and implemented by
the author. The Numerical Integration Model(NIM) and κM differ
in how they compute the neuron’s depolarization, how information is
propagated, and how spike times are computed. The design of the
software intended for a theoretical comparison of the two models is
presented in this chapter. This software, referred to as auroSim, is
later used in experiments that consider the comparative efficiency of
the two simulation models.

27

4.1 General Design of the Simulation Soft-

ware

When designing a simulator of neural networks, one has to consider
simulation time explicitly. Networks of neurons are highly concurrent,
but have to be simulated by a sequential composition in the digital
computer. Thus, asynchronism for the nodes has to be emulated in
the simulation. One way to achieve this is to separate the considered
simulation time interval into discrete time slices(“time steps”), and
let time in the simulation be expressed by the integer time–step num-
ber. Before the design of time emulation in auroSim is presented,
the concept of concurrent is defined in a way that is valid for discrete
time.

Definition 2. Two tasks occur simultaneously if they can not be sep-
arated by their time of occurrence.

Two events during the same time step are therefore defined to
happen simultaneously, unless additional information about timing is
provided. One approach for emulating concurrency is to let discrete
time be defined as a discretization of the real world’s clock(RWC).
It is important that the whole list of tasks is completed before time
is incremented, so that no tasks are lost or delayed to subsequent
time steps. This creates a strong dependence between the maximal
workload and the minimal computational time step in a simulation.
Such a constraint is wasteful and clearly undesirable.

An alternative approach is to utilize a scheme based on serial ex-
ecution. If all tasks to be executed simultaneously are located in one
of two lists(list A), new tasks induced by these actions can be inserted
into the other list(list B). When all tasks in one list are completed,
the variable that represents time is incremented, and the alternative
list becomes the active list. Since causality defines that the effect

28

Figure 4.1: Time simulation based on the sequential computation in the digital
computer. Iteration tn−1 have list A as the active list. Two new tasks, t1,1 and
t1,2 is generated by task t1 and inserted into the alternative list(list B). Task t2
generates task t2,1. When all tasks in the active list A is completed, time is iterated
and list B is set as the active list. The next computational time step with B as
the active list is illustrated in the lower part of the figure. Note that no tasks are
inserted into the currently active list.

happens after its cause, elements can not be inserted into the active
list during its execution. This serial approach enables concurrency to
be simulated without dependence of RWC, and one does not have
to consider the maximal work load of the simulation. The simulation
software implemented in this work utilize a modification of this latter
time scheme, as presented in section 4.1.2.

4.1.1 Simulator Design

The classes of auroSim are classified into one of two groups, classes
that represent mechanism dependent on time and classes that are not
directly involved in the simulation. Objects in the simulation have
causality, and are instantiated from classes derived from the abstract
class timeInterface. These classes inherit the pure virtual functions
of timeInterface, and are abstract unless the functions are overloaded
in the derived classes. This assures that all objects directly involved

29

in the simulation have defined its own doTask() and doCalculation()
functions. The reader is referred to [32, chap. 12] for more about
abstract classes in C++, and appendix D.2 for UML class diagrams
of auroSim.

Figure 4.2: UML class diagram for auroSim. All classes directly involved in
the simulation are derived from class timeInterface. The classes listed on the
right hand side of the figure are abstract classes meant to be inherited to neuron
subelements of the two simulation models, NIM and κM . For a derived class
of timeInterface to be able to make objects, the pure virtual functions doTask()
and doCalculation() have to be defined for that class. This ensures that all objects
involved in the simulation have a defined behaviour in time.

All common aspects of the two simulation models, NIM and κM ,
are located in the abstract neuron subelements classes i dendrite, i auron,
i axon and i synapse. These are derived to the model–specific neuron
subelements for the κM and NIM simulator. Thus, only the function-
ality that differ between the two models are implemented separately.

The main loop of the simulation is located in the function void*

30

taskSchedulerFunction(void*). While bContinueExecution is set, the
first element of pWorkTaskQueue is popped and its doTask() member
function is executed. New elements are inserted at the end of pWork-
TaskQueue. In this way, the task scheduler function is responsible for
driving causality forward in the simulation. A graceful termination of
the simulation is possible by setting bContinueExecution = false.

1 void∗ taskSchedulerFunct ion (void∗)
2 {
3 . . .
4
5 // S imu la t i on ’ s main−l o op :
6 while (bContinueExecution)
7 {
8 // Pop f i r s t e l ement b e f o r e e x e cu t i on : Save p o i n t e r to t h e
9 // p o i n t e r v a r i a b l e pCons i de r edE l emen tForTh i s I t e ra t i on

10 stat ic t ime In t e r f a c e ∗ pCons ideredElementForThisIterat ion ;
11 pCons ideredElementForThisIterat ion = t i m e c l a s s : : pWorkTaskQue . f r on t () ;
12
13 // Then pop e lement from pWorkTaskQue :
14 t i m e c l a s s : : pWorkTaskQue . pop f ront () ;
15
16 // Perform t a s k :
17 pConsideredElementForThisIterat ion−>doTask () ;
18 }
19 return 0 ;
20 }

In order to simulate time by the serial execution performed by
taskSchedulerFunction(void*), time class has been designed as a time
separation object. As can be seen in fig. 4.2, this is where pWork-
TaskQueue is located as a static member. Class time class also con-
tains the variable that represent tn, static unsigned long ulTime, and
a doTask() function that is responsible for incrementation of this vari-
able. Since this class is fundamental for time simulation in auroSim,
and enables time to be emulated by a single linked list, a whole section
is reserved for introducing this class.

4.1.2 Time

Class time class contains the elements pWorkTaskQueue, pCalcula-
tionTaskQueue and ulTime as static member variables. Before the
main loop of the simulation starts, pWorkTaskQueue is initialized by

31

inserting a single time class object into the linked list. This is done in
the function initializeWorkTaskQueue(), marked as a friend function
of time class. The friend keyword is a way of allowing other elements
to access the private parts of a class declaration[32, Appendix C.11].
The static flag bPreviouslyInitialized is used to prevent reinitialization
of pWorkTaskQueue.

1 void in i t ia l izeWorkTaskQue () {
2 {
3 // Flag to p r e v en t r e i n i t i a l i z a t i o n
4 stat ic bool b P r e v i o u s l y I n i t i a l i z e d = fa l se ;
5 i f (b P r e v i o u s l y I n i t i a l i z e d)
6 return ;
7
8 // I n s e r t p o i n t e r to o b j e c t o f t ime c l a s s , a l l o c a t e d in t h e f r e e s t o r e
9 t i m e c l a s s : : pWorkTaskQue . push back (new t i m e c l a s s ()) ;

10
11 // Se t f l a g to p r e v en t r e i n i t i a l i z a t i o n o f pWorkTaskQue
12 b P r e v i o u s l y I n i t i a l i z e d = true ;
13 }

Because the time class object is allocated in the free store, that
object will exist for as long as the implementation runs or is ex-
plicitly deallocated. A pointer to this element is legal to insert into
std::list<timeInterface*> pWorkTaskQueue since time class is derived
from class timeInterface. The time class object inserted into pWork-
TaskQueue, referred to as timeSeparationObj in the remainder of
this text, is responsible for administration of time in auroSim. When
timeSeparationObj.doTask() is called, ulTime is incremented after a
self –pointer is pushed to the back of pWorkTaskQueue[22]. In this
way, timeSeparationObj acts as a time separation object, where the
execution of its doTask() function is the only way a new time step can
be initialized in auroSim.

When an element’s task is performed from taskSchedulerFunction(void*),
the pointer to that element is removed from pWorkTaskQueue. Some
elements create other tasks, inserting them at the end of pWork-
TaskQueue. Since timeSeparationObj defines the separation of two
computational time steps, this element lies after all other tasks in the
current time iteration. New tasks are therefore inserted by their order
of creation in the subsequent time step (after timeSeparationObj in

32

Figure 4.3: The first sketch of how concurrency is simulated in auroSim.
taskSchedulerFunction() pops the first element of pWorkTaskQueue and executes
its doTask() member function. 1) Element T , representing timeSeparationObj,
iterates ulTime and inserts a self pointer at the back of pWorkTaskQueue. 2) El-
ement A generates two new tasks, A1 and A2, before the pointer is removed from
pWorkTaskQueue by taskSchedulerFunction(). Element B and C do not generate
any new tasks. Computation nr. 5 moves timeSeparationObj to the back of the
list, and the situation is similar to pWorkTaskQueue after action nr. 1.

33

pWorkTaskQueue). This enables a single linked list to behave like the
two alternating lists in fig. 4.1. Time simulation with a single linked
list, and the use of timeSeparationObj is illustrated in fig. 4.3.

4.2 The Artificial Neuron

The artificial neuron in auroSim is designed as a simplification of the
biological neuron as shown in fig. 2.1. Each node contains the most
important elements of the neuron with regard to signal propagation,
located in four subelements that represent [synapse, dendrite, soma,
axon]. Each subelement of the artificial neuron has a pointer to the
previous and the next element in the signal pathway, enabling a direct
simulation of the intracellular communication of the neuron.

.

Figure 4.4: A diagram of the subelements of the artificial neuron. The signal is
propagated from the left to the right in the figure. Transmissions in a synapse calls
the postsynaptic dendrite’s newInputSignal(). When it is time for the neuron to
fire(checked by newInputSignal() in the NIM version of the dendrite), the pointer
to the node’s auron element is inserted into pWorkTaskQueue. Auron’s doTask()
function push its axon pointer to the back of pWorkTaskQueue, and the axon’s
delay is simulated in the same manner.

Construction of Node Elements

The object design of a node enables the implementer to specify the
spatio–temporal resolution in the simulation. To achieve a higher
resolution, a smaller computational time step can be defined. The

34

axonic delay before any particular synapse is defined by the number
of serially linked axon elements, scaled by the size of the computational
time step.

Since the subelements of the artificial neuron are designed to be
separate entities linked by pointers, special effort has to be made to
make each node act as a single object. In auroSim, this is achieved by
considering the whole node as a “metaobject”, where all elements are
allowed to access the next and previous subelement’s protected parts.
The friend keyword allows another class or function to access the
private or protected elements of the class. In this way, all subelements
of a node metaclass are given the same privileges as if it was defined
to be a single node class. This design opens many opportunities for
the uses of auroSim, but is also makes the construction of a node
non–trivial.

To construct the node metaclass object illustrated in fig. 4.4, it is
most convenient to start with a subelement with only one previous and
one subsequent element. The only element that satisfies this constraint
is the [auron] subelement. The construction of this element can be
represented by the notional constructor auron::auron().

1 auron : : auron () : t ime In t e r f a c e (”auron”){
2 . . .
3 pOutputAxon = new axon (this) ;
4 pInputDendrite = new dendr i t e (this) ;
5 . . .
6 }

The classes [auron, axon, dendrite and synapse] do not exist in the
implementation, but are used in this section to illustrate how the con-
structor of the model specific s {element} and K {element} are de-
signed. Because the implementation always use dereferenced pointers,
the free store is used for the node subelements. The new < T > op-
erator allocates memory for an object of type < T > in the free store,
and give the same results as malloc(size(T)) for memory allocation in
C [32]. Utilizing the dynamic memory enables a more precise control
of the scope of each element existence, as an element in the free store

35

lasts for the remainder of the run or until explicitly deallocated [32,
Appendix C.9].

Destruction of Node Elements

To avoid memory leaks in C, elements constructed in the free store
have to be explicitly deallocated. In auroSim, this is done by the
subelement’s destructor.

Like for the construction, the destruction of a whole node starts at
the [auron] subelement and spreads to the node’s more distal parts.
For the [dendrite] and [axon] element, a while loop is used to remove
all synaptic connections.

1 /∗∗∗ Dea l l o c a t i o n i s common f o r bo th models ’ d end r i t e , and t h e r e f o r e l o c a t e d in
i d e n d r i t e ∗∗∗/

2 i d e n d r i t e : : ˜ i d e n d r i t e ()
3 {
4 // De l e t e a l l d e r e f e r en c e d pInputSynapse o b j e c t s . The synapse s are

r e s p o n s i b l e f o r removing i t s p o i n t e r from the p r e s y n a p t i c and
p o s t s y n a p t i c node .

5 while (! pInputSynapses . empty ()){
6 delete (∗ pInputSynapses . begin ()) ;
7 }
8 }

The function std::list::empty() returns false as long as the list contains
elements, and true if it is empty. The function std::list::begin() returns
a pointer to the first element of the list. The free–store memory used
by X is deallocated by the function delete(X). This also calls the
destructor of X.

If an axon sends a signal to a deallocated synapse, the action is
undefined and errors might occur. To avoid undefined behaviour, the
destructor of a class is responsible for removing all pointers to the
destructed object. This can be seen in the destructor of s synapse:

1 /∗∗∗ Des t ru c t o r f o r s s ynap s e ∗∗∗/
2 s synapse : : ˜ s synapse ()
3 {
4 // Remove a l l [t h i s]− p o i n t e r s from prenode ’ s pOutSynapses− l i s t :
5 for (std : : l i s t <s synapse ∗>:: i t e r a t o r i t e r = (pPreNodeAxon−>pOutSynapses) .

begin () ; i t e r != (pPreNodeAxon−>pOutSynapses) . end () ; i t e r++){
6 i f (∗ i t e r == this){

36

7 // l i s t : : e r a s e () c a l l s t h e e l emen t s d e s t r u c t o r , bu t t h i s does not
concern us as t h e e l ement i s a p o i n t e r . I f t h e e l ement was t h e
o b j e c t i t s e l f , t h i s would c r e a t e an i n f i n i t e r e c u r s i v e
d e s t r u c t o r l oop .

8 (pPreNodeAxon−>pOutSynapses) . e r a s e (i t e r) ;
9 }

10 }
11
12 // Remove a l l [t h i s]− p o i n t e r s from pos tnode ’ s pInputSynapses− l i s t :
13 for (std : : l i s t <s synapse ∗>:: i t e r a t o r i t e r = pPostNodeDendrite−>

pInputSynapses . begin () ; i t e r != pPostNodeDendrite−>pInputSynapses . end ()
; i t e r++){

14 i f (∗ i t e r == this){
15 // Erase t h e p o s t s y n a p t i c node ’ s p o i n t e r to t h i s synapse :
16 (pPostNodeDendrite−>pInputSynapses) . e r a s e (i t e r) ;
17 }
18 }
19 . . .
20 }

The [synapse] destructor iterates over all pre– and postsynaptic ele-
ments’ synapse pointers, and removes all pointers to itself. This shows
why the [dendrite] element’s destructor can safely delete its synapses
without consideration of postsynaptic pointers to the synapse element.
The function erase(X) also calls the destructor for element X, but
since the argument is a pointer in the listed code, the pointer’s de-
structor is called instead of the synapse’s destructor. In this way, an
infinite recursive synapse::∼synapse() destructive loop is avoided.

4.3 Class Hierarchy – Differentiation by

Inheritance

All classes that are part of the simulation are derived from class
timeInterface [22]. As seen in fig. 4.5, the pure virtual functions
doTask() and doCalculation() stay undefined in i auron. This is also
valid for the other subelement classes of the node metaclass, causing
the i {element} classes to be abstract ({element} ∈ [dendrite, auron,
axon, synapse]).

A class with one or more pure virtual functions is an ab-
stract class, and no objects of that abstract class can be

37

created [32].

Figure 4.5 shows the class diagram for the auron subelement of
a node, where it can be seen that all pure virtual functions are over-
loaded in s auron and K auron. These classes can therefore be in-
stantiated and objects can be made. The UML class diagram of the
other subelements are presented in appendix D.2, showing a similar
class hierarchy composition for the other node elements. Because all
differences between the two models are implemented separately, the
similarities and differences between the two models were emphasized
to the author.

4.3.1 NIM – Design and Implementation

A spiking neuron is often simulated by a Numerical Integration Method
(NIM), where the depolarization is found by numerical integration.
All depolarizing and hyperpolarizing input in the course of a time step
is added to the node’s depolarization value. Leakage is simulated by
subtracting a fraction of the difference between the current depolar-
ization value and the defined resting potential. For simplicity, the
resting membrane potential is defined to be zero in auroSim. The
leakage constant is written as α = 1− lf , where lf is the leakage frac-
tion. In this way, the computation of leakage can be implemented as
a single multiplication.

v(tn) = v(tn−1)− lf · v(tn−1)

= (1− lf) · v(tn−1)

= α · v(tn−1)

(4.1)

Because of the order of magnitude for synaptic input connections in
the biological neuron, it is highly likely that a neuron receives synaptic

38

Figure 4.5: UML class diagram of the auron subelement of a node. The i auron
element in fig. 4.4 is inherited to the model specific classes s auron and K auron.
The auron classes are further derived to the sensor auron classes for the two mod-
els, introduced in section B.2.

39

input every time step. Leakage is therefore computed every time step
in auroSim. For sparse neural networks or for simulations with very
small time steps, it could be more efficient to implement leakage as
v(tn) = αx · v(tn−x), since the probability of not getting input every
time step is larger.

The Nodes’ Input

In auroSim, the [dendrite] receives all input to the artificial neuron.
As introduced in sec. 2.1.2, the size of the transmission at any par-
ticular synapse is defined by the synaptic weight of that synapse. De-
pending on whether the synapse is an excitatory or inhibitory synapse,
the postsynaptic membrane potential is either increased or decreased.
In auroSim, this is implemented by letting the synapse send [(1 −
2 bInhibitorySynapse) · ωij] as an argument to the postsynaptic den-
drite’s newInputSignal(double) function.

1 in l ine void s synapse : : doTask ()
2 {
3 // I f t h e synapse i s i n h i b i t o r y , send i n h i b i t o r y s i g n a l (s u b t r a c t) :
4 // (b I n h i b i t o r y S ynap s e i s a boo l ean v a r i a b l e t h a t d e f i n e s whether t h e

synapse i s i n h i b i t o r y or not)
5 pPostNodeDendrite−>newInputSignal ((1−2∗ b I n h i b i t o r y E f f e c t) ∗(FIRING THRESHOLD

∗ dSynapticWeight)) ;
6
7 // Write to l o g :
8 synTransmi s s i on l ogF i l e <<”\ t ” <<t i m e c l a s s : : getTime () <<”\ t ”
9 <<(1−2∗b I n h i b i t o r y E f f e c t) ∗ dSynapticWeight

10 <<” ; \ t#Synpaptic weight\n” ;
11 }

The postsynaptic dendrite’s newInputSignal(double) function adds the
input to the node’s depolarization. If this variable goes beyond the
firing threshold, an action potential is initialized by pushing the node’s
first axon pointer to pWorkTaskQueue.

Action potential in NIM

Spatio–temporal delay in the axon is simulated by a linked list of
[axon] objects, each pushing the next element on to pWorkTaskQueue.

40

For a greater temporal resolution, smaller computational time steps
and a larger number of serially linked axon elements can be uti-
lized. When one of the axon elements contains a pointer to an output
synapse, that synapse’s pointer is pushed to pWorkTaskQueue, caus-
ing synaptic transmission to happen in the following time step.

4.3.2 κM – Design and Implementation

As seen in fig. 4.5, the design of K auron is more complex than for
s auron. This is partially because the node has to keep an overview
of the floating point time instance for initiation of new time windows.
A near–continuous resolution for the initiation of time windows, com-
bined with the ability to compute the exact firing time by equation
3.4, enables the use of intra–iteration firing time accuracy.

Since synaptic flow is utilized instead of discrete synaptic input
transmissions, the activation variable of a κM node is defined to rep-
resent the activation level κ from equation 3.2. Every time a new
time window is initialized, the initial depolarization v0 = v(t0) is up-
dated by computing the new value by eq. 3.10. By also saving the
time of initiation, t0, this equation can be used to update the neuron’s
depolarization the next time a new time window is initialized. This
enables κM to be used to simulate the neuron’s depolarization by the
algebraic value equation.

The Node’s Input

In section 3.1.3, discrete synaptic flow is defined as the number of
transmissions, Nj,∆t, scaled by the synaptic weight for that synapse.

∆vij(∆tn) = Nj,∆t · ωij,tn−1 , j ∈ D

An appropriate description of ∆vij(∆tn) is the synaptic flow of acti-
vation level, since the flow has a direct influence on the postsynaptic

41

node’s activation value κi. By the use of synaptic flow κij, defined
by the presynaptic neuron’s activation level, a data format of higher
precision than integers can be used. The postsynaptic activation level
can be written as

κi,tn =
∑
j

κij,tn , j ∈ D

where D is the set of integers representing neurons with a synaptic
connection to neuron i. For a κM implementation, it could be advan-
tageous to consider edge transmissions κ∗ij as the change in synaptic
flow.

κ∗ij,tn =
d

dt
κij(tn) , j ∈ D

= κij,tn − κij,tn−1

(4.2)

When a subset M of the presynaptic neurons have an altered
synaptic flow, this method gives a slightly more efficient simulation
— only the edge transmissions fromM have to be added to the post-
synaptic node’s activation level. This can be written as

κi,tn = κi.tn−1 +
∑
l

κ∗il,tn , l ∈M ⊆ D (4.3)

Because edge transmission as the derivative demands numerical
integration, the accumulation of error has to be considered. A spe-
cialized timeInterface derived class, whose doTask() recalculate the
node’s activation level is devised for this purpose. An object of this
class is included as a member variable of the K auron class, and gives a
periodic recalculation of the node’s activation level. The recalculation
is designed to be dynamic, in such a way that the period to the next
recalculation is longer if the deviation from the recalculated activation
level level is small. Documentation for recalcKappaClass can be found
in appendix A.3.

42

Action Potential in κM

As discussed in section 3.1.2, the use of the algebraic solution when
simulating the neuron enables the node’s spike times to have a near–
continuous time resolution. In auroSim, this is implemented by let-
ting time class::doTask() insert an auron’s pointer when it is esti-
mated to fire during the next time step. Since this is done before
time is incremented, the element will execute its task during the cor-
rect computational time step. By sorting the K auron tasks by the
dEstimatedTaskTime member variable, neuron firing is scheduled by
the estimated task time instead of the tasks’ order of creation. This
could be of importance when multiple processing units are utilized for
simulation of a large network of neurons.

To simulate spatio–temporal delay in the axon, each output synapse
is scheduled after its predefined transmission delay. For example, if
the axonic delay before a synapse is defined to be 2.15 and the node
fires at time 141.2, the synapse’s task can be scheduled for execution
at time 143.35 by writing this time to the synapse’s dEstimatedTask-
Time. Due to the mechanisms described in sec. 4.1.2, the synapse
will execute its task at that time without the need for simulation of
axonic propagation delay. This gives a more constant work load for
the simulation, something that is very advantageous if spiking neuron
simulations are to be used for real–time applications.

43

4.4 A Theoretical Comparison of the two

Models

4.4.1 On Computational Complexity

A κM simulation involves more complex operations than in a NIM
simulation. To assess whether it takes longer time to simulate, a quick
experiment was set up. A set of runs of auroSim have been executed
to compare the run time of the experiment that produced the sim-
ulated solution in experiment 2 (see section 5.1.2). All simulations
were conducted with the same parameters, using either the κM or the
NIM simulation model. The run time of the two variants of auroSim
was found by the command

time ./auroSim.out -r1000000 -n1.5

This executes a simulation with 1.5 forcing function periods, each with
106 time steps. The mean output of the time shell command, for κM
and NIM , is presented in table 4.1.

NIM1.000.000 κM1.000.000

Mean Std. dev. Mean Std. dev.
run 0.434s 0.104 0.800s 0.088
user 0.336s 0.337 0.703s 0.079
sys 0.007s 0.003 0.009s 0.007

Table 4.1: Mean run time for ten runs of the NIM and the κM version of
auroSim. The standard deviation for all items is also listed. The interested reader
is referred to appendix C.3 for the run time of all runs in the experiment.

The κM simulations required almost the double amount of ‘wall
clock time’ in these particular runs of auroSim. A comprehensive study
of the run time of the two simulation models has not been conducted,

44

since the relative run times of the two models is hardware–dependent
and would only give an example for this specific architecture. The
results still indicate that the κM implementation requires more com-
putational resources than the NIM implementation. This is most
probably due to the computational complexity of κM .

Because the principal goal of a simulation is to produce accurate
results, and the error can be decreased by making the computational
time steps smaller, it is possible to measure efficiency by the simulation
method’s error[27]. The run times in table 4.1 put large requirements
on κM in order for this method to be more effective than NIM .
A comparative efficiency analysis, based on simulation accuracy, is
presented in chapter 5.

4.4.2 Time and Error for the Two Models

When simulating time variant variables in discrete–time environments,
truncation errors arise from the discretization of time. Mechanisms
than make the variable time variant are computed based on the previ-
ously updated value instead of continuously updating the value. For a
NIM simulation, this means that all depolarizing input and the effect
of leakage during a time step does not influence the total size of that
time step’s leakage. This effect is larger for simulations with longer
computational time steps. As mentioned in section 2.3, a simulation
with a smaller error can therefore easily be designed by increasing the
temporal resolution of the simulation. This is not a good solution, as
it also greatly increases the computational load of the simulation.

Because the Numerical Integration Model(NIM) is fundamentally
different from a simulation model that considers depolarizing flow(κM),
the two models’ error mechanisms are analyzed separately. All analy-
sis done in this text are of the un–improved models, implemented with
a simple sample–and–hold numerical technique. Optimization by es-
timating the intermediate values in each time step can be utilized for

45

both models, but this is outside the scope of this work.

Numerical Integration Method(NIM)

The considered variable in a NIM simulation is the depolarization
value of the neuron. An inter–spike interval is completed when this
value goes to suprathreshold levels, causing the initiation of the next
spike. The neuron’s depolarization is reset to vr < τ after a spike,
meaning that the considered variable goes through a net rising phase
in the course of an inter–spike interval.

A rising phase means that earlier values are smaller than the cur-
rent value. Equation 4.1 shows that leakage is proportional to the de-
polarization value, and that the previous value is utilized for comput-
ing the current leakage. The simulated leakage in NIM thus generally
produces a positive depolarization error, i.e. it causes the depolariza-
tion value to be larger than it should be. In the course of an inter–spike
interval, all local truncation errors caused by this effect are integrated
to what will be referred to as the inter–spike truncation error. When
utilizing the sample–and–hold integrated technique, this error is pre-
dictable and always causes the neuron to fire to early. An early firing
gives an earlier start of the next inter–spike interval, meaning that the
neuron’s depolarization is integrated over an interval that is too long.
In most cases, this further increases the positive depolarization error
and is the background of the cumulative property of the NIM error.

An opposite error comes as a direct consequence of having discrete
time. The action potential is defined to happen when the depolariza-
tion crosses the firing threshold from below. To preserve causality in
a network of artificial neurons, the action potential has to be delayed
to the time step after the threshold crossing. This introduces a small
delay before firing, causing a delayed transmission and a delayed initi-
ation of the subsequent inter–spike interval. As previously described,
this gives an initial depolarization error for that inter–spike interval.

46

The error from having discrete possible firing times has the opposite
effect of the inter–spike truncation error.

The net inter–spike simulation error is defined by the relative size
of these mechanisms. The error from having an erroneous leakage
varies from having a size of el = 0, if the neuron uses an eternity
to reach the firing threshold, to the size of the correct leakage if the
depolarization goes all the way from vr to τ in one iteration. The error
caused by having discrete possible firing times varies from ed = 0, if the
threshold crossing happens at the very end of the time step, to having
a magnitude defined by the size of one full computational time step
if the threshold crossing happens immediately after the initiation of
that time step. The derivative of the accumulated truncation error(the
change in global truncation error) is therefore hard to predict and
supress. Since the global truncation error in NIM is defined by the
integral of all previous depolarization errors, any systematic local error
causes the global truncation error to diverge for t→∞.

Algebraic Simulation Model(κM)

In κM , the considered variable is the synaptic flow of activation level,
visualized as a stream in the gutter analogy in sec. 3.1. This flow
varies as a continuous function within a bounded domain, and does
not have a net rising phase during each inter–spike interval. The flow
of activation level is invariant of time, and a delayed computation
of the neuron’s activation level only delays its response. Thus, the
κM error is bounded and varies as a function of the derivative of the
neuron’s input flow.

If the κM simulator is implemented with intra–iteration time accu-
racy (see section 3.1.2), the next inter–spike interval can be initiated
at the computed time instance. If all tasks are executed according
to estimated spike times, a task planned slightly before another will
be initiated before that task. This effect is only limited by the data

47

format used, and a double precision floating point variable is utilized
in auroSim. The IEEE standard defines the smallest exponent of this
data format to be −308, giving an accuracy where two numbers can
be separated by steps down to 10−308 [18]. This makes it possible to
have almost infinitesimal sizes for the delay meant to assure causality,
and the next inter–spike interval can be initiated immediately. In this
way, also the second discussed error mechanism of NIM is avoided in
κM . Because the κM error only comes from the delayed update of
a bounded variable, the error varies within a bounded domain. This
will be referred to as the stability property of the κM error.

48

Chapter 5

Efficiency; Experimental
Comparison

The primary design criteria for a simulator is to produce accurate sim-
ulation results. As introduced in section 4.4.2, the simulation error of
a neural simulator can be decreased by increasing the temporal reso-
lution of the simulation. This also greatly increases the computational
load of the simulation, as more computations have to be conducted for
the same simulated time domain. A relative efficiency comparison can
therefore be performed by comparing the accuracy of two simulations
for a given temporal resolution, or the resolution needed to accomplish
the same accuracy.

Since the run time of the κM simulation presented in sec. 4.4.1 is
almost the double of that of the NIM simulation, large requirements
are lain upon κM ’s accuracy. If the hypothesized accuracy improve-
ment is large enough, κM can still be as efficient, or even more efficient,
than the NIM simulation model. The purpose of this chapter is to
assess the comparative efficiency of the two models, by considering the
absolute simulation error for simulations done by κM and NIM .

49

5.1 Design of Experiments to Assess Ef-

ficiency

To compare the accuracy of the two simulation models, low–resolution
simulations of κM and NIM can be compared to a simulation with
much higher temporal resolution. In this work, the low–resolution
simulations have less than 1000 time steps per forcing function period,
while the high–resolution NIM simulation has 1.000.000 time steps
per period. The high–resolution simulation results will be referred to
as the simulated solution in the remainder of this text.

The simulated solution has a number of time steps that is more
than three orders of magnitude larger than for the low–resolution sim-
ulations. The simulated solution can therefore be considered to be
the correct time course, for a temporal resolution up to that of the
low–resolution simulations. To assess the accuracy of the two simula-
tion models, one can therefore define the simulated solution to be the
correct answer and find the errors for each of the two low–resolution
simulations.

The time course for the neuron’s depolarization in the three simu-
lations are compared in Octave, an open source numerical computing
environment similar to Matlab. The considered variables are written
to a log file during the execution of auroSim, resulting in an executable
Octave script when a run of auroSim is finished. All plots with the
caption “Generated by auroSim” are results of executing such log files
in Octave. The reader is referred to appendix B.1 for more on au-
roSim’s logging facility.

To make the experiments as comparable and reproducible as possi-
ble, the behaviour of a single node is simulated for the two simulation
models. This node is implemented as a sensory node that receives
depolarizing input defined by an externally applied signal ξi(tn). For
the sake of reproducibility, algebraic functions are utilized for all ex-

50

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000 3500 4000

p
ro

m
ill

e
 o

f
th

re
s
h
o
ld

time

Sensor Function
Depol. Value

Figure 5.1: Plot of a NIM node’s sensory function. The sensory function is set
to be fs(tn) = 2τ

(
1− cos(π · tn

1000

)
for tn ∈ [0, 1500]. After tn = 1500, the sensory

function halves the amplitude and doubles the frequency. Firing is represented by
a vertical line for the depolarization from y = 0 to y = 1200. (Generated by
auroSim) [22]

51

periments in this work. For details on the design and implementation
of the sensory node, see appendix B.2.

5.1.1 Experiment 1: Idealized Situation

First consider an idealized situation, with a constant depolarizing in-
flow. This can be implemented as a sensory neuron with a forcing
function ξ(tn) = 1.1τ . This simple input flow simplifies analysis and
shows whether the theory presented in chapter 3 can be used to sim-
ulate the neuron.

This experiment can be used to assess whether the concept of time
windows and intra–iteration time resolution works as designed. The
concept of time windows can be examined, since the activation level
κ is “changed” to the same value every time step. Each time κ is
changed, a new time window is initialized and a new estimate for the
next firing time is computed. This also enables an analysis of whether
proactive firing time scheduling can be used to simulate the neuron’s
firing: If the spike is delayed as a result of having a time grid of pos-
sible spike times, the simulation error will have a step from before to
after the spike. The concept of intra–iteration time accuracy therefore
works as intended if the error after a spike is a linear continuation of
the error curve before the spike. To make the effect observable in plots
of the neuron’s depolarization, a temporal resolution of only 100 time
steps is chosen for experiment 1.

Because of the simple sensory function, the exact solution can be
computed for the neuron’s spike times. Experiment 1 can therefore
be used to assess the accuracy of a simulation, up to a very high
precision. This enables an analysis of the simulated solution’s error,
and a discussion of when it can be considered to be the correct solution
for accuracy comparisons.

52

5.1.2 Experiment 2: More Realistic Input Flow

Section 4.4.2 concludes that the κM error is a result of the delay
between an altered depolarizing flow and the initiation of a new time
window. This implies that the error is constant for a constant forcing
function. When designing an experiment for assessing the efficiency
of the two simulation models, the form of the input should preferably
affect both simulation models equally. The best way to achieve this is
to consider a forcing function where neither the value nor the derivative
of any order is constant.

Let the forcing function be defined by a trigonometric function
that gives an activation level corresponding to κ being above the fir-
ing threshold for the whole simulation. When κ < τ , the simulated
depolarization has the possibility to level out at a subthreshold value,
suppressing the simulation error. This is avoided to make the error
from the two simulation models prominent. The forcing function in
experiment 2 is defined to be

f(t) = (2.1 + sin

(
2π · tn

l

)
) · τ (5.1)

where l defines the temporal resolution of the simulation. The neuron
was simulated over one and a half period of (5.1), to enable a compar-
ison of the error for two time instances where the forcing function is
in the same phase. This was done to expose any cumulation of error
for the two simulation models.

./auroSim.out -n1.5 -r [temporal resolution]

It is important to emphasize that the experiment is conducted
with the first chosen forcing function. No attempts have been made
to optimize the results for any of the models. This can be done, and
be the basis of a more thorough analysis of the two simulation models’
error mechanisms.

53

0

500

1000

1500

2000

2500

3000

3500

20 40 60 80 100 120 140

1) Sensor Function: Experiment 1
2) Sensor Function: Experiment 2

Figure 5.2: Sensory functions for the two experiments. 1) First experiment
— constant input, corresponding to inserting a constant current through a probe
2) Second experiment — dynamic input, corresponding to one and a half period
of eq. (5.1). (Generated by auroSim)

54

5.2 Results

5.2.1 Static Input Flow

The primary motivation behind experiment 1 is to find whether κM
can be utilized to simulate the neuron. The fundamental concept of
time windows is put to the test, since the activation level is changed(to
the same value) every computational time step. Because initiation of
a new time window involves recalculation of the node’s firing time esti-
mate, this experiment can also be used to test whether proactive firing
time scheduling works as designed. A plot of the results is presented
in fig. 5.3.

The algebraic solution for the neuron’s spike times was found by
adding (3.5) recursively to the previous firing time. The results are
presented in table 5.1, alongside the simulation results from the κM100

simulation, with a temporal resolution l = 100, and the simulated so-
lution. The NIM1.000.000 simulation’s absolute error has a monotonic
increase of up to one time step for every spike, while the κM100 sim-
ulation appears to give the correct spike times for all spikes in the
simulation

Spike # Analytic solution κN sim. Simulated solution
1 23.978953.. 23.978953.. 23.9789
2 47.957905.. 47.957905.. 47.9578
3 71.936858.. 71.936858.. 71.9367
4 95.915811.. 95.915811.. 95.9156

Table 5.1: Spike times for the artificial neuron. The analytic solution is computed
by adding (3.5) recursively to the previous spike time. The κN simulation has a
temporal resolution of l = 100, while the simulated solution is the result of a
NIM1.000.000 simulation with l = 1.000.000.

55

Figure 5.3: The transient time course of the artificial neuron’s depolarization,
simulated with NIM and κM . The computational time step is set to ∆t = 1%, giv-
ing 100 time iterations for the two simulations. The red curve shows the simulated
solution of experiment 1. (Generated by auroSim)

56

5.2.2 Dynamic Activation level

Experiment 2 considers a dynamic input current, defined as one and
a half period of (5.1). The simulation results are presented as points
in fig. 5.4 whenever a new value is available. Note that the NIM
simulation is conducted with the temporal resolution l = 1.000, while
the κM simulation only has 100 time steps per forcing function period.

Since the depolarization value is written to log every time it is
updated, the number of points from each simulation indicate the tem-
poral resolution of that simulation. Spikes are represented by a vertical
line from x = 1050 to x = 1200 when the neuron fires. The spikes
in the figure indicates that the simulation error is larger in the sec-
ond period of the forcing function than in the first period. To enable
further analysis of this effect, the spike time errors have been isolated
and is presented in fig. 5.5.

The error in spike times for the NIM1.000 simulation shows the
hypothesized cumulative property of the NIM error. To examine the
extent of the two models’ error properties, experiment 2 was simulated
over a time interval that is ten times as long. A plot of the resulting
spike time errors is presented in fig. 5.6.

57

Figure 5.4: The neuron’s depolarization curve in a NIM1.000 simulation and
a κM100 simulation. The two simulations have a number of time steps that dif-
fer with one order of magnitude. The red curve shows the simulated solution of
experiment 2. (Generated by auroSim)

58

Figure 5.5: The spike time error for all 26 spikes in the κM100 and the NIM1.000

simulations. From fig. 5.4. it can be seen that the second period of the forcing
function starts at spike number 15. An indication of the cumulation of error can
therefore be found by comparing the spike time error for spike number 5 and spike
number 20 for the two models. (Generated from log files generated by auroSim)

59

Figure 5.6: The error in spike times for the κM100, NIM1.000 and NIM10.000

simulations, simulated over a time interval that is ten times as long as in ex-
periment 2. Due to the number of spikes, the simulated solution was found by a
NIM1E8 simulation to make sure the solution’s error is acceptable. The NIM10.000

and the κM100 simulations gave the correct 228 spikes, while the NIM1.000 simu-
lation produced one spike less. A NIM100 simulation resulted in only 224 spikes,
where the largest error was −33.6. (Generated from log files generated by auroSim)

60

5.3 Discussion of Experimental Results

The primary motivation for the first experiment is to assess whether
the theory discussed in chapter 3 makes it possible to implement a
spiking neuron simulator based on synaptic flow. The concept of time
windows, as defined in sec. 3.1.1, enables the use of the algebraic
solution for simulation of the neuron’s depolarization. In the imple-
mentation used in this work, a new time window is initiated every
computational time step, making it irrelevant whether the activation
level is constant or dynamic. This makes the results from experiment
1 pertinent for error analysis.

The simple form of the neuron’s forcing function in the first ex-
periment enables a precise error analysis for the its spike times. It is
possible to compute the neuron’s firing times algebraically, enabling
an analysis of the simulated solution’s error. The simulated solution
has a cumulative error that increases with up to one computational
time step for every spike, given this level of input. In a simulation with
only 26 spikes, this gives a maximum spike time error for the simu-
lated solution, fe,max = 26

1000000
= 2.6 · 10−5. Thus, in experiment 2,

the theoretical maximum spike time error for the simulated solution is
much smaller than the computational time step in both low–resolution
simulations.

∆tNIM,1.000 =
1

1000
= 10−3

This shows that the simulated solution can be considered to be the
correct solution, up to an accuracy defined by the low–resolution sim-
ulation with finest granularity, NIM1.000. In the second part of exper-
iment 2, where the experiment is simulated over a time interval that
gives 228 spikes for the neuron, a NIM100.000.000 simulation is used to
define the simulated solution.

Experiment 2 considers a sinusoidal input flow corresponding to an
activation level that varies between 1.1τ and 3.1τ . Since the forcing

61

function has the property that no aspect of the signal is constant in
the time domain, the results from experiment 2 is more valid for an
efficiency analysis than experiment 1. The experiment shows that the
κM100 simulation generally is more accurate than the NIM1.000 sim-
ulation. The comparative efficiency improvement is larger when the
same experiment is simulated over a time interval that is ten times as
long. The absolute error becomes larger in the NIM10.000 simulation
than in the κM100 simulation before the simulation is over. This im-
plies a considerable efficiency improvement, since the NIM simulation
utilizes a number of time steps that is two orders of magnitude larger
than the κM simulation.

62

Chapter 6

Discussion and Conclusion

6.1 Summary

The mechanisms of biological neuron networks, the computational sys-
tem of biological beings, is not fully understood. On a low level, neuro-
scientists have found that networks of neurons propagate information
by discrete action potentials. An action potential causes a transmis-
sion through all the neuron’s output synapses, leading to the increase
or decrease in the postsynaptic neuron’s value. This value, referred to
as the depolarization of the neuron, is the result of a leaky integration
of synaptic input transmissions.

Digital simulations have discrete time, and a neuron’s depolar-
ization is often simulated by numerical integration. This is done by
adding synaptic input and subtracting an estimate of the neuron’s
leakage. In this work, the previous time step’s value is utilized when
computing leakage for the NIM model (sample–and–hold integration).

This study shows that the error from each computational time step
varies like a stochastic variable, and that the total error is defined as
the integral of all local errors. This results in a diverging simulation

63

error, unless the local truncation error has an expectancy value of zero.
In an attempt to avoid this, a novel simulation scheme has been devel-
oped that does not involve numerical integration. Using the concept
of time windows, time intervals where the neuron’s depolarizing inflow
is held constant, a neural simulator was developed that utilize the al-
gebraic value equation in these intervals. Software intended to make
differences in design of the two simulation schemes have been designed
and implemented, auroSim. The artificial neuron has the functional
lay–out of the biological neuron, with four distinct subelement types,
[i dendrite, i auron, i axon, i synapse]. The abstract i {element}
types are inherited to s {element} and K {element}, model specific
classes. All common aspects between the two simulation models can
thus be placed in the ancestor i {element} class, making principal dif-
ferences in design of the two simulation schemes prominent.

It is shown experimentally that although the κM simulation scheme
is computationally more complex, the simulation is more effective. Be-
cause the κM simulation scheme produces less errors, longer compu-
tational time steps can be used to achieve the same accuracy. This
makes it possible to utilize fewer computational time steps to achieve
the same degree of simulator accuracy, enabling a more effective sim-
ulation. It is also shown that the absolute error of the algebraic sim-
ulation scheme is bounded, something that could be of importance in
complex ANN simulations.

6.2 Discussion

One question that presents itself is the importance of a gradually in-
creasing cumulative error. The most immediate errors are the ones
that alter the length of an inter–spike interval. These are represented
as the derivative of the spike–time error curves in fig. 5.5; when an
inter–spike interval has an erroneous length, the spike–time error is

64

changed by this amount. Fig. 5.5 shows that in the first period of the
forcing function, the κM100 spike–time error change with about the
same rate as the NIM1.000 error. After spike nr. 20, the derivative
of the spike–time error is larger in the NIM1.000 simulation than in
the κM100 simulation. This illustrates a significant efficiency improve-
ment, as the NIM simulation has a temporal resolution that involves
ten times as many time steps as the κM simulation.

Fig. 5.6 shows the spike time errors for the same experiment,
simulated over a longer time interval. One can observe the cumula-
tive property of the NIM error as a gradual increase in the absolute
spike–time error. To compare the κM100 simulation’s spike–time error
with the NIM10.000 simulation’s error, the difference in absolute error
is presented in fig. C.2. This figure shows that in the second half of
the experiment, the κM100 error is generally less than the NIM10.000

simulation’s error. This implies an even greater efficiency improve-
ment, as the NIM simulation has a number of time steps that is two
orders of magnitude larger than the κM simulation’s. In all conducted
experiments, this effect becomes larger for longer simulations.

Reproducibility has been an important element in the conducted
experiments in this work. The most important elements of the simu-
lation software are well documented, and the forcing functions in the
experiments are represented by algebraic functions. It is possible that
the use of algebraic forcing functions limits the validity of the results,
since the input to a node in a neural network is far from being a smooth
algebraic function. Experiment 2 considers a sinusoidal forcing func-
tion, where neither the value nor the derivative is constant for any time
interval. This can be used as a basis in a Fourier series to produce any
periodic signal. This forcing function can therefore be seen as a com-
ponent in any signal, and is considered to be an appropriate algebraic
function for efficiency measurements. A stochastic Wiener process
could also be used, but this would make the experiments harder to
validate for others. To simplify further analysis and for a thorough

65

study of the implementation, auroSim has been published under GPL.
The source code can be found under branch master in the git reposi-
tory located at https://github.com/leikanger/masterProject [23].

One element that could be worth examining, is the ability of the
κM simulation model to simulate the neuron by other formal neuron
models. The LIF neuron model is often used because it is simple,
and does not involve complex operations. Other neuron models are
reported to produce more accurate simulation results [5]. The κM
simulation scheme is thought to be applicable for any neuron model
where the depolarization is described by an ordinary differential equa-
tion. As long as the value equation is defined as a function of a single
variable, time windows can be defined, and the κM simulation model
can be utilized. The use of κM for systems defined by partial differen-
tial equations or sets of ordinary differential equations, is also an area
that could be worth examining.

When edge transmission is implemented as the derivative of synap-
tic flow, transmissions are only needed when there is an altered activa-
tion level for the presynaptic neuron. When a double precision float-
ing point data type is used, with the smallest increase defined to be
10−308, it is highly unlikely that the activation level of a node remains
constant over any time interval. The concept of edge transmission as
the derivative does not decrease the efficiency of a simulation, but it
does not improve it either. It does increase the complexity of the de-
sign/implementation, and is recommended to be removed for further
uses of auroSim.

6.3 Conclusion

This work introduces an entirely new way of considering a neuron’s
activation level. The novel formalism considers what the neuron’s
depolarization would approach, κ, if no firing interrupts it. The κ–

66

formalism enables the use of algebra to find the neuron’s depolariza-
tion, as well as the immediate firing frequency of the neuron. Com-
bined with the concept of time windows, time intervals where the de-
polarizing inflow is held constant, spiking neuron simulations can be
conducted without the use of numerical integration.

The traditional Numerical Integration Model(NIM) and κM is
compared theoretically and experimentally in this report. The analysis
of the NIM model shows that the local truncation error has stochastic
elements, and that the global truncation error diverges unless the local
errors have a expectancy value ê = 0. The κM error is a result of a
delayed update from a variable that varies within a bounded domain,
producing a bounded error.

The two simulation models were implemented in a common frame-
work, and accuracy comparisons was conducted. These comparisons
are relevant since the differences between the models were isolated and
potential faults in the common framework affects both models equally.
It is shown that in the course of 15 periods of a sinusoidal forcing func-
tion, the κM100 simulation, a κM simulation with 100 time steps per
forcing function period, generally produces more accurate results than
a NIM10.000 simulation. This is a significant efficiency improvement,
as the NIM10.000 simulation has a number of time steps that is two
orders of magnitude larger than for the κM100 simulation. All results
imply that this effect becomes larger for longer simulations, making
the κM simulation model a significant improvement of today’s spiking
neuron simulation model.

67

Appendix A

Mathematical Derivations

A.1 Algebraic Solution to the LIF Neu-

ron’s Depolarisation

The subthreshold behaviour of the LIF neuron model can be modelled
as a general leaky integrator.

v̇(t) = v̇in(t)− v̇out(t)
= I − αv(t)

(A.1)

where I represents the input flow and α represents the leakage con-
stant. Laplace transform gives

sV (s)− v0 =
I

s
− αV (s) , v0 = v(t0)

(s+ α)V (s) =
I

s
+ v0

V (s) =
1

s+ α

(
I

s
+ v0

)

68

and

v(t) = L −1

{
V (s)

}
=
I

α
− I

α
e−αtw + v0e

−αtw , tw = t− t0
(A.2)

The value equation for the leaky integrator with initial value v0 is
only valid for time intervals where I and α remain constant. Such an
interval is referred to as a time window, defined in sec. 3.1.1. The
variable that represents time in the equation is measured from the
start of the current time window, tw = t− t0.

A.2 Refraction time and simulator time

scale

The inter–spike interval for a neuron consists of two phases. The
absolute refraction period and the depolarizing phase (see sec. 3.1.2).
Equation (3.3) models the depolarizing phase of the neuron. The
equation for the whole inter–spike interval is defined as

pisi(κ) = pd(κ) + tr (A.3)

where tr represents the absolute refraction period of the neuron. For
the firing frequency of the neuron, f(κ) = p−1

isi (κ), the asymptote is
defined by

lim
κ−>∞

f(κ) = lim
κ−>inf

(
−α

ln
(
κ−τ
κ

)
− αtr

)
=

1

tr
(A.4)

This shows that the absolute refraction period limits the output
frequency of the neuron. This is illustrated in fig. A.1.

69

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

1000

K / T

fr
e
q
u
e
n
c
y

Frequency for different input

Without refraction period

With refraction period after spike

Figure A.1: Firing frequency of a neuron, with and without absolute refraction
period.

For biological neurons, the maximum firing frequency is about 1000
Hz [2].

lim
κ−>∞

f(κ) ≈ 1000 Hz (A.5)

If this is defined as the maximal firing frequency of the artificial neu-
ron, the corresponding absolute refraction period tr can be found by
equation A.4.

tr =
1

1000Hz
= 1 ms (A.6)

If the absolute refraction period is defined to be 1ms, it is con-
venient to define the size of a time step to have the same size. In
this case, the absolute refraction period can be simulated in NIM
by simply blocking input for one time step after the simulated action
potential. This consideration is not necessary for κM .

70

A.3 Activation level recalculation

The concept of edge transmissions as the derivative potentially gives
an increase in the efficiency of the simulation, as only the necessary
additions have to be executed. The value is found as the sum of all
such edge transmissions, and the effect of an altered activation level is
computed after the time step. As the activation level is found as the
sum of all preceding edge transmissions, small numerical errors is also
integrated and could give a large deviation from the correct activation
level. Because of this, an adaptive mechanism for recalculation of the
activation variable κ is devised.

The size of the error is hard to estimate, as it can vary with the
hardware architecture, the system load and the number of input trans-
missions to the node in question. Because of this, the number of time
steps between each recalculation in a node is designed to be adaptive.
When the activation variable has a small deviation from the actual ac-
tivation level, the interval to the next recalculation can be set higher
than if the deviation is large.

It is important to limit both the minimal and maximal period
between recalculation of κ. This is achieved by the altered sigmoid
function (A.7).

pe(E) = (c1 + c2)− c2

1 + e−(c4·E−c3)
(A.7)

From equation (A.7), it can be observed that the altered sigmoid
function has a maximal value of c1 + c2. In fig. A.2, c1 = 100 and c2 =
250 gives the maximal interval of 350 time steps between recalculation.
Because of a small value for the κ errors while experimenting with this
aspect, the minimal period between recalculations was set to c1 = 100
iterations. This can easily be adjusted if κ errors become an issue.

71

100

150

200

250

300

350

0 10 20 30 40 50

In
te

rv
a
l
to

 n
e
x
t
re

c
a
lc

u
la

ti
o
n

Absolue Error

Adaptive interval to next recalculation of K

Figure A.2: Plot of the altered sigmoid function (A.7) with c1 = 100, c2 = 250,
c3 = 10 and c4 = 0.5. The minimal interval is given by c1 and the maximum
period by c1 + c2.

72

Appendix B

Implementation Details

B.1 Log, for Comparison

For a comparison between the two models, the considered variables are
logged during the execution of auroSim. This is done by file streams
for each of the compared variables, registered as private members of
the i auron class. The log with most importance for later sections
is the one concerned with the node’s depolarization, and will be the
presented example of this section.

The public member funtion writeDepolToLog() takes care of writ-
ing the node’s depolarization to the private log stream. Because the
two models represents depolarization differently, this function is pure
virtual in class i auron and overloaded in the derived s auron and
K auron.

1 in l ine virtual void s auron : : writeDepolToLog () const
2 {
3 // Handle r e s o l u t i o n f o r t h e depo l− l o g f i l e :
4 stat ic unsigned long uI t e ra t i on sS inceLas tWr i t e = 0 ;
5
6 // Unles s i t i s t ime f o r w r i t i n g to log , r e t u rn .
7 i f ((++ uI t e ra t i on sS inceLas tWr i t e > uNumberOfIterationsBetweenWriteToLog)){
8 d e p o l l o g F i l e <<t i m e c l a s s : : getTime () <<”\ t ”
9 <<dAkt i v i t e t sVar i abe l <<” ; \ t #Depo la r i za t i on \n” ;

10 // Reset coun te r
11 u I t e ra t i on sS inceLas tWr i t e = 0 ;

73

12 } else{
13 return ;
14 }
15 }

The presented source code shows the writeDepolToLog() funtion
for the s auron class. The log file is implemented with a maximal
resolution limit for the log, so that the file log is written every uNum-
berOfIterationsBetweenWriteToLog ’th time step. This is done to make
the execution of the log files simpler to handle for the computer, and
is designed to limit the number of log entries to LOG RESOLUTION,
defined for the precompiler. The log is written as a Octave(similar to
Matlab) executable scrips, and the values are written in the syntax
of a matrix. The first column represents time and the second hold
the depolarization value for that time. In this way, the values can be
plotted directly by a plot command in octave.

The destructor of an i auron object finalize the log so than it is
executable in octave. It closes the parenthesis of the matrix, before it
inserts commands to plot the result and save the resulting figure. All
figures with the caption “(Generated by auroSim)” comes from the
execution of such log files or modified versions.

1 i auron : : ˜ i auron () {
2 . . .
3 d e p o l l o g F i l e <<”] ; \ n\n”
4 <<” p lo t (data ([1 : end] , 1) , data ([1 : end] , 2) , \”@; Depo la r i za t i on ;\”) ;\n”
5 <<” t i t l e \” Depo la r i za t i on f o r auron ” <<sNavn <<”\”\n”
6 <<” x l ab e l Time\n” <<” y l ab e l \” Act iv i ty v a r i a b l e \”\n”
7 <<” akser =([0 data (end , 1) 0 1400]) ;\n”
8 <<” pr in t (\ ’ . / eps / eps auron ” <<sNavn <<”−depol . eps \ ’ , \’−deps \ ’) ;\n”
9 <<” s l e e p (” <<OCTAVE SLEEP ETTER PLOTTA <<”) ; ”

10 ;
11 d e p o l l o g F i l e . f l u s h () ;
12 d e p o l l o g F i l e . c l o s e () ;
13 . . .
14 }

To be certain that all logs are finalized correctly, an automatic
destruction of all i auron objects is conducted before the program
terminates. This is done in the static member function
i auron::callDestructorForAllAurons(), registered at glib’s atexit(void
(*)(void)) function. When the program terminates normally, either

74

by returning from main or with an exit(int) function,
i auron::callDestructorForAllAurons() is called, calling the destructor
for all constructed auron objects.

B.2 The Sensory Neuron

The sensory neuron is a simple way of setting up replicable experi-
ments. A sensory neuron can be implemented by eq. (3.6), where
ξi(tn) represents the sensory input at time tn. As long as the sen-
sory neuron does not receive other input and ξi(tn) is defined by an
algebraic function, it is possible to attain the algebraic solution to the
neuron’s depolarization.

In auronSim, a sensory auron is instantiated from a class derived
from one of the two model–specific auron classes. The sensory auron
contains two important elements; A function pointer to the sensory
function and the static list pAllSensoryAurons. To introduce these
elements, the constructor of the NIM sensory neuron is presented.

1 s s en so ry auron : : s s en so ry auron (std : : s t r i n g sName Arg , const double& (∗
pFunk arg) (void)) : s auron (sName Arg)

2 {
3 // Ass ign t he s ensory f un c t i o n to t h e o b j e c t ’ s f u n c t i o n p o i n t e r :
4 pSensoryFunction = pFunk arg ;
5 // Add a [t h i s]− p o i n t e r to t h e s t a t i c s s en s o r y au r on : : pAl lSensoryAurons :
6 pAllSensoryAurons . push back (this) ;
7 }

The constructor takes a function pointer as an argument, assign-
ing it to the member pointer function of type const double& (*pSen-
soryFunction)(void). It also inserts the node’s address as an element
in pAllSensoryAurons. Before time class::doTask() iterates time, the
return value from a call to the dereferenced function (*pSensoryFunc-
tion)() is sent to the node’s s dendrite::newInputSignal(double) for all
elements in the list pAllSensoryAurons.

This design makes it possible to execute different experiments rela-
tively effortlessly, and it is simpler to carry out a proper analysis of the

75

accuracy of κM and NIM . The sensory neuron class is useful when
experiments on the accuracy of the two simulation models are designed
in chapter 5. Experiments can also be conducted by the reader, by
declaring sensory functions with the presented format and sending the
address to this function to the constructor of sensoryAurons.

76

Appendix C

Other Results

When the activation level is below threshold, the simulated depolariza-
tion have the opportunity to level out on some value. This conceals the
simulation error, and have therefore been excluded from the main text.
An experiment where κ goes below the firing threshold was conducted
and is included in this appendix for the sake of completeness(fig. C.1).

Fig. C.2 shows the difference in absolute error for the second part
of experiment 2, between the NIM10.000 simulation and the κM100

simulation. A positive value means that the κM100 have the largest
error for the corresponding spike, while a negative value means that
the NIM10.000 simulation produce the largest error. The cumulative
property of the NIM error and the stability property of the κM error
can be observed by an increasingly negative value for the difference in
absolute error.

77

C.1 An experiment where κ ∈ [0.5τ, 2.5τ]

Figure C.1: When κ is below the firing threshold, the depolarization value has
more time to reach the final value κ. When comparing with fig. 5.4, one can
observe that the error is smaller in this experiment than in experiment 2. The κM
simulation still produces more accurate results than a NIM simulation with ten
times the number of time steps. (Generated by auroSim)

78

C.2 Difference in absolute error in exper-

iment 2b, NIM10.000 and κM100

Figure C.2: The difference in absolute spike time error of a NIM10.000 simulation
and a κM100 simulation for experiment 2b, f(x) = |EκM |−|ENIM | . After only 150
spikes, the κM100 simulation have a smaller error than the NIM10.000 simulation,
something that can be observed by noting that f(x) becomes negative
f(x) < 0⇔ |EκM | < |ENIM | .

79

C.3 Result from ‘time’ command, section

4.4.1

Figure C.3: Results of ‘time’ command for ten runs of auroSimKM and
auroSimNIM , for simulations with the same temporal resolution as the simulated
solution in experiment 2. Every second run was with auroSimNIM and the other
was a auroSimKM run, in order to minimize the possibility that a global system
load would effect the two models differently.

80

Appendix D

UML Class Diagrams

To make this report a better documentation of auroSim, the UML
class diagrams of the most important classes have been included in this
appendix. In addition to the different subelement classes, the UML
diagram of time class is presented in this appendix. All elements are
derived from class time interface, making all elements inherit the
pure virtual functions doTask() and doCalculation(). Unless these
are overloaded in the derived class, that class is also abstract and no
instances of it can be made from it.

81

D.1 Time Class

Figure D.1: The main response of class time class is all aspects of simula-
tion time. pWorkTaskQueue have all objects with tasks, including an object of
time class, whose task’s main responsibility is to iterate time. Most elements of
time class is declared static, and have a class–wide scope.

82

D.2 Node Subelement Classes

The artificial neuron has a design like the functional lay out of a biolog-
ical neuron, as illustrated in fig. 2.1. This gives the design presented
in fig. 4.4. The UML class diagram of the different subelement classes
is presented in this appendix.

Figure D.2: UML class diagram for the dendrite subelement.

83

Figure D.3: UML class diagram for the auron subelement. The sensory auron,
used in the experiments, is a specialization of the auron.

84

Figure D.4: UML class diagram for axon subelement. It is found that κM ’s
ability to schedule tasks can be used to simulate spatio–temporal effects like axonic
transmission. The axon is therefore not nessecary in the κM implementation.

85

Figure D.5: UML class diagram for synapse subelement. Both K synapse and
s synapse is derived from the abstract class i synapse.

86

Bibliography

[1] George J. Augustine, David Fitzpatrick, and Dale Purves. Neu-
roscience. Sinauer Associates, 4th edition, 2004.

[2] Mark F. Bear, Barry Connors, and Michael Paradiso. Neu-
roscience: Exploring the Brain (Third Edition). Lippincott
Williams & Wilkins, third edition, 2006.

[3] Razvan V. Florian. Biologically inspired neural networks for the
control of embodied agents. Technical report, Center for Cogni-
tive and Neural Studies (Coneural), 2003.

[4] Ester P. Gardner and John H. Martin. Coding of sensory infor-
mation. In Eric R. Kandel, James H. Schwartz, and Thomas M.
Jessell, editors, Principles of Neural Science, 4th edition, pages
411–429. Elsevier, New York, 2000.

[5] Wulfram Gerstner and Werner M. Kistler. Spiking Neuron Mod-
els: Single Neurons, Populations, Plasticity. Cambridge Univer-
sity Press, 1 edition, August 2002.

[6] B Gustafsson, H Wigstrom, WC Abraham, and YY Huang. Long-
term potentiation in the hippocampus using depolarizing current
pulses as the conditioning stimulus to single volley synaptic po-
tentials. J. Neurosci., 7(3):774–780, 1987.

87

[7] Simon Haykin. Neural Networks: A Comprehensive Foundation.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition,
1998.

[8] Donald O. Hebb. The Organization of Behavior: A Neuropsycho-
logical Theory, chapter 4. Wiley, new edition, 1949.

[9] A. J. Hudspeth. Hearing. In Eric R. Kandel, James H. Schwartz,
and Thomas M. Jessell, editors, Principles of Neural Science, 4th
edition, pages 590–613. Elsevier, New York, 2000.

[10] A.K. Jain, Jianchang Mao, and K.M. Mohiuddin. Artificial neural
networks: a tutorial. Computer, 29(3):31 –44, mar 1996.

[11] Eric R. Kandel. The brain and behavior. In Eric R. Kandel,
James H. Schwartz, and Thomas M. Jessell, editors, Principles
of Neural Science, 4th edition, pages 5–18. Elsevier, New York,
2000.

[12] Eric R. Kandel. Cellular mechanisms of learning and the biologi-
cal basis of individuality. In Eric R. Kandel, James H. Schwartz,
and Thomas M. Jessell, editors, Principles of Neural Science, 4th
edition, pages 1247–1279. Elsevier, New York, 2000.

[13] Eric R. Kandel. Nerve cells and behavior. In Eric R. Kandel,
James H. Schwartz, and Thomas M. Jessell, editors, Principles
of Neural Science, 4th edition, pages 19–35. Elsevier, New York,
2000.

[14] Eric R. Kandel and Steven A. Siegelbaum. Overview of synap-
tic transmission. In Eric R. Kandel, James H. Schwartz, and
Thomas M. Jessell, editors, Principles of Neural Science, 4th edi-
tion, pages 175–186. Elsevier, New York, 2000.

88

[15] Eric R. Kandel and Steven A. Siegelbaum. Synaptic integration.
In Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell,
editors, Principles of Neural Science, 4th edition, pages 207–228.
Elsevier, New York, 2000.

[16] John Koester and Steven A. Siegelbaum. Membrane potential.
In Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell,
editors, Principles of Neural Science, 4th edition, pages 125–149.
Elsevier, New York, 2000.

[17] John Koester and Steven A. Siegelbaum. Propagated signalling:
The action potential. In Eric R. Kandel, James H. Schwartz,
and Thomas M. Jessell, editors, Principles of Neural Science, 4th
edition, pages 150–169. Elsevier, New York, 2000.

[18] Erwin Kreyszig. Advanced Engineering Mathematics 8th Edition,
chapter 17 - “Numerical Methods in General”. John Wiley &
Sons, Incorporated, 1999.

[19] Per R. Leikanger. Artificial neural network models. Term project
(nevr3004), Kavli institute/Center of the Biology of Memory,
NTNU, May 2010.

[20] Per R. Leikanger. The role of stdp in memory formation. Term
project (nevr3003), Kavli institute/Center of the Biology of Mem-
ory, NTNU, March 2010.

[21] Per R. Leikanger. Synaptic plasticity. Term project (nevr3001),
Kavli institute/Center of the Biology of Memory, NTNU, October
2010.

[22] Per R. Leikanger. Development and assessment of a novel model
for artificial neural networks. Term project, Department of Engi-
neering Cybernetics, NTNU, july 2011.

89

[23] Per R. Leikanger. https://github.com/leikanger/masterProject.
Commit id: ’4f771ad1665b499...’ in branch master, 2012.

[24] W.B. Levy and O. Steward. Temporal contiguity requirements for
long-term associative potentiation/depression in the hippocam-
pus. Neuroscience, 8(4):791 – 797, 1983.

[25] Wolfgang Maass and Technische Universitaet Graz. Networks of
spiking neurons: The third generation of neural network models.
Neural Networks, 10:1659–1671, 1997.

[26] Robert C. Malenka. Synaptic plasticity in AMPA receptor traf-
ficing. Annals of the New York Academy of Sciences, 2003.

[27] Abigail Morrison, Sirko Straube, Hans Ekkehard Plesser, and
Markus Diesmann. Exact subthreshold integration with continu-
ous spike times in discrete-time neural network simulations. Neu-
ral Comput., 19:47–79, January 2007.

[28] Peter E. Gordon Paul Easton. Stabilization of hebbian neural nets
by inhibitory learning. Biological Cybernetics, 51(1):1–9, 1984.

[29] Helmut Riedel and Detlev Schild. The dynamics of hebbian
synapses can be stabilized by a nonlinear decay term. Neural
Networks, 5(3):459 – 463, 1992.

[30] Edmund T. Rolls and Alessandro Treves. Neural Networks and
Brain Function. Oxford University Press, USA, 1 edition, January
1998.

[31] Sandhya Samarasinghe. Neural Networks for Applied Sciences
and Engineering: From Fundamentals to Complex Pattern Recog-
nition. AUERBACH, September 2006.

90

[32] Bjarne Stroustrup. The C++ Programming Language: Special
Edition. Addison-Wesley Professional, 3 edition, February 2000.

[33] Dean V. Buonomano Uma R. Karmarkar, Mark T. Najarian.
Mechanisms and significance of spike-timing dependent plastic-
ity. Biological Cybernetics, 87(5):373–382, 2002.

[34] Robert Waltereit and Michael Weller. Signaling from camp/pka
to mapk and synaptic plasticity. Molecular Neurobiology, 27:99–
106, 2003. 10.1385/MN:27:1:99.

91

	Title Page
	masteroppgave.pdf

