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The Rolling Acrobot with Curved Links, is an underactuated, two-link planar
robot. This study aims to discover a cyclic rolling motion of this robot, by actuation
of the joint between the two links, which are suitably shaped in a curved fashion.
This is not a trivial task, due to the underactuation of the Acrobot, and the fact that
seven mathematical models will be needed because the contact point with ground
changes during a cycle of the rolling motion. The motion in question consists of eight
phases, which means that one of the mathematical models is used twice.

The search process for �nding this rolling motion will be carried out as follows.
First, suitable models will be derived using the Euler-Lagrange method. Second,
the reduced system dynamics will be derived for each model. The purpose of the
reduced system dynamics, is to reduce the system to one degree of freedom, assum-
ing that a certain path is enforced by some control law. When this is done, the
search for a closed trajectory of the rolling motion can begin. This is done by cre-
ating Bezier curves for each phase, which serves as virtual holonomic constraints on
the system, and these curves should form a connected path in con�guration space.
Update laws must be provided for jumps between phases, because the meaning of
the free variable will change when transitioning between certain models. Finally, an
optimization routine searches for the locally optimal Bezier curves with respect to
boundary conditions in con�guration space and the required closed-property of the
path. Moreover, the curve most be closed in state space, which means that interpo-
lation conditions on the velocities are to be accounted for. The cost function for the
search will demand that the values of the state variables at the end of the motion
are equal to their initial values. If one such a trajectory is found, the cost function
will be adapted to search for energy e�cient trajectories, by including the resulting
actuation force.
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Chapter 1

Introduction

1.1 Motivation

The concept of a robot is well known for most people. It has in�uenced pop culture
as well as mythology and philosophers through out history. The popular science-
�ction franchises Star Wars and Star Trek both have humaniod robots. In 1950 the
blueprints of a robot drawn by Leonardo DaVinci in the renaissance period were
discovered. Ancient greek engineers created animal-like mechanical robots driven
by air pressure. Jewish and Norse legends tells of clay golems and clay giants, and
according to greek mythology a giant man made of bronze protected a cretian island
from pirates. Humans are clearly fascinated by automated mechanical creations,
even though the term �robot� was �rst introduced in 1920.

The �eld of robot locomotion considers the problem of automated physical move-
ment of a mechanical system. Although our imagination is the only limit for accom-
plishing this problem, there are two approaches which dominates. These are legged
locomotion and wheeled locomotion. Legged locomotion is what most people think
of when the term robot is mentioned. It consists of a mechanical system with two legs
which in some way emulates the walking motion of an animal or a human. Legged
locomotion is not an easy task to undertake for any system. Several approaches and
lots of theory exists, but due to the complex nature of this movement, there a many
drawbacks. The energy cost of creating a humanoid walking robot is relatively high
compared to a wheeled robot. This is because a lot of energy is neeeded to balance
the robot as well as the loss of energy due to impacts between the leg and ground.
There are also several stability issues. Imagine the sequenze of leg movement of a
human being losing its balance. The complexity of this task takes years for a human
to master, and still we fall down from time to time. One does not need to know
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CHAPTER 1. INTRODUCTION 7

much about robotics to understand the di�culty of designing such a system.
Wheeled locomotion is a more stable approach of locomotion. Automated cars

and wheeled robots are more energy e�cient than walking robots. A car is basically
stable all the time (when in the upright position), and the only energy needed for
locomotion is the energy used to rotate the wheels. The drawbacks of wheeled
locomotion is that it requires a relatively smooth terrain for moving. It would be
highly unpractical to design a wheeled robot to climb a stairway or jump across a
chasm. These are tasks that are more suitable for a legged lomotion robot.

Because of the pros and cons of both paradigms, it is favourable to combine the
advantages of both wheeled- and legged locomotion. The idea behind such a hybrid
system, is to harvest the best features of both the legged robot and the wheeled
robot. Imagine a two-legged robot with wheels, like a human on rollerskates. The
robot could then drive around energy e�ciently on any smooth surface, and then step
over any obstacle. This would result in a robot which utilizes the energy e�ciency
of the wheeled robot, as well as the versatility of the legged robot, which obviously
would be advantageous.

The rollerskate-robot is just an example of a hybrid locomotion robot. This
study will consider the Acrobot with Curved Links which has a di�erent approach
to achieving locomotion, but still utilizes the advantages of both wheeled and legged
robots.

1.2 How this report is organized

The report is organized into the following chapters.
Chapter 1 is the introduction, which provides some motivation for this study.
Chapter 2 is the Problem Formulation. This chapter will give a brief introduction

to the �eld of robot locomotion. It will describe the approaches of legged locomotion,
wheeled locomotion and hybrid locomotion. There will be stated some equations
of a technical nature, but by disregarding this, the reader should still be able to
understand the text without prior knowledge of the subject.

Chapter 3 is the Literature Review. This chapter presents literature that relates
to the Acrobot with Curved Links. There is currently little knowledge of this speci�c
robot, and therefore the main part of this chapter will be concered with mathematical
techniques and methods which will be used through out this study. There will be brief
summaries of the papers or books in question, followed by a subjective evaluation.
This evaluation will clearly state which aspect of these texts that are advantagous
or disadvantagous to this study.
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Chapter 4 is the Task Formulation. This chapter will present the task at hand
in context of the Literature Review. This presentation will be detailed, and will
incorporate scienti�c hypothesis and assumptions.

Chapter 5 is the Solution of Task. This is the main chapter of this report and will
describe technically how the task at hand was solved. This chapter will also include
theoretical sections which eplains in detail the methods used in the task solution. The
nature of the task demands several simulation studies, and these simulation studies
will be well documented and reviewed. This chapter demands that the reader has a
theoretical background in the �elds of control theory and mathematical modeling.

Chapter 6 is the Main Result and Conclusion. This chapter gives the main results
of Chapter 5, and provides a conclusion as to whether the results are useful.

Finally, Chapter 7 gives a summary of the study.

The MATLAB �les, Maple �les and other �les which have been used for calcula-
tions and design of this report, can be aquired electronically by sending an email
request to delern_@hotmail.com.



Chapter 2

Problem Formulation

2.1 De�nitions

This chapter explains in detail the di�erent paradigms of locomotion robots. Some
abbreviations and concepts may be unfamiliar to the reader, and are stated in this
section for easy referrence. These concepts will not be explained in a mathematical
manner, but instead gives a brief explaination which should be su�cient to under-
stand the purpose of this section.

• ZMP (Zero Moment Point) is a design architecture for robot locomotion. It
is based on a strict stability criterion that the walking robot is stable at all
times. When such a robot moves forward, the center of mass of the robot
always moves in a straight line parallell to the ground.

• COT (Cost of transport) is a measure of energy consumption. It is de�ned as
the energy consumed to move a unit weight a unit distance.

2.2 Legged Locomotion

Legged locomotion is the art of phsyical movements on legs. This may be on two
legs, four legs or any other amount of legs. There exists several robots which utilizes
this approach of locomotion, and some of them are illustrated in (Figur av roboter).
There are several ways of designing such robots, and the di�erent approaches have
advantages as well as disadvantages. The approaches discussed in this study, will all
be based on the di�erential equation stated in Equation 2.1. This equation describes
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CHAPTER 2. PROBLEM FORMULATION 10

the dynamics of the robot, and is called the Equation of Motion (EOM).

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (2.1)

The legged locomotion robots considered in this study, are generally underac-
tuated. This means that there are more degrees of freedom (DOF) than there are
actuated joints. This makes control design hard, and to cope with this problem
many di�erent control strategies or architectures have been developed. These strate-
gies have advantages and disadvantages, which will be discussed in this section.

When desinging legged locomotion robots, the two main aspects to consider are
the versatility of the robot and its energy e�ciency. High versatility of a robot often
comes at the expense of high energy costs. One technique that is widely used for
legged robots, are the Zero Moment Point technique (ZMP). The idea behind the
ZMP approach, is that the robot should be stable at any point of the motion. As
a ZMP robot moves forward, its center of mass moves along a straight line which is
parallell to the ground. A lot of energy is consumed for this criterion to be satis�ed,
which gives the robot great versatility at the expense of a high energy cost. Honda's
ASIMO robot is one of the most famous bipedal walking robots and it is designed
using ZMP. ASIMO can walk, run, kick a ball and even play the �ddle. Although
this is impressive, the energy cost of ASIMO's walking gait is estimated to be about
ten times more expensive than that of a human, in terms of energy. The COT of
ASIMO is estimated to be 3.2, and the COT of a human is 0.3.

Dynamic walking is another bipedal design architecture which is based on the
passive dynamics of the legs, and produces cyclic gaits for walking instead of the
position control employed in ZMP. The dynamical walker are more energy e�cient
than the ZMP robots, because it exploits the passive dynamics of the system. This
is achieved by allowing the stance leg to behave as an inverted pendulum. The only
substantial energy loss in dynamic walking, is due to the legs impact with ground.
The walking gait of a dynamic walker alternates between to phases. These are the
single support phase and the double support phase. In the single support phase, only
one leg (the stance leg) is in contact with ground, and in the double support phase
both feet are in contact with ground. One complete cycle of a walking gait will result
in four phases. This is because the robots needs to make to steps to return to the
initial position. An important di�erence between dynamic walkers and ZMP robots,
is that while the ZMP robots should be stable at all instances of the walking gait,
the dynamic walkers only demands orbital stability. Orbital stability means that the
although the robot may be unstable at some points in the walking cycle, the cycle
in itself should be stable. This is advantageous in terms of energy. The ZMP robot
would use energy at every time instant to steer the gait to its preferred path. This
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is in contrast to the dynamic walker, which may deviate from its preferred path as
long as the sequence of paths is stable. With other words, the ZMP robot must be
locally stable at all times, and the dynamic walker may be unstable at times as long
as the motion in itself is stable. It is intuitively clear that this stability criteria is less
conservative than the ZMP stability criteria, and therfore also more energy e�cient.

Although the dynamic walker is superior to the ZMP robot in terms of energy,
ZMP is still far superior in terms of versatility. The ZMP robot may stop at any
point in its walking cycle because it is guaranteed that it always remains stable. The
dynamic walker however would certainly fall if it were to stop, because it is only
guaranteed to be stable when moving. It is also susceptible to noise. It proves to be
di�cult for dynamic walker to handle slopes and inclined �oors.

A humanoid robot should be able to handle multiple situations. At present, the
dynamic walker is only capable of achieving stability when it is walking or running,
which is not su�cient in situations were a robot is needed. At a higher energy cost,
the ZMP robots are still the only robots which may conduct useful tasks.

2.3 Wheeled Locomotion

The advantages of wheeled locomotion are many. To date, it is the most energy
e�cient mode of transportation. The only energy loss is due to friction forces and
air resistance, and the stability issues are trivial compared to leg locomotion. The
versatility of a wheeled robot is also good. Steep slopes and rough terrain can
easily be overcome by cars or military vehicles. A wheeled robot is easy to construct
compared to legged robots. Basically, all it needs are a motor and a set of wheels. Due
to these factors, the wheeled robot is preferrable in almost all practical situations.

But there are clearly landscapes that can not be tranversed with a purely wheeled
locomotion robot. For example jumping over a chasm or climbing a set of stairs1. In
these cases a legged robot is a more practical solution.

2.4 Combined Locomotion

The advantages and disadvantages of the di�erent locomotion strategies are listed in
table (tabell med fordeler ulemper wheeled legged) .

1Of course any wheeled vehicle can climb a set of stairs if its wheels are big enough, and its
motor is powerful. But you would not want that in your living room.
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Strategy Advantages Disadvantages

ZMP
High versatility.
Always stable.

Low energy e�ciency.

Dynamic
walking

High energy
e�ciency. Exploits
the passive dynamics

of the system.

Low versatility. Only
stable while

performing a gait.
Di�cult to design.

Wheeled
locomotion

High versatility. High
energy e�ciency.
Easy to design.

Stability is trivial.

Impossible to use in
certain situations.

Table 2.1: Pros and cons of the di�erent locomotion strategies.

The ideal locomotion robot would combine the advantages of the di�erent strate-
gies while at same time avoiding the disadvantages. The Acrobot with Curved Links
is an example of a robot which utilizes the legged motion as well as the rolling mo-
tion of the wheel. It is comprised of two links which are joined together at the end.
This point forms a joint which in turn is actuated by a motor. The endpieces and
sidepieces of are formed as circle sections, and the two links are identical in shape.
Being constructed in this manner, the Acrobot is able to achieve a rolling motion on
its side and end, and the legged locomotion may be achieved by actuating the joint
motor.

The Acrobot also utilizes the passive dynamics of the dynamic walker. Suppose
that the motor has locked the Acrobot in a certain position. Then, the gravitational
force will act on the system and make it roll. Because of the geometric shape of
the Acrobot, it is intuitively plausible that it can start a motion from the resting
position. The resting position means that the Acrobot is folded and lying on its side.
If this is possible, the versatility would greatly increase. The dynamic walker would
not be able to �get up� easily if it was lying on the ground.

Designing a locomotion gait for the Acrobot will be harder than the trivial gait
design of the wheeled robot. It is also assumed that the energy cost will be slightly
higher, since the energy cost of the wheeled robot is only due to friction and air re-
sistance. Still, by utilizing the passive dynamics and the rolling motion, the Acrobot
may be able to achieve acceptably low energy costs. In addition, if the utlilization
of the legged motion is possible, the Acrobot may be able to overcome obstacles
that the wheeled robot may not. The Acrobot should thus incorporate the following
properties:
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• Relatively low energy cost.

• High versatility.

• Have the ability to start from a resting position.

• Overcome obstacles that the wheeled robot may not.

These points constitute the ideal realization of the Acrobot with Curved Links. Re-
alizing such a robot completely is a very large and time-consuming task and therefore
this study will focus mainly on designing a stable locomotion gait which is a hybrid
of legged locomotion and wheeled locomotion. Realization of such a gait may gain
favourable insight in the dynamics of the Acrobot, and also motivate other parties
to investigate it further.



Chapter 3

Literature Review and Terminology

This chapter will present literature that is relevant to completing the task at hand.
At present time, there exists little written work directly related to the Acrobot with
Curved Links. There is one paper which illustrates how a rolling motion with impact
is realized. This particular paper however, utilizes a control scheme based on the
analysis of energy and feedback control. This is a fundamentally di�erent approach
than what is carried out in this study, and thus its relevance is due to the modelling
of the Acrobot. The main part of this chapter will consider literature regarding the
mathematical techniques of designing virtual constraints and the reduced system
dynamics. Some terminology will also be explained.

3.1 Terminology

Con�guration Space The con�guration of a robot, is a complete speci�cation
of the location of its every point. The set of all such con�gurations is called the
con�guration space.

Bezier curves The Bezier curve is basically a polynomial function, and have been
chosen for the virtual constraint functions structure in this study. The curves are
designed by de�ning certain control points. These control points form a convex hull,
in which the curve is entirely contained. In Figure 3.1, this concept is illustrated.
The control points P0 to P3 forms an area in which the curve is completely contained.
Another important feature of the Bezier curve, is that the start- and endpoint of the
curve is speci�ed by P0 and P3 respectively.

14
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Figure 3.1: Third order Bezier curve.

The formal de�nition of a Bezier curve is stated below.

B(t) =
n∑
i=0

(
n
i

)
(1− t)n−itiPi , t ∈ [0, 1]

where Pi are the control points and n is the order of the polynomial.

Phase In this study, the term phase will be used to refer to a speci�c part of the
cycle of a speci�c motion. Figure 3.2 illustrates the eight phases of the rolling motion
without impact.
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Figure 3.2: The phases and corresponding models of the rolling motion without
impact that is proposed in this study.

3.2 Continous Rolling Motion Control of the Ac-

robot

The paper [11] aims to control the Acrobot with Curved Links by analysing the
energy of the system during a rolling motion with impact. Sampei divides the motion
into three phases; the upward phase, the downward phase and the impact phase. By
intuitively reasoning what the objective of each phase should be, feedback controllers
are designed using output zeroing and LQR.

To achive the desired rolling motion, Sampei proposes �ve distinct continous
models and one discreet model which describes the impact with ground. The �ve
continous models are needed because the contact point with ground changes during
the motion. The continous models have four degrees of freedom (4DOF); the absolute
angle of Link1 with respect to ground, the relative angle of Link2 with respect to
Link1 and the x and y-coordinates of the Acrobot. The system are reduced to 2DOF
by imposing virtual constraints on the system such that the Acrobot is always in
contact with ground, and that there are strong enough friction between ground and
the Acrobot to avoid slipping. These models are derived using the Euler-Lagrange
method. The rolling motion with impact was realized by numerical simulation.
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Relevance to this study The control scheme of [11] is fundamentally di�erent
from the approach in this study. The relevance to this paper is due to the modelling
process. The rolling motion with impact which is realized in [11], demands �ve
distinct continous mathematical models and one discreet model of the impact. This
study will focus on the rolling motion without impact which is realized by using seven
distinct models, where �ve of these are the �ve continous models proposed by [11].
The physical properties of the Acrobot with Curved Links are the same as those in
[11]. This is because the Acrobot in[11] is based on a physical prototype, and if this
study should produce interesting results, these may be tested on the prototype.

The result of the numerical simulation study of [11] is interesting because the
realized motion is a combination of the impact with ground and passive rolling mo-
tion. This makes the motion a hybrid of legged locomotion and wheeled locomotion.
The drawback is that energy is lost in the impact phase. By realizing such a motion
without impact, this potential energy loss may be avoided. Of course, the rolling
motion without impact may possibly consume more energy than the rolling motion
with impact, but without the impact one source of guaranteed energy dissipation is
removed.

3.3 Fundamentals of Robot Modeling and Control

The book [8] explains the fundamentals of the modeling and control of robots, and
speci�cally of robot arms. In this study, only the modeling part will be of interest.

The problem of forward kinematics, is to determine the position and orientation
of the end e�ector given the values for the joint variables of the robot. To achieve
this, one needs to attach coordinate frames to each link and de�ne homogeneous
transformation matrices which relates the coordinate frames. In [8] this is done by
using a standard convention called the Denavit-Hartenberg Convention.

When the kinematics of the system have been established, one needs to derive
the kinetic and potential energy of the system. These expression will be used to form
the Lagrangian, which is de�ned as:

L = K − P (3.1)

where L is the Lagrangian of the system, andK and P is the kinetic- and potential
energy, respectively. Finally, the Lagrangian is used in the Euler-Lagrange equation
to derive the equations of motion.

d

dt

∂L

∂q̇k
− ∂L

∂qk
= τk (3.2)
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where L is the Lagrangian of the system, q is the state vector and τk is the
generalized force associated with qk.

The homogenous transformation matrix, is a matrix representation of translational-
and rotational motion for a rigid object. The de�nitions given here, is according to
[8].

Hk
m =

[
Rk
m dk

0 1

]
, R ∈ SO(3), d ∈ R3 (3.3)

Hk
m relates coordinate frame m to coordinate frame k. A point p given in frame m,

is denoted pm.The same point p given in frame k, is denoted pk. The homogenous
transformation matrix relates pmand pk as follows:[

pk

1

]
= Hk

m

[
pm

1

]
(3.4)

Relevance to this study This book is mainly concerned with the modeling and
control of robot arms. Still, the basic theory of forward kinematics may be utilized
for the Acrobot. The book strongly emphasizes the use of the Denavit-Hartenberg
convention for deriving the forward kinematics. This convention is useful if the
system to be modeled has the structure of a three dimensional robot arm. The
Acrobot model is planar (two dimensional) and is comprised of only two links. This
makes the modeling of the forward kinematics easy, and no such modeling convention
is neccessary.

The derivation of the kinetic and potential energy is based on the forward kine-
matics. The forward kinematics gives the cartesian coordinates of the center of mass
of both links. Then, due to the geometric shape of the Acrobot, it is trivial to derive
the kinetic and potential energy functions. Finally, the Lagrangian can be formed
and the equations of motion may be derived using the Euler-Lagrange equation of
Equation 3.2.

Although the Acrobot consists of only two links, the kinematic equations are
still complex. This is because the Acrobot is not rigidly suspended to the ground.
Therefore, the calculations of the forward kinematics and the equations of motion
was done using the symbolic computational tool, Maple. Using a such a tool is
time-saving and avoids human errors.
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3.4 Bipedal Legged Locomotion

The book [3] attempts to collect all individual publications about design and control
of bipedal legged locomotion in one self-contained text. Bipedal legged locomotion is
a subclass of legged locomotion, which is restricted to walking robots with two legs.

The book explains in detail the steps of designing and controling a bipedal robot.
It also contains extensive theoretical sections and appendices which formally states
mathematical proofs and concepts. The Acrobot with Curved Links is not a bipedal
walking robot in the sense according to [3], which means that an extensive review
of this book is not necessary for the completion of the task in this study. Instead,
the mathematical concepts which are relevant will be thoroughly explored in the
following.

Relevance to this study The relevance of [3] is quite extensive, and therefore
this paragraph will be divided into subsections, for easy referrence and readability.

3.4.1 Autonomous Systems with Impulse E�ects

According to [3] the autonomous system with impulse e�ects consists of three things.

1. An autonomous ordinary di�erential equation of the form ẋ(t) = f(x(t)).

2. A hyper surface S at which solutions of the di�erential equation undergo a
discrete transition that is modeled as an instantaneous reinitialization of the
di�erential equation.

3. A rule 4 : S → X that speci�es the new initial condition as a function of the
point at which the solution impacts S.

Such a system is denoted by

Σ :

{
ẋ(t) = f(x(t))

x+(t) = 4(x−(t))

x−(t) /∈ S
x−(t) ∈ S

(3.5)

where S is called the impact surface or switching surface and4 is the impact map.
It can be seen from Equation 3.5, that the system behaves according to di�erential
equation while the state vector is not on the switching surface. Otherwise, when the
state vector lies on the switching surface, the state vector is instantaneously mapped
to the new point x+(t) by the impact map. This mapping will be referred to as a
switch.
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One of the key aspects of the rolling motion without impact, is the fact that it
contains no impacts with ground. The �impacts� in the context of the Acrobot is
therefore simply a change of coordinates and equation of motion. In light of this
fact, such a strict de�nition as Equation 3.5 may seem redundant, but this is not the
case. The reason for this will be explained thoroughly in Chapter 5, but for now it
su�ce to say that the meaning of the state variables vary from model to model.

The notation x+ and x− are used to denote the values of the state vector just
after- and just before the switch, respectively.

3.4.2 Virtual Constraints and The Reduced System Dynamics

The notion of virtual constraints are essential to the completion of the task in this
study. Before stating the de�nition of the virtual constraint, the concept of an
underactuated system will explained. This will establish the usefulness and power of
imposing such constraints on the system.

An underactuated system, is a system with a lower number of actuators than
degrees of freedom. The control design process for such a system, is considered
non-trivial. This will be illustrated by the following example. The standard robot
equation (Equation 2.1) is restated here for convenience.

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (3.6)

Assume that M(q), C(q, q̇) ∈ R2x2 and q, τ, G(q) ∈ R2x1. Assume further that

τ =
[
u 0

]T
. Now, Equation 3.6 may be written in the following form

f1(q, q̇, q̈) = u
f2(q, q̇, q̈) = 0

(3.7)

Clearly, the function f1 may be controlled by the external input u, but the other
function, f2, may not be controlled directly, and thus the system is underactuated.
However, underactuated system are not impossible to control, but they require more
sophisticated approaches for control than fully actuated systems. One such approach
is to impose a set of virtual constraints on the system.

Imagine that a controller was somehow able to make the following equation in-
variant.

q1 = ϕ(q2) (3.8)

Equation 3.8 is an example of a virtual constraint. The constraint is virtual

because it does not arise from any kind of phsyical connection between q1and q2.
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It is merely imposed on the system by some arbitrary control law. By deriving the
�rst- and second order time derivative of Equation 3.8, we get

q̇1 = ϕ′(q2)q̇2
q̈1 = ϕ′′(q2)q̇

2
2 + ϕ′(q2)q̈2

(3.9)

Now, q1 and its �rst- and second order time derivative may be expressed solely
as functions of ϕ, q2, q̇2 and q̈2. By inserting this result into Equation 3.7, we get

f3(q2, q̇2, q̈2, ϕ) = u
f4(q2, q̇2, q̈2, ϕ) = 0

(3.10)

We now see that the robot equation is only dependent on q2 and its �rst- and second
order time derivative, and q1 has vanished. If u is chosen to be u = f3, Equation
3.10 is reduced to the following system

f4(q2, q̇2, q̈2, ϕ) = 0 (3.11)

Equation 3.11 can be written on the following form

α(s)s̈+ β(s)ṡ2 + γ(s) = 0 (3.12)

where, this speci�c case, s = q1. Equation 3.12 is known as the Reduced Dynamics

Equation.

The virtual constraint, ϕ, can now be arbitrarily chosen. Since u = f3, the ac-
tuated equation of Equation 3.10 will also be trivial. The virtual constraint may
be viewed as a path in the con�guration space of the system. Then, if the desired
path is known, one simply choses a constraint function ϕ which realizes this path.
In other systems, the ideal path may not be known, due to the complexity of the
motion. In fact, the desired motion might not even be possible.

When choosing virtual constraints there are several things to consider. Consider
the function y = ϕ(x).

1. The constraint function ϕ must be chosen such that each value of x corresponds
to exactly one value of y.

2. Because of Equation 3.9, it is necessary that dϕ
dx
and d2ϕ

dx2
exists.

If the conditions above are satis�ed, the structure of ϕ may be chosen. Popular
choices are polynomial functions, trigonometric functions and Bezier functions. In
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this study, the Bezier functions (or Bezier curves) has been chosen as the structure
for the virtual constraints.

Finding the right choice of virtual constraint can be a trivial matter, but may
also prove to be a challenge. The latter is the case for the Acrobot. The rolling
motion without impact which is the desired motion of this study, is highly complex.
It is not easy to intuitively �guess� how to design the virtual constraints. In other
words, it is hard to guess how the path in con�guration space should look like.

3.5 Fundamentals of Numerical Optimization

The book [5] covers theory and methods for solving optimization problems. It intro-
duces the reader to notion of unconstrained and constrained optimization problems,
and e�ective algorithms for solving these problems numerically. These problems are
often formulated as a minimization problem. For example, the problem of minimiz-
ing the function f(x) = x2 has a solution where the input variable x = 0. This is an
unconstrained optimization problem. By adding the constraint x ≥ 1, the problem
becomes a constrained optimization problem, with solution x = 1.

Relevance to this study The optimization algorithm in this study is a built-in
function in MATLAB. This function is called �fmincon�, and is an algorithm for
solving non-linear optimization problems based on the line search algorithm1. The
line search strategy chooses a direction pk and searches along this direction for a new
and lower function value. How far the algorithm travels along pk for each iteration,
varies for each algorithm.

The optimization problem in this study, is de�ned as a constrained optimization
problem. The mathematical formulation of such problems, will be lent from [5], and
is stated below

min f(x)
x ∈ Rn subject to

{
ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

(3.13)

where

• x is the vector of variables, also called unknowns or parameters.

• f(x) is the objective function. This is the function to be minimized.

1In fact, fmincon may use several di�erent algorithms, but line search is used in this study.
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• ci(x) are constraint functions. These functions de�nes certain equalities or
inequalities that the vector x must satisfy for the solution to be valid.

• I and E are sets of indices.

It should be mentioned that the objective function is often called the cost function in
optimization literature. In this study, there will be a distinction between these terms.
The objective function is the function that does the actual numerical simulation of
the Acrobot. The cost function is contained inside the objective function, and is
concerned with measuring how good the current solution of the objective function
is. By making this distinction, it should be easy to change the cost function while
the objective function remains unchanged.

3.6 The Graphical Simulator

The Graphical Simulator is a stand-alone program written in Microsoft Visual Stu-
dios C#. The purpose of this program, was to aid the modelling- and simulation
process.

The Graphical Simulator takes values of θ1 and θ2 as input2, and generates a
graphical picture of the Acrobot for this speci�c con�guration. This is done in the
code by calculating the position of the geometric center of Link1 and Link2. The
calculation is based on the results from the modelling process. The mathematical
formulas obtained for the position vectors of these geometric centers proved to be
complex. Therefore, by using the Graphical Simulator, the formulas could be thor-
oughly checked.

The Graphical Simulator also has an animation feature which can be used to visu-
alize numerical simulations of the Acrobot. When a Matlab simulation of the system
is completed, the resulting vectors for θ1 and θ2 are stored in text �les which are
read by the Graphical Simulator. The Graphical Simulator then shows an animation
of the simulated motion. The animation may be stopped at any point, and the user
can single-step through any part of the simulation. The step size can be speci�ed
manually. These features proved to be useful in debugging the Matlab simulation-
script, and served as valuable feedback during the tuning of control parameters and
choice of initial conditions.

Finally, it should be noted that the there exists several bugs in the code of the
Graphical Simulator. As stated before in this section, the purpose of this program

2In this study, θ1 and θ2 are used to denote the con�guration space of the Acrobot.
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was to aid the modeling- and simulation process, and not to be a user-friendly pro-
gram. Therefore, if the bugs were easily avoided, they were not �xed.

Figure 3.3 shows a screenshot of the Graphical Simulator.

Figure 3.3: Screenshot of the Graphical Simulator.



Chapter 4

Task Formulation

This chapter o�ers a detailed description of the task at hand. The problem will be
described in light of the de�nitions and concepts of the previous sections. Detailed
mathematical derivations, however, is the topic of Chapter 5.

4.1 Modeling the System with Impulse E�ects

The realization of the rolling motion without impact is the goal of this task. To
achieve this goal, a hybrid system with impulse e�ects will be designed. This hybrid
system will consist of seven di�erent mathematical models. One complete cycle of
this motion, will require eight phases and one model is assigned to each phase.

These models will be 4DOF, and then reduced to 2DOF by imposing two con-
straints. These constraints will be:

1. There is assumed that the friction at the contact point with ground is strong
enough to prevent slipping.

2. The Acrobot should be in contact with ground at all times (no jumping).

The state vector of these 2DOF models will be denoted θ(t) = [θ1(t) θ̇1(t) θ2(t) θ̇2(t)]
T ,

where

1. θ1(t) denotes the absolute angle of Link-1 relative to ground.

2. θ2(t) denotes the relative angle between Link-1 and Link-2.

3. θ̇1(t) and θ̇2(t) denotes the time derivative of θ1(t) and θ2(t), respectively.

25
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After this reduction process, the equations of motion for the models will be de-
rived using the Euler-Lagrange method. Furthermore, the reduced dynamic system
is derived for each model, by imposing a generic virtual constraint function ϕ(s).
Depending on the models con�guration space, s will be used as either θ1(t) ord θ2(t).

After the models have been derived, their respective con�gurations spaces will be
deduced. Each individual con�guration space will be stated with clear boundaries.
These boundaries will de�ne the valid con�guration space of each model. The term
valid con�guration space will be used to describe the part of the con�guration space
which is allowed. For example, the models does not take into account con�gurations
where the link which is not in contact with the ground, goes through the ground.
According to the model-equations, this is a perfectly legal con�guration. Therefore,
to remove these obviously faulty con�gurations, the term valid con�guration has
been introduced.

When the valid con�guration spaces have been established, the impact surfaces
and impact maps will be designed. For the Acrobot, the impact surfaces will be one
of the boundary lines of the valid con�gurations space. The impact maps will mostly
be trivial, but some will not. However, there will be no loss of energy at any of these
switches. The impact maps will only change the meaning of the coordinates.

4.2 Searching for Paths

When the system with impulse e�ects is ready, a search for paths that realizes the
rolling motion without impact can begin. The search will be constructed in the
following manner. First, there will be installed simple PD-controllers on some of the
model's EOM. Furthermore, these controllers will be tuned manually according to
feedback from the Graphical Simulator, to �nd a path that is close to the rolling
motion without impact. When such a path is found, it is divided into eight pieces,
according to each phase. Then, a Bezier curve will be �tted to each of the path-
curves of the phases. These Bezier curves will in turn be used as virtual constraints
in each phase, and serve as an initial guess for a search routine.

The search routine mentioned above, will be based on a non-linear optimiza-
tion function that utilizes the line-search algorithm. The objective function will be
based on numerical simulation of the Reduced Dynamics Systems, and the vector of
parameters, x, will be composed of the following.

1. The control points of the eight di�erent Bezier curves (virtual constraints).

2. The initial condition ṡb of Phase-2.
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3. A vector containing the values of s at the end of each phase.

The objective function will be bounded by upper- and lower bounds of the control
points. These bounds will serve as constraint functions, ci(x). The objective function
will ensure that any solution is kept within the bounds of the con�guration space.

The search for paths of the rolling motion without impact is no trivial matter.
There is no way of knowing what the results of such a search will be, and therefore
there will be a lot of experimenting with the objective function, cost function and
parameters of the search routine.



Chapter 5

Main Part

This is the main chapter of this study. The previous chapter gave a step-by-step
presentation of the task in context of the literature and concepts which is related
to the Acrobot with Curved Links. This chapter explains these steps in detail, and
shows and discusses the di�erent simulation studies which are carried out.

The �rst part of this chapter will introduce som terminology that has been created
by the author for the purpose of this study. This terminology is speci�c to the
Acrobot with Curved Links.

5.1 Speci�c Terminology related to the Task

The Acrobot or The Acrobot with Curved Links The terms Acrobot or
Acrobot with Curved Links will be used interchangeably, and will refer to The Acrobot
with Curved Links.

RMWOI (Rolling Motion WihtOut Impact) RMWOI is an abbreviation of
Rolling Motion WithOut Impact. This refers to the speci�c motion with will be the
subject of this chapter, and not some arbitrary rolling motion without impact. Also,
if the term rolling motion is used, it is assumed to be the RMWOI unless stated
otherwise.

Link-1 and Link-2 The terms Link-1 and Link-2 will be used to refer to the
speci�c links of the Acrobot.

Model-N and Phase-M The models and phases have been given names. The
models names are Model-1, Model-2 and up to Model-7. The names of the phases

28
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are Phase-1, Phase-2 and up to Phase-8. The name of the phases are chronological
in the sense of their names, meaning that Phase-(M-1) always preceedes Phase-M in
the RMWOI. This is not the case for the models. The names of the models have no
connection with the phase-names.

The Acrobot model or The complete Acrobot model Both these terms will
refer to the complete Acrobot model, and this term refers to the collection of all the
seven models.

Active model The term active model refers to the speci�c model of the com-
plete acrobot model which is currently active. For example, during Phase-7 of the
RMWOI, Model-3 is the active model.

Endpice, Sidepiece and Joint-endpiece The term sidepiece is used to describe
any of the two sidepieces of each link. The term endpiece is used to describe the
endpiece of each link which is not at the joint. The term joint-endpiece is used
to specify the endpiece at the joint of the two links. The text will also discrimate
between the left- and right sidepieces. The left- and right sidepieces of a link are
de�ned as follows. Start at the endpiece, and move towards the joint-endpiece. Then
the left sidepiece will be to your left, and the right sidepiece to your right.

CORM (Center Of Rolling Motion) Any motion of the RMWOI may be
viewed as piecewise rolling motions. For example, when the Acrobot is lying on
one of its sidepieces, the center of its rolling motion will be located at the center of
the circle formed by the circle section of the sidepiece. The same reasoning holds for
when the endpiece is in contact with ground.

COM (Center Of Mass) and GC (Geometric Center) The terms center of
mass and geometric center should be well known. They are mentioned here, because
in context of the Acrobot there is a vital di�erence between them. Since the links
of the Acrobot are geometrically identical, their GC are identical. Their physical
properties however, are not the same, and therefore neither are their COM.
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5.2 Deriving the Model

5.2.1 Introduction

The Rolling Acrobot with Curved Links, is an underactuated robot composed of two
links which are joined togheter at one of the endpoints of both links (see Figure 5.1).

The joint between the two links are actuated by a motor, which makes the relative
angle between the links controllable. The Acrobot is designed to move in a two-
dimensional plane, which leads to planar mathematical models. Any movement
in the third dimension, which may occur in physical simulations, will therefore be
regarded as faulty behaviour, and is not accounted for in the modelling process.

Figure 5.1: The Acrobot and its physical properties.

The rolling motion without impacts can be realized by using seven di�erent
mathematical models. During this motion, the Acrobots contact point with ground
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Figure 5.2: Sketch of the Rolling Motion WithOut Impact (RMWOI).

changes1. Figure 5.2 illustrates the essential aspects of the RMWOI. It is important
to notice that the phase-names are chronological, but the model-names are not.

Figure 5.2 also shows the relationship between the each individual phase and
the models. During Phase-1 the active model is Model-1, during Phase-5 the active
model is Model-5 and so on.

Now, having made this sketch of the rolling motion, the criteria of the when to
use the di�erent models may be stated. These criteria are given in Table (ref table
om criteria).

Modelname Criterion for use

Model-1 The endpiece of Link-1 in contact with ground.
Model-2 The right sidepiece of Link-1 in contact with ground.
Model-3 The joint-endpiece in contact with ground.
Model-4 The left sidepiece of Link-2 in contact with ground.
Model-5 The endpiece of Link-2 in contact with ground.
Model-6 The right sidepiece of Link-2 in contact with ground.
Model-7 The left sidepiece of Link-1 in contact with ground.

Table 5.1: Criteria for which model to use.

The reader may have noticed the distinction between left- and right side of the
sidepieces in Table 5.1. The de�nition of the left- and right sidepieces are found in

1The contact point actually changes continously, due to the curved side- and endpices of the
links. When speaking of a change of contact point in this study, it is meant a change from a
sidepiece being in contact with ground to an endpiece being in contact with ground, or vice versa.
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Section 5.1. This distinction is an important one, and the reason for this will be
thoroughly explained later in this section.

Consider Figure 5.3. This model shows the physical parameters of the Acrobot.
The notion of degrees of freedom may be de�ned as the number of paramters needed
to complete specify an objects orientation and position. By this de�nition, it should
be clear that the Acrobot model is 4DOF; two angles, θ1 and θ2, denotes the ori-
entation, and two cartesian coordinates are needed to describe its position in the
two-dimensional plane.

Figure 5.3: Physical parameters of the Acrobot.

Since only one parameter is actuated, namely θ2, the degree of underactuation is
4−1 = 3DOF . This may be reduced to only 1DOF, by introducing some constraints
to the model. These constraints are stated in Section 4.1, but will be restated here
for convenience.

1. There is assumed that the friction at the contact point with ground is strong
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enough to prevent slipping.

2. The Acrobot should be in contact with ground at all times (no jumping).

If these constraints are ensured, then there is possible to derive the position of the
Acrobot in the two-dimensional plane by its orientation variables, θ1 and θ2. Consider
Figure 5.4. Assume that Link-1 of the Acrobot is positioned the manner illustrated
by Figure 5.4a. The coordinates2 x0c and y

0
c de�nes the CORM, and are located at

the center of the circle formed by the contour of the sidepiece. Now, a coordinate
frame, o0, is placed on the surface of the ground, as shown in the �gure. Due to the
constraints just introduced, the only legal motion of the Acrobot will be to roll left
or right, and as a consequence y0c = R. It should also be intuitively clear, that by the
simple geometric relationship, x0c = Rω, where ω is the rolling angle. This rolling
angle may easily be deduced from θ1 and θ2. As for Figure 5.4 b, the same reasoning
holds, and will not be discussed further.

Figure 5.4: The CORM (Center Of Rolling Motion) if the Acrobot.

Therefore, by imposing these constraints on the system, the resulting Acrobot
model will be 2DOF. It is important to keep in mind, that these constraints are
purely assumptions, which most be ensured manually. The equations of motions of
the di�erent models are not �aware� of them.

2The coordinates x0c and y0c are rigidly placed at the center of rolling motion (CORM). The �0�
denotes that their values are given relative to coordinate frame o0.
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Although the seven models di�er, there are some design principles which hold for
all of them. The angle θ1 is the absolute angle of Link-1 relative to ground, and θ2
is the relative angle between Link-1 and Link-2. It should be noted that there are
several ways of measuring these angles. Therefore, a speci�c value of θ1 may result
in di�erent orientations of Link-1 relative to ground for di�erent models. Also, the
geometrical centers of the the two links are described with the coordinate frames
o1 and o2 for Link-1 and Link-2, respectively. These points are not to be confused
with the Center of Mass of each link. Although the links are identical in shape,
their physical properties are not. Furthermore, the coordinate frame om describes
the connection point of the links, and �nally, coordinate frame oc is the center of
rolling motion (CORM).

5.2.2 Derivation of Model-1

This undersection will show the derivation of Model-1 in detail. The process of
deriving each model is almost identical, and therefore the decision has been made to
show this process for only one model. There are, however, some important aspects
of some of the models, which will be treated in detail in later sections.

5.2.2.1 Deriving the Forward Kinematics

Model-1 (Figure 5.5) is used when the endpiece of Link-1 is in contact with ground.
The parameters are listed in Table 5.3.



CHAPTER 5. MAIN PART 35

Figure 5.5: Model-1
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θ1: The absolute angle of Link-1
θ2: The angle of Link-2, relative to Link-1
o0: Coordinate frame �xed to ground

(world frame)
o1: Coordinate frame �xed to the GC of

Link-1
o2: Coordinate frame �xed to the GC of

Link-2
om: Coordinate frame �xed to Link-2, and

centered at the joint between the two
links

oc: Coordinate frame �xed to the center
of the rolling motion

r : The radius of the endpiece of Link-1

Table 5.3: Parameters of Model-1.

The transformation matrices are found to be

H0
c =


1 0 0 (1

2
π − θ1)r

0 1 0 r
0 0 1 0
0 0 0 1

 (5.1)

Hc
1 =


cos(θ1) −sin(θ1) 0 L1cos(θ1)
sin(θ1) cos(θ1) 0 L1sin(θ1)

0 0 1 0
0 0 0 1

 (5.2)

H1
m =


−cos(θ2) sin(θ2) 0 L1

−sin(θ2) −cos(θ2) 0 0
0 0 1 0
0 0 0 1

 (5.3)

Hm
2 =


1 0 0 −L2

0 1 0 0
0 0 1 0
0 0 0 1

 (5.4)
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It follows that

H0
1 = H0

cH
c
1 (5.5)

H0
2 = H0

cH
c
1H

1
mH

m
2 (5.6)

The location of the COM of Link1 and Link2 are given as

p1COM1 =
[
Lg1 − L1 0 0

]T
(5.7)

p2COM2 =
[
L2 − Lg2 0 0

]T
(5.8)

Equation (5.7) and Equation (5.8) are expressed relative to o0:

p0COM1 = H0
1

[
(p1COM1)

T 1
]T

(5.9)

p0COM2 = H0
2

[
(p2COM2)

T 1
]T

(5.10)

where
p0COM1 =

[
x0COM1 y0COM1 0 1

]T
(5.11)

p0COM2 =
[
x0COM2 y0COM2 0 1

]T
(5.12)

Di�erentiation of p0COM1 and p
0
COM2 with respect to time, yields

d

dt
p0COM1 =

[
ẋCOM1 ẏCOM1 0 1

]T
(5.13)

d

dt
p0COM2 =

[
ẋCOM2 ẏCOM2 0 1

]T
(5.14)
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Finally, the translational velocity of the two COM can be expressed as

v1 =
[
ẋCOM1 ẏCOM1

]T
(5.15)

v2 =
[
ẋCOM2 ẏCOM2

]T
(5.16)

5.2.2.2 Deriving the EOM by the Euler-Lagrange method

The Euler-Lagrange method is described in Section 3.3. This section describes the
Euler-Lagrange method speci�cally for the Acrobot.

The kinetic energy is the sum of the translational- and rotational energy of the
system

K = Etrans + Erot (5.17)

The total mass of the Acrobot may be divided into M1 and M2, which represent
the mass of Link1 and Link2, respectively. The translational energy becomes

Etrans =
1

2
M1v

2
1 +

1

2
M2v

2
2 (5.18)

where v1 and v2 are the velocity of the COM for Link1 and Link2, respectively.

The total rotational energy of the system can be described as

Erot =
1

2
J1ω

2
1(θ̇1) +

1

2
J2ω

2
2(θ̇1, θ̇2) (5.19)

where ω1(θ̇1) and ω2(θ̇1, θ̇2) represents the angular velocity of Link1 and Link2,
respectively. J1 is the moment of inertia of Link1 about its COM and J2 is the
moment of inertia of Link2 about its COM.

The structure of Equation 5.19 will di�er amongst the seven models, because the
functions ω1(θ̇1) and ω2(θ̇1, θ̇2) are composed di�erently for each model. Table 5.4
shows ω1(θ̇1) and ω2(θ̇1, θ̇2) for the models.
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Model ω1(θ̇1) ω2(θ̇1, θ̇2)

Model-1 θ̇1 θ̇1 + θ̇2
Model-2 θ̇1 θ̇1 + θ̇2
Model-3 −θ̇1 θ̇2 − θ̇1
Model-4 −θ̇1 θ̇2 − θ̇1
Model-5 −θ̇1 θ̇2 − θ̇1
Model-6 −θ̇1 θ̇2 − θ̇1
Model-7 −θ̇1 θ̇2 − θ̇1

Table 5.4: Angular velocities for the di�erent models.

The potential energy of the system can be expressed as

P = M1gyCOM1 +M2gyCOM2 (5.20)

where yCOM1 and yCOM2 are the vertical distance from COM of Link1 to ground
and COM of Link2 to ground, respectively. The gravity constant is g.

The Euler-Lagrange equation is stated below

d

dt

∂L

∂θ̇k
− ∂L

∂θk
= τk (5.21)

where k ∈ [1, 2], τk is the force associated with θk and L is the Lagrangian.

The result of Equation 5.21 is the equations of motion (EOM) for Model-1.

5.2.2.3 Notes About the Remaining Models

The derivation of the EOM for Model-1, shows the general process for all of the
models. The are subtle important di�erences of course, but these di�erences does not
justify all seven derivations to have its own section in this study. The transformation
matrices, images and parameters will therefore not be stated here.

Model-3 however, is unique. When modeling this model, an important decision
had to be made, and it is related to the physical composition of the Acrobot. The
modeling process is based on the assumption that the geometric shape of the links
is identical. This is not problematic for any model, except for Model-3. This model
is the active model in Phase-3 and Phase-7. It is used when the joint-endpiece is in
contact with ground, and this is the reason for its uniqueness. Which of the links
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Figure 5.6: Two di�erent ways of measuring θ1 as the absolute angle of Link-1 with
respect to ground. It is obvious that angles a and b have di�erent values.

are in contact with ground at this point? If the links are identical, then both of the
links should touch the ground simultaneously.

Because of this problem, the decision was made to assume that Link-1 was touch-
ing ground. This decision, in turn, implicates that the joint-endpiece of Link-1 is
slightly bigger or di�erent than the joint-endpiece of Link-2. The author of this study
was not able to retrieve any information about this problem, and was therefore forced
to decide.

The implication of this may be signi�cant if this work is to be used on the physical
prototype of the Acrobot. At present, there is not much to be done about this issue,
but it is mentioned here for future reference.

5.3 De�ning the Con�guration Space

Section 5.2 showed how to reduce the Acrobot model from 4DOF to 2DOF. It pro-
ceeded to show the derivation of the equations of motion. This section is concerned
with de�ning the con�guration space of the resulting models. The con�guration
space are completely described by θ1 and θ2.

Before de�ning the con�guration space, some discussion of the measurements of
the angles are in place. As stated earlier in Section 5.2, there are several ways to
measure the angles θ1 and θ2. This is best illustrated by an example (see Figure 5.6).
For models where θ1 is measured identically, the transitions are trivial. A transition
between models which measures θ1 di�erently, however, is non-trivial. Consider
Figure 5.6. The Acrobot is standing on its endpiece. Assume that it is now falling
to the right. Then, at some point, it will be the sidepiece of the link which is in
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contact with ground. Assume further that Model-A is used when it stands on its
endpiece, and Model-B is used when its lying on its sidepiece. Model-A measures
θ1 as b, and Model-B measures θ1 as a. It is obvious that a 6= b at the transition
point. Therefore, the value of θ1 has to be modi�ed somehow before it is used in
Model-B. From this example, it can also be seen that ȧ > 0 and ḃ < 0, which means
that θ̇1 must also be modi�ed in the transition. The seven di�erent models may be
divided into two sub-groups based on the way it measures θ1. Model-1 and Model-2
belongs to Group-A, and the remaining �ve models belong to Group-B. Now, the
only non-trivial transitions occurs between models of di�erent sub-groups.

The process of de�ning the con�guration space is based on analysing the indi-
vidual models. Images of these models may be found in the electronic appendix, or
by sending an email request to delern_@hotmail.com. The resulting con�guration
space is shown in Figure 5.7.

Figure 5.7: Con�guration space of the seven models, divided into Group-A and
Group-B. The coloured lines de�nes closed areas where each model is active and
valid.

Having de�ned the con�guration space, the system with impulse e�ects may be
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stated. This is the topic of the next section.

5.4 The System with Impulse E�ects

The equations of motion for the seven models can be expressed in the following
manner

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ (5.22)

where θ = [θ1, θ2]
T 3 and τ = [0, u]T . These models are systems of second order

di�erential equations. It is well known, that any higher-order system may be reduced
to a larger seg of �rst-order di�erential equations, by introducing a new state vector.
Therefore, by assuming no external torque, Equation 5.22 may be written in the
form

ẋ = f(x) (5.23)

where x = [x1, x2, x3, x4]
T = [θ1, θ̇1, θ2, θ̇2]

T is the new state vector. The RMWOI
is comprised of eight phases, and to denote the EOM of Phase-N we use the following
notation

ẋ(N) = f(x)(N) (5.24)

where x(N) is the state vector of Phase-N and f(x)(N) is the EOM of the model
corresponding to Phase-N.

By using the same notation for the impact map and impact surface of Phase-N,
the complete system with impulse e�ects may be written as

Σ(N) :

{
ẋ(N) = f(x)(N)

x
(N+1)
+ = 4(N)(x

(N)
− )

x
(N)
− /∈ S(N)

x
(N)
− ∈ S(N)

, N ∈ [1, 8], x
(9)
+ = x

(1)
+ (5.25)

where S(N) is the impact surface of Phase-N, 4(N) denotes the impact map from
Phase-N to Phase-(N+1), x

(N+1)
+ denotes the state vector of Phase-(N+1) just after

the impact, and x
(N)
− denotes the state vector of Phase-N just before the impact.

The impact surfaces S(N) depends only on the con�guration variables θ1 and θ2,
which corresponds to x1 and x3, respectively. By analysing the con�guration space,

3This is the robot equation of motion. In this study, the decision has been made to denote the
con�guration variables by θ instead of the more usual q.
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the impact surfaces S(N) are found, and listed in Table 5.5 together with the impact
maps.

Phase S(N) 4(N)

Phase-1 S(1) := {x(1) | x(1)1 = π
6
} x

(2)
+ = Ix

(1)
−

Phase-2 S(2) := {x(2) | x(2)1 = −π
6
} x

(3)
+ =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

x(2)−
Phase-3 S(3) := {x(3) | x(3)3 = π

6
+ x

(3)
1 } x

(4)
+ = Ix

(3)
−

Phase-4 S(4) := {x(4) | x(4)3 = −π
6

+ x
(4)
1 } x

(5)
+ = Ix

(4)
−

Phase-5 S(5) := {x(5) | x(5)3 = −5π
6

+ x
(5)
1 } x

(6)
+ = Ix

(5)
−

Phase-6 S(6) := {x(6) | x(6)3 = −7π
6

+ x
(6)
1 } x

(7)
+ = Ix

(6)
−

Phase-7 S(7) := {x(7) | x(7)1 = 5π
6
} x

(8)
+ = Ix

(7)
−

Phase-8 S(8) := {x(8) | x(8)1 = 7π
6
} x

(1)
+ =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

x(8)− +


−π

3

0
0
0


Table 5.5: Numerical values for the impact surfaces of the eight phases of the RM-
WOI, S(N).

5.5 The Reduced System Dynamics

By imposing a virtual constraint function on the EOM of the models, the reduced
system dynamics may be derived

α(s)s̈+ β(s)ṡ2 + γ(s) = 0 (5.26)

where s can be chosen equal to either θ1 or θ2, as described in Section 3.4.2. The
structure of the constraint function ϕ(s) are chosen as a Bezier curve. The de�nition
of a Bezier curve is restated here for convenience.

B(t) =
n∑
i=0

(
n
i

)
(1− t)n−itiPi , t ∈ [0, 1] (5.27)

The Bezier curve evolves as the parameter t advances from 0 to 1. In this study,
this parameter will be modi�ed to be a function of s, as shown in the following
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equation

t =
s− sb
se − sb

(5.28)

where s ∈ [sb, se] is the span of the Bezier curve. Figure 5.8 shows an example
of an arbitrary Bezier curve for the con�guration space of Model-1.

Figure 5.8: Example of Bezier curve in the valid con�guration space of Model-1
where θ2 = ϕ(s), s = θ1, sb = π

6
and se = 5π

6
.

In the example in Figure 5.8, the virtual constraint function is chosen as θ2 =
ϕ(s). The function is valid for s ∈ [sb = π

6
, se = 5π

6
]. Figure 5.8 also shows that

ϕ(sb) = π
3
and ϕ(se) = π

6
, which means that the control points P0 = [sb, ϕ(sb)] and

Pn = [se, ϕ(se)], where n denotes the order of the polynomial.
Now, if the virtual constraint depicted in Figure 5.8 where to be imposed on the

EOM of Model-1, then the resulting system (the reduced dynamics system), would
be forced to move along the path de�ned by ϕ(s). This motion assumes, of course,
that some generic control law is able to uphold the virtual constraint, ϕ(s). In fact,
there is no guarantee that the torque needed to uphold the constraint is feasible.
This have to be checked manually, and is a vital part of the process of searching for
virtual constraints.



CHAPTER 5. MAIN PART 45

5.5.1 Choice of Virtual Constraint

The virtual constraint function may be chosen as either θ2 = ϕ(s = θ1) or θ1 = ϕ(s =
θ2). The di�erence between these to structures are best illustrated by an example.

Consider Figure 5.9.

Figure 5.9: Possible virtual constraint functions, ϕ(s). To the left, s = θ2. To the
right s = θ1.

The to images illustrates a section of the con�guration space of Model-5. P0 and
Pn indicates the �rst and last control point of a Bezier curve. The blue line indicates
some Bezier curve, and the dotted red boxes indicates the allowable space for the
Bezier curve. There are several aspects of this image to consider.

First of all, in the left-most image, the Bezier curve is allowed to move to the
left of P0. This may be a feature that is necessary for the Acrobot to move from
con�guration P0 to Pn. Secondly, the area bounded by the dotted red boxes, are much
larger in the left-most image, allowing the Bezier curves more �exibility. Imagine
that Pn where to slide downwards along the green border line until it reaches the
point just below P0. For the right-most image, this would result in the dotted red box
being reduced to a line, and the only allowable Bezier curve would be the straight
line from P0 to Pn. On the other hand, the dotted red box of the left-most image
would increase its area, allowing for even more �exible Bezier curves. These facts
indicate that in this case, the choice of constraint function should be θ1 = ϕ(s = θ2).

It is important, however, to realize that there is no obvious way of knowing the
optimal path through Model-5. For all we know, the best path could still be the one
depicted in the right-most image. In the searching process, it is important to keep
an open mind and not rely to heavily on ones intuition.
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5.6 The Search Function

The previous sections of this chapter showed how to derive the reduced system dy-
namics by imposing virtual constraints. This section is concerned with the search for
such virtual constraint functions that will realize the rolling motion without impact.

Before the search function is formally stated, there will be a brief discussion of
how to generate a useful �rst-guess of Bezier curves for the eight phases.

5.6.1 Producing the First-Guess Bezier Curves

The RMWOI is a complex motion. It is not easy to intuitively guess its path in con-
�guration space. The search algorithm needs an initial, closed path in con�guration
space, and this path should fairly good. The process of producing such a path, is as
follows

1. Apply heuristic PD-controllers to the EOM of the models. Each phase should
have its own PD-controller.

2. Implement the impact map.

3. Simulate the system numerically, while tuning the controllers by utilizing visual
feedback from the Graphical Simulator, until the result is satisfactory close to
one cycle of RMWOI.

4. Fit Bezier curves to the resulting path of the simulation. Each phase should
have its own Bezier curve.

5. Adjust the �nal control point of the second Phase-1 (P
(1)
n ) to be equal to the

�rst control point of the �rst Phase-2 (P
(2)
0 ).sketches

The �rst step is to apply PD-controllers to the EOM of Equation 5.22, which results
in the following equation.

θ̈ = −M−1(C(θ, θ̇)θ̇ −G(θ)−Kp(θ − θ?)−Kd(θ̇ − θ̇?)) (5.29)

where θ? and θ̇? is the desired value of θ and θ̇, respectively. Only the relative
angle between the links (θ2) may be controlled by external torque. Therefore, the
structure of Kp and Kd are as follows

Kp =

[
0 0
0 P

]
, Kd =

[
0 0
0 D

]
(5.30)
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where P and D are scalar constants.
The second step is to implement the impact map. This may be achieved by conti-

nously checking the state vector of the system while it is being simulated numerically.
If the state vector coincides with the switching surface, the numerical simulation of
the current phase is stopped, and the state vector is stored. The values of the stored
state vector are then mapped using the corresponding impact map function, and
used as initial conditions for the model corresponding to the next phase.

The third step is to tune the PD-controllers until a satisfactory motion is achieved.
In this study, this task was undertaken by using visual feedback from the Graphical
Simulator. The Graphical Simulator can produce an animation of the numerical
simulation, and this aspect made it easier for the author to intuitively guess values
for the controller gains. The simulation should start at Phase-1, go through all the
eight phases, and then return to Phase-1 a second time. The simulation should be
stopped just before it enters Phase-2 the second time.

When a satisfactory path has been produced in step three, the fourth step is to
�t Bezier curves to this path. The path is divided into nine path-segments, where
each path segment corresponds to the phase de�ned by the con�guration space (see
Figure 5.7). There will be two path-segments corresponding to Phase-1, and one
path-segment for each of the remaining phases. The path-segment of the �rst Phase-
1 is discarded. Then, each of the eight remaining path-segments are �tted to distinct
Bezier curves. In this study, this was done by using the least-squares method.

The �nal step is to adjust the �nal control point of the second Phase-1 to be equal
to the �rst control point of Phase-2. This is done to produce a set of path-segments
that, as a whole, de�nes a closed path in the con�guration space4.

Notes on this process The reader may wonder why this simulation process starts
in Phase-1, and not Phase-2, when the path-segment of the �rst Phase-1 is discarded.
In the simulation studies of this study, when initializing the simulation in Phase-1,
the Acrobt was standing up-right, and slightly tipped to the right. Both θ̇1 and
θ̇2 was initialized to zero. These choices of initial conditions are clearly possible.
By initializing the Acrobot in such a feasible state, it seemed reasonable that the
motions produced would be valid.

During this process, the Bezier control points are stored. The vector θ = [θ1, θ2, θ̇1, θ̇2]
T

at the end of each phase is also stored, and the reason for this will be explained when
de�ning the search function.

4This step is not needed if one should be able to produce a closed path from simulation. This,
however, is highly unlikely.
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5.6.2 De�ning the Search Function

Having shown how to produce a feasible �rst-guess of a closed path in con�guration
space, the formal de�nition of the search function may be stated.

min f(x)
x ∈ Rn subject to ci(x) ≥ 0, i ∈ I (5.31)

where x is the vector of optimization parameters, n is the number of optimization
parameters, ci(x) is the lower- and upper bounds of x and f(x) is the objective
function. The parameter vector x is composed of the following items

• Bezier control points.

• The initial condition ṡb of Phase-2.

• A vector of values of s at the end of each phase (s
(N)
e ).

5.6.2.1 The Parameter Vector

Remark In the following text, the parameter vector and the search procedure will
be described in detail. The reader should be aware that in this section, the search
procedure is assumed to start at Phase-1. In the actual simulation studies, the initial
phase is instead Phase-2. It should also be mentioned that the di�erent simulation
studies does not necessarily incorporate all the elements of the parameter vector
which are described here.

Explaining the Bezier control points The composition of x is important and
will need further investigation, beginning with the Bezier control points. Figure 5.10
shows a closed path in con�guration space and some of its Bezier control points.
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Figure 5.10: Example of a closed path in con�guration space. The green dots are
Bezier control points at the switching surfaces.

The control points of a fourth degree Bezier curve are shown in the con�guration
space of Model-1. These control points make up a convex hull, in which the curve
is wholly contained, and each curve starts at- and ends at a green dot. The green
dots are Bezier control points at the switching surfaces, and the red dots (shown
only for Model-1) are intermediate control points. The eight black curves formes a
closed path in the total con�guration space. Except for the con�guration space of
Model-1, all intermediate control points have been omitted. The green dots however,
are included for each con�guration space. They indicate the start- and endpoint of
all eight curves. Now, assume that the �ve control points of Phase-1 (the three red
dots and the two green dots) are used in the parameter vector x. Obviously, there are
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some constraints as to where to put these points. The right-most green dot should lie
on the right-most boundary of the con�guration space of Model-1, and the left-most
green dot should lie on the left-most boundary of the con�guration space of Model-1.
The red dots are also constrained, although their placement enjoys more �exibility.
They can not be placed outside the valid con�guration space of Model-1, because
this will result in the convex hull being outside the boundaries. Theoretically, this
may lead to the curve going outside of the valid con�guration space.

Having investigated the placement of the control points of Phase-1, we consider
Phase-2. First of all, the reader is reminded that jumps in con�guration space is not
allowed except for jumps that are governed by impact laws. A jump in con�guration
space means, for the case of the Acrobot, that there is a jump in θ1 or θ2. This is
obviously not physically possible. Therefore, the starting point of the curve in Phase-
2 must over-lap the endpoint of the curve in Phase-1, meaning that their numeric
values must be indentical. So for Phase-2 (given that the Bezier order is four), only
four control points are free variables, compared to �ve control points in Phase-1.
This is true for all the remaining phases of the motion, even for the switches where
the impact maps are non-trivial. The endpoint of Phase-2 is transformed according
to impact map 4(2) (for reference, see Table 5.5) and the resulting values de�nes the
starting control point of Phase-3. It is important to note that for Phase-8, both the
starting point and endpoint are already de�ned5. The endpoint has to overlap with
the starting point of Phase-1.

As mentioned, there can be no jumps in the con�guration space by obvious rea-
sons. There can neither be jumps in the time-derivatives, θ̇1 or θ̇2, because this would
demand unlimited acceleration. Therefore, the curve must be smooth and connected
at all points. This fact makes it possible the reduce the number of free variables even
more. This is not necessary to do however, and the reason will be explained later in
the text.

Explaining the vector of values of s at the end of each phase (s
(N)
e ). Con-

sider Figure 5.10. Assume that Bezier curves have been generated for both Phase-1
(Model-1) and Phase-2 (Model-2). Assume also that the choice of virtual constraint
function for these two phases have been θ2 = ϕ(s = θ1). The generation of the Bezier
curve is according to Equation 5.27, where t = s−sb

se−sb
. When the Bezier curve is gen-

erated, the values of sb and se must therefore be known. For Phase-1 and Phase-2
this is trivial, because these points are de�ned by the bondaries of the con�guration
spaces. These values can be read from Figure 5.10, and are stated below

5This is not the case for Simulation-1 of Section 5.7.
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s
(1)
b = 5

6
π

s
(1)
e = 1

6
π

s
(2)
b = s

(1)
e

s
(2)
e = −1

6
π

(5.32)

For Phase-3 however, it is not that simple. If the virtual constraint function is
θ2 = ϕ(s = θ1) for Phase-3, then s

(3)
e must be on the line de�ned by θ2 = 1

6
π+ s, s ∈

[1
6
π, 5

6
π]. Therefore, the value of s

(3)
e has to be known before-hand. These values

must also be known for Phase-4, Phase-5 and Phase-6, basically all the phases where
the switching surface is not a vertical line. When producing the �rst-guess closed
path in Section 5.6.1, these values were stored, and are used as parameters.

Explaining the initial condition ṡb of Phase-2. When the EOM have been
reduced to the reduced system dynamics, the system depends only on s and ṡ. To
initialize the simulation, the initial conditions sb and ṡb has to be provided to nu-
merical solver. The simulation may start in any phase, but in this study the choice
have been made to always start in Phase-2. One advantage with this, is that s

(2)
b

is readily given by the con�guration space boundaries of Phase-2. The other initial
condition, ṡ

(2)
b , may vary. The �rst value of ṡ

(2)
b are found from the �rst-guess process

of Section 5.6.1.

These values makes up the basic parameter vector x. During the searching process,
this vector may be subject to change. If for example, the order of the Bezier curves
is changed from four to six, the parameter vector must contain more parameters.
However, the three elements discussed in this section will still be present.

5.6.2.2 The Inequality Constraints

The inequality constraints of the search function (Equation 5.31) is denoted ci(x).
These functions are basically lower- and upper bounds for the parameter vector x.
The Bezier control points obviously have upper- and lower bounds, which are the
boundaries of the con�gurations spaces. The boundaries of the s

(N)
e is also de�ned by

the con�guration spaces. The boundaries of ṡ
(2)
b are based on the physical constraints

of the actuator at the joint.

Notes on Lower- and Upper Bounds In this study, these contraint functions
plays only a minor role. Although the con�guration spaces de�nes the boundaries
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exactly, it proved to be di�cult and time-consuming to de�ne these constraints. The
problem arises from the fact that the boundary-values depend on the control points
placement on the s-axis. The control points of Phase-1 (Figure 5.10) have di�erent
upper- and lower boundaries, which are determined by a function of s. Instead of
�nding these functions, a less conservative approach was utilized, where constant
values were used. In theory, these boundary-values could exclude valid- and include
invalid places of control points. This problem was avoided in the design of the
objective function.

5.6.2.3 The Objective Function

Having discussed the parameter vector and the inequality constraints, the objective
function f(x) may be described. The objective function is by far the most complex
aspect of the serach function, and will be explained in detail. Although the objective
function changes slightly in the di�erent simulation studies, the structure remains
the same.

The basic structure of the objective function is sketched in Figure 5.11.
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Figure 5.11: Basic structure of the objective function, f(x).

The parameter vector x is somehow passed to the objective function. The ele-
ments of x which are related to Phase-2, are picked up, and a Bezier curve based
on these elements is produced. The numerical simulation of the reduced dynamics
system of Phase-2 begins with initial conditions ṡ

(2)
b (which is an element of x) and

s
(1)
e = 1

6
π (which is constant).

The simulation of Phase-2 has two possible outcomes. The simulation hits the
impact surface, or it does not. If the impact surface has been hit, the impact map
transforms the last state of the solution vector, and passes this new vector to Phase-
3. If the result of the simulation is no impact, the function terminates. There may be
several reasons for this, depending on di�erent implementations of objective function.
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However, as the function terminates, it should always return some scalar function
value. This value is produced by the cost function, and is a measure for how well
this particular parameter vector did.

Assuming that an impact occured, the same process is then repeated for Phase-3,
Phase-4 etc, until it reaches Phase-1. The simulation of Phase-1 also has to outcomes,
although slightly di�erent than for the other phases. If there is no impact, the
function terminates as usual. If the simulation impacts, then the search function has
found a closed path in the con�guration space. It has not, however, necessarily found
a closed trajectory, which is the goal of the search. To achieve a closed trajectory,
the value ṡ

(1)
e must be equal to ṡ

(2)
b . If this condition is satis�ed, the Acrobot model

has returned to the state it was in at the beginning of the function. Therefore the
cost function at this point should always be

cost(ṡ
(2)
b , ṡ(1)e ) =‖ ṡ(2)b − ṡ

(1)
e ‖2 (5.33)

where ‖ . ‖ is some norm-function. If this function is zero, the search function
has successfully found a closed trajectory for the RMWOI. It should be noted that
this function is not used for Simulation Study-1 introduced in the next sextion.

5.7 The Simulation Studies

The search process carried out in this study, was mainly based on intuitive guesses
and trial and error. Due to the complexity of the mathematical model and the rolling
motion without impact, it is hard to theoretically determine the ideal order of the
Bezier curves and the ideal cost function. For example, if the path in con�guration
space was assumed to be a straight line, then a �rst order Bezier curve might be
su�cient. If the path however, was assumed to be a complex sinusoidal function,
then of course, a higher order Bezier curve should be utilized. These observations
are logical, although they are only based on intuition. No great e�orts were made to
�nd optimal Bezier curve orders by use of theoretical analysis, mainly because such
an approach was expect to be more time-consuming than useful.

There was some experimenting with the order of the Bezier curve, but the results
of this action seemed irrelevantly small and therefore all simulation studies described
in this section have Bezier curves of order �ve. This choice is justi�ed by the results
of the initial �rst-guess of Section 5.6.1. One typical �rst-guess path is shown in
Figure 5.12.
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Figure 5.12: Typical initial �rst-guess of the path of the RMWOI.

From this �gure, it can be seen that the behaviour of the paths in the di�erent
phases are similar to second- or third order polynomial functions. In fact, third order
Bezier curves were tried out. The results of this turned out to capture most of the
Acrobots dynamics, although the decision to use �fth order curves were made just to
be safe. Although this choice calls for longer simulations, the versatility of the Bezier
curve is greatly improved. Having decided that the Bezier curves should always be
of order �ve, it remains to decide on implementations of the objective function and
the cost function.

The search process may be divided into four di�erent simulation studies with
respect to the choice of objective- and cost function. These simulation studies are
listed and described below.

Simulation-1 In the �rst simulation study, the connection of the path was a part of
the cost function, and not ensured by the objective function. The cost function
would return a high integer (i.e. 999999) if the simulation of each phase did not
hit its impact surface. Also, the boundaries of each individual con�guration
space were not accounted for in the objective function.

Simulation-2 In this simulation study, the objective function ensured that the pro-
duced path would be closed. The boundaries of each individual con�guration
space were not accounted for in the objective function. The cost function is
based on travelled distance. The idea is that a simulation that is able to reach
Phase-5 should be less expensive than a path that only reaches Phase-4. If one
whole cycle of the motion is produced the cost function is reduced to Equation
5.33.
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Simulation-3 This simulation studies is equal to Simulation-2, except for the addi-
tion of con�guration space boundaries for each phase. This ensures that only
legal paths are produced.

Simulation-4 This simulation studies is equal to Simulation-3, but the virtual con-
straint functions for Phase-5 and Phase-6 are changed. For the �rst three
simulation studies, the virtual constraint functions were θ2 = ϕ(s = θ1) for all
phases. In this simulation study it was changed to θ1 = ϕ(s = θ2) for Phase-5
and Phase-6.

The next sub sections will describe each of these simulation studies in detail, and
discuss the results.

5.7.1 Simulation-1

Simulation-1 is structurally di�erent from the other simulation studies. This is be-
cause the objective function of Simulation-1 does not ensure that a terminating search
produces a closed path. For the path to be closed, the last control point of the last
phase must overlap the �rst control point of the initial phase. Thus, in the other sim-
ulation studies, the last control point of the last phase is calculated in the objective
function rather than being part of the parameter vector. In this simulation study
however, this control point is part of the parameter vector, and the cost function is
left with the responsibility of achieving a closed path.

Figure 5.13 illustrates the cost function of this simulation study.
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Figure 5.13: Illustration of the cost function for Simulation-1.

First of all, it should be noted that the cost function returns a value of 999999
for every phase if the simulation does not reach the impact surface. The idea was to
severly punish any path that did not reach all the phases. The problem here is, of
course, that a path reaching Phase-1 (but not hitting the impact surface) is identical
in cost to a path that reaches any previous phase. This is obviously problematic,
because a path that moves all the way to Phase-1 is clearly closer to realizing the
RMWOI than a path that terminates at Phase-2 (the �rst phase). This approach
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was tried out because it was believed that by producing an initial �rst guess that was
very close to one cycle of the RMWOI, the search algorithm would always manage
to complete one cycle, meaning that it would always return to Phase-2.

The terminating cost function is

cost = c1(ṡ
(2)
b − ṡ

(1)
e )2 + c2(s

(2)
b − s

(1)
e )2 (5.34)

where c1and c2 are positive scaling constants. Simulation-1 is the only simulation
study which utilizes this structure of the cost function. Because the objective function
does not ensure the path to be closed, it has instead been implemented in the cost
function by the term c2(s

(2)
b −s

(1)
e )2. Since the �rst priority of the search is to produce

a closed path, the constant c2 is typically much larger than c1.

Discussion of Simulation-1 The results from this simulation study was poor.
The search was not even able to produce a closed path. The objective function
was oblivious to the con�ned borders of the con�guration space, and as a result
the generated paths was sometimes largely outside these boundaries. However, the
simulation study in itself is interesting for another reason. It illustrates the initial
ignorance and arrogance of the author, and shows how such a search process is largely
based on trial and error. This is simulation study was easy to implement, having
disregarded the con�guration space and by using an extremely simple cost function.
By conducting this simulation study, the author realized that a more sophisticated
cost function was needed, and that the closedness of the path should probably be
implemented as a constraint in the objective function.

5.7.2 Simulation-2

Simulation-2 was motivated by the poor results of Simulation-1. In Simulation-1,
the search function was not even able to produce a closed path in the con�guration
space. This simulation study should �rst and foremost ensure that a closed path
was found before the cost function started searching for the closed trajectory. This
is achieved by calculating the last control point of the last phase in the objective
function, rather than it being in the parameter vector. Figure 5.14 illustrates the
cost function of this simulation study.
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Figure 5.14: Illustration of the cost function for Simulation-2.

Consider Figure 5.14. Assume that some arbitrary values of the parameter vector
x produces a path that does not reach the impact surface of Phase-2. Then the
objective function terminates with the cost cost = P3 +P4 +P5 +P6 +P7 +P8 +
P1 + res. These values (except for res) are travel distances corresponding to the
di�erent phases. Assuming that all these travel distances are equal to 10, the cost
function becomes cost = 10 + 10 + 10 + 10 + 10 + 10 + 10 + res = 70 + res. The
variable res consists of two parts. The �rst part is called the residue of the phase.
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This is the length of the shortest path from the point on the path which is closest
to the impact surface, to the impact surface. To see this, let θn be some arbitrary
point on the path. The shortest distance from θn to the impact surface is along a line
perpendicular to the impact surface. Let dn = sd(θn) be the shortest distance from
θn to the impact surface. Each point θn on the path have a corresponding shortest
distance dn. Let D be the set containing all these distances dn. The residue is

residue = min(D) (5.35)

where min(X) is a function that returns the smallest element of the set X. The
other part of res is some positive constant value called offset. This constant is
introduced to ensure that the cost function always returns a larger value than the
worst case of the terminating cost function. This is illustrated in Figure 5.15. This
�gure shows that the cost function is gradually decreasing as the path moves through
the phases. The reader may notice that the o�set is always larger than the worst
case of the terminating cost function. If there was no offset, the cost function
would have been identically zero when the closed path was achieved. The residue is
illustrated by triangles, and shows how the cost function gradually decreases as the
the path gets closer to the proceeding phase.

The reader may also notice that there is a small jump in the cost function at
the impact surface between phases. This is a deliberate choice. Consider Phase-2 of
Figure 5.15. Assume that the constant value P3 is gradually shrinking such that the
offset-box and the residue-triangle are moving to the left. If P3 shrinks enough,
then the worst case of the cost function for Phase-3 would return a larger value than
best case of Phase-2. In other words, the search function believes that it is better to
terminate at the end of Phase-2 than at the start of Phase-3. This problem must be
avoided by clever choices of the constants. With this in mind however, there is no
reason for all the P -constants to be of equal size.
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Figure 5.15: Diagram of the cost function of Simulation-2, Simulation-3 and
Simulation-4.

Discussion of Simulation-2 Simulation-2 yielded some interesting results. It was
discovered that small changes in the initial �rst-guess path, could make or break the
results. A search based on some initial �rst-guess would result in a path that at best
made it to Phase-6. Then, by slightly modifying the �rst-guess path (by altering
the controller values) the search achieved the closed path. If the search managed to
�nd a closed path, it would almost always �nd a closed trajectory. This observation
was surprising to the author. It was believed that �nding a closed path would be
easy, but that a closed trajectory would be hard to �nd. Simulation-2 proved this
hypothesis to be wrong. It proved to be quite hard to �nd a closed path, but having
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found this path, a closed trajectory would almost always be achieved.
The closed trajectory found by this search function were all very di�erent, but

they had one important property in common; they all violated the con�guration
space in some way. This was also surprising to the author. Preceeding the search, it
was believed that the path found by the initial �rst-guess algorithm, would be the
path of least resistance for achieving the RMWOI. The results however, were clearly
suggesting that this was not the case. These observations motivated Simulation-3,
which adds the constraints of the con�guration space to the objective function.

5.7.3 Simulation-3

Simulation-3 employed the same cost function as Simulation-2. The only di�erence is
that the objective function was modi�ed to ensure that the path was wholly contained
inside the boundaries of the con�guration space. This was done in the following
manner.

For each new phase, the objective function initializes a new numerical simula-
tion (in MATLAB). This simulation is initialized with initial values corresponding
to the impact laws. If the simulation terminates without hitting the impact phase,
the boundaries of the con�guration space are ignored as before, and returns a value
according to the cost function. If however, the impact surface is reached, the simula-
tion terminates prematurely, and an algorithm checks if all the points of the path is
contained within the con�guration space of that phase. If this is the case, the search
continues as normal. If this is not the case, the search is terminated and returns the
value of the cost function.

Discussion of Simulation-3 Simulation-3 revealed a new problem. The search
algorithm would terminate with an error originating from the numerical integrator
(ODE45 in MATLAB). A solution to this problem became evident after inspecting
the path of the initial �rst-guess. The path through Phase-5 (Model-5) seemed to
be almost parallell to the θ2-axis. According to Section 5.5.1, choosing the virtual
constraint function as θ2 = ϕ(s = θ1), would inhibit the �exibility of the path.

5.7.4 Simulation-4

Motivated by the observations from Simulation-3, the virtual constraint functions
for Phase-5 (Model-5) and Phase-6 (Model-6) were changed to θ1 = ϕ(s = θ2). The
idea was to allow for more �exibility in the path of these to phases. The virtual
constraint of the other phases remained as θ2 = ϕ(s = θ1).
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Discussion of Simulation-4 The fourth and �nal simulation study was initially
thought to be successful. The resulting closed path is shown in Figure 5.16. The path
in Phase-5 is particularly interesting. Figure 5.17 shows this path in more detail.

Figure 5.16: Path of the rolling motion without impact.

Figure 5.17: Path of Phase-5 and Phase-6.

Figure 5.17 illustrates the importance of changing the virtual constraint function
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for Phase-5. The path in Phase-5 looks like a third- or fourth order polynomial
function in θ2. This behaviour could not be achieved if the the constraint function
was θ2 = ϕ(s = θ1).

On closer inspection of the evolution of the variables however, it becomes clear
that the result is not a closed trajectory. Figure 5.18 shows the evolution of θ1, θ2,
θ̇1 and θ̇2 for Simulation-4.

Figure 5.18: The evolution of θ1, θ2, θ̇1 and θ̇2 for Simulation-4. The vertical red
lines indicate the switching surfaces. The left-most red line is the switching surface
between Phase-2 and Phase-3.

The left-most image of Figure 5.18 shows the evolution of θ1 and θ2. The green
curve is continous, and the blue curve is piecewise continous except for at the switch-
ing surfaces wich are governed by non-trivial update laws. This indicates that the
path in con�guration space is closed, which is a necessary condition for the desired
closed trajectory.

The right-most image however, shows unwanted behaviour of the angular veloc-
ities. There are clearly jumps in both θ̇1 and θ̇2. There should, according to the
update laws, be jumps in θ̇1 at the switching surfaces between Phase-2 and Phase-3,
and Phase-7 and Phase-8. There should however, not be any jumps in θ̇2. Figure
5.19 shows in detail the switching surface between Phase-2 and Phase-3.
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Figure 5.19: Discontinuity in θ̇2 at switching surface between Phase-2 and Phase-3
of Simulation-4.

Such a discontinuity would require an in�nite torque, which is clearly not physi-
cally possible. The reason for this discontinuity is the fact that the objective function
does not force the angular velocities to be continous. It only ensures continuity in
the path variables.

After this discovery, an attempt to enforce continuity on the angular velocities
was made. The idea was to make the second control point of each Bezier curve �xed
in a way such that continuity in the angular velocities was enforced. The results
were very poor, and are not included in this report. There might be many reasons
for this poor result, but the most likely reason is the ever growing complexity of
the computer code. If an index in the code is wrong, the search routine would still
run, but the results would be ridiculous. A search with a duration of one hour could
therefore run without any problem, and only the resulting path would indicate an
existing bug. This makes the debugging of the code extremely time-consuming.



Chapter 6

Main Result and Conclusion

6.1 Results and Future Work

The objective of this study has been to �nd a closed trajectory of the Acrobot with
curved links which realizes a rolling motion without impact. To do this, a hybrid
system consisting of eight di�erent phases was introduced, as well as a set of update
laws. Virtual holonomic constraints were then introduced to reduce the order of the
system, such that analytical methods for control design could be applied. Then a
numerical search was done to �nd a closed trajectory. This proved to be a challenging
objective, and satisfying results were not achieved. A seemingly closed trajectory was
found, but closer inspection revealed that there existed unfortunate discontinuities
in the angular velocities. These discontinuities would demand in�nite motor torques
to realize the motion, and the result was therefore not satisfying. The motions
produced by the empirical PD-controllers however, strongly suggests that a rolling
motion without impact could be possible to �nd.

This study has produced a lot of basic knowledge for the future work with the
Acrobot with curved links. This achievements are listed below.

1. Mathematical models have been produced, and thouroughly checked.

2. Con�guration spaces for these models have been de�ned, as well as the corre-
sponding update laws.

3. A reasonable strucuture for a path-searching routine has been suggested, and
possible sources of error has been discovered. The complexity of the code for
the search routine is perhaps the most likely source of error.

66
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These are all factors that might contribute to the future work with the Acrobot, and
for details on their derivation, please consult Section 5. The following list suggests
objectives for future work.

1. Ensure continuity of the angular velocities. It is highly unlikely that a search
routine would �accidentally� end up with continous angular velocities.

2. Structurize the computer code of the search routine. The author has, through
this study, discovered the critical need of a structured code. The nature of
the search routine is highly complex, and is highly dependent on passing pa-
rameters between functions, and indexing large vectors and matrices. Such a
code becomes unclear as it grows. The author would suggest to use an object
oriented language (i.e. C++) to write the search routine, instead of the more
sequential MATLAB-script which has been used in this study.

3. Search for simpler motions. The rolling motion without impact which is consid-
ered in this study, is very complex. It may be bene�cial to �nd other motions
�rst, which consists of fewer phases. The realization of such motions might
help to gain insight in the complex dynamics of the Acrobot.

6.2 Conclusion

The aim of this study has been to combine the properties of legged locomotion robots
and wheeled robots. The subject of this matter has been the Acrobot, which exploits
the passive rolling motion of wheeled robots as well as the versatility of legs. The
biggest source of energy dissipation for a legged robot, is due to the impacts with
the ground. This has been avoided in this study, by designing a continous rolling
motion without impact.

The results of this study indicates that the design of locomotion gaits for combined
locomotion robots is possible. It remains to see however, whether the energy cost of
such robots can compete with the energy cost of either legged- or wheeled robots.
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