

Practical Experiments on the
Efficiency of the Remote Presence

MASTER THESIS

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF ENGINEERING CYBERNETICS

February 2, 2012

Authored by: Jeremias Moragues Pons
Supervisor: Amund Skavhaug, ITK

“A great wind is blowing, and that gives you either imagination or a headache.”

Catherine the Great

Empress and Autocrat of All the Russias, 1729-1796

Thesis Assignment

MSc Thesis Assignment

Assignment tittle: Practical Experiments on the Efficiency of the Remote Presence.

 Remote Inspection on an Offshore Wind Turbine

Background:

• The inspections on the Offshore Wind Turbines are expensive although necessary.
• Given the need for carrying out these Inspections with a smaller budget, a solution would be

to make them by Remote Presence.
• Is this possible and feasible?

Project Targets:

• Study previous work.
• Study necessary background theory.
• Identify and discuss different possible solutions for physical layout of instruments and signals

to use.
• Control system for experiments.
• Suggest the user interface for remote presence.
• Select the interface.
• Plan the implementation and Implement as far as time allows.
• Evaluate how good the system with small experiments is.

Assignment given: 12. September. 2011

Submission date: 4. February. 2012

Jeremias Moragues Pons

Trondheim, 5. October. 2011

Abstract

iii

Abstract

 Offshore wind power has become a growing interest in the worldwide society. New research
and investigation in this kind of technology is increasing year after year. Thus, the inspection on the
offshore wind turbines is expensive but necessary.

 The goal of this project is to demonstrate the efficiency of a Remote Inspection System inside
the nacelle of an Offshore Wind Turbine. The way of carrying out inspections on real nacelles, as well
as other aspects from maintenance is discussed. Three different companies have been taken into
account when developing an Inspection Plan.

 This master thesis contains a theoretical design of the input device that would be used in the
future for inspection and maintenance tasks. A gamepad has been implemented as a temporary
solution for the input device.

 It has been demonstrated how the prototype is able to detect failures in a scenario
simulating a real nacelle. Although it has not been possible to test sound, heat or vibration, this kind
of things would be easily detected by adding some more additional sensors.

 The conclusion is that a solution for reducing maintenance tasks relies on the development of
effective condition monitoring and remote control systems.

iv

Preface

v

Preface

 This master thesis has given me knowledge in many fields that I did not know in depth, such
as: offshore wind power, java programing, and basics from ATMEL microcontroller.

 I also have learnt better how to work by my own and to investigate through different tasks at
the same time.

 This project has made me improve my writing and understanding English skills, which was
one of the reasons for coming to Norway.

 I would like to thank my supervisor for the motivation transmitted and for the freedom I
have had in this project. This has allowed me to raise my own goals.

 I would also like to thank Øyvind Netland, PhD on the Department of Engineering
Cybernetics, his support and advice in making the most complex decisions during these months.

 I must thank the help from employees on the department workshop, which have provided
the materials for doing the “experiments”. In this way, thanks also to Genge & Thoma Company.
They have been in touch with me giving advice on the possible input devices to use.

 Thanks to my family and friends, especially my sister María, my cousin Elisa and my aunt
Jane, who have helped me with the redaction and correction of the thesis.

 Thanks to my girlfriend Bea, who has been next to me in the most difficult moments.

 And finally, thanks mom and dad for allowing me to undertake this way and helping me
whenever I needed.

Jeremias Moragues Pons

Trondheim, 1. February. 2012

vi

Table of Contents

vii

Table of Contents

1 INTRODUCTION .. 1
1.1 WIND ENERGY ... 1

1.1.1 Offshore Wind Power .. 2
1.2 WIND GENERATION IN EUROPE ... 3

1.2.1 Wind in Norway ... 4
1.3 OFFSHORE INSPECTION AND REMOTE PRESENCE ... 6
1.4 THE OBJECTIVE: HOW TO STUDY THE EFFICIENCY .. 6

1.4.1 Contribution .. 6

PART I. Development of the Thesis

2 PREVIOUS WORK .. 9
2.1 BACKGROUND .. 9

2.1.1 Motivation ... 9
2.1.2 Made Design ... 10

2.2 PROTOTYPES .. 11
2.2.1 First Option .. 11
2.2.2 Second Option ... 12

2.3 THE CHOSEN ROBOT ... 12
2.4 USER INTERFACE ... 13

3 NEW DEVICE: JOYSTICK .. 15
3.1 CONTRIBUTION .. 15

3.1.1 Technical details .. 16
3.1.2 Industrial applications ... 16
3.1.3 Demanded features ... 17

3.2 LIST OF POSSIBLE DEVICES ... 18
3.2.1 Final device .. 18

3.3 ASPECTS TO CONSIDER IN MAKING THE INTERFACE ... 19
3.3.1 Delay ... 19
3.3.2 Collision ... 19
3.3.3 Vibration .. 19
3.3.4 Placing & Augmented reality ... 19

3.4 FINAL IMPLEMENTATION .. 22
3.4.1 Device used .. 22
3.4.2 Java Programing .. 23

3.4.2.1 JX Input – Input Devices for Java .. 23
3.4.2.2 Client-Inspection .. 25

Table of Contents

viii

4 INSIDE THE NACELLE ... 27
4.1 ANATOMY OF A WIND TURBINE .. 27

4.1.1 Blades .. 28
4.1.2 Nacelle ... 28
4.1.3 Tower .. 28

4.2 MAIN PARTS OF THE NACELLE ... 29
4.2.1 Rotor hub ... 29

4.2.1.1 Main Shaft .. 29
4.2.1.2 Small Shaft .. 29

4.2.2 Gearbox ... 30
4.2.3 Generator .. 30

4.2.3.1 Cooling System ... 30
4.2.4 Mechanical brake .. 30
4.2.5 Yaw Drive .. 30

4.2.5.1 Yaw motor .. 31
4.2.5.2 Yaw bearing .. 31

4.2.6 Anemometer and Wind Vane .. 31
4.2.7 Controller ... 32

5 OPERATION AND MAINTENANCE ... 33
5.1 INTRODUCTION .. 33

5.1.1 Land Based Comparative Data .. 34
5.2 MAINTENANCE STRATEGIES .. 34
5.3 O&M OFFSHORE EXPERIENCE .. 35

5.3.1 Availability ... 35
5.3.2 Operational expenditure ... 35
5.3.3 Serviceability ... 35
5.3.4 Access for maintenance ... 36

5.4 DESIGNS FOR REDUCED MAINTENANCE... 36
5.4.1 Component reliability .. 36

5.4.1.1 Gearbox .. 37
5.4.1.2 Generator ... 37
5.4.1.3 Direct Drive System .. 37
5.4.1.4 Electrical and Electronic Control System .. 37
5.4.1.5 Hydraulic System .. 37

5.4.2 Corrosion protection .. 38
5.4.3 Control and condition monitoring ... 38
5.4.4 Back-up power ... 38

5.5 O&M CONCLUSIONS .. 39

6 WHAT TO INSPECT .. 41
6.1 GENERAL OUTLINES ABOUT THE INSPECTION .. 41
6.2 INSPECTING THE NACELLE ... 42

6.2.1 Structural System .. 42
6.2.2 Electrical and Mechanical System ... 43

6.3 COMPANIES GENERAL PROCEDURE .. 43

Table of Contents

ix

7 DIFFERENT POSSIBLE SOLUTIONS ... 45
7.1 INSPECTION PLAN ... 45

7.1.1 The Component List ... 46
7.2 LAYOUT .. 46

7.2.1 Lighting conditions .. 47
7.2.2 Analysed scenarios .. 48

7.3 EXPERIMENTAL CONTROL SYSTEM .. 48

8 TESTS .. 49
8.1 INTRODUCTION .. 49

8.1.1 Modus operandi .. 49
8.2 TEST 1. GENERAL SEARCH .. 50

8.2.1 Visible cables ... 50
8.2.2 Oil leakage ... 52

8.3 TEST 2. COMPARISON SEARCH .. 53
8.3.1 Control panel ... 53
8.3.2 Motor connection .. 54
8.3.3 Bolts connections... 54

9 DISCUSSION .. 55
9.1 THE INSPECTION CONTROLLER ... 55
9.2 AUGMENTED REALITY .. 56
9.3 INSPECTION TESTS ... 56
9.4 FUTURE WORK... 57

10 CONCLUSION .. 59

PART II. Appendix

A. MAP OF WIND FARMS IN SCANDINAVIA .. 63

B. JOYSTICKS FROM GENGE & THOMA ... 65

C. JXINPUT – INPUT DEVICES FOR JAVA .. 67

D. CLIENT – INSPECTION APPLICATION ... 83

E. INSPECTION SUMMARY... 95

F. INSPECTION CHECKLIST ... 97

G. THE DVD .. 99

REFERENCES .. 101

x

List of Figures

xi

List of Figures

FIGURE 1. HYWIND IN ÅMØY FJORD, THE FIRST FULL SCALE OFFSHORE FLOATING WINDMILL .. 2
FIGURE 2. AVERAGE WIND FARM SIZE IN MW ... 3
FIGURE 3. THE WHOLE SYSTEM WITH THE TRACK .. 10
FIGURE 4. FIRST INSPECTION ROBOT .. 11
FIGURE 5. LAST INSPECTION PROTOTYPE .. 12
FIGURE 6. CLIENT REMOTE INSPECTION INTERFACE ... 13
FIGURE 7. EXAMPLE OF INDUSTRIAL JOYSTICKS .. 16
FIGURE 8. PUT'N STAY JOYSTICK GT .. 17
FIGURE 9. MARINE CONTROLLER BS 130 GT .. 17
FIGURE 10. CONTROL PANEL FOR INSPECTION ... 18
FIGURE 11. AUGMENTED REALITY SYSTEM FOR 3D MAPPING ... 20
FIGURE 12. AUGMENTED REALITY SYSTEM FOR A MOVING VEHICLE ... 21
FIGURE 13. GAME PAD USED AS THE NEW CONTROLLER DEVICE .. 22
FIGURE 14. CONTROL SCHEME JOYPADS .. 22
FIGURE 15. ARCHITECTURE OF THE JXINPUT PACKAGE ... 23
FIGURE 16. JOYSTICK TEST INTERFACE .. 24
FIGURE 17. TOP VALUES FOR DETECTION IN THE JAVA APPLICATION ... 24
FIGURE 18. SCREEN CAPTURE OF ECLIPSE (JAVA CLASSES TO UPDATE) .. 25
FIGURE 19. EXAMPLE OF AN OFFSHORE WIND TURBINE .. 28
FIGURE 20. MAIN PARTS OF A NACELLE .. 29
FIGURE 21. TYPICAL ARRANGEMENT OF YAW BEARING AND YAW DRIVE .. 31
FIGURE 22. ANEMOMETER AND WIND VANE ... 31
FIGURE 23. DIAGRAM OF AN ADVANTECH APAX CONTROL SYSTEM .. 32
FIGURE 24. TAIWAN POWER COMPANY LOGO ... 43
FIGURE 25. ENERGO ENGINEERING LOGO ... 44
FIGURE 26. STATKRAFT LOGO ... 44
FIGURE 27. COMPONENTS AND ITEMS TO USE DURING THE INSPECTION .. 45
FIGURE 28. REMOTE INSPECTION DEVICE INSIDE THE NACELLE OF WIND TURBINE .. 46
FIGURE 29. UPDATED PATH FOR INSPECTION TESTING ... 47
FIGURE 30. NACELLE LIGHTING AND POWER SYSTEMS ... 47
FIGURE 31. WEAR AND TEAR ON CABLES REMOTELY INSPECTED... 50
FIGURE 32. WEAR AND TEAR ON INSPECTED CABLES (BEING THERE) ... 51
FIGURE 33. OIL LEAKAGE ... 52
FIGURE 34. CONTROL PANEL ... 53
FIGURE 35. MOTOR CONNECTION ... 54
FIGURE 36. BOLTS CONNECTIONS AND GREASE STAINS .. 54

xii

List of Tables

xiii

List of Tables

TABLE 1. WIND POWER PLANTS IN NORWAY AT THE END OF 2011 .. 4
TABLE 2. STATUS OF THE OFFSHORE WIND TURBINES IN JANUARY 2011 .. 5
TABLE 3. RECOMMENDED INSPECTION CYCLES (YEARS) ... 41

xiv

List of Source Code

xv

List of Source Code

SOURCE CODE 1. THE JOYSTICKLISTENER CLASS ... 67
SOURCE CODE 2. THE JOYSTICKNOTIFIER CLASS ... 70
SOURCE CODE 3. THE JOYSTICK CLASS .. 78
SOURCE CODE 4. THE JOYSTICKTEST CLASS .. 82
SOURCE CODE 5. THE CAMCONTROLLER CLASS .. 87
SOURCE CODE 6. THE VEHICLECONTROLLER CLASS ... 90
SOURCE CODE 7. THE CAMMODEL CLASS ... 92
SOURCE CODE 8. THE VEHICLEMODEL CLASS .. 93

xvi

1 Introduction Wind Energy

1

1
Introduction

1.1 WIND ENERGY .. 1
1.1.1 OFFSHORE WIND POWER ... 2

1.2 WIND GENERATION IN EUROPE ... 3
1.2.1 WIND IN NORWAY .. 4

1.3 OFFSHORE INSPECTION AND REMOTE PRESENCE ... 6

1.4 THE OBJECTIVE: HOW TO STUDY THE EFFICIENCY ... 6
1.4.1 CONTRIBUTION .. 6

1 Introduction
1.1 Wind Energy

 Wind energy is energy that is transformed from the renewable kinetic power in wind into
electrical energy using a wind turbine. The wind moves the blades that through the rotor drive a
generator inside the nacelle. From the generator the electric power is transferred through wires and
networks to the consumer [1].

 Like most other energy sources, wind energy stems basically from the solar energy that is
transferred to the earth. Wind is an air stream that seeks to equalize differences of pressures in the
atmosphere, which, among other things, arise since the sun heats the air masses at different
latitudes of the globe. In Norway, we find the best conditions for wind power production along the
coast and also in mountainous areas near the coast. Wind conditions vary widely, and to assess an
area’s potential for wind power extensive wind measurement must be carried out. Along the coast,
the average wind speed reaches between 6 and 10 m/s. When the wind is stronger than 3-4 m/s the
nacelle turns the turbine so that the rotor is always standing against the wind and power production
starts.

 Globally, the long-term technical potential of wind power is believed to be five times total
current global energy production, or 40 times current electricity demand. This could require wind
turbines to be installed over large areas, particularly in areas of higher wind resources. Offshore
resources could contribute substantially more energy than that of land [2].

1 Introduction Offshore Wind Power

2

1.1.1 Offshore Wind Power

 The major benefits of offshore wind turbines are: better and more stable wind resources,
large available areas and likely lower interest conflicts than on land. The problem with current
solutions is that investment, maintenance and operating costs are significantly higher than on land.

 There are two main types of technology for Offshore Wind Power according to the depth
where the turbines are installed. On the one hand, the turbines that are fixed at depths up to 100 m
(real foundation), and on the other hand, the floating turbines in deeper waters.

 The main advantage of floating wind turbines is that they can be located in deep water
regardless of the seabed conditions. The world’s first floating wind turbine is the group 2.3 MW
HyWind Karmøy which started production in 2009, Figure 1. Norway has in addition, companies such
as SWAY and Wind Sea working with Floating Wind Power.

Figure 1. Hywind in Åmøy Fjord, the first full scale Offshore Floating Windmill

 As of September 2011, Japan plans to build a pilot floating wind farm, with six 2-megawatt
turbines, off the Fukushima coast of northeast Japan [3].

 As of November 2011, Statoil plans to build a multi-turbine project in Scottish waters utilizing
the Hywind design [4].

 The exploitation of open sea (deep-water) wind energy resources can give access to a large
number of sites with good wind conditions and fewer restrictions (noise, visual acceptance) than on-
shore. Wind turbines used here may differ from conventional designs due to different operational
conditions and the absence of some restrictions [5].

1 Introduction Wind in Europe

3

1.2 Wind Generation in Europe

 Wind power has an important role in the EU’s future energy system. EWEA publishes
information annually about the installed wind power in Europe.

 Around 5.5% of EU electricity consumption was covered by wind power in 2010. The
percentage should increase to around 15% in 2020 and to around 30% in 2030 to reach the EU goals.
The figure below shows the new installed capacity for the different forms of energy in the EU from
1995 to 2010. Wind power represents a significant share of new power installed [6].

 Since 2009, the average size of offshore wind farms has been increasing steadily. In 2011, the
average size of the projects, once fully completed, is just under 200 MW, 45 MW (+29%) more than
in 2010 [7].

 As the technology matures it is expected that wind farms will continue to grow in size.

Figure 2. Average wind farm size in MW

 The average capacity of offshore wind turbines was 2 MW at the end 2011. Average size of
turbines grid connected during 2011 was 3.6 MW up from 3 MW in 2010

 Over the course of the next decade the way in which Europe’s demand for electricity is met
will change fundamentally. Driven by a political will to meet ambitious targets for reductions in
emissions of carbon dioxide and supported by generous subsidy schemes, electricity generation from
renewable sources is expected to grow explosively between now and 2020 [8].

1 Introduction Wind in Norway

4

1.2.1 Wind in Norway

 Norway will have 17 wind power plants of 1.2 MW, at the end of 2011, which together have
an installed capacity of almost 541 MW.

Table 1. Wind power plants in Norway at the end of 2011

NAME COMPANY MUNICIPALITY COUNTY INSTALLED CAPACITY

Bessakerfjellet TrønderEnergi Kraft AS Roan Sør-Trøndelag 57,50 MW

Fjeldskår Agder Energi Produksjon AS Lindesnes Vest-Agder 3,75 MW

Harøy Sandøy Vindkraft AS Sandøy Møre og Romsdal 3,75 MW

Havøygavlen Artic Wind AS Måsøy Finnmark 40,00 MW

Hitra Statkraft SF Hitra Sør-Trøndelag 55,20 MW

Hundhammerfjellet NTE Nærøy Nord-Trøndelag 49,65 MW

Hywind StatoilHydro ASA Karmøy Rogaland 2,30 MW

Kjøllefjord Statkraft SF Lebesby Finnmark 39,10 MW

Mehuken Kvalheim Kraft AS Vågsøy Sogn og Fjordane 4,25 MW

Mehuken II Kvalheim Kraft AS Vågsøy Sogn og Fjordane 18,40 MW

Nygårdsfjellet trinn I Nordkraft Vind AS Narvik Nordland 6,90 MW

Smøla trinn 1 Statkraft SF Smøla Møre og Romsdal 40,00 MW

Smøla trinn 2 Statkraft SF Smøla Møre og Romsdal 110,00 MW

Utsira Norsk Hydro Produksjon AS Utsira Rogaland 1,20 MW

Valsneset TrønderEnergi Kraft AS Bjugn Sør-Trøndelag 9,00 MW

Høg-Jæren trinn 1 Jæren Energi AS Time/Hå Rogaland 59,80 MW

Nygårdsfjellet trinn II Nordkraft Vind AS Narvik Nordland 40,00 MW

Total 17 540,80 MW

 Norwegian Wind power could become Europe’s battery. Norway ought to have access to up
to 40 terawatt hours of renewable energy in 2020-2025, of which about half would come from
offshore wind power [9].

 As is shown in table 2 there are future projects in the Offshore Wind Industry.

 Norway has an excellent wind power potential. Typical sites at the coast have annual mean
winds in the range of 8 to 10 m/s. This is considerably better than the typical wind conditions in
Denmark or northern Germany. Wind farms located along the Norwegian coastline are expected to
operate very efficiently [10].

1 Introduction Wind in Norway

5

Table 2. Status of the Offshore Wind Turbines in January 2011

COMPANY COUNTY NAME MW FOUNDATION STATUS

StatoilHydro Rogaland HyWind 3 Floating Licence - Operating

Havgul Møre og Romsdal Havsul I 350 Fixed base Licence

SWAY Rogaland SWAY 10 Floating Licence

Vestavind Kraft Sogn og Fjordane Testområde Stadt 10 Floating Licence

Lyse Produksjon Rogaland Pilot Karmøy 10 Fixed base Licence - Appealed

Lyse Produksjon Rogaland Pilot Rennesøy 10 Fixed base Licence - Appealed

Lyse Produksjon Rogaland Pilot Kvitsøy 10 Fixed base Licence - Appealed

Siragrunnen Rogaland/Vest-Agder Siragrunnen 200 Fixed base Processing - Pending

TrønderEnergi Kraft Møre og Romsdal Mørevind 1200 Fixed base Notification

Offshore Vindenergi Møre og Romsdal Steinshamn 105 Fixed base Notification

Lofotkraft Vind Nordland Gimsøy Offshorepark 250 Unknown Notification

Lofotkraft Vind Nordland Lofoten havkraftverk 750 Unknown Notification

Nord-Norsk Vindkraft Nordland Selvær 450 Unknown Notification

Offshore Vindenergi Sør-Trøndelag Fosen Offshore 600 Fixed base Notification

Fred. Olsen Renewables Nord-Trøndelag Aegir 1200 Unknown Notification

OceanWind Vest-Agder Ægir 1000 Fixed base Notification

Lyse Produksjon Rogaland Utsira 300 Floating Notification

Lyse Produksjon Rogaland Utsira pilot 25 Floating Notification

Vestavind Kraft Sogn og Fjordane Stadtvind 1080 Unknown Notification

Fred. Olsen Renewables Vest-Agder Idunn 1100 Unknown Notification

Lyse Produksjon Vest-Agder Sørlige Nordsjøen 1000 Unknown Notification

Troms Kraft Produksjon Troms Vannøya 775 Unknown Notification

 Without any doubt, wind energy will be one of the major forms of energy to take into
account in a few years time.

 Maps of Offshore Wind Farms in Europe and specifically of Scandinavia are shown in
Appendix A

1 Introduction Offshore Inspection

6

1.3 Offshore Inspection and Remote Presence

 As an introduction, the subject matter is Inspection in an Offshore Wind Turbine. The main
theme of the thesis is the demonstration of the efficiency in this kind of wind farm.

 The importance of offshore projects has been shown in the previous section. Due to this
importance, the development of cheap and reliable inspection systems is required. In fact, regarding
the cost of energy from offshore wind, a general view is emerging that it is a better idea to invest in
reliability to avoid maintenance than in equipment to facilitate it [11]. Taking this into account, this
master thesis aims to enhance the alternative of Remote Inspection.

1.4 The Objective: How to study the Efficiency

 Generally, the word “efficiency” describes the extent to which time or effort is well used for
the intended task or purpose. It can be said that “efficiency” means no waste, or at least the
minimum quantity of waste, expense or unnecessary effort.

 Again, in general, “Efficiency” is a measurable concept. In our field of study the “Efficiency” of
Remote Inspection is closely related to the “effectiveness”. The reason is that at some point of the
inspection, achieving the goal will be the important factor.

1.4.1 Contribution

 The contribution from this thesis is summarized with the following points:

• A huge investigation about components inside an Offshore Nacelle has been done.

• Operation, Inspection and Maintenance Strategies have been described in detail.

• Based on the first prototype, an alternative Inspection Procedure has been proposed.

• About the client controller and the interface, a study of industrial devices (Joysticks) in the

market has been made.

• A Gamepad has been installed instead of a mouse (input device).

• The Java Code that was available has been updated in order to use the new device as the

current controller.

• Experiments based on the efficiency of the current system have been made.

7

Part I.

Development of the Thesis

8

2 Previous Work Background

9

2
Previous Work

2.1 BACKGROUND .. 9
2.1.1 MOTIVATION ... 9
2.1.2 MADE DESIGN ... 10

2.2 PROTOTYPES ... 11
2.2.1 FIRST OPTION .. 11
2.2.2 SECOND OPTION .. 12

2.3 THE CHOSEN ROBOT .. 12

2.4 USER INTERFACE ... 13

2 Previous Work
2.1 Background

2.1.1 Motivation

 Now it is time to remember the main reasons of why Remote Presence inside the nacelle of
an Offshore Wind Farm.

 Offshore inspection is expensive and must be performed on time. The possibility to have an
Operator based in his office being able to inspect wind farms was very interesting. This would save
money to Energy Companies due to:

• No matter the weather conditions on the sea during inspection plans.

• No need to hire transport service.

 This idea was started by Viktor Fidje in 2010 and continued by Tor Karlsen in 2011. Below,
what they were working with is explained and used.

 The main goal of this project is to continue investigating and to demonstrate the efficiency of
having a remote presence inside the nacelle.

2 Previous Work Made Design

10

2.1.2 Made Design

 In this section the system that has been developed previously is explained. In the last two
years two prototypes of Robot Inspection have been made. Further on, these will be explained in
detail.

 In order to avoid getting lost in theoretical work, on February 21st, 2011 there was a visit to
GE Hundhammerfjellet to see one of the Wind Turbines installed in the park. In this thesis, it is
helpful to have information on the visit mentioned. For this reason, from chapter 4 onwards, many
references to that visit will be found in [12].

 The current system consists of two Inspection Robots that are driven through a rail which
serves as a guidance. In addition, the on-site communication has also a Supervisor Controller. Its
main aim is to forward the messages sent from the Client (Operator). This subsystem supports the
USART interface.

 The photo below shows the shape of the track, which was built that way to cover as much
space as possible inside the nacelle.

Figure 3. The whole system with the track

 These rails are two tubes made by aluminium. The process of bending the tubes is not
expensive, nor is the material.

2 Previous Work Prototypes

11

2.2 Prototypes

 As already mentioned, two prototypes were built. Each was design and built by a student
during his Master Thesis. References are mentioned below.

2.2.1 First Option

 It consists of two metal pieces joined together in such a way that only movement in the
horizontal plane is allowed. Therefore we can deduce that this prototype is not suitable for ascend or
descend the rail showed before.

 The Robot is able to be controlled from all over the world, as long as the user is connected to
the internet using the Remote Inspection software (Java Application). It has an IP Camera attached to
the single wagon.

Figure 4. First Inspection Robot

 The mechanics of this prototype is not too complicated. The wheel next to the camera is
motorized. The other four little wheels down the cart keep it in the right position.

 This was not enough for inspecting the inside of a real nacelle. Nevertheless, this was the first
fully functional prototype made in the Department.

2 Previous Work Second Option

12

2.2.2 Second Option

 It consists of three parts. The biggest part is placed in the middle and keeps the motor and an
encoder, which will be really useful for some applications. The sections are connected with a joint
that enables the mechanism to turn around freely in all directions.

 To allow the robot to move vertically a gear was added to the motor. This should have been a
good idea. The problem was that adding a chain around the guidance required much time and effort.

 The Second Prototype is supposed to be an improved version of the first one. However, it is
not completely done mechanically and, although, it has some advantages, it has also some
drawbacks.

 The main problems are that it is not finished, it is heavy and has no camera.

Figure 5. Last Inspection Prototype

2.3 The Chosen Robot

 As has already been said, the IP Camera is only attached to the First Robot. This one is
simpler and lighter. Therefore, to demonstrate the efficiency of the Inspection System we will use the
First Prototype although it is not the most current working version.

 The problem using the first prototype is that the path is very short (around 1 meter long). An
extension rail could be a solution for future tests.

 Another solution would be to use a model train, what makes much more versatile the
inspection plan. However, there have been some problems that have delayed the assembly. In future
work, a model train can be an interesting option.

 In chapters 6 and 7 the use of this robot to demonstrate the efficiency of the Remote
Presence is explained.

2 Previous Work User Interface

13

2.4 User Interface

 The figure below shows the client interface. This Java application connects with the camera
and the robot (prototype 1). As shown, the big white square is the Real Time Video from the camera
and at the bottom of the picture there is the Control Panel. This panel is divided into two different
panels. On the left, the Camera Control and on the right, the Vehicle Control.

Figure 6. Client Remote Inspection Interface

 The client (Operator) can control the robot by clicking with the mouse in each box. This is a
really easy way to control the robot, but it can be improved.

 This version has limitations on the final performance. The first limitation is that the Operator
cannot move the camera and the vehicle at the same time. This is something that you can only do
using another input device instead of a mouse.

 It can also involve maintenance tasks. For example, adding another panel with a Robot arm
Control, or even adding more views to provide a better concept of the space.

CAMERA CONTROL

PANEL

VEHICLE CONTROL

PANEL

CAMERA VIEWER

PANEL

14

3 New Device: Joystick Contribution

15

3
New Device: Joystick

3.1 CONTRIBUTION .. 15
3.1.1 TECHNICAL DETAILS ... 16
3.1.2 INDUSTRIAL APPLICATIONS .. 16
3.1.3 DEMANDED FEATURES ... 17

3.2 LIST OF POSSIBLE DEVICES.. 18
3.2.1 FINAL DEVICE ... 18

3.3 ASPECTS TO CONSIDER IN MAKING THE INTERFACE .. 19
3.3.1 DELAY .. 19
3.3.2 COLLISION ... 19
3.3.3 VIBRATION .. 19
3.3.4 PLACING & AUGMENTED REALITY .. 19

3.4 FINAL IMPLEMENTATION ... 22
3.4.1 DEVICE USED ... 22
3.4.2 JAVA PROGRAMING .. 23

3.4.2.1 JX Input – Input Devices for Java ... 23
3.4.2.2 Client-Inspection ... 25

3 New Device: Joystick
3.1 Contribution

 It could be interesting to have a different input device instead of a mouse. One of the most
common motion controllers is the Joystick. It consists of a stick that pivots on a base and reports its
angle or direction to the device it is controlling. It often has supplementary switches on it to control
other secondary issues.

 Joysticks are normally used to control video games. A variation of the joystick used on
modern application is the analog stick. This variation is shown in the current gamepads. These
devices can have a number of action buttons combined with one or more omnidirectional control
sticks or buttons.

3 New Device: Joystick Technical details

16

 A control device such as a joystick is more comfortable to use and has unique features
compared with an ordinary mouse. In the following section several types of devices and their
functions will be exposed.

3.1.1 Technical details

 Technologically, a joystick can be differentiated between Intrinsically Conductive Polymer
(ICP) and Hall Effect technology. This refers to the material of their Resistance Elements. The
advantages of the Hall Effect over the ICP are [13]:

• Immunity to dust, dirt, mud and water.

• This technology makes the Joystick a contactless controller.

• Simplicity in the measuring circuit, no additional resistance (shunt) needs to be inserted in the

primary circuit.

• The voltage on the line to be sensed is not transmitted to the sensor, which enhances the

safety of the measuring equipment.

 On the other hand, the Hall voltage is often on the order of millivolts. This means that the
output from the sensor must be amplified by a transistor-based circuit, which increases the price of
this type of technology.

 Another important issue to be distinguished is how to get the signal from the user. It can be
an analog or a digital device. The difference is perfectly understandable. Depending on the
applications you want to assign the controller, the use of an analogue or digital input will be
recommended. The final implementation will show the differences according to the specific
application.

 Finally, another classification can be according to the Joystick’s axis. This has to do with the
virtual dimensions that can be represented. This will be explained in more detail below, in relation to
the current application.

3.1.2 Industrial applications

 Recently, the use of Joysticks and Pads has
become commonplace in many industrial
applications. It has virtually replaced the traditional
mechanical control lever in almost all modern
hydraulic control systems. Additionally, and
concerning the aim of the thesis, most Remotely
Operated Vehicles (ROVs) require at least one
joystick to control the vehicle, the on board camera,
sensors and manipulators [14].

 In Figure 7, an example of the wide variety of Joysticks on the market can be observed.

Figure 7. Example of Industrial Joysticks

3 New Device: Joystick Demanded features

17

3.1.3 Demanded features

 The Inspection Robot should have at this moment two different parts to be controlled. On
the one hand, there is the wagon or cart and on the other hand, the IP Camera. Taking this into
account is very important for the implementation of the controller.

 First, the cart must move forwards and backwards. This kind of movement can be
implemented with an analog joystick or even a digital one because of its obvious simplicity. Also, the
wagon can be controlled by two buttons, if the controller is a gamepad instead of a joystick.

 Possible improvements and important aspects [15]:

• If the wagon has variable speed, it is necessary to use an analog device.

• If possible, it would be very interesting to have a second device to perform the same action

(forwards – backwards) but in a different way. This is explained below.

 Thinking of every aspect that involves the wagon during an inspection, one important thing is
the distance between the cart (camera) and the inspection area. Depending on that distance the
device controller must be one or another. Here comes the idea of Auto centering button (short
distances) vs. Put and stay (long distances).

 To get a clear idea of these concepts, self centering has to do with press the button (paddle)
to move and release to stop. In contrast, put and stay allows you to move forwards without holding
the handle pressed. This is how boats work. Below, two examples of this last technology are shown.

Figure 8. Put'n Stay Joystick GT

Figure 9. Marine Controller BS 130 GT

 Finally, the IP Camera can move in four directions, as is shown in Figure 6. Again, this can be
implemented with an analog joystick or even a digital one due to the inability to vary the rotation
speed.

 A significant improvement in the control of the IP Camera can be made by moving in two
directions at once, taking advantage of the diagonals (corners) of the joystick.

3 New Device: Joystick Possible devices

18

3.2 List of possible devices

 A List of Joysticks from Europe (Genge & Thoma) [13] and United States (OEM Controls) [16]
can be found in Appendix B.

 Below in the figure it has been used some examples of joysticks from these companies.

3.2.1 Final device

 The final device must have implemented all the components previously mentioned in a single
control block. An example of one possible configuration is shown below in Figure 10.

 There are two blocks joined into one. From left to right there is the Vehicle Control Panel and
the Camera Control Panel. This layout has been designed for a right-handed person, the control of
the camera being the most important factor.

 As has already been explained, there are two joysticks in the first panel. The first one is a
Put’n Stay Joystick, allowing a comfortable use over long distances. The other is optimal for precision
positioning. It has an ergonomic design and self-centering mid position.

 The next device can be a 2 or 3-axis joystick. It should give the operator a comfortable way to
move the camera.

 Finally, in this way there would not be any problem in adding more panels side by side. So, in
the future, when inspection and maintenance are feasible at the same time, it will be possible to
make an “update” to the Control Panel.

Figure 10. Control Panel for Inspection

3 New Device: Joystick Aspects to consider

19

3.3 Aspects to consider in making the interface

 At this section, the main problems that appear in the interface while using remote presence
and some possible solutions to be incorporated into the system are described.

3.3.1 Delay

 Having delays or latencies is a fact that we should bear in mind when designing a new
interface. Even though delays can be greatly reduced, these will never be eliminated completely.
Why can this be a problem to our interface? In reference [17] some causes and consequences of this
phenomenon are described. Delays are the main cause of inefficiency on the system.

 Imagine pressing the “forward button” and having to wait 2 seconds in order to see the
effect. It is obvious that this fact is first of all very annoying for the operator, who cannot perform his
tasks correctly.

 Two main causes of this latency are: the varying traffic on the Internet and the complexity of
the video management. The traffic on the Internet is something random that you will never be able
to predict. Only working with a private local network would let you act on this problem.

 To conclude this issue, there are inherent latencies in the system itself during the video
capture that should be reconsidered. Compression and decompression of the image frames
represent the bottleneck of the system.

3.3.2 Collision

 The aspect of collision is not very important during the inspection task. The camera is driven
through a lane that restricts its trajectory. Nevertheless, while talking about maintenance tasks it
becomes really critical. This importance is shown in chapter 4 in [17]. It was Eivind Berntsen who first
studied causes and solutions in this field.

3.3.3 Vibration

 To speed up the inspection, research on how to improve the Dynamic Quality of the Video
could be interesting. In [18] an analysis of the dynamic image quality of a camera is made. In it, there
is a study of the influence of the random disturbance on the video.

 Moreover, in [19] Nikon Corporation made a camera system which is capable of reducing the
influence of the vibrations produced by a known disturbance.

3.3.4 Placing & Augmented reality

 Other thing that can be baffling is the problem of the inspector unknowing the position of
the robot at any given time. This can or cannot be solved easily, by adding or changing something on
the interface.

3 New Device: Joystick Augmented reality

20

 One idea can be to have a top or plan view map in a corner of the interface showing the
position of the robot. This means having sensors installed along the rail, which is not an expensive
idea.

 Another option would be the possibility of using augmented reality. This kind of
representation is widespread for last generation games. Professor Brian Blake said: “Augmented
reality is changing the way we view the world”. This is for sure another way you could lessen the
collision problem.

 This recent technology blurs the line between what is real and what is computer-generated
by enhancing what we see, hear, feel and smell.

 On the spectrum between virtual reality, which creates immersive, computer-generated
environments and the real world, augmented reality is definitely closer to the real world.

 In the next two pictures, two examples of using the augmented reality technology are shown.
These applications are not exactly suitable for our inspection interface, but each one has something
interesting to contribute.

 In addition, augmented reality companies are growing greatly in recent years. Companies
such as, Total Immersion or AR & Co are good example of this growth.

Figure 11. Augmented Reality System for 3D mapping

 The picture above from [20] shows the map of a street pipes. This same proposal can be used
inside a nacelle on an Offshore Wind Turbine. This gives us better information about the
surroundings.

3 New Device: Joystick Augmented reality

21

 On the picture below, found in [21], another application for augmented reality is described.
This technology makes possible to detect objects and to interact with them.

 What is more, this technology has unlimited possibilities to create an optimal inspection &
maintenance interface.

Figure 12. Augmented Reality System for a moving vehicle

 It might be easier instead of using an augmented reality system, just to use a set of properly
placed cameras inside the nacelle. However, in the near future the use of the augmented reality will
be a necessity.

3 New Device: Joystick Final Implementation

22

3.4 Final Implementation

 At this point, all that remains is to expose what has actually been implemented in the
practical project.

3.4.1 Device used

 The theoretical design has been explained before; however, it has to be added that the
device used in the inspection tests is a Game pad from Saitek. It is shown below.

Figure 13. Game pad used as the new Controller Device

 The client (Operator) can control the Vehicle by moving the left “joypad” forwards or
backwards. At first, we wanted that the vehicle speed was directly related to the pressure exerted.
Then, we decided to keep just two options: normal and fast speed.

 The Camera is controlled by the right “joypad”. The control is quite intuitive: UP, DOWN,
LEFT and RIGHT in the direction of the arrows.

Figure 14. Control Scheme Joypads

 In this version, the limitation which makes the Operator unable move the camera and the
vehicle at the same time has been removed.

3 New Device: Joystick Java Programing

23

3.4.2 Java Programing

 The first Java application made by Viktor Fidje in 2010, has been the beginning of the last
version, updated in this Thesis.

3.4.2.1 JX Input – Input Devices for Java

 JXInput gives access to any number of Direct Input gaming devices. The source code has been
got from [22].

 JXInput application allows to ask for the features available with a given device and later to
query their respective values. This is the way most games work, polling the state of the input device
within a loop.

Figure 15. Architecture of the JXInput package

 For event driven applications, JXInput allows to register “listener” objects with the features.
This way, the application is called back by JXInput in case the input device changes its state. This is
the mode operation has been implemented.

 This application can be launched in Mac OS or Linux. This fact makes the application to be as
capable as it is required.

 The complete JXInput Source Code can be found in Appendix C. It is divided into 4 classes:

• JoystickListener.java: the listener interface for receiving joystick events.

• JoystickNotifier.java: notifies the joystick listeners of joysticks events.

• Joystick.java: main class. Device driver to a Windows joystick.

3 New Device: Joystick JX Input

24

• The last class in the Appendix C shows a Joystick Test application. This has been modified in

order to adapt it to our System.

 In the picture below, the Joystick Test Interface is shown.

Figure 16. Joystick Test Interface

 The top values from Robot and Camera movements are described in next figure. These values
are important for the new source code.

Figure 17. Top values for detection in the Java application

3 New Device: Joystick Client - Inspection

25

3.4.2.2 Client-Inspection

 Having the java code specially made for a mouse control, updating this version was not going
to be a big deal.

Figure 18. Screen Capture of Eclipse (Java classes to update)

 The first step was to find which java classes might be modified. In the figure above, four java
classes are highlighted. The modifications of these classes are found in the Appendix D.

• CamController.java: The camera controller class. One createInstance function is used in order

to create a Joystick. Two new methods are created: model.joylistener (camera movement) and

model.keylistener.

• VehicleController.java: The vehicle controller class. A createInstance function is used. The

method model.joylistener (vehicle movement) is created.

• CamModel.java: The camera model class. Two new public variables called joylistener and

keylistener are created.

• VehicleModel.java: The vehicle model class. The public variable called joylistener is added.

26

4 Inside the Nacelle Anatomy of a Wind Turbine

27

4
Inside the Nacelle

4.1 ANATOMY OF A WIND TURBINE .. 27
4.1.1 BLADES ... 28
4.1.2 NACELLE ... 28
4.1.3 TOWER ... 28

4.2 MAIN PARTS OF THE NACELLE .. 29
4.2.1 ROTOR HUB ... 29

4.2.1.1 Main Shaft... 29
4.2.1.2 Small Shaft .. 29

4.2.2 GEARBOX .. 30
4.2.3 GENERATOR .. 30

4.2.3.1 Cooling System .. 30
4.2.4 MECHANICAL BRAKE .. 30
4.2.5 YAW DRIVE ... 30

4.2.5.1 Yaw motor ... 31
4.2.5.2 Yaw bearing .. 31

4.2.6 ANEMOMETER AND WIND VANE ... 31
4.2.7 CONTROLLER ... 32

4 Inside the Nacelle
4.1 Anatomy of a Wind Turbine

 In this chapter, the layout of a typical Wind Turbine Generator, as found on wind farms
across the world will be explained. Now exact designs do vary, but almost all the turbines that are
used today are horizontal axes machines, which have a three-bladed rotor spinning in a vertical plane
attached to the front of the box which is called the Nacelle. In this nacelle we have the generator,
often a gearbox and occasionally a high voltage transformer. The whole thing sits on top of the tower
which nowadays is usually about 80- 100 meters tall. Now, we will talk about the different parts of a
Wind Turbine [23].

4 Inside the Nacelle Blades

28

4.1.1 Blades

 As mentioned previously, the rotor for a typical utility-scale wind turbine includes three high-
tech blades, a hub, and a spinner. The blades are one of the most critical aspects for wind turbine
and are considered a strategic component by wind turbine
OEMs. Most manufacturers create multiple blade types for a
single wind turbine in order to enhance performance in
different wind conditions. The blades range in size from
about 34 to 55 meters and are made of laminated material,
such as composites, balsa wood, carbon fibre, and fibreglass.
These have high strength-to-weight ratios. These materials
are molded into airfoils to generate lift which causes the
rotor to turn. The blades also often include material to
protect them against lightning. They are bolted onto the hub,
with a pitch mechanism interposed to allow the blade to
rotate about its axis to take advantage of varying win speeds.

4.1.2 Nacelle

 The nacelle of a wind turbine is the box-like
component that sits atop the tower and is connected to the
rotor. The nacelle contains the majority of the approximately
8,000 components of the wind turbine such as the gearbox,
generators, main frame, etc. The nacelle housing is made of
fiberglass and protects the internal components from the
environment. The nacelle cover is fastened to the main
frame, which also supports all the other components inside
the nacelle. The main frames are large metal structures that
must be able to withstand large fatigue loads.

4.1.3 Tower

 The nacelle and generator are mounted on top of a
high tower to allow the blades to take advantage of the best
winds. The power available to a wind turbine is proportional
to the cube of the wind speed. Therefore, a 10% increase in
wind speed would result in a 33% increase in available
power. Towers are typically made of three or four tubular
steel sections coated with paints and sealants and joined by
flanges and bolts. Most towers come with load lifting
systems with a load-bearing capacity of more than 180 kilos
(400 pounds).

Figure 19. Example of an Offshore Wind
Turbine

4 Inside the Nacelle Main parts of the Nacelle

29

4.2 Main parts of the Nacelle

 It is important to know and understand the function of each part of the nacelle. In this
section it is explained, in reasonable detail, how its components work [24].

Figure 20. Main parts of a Nacelle

4.2.1 Rotor hub

 The rigid rotor hub is a nodular cast iron structure mounted onto the main bearing. Blades
are connected to the hub using a four point pre-stressed ball bearing. The hub houses the blade pitch
control system and a slip-ring unit for the power supply. The hub is sufficiently large to provide a
comfortable working environment for two service technicians during maintenance of the pitch, pitch
bearings and blade root from inside the structure [25].

 The rotation of the rotor is driven through the main shaft. Consequently, this rotation is
transmitted to the generator through the small shaft (faster).

4.2.1.1 Main Shaft

 The rotor is bolted to a very strong disc on the main shaft of the wind turbine. It is important
that the rotor is firmly secured by a lot of bolts. The gear box is placed at the end of the main shaft.

4.2.1.2 Small Shaft

 The small shaft connects the generator to the gearbox. This shaft does not have to transfer as
much turning force as the main shaft does. That is why it is a lot thinner. On the other hand, it
revolves very quickly: 1500 revolutions per minute.

ROTOR HUB

GEAR BOX

YAW DRIVE

TRANSFORMER

GENERATOR

MAIN SHAFT

CONTROLLER

MECHANICAL BRAKE

4 Inside the Nacelle Gearbox

30

4.2.2 Gearbox

 The function of the gearbox is to step up the speed of rotor rotation to a value suitable for
standard induction generators, which, in the case of fixed speed machines or two speed machines
operating at the higher speed, is usually 1500 rpm plus the requisite slip [24].

 The gearbox then changes the turning force, so instead of revolving slowly with a lot of force
in every revolution, it now has to go faster with less force in every revolution.

 Gearbox efficiency can vary between about 95% and 98%, depending on the relative number
of epicyclic and parallel shaft stages and on the type of lubrication.

4.2.3 Generator

 The induction generators commonly used in fixed-speed wind turbines are very similar to
conventional industrial induction motors.

4.2.3.1 Cooling System

 When the generator is running it gets hot. If it gets too hot it can break down. Therefore, it is
necessary to cool down the generator before it becomes so hot that it stops working. The generator
can be cooled in two ways, either by air or water.

 When cooling with water, cold water is led into some pipes hidden in the shell of the
generator. The water cools down the generator and thereby heats itself up. The radiator uses the
surrounding air to cool down the water again. So the water can permanently circulate while cooling
the generator.

4.2.4 Mechanical brake

 A wind turbine has two different types of brakes. One is the blade tip brake. The other is a
mechanical brake, which is placed on the small fast shaft between the gearbox and the generator. It
is only used as an emergency brake, if the blade tip brake fails.

 The brake is also used when the wind turbine is being repaired to eliminate any risk of
turning on the turbine.

4.2.5 Yaw Drive

 This mechanism is used to rotate the nacelle with respect to the tower on its slewing bearing,
in order to keep the turbine facing into the wind so the wind turbine will generate as much electricity
as possible; and to unwind the power and other cables when they become excessively twisted [24].

 Figure below shows an example of an arrangement of yaw drive.

4 Inside the Nacelle Yaw motor

31

4.2.5.1 Yaw motor

 The yaw motor turns the nacelle so that the rotor faces the wind. Underneath the yaw motor
there is a small wheel that engages the wheel of the yaw bearing.

4.2.5.2 Yaw bearing

 The yaw motor has a small wheel that engages a huge wheel. The large wheel is called yaw
bearing. On some yaw bearings the teeth point outwards, while on others they are turned inwards. It
all depends on the position of the yaw motor.

Figure 21. Typical arrangement of yaw bearing and yaw drive

4.2.6 Anemometer and Wind Vane

 The anemometer measures the wind speed and notifies the wind controller the right time to
turn on the turbine. It must be very windy to use power to make the wind turbine turn (yaw) into the
wind and start running. It is important to know how much
wind there is. If the wind is too strong the wind turbine can
break. This is why the turbine is brought to a stop when the
wind exceeds 25 metres per second. When the wind drops,
the anemometer tells the controller that it is OK to start the
turbine again.

 A wind vane always positions itself according to the
wind direction. There is a small sensor at the foot of the
wind vane that notifies the wind turbine controller of the
wind direction. The controller tells the yaw motor to yaw
(turn) the nacelle so that the rotor faces the wind. Figure 22. Anemometer and wind vane

4 Inside the Nacelle Controller

32

4.2.7 Controller

 The wind turbine is controlled by several computers that keep an eye on many different
things. Together, these computers are called the wind turbine control system. The main computer is
called the controller. In Figure below, there is an example of how the Control System works [26].

 Conventional wind turbine controllers have only limited resources, and can only offer
restricted monitoring and diagnostic functions [27]. System developers expect controllers to not only
monitor environmental conditions or temperatures, but also allow remote management (network).

Figure 23. Diagram of an Advantech APAX Control System

 A Control System is fitted with a number of sensors to read the speed and direction of the
wind, the levels of electrical power generation, the rotor speed, the blades’ pitch angle, vibration
levels, the temperature of the lubricants and other variables. A computer processes the inputs to
carry out the normal operation of the turbine, with a safety system which can override the controller
in an emergency. The control system protects the turbine from operating in dangerous conditions
and ensures that the power generated has the proper frequency, voltage, and current levels to be
supplied to the grid.

 When a change has to be made on the adjustment of the turbine, the controller takes care of
it. It always keeps an eye on whether or not everything in the wind turbine works as it should.

5 Operation and Maintenance Introduction

33

5
Operation and Maintenance

5.1 INTRODUCTION .. 33
5.1.1 LAND BASED COMPARATIVE DATA ... 34

5.2 MAINTENANCE STRATEGIES ... 34

5.3 O&M OFFSHORE EXPERIENCE .. 35
5.3.1 AVAILABILITY ... 35
5.3.2 OPERATIONAL EXPENDITURE ... 35
5.3.3 SERVICEABILITY .. 35
5.3.4 ACCESS FOR MAINTENANCE .. 36

5.4 DESIGNS FOR REDUCED MAINTENANCE .. 36
5.4.1 COMPONENT RELIABILITY ... 36

5.4.1.1 Gearbox ... 37
5.4.1.2 Generator .. 37
5.4.1.3 Direct Drive System ... 37
5.4.1.4 Electrical and Electronic Control System ... 37
5.4.1.5 Hydraulic System ... 37

5.4.2 CORROSION PROTECTION ... 38
5.4.3 CONTROL AND CONDITION MONITORING ... 38
5.4.4 BACK-UP POWER .. 38

5.5 O&M CONCLUSIONS ... 39

5 Operation and Maintenance
5.1 Introduction

 Operation and Maintenance of offshore wind farms is more difficult and expensive than
equivalent onshore wind farms. Offshore conditions cause more onerous erection and
commissioning operations and accessibility for routine servicing and maintenance is a major concern.
During harsh winter conditions, a complete wind farm may be inaccessible for a number of days due
to sea, wind and visibility conditions.

5 Operation and Maintenance Maintenance Strategies

34

 The severe weather conditions experienced by an OWECS (Offshore Wind Energy Conversion
Systems) dictate the requirement for high reliability components coupled with adequate
environmental protection for virtually all components exposed to sea conditions.

 Consequently, the requirement for remote monitoring and visual inspection becomes more
important to maintain appropriate turbine availability levels.

5.1.1 Land Based Comparative Data

 Operational information for onshore wind turbines has been compiled for a number of years
which is directly relevant for operation and maintenance issues.

 Operation and maintenance data for onshore wind turbines are readily available as detailed
above. However, the environmental conditions associated with offshore installations render this
current machine data inadequate.

5.2 Maintenance Strategies

 The availability of a wind turbine depends on the O&M strategy adopted by the operators of
a wind farm. Given the limited amount of offshore O&M data, strategic planning is in its infancy;
however a number of options were developed in the Opti-OWECS study [28]:

1. No maintenance: Neither preventive nor corrective maintenance are executed, and major
overhauls are performed every five years or so. One of the few alternatives is exchanging a
whole turbine if availability drops below a predefined minimum or after a certain amount of
operational hours. Given the current level of turbine failure rates, this option is not presently
viable.

2. Corrective maintenance only: Repair carried out soon after a turbine is down, or, alternatively,
wait until a certain number of turbines are down. No permanent maintenance crew is needed.

3. Opportunity maintenance: Executing corrective maintenance on demand and taking the
opportunity to perform preventive maintenance at the same time. No permanent maintenance
crew is needed.

4. Periodic maintenance: Scheduled visits performing preventive maintenance, and corrective
actions performed as necessary by a permanent dedicated maintenance crew.

 In conclusion, given current reliability and failure modes of commercial offshore wind
turbines, which have been adapted from onshore models, a reduced level of preventive and
corrective maintenance is not a viable option at this stage in the development of the offshore wind
energy industry.

 Whenever remote monitoring techniques become sufficiently mature they can be used to
adopt a maintenance strategy that is guided by the status of the components. Maintenance visits can
be paid just in time, in order to prevent failure of the wind turbine and of the other monitored
components of the wind farm.

5 Operation and Maintenance O&M Offshore Experience

35

5.3 O&M Offshore Experience

 The following four sections explain different aspects of O&M of offshore wind turbines.

5.3.1 Availability

 The availability of a wind farm, defined as the percentage of time it is able to produce
electricity, is a function of the reliability, maintainability and serviceability of hardware and software
used in the whole system. For an offshore wind farm however, the accessibility of the site for O&M
hardware equipment as well as the adopted maintenance strategy are of an equal importance for the
achieved availability level.

5.3.2 Operational expenditure

 As stated above, operating expenditure for offshore wind farms is considerably higher than
the equivalent onshore facility. Offshore operations are in the region of between five and ten times
more expensive than work on land, and these costs are exacerbated by inflated prices prevalent
within the offshore oil and gas industry.

 Also, onshore equipment can be sourced and mobilised within a short period of time, usually
within hours, and available on site within a day. Offshore lifting cranes are uncommon, and will
generally have to travel a considerable distance to an offshore wind farm site, hence the
requirement for careful scheduling of such vessel movements. The economics of a large wind farm
may justify the purchase of a dedicated purpose-built lifting vessel which would be available during
installation and for maintenance throughout the wind farm’s lifetime. However, it is commercially
expedient to dispense with the need for expensive lifting vessels after installation and hire lifting
equipment during scheduled major overhaul. Given relatively calm sea conditions, it is possible to
use a floating barge to transport and operate a land crane offshore. The floating barge need only be a
crude construction incurring minimal expenditure, hence be procured and stored at a dedicated wind
farm [29].

 General maintenance tasks are carried out using less specialised equipment which is
generally purchased for the designed life of the wind farm.

5.3.3 Serviceability

 The service demand of the present generation of offshore wind turbines in terms of man-
hour is in the order of 40 to 80 hours [30]. Service visits are paid regularly, (except in the more
demanding first year) about every six months. A more major overhaul will be undertaken every five
years, and will take around 100 man-hours to complete.

 Experience from Tuno Knob shows that the total number of visits have been about 35 to 70
visits per year, an average of approximately 5 visits per turbine per annum. The number of cancelled
visits (last moment cancellations due to the weather) makes up about 15% relative to the number of
service visits realised [31].

5 Operation and Maintenance Access for maintenance

36

5.3.4 Access for maintenance

 Access to an Offshore Wind Turbine for routine servicing and maintenance is difficult or
impossible in hard weather conditions due to wave heights, wind speeds and poor visibility. The
traditional method for transporting personnel and equipment is by boat, which is in many cases
limited to relatively benign sea states.

 Since the beginning of offshore wind farm development, suggested methods for gaining safe
access have included, such as [32]:

• Helicopter.
• Underwater tunnels.
• Wheeled platforms for turbines in close proximity to the shoreline.
• Amphibious vehicles where caterpillar tracks transport a platform over a firm and stale seabed.
• Small hovercraft or ice roads for frozen seas.

 The advantages and disadvantages of the boat compared to the helicopter are now
discussed.

 On the one hand, boat access has some advantages such as, well proven method of inshore
transportation and relatively cheap equipment expenditure. The main problem is that this means of
transport is highly dependent on maritime conditions. It is impractical for wave heights greater than
1m and it is very difficult to transfer personnel equipment in rough conditions.

 On the other hand, there is a possibility of using helicopter access. In this case, sea state is
not a major issue and the transportation of personnel and equipment from land to turbines is much
faster. The main drawbacks of helicopter transport are the cost and terms of visibility and wind.

 In conclusion, there are a number of current projects addressing the issue of improved access
to offshore wind turbine installations. Most focus on maintaining existing boat access methods with
emphasis on addressing the issue of motion compensation or complete removal of the vessels from
the water at the turbine location. Talking about large wind farms, a possibility is to use small purpose
built jack-up vessels. However, access using small purpose-built landing craft continues to present
the most pragmatic and economic solution [33].

5.4 Designs for Reduced Maintenance

 The issue of accessibility can also be addressed by improvements in offshore wind turbine
reliability. Both planned and, more importantly, unplanned maintenance levels can be reduced by
increasing the reliability and hence availability of the turbine. Particular emphasis is being placed on
reliability issues from component level through to overall design improvements.

5.4.1 Component reliability

 Although all the different components of the wind turbine could be discussed we will focus
only on the most interesting parts inside the nacelle.

5 Operation and Maintenance Gearbox

37

5.4.1.1 Gearbox

 Current offshore turbines manufactured by leading manufacturers favour geared drive
transmissions. Being widely recognised as the number one item for mechanical failure and servicing
supervision, it would appear a progressive step to move to direct drive systems.

5.4.1.2 Generator

 In general, induction generators require less maintenance than synchronous generators.
They do not require a DC source and being inherently simpler and rugged are the most common
generators in onshore wind turbines.

 To protect the generator from marine environments, it is totally enclosed to protect the
internals from salt and high levels of moisture.

 For offshore application it is not recommended to use air cooling generators as in onshore
applications. A better solution is to work with closed system water cooling or even air to air heat
exchange. These alternatives prevent the risk of corrosion from marine cooling air.

5.4.1.3 Direct Drive System

 This type of system dispenses with the historically problematic gearbox, where the drive
train, generator and rotor rotate at the same speed of around 20 rpm for a 2 MW turbine.

 Having direct drive generators has obvious advantages: no gearbox with associated high
speed rotating parts, no gearbox oil contamination and leakage, and less routine servicing. However,
this type of generator is very heavy and bulky for megawatt turbines. Therefore, the large diameter
required changes the visual appearance of the nacelle. It increases tower stress and hence tower
dimensions.

5.4.1.4 Electrical and Electronic Control System

 The failures in this system account for the highest percentage of failures. For the year 2000,
failures of electrical and controls systems accounted for exactly 50% of the need for wind turbines
repairs. Typically, failures of this nature occur due to the number of components, poor electrical
connections, corrosion, lightning, etc.

 The main solution for offshore conditions is to reduce the number of components and the
use of electronic printed circuit boards.

5.4.1.5 Hydraulic System

 Wherever possible, elimination of problematic hydraulic systems employed in yaw damping,
blade pitching and breaking systems should be realised. It is preferable to use electrical actuation
instead of hydraulic. The main reason is that it eliminates the possibility of oil leakage.

5 Operation and Maintenance Corrosion protection

38

5.4.2 Corrosion protection

 The main methods of marine corrosion protection for offshore installations, recently
developed within the offshore oil and gas industry, are the selection of corrosion resistant, two-pack
epoxy coating, cathodic protection, and the creation of controlled environments for sensitive
equipment.

 More work is needed in developing support structures which can withstand stress caused by
wind and wave loading, together with reductions in materials fatigue strength caused by corrosion.

5.4.3 Control and condition monitoring

 Surveys of machine outages reveal that around half the unplanned shutdowns on onshore
turbines are caused by faults in the electrical and electronic control systems. To reduce the number
of unplanned visits to offshore turbines, automatic re-set and remote re-set facilities are now
becoming common in all new turbines. Increasing numbers of sensors and monitoring equipment are
being used, and the signals categorised to register: data, minor faults requiring notification only or
major faults which shut the turbine down automatically.

 Using SCADA systems, monitored signals and alarms are transmitted between the turbine
and the onshore control station. Control personnel can interact with the monitoring system to over-
ride the turbine controller if necessary.

 Internet connection, webcams and sophisticated vibration monitoring, for example, can now
be utilised to detect a limited number of pending failures prior to their occurrence.

5.4.4 Back-up power

 The grid system is responsible for the power for the turbine controller, electrical actuator,
and monitoring and communications systems.

 This option is interesting in the case of emergency, in the event of loss of turbine power
generation or lost electrical grid connection. It should be useful for maintenance work or to keep
turbine systems running.

5 Operation and Maintenance O&M Conclusions

39

5.5 O&M Conclusions

 It can be highlighted that the future wind turbine development for Offshore Wind Farms will
adapt existing onshore designs to cope with harsh maritime environments [34].

 Below is a list of requirements to reduce the lifetime O&M costs of offshore wind turbines.

• Improvement of access methods.

• Reduction of time required for offshore working.

• Designs for reduced maintenance by:

- Reduction of overall number of components and simplicity of design.

- Modular design of wind turbines which facilitates the interchange of faulty modules.

- Use of high reliability components.

- Re-siting of electrical units into an environmentally controlled section of the turbine.

- Implementation of offshore corrosion protection technology.

- Development of effective condition monitoring and remote control systems.

• Development of appropriate maintenance strategies for service and repair actions.

• Development of an integral design philosophy of a large scale offshore wind turbine, where

the design of the individual wind turbines is governed by the overall system targets, and not by

a sequential adaptation and up scaling of onshore designs.

40

6 What to Inspect General outlines

41

6
What to Inspect

6.1 GENERAL OUTLINES ABOUT THE INSPECTION ... 41

6.2 INSPECTING THE NACELLE .. 42
6.2.1 STRUCTURAL SYSTEM .. 42
6.2.2 ELECTRICAL AND MECHANICAL SYSTEM ... 43

6.3 COMPANIES GENERAL PROCEDURE ... 43

6 What to Inspect
6.1 General outlines about the Inspection

 The main aim of this thesis, as has been already said, is to demonstrate the Efficiency of a
Remote Presence inside the Nacelle. As shown in chapter 5, improving the inspection and
maintenance of the Offshore Wind Turbines is required.

 Again, as already mentioned, Inspection and Maintenance of offshore wind farms is more
difficult and expensive than the equivalent activities in onshore wind farms. It would be much easier
and cheaper for the operator to control all the facts from land. It is from this moment when a
Remote Inspection is proposed.

 In the following Table (3) there is an overview of the current inspection cycles for the
different parts of the offshore turbine facilities [35].

Table 3. Recommended Inspection Cycles (years)

Facility Area Annual Intermediate Extended Post-Event

Subsea Structure 1 3-5 6-10 As needed

Subsea Equipment n/a 3-5 n/a As needed
Above Water

Structure and Systems 1 3-5 n/a As needed

Blades 1 3-5 n/a As needed

6 What to Inspect Inspecting the Nacelle

42

 Although the proposed remote inspection is only for the inside of the nacelle, it is interesting
to know that there will be an important part outside to take into account.

 The above water structure consists of the tower structure on the subsea and the nacelle,
where we find the control systems and turbine with all other components.

 The annual inspection targets mainly above water activities. The above water structures are
examined to evaluate the general conditions noting features such as coating breakdowns, corrosion,
and any physical damage present. So, the way to carry out the inspection will be essentially by visual
control.

 In this chapter how to perform a proper inspection of the inside of the Nacelle is highlighted
and specified.

6.2 Inspecting the Nacelle

 The nacelle structure integrity should receive primary attention when developing an
inspection program due to its importance in the overall system behaviour.

 While inspecting the nacelle two different systems are distinguished: the Structural system
and the Electrical and Mechanical system.

6.2.1 Structural System

 As shown in Table (3), the inspection cycles are divided into: Annual, Intermediate and
Additional Inspections.

 The most important for this project is the first one. The reason is that it is based basically on
a General Visual inspection (GVI). This level includes a visual inspection performed by qualified
personnel and documented with a written report including video and photographs. The inspection
can be carried out with binoculars or other equipment that provides sufficient detail to identify the
most frequent anomalies. These irregularities are described below [36].

1. Corrosion or coating breakdown

2. Damaged or missing members

3. Cracks or indications at welded joints

4. Damaged risers/cables attached to structure

5. Loose bolts

6. Evidence of lateral deflection or lean

6 What to Inspect Companies Procedure

43

6.2.2 Electrical and Mechanical System

 The maintenance of turbines, electrical cabling, junction boxes, panels, transformers and
generators, hydraulic systems and control systems should be done in accordance with manufacturer
recommendations to ensure efficient and safe operations.

 The use of remote monitoring systems is strongly recommended to provide regular feedback
on equipment function as well as to identify anomalous conditions without the need to have
maintenance crews on the facility.

6.3 Companies General Procedure

 We have been in touch with three different companies and a global view of the Inspection
Procedure has been acquired. Each Company has been useful for a different aspect related to
inspecting the nacelle of an Offshore Wind Farm. The companies are described below:

• Taiwan Power Company (Wind Park TaiChung Power Plant).

 http://www.amccentre.nl/harakosanDemo/

 The “Taiwan Power Company”, was organized on May 1, 1947. The company’s major
business items are power development, power supply, investment in power and energy technology
services, etc.

Figure 24. Taiwan Power Company logo

 In particular, this company owns the Wind Park TaiChung Power plant. We had access to
information about this wind farm. This information included technical documentation on the
components of the nacelle and also other parts of the wind turbine. Probably, the most valuable
information has been the maintenance list of the elements inside the nacelle.

 This document describes interesting details that are essential for Chapters 7 and 8. Some
components dealt with are: First aid box, fire-extinguisher, cable work, bolt connections lubrication
of the yaw bearing and motor, lighting and emergency lighting, lifting winch, nacelle control box,
glass fibre cables, automatics, wind speed sensor, hydraulic unit, PLC, acceleration sensor, etc.

http://www.amccentre.nl/harakosanDemo/

6 What to Inspect Companies Procedure

44

• Energo Engineering (A Speciality Structural Engineering Company).

 http://www.energoeng.com/index.html

 “Energo Engineering” is a speciality engineering firm that solves difficult structural
engineering problems for the oil, gas and wind industry. “Energo” recently became a member of the
Offshore Operators Committee (OOC).

Figure 25. Energo Engineering logo

 From this company, inspection methodologies for Offshore Wind Turbine Facilities have been
got. Essentially, the most valuable information has been dealing with the above water structural and
access systems and the electrical and mechanical systems.

 In addition, we have an Inspection Sample Checklist and Data Reporting. These two
documents are in Appendixes E and F.

• Statkraft (A European leader in renewable energy).

 http://www.statkraft.com/

 “Statkraft” is Europe’s leader in renewable energy. The Group develops and produces
hydropower, wind power, gas power and district heating, and is a major player on the European
energy exchanges.

Figure 26. Statkraft logo

 Øyvind Netland, PhD at Department of Engineering Cybernetics requested some information
about visual inspection in their wind turbine nacelles. The result was successful. The got a
confidential report with photos during the inspection of a nacelle. Undoubtedly, the photos provide
needed information to perform the simulation of a real nacelle.

http://www.energoeng.com/index.html
http://www.statkraft.com/

7 Different possible solutions Inspection Plan

45

7
Different possible solutions

7.1 INSPECTION PLAN ... 45
7.1.1 THE COMPONENT LIST ... 46

7.2 LAYOUT ... 46
7.2.1 LIGHTING CONDITIONS ... 47
7.2.2 ANALYSED SCENARIOS.. 48

7.3 EXPERIMENTAL CONTROL SYSTEM .. 48

7 Different possible solutions
7.1 Inspection Plan

 In this Chapter the components that make up the system are presented. As the inspection
will be done with the first prototype, the layout will also change in order to be consequent with the
structure of a real nacelle.

Figure 27. Components and items to use during the inspection

7 Different possible solutions Component List

46

7.1.1 The Component List

 A list of components has been made to represent some of the most typical scenarios during a
real inspection.

 The list is shown below:

• Control Panel

• Oil & Grease

• Paper board

• Air tubes

• Bolts & washers

• Electric motor

• Industrial cables

 Many of these items are not exactly what you find inside a real nacelle. In spite of this, the
elements are adequate enough to the aim of the thesis.

7.2 Layout

 Before talking about layout, it is interesting to remember how we wanted to do the
inspection.

Figure 28. Remote inspection device inside the nacelle of wind turbine

 In the picture above, from [37], the first idea about how to do the inspection is shown.

7 Different possible solutions Layout

47

 On the other hand, taking into account the decision of using the first prototype instead of the
model train, a change on the path of the robot is required.

Figure 29. Updated path for inspection testing

 In the figure above, the new philosophy for inspection testing is shown. The reason of this
change is mainly because of the turning limitation that the first prototype shows.

 In our assumption, the rail will be on one side or the other of the main shaft. It is worth
recalling again that we are not talking about the layout during operation but during testing on our
assembly.

7.2.1 Lighting conditions

 The Nacelle Lighting and Power Systems have been found in [38].

Figure 30. Nacelle lighting and power systems

7 Different possible solutions Analysed scenarios

48

7.2.2 Analysed scenarios

 The nacelle and its components were described in Chapter 4. Now, it is time to implement a
simulated scenario using those components shown on the list before.

 There are two main possibilities to make the layout. The first idea was to create the whole
system at once. This meant that we were trying to reproduce a real nacelle. Although this seems the
best idea, because we would be reflecting the reality, this is much more difficult than creating
different scenarios.

 The aim of this thesis is to demonstrate the capacity of a remote presence to detect
problems inside a Nacelle. Creating different scenarios the aim can be reached with the same
probability and less effort. This solution, after all, is even more efficient.

 The chosen scenes or situations to be represented are shown below:

• Inspecting the bolt connections.

• State of the industrial cables.

• Oil leakages?

• State of the Control Panel (controller).

• Inspecting the electric motor connection.

 This set of situations will help us to draw conclusions about the efficiency of the system.

7.3 Experimental Control System

 The idea we had at the beginning was to build a big stage, simulating a real nacelle, and to
test the Inspection System by another Control System that would control the stage.

 This intention lost interest when it was decided not to implement the model train.

 In the future, if a new more flexible prototype and with a greater path was built, an
Experimental Control System would be a good idea to show Wind Farm Companies how the Remote
Presence works.

8 Tests Introduction

49

8
Tests

8.1 INTRODUCTION .. 49
8.1.1 MODUS OPERANDI .. 49

8.2 TEST 1. GENERAL SEARCH .. 50
8.2.1 VISIBLE CABLES ... 50
8.2.2 OIL LEAKAGE .. 52

8.3 TEST 2. COMPARISON SEARCH ... 53
8.3.1 CONTROL PANEL ... 53
8.3.2 MOTOR CONNECTION .. 54
8.3.3 BOLTS CONNECTIONS... 54

8 Tests
8.1 Introduction

 In this Chapter, the experimental part is presented. The robot is going to be tested against
different situations that can appear inside a real nacelle.

 Before making this demonstration, how a real inspection is carried on has been taken into
account. This is the point at which we are trying to demonstrate the efficiency of the remote
inspection vs. inspection in situ.

8.1.1 Modus operandi

 There two ways of making inspection:

 On one way, a general search must be performed firstly. This approach can be easily
explained as when you do not really know what you are looking for. During this kind of inspection the
most important elements and the most striking failures are watched. Elements such as: first aid box,
fire-extinguisher, easily visible cables, lighting and emergency lighting, significant oil leakages and
grease stains, etc. can be checked.

 On the other way, and secondly, a more thorough search is usually done. This inspection is
made by comparison in time. This is effective for searching details such as: bolt connections, motor
connection, state of the sensors, etc.

8 Tests General Search

50

8.2 Test 1. General Search

 In this point, the inspection is running and it starts with a global search. The images shown
below are discussed in detail in the following Chapter 9.

8.2.1 Visible cables

 Just glancing around the “nacelle” faulty cable can be detected easily.

Figure 31. Wear and tear on cables remotely inspected

 Wear and tear on cables can be seen in picture above. The yellow arrow is pointing a cut
located in the cable.

8 Tests Visible cables

51

 The following scheme shows the previous situation, but this time the photo has been taken
with another camera and from a different angle.

Figure 32. Wear and tear on inspected cables (being there)

 Cables defects in this picture are much more evident than in the previous photo. Here, an
advantage that the operator has over our remote presence appears.

 Looking carefully, we can even see the cooper that stands out from the thinnest wire.

8 Tests Oil leakage

52

8.2.2 Oil leakage

 A very typical accident in the industrial word is an oil leakage.

Figure 33. Oil leakage

 The picture above shows one of the numerous oil leakages found during the inspection.

 It is very difficult to know where this leakage comes from. It would be easier if we could
interact with the surroundings.

8 Tests Comparison Search

53

8.3 Test 2. Comparison Search

 The philosophy of this method is simple: first you take a photo of the component you want to
inspect. If after a while any change is observed in the picture, there will be a FAILURE sign. But, if no
change at all occurred, it will mean that everything is FINE.

8.3.1 Control panel

 In this case we are not talking about defects or mechanical failures. During inspection might
be useful to be able to see LED changes, for example in a Control panel.

Figure 34. Control Panel

 We will return on this photo in Chapter 9 to explain some ideas to improve the behaviour of
our Inspection System.

8 Tests Motor connection

54

8.3.2 Motor connection

 Here is another example of comparison search. The figure below shows a cable poorly
connected to motor.

Figure 35. Motor connection

8.3.3 Bolts connections

 This is a very clear example of what happens in these systems when time passes by.

Figure 36. Bolts connections and grease stains

 As you can see in the picture on the right the screw is not fastened and the metal sheets are
covered in grease.

9 Discussion Inspection Controller

55

9
Discussion

9.1 THE INSPECTION CONTROLLER .. 55

9.2 AUGMENTED REALITY .. 56

9.3 INSPECTION TESTS .. 56

9.4 FUTURE WORK ... 57

9 Discussion
 Problems, solutions, and other aspects of the project are shown below. The main topics of
this thesis are classified in different sections.

9.1 The Inspection Controller

 An important change has been made to the device controller. This change has provided the
control system two additional features:

• Greater speed of inspection: the fact that the camera moves together with the cart means an

improvement on the efficiency of the whole System.

• Extra comfort in controlling: by adding a gamepad an apparently none important aspect has

been achieved. At this moment the system can be controlled just looking at the video screen.

This way is much more comfortable than the previous one (pressing buttons with the mouse).

 Some delays have been detected while moving the camera and have not yet been solve.

 The camera is not able to move in diagonal, preventing the movement in two directions
simultaneously. Moreover, the IP camera has a limitation (dead angle) of 90 degrees, which can be
an important drawback in many cases.

9 Discussion Augmented Reality

56

9.2 Augmented Reality

 That Augmented Reality is the future of technology is known. The question is if this
technology can provide a huge number of benefits for the current system.

 Nowadays the prototype is not ready for such a powerful technology. There are limitations,
such as those already mentioned and others that will be discussed in the next section, which
influences the evolution of the system.

9.3 Inspection TESTS

 For testing the inspection system, the first made decision was to choose the prototype that
was going to be used. The best solution would have probably been to use a model train, what should
have made the inspection plan much more versatile. However, there have been some problems that
have delayed the assembly of the train path. So, the second prototype has been used to make the
“experiments”.

 Now TESTS done in Chapter 8 will be revised and commented.

• Condition of cables: Figure 31 shows wear and tear cables. The quality of the photo is not

really good comparing to Figure 32. This tries to be an example of the difference between the

remote presence and in situ presence. An extendable arm to reach higher places is required.

Also would be a good idea to have some tools, attached to the robot, to interact with the

components inside the nacelle. If this is not implemented, only the visible side of the cables

will be able to be inspected rather than the hidden part.

• Oil leakage: this frequent accident is shown in Figure 33. With our prototype is possible to

detect this kind of failure. Oil leakages are normally on the floor, walls or also near the

bearings.

• Control panel sensor: in Figure 34 a LED is turned ON and it is detected by the camera. There is

no difference between what the robot watches than what an inspector would be able to watch

being there.

• Motor connection: here is another example of change in the time. The Figure 35 shows

perfectly the cable poorly connected to the motor.

• Bolts connections: Continuing with comparison of the same two things at different moment, in

Figure 36 a not fastened bolt is shown. Moreover, the image also shows that grease stains

have appeared around it.

9 Discussion Inspection TESTS

57

 There have been no “experiments” for detecting: sound, vibration, or heat, simply because
the robot will not detect these phenomenons. Anyway, having been able to test all the things above,
other cases can be easily extrapolated. The more sensors available, the easier will be to detect
different type of problems.

 The remote inspection will be very useful and necessary. Continuing researching in this field
will be always something profitable.

9.4 Future Work

 To take more benefit from the Remote Presence several aspects should first of all be
improved.

 Talking about mechanic systems, anything that increases the robot’s line of vision must be
added. This refers to a kind of lift for the camera. This would provide multiple angles of vision.

 To have a kind of robotic arm could be another mechanical improvement to be developed.
This arm would not be used for maintenance. Its role would be exclusively to interact with the
environment for a better inspection.

 Regarding to the sensors, a thermal camera and a microphone should be implemented in the
system.

 Something very important is to have better feedback from Wind Farm Companies. There is a
lot of confidential material that cannot be used. Dealing with a few companies and trying to reach
some cooperation agreement should be the future priority. As, only in this way, all positive
developments in the system would be certified inside real nacelles.

 Finally, it would be really interesting to learn more about augmented reality; real application
of this technology on our Inspecting System.

58

10 Conclusion

59

10
Conclusion

10 Conclusion
 The first that has been done has been to place a Remote Presence among the Wind
Technology current tendency. Due to the importance of wind power in the future and taking into
account the lasts designs for reduced maintenance on offshore wind farms, the development of
cheap and reliable inspection systems is required.

 A new device controller has been proposed. This device provides a great amount of different
configurations to the Input System. Future updates or new input devices can be attached to this
model. For the moment, a gamepad has been implemented successfully as the current input device.
The java code made by Viktor has been changed in some parts, such as: vehicle controller and cam
controller.

 A huge investigation about components inside an offshore wind turbine nacelle has been
done. Also, by comparison with three different companies, and based on the first robot prototype
built, an Inspection Procedure has been proposed.

 Finally, the most important task, which lies in practical “experiments” on the efficiency of the
system have been done. In conclusion, the idea of detecting some specific and tabulated failures has
been achieved. The system is good enough to be controlled remotely and to have a look of its
surroundings. Moreover, the system allows the operator to observe changes with sufficient accuracy,
at least having a distance shorter than two meters between the object and the camera.

 So, these “experiments” have proved that Remote Inspection is possible and can be feasible.
Although it is an obvious statement, it must be said that the greater number of sensors in a
prototype the better knowledge of the surroundings we will get.

60

61

Part II.

Appendix

62

References

63

A
A. Map of Wind Farms in

SCANDINAVIA

References

64

References

65

B
B. Joysticks from Genge & Thoma

66

References

67

C
C. JXInput – Input Devices for Java

Joystick Listener.java

package com.centralnexus.input;

/**
 * The listener interface for receiving joystick events. A Joystick
 * will periodically notify the implementor of this listener of changes
 * to the attached joystick. It is not neccessary to call the
 * poll function on the joystick when this interface is implemented.
 *
 * @see Joystick
 * @author George Rhoten
 * @author Ed Burns <edburns@acm.org>
 * @since July 8, 2001
 */

public interface JoystickListener
{
 /**
 * Implement this function to get periodically notified that
 * a joystick changed one of its axis values.
 *
 * @param j The joystick that was recently polled.
 */
 public void joystickAxisChanged(Joystick j);

 /**
 * Implement this function to get periodically notified that
 * a joystick button changed one of its values.
 *
 * @param j The joystick that was recently polled.
 */
 public void joystickButtonChanged(Joystick j);
}

Source Code 1. The JoystickListener class

References

68

Joystick Notifier.java

package com.centralnexus.input;

/**
 * Notifies the joystick listeners of Joystick events.
 * Only one of these notifiers should be created per joystick.
 *
 * @author George Rhoten
 * @since July 8, 2001
 */
class JoystickNotifier implements Runnable
{
 /** A joystick used for polling. */
 private Joystick jstick;

 /** The thread used to poll one joystick. */
 private Thread pollingThread = null;

 /** polling interval for this joystick */
 private int interval = 50;

 /** Listeners for this joystick */
 private JoystickListener joyListeners[] = new JoystickListener[0];

 /**
 * Joysticks for the listeners. Multiple joysticks may be created,
 * but they all have the same data values. Keeping this array
 * makes it easier to use the operator== in Java.
 */
 private Joystick joysticks[] = new Joystick[0];

 /** axis values for all axis values on all joysticks with the same ID. */
 float axisValues[] = new float[Joystick.AXIS_TOTAL];

 /** Old axis values for all axis values. */
 private float axisValuesOld[] = new float[Joystick.AXIS_TOTAL];

 /** The cache of current button values */
 int buttonValues = 0;

 /** The Old cache of current button values */
 private int buttonValuesOld = 0;

 JoystickNotifier(Joystick js) {
 jstick = js;
 }

 /** Start polling the joystick. */
 public void start() {
 pollingThread.start();
 }

 /**
 * Add a listener to this joystick
 */
 public synchronized void addJoystickListener(Joystick j, JoystickListener l) {
 if (l != null) {
 JoystickListener newListeners[] = new JoystickListener[joyListeners.length +
 1];
 Joystick newJoystickArr[] = new Joystick[joyListeners.length + 1];

 System.arraycopy(joyListeners, 0, newListeners, 0, joyListeners.length);
 System.arraycopy(joysticks, 0, newJoystickArr, 0, joysticks.length);

References

69

 newListeners[joyListeners.length] = l;
 newJoystickArr[joysticks.length] = j;

 joyListeners = newListeners;
 joysticks = newJoystickArr;

// System.out.println("adding " + j);
 // This new listener needs to now the current state.
 joyListeners[joyListeners.length -
 1].joystickAxisChanged(joysticks[joyListeners.length - 1]);
 joyListeners[joyListeners.length -
 1].joystickButtonChanged(joysticks[joyListeners.length - 1]);

 if (pollingThread == null) {
 pollingThread = new Thread(this);
 pollingThread.start();
// System.out.println("starting");
 }
 }
 }

 /**
 * Remove a listener to this joystick
 */
 public synchronized void removeJoystickListener(Joystick j, JoystickListener l) {
 if (l != null && joyListeners.length > 0) {
 JoystickListener newListeners[] = new JoystickListener[joyListeners.length -
 1];
 Joystick newJoystickArr[] = new Joystick[joyListeners.length - 1];
 int idx;

 for (idx = 0; idx < newListeners.length
 && joyListeners[idx] != l && joysticks[idx] != j; idx++)
 {
 newListeners[idx] = joyListeners[idx];
 newJoystickArr[idx] = joysticks[idx];
 }
// System.out.println(idx + " removed");
 if (idx < joyListeners.length) {
 if (0 < newListeners.length) {
 System.arraycopy(joyListeners, idx + 1, newListeners, idx,
newListeners.length - idx);
 System.arraycopy(joysticks, idx + 1, newJoystickArr, idx,
newJoystickArr.length - idx);
 }
 joyListeners = newListeners;
 joysticks = newJoystickArr;
 }
 }
 }

 public synchronized final void notifyJoystickListeners() {
 jstick.poll();

 boolean axisChanged = false;
 for (int idx = 0; idx < axisValues.length; idx++) {
 if (axisValues[idx] != axisValuesOld[idx]) {
 axisChanged = true;
 break;
 }
 }

 for (int listenNum = joyListeners.length - 1; listenNum >= 0; listenNum--)
 {
 if (axisChanged) {

References

70

// System.out.println(jstick + " " + listenNum + " axis changed");
 joyListeners[listenNum].joystickAxisChanged(joysticks[listenNum]);
 }
 if (buttonValues != buttonValuesOld) {
// System.out.println(jstick + " " + listenNum +" button changed");
 joyListeners[listenNum].joystickButtonChanged(joysticks[listenNum]);
 }
 }
 buttonValuesOld = buttonValues;
 System.arraycopy(axisValues, 0, axisValuesOld, 0, axisValues.length);
 }

 public void setPollInterval(int pollMillis) {
 interval = pollMillis;
 }

 public int getPollInterval() {
 return interval;
 }

 public void run()
 {
 while (joyListeners.length > 0) {
 notifyJoystickListeners();
 //System.out.println(jstick.toString());

 try {
 Thread.sleep(interval);
 }
 catch (InterruptedException e) {
 pollingThread = null;
 return;
 }
 }
 pollingThread = null;
 }
}

Source Code 2. The JoystickNotifier class

References

71

Joystick.java

package com.centralnexus.input;

import java.io.IOException;

/**
 * <p>
 * Device driver to a Windows joystick.
 * This handles at least an x,y motion joystick. A joystick can be plugged
 * in as any id, and the first joystick id may or may not be plugged in.
 * In order to create a Joystick, you must use one of createInstance functions.
 * </p>
 * <p>
 * There are two ways to update the axis and button values. You can either:
 *
 * Add a JoystickListener to the joystick with addJoystickListener().
 *
 * Use the poll() function from you own thread.
 *
 *
 * </p>
 *
 * @see JoystickListener
 * @author George Rhoten
 * @since June 10, 2000
 */
public class Joystick {

// Joystick driver capabilites
// These are equivalent to JOYCAPS in windows.

 /** Does this joystick have a z-axis capability? */
 public static final int HAS_Z = 0x0001;

 /** Does this joystick have a r-axis capability? */
 public static final int HAS_R = 0x0002;

 /** Does this joystick have a u-axis capability? */
 public static final int HAS_U = 0x0004;

 /** Does this joystick have a v-axis capability? */
 public static final int HAS_V = 0x0008;

 /** Does this joystick have a point-of-view control capability? */
 public static final int HAS_POV = 0x0010;

 /**
 * Does this joystick point-of-view support discrete values
 * capability (centered, forward, backward, left, and right)?
 */
 public static final int HAS_POV4DIR = 0x0020;

 /**
 * Does this joystick point-of-view support continuous degree bearings
 * capability?
 */
 public static final int HAS_POVCONT = 0x0040;

 /**
 * Point-of-view hat is in the neutral position. The value -1 means the
 * point-of-view hat has no angle to report.
 */
 public static final float POV_CENTERED = -1.0f/100.0f;

References

72

 /**
 * Point-of-view hat is pressed forward. The value 0 represents an
 * orientation of 0.00 degrees (straight ahead).
 */
 public static final float POV_FORWARD = 0.0f;

 /**
 * Point-of-view hat is pressed to the right. The value 9,000 represents
 * an orientation of 90.00 degrees (to the right).
 */
 public static final float POV_RIGHT = 90.00f;

 /**
 * Point-of-view hat is pressed backward. The value 18,000 represents
 * an orientation of 180.00 degrees (to the rear).
 */
 public static final float POV_BACKWARD = 180.00f;

 /**
 * Point-of-view hat is being pressed to the left. The value 27,000
 * represents an orientation of 270.00 degrees (90.00 degrees to the left).
 */
 public static final float POV_LEFT = 270.00f;

 /** These are the standard buttons. */
 public static final int BUTTON1 = 0x0001;
 public static final int BUTTON2 = 0x0002;
 public static final int BUTTON3 = 0x0004;
 public static final int BUTTON4 = 0x0008; // Last button
 /** These are the extended buttons */
 public static final int BUTTON5 = 0x00000010;
 public static final int BUTTON6 = 0x00000020;
 public static final int BUTTON7 = 0x00000040;
 public static final int BUTTON8 = 0x00000080;
 public static final int BUTTON9 = 0x00000100;
 public static final int BUTTON10 = 0x00000200;
 public static final int BUTTON11 = 0x00000400;
 public static final int BUTTON12 = 0x00000800;
 public static final int BUTTON13 = 0x00001000;
 public static final int BUTTON14 = 0x00002000;
 public static final int BUTTON15 = 0x00004000;
 public static final int BUTTON16 = 0x00008000;
 public static final int BUTTON17 = 0x00010000;
 public static final int BUTTON18 = 0x00020000;
 public static final int BUTTON19 = 0x00040000;
 public static final int BUTTON20 = 0x00080000;
 public static final int BUTTON21 = 0x00100000;
 public static final int BUTTON22 = 0x00200000;
 public static final int BUTTON23 = 0x00400000;
 public static final int BUTTON24 = 0x00800000;
 public static final int BUTTON25 = 0x01000000;
 public static final int BUTTON26 = 0x02000000;
 public static final int BUTTON27 = 0x04000000;
 public static final int BUTTON28 = 0x08000000;
 public static final int BUTTON29 = 0x10000000;
 public static final int BUTTON30 = 0x20000000;
 public static final int BUTTON31 = 0x40000000;
 public static final int BUTTON32 = 0x80000000;

/* //Not known to be used. Maybe used for a joystick listener.
 public static final int BUTTON1CHG = 0x0100;
 public static final int BUTTON2CHG = 0x0200;
 public static final int BUTTON3CHG = 0x0400;
 public static final int BUTTON4CHG = 0x0800;
*/

References

73

 /** Constant for axisValues */
 static final int AXIS_TOTAL = 7;
 /** Constant for axisValues */
 private static final int AXIS_X = 0;
 /** Constant for axisValues */
 private static final int AXIS_Y = 1;
 /** Constant for axisValues */
 private static final int AXIS_Z = 2;
 /** Constant for axisValues */
 private static final int AXIS_R = 3;
 /** Constant for axisValues */
 private static final int AXIS_U = 4;
 /** Constant for axisValues */
 private static final int AXIS_V = 5;
 /** Constant for axisValues */
 private static final int AXIS_POV = AXIS_TOTAL - 1;

 /** Singleton JoystickNotifiers that creates joystick events */
 private static JoystickNotifier joyNotifier[];

 /** The joystick id. Typically 0 or 1 */
 private int id = 0;
 /** The joystick id. Typically 0 or 1 */
 private float deadZone = 0.0f;
 /** The cache of capabilities bits */
 private int capabilities = 0;
 /** The cache of current axis values */
 float axisValues[];
 /** This is who notifies me */
 JoystickNotifier myJoyNotifier;

 static {
 try {
 new jjstick();
 joyNotifier = new JoystickNotifier[getNumDevices()];
 }
 catch (UnsatisfiedLinkError e) {
 e.fillInStackTrace();
 throw e;
 }
 }

 /**
 * Returns the number of joysticks supported by the joystick driver or zero
 * when no driver is present.
 */
 public native static final int getNumDevices();

 /**
 * Returns true when the joystick is plugged into the computer, false
 * otherwise. This function may do some initialization to get the
 * joystick working.
 * @param id The ID of the joystick where 0 <= id < getNumDevs().
 */
 public native synchronized static boolean isPluggedIn(int id);

 native synchronized static int poll(int id, float axisValues[]);
 private native static int getCapabilities(int id);

 private native static int getNumButtons(int id);
 private native static int getNumAxes(int id);
 private native static String toString(int id);

 Joystick(int id) throws IOException {
 if (isPluggedIn(id)) { // Must be called before anything else!

References

74

 this.id = id;
 if (joyNotifier[id] == null)
 {
 joyNotifier[id] = new JoystickNotifier(this);
 }
 myJoyNotifier = joyNotifier[id];
 axisValues = joyNotifier[id].axisValues;
 capabilities = getCapabilities(id);
 myJoyNotifier.buttonValues = poll(id, axisValues);
 }
 else {
 throw new IOException("Invalid joystick ID: " + id);
 }
 }

 /**
 * Start using the first available joystick.
 * @throws IOException Thrown when a joystick
 * is not plugged into the computer.
 */
 public static Joystick createInstance() throws IOException {
 int maxID = getNumDevices();
 int id = 0;

 while (id < maxID && !isPluggedIn(id)) {
 id++;
 }
 if (id >= maxID) {
 throw new IOException("Joystick not found.");
 }
 return createInstance(id);
 }

 /**
 * Start using a joystick with a specific id. This should be used when
 * you know a specific joystick is plugged into the computer.
 *
 * @param id The joystick id to get joystick information from.
 * @throws IOException Thrown when the joystick for the id
 * is not plugged into the computer.
 */
 public static Joystick createInstance(int id) throws IOException {
 if (id < 0 || getNumDevices() <= id) {
 throw new IOException("Invalid joystick ID: " + id);
 }
 int capabilities = getCapabilities(id);
 Joystick newJoystick;
 if (capabilities == 0 || capabilities == HAS_Z) {
 newJoystick = new Joystick(id);
 }
 else {
 newJoystick = new ExtendedJoystick(id);
 }
 return newJoystick;
 }

 /**
 * The joystick id for the joystick connected to the computer.
 * The ID numbers have a range of 0 <= id < getNumDevices()
 * @see #getNumDevices()
 */
 public final int getID() {
 return id;
 }

References

75

 /**
 * This polls (updates) the joystick for its values. This must be called
 * after the owner is done with the old values.
 */
 public void poll() {
 myJoyNotifier.buttonValues = poll(id, axisValues);
 }

 /**
 * Get the Capability bits. These bits can be ORed together.
 * @see #getCapability(int)
 */
 public int getCapabilities() {
 return capabilities;
 }

 /**
 * Is a certain capability bit turned on?
 * @see #HAS_Z
 * @see #HAS_R
 * @see #HAS_U
 * @see #HAS_V
 * @see #HAS_POV
 * @see #HAS_POV4DIR
 * @see #HAS_POVCONT
 */
 public final boolean getCapability(int capability) {
 return (capabilities & capability) == capability;
 }

 /**
 * Returns the axis value, or 0 if the axis value is inside the deadZone.
 */
 final float removeDeadZone(float axis) {
 return (axis <= -deadZone || deadZone <= axis) ? axis : 0.0f;
 }

 /**
 * The x value of a joystick has a range from -1 to 1.
 */
 public synchronized float getX() {
 return removeDeadZone(axisValues[AXIS_X]);
 }

 /**
 * The y value of a joystick has a range from -1 to 1.
 */
 public synchronized float getY() {
 return removeDeadZone(axisValues[AXIS_Y]);
 }

 /**
 * The z value of a joystick has a range from -1 to 1.
 * @see #getCapabilities()
 */
 public synchronized float getZ() {
 if ((capabilities & HAS_Z) == HAS_Z) {
 return removeDeadZone(axisValues[AXIS_Z]);
 }
 return 0.0f;
 }

 /**
 * The r value of a joystick has a range from -1 to 1.
 * @return the rudder value (4th axis of movement)

References

76

 * @see #getCapabilities()
 */
 public synchronized float getR() {
 if ((capabilities & HAS_R) == HAS_R) {
 return removeDeadZone(axisValues[AXIS_R]);
 }
 return 0.0f;
 }

 /**
 * The u value of a joystick has a range from -1 to 1.
 * @return the u value (5th axis of movement)
 * @see #getCapabilities()
 */
 public synchronized float getU() {
 if ((capabilities & HAS_U) == HAS_U) {
 return removeDeadZone(axisValues[AXIS_U]);
 }
 return 0.0f;
 }

 /**
 * The v value of a joystick has a range from -1 to 1.
 * @return the v value (6th axis of movement)
 * @see #getCapabilities()
 */
 public synchronized float getV() {
 if ((capabilities & HAS_V) == HAS_V) {
 return removeDeadZone(axisValues[AXIS_V]);
 }
 return 0.0f;
 }

 /**
 * Current position of the point-of-view control. Values for this member
 * are in the range 0 through 359.00. These values represent the angle,
 * in degrees.
 * @return the point of view
 * @see #getCapabilities()
 */
 public synchronized float getPOV() {
 if ((capabilities & HAS_POV) == HAS_POV) {
 return axisValues[AXIS_POV];
 }
 return 0;
 }

 /**
 * Current state of joystick buttons. To see which buttons are pressed,
 * "&" the result with one of the BUTTON constants.
 * @return the bits representing each button.
 * @see Joystick#BUTTON1
 * @see Joystick#BUTTON2
 * @see Joystick#BUTTON3
 * @see Joystick#BUTTON4
 */
 public int getButtons() {
 return myJoyNotifier.buttonValues;
 }

 /**
 * Current state of a specific joystick button.
 * @param button can be BUTTON1, BUTTON2, BUTTON3 and so on.
 * @return true if the button is being pressed, false otherwise.
 * @see Joystick#BUTTON1

References

77

 * @see Joystick#BUTTON2
 * @see Joystick#BUTTON3
 * @see Joystick#BUTTON4
 */
 public boolean isButtonDown(int button) {
 return (myJoyNotifier.buttonValues & button) == button;
 }

 /** Number of buttons on the joystick. */
 public int getNumButtons() {
 return getNumButtons(id);
 }

 /** Number of axes currently in use by the joystick. */
 public int getNumAxes() {
 return getNumAxes(id);
 }

 /** Size of the dead zone. The default value is 0.0. */
 public final float getDeadZone() {
 return deadZone;
 }

 /**
 * Size of the dead zone. The dead zone is the range of values of each
 * axis that returns 0. For example, when the deadZone = 0.1 and
 * joystick(x, y, z) = (-0.09, 0.5, 0.1), then
 * joystick(x, y, z) = (0.0, 0.5, 0.0).
 * @throws IllegalArgumentException when deadZone is out of the range
 * 0 <= deadZone <= 1.0.
 */
 public final void setDeadZone(float deadZoneVal) {
 if (0.0f <= deadZoneVal && deadZoneVal <= 1.0f) {
 deadZone = deadZoneVal;
 }
 else {
 throw new IllegalArgumentException("Dead Zone needs to be between 0 and 1: "
 + deadZoneVal);
 }
 }

 /**
 * Synonym for setDeadZone(float)
 */
 public final void setDeadZone(double deadZoneVal) {
 setDeadZone((float)deadZoneVal);
 }

 /**
 * Adds the specified joystick listener to receive joystick events
 * from this joystick. If l is null, no exception is thrown
 * and no action is performed.
 * @param l The joystick listener
 * @param notifyOnChangeOnly Notify the listener of changes only.
 * Setting this parameter to false will poll the joystick
 * at a regular interval.
 */
 public void addJoystickListener(JoystickListener l) {
 myJoyNotifier.addJoystickListener(this, l);
 }

 /**
 * Removes the specified joystick listener so that it no longer
 * receives joystick events from this joystick. If l is null,
 * no exception is thrown and no action is performed.

References

78

 * @param l The joystick listener
 */
 public void removeJoystickListener(JoystickListener l) {
 myJoyNotifier.removeJoystickListener(this, l);
 }

 /**
 * Set the time in milliseconds that the JoystickListeners get notified of
 * this joystick events.
 */
 public void setPollInterval(int pollMillis) {
 myJoyNotifier.setPollInterval(pollMillis);
 }

 /**
 * Get the time in milliseconds that the JoystickListeners get notified of
 * this joystick events.
 */
 public int getPollInterval() {
 return myJoyNotifier.getPollInterval();
 }

 /** Text description of this joystick without the axis values */
 public String toString() {
 return toString(id) + " [id=" + id + "]";
 }
}

/**
 * This is used only for JDKs that only allow you to load a library
 * with the same class name.
 */
class jjstick {
 static {
 try {
 System.loadLibrary("jjstick");
 }
 catch (UnsatisfiedLinkError e) {
 e.fillInStackTrace();
 throw e;
 }
 }
}

Source Code 3. The Joystick class

References

79

Joystick TEST.java

package com.centralnexus.test;

import java.awt.*;
import java.awt.event.*;
import java.io.IOException;

import com.centralnexus.input.*;

public class JoystickTest
extends Frame
implements Runnable, JoystickListener, ActionListener

{
 Joystick joy;

 private int interval;

 Thread thread = new Thread(this);

 Label buttonLabel = new Label(),
 button2Label = new Label(),
 deadZoneLabel = new Label(),
 yLabel = new Label(),
 zLabel = new Label(),
 rLabel = new Label();
 Label xyLabel = new Label();
 Label intervalLabel = new Label();

 Button addButton = new Button("Add Listener");
 Button removeButton = new Button("Remove Listener");

 JoystickTest() throws IOException {
 super();

 joy = Joystick.createInstance();
 for (int idx = joy.getID() + 1; idx < Joystick.getNumDevices(); idx++) {
 if (Joystick.isPluggedIn(idx)) {
 }
 }
 doWindowLayout();
 }

 JoystickTest(int joystickID) throws IOException {
 super();

 joy = Joystick.createInstance(joystickID);
 doWindowLayout();
 }

 private void doWindowLayout() {
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 dispose();
 System.exit(0);
 }
 });
 setTitle("Joystick Test");

 setLayout(new GridLayout(14, 2));
 add(new Label("Number Of Devices: ", Label.RIGHT));
 add(new Label(Integer.toString(Joystick.getNumDevices())));
 add(new Label("Joystick ID: ", Label.RIGHT));

References

80

 add(new Label("joy(" + Integer.toString(joy.getID()) + ")"));
 add(new Label("Description joy#1: ", Label.RIGHT));
 add(new Label(joy.toString()));
 add(new Label("Capabilities:", Label.RIGHT));
 add(new Label("joy(0x" + Integer.toHexString(joy.getCapabilities()) + ")"));
 add(new Label("Axes: ", Label.RIGHT));
 add(new Label("joy(" + Integer.toString(joy.getNumAxes()) + ")"));
 add(new Label("Buttons: ", Label.RIGHT));
 add(new Label("joy(" + Integer.toString(joy.getNumButtons()) + ")"));
 add(new Label("Dead Zone Size: ", Label.RIGHT));
 add(deadZoneLabel);
 add(new Label("Buttons Pressed: 0x", Label.RIGHT));
 add(buttonLabel);

 add(new Label("Robot Movement: ", Label.RIGHT));
 add(yLabel);
 add(new Label("Camera (UP/DOWN): ", Label.RIGHT));
 add(zLabel);
 add(new Label("Camera (RIGHT/LEFT): ", Label.RIGHT));
 add(rLabel);

 add(new Label("Polling interval: ", Label.RIGHT));
 add(intervalLabel);
 addButton.addActionListener(this);
 removeButton.addActionListener(this);
 }

 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == addButton) {
 joy.addJoystickListener(this);
 }
 else {
 joy.removeJoystickListener(this);
 }
 }

 /**
 * This is used by the internal thread.
 */
 public void run() {
 for (;;) {
 joy.poll();

 updateFieldsEx(joy);
 try {
 Thread.sleep(interval);
 } catch(InterruptedException e) {
 break;
 }
 }
 }

 public void joystickAxisChanged(Joystick j) {
 if (j == joy) {
 updateFieldsEx(j);
 }
 else {
 updateFields(j);
 }
 }

 public void joystickButtonChanged(Joystick j) {
 if (j == joy) {
 updateFieldsEx(j);
 }

References

81

 else {
 updateFields(j);
 }
 }

 public void setPollInterval(int pollMillis) {
 interval = pollMillis;
 joy.setPollInterval(pollMillis);
 intervalLabel.setText(Integer.toString(interval));
 }

 public void updateFields(Joystick joystick) {
 button2Label.setText(Integer.toHexString(joystick.getButtons()));
 xyLabel.setText(joystick.getX() + ", " + joystick.getY());
 }

 public void updateFieldsEx(Joystick joystick) {
 buttonLabel.setText(Integer.toHexString(joystick.getButtons()));
 yLabel.setText(Double.toString(joystick.getY()));
 zLabel.setText(Double.toString(joystick.getZ()));
 rLabel.setText(Double.toString(joystick.getR()));
 }

 public void startPolling() {
 thread.start();
 }

 public void addListeners() {
 add(addButton);
 add(removeButton);
 joy.addJoystickListener(this);
 }

 public void setDeadZone(double deadZone) {
 joy.setDeadZone(deadZone);
 updateDeadZone();
 }

 public void updateDeadZone() {
 deadZoneLabel.setText("joy(" + joy.getDeadZone() + ")");
 }

 private static void help() {
 System.out.println("Help:");
 System.out.println(" -h This help screen info");
 System.out.println(" -v Verbose Joystick debug information");
 System.out.println(" -j:n Set the Joystick ID to test (n is an integer)");
 System.out.println(" -j2:n Set the second joystick ID to test (n is an integer)");
 System.out.println(" -d:n Set the dead zone size of the Joystick (n is a real
 number)");
 System.out.println(" -d2:n Set the dead zone size of the second Joystick (n is a
 real number)");
 }

 public static void main(String args[]) {
 // This first and last one are never there, but this is for internal testing.
 // They should ALWAYS be false.
 try {
 JoystickTest mainFrame;
 int joystickNum = -1;
 int joystickNumEx = -1;
 double deadZone = -1.0;
 int interval = 50;

References

82

 for (int idx = 0; idx < args.length; idx++) {
 if (args[idx].startsWith("-d:")) {
 deadZone =
 Double.valueOf(args[idx].substring(3, args[idx].length()))
 .doubleValue();
 }
 else if (args[idx].startsWith("-i:")) {
 interval =
 Integer.valueOf(args[idx].substring(3, args[idx].length()))
 .intValue();
 }
 else if (args[idx].startsWith("-j:")) {
 joystickNum =
 Integer.valueOf(args[idx].substring(3, args[idx].length()))
 .intValue();
 }
 else if (args[idx].startsWith("-j2:")) {
 joystickNumEx =
 Integer.valueOf(args[idx].substring(4, args[idx].length()))
 .intValue();
 }
 else if (args[idx].startsWith("-v")) {
 for (int id = -1; id <= Joystick.getNumDevices(); id++) {
 System.out.println("Joystick " + id + ": " +
 Joystick.isPluggedIn(id));
 }
 }
 else if (args[idx].startsWith("-h")) {
 help();
 }
 else {
 System.out.println("Unknown option: " + args[idx]);
 help();
 }
 }
 if (joystickNum >= 0) {
 if (joystickNumEx < 0) {
 joystickNumEx = joystickNum;
 }
 mainFrame = new JoystickTest(joystickNum);
 }
 else {
 mainFrame = new JoystickTest();
 }
 if (deadZone >= 0.0) {
 mainFrame.setDeadZone(deadZone);
 }
 mainFrame.setPollInterval(interval);
 mainFrame.updateDeadZone();
 mainFrame.pack();
 mainFrame.setTitle("Polling Joystick");
 //mainFrame.show();
 mainFrame.setVisible(true);
 mainFrame.startPolling();

 Point pt = mainFrame.getLocation();
 //listenerFrame.show();
 } catch (IOException e) {
 System.err.println("");
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

Source Code 4. The JoystickTEST class

References

83

D
D. Client – Inspection Application

CLIENT.CONTROLLER CamController.java

package client.controller;

import java.awt.event.KeyEvent;
import java.awt.event.KeyListener;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.io.IOException;

import client.model.CamModel;
import client.view.panel.CamControlPanel;

import com.centralnexus.input.*;

public class CamController {

 private CamModel.CameraDirection cam_state = CamModel.CameraDirection.STOP_ALL;

 private Joystick joy;

 public CamController(){
 //Register in the service registry in order to avoid multiple instances?

 try {
 joy = Joystick.createInstance();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }

 //Add listeners
 public void addListeners(final CamControlPanel viewer, final CamModel model){
 //Initializing buttonListeners
 model.upMouseListener = new MouseListener() {

 @Override
 public void mouseReleased(MouseEvent e) { moveCam(model,
 CamModel.CameraDirection.UP, false); }
 @Override
 public void mousePressed(MouseEvent e) { moveCam(model,
 CamModel.CameraDirection.UP, true); }

References

84

 @Override
 public void mouseExited(MouseEvent e) {/* moveCam(model,
 CamModel.CameraDirection.UP, false); */}
 @Override
 public void mouseEntered(MouseEvent e) {}
 @Override
 public void mouseClicked(MouseEvent e) {}

 };

 model.downMouseListener = new MouseListener() {

 @Override
 public void mouseReleased(MouseEvent e) { moveCam(model,
 CamModel.CameraDirection.DOWN, false); }
 @Override
 public void mousePressed(MouseEvent e) { moveCam(model,
 CamModel.CameraDirection.DOWN, true);}
 @Override
 public void mouseExited(MouseEvent e) {/* moveCam(model,
 CamModel.CameraDirection.DOWN, false); */}
 @Override
 public void mouseEntered(MouseEvent e) {}
 @Override
 public void mouseClicked(MouseEvent e) {}

 };

 model.leftMouseListener = new MouseListener() {

 @Override
 public void mouseReleased(MouseEvent e) { moveCam(model,
 CamModel.CameraDirection.LEFT, false); }
 @Override
 public void mousePressed(MouseEvent e) { moveCam(model,
 CamModel.CameraDirection.LEFT, true); }
 @Override
 public void mouseExited(MouseEvent e) {/* moveCam(model,
 CamModel.CameraDirection.LEFT, false); */}
 @Override
 public void mouseEntered(MouseEvent e) {}
 @Override
 public void mouseClicked(MouseEvent e) {}

 };

 model.rightMouseListener = new MouseListener() {

 @Override
 public void mouseReleased(MouseEvent e) { moveCam(model,
 CamModel.CameraDirection.RIGHT, false); }
 @Override
 public void mousePressed(MouseEvent e) {moveCam(model,
 CamModel.CameraDirection.RIGHT, true); }
 @Override
 public void mouseExited(MouseEvent e) {/* moveCam(model,
 CamModel.CameraDirection.RIGHT, false); */}

 @Override
 public void mouseEntered(MouseEvent e) {}
 @Override
 public void mouseClicked(MouseEvent e) {}

 };

References

85

 model.stopAllMouseListener = new MouseListener() {

 @Override
 public void mouseReleased(MouseEvent e) {moveCam(model,
 CamModel.CameraDirection.STOP_ALL, false); }
 @Override
 public void mousePressed(MouseEvent e) { moveCam(model,
 CamModel.CameraDirection.STOP_ALL, true); }
 @Override
 public void mouseExited(MouseEvent e) {/* moveCam(model,
 CamModel.CameraDirection.STOP_ALL, false); */}

 @Override
 public void mouseEntered(MouseEvent e) {}
 @Override
 public void mouseClicked(MouseEvent e) {}

 };

 model.joyListener = new JoystickListener() {

 @Override
 public void joystickAxisChanged(Joystick arg0) {
 // TODO Auto-generated method stub
 double z = arg0.getZ();
 double r = arg0.getR();

 switch(cam_state){
 case STOP_ALL:
 if(z > 0.3) {
 moveCam(model, CamModel.CameraDirection.DOWN,
 true);
 cam_state = CamModel.CameraDirection.DOWN;
 }
 if(z < -0.3) {
 moveCam(model, CamModel.CameraDirection.UP,
 true);
 cam_state = CamModel.CameraDirection.UP;
 }
 if(r > 0.3) {
 moveCam(model, CamModel.CameraDirection.RIGHT,
 true);
 cam_state = CamModel.CameraDirection.RIGHT;
 }
 if(r < -0.3) {
 moveCam(model, CamModel.CameraDirection.LEFT,
 true);
 cam_state = CamModel.CameraDirection.LEFT;
 }
 break;
 case RIGHT:
 if(r < 0.3) {
 moveCam(model, CamModel.CameraDirection.RIGHT,
 false);
 cam_state = CamModel.CameraDirection.STOP_ALL;
 }
 break;
 case LEFT:
 if(r > -0.3) {
 moveCam(model, CamModel.CameraDirection.LEFT,
 false);
 cam_state = CamModel.CameraDirection.STOP_ALL;
 }
 break;

References

86

 case UP:
 if(z > -0.3) {
 moveCam(model, CamModel.CameraDirection.UP,
 false);
 cam_state = CamModel.CameraDirection.STOP_ALL;
 }
 break;
 case DOWN:
 if(z < 0.3) {
 moveCam(model, CamModel.CameraDirection.DOWN,
 false);
 cam_state = CamModel.CameraDirection.STOP_ALL;
 }
 break;
 }
 }

 @Override
 public void joystickButtonChanged(Joystick arg0) {
 // TODO Auto-generated method stub

 }

 };

 model.keyListener = new KeyListener() {

 @Override
 public void keyPressed(KeyEvent arg0) {
 // TODO Auto-generated method stub
 System.out.println("PRESSED:" + arg0.toString());

 }

 @Override
 public void keyReleased(KeyEvent arg0) {
 // TODO Auto-generated method stub
 System.out.println("RELEASED:" + arg0.toString());
 }

 @Override
 public void keyTyped(KeyEvent arg0) {
 // TODO Auto-generated method stub

 }
 };

 joy.addJoystickListener(model.joyListener);

 viewer.addKeyListener(model.keyListener);

 //Adding buttonListeners
 viewer.getUpBtn().addMouseListener(model.getUpMouseListener());
 viewer.getDownBtn().addMouseListener(model.getDownMouseListener());
 viewer.getLeftBtn().addMouseListener(model.getLeftMouseListener());
 viewer.getRightBtn().addMouseListener(model.getRightMouseListener());
 viewer.getStopAllBtn().addMouseListener(model.getStopAllMouseListener());

 }

References

87

 //Remove listeners
 public void removeListeners(final CamControlPanel viewer, final CamModel model){
 //Remove all listeners (free memory)
 viewer.getUpBtn().removeMouseListener(model.getUpMouseListener());
 viewer.getDownBtn().removeMouseListener(model.getDownMouseListener());
 viewer.getLeftBtn().removeMouseListener(model.getLeftMouseListener());
 viewer.getRightBtn().removeMouseListener(model.getRightMouseListener());
 viewer.getStopAllBtn().removeMouseListener(model.getStopAllMouseListener());
 }

 //Controller functions

 public void moveCam(CamModel model, CamModel.CameraDirection command, boolean
 enable){
 //Checking if new state: Not a pushed button ,
//FIXME if((!enable && command==CamModel.STOP_ALL) && !model.isLastCommandEnable() &&
 command==CamModel.STOP_ALL) return;

 //Updating model
 model.setLastCommand(command, enable);

 //Telling driver what to do
 switch (command) {
 case UP:
 if(enable) model.getCameraDriver().goUp();
 else model.getCameraDriver().stopUp();
 break;

 case DOWN:
 if(enable) model.getCameraDriver().goDown();
 else model.getCameraDriver().stopDown();
 break;

 case LEFT:
 if(enable) model.getCameraDriver().goLeft();
 else model.getCameraDriver().stopLeft();
 break;

 case RIGHT:
 if(enable) model.getCameraDriver().goRight();
 else model.getCameraDriver().stopRight();
 break;

 case STOP_ALL:
 model.getCameraDriver().stopAll();
 break;

 default:
 model.getCameraDriver().stopAll();
 break;
 }
 }

}

Source Code 5. The CamController class

References

88

CLIENT.CONTROLLER VehicleController.java

package client.controller;

import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.io.IOException;
import client.drivers.VehicleDriver.VehicleCommand;
import client.model.VehicleModel;
import client.view.panel.VehicleControlPanel;
import com.centralnexus.input.*;

public class VehicleController {

 private Joystick joy;

 public VehicleController(){
 //Register in the service registry in order to avoid multiple instances?

 try {
 joy = Joystick.createInstance();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }

 //Add listeners
 public void addListeners(final VehicleControlPanel viewer, final VehicleModel
 model){
 //Initializing buttonListeners
 model.fastFwdMouseListener = new MouseListener() {
 @Override
 public void mouseReleased(MouseEvent arg0) { moveVehicle(model,
 VehicleCommand.STOP); }
 @Override
 public void mousePressed(MouseEvent arg0) { moveVehicle(model,
 VehicleCommand.FFWD); }
 @Override
 public void mouseExited(MouseEvent arg0) {/* moveVehicle(model,
 VehicleCommand.STOP); */}
 @Override
 public void mouseEntered(MouseEvent arg0) {}
 @Override
 public void mouseClicked(MouseEvent arg0) {}
 };

 model.fwdMouseListener = new MouseListener() {
 @Override
 public void mouseReleased(MouseEvent arg0) { moveVehicle(model,
 VehicleCommand.STOP); }
 @Override
 public void mousePressed(MouseEvent arg0) { moveVehicle(model,
 VehicleCommand.FWD); }
 @Override
 public void mouseExited(MouseEvent arg0) {/* moveVehicle(model,
 VehicleCommand.STOP); */}

References

89

 @Override
 public void mouseEntered(MouseEvent arg0) {}
 @Override
 public void mouseClicked(MouseEvent arg0) {}
 };

 model.revMouseListener = new MouseListener() {
 @Override
 public void mouseReleased(MouseEvent arg0) { moveVehicle(model,
 VehicleCommand.STOP); }
 @Override
 public void mousePressed(MouseEvent arg0) { moveVehicle(model,
 VehicleCommand.REV); }
 @Override
 public void mouseExited(MouseEvent arg0) {/* moveVehicle(model,
 VehicleCommand.STOP); */}
 @Override
 public void mouseEntered(MouseEvent arg0) {}
 @Override
 public void mouseClicked(MouseEvent arg0) {}
 };

 model.fastRevMouseListener = new MouseListener() {
 @Override
 public void mouseReleased(MouseEvent arg0) { moveVehicle(model,
 VehicleCommand.STOP); }
 @Override
 public void mousePressed(MouseEvent arg0) { moveVehicle(model,
 VehicleCommand.RREV); }
 @Override
 public void mouseExited(MouseEvent arg0) {/* moveVehicle(model,
 VehicleCommand.STOP); */}
 @Override
 public void mouseEntered(MouseEvent arg0) {}
 @Override
 public void mouseClicked(MouseEvent arg0) {}
 };

 model.joyListener = new JoystickListener() {

 @Override
 public void joystickAxisChanged(Joystick arg0) {
 // TODO Auto-generated method stub
 /*System.out.println(arg0.toString());
 System.out.println(Double.toString(arg0.getY()));
 System.out.println(Double.toString(arg0.getZ()));
 System.out.println(Double.toString(arg0.getR()));*/
 double y = arg0.getY();

 if(y < -0.6) moveVehicle(model, VehicleCommand.FFWD);
 if(y < -0.3 && y >= -0.6) moveVehicle(model,
 VehicleCommand.FWD);
 if(y < 0.3 && y >= -0.3) moveVehicle(model,
 VehicleCommand.STOP);
 if(y < 0.6 && y >= 0.3) moveVehicle(model,
 VehicleCommand.REV);
 if(y >= 0.6) moveVehicle(model, VehicleCommand.RREV);
 }

 @Override
 public void joystickButtonChanged(Joystick arg0) {
 // TODO Auto-generated method stub
 }

 };

References

90

 joy.addJoystickListener(model.joyListener);

 //Adding buttonListeners
 viewer.getFastForwardBtn().addMouseListener(model.getFastFwdMouseListener());
 viewer.getForwardBtn().addMouseListener(model.getFwdMouseListener());
 viewer.getReverseBtn().addMouseListener(model.getRevMouseListener());
 viewer.getFastReverseBtn().addMouseListener(model.getFastRevMouseListener());
 }

 //Remove listeners
 public void removeListeners(final VehicleControlPanel viewer, final VehicleModel
 model){
 //Remove all listeners (free memory)
 viewer.getForwardBtn().removeMouseListener(model.getFwdMouseListener());
 viewer.getReverseBtn().removeMouseListener(model.getRevMouseListener());
 }

 //Controller functions
 private void moveVehicle(VehicleModel model, VehicleCommand command){
 model.getVehicleDriver().sendVehicleCommand(command);
 }

}

Source Code 6. The VehicleController class

References

91

CLIENT.MODEL CamModel.java

package client.model;

import java.awt.event.KeyListener;
import java.awt.event.MouseListener;

import client.ClientConstants;
import client.drivers.IPCamera.IPCameraDriver;

import com.centralnexus.input.*;

public class CamModel extends ModelPropertyChange {

 //Commands
 public static enum CameraDirection{ UP, DOWN, LEFT, RIGHT, STOP_ALL, UNKNOWN}

// public static final int UP = 1;
// public static final int DOWN = 2;
// public static final int LEFT = 3;
// public static final int RIGHT = 4;
// public static final int STOP_ALL = 5;

 //Variables
 private CameraDirection lastCommandDirection; //Used to prevent unnecessary
 network traffic
 private boolean lastCommandEnable; //Used to prevent unnecessary network traffic
 public MouseListener upMouseListener;
 public MouseListener downMouseListener;
 public MouseListener leftMouseListener;
 public MouseListener rightMouseListener;
 public MouseListener stopAllMouseListener;

 public JoystickListener joyListener;
 public KeyListener keyListener;
 private final IPCameraDriver cameraDriver;

 public CamModel(){
 super();
 lastCommandDirection = CameraDirection.UNKNOWN;
 cameraDriver = new IPCameraDriver(ClientConstants.CAMERA_ADDRESS,
 ClientConstants.CAMERA_USERNAME, ClientConstants.CAMERA_PASSWORD);

 }

 //Getters & Setters

 public void setLastCommand(CameraDirection command, boolean enable) {
 //Setting new status
 CameraDirection lastDir = this.lastCommandDirection;
 boolean lastMode = this.lastCommandEnable;
 this.lastCommandDirection = command;
 this.lastCommandEnable = lastMode;

 //Firing property change

 changeSupport.firePropertyChange(ClientConstants.CAMERA_CONTROLLER_MOVEMENT_SET_DIR,
 lastDir, lastCommandDirection);

 changeSupport.firePropertyChange(ClientConstants.CAMERA_CONTROLLER_MOVEMENT_SET_MOD,
 lastMode, lastCommandEnable);
 }

References

92

 public CameraDirection getLastCommandDirection() {
 return lastCommandDirection;
 }

 public boolean isLastCommandEnable() {
 return lastCommandEnable;
 }

 public MouseListener getUpMouseListener() {
 return upMouseListener;
 }

 public MouseListener getDownMouseListener() {
 return downMouseListener;
 }

 public MouseListener getLeftMouseListener() {
 return leftMouseListener;
 }

 public MouseListener getRightMouseListener() {
 return rightMouseListener;
 }

 public MouseListener getStopAllMouseListener() {
 return stopAllMouseListener;
 }

 public IPCameraDriver getCameraDriver() {
 return cameraDriver;
 }

}

Source Code 7. The CamModel class

References

93

CLIENT.MODEL VehicleModel.java

package client.model;

import com.centralnexus.input.*;

public class VehicleModel extends ModelPropertyChange {

 //Variables
 private int lastCommand;
 public MouseListener fastFwdMouseListener;
 public MouseListener fwdMouseListener;
 public MouseListener revMouseListener;
 public MouseListener fastRevMouseListener;

 public JoystickListener joyListener;

 private final VehicleDriver vehicleDriver;

 public VehicleModel(){
 super();
 lastCommand = -1;

 vehicleDriver = new VehicleDriver();
 }

 //Getters & Setters
 public void setMovement(int command, boolean enable){
 int oldLastCommand = lastCommand;
 lastCommand = command;
 System.out.println("MOVE: "+command+(enable?"on":"off"));
 //FIRE ON NETWORK

 changeSupport.firePropertyChange(ClientConstants.VEHICLE_CONTROLLER_COMMAND_
MODE, oldLastCommand, lastCommand);
 }

 public VehicleDriver getVehicleDriver() {
 return vehicleDriver;
 }

 public MouseListener getFwdMouseListener() {
 return fwdMouseListener;
 }

 public MouseListener getRevMouseListener() {
 return revMouseListener;
 }

 public MouseListener getFastFwdMouseListener() {
 return fastFwdMouseListener;
 }

 public MouseListener getFastRevMouseListener() {
 return fastRevMouseListener;
 }
}

Source Code 8. The VehicleModel class

94

References

95

E
E. Inspection Summary

References

96

References

97

F
F. Inspection Checklist

References

98

References

99

G
G. The DVD

The DVD includes:

• Appendix A plus a Map of Wind Farms in Europe.

• Data sheets of Joysticks from Genge & Thoma and OEM Inc.

• The whole java code of the Client – Inspection.

• Appendixes E and F, Inspection Summary and Checklist.

• Photos of Inspection TEST.

• A copy of the Master Thesis.

100

References

101

References

[1] P. Jain, Wind energy engineering, New York: McGraw-Hill, 2011.

[2] C. L. Archer and M. Z. Jacobson, “Evaluation of global wind power,” Journal of Geophysical
Research - Atmospheres, 2005.

[3] Breakbulk Staff, “Breakbulk,” 16 September 2011. [Online]. Available:
http://www.breakbulk.com/wind-renewables/japan-plans-floating-wind-power-plant. [Accessed
November 2011].

[4] “Wikipedia,” [Online]. Available: http://en.wikipedia.org/wiki/Floating_wind_turbine#Hywind.
[Accessed November 2011].

[5] I. f. E. T. (IFE), “Deep sea offshore wind turbine technology,” February 2011.

[6] “About Wind Power: NORWEA,” [Online]. Available: http://www.nyfornybar.no/. [Accessed 23
October 2011].

[7] European Wind Energy Association, “The European offshore wind industry key 2011 trends and
statistics,” EWEA, 2012.

[8] E. Norge, “Blowing in the wind,” vol. Final Report, December 2009.

[9] “Vind i Norgue og Europa,” [Online]. Available: http://www.vindkraft.no/Default.aspx?ID=148.
[Accessed 23 October 2011].

[10] I. f. E. T. (IFE), “Wind Energy,” January 2011.

[11] “Wind Turbine Technology for Offshore Locations,” [Online]. Available: http://www.wind-
energy-the-facts.org/en/part-i-technology/chapter-5-offshore/wind-turbine-technology-for-
offshore-locations/. [Accessed 25 October 2011].

[12] T. M. Karlsen, “Ekskursjon GE Hundhammerfjellet,” Trondheim, 2011.

[13] Heinrich A. Bieler, “Genge & Thoma,” GT Joystiks & Sensors, [Online]. Available:
http://www.gengethoma.com/en/Products/201.Joysticks. [Accessed 10 January 2012].

References

102

[14] “Wikipedia,” [Online]. Available: http://en.wikipedia.org/wiki/Joystick. [Accessed December

2011].

[15] T. Engdahl, “Epanorama,” 1994-2009. [Online]. Available:
http://www.epanorama.net/documents/joystick/intro.html. [Accessed January 2012].

[16] “OEM Controls Inc.,” 2006. [Online]. Available: http://www.oemcontrols.com/halleffect.html.
[Accessed January 2012].

[17] E. Berntsen, “Prestudy into the applicability of using a robotic arm in an O&M telepresence
system, operating inside a nacelle,” NTNU, Trondheim, 2012.

[18] C. Fan and B. Zhang, “Analysis on the dynamic image quaility of th TDICCD camera,” Optics
Photonics and Energy Enginneering, Wuhan, China, 2010.

[19] T. Watanabe, R. Suganuma and T. Kai, “Camera System for reducing the influence of vibration
generated by actuators,” Nikon Corporation, 2000.

[20] Student projects, “Suburface mobile augmented reality technology,” Smart Vidente, [Online].
Available: http://studierstube.icg.tugraz.at/outdoor/. [Accessed January 2012].

[21] “Toyota's Car Of the Future,” Designboom, December 2011. [Online]. Available:
http://www.buzzfeed.com/keenan/toyotas-car-of-the-future.

[22] G. Rhoten, “JXInput - Input Devices for Java,” 2000. [Online]. Available:
http://www.hardcode.de/jxinput/. [Accessed November 2011].

[23] AWEA, “American Wind Energy Association,” [Online]. Available:
http://www.awea.org/issues/supply_chain/Anatomy-of-a-Wind-Turbine.cfm. [Accessed
November 2011].

[24] T. Burton, N. Jenkins, D. Sharpe and E. Bossanyi, Wind Energy Handbook, UK: John Wiley & Sons,
2011.

[25] H. Stiesdal, “The Wind Turbine. Components and Operation,” Bonus Energy A/S, Brande, 1999.

[26] Advantech Co., “Advantech,” [Online]. Available: http://www.advantech.com/sector/power-
generation-distribution/CaseStudies.aspx?doc_id=%7BFC0B4C45-7467-4CE3-B00D-
A2AF48AF219. [Accessed November 2011].

[27] Avantech Co., Advantech, [Online]. Available: http://www.advantech.eu/sector/power-
energy/CaseStudies.aspx?doc_id=%7BDF8957E3-CB0A-407A-85B5-EBB3BEC23F3. [Accessed
December 2011].

References

103

[28] C. Schöntag, “Optimisation of Operatio and Maintenace of Offshore Wind Farms,” Institute for

Wind Energy, 1996.

[29] T. Petersen, “Offshore wind power - the operational aspects,” Vestas Danish Wind Technology,
Lem.

[30] G. v. Bussel, “The Development of an Expert System for the determination of Availability an
O&M Costs for Offshre Wind Farms,” European Wind Energy Conference, Nice, 1999.

[31] T. Knob, “Questionnaire response,” 2001.

[32] G. v. Bussel, “Reliability, availability and maintenance aspects of large-scale offshore wind farms,
a concept study,” Delft University of Technology, Marec, 2001.

[33] G. v. Bussel and C. Schöntag, “Operation and Maintenance Aspects of Large Offshore Wind
Farms,” EWEC, Dublin, 1998.

[34] H. Braam and L. Rademakers, “The influence of weather conditions on the strategies and costs
of operation and maintenance,” Offshore Wind Energy Conference, Brussels, 2001.

[35] R. E. Sheppard and F. J. W. C. Puskar, “Inspection Guidance for Offshore Wind Turbine Facilities,”
Offhore Technology Conference, Texas, 2010.

[36] Energo Engineering, Inc, “Inspection Methodologies for Offshre Wind Turbine Facilities,” Energo,
Houston, 2009.

[37] Ø. Netland, “Pre-Study on Cost-effective, Remote, Environmental Friendly O&M of Large Scale
Offshore Wind Turbine Plants,” NTNU, Trondheim, 2011.

[38] “Nacelle lighting and power system,” Moltec Windpower Products, 2009. [Online]. Available:
http://www.moltecwind.com/Products/NacelleLighting.html. [Accessed January 2012].

	Master Thesis Cover Page
	Master Thesis Content

