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Abstract. In traditional real-time multiprocessor schedulability analysis it is required
that all tasks are entirely serial. This implies that if a task is written in a parallel lan-
guage such as occam, all parallelism in the task must be suppressed to enable schedu-
lability analysis. Part of the reason for this restriction is the difficulty in analysing ex-
ecution times of programs with a complex parallel structure. In this paper we intro-
duce an abstract model for reasoning about the temporal properties of such programs.
Within this model, we define what it means for a process to be easier to schedule than
another, and the notion of upper bounds on execution times. Counterintuitive temporal
behaviour is demonstrated to be inherent in all systems where processes are allowed
an arbitrary parallel structure. For example, there exist processes that are guaranteed to
complete on some schedule, that may not complete if executing less than the expected
amount of computation. Not all processes exhibit such counterintuitive behaviour, and
we identify a subset of processes that are well-behaved in this respect. The results
from this paper is a necessary prerequisite for a complete schedulability analysis of
systems with an arbitrary parallel structure.
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Introduction

Multiprocessor systems are becoming more widespread in real-time applications, and much
research has been done in recent years on schedulability analysis of these systems. However,
analysis of multiprocessor systems does not normally allow parallelism within a task (often
referred to as “job-level parallelism”); multiple processors are instead utilised by having mul-
tiple simultaneously active tasks. There are a number of drawbacks with this approach, for
example that adding more processors to a system will never decrease the response-time of its
highest priority task. Another drawback is that programs written in a parallel language such
as occam cannot in general be used as tasks when schedulability analysis is required, without
suppressing the parallelism that is often inherent in these programs.

This paper introduces an abstract process model for describing the computational re-
quirements of processes with an arbitrary parallel structure. The model abstracts away any no-
tion of what a process actually does, leaving only a measure of the parallel structure, and the
computation time required to complete each part of the process. These processes are called
computation time processes (CTPs), and the model is called the computation time process
model.

In this model, we consider just the SEQ/PAR structure for parallelism: processes are
explicitly specified to execute in parallel or in sequence, and a parallel process does not ter-
minate until all the sub-processes terminate. The sub-processes themselves may also have a
SEQ/PAR-structure. This is one of the structures of parallelism used in occam and its deriva-
tives.
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CTPs do not model communication, and it is therefore not possible to derive a CTP
from a general program written in e.g. occam. CTPs should instead be considered building
blocks that can be used as a basis for a complete timing analysis. However, every SEQ/PAR
program without communication or synchronisation will have a temporal behaviour that can
be modelled by a CTP.

For this paper we will analyse a single CTP in isolation. Still, it will always be assumed
that the process is executing in some environment where processors are shared with other
tasks. Some of these tasks will affect the number of processors available to the process under
consideration, so the number of available processors will be considered time varying and
non-deterministic. To allow schedulability analysis of a complete system one would need to
analyse how different CTPs interact when executed on the same platform. The results in this
paper is a necessary first step towards such an analysis.

The structure of this paper is as follows: Section 1 briefly discusses multiprocessor
schedulability and process models for parallelism. The CTP model is defined in Section 2.

Two partial orders over CTPs are defined in Section 3. These orders give a precise defini-
tion to what it means for a process to be an upper bound of another with respect to worst-case
computation time, and what it means for a process to be easier to schedule than another.

In Section 4 we demonstrate that some CTPs exhibit counterintuitive behaviour, and that
this behaviour may occur in all systems where an arbitrary SEQ/PAR structure is allowed.
For instance, even if schedulability analysis of a system finds that all tasks meet their dead-
lines, this may no longer be true if a task executes less than its expected amount of computa-
tion. In Section 5 we identify a subset of well-behaved CTPs that never exhibits this kind of
behaviour.

1. Background

The term “job” is used to denote a finite computation released at some instant, with a deadline
at some later instant. The term “task” is used for a repeated job. A task could be sporadic,
meaning that it is triggered by an external event, or periodic, if it is released at fixed intervals.
In either case, tasks are specified with a minimum inter-release time, denoted T , and a relative
deadline, denoted D. The computational requirement of each job from a task is denoted C.

The goal of schedulability analysis is to take a set of tasks, specified by periods, dead-
lines and computational requirements, and find out whether all tasks meet their deadlines
when executed on a given platform. For multiprocessor schedulability analysis, two pieces of
information are needed for each task x:

1. An upper bound on the amount of computation of other tasks that interferes with x
2. A lower bound on the amount of interference required for x to miss its deadline.

If the first bound is lower than the second, then x will not miss its deadline. For example, a
complete schedulability test may be formulated as follows [1]: a task set is schedulable on a
multiprocessor composed by m identical processors if and only if for each task k∑

i 6=k

min
(
I i,k, Dk − Ck + 1

)
≤ m (Dk − Ck + 1) (1)

where I i,k is the maximum amount of computation of task i that may delay task k. The left-
hand side of this equation is the total interference on task k; the right hand side is the total
amount of interference required for task k to miss its deadline. This analysis does not support
job-level parallelism.

Schedulability analysis of systems with job-level parallelism is not well developed, and
most analyses have fundamental restrictions that limit their applicability, for example by



assuming that all jobs can be fully parallelised [2,3], or that the number of processors given to
a job is fixed during the execution of the job [4,5]. The analysis given in [6] supports analysis
of jobs with a fork-join structure, but does not discuss the situation where parallel branches
themselves are allowed to fork.

Toc [7] is a programming language that extends occam with a construct to specify dead-
lines. A uniprocessor schedulability analysis for Toc programs is given in [8]. Toc programs
tend to have a large amount of parallelism with an arbitrary structure, and this is not supported
by existing multiprocessor schedulability analysis.

In this paper we introduce the computation time process model for analysing timing of
parallel programs with an arbitrary parallel structure. In developing the model we borrow
some terms and syntax from the process algebra CSP [9,10]. CSP models the computational
behaviour of communicating processes, but does not explicitly model time. An extension of
CSP that includes timing semantics is called Timed CSP [11].

For all discussions regarding computing and time it is important to note that it is gener-
ally not possible to determine the computation time of a program in advance. For example,
the computation time may be data-dependent, or the program may contain recursions that
are hard to analyse (e.g. the halting problem). However, if schedulability analysis is to be
employed, a safe upper bound on the worst-case execution time (WCET) must be known. A
WCET bound can be found using computerised tools, provided that the programmer follows
certain conventions such as refraining from using dynamic memory or unbounded loops [12].

It is also important to note that because WCETs are always upper bounds, schedula-
bility analysis should never deem a system schedulable, if requiring less than the expected
amount of computation can cause it to miss deadlines. A schedulability analysis is called sus-
tainable [13] if systems deemed to be schedulable by the analysis remain schedulable when
reducing the amount of computation in the system, or relaxing the timing requirements. A
schedulability analysis is called exact if it provides sufficient and necessary conditions for
schedulability; and pessimistic if it may reject some systems that are actually schedulable.

2. Computation Time Processes

This section will introduce the CTP model.

2.1. Definitions

The set of computation time processes will be denoted P. A process P ∈ P may be one of the
primitive processes 0 or 1, or a combination of two other processes using either the sequence
operator “;”, or the parallel operator “||”:

The zero process 0 denotes a process which requires no work. It will never consume CPU,
and any process following 0 in sequence after may start immediately.

The unit process 1 denotes a process which requires one unit of computation. The value of
one unit of computation with respect to real time represents the minimum quantification
of time for the system. It can for example be thought of as the time of one CPU cycle.

The sequence process P ;Q, where P,Q ∈ P, denotes a process of two sub-processes where
one has to terminate execution before the other can begin. It satisfies the following
basic laws:

0 ;P = P (left-identity)

P ;0 = P (right-identity)

(P ;Q) ;R = P ;(Q ;R) (associativity)



The parallel process P ||Q, where P,Q ∈ P, represents two processes that may execute
interleaved. It satisfies the following basic laws:

0 ||P = P (identity element)

P ||Q = Q ||P (commutativity)

(P ||Q) ||R = P ||(Q ||R) (associativity)

2.2. Properties of Computation Time Processes

An important property of any computation time process is its total amount of computation.
This will be described as a function C : P→ N, defined by

C(1) = 1

C(0) = 0

C(P ;Q) = C(P ) + C(Q)

C(P ||Q) = C(P ) + C(Q)

For a process P , if the number of processors available to P is always greater or equal to the
number of processors P can utilise, then it will be the longest sequence in P that determines
its execution time. The length of a process, L : P→ N, describes this time:

L(1) = 1

L(0) = 0

L(P ;Q) = L(P ) + L(Q)

L(P ||Q) = max{L(P ),L(Q)}

The length of a process is thus the minimum execution time of a process.
Note that in both the above definitions (of C and L) we are not including any time for

computational overheads in managing the parallel processes. These could be accounted for
by adding a sequence of unit processes before and after the parallel composition, but are not
addressed here for simplicity.

Another important property is the immediate height of the process, H : P → N, defined
as the number of currently active parallel branches in the process:

H(1) = 1

H(0) = 0

H(P ;Q) =

{
H(P ) if P 6= 0

H(Q) if P = 0

H(P ||Q) = H(P ) +H(Q)

The height of a process is therefore the maximum number of processors the process can utilise
for the first step of its computation. We need this information when scheduling a process to
the number of processors available for that first step.

2.3. Computing a Single Step

We model time as discrete, so processes are executed in unit time steps. After each execution
step, the resulting process is a function of the original process and the number of processors



assigned to it for that step. If a process consists of multiple parallel branches and there are
too few processors available to execute them all, then the scheduler must choose a subset
of branches to execute. Thus, if nothing is known about the details of the scheduler itself,
the result of an execution step may be considered non-deterministic. The only detail of the
scheduler that will be assumed is that it is work conserving, meaning that it does not keep
any processors idle if there is ready work to be done.

The function step: P× N→ {P} takes a process P and a number of processors m and
returns the set of all possible processes that can result from executing a single step of P with
m processors. An explicit formulation of the step function can be written as

step(1,m) =

{
{1} if m = 0

{0} if m ≥ 1

step(0,m) = {0}

step((P ;Q),m) =

{
{(P ′ ;Q) : P ′ ∈ step(P,m)} if P 6= 0

step(Q,m) if P = 0
(2)

step((P ||Q),m) =
{
(P ′ ||Q′) : P ′ ∈ step(P,mP ), Q

′ ∈ step(Q,mQ),

mP ∈ [0,H(P )],mQ ∈ [0,H(Q)],mP +mQ = min{H(P ) +H(Q),m}
}

where the last equation states that a scheduler can distribute available processors to the par-
allel branches P and Q in several ways, as long as the amount of execution performed by
the step is limited either by the number of parallel branches, or by the number of available
processors.

If the resulting set from a step of a process has only one member, then the execution
of the process was deterministic; if the resulting set has more than one member, then the
result of execution depends on choices made by the scheduler. Two examples of using the
step-function are given below:

Example 1. Let a process P be given by

P = 1 ||1

In this case,H(P ) = 2, because for its first step, P may utilise two processors. Say 3 proces-
sors are available for P for its first step, i.e. m = 3. Then,

step((1 ||1), 3) =
{
(P ′ ||Q′) : P ′ ∈ step(1,mP ), Q

′ ∈ step(1,mQ),

mP ∈ [0, 1],mQ ∈ [0, 1],mP +mQ = min{2, 3}
}

=
{
(P ′ ||Q′) : P ′ ∈ step(1, 1), Q′ ∈ step(1, 1)

}
=
{
(P ′ ||Q′) : P ′ ∈ {0}, Q′ ∈ {0}

}
= {0 ||0}
= {0}

which means that P will complete all its computation after one time step if 3 processors are
available for it to use (P would also have completed if given 2 processors).

Example 2. Let a process P be given by

P = 1 ||(1 ;1)



Say P is given one processor, i.e. m = 1. Then,

step((1 ||(1 ;1)), 1) =
{
(P ′ ||Q′) : P ′ ∈ step(1,mP ), Q

′ ∈ step((1 ;1),mQ),

mP ∈ [0, 1],mQ ∈ [0, 1],mP +mQ = min{2, 1}
}

which means that we either have mP = 1,mQ = 0 or mP = 0,mQ = 1. Taking the union of
both alternatives results in

=
{
(P ′ ||Q′) : P ′ ∈ step(1, 1), Q′ ∈ step((1 ;1), 0)

}⋃{
(P ′ ||Q′) : P ′ ∈ step(1, 0), Q′ ∈ step((1 ;1), 1)

}
=
{
(P ′ ||Q′) : P ′ ∈ {0}, Q′ ∈ {1 ;1}

}⋃{
(P ′ ||Q′) : P ′ ∈ {1}, Q′ ∈ {1}

}
=
{
0 ||(1 ;1)

}⋃{
1 ||1

}
=
{
(1 ;1), (1 ||1)

}
The result set has more than one element. Therefore, the result of the first step of P is not
deterministic, but depends on which branch is assigned the one available processor.

2.4. Schedules

A schedule is a sequence of the number of processors available to be assigned at consecutive
points in time, modelled as a finite sequence of non-negative integers. The set of all schedules
is denoted S. We will use bracket notation for sequences, e.g. 〈1, 2, 3〉 for 1 followed by 2
followed by 3; and 〈〉 for the empty sequence. The concatenation of two sequences is written
s1

_ s2, e.g.:
〈1, 2, 3〉_〈4, 5, 6〉 = 〈1, 2, 3, 4, 5, 6〉

The results of executing a process P on a schedule s will be expressed by the operator
⊗ : P× S→ {P}, defined by

P ⊗〈〉 = {P}

P ⊗ (〈m〉_ s) =
⋃

P ′∈step(P,m)

P ′⊗ s (3)

We say that a process P will complete on schedule s if it is guaranteed to complete, i.e.

P ⊗ s = {0} (4)

This is distinct from may complete, as in

0 ∈ P ⊗ s (5)

Example 3. Let P be a process, defined by

P = (1 ;1) ||1 ||1 (6)

Looking at P , one can see that there are three possible 1-processes that can be executed at
the first step. This is equivalent with the fact that H(P ) = 3. Also, no matter how many
processors that are given to P it will never complete in less than two steps due to the sequence



process in the left branch. This is equivalent with L(P ) = 2. The total number of 1-processes
in P is four, so C(P ) = 4.

Consider the schedule s = 〈2, 3〉, meaning that P is given two processors for its first
step, and three processors for its second step. Will P complete? Beginning with step(P, 2),
we get

step(P, 2) = {(1 ;1), (1 ||1)}
For each process P ′ of the resulting set, we apply step(P ′, 3):

step((1 ;1), 3) = {1}
step((1 ||1), 3) = {0}

Therefore,
P ⊗ s = {0,1}

so P may or may not complete on the schedule.

3. Partial Orders on CTPs

In order to analyse CTPs, some means of comparing processes must be introduced. In this
section, two partial orders will be defined that allow comparison between processes with
respect to different properties. The first is the upper bound order, which relates to worst-case
execution time. A process Q is said to be an upper bound of P if P has the same structure
as Q, but with possibly some of the computation removed. The second is the schedulability
order, relating to the ease of scheduling a process. A process P is said to be easier to schedule
than Q, if Q always completing in a schedule implies that P will also always complete.

3.1. Upper Bound Order (w)

Execution time estimates are always upper bounds, so there is always the chance that an
execution of a program turns out to require less computation than a CTP based on execution
time analysis of the program. If a process P represents a possible execution of a process Q,
then Q is said to be an upper bound for P . This will be written P wQ.

Definition 1 (w). Q is an upper bound of P , written P wQ if P can be derived from Q by
replacing any number of unit processes in Q with the zero process.

It follows per definition that

0w1

P ′ ;Q′wP ;Q if P ′wP ∧Q′wQ

P ′ ||Q′wP ||Q if P ′wP ∧Q′wQ

The upper bound relation satisfies all properties of a partial order:

P wP (reflexive)

P wQ ∧QwP =⇒ P = Q (anti-symmetric)

P wQ ∧QwR =⇒ P wR (transitive)

The relation is not a total order, in that there exist pairs of processes where neither is an upper
bound of the other, for example 1 ;1 and 1 ||1. An important property is that executing a
process can be seen as a special case of removing computation:

∀P ∈ P : ∀s ∈ S : (P ′ ∈ P ⊗ s =⇒ P ′wP ) (7)



3.2. Schedulability Order (≤)

The schedulability order relates two processes P and Q in such a way that if one process
is guaranteed to complete on a schedule, the other is also guaranteed to complete on that
schedule.

Definition 2 (≤). A process P is easier to schedule than a process Q, written P ≤ Q, if for
all schedules s,

Q⊗ s = {0} =⇒ P ⊗ s = {0} (8)

This order is essentially an order of worst-case execution time, as it relates the worst-case
completion of P to the worst-case completion of Q. If P ≤ Q, and Q is known to complete
on some schedule, then Q can be replaced with P , and P will also complete on that schedule.
Trivially, we have that

0 ≤ 1

because 0 is guaranteed to complete on any schedule. The ≤-relation also satisfies all prop-
erties of a partial order:

P ≤ P (reflexive)

P ≤ Q ∧Q ≤ P =⇒ P = Q (anti-symmetric)

P ≤ Q ∧Q ≤ R =⇒ P ≤ R (transitive)

Like the w-relation, the ≤-relation is also only a partial order. For example, if

P = 1 ||1 ||1 s1 = 〈3〉
Q = 1 ;1 s2 = 〈1, 1〉

Then P and Q are incomparable with respect to schedulability. P will always complete for
s1 but never for s2, while Q will always complete for s2 but never for s1.

Unlike the w-relation, the ≤-relation does not in general distribute over ; and ||, but it
does distribute for the right element of a sequence, as maintained by the following lemma:

Lemma 1. For all processes P and Q, and all processes Q′ where Q′ ≤ Q,

P ;Q′ ≤ P ;Q (9)

Proof. Proof by contradiction. Assuming that Eq. 9 does not hold, then there must exist a
schedule s so that (P ;Q)⊗ s = {0} and (P ;Q′)⊗ s 6= {0}. For all executions of P ;Q on
this schedule there exists some prefix of s so that

s = sP
_ sQ.

Q ∈ (P ;Q)⊗ sP

As P ;Q will always complete on s it follows that Q⊗ sQ = {0}. However Q′ ≤ Q implies
Q′⊗ sq = {0}, so P ;Q′ must also always complete, contradicting the assumption that P ;Q′

did not complete on the schedule.

4. Timing Anomalies

Say a process Q has been derived from execution time analysis of some program. Because the
WCET analysis always yields worst-case timings, an actual instance of the program does not



necessarily behave like Q, but is only guaranteed to behave like some process P for which Q
is an upper bound. Consider the following statement:

P wQ
?

=⇒ P ≤ Q (10)

If the above statement was true, then an execution of the program would always have behaved
like Q or like some process easier to schedule than Q: If Q was schedulable, then the program
would always be schedulable. However, and somewhat surprisingly, the above statement does
generally not hold. A special case of this, which may seem even more counterintuitive, is
illustrated by the following observation:

Observation 1. There exist processes P and Q, and a schedule s so that

(P ∈ Q⊗ s) ∧ (P 6≤ Q) (11)

that is, there may be situations where Q is unable to complete on a schedule if and only if it
has completed some execution prior to beginning on the schedule.

Example 4. An example will be given. Let P , Q and s be defined by

Q =
(
1 ;(1 ||1)

) ∣∣∣∣ (1 ;(1 ||1))
P =

(
1 ;(1 ||1)

) ∣∣∣∣ (1 ||1) (12)

s = 〈1〉

By choosing to execute the right parallel branch of Q, one can see that P ∈ Q⊗ s. To show
P 6≤ Q it is sufficient to find a schedule for which Q is guaranteed to complete, but P is not.
Let u be the schedule defined by

u = 〈2, 4〉

By computing Q⊗u we get that Q is guaranteed to complete on u:((
1 ;(1 ||1)

) ∣∣∣∣ (1 ;(1 ||1)))⊗〈2〉 = {1 ||1 ||1 ||1}
(1 ||1 ||1 ||1)⊗〈4〉 = {0}

By computing P ⊗u we get that P is not guaranteed to complete on u. The first step yields((
1 ;(1 ||1)

) ∣∣∣∣ (1 ||1))⊗〈2〉 = {(1 ||1 ||1), (1 ;(1 ||1))}
Computing the second step for each of these results yields

(1 ||1 ||1)⊗〈4〉 = {0}(
1 ;(1 ||1)

)
⊗〈4〉 = {1 ||1}

As Q will complete on u, but P may or may not, P 6≤ Q.

Corollary 1. There exist processes Q ∈ P and schedules u, v ∈ S, where ∀i : ui ≤ vi, and
where

(Q⊗u = {0}) ∧ (Q⊗ v 6= {0}) (13)

Proof. This can be shown setting u = 〈0, 2, 4〉 and v = 〈1, 2, 4〉 and using P and Q from
Example 4. Then, Q⊗〈0〉 = {Q} and Q⊗〈1〉 = {P}. The rest of the schedule is 〈2, 4〉, for
which Q will always complete, but P may not.



Corollary 2. There exist processes P and Q so that

P wQ ∧ P 6≤ Q (14)

Proof. Executing a process will always result in a new process for which the original is an
upper bound (see Eq. 7). The processes in Example 4 therefore satisfies P wQ, and P 6≤ Q.

For a process P wQ not to complete when Q is guaranteed to complete, it is necessary
that the scheduler at some point makes a “wrong” decision. An argument may therefore be
made that the counterintuitive behaviour of processes is in some part due to the scheduler; and
moreover, that this behaviour can be eliminated by attempting to make a better scheduling
algorithm. The following observation illustrates the futility of such an attempt.

Observation 2. There exists some process Q and schedule s so that the set Q⊗ s has no least
element in the schedulability order.

Example 5. An example will be given. Consider the schedule s = 〈1, 3〉 and the process Q
defined by

Q =
(
1 ;(1 ||1)

) ∣∣∣∣ (1 ;1 ;1)
The first step of computation may result in one of the following two processes:

Q⊗〈1〉 =
{(

1 ||1 || (1 ;1 ;1)
)
,(

1 ;(1 ||1)
) ∣∣∣∣ (1 ;1)}

Computing the second step for each of these processes yields(
1 ||1 ||(1 ;1 ;1)

)
⊗〈3〉 = {1 ;1}((

1 ;(1 ||1)
) ∣∣∣∣ (1 ;1))⊗〈3〉 = {1 ||1 ||1}

so
Q⊗ s =

{
(1 ;1), (1 ||1 ||1)

}
(15)

The two resulting processes are incomparable with respect to schedulability, so Q⊗ s has no
least element.

Observation 2 implies that there is no such thing as a “correct choice” for a scheduler;
whether or not a scheduling choice leads to the completion of a process may depend on the
future schedule. The future schedule again depends on the behaviour of other tasks in the
system, and is generally not predictable. For example, take the processes in Eq. 15. If the rest
of the schedule is 〈1, 1〉, then the first result will complete the process, but not the second. If
a future schedule is 〈3〉, then the second result completes the process, but not the first.

5. Well-behaved Processes

In the previous section it was demonstrated that there exist processes which are harder to
schedule if computation is removed from them. Such a process cannot be used in schedula-
bility analysis, because for real programs, only upper bounds on computation may be deter-
mined in advance. However, there exist processes that do not exhibit this kind of behaviour.
These processes will be referred to as well-behaved, and will be the main topic of this section.

Definition 3 (Well-behaved). A computation time process Q is well-behaved if and only if

∀P ∈ P : (P wQ =⇒ P ≤ Q) (16)



Whether or not a process Q is well-behaved can be determined by exhaustive examination of
all schedules in which Q is guaranteed to complete, and checking these schedules against all
processes P wQ for which Q is an upper bound. However, such a test has at least exponential
complexity with respect to C(Q), making it infeasible for most practical purposes. Instead,
one may try to find general classes of processes where good behaviour is guaranteed by the
process structure.

5.1. Classes of Well-Behaved Processes

Some simple processes are quickly found to be well-behaved:

Lemma 2. The zero process (0) and the unit process (1) are well-behaved.

Proof. The only process for which 0 is an upper bound is 0 itself, so it follows that 0 is well-
behaved. The process 1 will complete on any schedule with at least one non-zero element.
The only processes for which 1 is an upper bound is 0 and 1. Both will complete on any
non-zero schedule, so it follows that 1 is well-behaved.

Theorem 1. Let P be a process with the following structure:

P = P1 ;P2 ;P3 ; ... ;Pn

If the processes Pi|i=1...n are well-behaved, then P is well-behaved.

Proof. Note that we only need to prove that P1 ;P2 is well-behaved. If that is true, then

P = (P1 ;P2) ;P3 ; ... ;Pn (17)

will be a sequence of well-behaved processes for which the first element, (P1 ;P2), is well-
behaved. The same proof can then be used to show that ((P1 ;P2) ;P3) is well-behaved, and
so on.

Let s ∈ S be any schedule for which (P1 ;P2)⊗ s = {0}. Let s1 be the shortest prefix
of s for which P1⊗ s1 = {0} and let s2 be the suffix of s so that s = s1

_ s2. It follows that
P2⊗ s2 = {0}, otherwise it would be possible to execute (P1 ;P2) on s without it complet-
ing. Let P ′1 and P ′2 be processes so that P ′1wP1 and P ′2wP2. Because P1 is well-behaved,
P ′1⊗ s1 = {0}.

P ′1 must complete for s1, but it may also complete earlier, leaving some rest of the sched-
ule srest. It remains to show that all processes P ′2 must complete within the schedule srest _ s2.
As was noted in Eq. 7, execution of a process must lead to a process for which the original is
an upper bound. Therefore, for all srest,

∀P ′′2 ∈ P ′2⊗ srest : P
′′
2 wP ′2wP2

The remaining schedule is s2. It was already shown that P2⊗ s2 = {0}. As P2 is well be-
haved, and P ′′2 wP2, then P ′′2 will also always complete on s2. This shows that P ′1 ;P

′
2 ≤

P1 ;P2, so P1 ;P2 is well-behaved.

In general, P ||Q is not well-behaved, even if P and Q are well-behaved. For example,
Q given in Eq. 12 is not well-behaved even though both of the parallel branches are well-
behaved. A special case where a parallel process is indeed well-behaved is given below:

Theorem 2. If Q ∈ P has the following structure

Q = (1 ;1 ;1...) ||(1 ;1 ;1...) ||(1 ;1 ;1...)... (18)

where the branches need not be of the same length, then Q is well-behaved.



Proof. First note that all processes for which Q is an upper bound has the same structure as
Q.

Let Q = Q1 ||Q2 || ...QN so that the Qi processes are sequences of 1s. If some P satisfies
P wQ, then P must be equal to Q with some 1s removed, so if P = P1 ||P2 || ...PN , then we
have

∀i ∈ [1, N ] : L(Pi) ≤ L(Qi) (19)

We also have C(P ) ≤ C(Q) andH(P ) ≤ H(Q). Let m be the first element in a schedule. If

m ≤ H(P ) ∨ m ≥ H(Q)

then every choice that the scheduler can make for P it can also make for Q. For all choices
of P , a corresponding choice can be made for Q so that Eq. 19 is still satisfied. If

H(P ) ≤ m ≤ H(Q)

then the scheduler may choose to execute additional branches for Q. However, these branches
must already be of zero length for P , so for all results for P , a corresponding result for Q can
be found that satisfies Eq. 19. This can be repeated for each element in the schedule.

This shows that for all schedules s, and all processes P ′ ∈ P ⊗ s there exists some
process Q′ ∈ Q⊗ s so that C(P ′) ≤ C(Q′). A consequence is that we cannot have Q⊗ s =
{0} when P ⊗ s 6= {0}. Therefore,

Q⊗ s = {0} =⇒ P ⊗ s = {0}

P is easier to schedule than Q, which implies that Q is well-behaved.

5.2. Safe Upper Bound

If schedulability analysis is to be performed on some ill-behaved process P , then the analysis
will not be sustainable. To make the analysis sustainable, it would be better to replace P with
some well-behaved process Q that is harder to schedule than all processes P ′wP , and then
analyse Q instead. Such a Q will be referred to as a safe upper bound.

Definition 4 (Safe Upper Bound). A process Q is a safe upper bound for a process P if

∀P ′wP : P ′ ≤ Q (20)

The existence of a safe upper bound is guaranteed by the following lemma:

Lemma 3. For all P ∈ P, if Q is a sequence of 1s with length C(P ), then Q is a safe upper
bound for P .

Proof. Q will complete for all schedules that have at least C(P ) non-zero elements. P will
also complete for all these schedules, so P ≤ Q. Furthermore, all processes P that satisfy
P ′wP will also complete for this schedule, so Q is a safe upper bound.

A process P can be replaced by a safe upper bound to make temporal analysis of P
sustainable. However, the analysis will no longer be exact, as the safe upper bound may be
harder to schedule than P . For example, the choice of safe upper bound used in Lemma 3
suppresses all parallelism of a process, which could make the analysis unnecessarily pes-
simistic. Sometimes, other safe upper bounds exist that maintain some of this parallelism and
thus lead to less pessimistic results:



Example 6. Take the ill-behaved process Q given below:

Q =
(
1 ;(1 ||1)

) ∣∣∣∣ (1 ;(1 ||1))
Let QS be defined by

QS = 1 ;1 ;1 ;1 ;1 ;1

According to Lemma 3, QS is a safe upper bound for Q. Let QP be defined by

QP = (1 ||1) ;(1 ||1) ;(1 ||1) (21)

QP will complete on some schedule s if and only if s = b1
_ b2

_ b3 where each bi|i=1..3 is
either 〈1, 1〉 or 〈2〉, or similar schedules with strictly larger elements. For example, QP will
complete on 〈2, 1, 1, 2〉, but not on 〈1, 2, 1, 2〉. It can be found by systematic examination
that Q will complete on all these schedules, and that all Q′wQ also will complete on these
schedules. We know from Theorem 1 that Q is well-behaved. It follows that QP is also a
safe upper bound of Q. Moreover, as QP ≤ QS there are no schedules for which QS will
complete and QP will not. QP is therefore a better choice of safe upper bound.

For a process P , the best choice of safe upper bound would be the least element in the
set of safe upper bounds with respect to schedulability:

Q? = min
≤
{Q ∈ P : ∀P ′wP : P ′ ≤ Q} (22)

At this point we do not know of a method to find the best safe upper bound, or if a unique
best safe upper bound generally exists.

6. Conclusions and Future Work

In this paper, we introduced the computation time process model as a tool for temporal anal-
ysis of non-communicating programs with an arbitrary parallel structure. The simplicity of
dealing only with time, rather than with time and computation, allows the temporal proper-
ties of simple processes to be examined more easily than would be possible with for example
Timed CSP. Moreover, the CTP model explicitly models timing of programs on multiproces-
sor systems, not timing of abstract processes in general.

Somewhat counterintuitively it was shown that an upper bound on the estimate of com-
putation does not in general represent a worst-case scenario with respect to schedulability;
there exist processes that are unable to complete on schedule only if requiring less than
their upper bound. The existence of these processes has important implications for temporal
analysis of all programs with an arbitrary SEQ/PAR structure, because it implies that exact
schedulability analysis will in general not be sustainable.

The processes where worst-case execution did represent a worst-case scenario were la-
belled well-behaved. If a process has an upper bound that is well-behaved, then this is called
a safe upper bound. By replacing an ill-behaved process with a safe upper bound, one can
enable sustainable schedulability analysis, but the analysis will no longer be exact. Some safe
upper bounds were found to be easier to schedule than other safe upper bounds, and would
thus result in less pessimistic analysis. We do not know of a method to construct the best safe
upper bound, nor if a best safe upper bound generally exists. This should be investigated as
part of future work.

It was also shown that there cannot exist a perfect scheduler for SEQ/PAR programs,
because there are examples of schedules where the decision that leads to the completion
of a process depends on the future schedule. This was shown using an ill-behaved process.



Whether or not there exists a perfect scheduling choice when processes are well-behaved has
not yet been determined.

The CTP model should be extended to handle communication. Committed synchronous
communication may be modelled with sequences: a parallel first part (where the processes
are not communicating); then the communication; then a parallel second part where the pro-
cesses go their own ways. However, alternation would require additions to the existing model.
Additions are also needed to model conditional computation; the existing model can only
model conditional computation for the special case where the branches have the same parallel
structures.

Another topic for future work is to study the interaction between CTPs executing on the
same platform. For a schedulability analysis of a complete system, bounds on the amount of
computation from one CTP that may interfere with another is required, as well as a function
from interference to delay so that it can be determined whether or not a task based on a
CTP misses a deadline. The results in this paper should prove useful in developing such an
analysis.
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