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Abstract

The focus of this thesis is obtaining useful segments of historic data from

normal operation due to, for instance, economical and safety concerns of

performing experiments on a plant. This will be done by development, and

implementation of a user friendly concept. The concept will give the user a

collection of search criteria to choose from, and the ability to combine them,

to locate possible informative data in historic data. The angle of attack will

be more practical than theoretical.

The concept SHDMI is proposed as such a tool. As a prototype of the

concept it shows promise dealing with both SISO- and MIMO-systems in

its simplicity and structure, but it is concluded that improvements and/or

expansions of SHDMI is needed if it is to become a reliable and adequate for

its purposes.
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Chapter 1

Introduction

In modern monitoring and control of processes and plants (e.g. a chem-

ical production plant), a mathematical representation, a model of the its

dynamic behaviour is required to apply (for instance) a Model Predictive

Controller(MPC) to the process. Such a dynamic model can be derived from

the system identification procedure, based on observed data of the physical

process at hand. A data set, containing the observed data, connects input

and output variables of the system. The data set is preferably obtained by

performing experiments on the process, specially designed to excite its every

mode of operation, and in turn describe its dynamic behaviour accurately.

If a process is physically altered, e.g. replacement or deterioration of

integral parts, its dynamic model must be updated. To perform a new ex-

periment on the process, and update its model, the process has to be taken

out of operational order, which in many cases is not preferable or even pos-

sible due to reasons of regularity, economy, safety, etc.

The alternative to obtaining data by performing such experiments is to

use historic data observed at normal operation, in the system identification

procedure. Using such data can be problematic, primarily due to segments

of missing data and long periods of stationary data, which poorly describes

the dynamic behaviour of the process, rendering the data as useless.

Scientific books on the subject, such as Ljung (1999), Goodwin & Payne

(1977) and Pintelon & Schoukens (2001), does not suggest any methods for

locating informative data segments in historic data sets. Ljung (1999) states

1



2 CHAPTER 1. INTRODUCTION

that: ”The procedure of how to select such segments will basically be subjective

and will have to rely mostly upon intuition and process insights”.

1.1 Dynamic Identifiability Analysis -

DYNIA

In Fordal (2010) it is proposed to use the Dynamic Identifiability Analy-

sis (DYNIA) method to extract information about dynamic systems from

historic/operational data.

DYNIA was developed by Dr. Wagener, associate professor of civil engi-

neering at Penn State University. The method was first introduced in Wa-

gener et al. (2002), and was described in more detail in Wagener, McIntyre,

Lees, Wheater & Gupta (2003). DYNIA was originally developed for use in

the field of hydrology, but no assumptions made implicate that the methods

performance should degrade regarding general dynamic mathematical mod-

els. An extensive review of the DYNIA-method is not in the scope of this

text, so an overview based on Wagener et al. (2003) and Fordal (2010) will

be presented in this section. For a more comprehensive study of the method,

reviewing Fordal (2008), Fordal (2010) and other refereed articles is advised.

Wagener et al. (2003) describes DYNIA as an approach for locating pe-

riods of high identifiability for individual parameters and to detect failures

of model structures in an objective manner. The method draws on elements

from Regional Sensitivity Analysis (RSA) (Spear & Hornberger 1980, Horn-

berger & Spear 1981), the Generalized Likelihood Uncertainty Estimation

Framework (GLUE) (Beven 2004, Stedinger, Vogel, Lee & Batchelder 2008),

wavelet analysis (Goswami & Chan 1999) and applications of the Extended

Kalman Filter (Beck 1985, Beck 1987).

The original RSA approach investigates whether the parameter distribu-

tion change when conditioned on a measure of performance (e.g. an objective

function). The sensitivity of the model response due to changes in the pa-

rameter is indicated by deviations from an initially uniform distribution, and

the differences between parts of the distribution performing well and poorly

(behavioural and non-behavioural) (Spear & Hornberger 1980). In DYNIA
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this approach is extended to assess the identifiability of parameters, not just

their sensitivity.

Figure 1.1 represents the basic steps of the DYNIA-procedure. The fea-

sible parameter space is examined by Monte Carlo sampling based on a uni-

form prior distribution. Each parameter has an associated objective function

which is transformed into a support measure1, and higher values indicate bet-

ter performing parameter values. These parameter values are shown in the

form of a dotty plot (part a) in Figure 1.1. The top 10 % (for instance)

performing parameter values are selected and their cumulative support are

calculated (part b) in Figure 1.1. A straight line indicates a poorly identified

parameter, i.e. the highest support values are widely distributed over the

feasible range. When a parameter is conditioned by the objective function

used it is indicated by deviations from this straight line. An indicator of

strength of the conditioning, and the identifiability of the parameter is the

marginal probability distribution of the parameter, which is the gradient of

the cumulative support. By segmenting the range of each parameter and

calculating the gradient in each segment one get the schematic distribution

shown in part d) of Figure 1.1. The highest value indicates the location of

greatest identifiability of the parameter. Different model structure in terms

of parameter uncertainty 2.

Using a moving window approach when calculating the parameter iden-

tifiability one can investigate the identifiability as a function of time (part e

of Figure 1.1), and the gradient distribution aggregates the residuals within

the window of time. Results for each parameter per time, plotted in colour

coding indicates areas of higher (darker colour) identifiability.

1.1.1 Fordals Implementation - A Users Point of View

An implementation of the DYNIA-method by Dr. Wagener is available in

the Matlab toolbox MCAT (Wagener & Weather 2004), but the source code

of this implementation is protected and unavailable. To apply DYNIA as a

1All support measures have the characteristic that they sum to unity.
2assumed the opposite of identifiability can be compared by this measure of identifia-

bility.
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Figure 1.1: The DYNIA procedure, courtesy of (Wagener et al. 2002).
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tool for extracting information about dynamic systems from historic data,

and gain a more thorough understanding of, and to be able to suggest and

test modifications to the method, Fordal (2010) implemented the method in

Matlab. A scheme of the implementation is presented in Figure 1.2. Re-

viewing Fordal (2010) is advised if one wants a comprehensive study of the

implementation. This will not be elaborated on in this thesis.

Looking at this implementation from a users viewpoint, it is clear that

that the method demands a lot to execute with satisfying results. This is also

mentioned as a concern in Fordal (2010), as no guidelines for setting feasible

parameter ranges, a window size, number of Monte Carlo simulations, and

tolerance limits for the behavioural parameter sets, are available. Another

concern is the methods exponential time complexity. For large quantities of

data, the running time of the method is considerable.

Replicating an example from Fordal (2010), with the before mentioned

parameters of concern set by Fordal, considering the first order LTI SISO-

system given in Equation 1.1 and Figure 1.3 3, yields the results given in

Figure 1.4 and 1.5.

y

u
(s) =

k

T1s + 1
k = 2, T1 = 3 (1.1)

Figure 1.4 implies that the identifiability of the gain parameter is high

when the system is at steady state4, and the it is estimated to be in the

vicinity of 2. Further, Figure 1.5 implies that the identifiability of the time

constant parameter is high after the last step response of the system5, and is

estimated to be in the vicinity 3. The method appears to make satisfactory

estimations of the system parameters, but Fordal proposes that the method

has to be researched and developed further to function as a tool.

Another approach is to start from scratch, and develop a new concept for

searching historic data for model identification purposes, with focus on the

user.

3Some noise added to output signal to mimic measurement noise.
4Which seems peculiar as an possible bias between input and output would only be

apparent at a step response.
5Again, the responses of the steps earlier in the data set does not seem to contain

information about the system, which is peculiar.
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The DYNIA method

- Obtain process data

- Choose model structure

- Monte Carlo sampling in

feasible parameter space

- Select parameter to analyze

- Choose window size

Select top x% parameter sets

Calculate likelihood measure for

each selected parameter set

From first time step

Cumulative distribution of

likelihood

Calculate confidence limits of

cumulative likelihood distribution

Last time
step?

Yes

No, go to

next time step

Plot confidence limits

over time axis

Assesment

Figure 1.2: A scheme of the DYNIA implementation by Fordal (2010).
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1.2 Concept

Motivated by the complexity of DYNIA from a users point of view, and the

statement of Ljung (1999), regarding selection of data segments in historic

data, the main objective of this thesis will be to develop and implement a

concept for obtaining appropriate data segments from historic data for model

identification, that is easy to use(i.e. the user supplies the concept/method

with basic knowledge of dynamic system behaviour, so that it can decide

which data segments(if any present in the data set at all) to use in model

identification). The concept will primarily be implemented as a method to

deal with Single-Input Single-Output(SISO)-systems affected by noise and

time delays. The possibility of expanding the concept to deal with Multiple-

Input Multiple-Output(MIMO)-systems will also be explored.
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1.3 Outline of the Thesis

• Chapter 2: Background theory.

• Chapter 3: Design and implementation of the proposed concept.

• Chapter 4: Expansion of the concept for use with MIMO-systems.

• Chapter 5: Discussion of the proposed concept.

• Chapter 6: Conclusions and recommendation for further work.
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Chapter 2

Theory

One of the main attributes of the concept developed in this thesis, is that it

should be simple and easy to use. A practical (not ’theory heavy’) approach is

therefore taken, using well known and relatively simple criteria to distinguish

interesting from not interesting data segments of the historic data set. The

term interesting is used instead of informative, as no measure for informative

data is used, and only basic knowledge of system dynamics is exercised as

mentioned before. As background material a brief introduction to system

identification, based on Ljung (1999), is presented.

2.1 System Identification

As mentioned, the system identification procedure is the process of develop-

ing a mathematical model to describe a systems behaviour. This is achieved

by selection of a model structure with a corresponding set of parameters

which give a high degree of similarity between simulated (model) and ob-

served (actual system) output data. Ljung (1999) states that the system

identification procedure consists of three basic entities:

1. A data set ZN .

2. A set of candidate models.

3. A rule by which the candidates can be assessed using the data.

11
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2.1.1 The Data Set

The data set, ZN , contains input and output data recorded from a pro-

cess. This recording often takes place during a specially designed experiment,

where the user may choose the input signals as well as which measurements

to record, and when they are to be recorded. The objective of this experi-

ment is to make these choices so one can ensure that the data set recorded is

maximally informative. If one does not have the opportunity to perform such

an experiment, due to economy, safety, etc., one can use data from normal

operation of the plant1. As mentioned earlier, the main task in this thesis is

to obtain interesting segments of such historic data sets, and its focus rarely

ventures beyond this objective.

2.1.2 Candidate Models

The choice of candidate models is considered the most important and diffi-

cult in the system identification procedure. The candidate model set must

be specified within a collection of models is to be assessed, e.g. linear mod-

els. There are different ways to build a model for such a candidate set,

such as blackbox models. These are standard linear models, whose parame-

ters are adjusted to fit the data, without reference to physical attributes of

the system. Graybox model sets, accordingly, have adjustable parameters

with physical interpretation, and model sets obtained by careful modelling

of physical laws may also be employed.

2.1.3 Assessment Rules

A model is selected from a candidate model set based on its ability to ’re-

produce’ the observed output data. This is done by choosing a criterion to

which the model should fit. Determining which is the best model in the

candidate set is done by estimating its parameter vector Θ that minimizes

a objective function VN(Θ, ZN). The objective function is usually one of

prediction errors over a time series t = 1 : N of a data setZN :

1Which can contain large segments of missing or stationary data.
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VN(Θ, ZN) =
1

N
ΣN

t=1l(εF (t,Θ)) (2.1)

Figure 2.1 represents the system identification loop, in which this thesis

will be focused on the entity regarding historic data selection.

Experiment Design

OR

Historic Data Selection

Prior Knowledge

Data Set

Choose Model Set

Choose Criterion to Fit

Calculate Model

Validate Model

OK: Use Model

Not OK: Revise

Figure 2.1: The system identification loop. Based on Ljung (1999).
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Chapter 3

Concept - Design and

Implementation

In this chapter the design and implementation of the concept is presented.

The implementation is done in Matlab, and is structured as a main/framework

function using a collection of other functions, which serve different purposes:

1. Search criteria: Functions to search the data set for interesting data

segments, using different search criteria.

2. Combinatorics: A function to combine different search criteria.

3. Segment selection: A function to select which data segments to use

for system identification and model validation.

This collection of functions will is presented, followed by a presentation of

the framework. The Matlab code for functions and framework can be found

in Appendix A.

3.1 Searching the Data Set

If a system is in a steady state1, one can not determine the system’s at-

tributes. A system’s, e.g. a chemical production plant, historic/operational

1I.e. the input and output of the system is stationary.

15
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data can contain large segments where nothing happens, as it is at a steady

state. To identify a model of the system, one must locate changes in the

input and output variables, where information about the systems dynamics

is revealed. In a SISO-system, changes in the input variable (u) result in

a response in the output variable (y). Implementing a simple conceptual

function to locate changes in u is an non-complex task. When traversing the

data set, the function returns a segment of the data when it encounters an

input value u(t) which is unequal to u(t− 1).

Note:

The systems used in the examples of this text mimic open-loop experiments,

as it is only the response of the system which is of interest. With no feedback

to a controller, the input data is not dependent on the output data, and a

set point variable is not included. Input data is chosen by the author and

the output data is generated by Matlab. Changes in the input data occurs as

steps, but as this data is discrete and the plots are continuous, steps appear

as ramps between samples in these plots.

Example 1

In this example a first order Linear Time-Invariant (LTI) SISO-system will

be considered. A gain and a time constant determine the response from

the system output to changes in the input. No time delay or noise will be

considered. The input variable, u is constant until a step occurs at time step

50. Output variable, y, is generated by Equation 3.1. The data set is shown

in Figure 3.1.

y

u
(s) =

k

T1s + 1
k = 4, T1 = 3 (3.1)

When a change in u is perceived, the function returns a segment con-

taining the change, as seen in Figure 3.2. This functionality is not of any

practical use, as any change of u, e.g. measurement noise(not considered in

this example), alerts the user of informative data, so other criteria must be

explored.
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3.1.1 Search Criterion Functions

Using different criteria, it is desirable to search a data set for informa-

tive/interesting data. In the concept this will be done by ’criterion func-

tions’. These have a criterion parameter as an input argument, which decide

which segments of the data set is returned as interesting from the functions.

The returned data comes in the form of a vector, which is the same size as

the original data set. This vector is initially filled with zeros, and when the

criterion of the function is met, a segment of a desired size is filled with ones.

This indicates an ’interesting’ segment. By filling the vector in this manner,

overlapping segments of interesting data become one larger segment.

3.1.2 Finding Steps in the Input Variable

According to Ljung (1999), there are three basic facts that govern the choices

one makes designing an open loop experiment for the identification of linear

systems:

1. The asymptotic properties of the estimate (bias and variance) depends

only on the input spectrum - not the actual waveform of the input.

2. The input must have limited amplitude: ulower ≤ u(t) ≤ uupper.

3. Periodic inputs may have certain advantages.

As common input signals for such experiments, filtered gaussian white noise

and random binary signals are mentioned. These are series of steps in the

input signal, so searching for steps in the input data of historic data sets

seems like the obvious place to start. Instances where u changes in steps

may be seldom or non existing in real life scenarios. Although the set point

of a controller may behave in this manner, the examples of this text, as

mentioned, treat the systems as open loop experiments, and u is preferred

to the set point as a system variable.
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inputStep.m

The Matlab function inputStep.m, returns segments of a given data set in the

manner described in Section 3.1.1. As input arguments the function needs a

window size which determines the size of the returned data segments to be

considered interesting, the input data of the set and a ’minimum step size’

parameter2. The last argument gives the user a choice to filter out small and

insignificant changes between samples in the input data. It seems to demand

little from the user to set these arguments (window size and step size), which

is in line with the concepts attempt to be easy to use, but some knowledge of

the given system/plant is of course preferable. The criterion of the function

is shown in pseudo code in equation 3.2, and considers both positive and

negative steps in the data.

if(u(i) ≥ (u(i− 1) + stepSize) OR u(i) ≤ (u(i− 1) − stepSize)) (3.2)

Example 2

Consider the same LTI system as in Section 3.1 described in Equation 3.1. A

small step is set to occur at u(5) and u(10). A greater step occurs at u(30)

and u(71). Figure 3.3 shows the simulated system.

Running the function inputStep.m on this data set, with a window size of

20 samples and a minimum step size of 5, returns a vector with the segments

shown in Figure 3.4. The small steps in the beginning of the data set is not

considered, but two independent segments meet the criterion. Note that these

segments are one sample larger than the chosen window size, as inputStep.m

considers one sample at the time and creates a segment around this sample,

i.e. windowSize/2 + activeSample + windowSize/2. This complies to all

the ’criterion functions’.

The segments suggested by inputStep.m capture steps in u well enough,

but Figure 3.4 illustrates that these segments may be too small as the re-

sponse of y does not seem to reach steady state. Sufficient information re-

2Difference quotient between subsequent samples.
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Figure 3.3: Example 2: First order LTI SISO-system.
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Figure 3.4: Data segments considered interesting by inputStep.m.
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garding the gain and time constant of the system might not be present. A

solution to such a problem can be to increase the window size.

In this simplified example, no noise/disturbances were considered, and

it is obvious that this would create problems for inputStep. This will be

discussed in Chapter 5.

3.1.3 Finding Changes in the Mean Value of a Data

Set

Brown & Hwang (1997) defines the mean value of a variable X as:

Mean(X) =
X1 + X2 + · · · + XN

N
(3.3)

This implies that if a variable, X, is constant(steady state) over a period

of time, N , its mean value will be constant as well3. Traversing a data

sequence with a sliding window, in which one compute the mean value of

that data sequence for each window, changes of the mean value of these

windows indicate significant change in the sequence, as small and/or random

disturbances, such as noise, are ’cancelled’ out. This is shown in Figure 3.5,

where a variable y is affected by a random noise.

This line of thought is inspired by Blanke, Kinnaert, Lunze & Staroswiecki

(2006), where the Cumulative Sum Algorithm(CUSUM) is proposed to de-

tect change in the mean of normally distributed random sequences for fault

detection, isolation and/or estimation in various systems.

meanChange.m

The function meanChange.m uses a sliding window to calculate the mean

values of a data sequence as described above. Input arguments of the function

is a sliding-window size, a data sequence, and a criterion parameter ’minimum

mean change’. The criterion is the same as the one used in inputstep.m, but

3And the same value as X.
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Figure 3.5: Mean value of variable y, calculated at each sample.

regards changes in the calculated means, and not the data sequence itself

(Equation 3.4).

if(meanChange ≥ minMeanChange OR meanChange ≤ minMeanChange)

(3.4)

When the criterion is met, a segment the size of the sliding window is

considered an interesting segment in the functions returned vector.

Example 3

Consider the second order LTI SISO-system given in Equation 3.5, where

Θ is the time delay of the system. The output data, y, is affected by a rela-

tively small random noise variable with an amplitude of 0.2. The simulated

system is shown in Figure 3.6.
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y

u
(s) =

k

(T1s + 1)(T2s + 1)
e−Θs k = 2, T1 = 2, T2 = 4,Θ = 10 (3.5)
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Figure 3.6: Example 3: Second order LTI SISO-system

Running meanChange.m with y as data sequence, a window size of 30

samples and 0.2 as a minimum difference quotient between subsequent mean

values(criterion argument), returns the segments in Figure 3.7 as interesting.

Both the steps in u and the response of y are captured in the segments.

A long enough time delay, Θ, would ultimately result in returned segments

which do not contain the steps in u(without increasing the window size).

More on this later.

Figure 3.8 shows the calculated means of y per window. Note that the

vector containing these means is one window size smaller that the data set,

as calculations begin and end half a window size into the set. The remaining

sample points are set to zero due plotting reasons. Setting the window size

affects the calculation of the mean values. A large window results in low sen-

sitivity to disturbances/noise and a low difference quotient at step responses,
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Figure 3.7: Data segments considered interesting by meanChange.m.

while a small window have a higher sensitivity to noise but also a higher and

more accurate difference quotient at step responses. More on this in Chapter

5.

3.1.4 Finding Variance in the Data Set

The function meanChange.m compares changes in the mean value of subse-

quent windows in a sliding window scheme. If one wants to find diversification

of a data sequence within each of those windows, variance of the sequence

can be utilized.

Brown & Hwang (1997) defines the variance of a variable X as:

Var X = Mean(X2) − (Mean(X))2 (3.6)

Where:



3.1. SEARCHING THE DATA SET 25

0 50 100 150 200 250 300
−5

0

5

10

15

Time

V
al

ue
Mean values of y, calculated at each sample

 

 
y
Mean

Figure 3.8: Mean values of y calculated by meanChange.m.

Mean(X) =
X1 + X2 + · · · + XN

N
(3.7)

Mean(X2) =
X2

1 + X2
2 + · · · + X2

N

N
(3.8)

In segments of the data set where the system is at a steady state (and

without any noise), the variance of a variable will be zero. Implementing a

variance criterion should make a user able to locate data segments where the

system is not at a steady state, as the variance of the variable will be non

zero and positive.

variance.m

The Matlab function variance.m has the following input arguments: a data

sequence, a sliding window size, and a ’minimum variance’ parameter. Travers-

ing the data sequence is done by using a sliding window. At each time sample

the variance of the sequence is calculated over this window using Equation
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3.6. If this window/segment triggers the functions criterion, which is rep-

resented as pseudo code in Equation 3.9, it is considered interesting in the

returned vector (filled with ones). Most likely, the variance of the next win-

dow also triggers the criterion, and does so until the data sequence is at a

steady state. This results in a segment returned containing the transient of

the response, i.e. what one wants. From Equation 3.6 one can see that the

unit of variance is the original variables unit squared. With this in mind,

setting the minimum variance criterion may not be straight forward. More

on this in Chapter 5.

if(variance ≥ minimumV ariance) (3.9)

Example 4

Consider the second order LTI-system in Example 3 in Section 3.1.3, pre-

sented in Equation 3.5 and Figure 3.6. Running variance.m on y with a

window size of 30 samples and 10 as a minimum variance criterion, results

in the calculated variances presented in Figure 3.9. At the low noise level of

this example the variance gives a clear indication of where the step responses

are in the system(discussed in Chapter 5), and with the minimum variance

criterion set to 10, the segments in Figure 3.10 are returned as interesting.

3.1.5 Variance of the Mean Value

Figure 3.11 illustrates that variance, calculated by variance.m, of a variable

y affected by considerable noise, become less reliable as a criterion than

indicated in Example 4. Although the variance ’peaks’ at the step response

of y, it has a considerable bias off zero when the variable is constant.

Recall the properties of the mean values calculated by meanChange.m

regarding noise. Calculating the variance of these in the same manner as

variance.m, results in the variance of mean values shown in Figure 3.12.
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Figure 3.9: Variance of y calculated by variance.m.
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Figure 3.10: Data segments considered interesting by variance.m.
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Figure 3.11: Variance of y calculated by variance.m.
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Figure 3.12: Variance of mean values.
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meanVariance.m

meanV ariance.m calculate the mean values of a data sequence in the manner

suggested in Section 3.1.3. It then calculates the variance of these in the

manner of variance.m, and the function uses the same sliding window size

for these operations. This is done for convenience, although use of different

window sizes could well be implemented. The criterion and its parameter is

the same as in Equation 3.9, but regards the variance of mean values of a

variable, and not the variable itself. When the criterion is met, the active

window is considered interesting.

Example 5

Consider the second order LTI SISO-system given by Equation 3.10, with

a noise affecting y, presented in Figure 3.13.

y

u
(s) =

k

(T1s + 1)(T2s + 1)
e−Θs k = 2, T1 = 1, T2 = 2,Θ = 5 (3.10)

The mean values of y and their variance calculated by meanV ariance.m,

with a sliding window size set to 30 and a minimum variance (criterion pa-

rameter) set to 1, are presented in Figure 3.14. Variance of the variable seems

to give clear and unambiguous indications to where the step responses of y

occur. In turn the criterion parameter can be set low, even with consider-

able noise compared to the size of some of the step responses. This will be

discussed further in Chapter 5. The segments returned by meanV ariance.m

are shown in Figure 3.15, where Segment B is one segment made up by two

overlapping segments considered interesting.

3.1.6 Combining Criteria

For a data segment suggested by the criterion functions to be of any use

in system/model identification, it is imperative that it contains both the
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Figure 3.13: Example 5: Second order LTI SISO-system
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Figure 3.14: Variance of mean values of y calculated by meanV ariance.m.
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Figure 3.15: Data segments considered interesting by meanV ariance.m.

steps/changes in the input data and the output data response to these. To

ensure this the user is given the option to apply and combine several search

criteria to the data set. By combining a search for steps/changes in input

data with a search for response transients in output data, returned data

segments will contain both.

criteriaCombination.m

The Matlab function criteriaCombination.m compares two data vectors re-

turned from criterion functions, supplied as input arguments. Recall that

these data vectors have the same amount of samples as the original data set,

and differentiate between interesting and not interesting data samples in a bi-

nary fashion(zero for not interesting and one for interesting). When segments

of interesting data in the compared vectors overlap, they are merged and re-

turned as one segment in the returned data vector of criteriaCombination.m.

Running criteriaCombination.m once, one can combine two search criteria.

Running it again with the combined result from the first run as an input

argument, i. e. comparing it with the result of another criterion function,
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one can, in an additive manner, combine several search criteria/data vectors.

More on how this is implemented in the main/framework function in Section

3.3.

Example 6

Consider the second order LTI SISO-system presented in Equation 3.11

and Figure 3.16, where y is affected by a random noise.

y

u
(s) =

k

(T1s + 1)(T2s + 1)
e−Θs k = 2, T1 =

1

2
, T2 = 1,Θ = 40 (3.11)
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Figure 3.16: Example 6: Second order LTI SISO-system.

Searching for variance in u with variance.m, with a window size of 30

and a minimum variance criterion of 1, results in the segments in Figure

3.17 considered as interesting. Searching for variance of the mean values in

y with meanV ariance.m, with the same window size and criterion value(30,
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1), results in the segments in Figure 3.18. Due to the time delay and selected

window sizes none of these segments contain both the steps in u and responses

of y. Using the returned data vectors from varaince.m and meanV ariance.m

as inputs to criterionCombination.m, overlapping segments are combined,

and a new data vector suggesting the segments in Figure 3.19 as interesting,

are obtained.

It is obvious that the selection of window sizes affect criterionCombination.m’s

ability to combine search criteria. If a time delay is long enough, segments

returned from different criterion functions will not overlap. This is discussed

in Chapter 5.
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Figure 3.17: Data segments suggested by variance.m regarding u.
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Figure 3.18: Data segments suggested by meanV ariance.m regarding y.
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Figure 3.19: Data segments suggested by criterionCombination.m.
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3.2 Choosing Segments from the Data Set

The last step in the system identification loop(Figure 2.1) is to validate the

model. To do this it is recommended to use a different data set than the

one used to identify/build the model. If a data set lacking some information

about the system is used to build and evaluate a model, it could appear to be

’correct’, even if its not. By evaluating/comparing the model to a different

data set, one can determine if the ’whole’ system modelled is emulated in a

satisfactory way.

Selecting which segments to use to identify/build and validate a model

is the last step in the concept. Searching a data set as described in previ-

ous sections can result in multiple segments of interesting/informative data.

Allowing a user to manually choose which segments to use would be advan-

tageous, but in this prototype of the concept they are selected by a function

segmentSelect.m.

segmentSelect.m

The Matlab function segmentSelect.m traverse a data vector provided by

a criterion function (or criteriaCombination.m), supplied as an input argu-

ment, and returns four vectors. The first two are to be used in model identi-

fication(identification data set), one containing a segment of input data and

the other a segment of output data from the original data set(supplied as in-

put arguments). The last two are to be used in model validation(validation

data set), these also separated as input and output data. No criterion re-

garding which segment should be what is implemented in this prototype of

the concept. As a simple mean to distinguish segments, the first segment

encountered in the current data vector supplied to segmentSelect.m is re-

turned as the two identification vectors, and the next (if there is one), is

returned as the two validation vectors. E. g. using the data vector returned

by criteriaCombination.m in Example 6 as input to segmentSelect.m, Seg-

ment A in Figure 3.19 would be returned as identification data and Segment

B as validation data. If there indeed only is one segment considered interest-

ing by the search criteria, the identification and validation data is set to be

equal. If no data segments are considered interesting by the foregoing search,
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the identification and validation sets are returned empty.

3.3 Framework

To utilize the criterion, combinatoric and selection functions presented in

Section 3.1 and 3.2 as a concept/method for searching data sets, a framework

is needed. This will be implemented in a ’main’ function called Searching

Historic Data for Model Identification(SHDMI), which the concept will be

referred to as from now on.

shdmi.m

SHDMI as a tool for searching data sets, is presented to the user as the

Matlab function shdmi.m. When executing the function/method the user

needs to:

1. Supply input and output data of a system.

2. Select which criteria to use.

3. Set criterion parameter values.

4. Set a window size.

This is done by setting the input arguments of the function, which are as

follows:

1. u: Input data of a data set.

2. y: Output data of a data set.

3. windowSize: Size of window used to fill in return vectors from criterion

functions and in sliding window schemes.

4. stepSize: Criterion parameter used in inputStep.m.

5. minMeanChangeU : Criterion parameter used in meanChange.m re-

garding input data.
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6. minMeanChangeY : Criterion parameter used in meanChange.m re-

garding output data.

7. minV arianceU : Criterion parameter used in variance.m regarding in-

put data.

8. minV arianceY : Criterion parameter used in variance.m regarding

output data.

9. minMeanV arU : Criterion parameter used in meanV ariance.m re-

garding input data.

10. minMeanV arY : Criterion parameter used in meanV ariance.m re-

garding output data.

The window size set in shdmi.m is used by all selected criteria functions.

Individual window sizes for each criterion parameter could be implemented

and indeed advantageous, but the single one used commonly in this prototype

of SHDMI is convenient as the list of input arguments is considerably long.

Recall that the functions in Section 3.1 use half the window size when filling

their returned data vectors. This implies that the window size must be an

even number, as samples of the data set are integers.

Selecting which search criteria to use and setting their criterion param-

eters is done in one action. E. g. setting minV arianceU to 5, the variance

search criteria is selected for u and its criterion parameter is set to 5. By

setting a criterion parameter to zero, the respective search is not run. E. g.

by setting minV arianceU to 5, minMeanV arianceY to 1 and the remaining

criterion parameters to zero, the only criterion functions run and combined

are variance.m regarding u, and meanV ariance.m regarding y.

criterionCombination.m is run after each of the criterion functions. The

result of each combination is carried on in criterionCombination.m’s re-

turned data vector, and this is then combined with the result of the next

criterion function selected in the sequence to combine all the selected crite-

ria. The first criterion function run is combined with itself, as there is no

result from a previous combination.

The last step of SHDMI is segmentSelect.m. Using the data vector sup-

plied by the last instance of criterionCombination.m, containing the results
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of all criteria combined, segmentSelect.m distinguishes two sets of input

and output data to be used in system identification. These are returned

from shdmi.m as a system identification set and a validation set, and the

search is complete. If no segments are returned, it indicates that the criterion

parameters must be lowered and/or the window size is to small, or that the

original data set indeed does not contain any informative/interesting data.

Example 7

Consider a scenario where variance.m regarding u, and meanV ariance.m

regarding y are selected as search criteria. The sequence of shdmi.m is as

follows (pseudo code):

1. stepSize.m - not executed, not combined.

2. meanChange.m regarding u - not executed, not combined.

3. meanChange.m regarding y - not executed, not combined.

4. variance.m regarding u - executed, combined with itself. Result of

combination stored in a data vector, result.

5. variance.m regarding y - not executed, not combined.

6. meanV ariance.m regarding u - not executed, not combined.

7. meanV ariance.m regarding y - executed, combined with result. Result

stored in result.

8. segmentSelect.m - distinguishes identification and validation data sets,

which are returned from shdmi.m.
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km 1.9918 + - 0.0087

Tm1 0.9407 + - 0.3743

Tm2 3.1197 + - 0.2440

Θm 5.0190 + - 0.2254

Table 3.1: Model parameters calculated by the System Identification Tool-

box.

3.4 System Identification

The objective of SHDMI is to search historic data and obtain identification

and validation data sets to proceed in the system identification loop (Figure

2.1). Although it is not the focus of this thesis, an example of supplying a

conventional system identification method with a identification and valida-

tion data set, will be given in this section by using the System Identification

Toolbox in Matlab(Mathworks 2010).

Example 8

Consider the second order LTI SISO-system presented in Equation 3.12

and Figure 3.20, where y is affected by a random noise.

y

u
(s) =

k

(T1s + 1)(T2s + 1)
e−Θs k = 2, T1 =

1

2
, T2 = 1,Θ = 40 (3.12)

Employing SHDMI to search for variance in u and variance of the mean

values of y, with a window size of 30, results in the data sets in Figure 3.21.

Using these data sets as identification and validation data in the System

Identification Toolbox, and calculating a second order LTI SISO-model, gives

the model parameters in Table 3.1. These are close to replicating the system

parameters, and a comparison of the model output and y is shown in Figure

3.22 (validation data set).
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Figure 3.20: Example 8: Second order LTI SISO-system.
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Figure 3.21: Data segments suggested by SHDMI.



3.4. SYSTEM IDENTIFICATION 41

0 50 100 150
−2

0

2

4

6

8

10

12

Time

Measured and simulated model output

Figure 3.22: Comparison of system and model behaviour.
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Chapter 4

Expanding SHDMI to use with

MIMO-systems

SHDMI is implemented to deal with SISO-systems. In MIMO-system the

behaviour of paired multiple input and/or output variables of a system must

be present in a data set for a model identification to be successful. In the

manner SHDMI is implemented, an expansion of system variable data ar-

guments, and combining searches for each of these, could ensure that the

systems behaviour is present in resulting data segments. As an example

of this a version of SHDMI, which considers two input variables affecting

one output variable of a system, will be implemented and presented in this

chapter. The implemented Matlab code can be found in Appendix A

4.1 SHDMI - MISO case

shdmiMISO.m is a version of SHDMI which consider two-input one-output

systems (MISO). It is similar to shdmi.m, but has two input system vari-

ables in the argument list, and returns identification and validation data sets

containing three system variables1. In this example only variance.m and

meanV ariance.m will be used to search the systemss three variable data se-

quences, so the other criterion functions are left out. This results in a input

1A version of segmentSelect.m, segmentSelectMISO.m, includes both inputs and the

output of the system in the data sets.

43
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arguments list as follows:

1. u1: Input data 1 of a data set.

2. u2: Input data 2 of a data set.

3. y: Output data of a data set.

4. windowSize: Size of window used to fill in return vectors from criterion

functions and in sliding window schemes.

5. minV arianceU1: Criterion parameter used in variance.m regarding

u1.

6. minV arianceU2: Criterion parameter used in meanChange.m regard-

ing u2.

7. minV arianceY : Criterion parameter used in meanChange.m regard-

ing y.

8. minMeanV arU1: Criterion parameter used in meanV ariance.m re-

garding u1.

9. minMeanV arU2: Criterion parameter used in meanV ariance.m re-

garding u2.

10. minMeanV arY : Criterion parameter used in meanV ariance.m re-

garding y.

Example 9

Consider the first order LTI MISO-system given in Equation 4.1, where u1

and u2 affect y with the same time constant, and opposite gain. A random

noise have been added to y to mimic measurement noise. The simulated

system is shown in Figure 4.1. To represent y being affected by a step in

only one of the input variables, steps occur in u1 and u2 with some time

between them. Later in the data set, a step in both input variables occur

closer in time.
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y(s) =
k

T1s + 1
e−Θs(u1(s) − u2(s)) k = 4, T1 = 3, Θ = 5 (4.1)

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

20

30

40

50

60

70

Time

V
al

ue

MISO Example: First order system LTI system

 

 
u1
u2
y

Figure 4.1: Example 9: First order LTI MISO-system.

Running shdmiMISO.m with a window size of 30, a criterion parame-

ter for variance.m regarding both input variables set to 1, and a criterion

parameter for meanV ariance.m regarding y set to 1, suggests the data seg-

ments in Figure 4.2 as identification and validation data sets. These are set

to be equal as only one segment meets all the criteria set. With this window

size, the steps earlier in the data set does not overlap, and are considered

not interesting.
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Figure 4.2: Data segments suggested by shdmiMISO.m.



Chapter 5

Discussion

In this chapter topics mentioned in Chapter 3 and 4 will be discussed.

5.0.1 Sensitivity to Noise

Noise affecting a variable is one of the most deciding factors considering a

criterion function’s ability to recognise an ’interesting’ segment of data. If

the function is sensitive to noise, steady state segments of the data set can

arbitrarily trigger the function’s criterion, and setting the criterion param-

eter becomes difficult. As mentioned in Chapter 3, the criterion function

inputStep.m can be sensitive to noise. If the amplitude of the noise exceeds

the criterion parameter, the criterion is triggered, and the criterion is ren-

dered useless. In closed loop scenarios where the manipulated variable (input

data) is responding to changes in the set point and the controlled variable

(output data), it ’inherits’ possible noise from the controlled variable, and

may indeed be affected by a measurement noise directly. This, alongside

physical constraints, results in a manipulated variable never performs steps.

The set point of the controller however, if set directly by a user and not e. g.

in a cascade control scheme. If one is to consider the set point as a variable,

inputStep.m is included in SHDMI (and as a conceptual criterion function).

To cope with noise, calculation of mean values per sample in a sliding

window scheme was introduced. The mean values lie close to the the ac-

tual variable values (Figure 3.8), and meanChange.m search for a difference

quotient(between subsequent samples in the mean values) larger than its cri-
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terion parameter. At high noise levels, the the window used in calculations

have to be long to ’cancel’ out the noise. Comparing window sizes of 30 and

10 at a relatively low noise level(Figure 5.1), one can see that the difference

quotient between subsequent samples gets harder to distinguish when the

window increases in length. This implies that the window size should be

small, but considering noise it should be long. This renders meanChange.m

to only be useful at low noise levels. Pre filtering the data set to reduce

noise(low pass filter) would be beneficial, and this is often done in practice.

Doing this, one can also calculate the difference quotients of the variable

directly.
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Figure 5.1: Mean values and difference quotients per sample, calculated by

meanChange.m.

To apply criteria to whole windows/segments variance was introduced

as a criterion. This was implemented in the criterion function variance.m,

regarding a variable directly, and in meanV ariance.m, regarding calculated

mean values of a variable. Obviously variance.m is sensitive to noise, as

variance calculated at steady state will be biased from zero. Figure 5.2 shows

that at low noise levels the transient in y is clearly distinguished from steady
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state by the variance calculated in variance.m, and the criterion parameter

can be set low(as steady state variance is approximately zero). At a higher

noise level, the transient still is distinguished from steady state, but setting

the criterion parameter becomes more difficult, as one cannot count on a

lower boundary of the parameter.
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Figure 5.2: Variance per sample, calculated by variance.m.

meanV ariance.m was implemented as a merging of the ideas in meanChange.m

and variance.m. By calculating variance of calculated mean values, a tran-

sient can be distinguished from steady state at high noise levels(Figure ??).

Figure 5.3 illustrates that at low noise levels, variance of the variable directly

might be a better criterion as the variance of its mean values are lower(the

mean values transient is ’slower’ than the actual variables transient). But

Figure 5.3 also show that as the level of noise close to equal the transient

in the variable, meanV ariance.m is still able to distinguish the change of

mean values in a satisfactory way(steady state variance of mean values close

to zero). This enables the user to determine if a data set contains interesting

data, even before pre filtering the data.

Figure 5.4 shows an ’impulse response’ of a variable(low and high noise).
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Figure 5.3: Variance, mean values and variance of mean values per sample,

calculated by variance.m and meanV ariance.m

Even though the variance of mean values calculated by meanV ariance.m

appear to be small, this variance is calculated to be approximately zero at

steady state, and the user is able to set the criterion parameter to be close

to zero.

5.0.2 Delay

With a time delay in the system, running a criterion search on only one

system variable can result in a data segment that does not include both the

input step and response transient of the system(Section 3.1.6). Extending the

window used by the criterion functions could help, but by combining criteria

regarding both input and output data help ensure that steps and responses

are included in returned data segments. The size of the window, however,

must be long enough to parallel the length of the time delay. The function

criteriaCombination.m also allows the user to combine several search criteria

for each system variable, if this is desired.
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Figure 5.4: Variance, mean values, and variance of mean values per sample,

calculated by variance.m and meanV ariance.m

5.0.3 Setting Criterion Parameters and Window Size

SHDMI set out to be simple and easy to use. The criterion parameters

appear easy to set for the user, but noise can make it more difficult (as

discussed earlier). Implementing different criterion functions culminated in

meanV ar.m, which appear as the most practical. But a window size to

small or large could render also meanV ariance.m ineffective(small window:

mean values does not ’cancel out’ noise, large window: mean values change

slowly at transients (Figure 5.4)). The window size parameter also affects

the the combination of criteria, and have to be ’large enough’. In practice

it seems difficult to set these parameters1, but prior knowledge of the plant

can be of great help. E. g. knowing the approximate time delay of the

plant/system lets you choose a long enough window. Knowing this, coupled

with the properties of meanV ariance.m (criterion parameter can be set close

1Calculated mean values, variance etc. is plotted so that the user cam get an idea of

what the criterion parameters/window size should be.
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to zero), standards for that particular plant can be developed.

5.0.4 Choosing Data Segments

SHDMI separates interesting from not interesting data in a binary fashion (1:

sample interesting, 0: sample not interesting). This enables the prototype of

the concept to carry results from different criterion functions through combi-

nation, and deliver it to segmentSelect.m, but it has no qualitative measure

for the selection of which data segments to use. An improvement as simple

as increasing values (instead of binary) parallel the size of the variance of a

variable in a segment, could enable SHDMI to differentiate between quality of

the segments. segmentSelect.m truly is a prototype function as its only use

is to set the first two, or only data segment, considered interesting, as identi-

fication and validation data sets, and improvements should be implemented,

such as letting the user manually/visually decide which data segments to use

as what.

5.0.5 MIMO Expansion

In Chapter 4 the possibility to expand SHDMI to use with MIMO-systems

was introduced. The structure of SDHMI allows implementation to expand

the input and output variables to as many as one would like. What needs

to be done to achieve this is adding variable data and criterion parameters

in the input argument list of shdmi.m, and criterion functions to consider

these variables in the sequential framework. The advantage of using SHDMI

to search MIMO-system data sets is its ability to combine search criteria

for all the current paired variables of the system, to ensure data segments

contain the correlation between them.

5.0.6 Other Criteria

The structure of SHDMI also allows simple implementation of additional

criterion functions. Structured like the criterion functions in this thesis, a

new criterion simply has to be added to the sequence of shdmi.m (followed
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by a criterion combination), and be accounted for in the input argument list

of shdmi.m.
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Chapter 6

Conclusions

The main objective of this thesis has been to develop and implement a con-

cept to find possible segments of historic data sets suited for model identi-

fication. The concept, named SHDMI after the title of the thesis, set out

to be easy to use, drawing on commonly known terms (e.g. variance), and

demanding only a basic understanding of a dynamic system’s behaviour1.

To distinguish interesting data from stationary data, different search cri-

teria was implemented. The reliability of these search criteria varied. The

most reliable criterion was implemented in meanV ariance.m, as it showed

little sensitivity to noise. This allows the user to set the criterion parameter

of the function without worrying about stationary segments being considered

interesting because of the noise. Other search criteria, such as the one im-

plemented in variance.m is effective at low noise levels. The user was also

given the ability to choose from, and combine the different search criteria, to

ensure that time delays are accounted for in the returned data segments.

The resulting prototype of SHDMI shows promise as a tool in its sim-

plicity, and structure. Expanding its concepts to use with MIMO-systems

underlines this conclusion. However there is potential for improvements and

expansions, such as guidelines for selecting criterion parameters and window

sizes, and implementing criteria for selecting identification and validation

data sets.

1I.e. how input and output data of a system correlate.
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Further Work

• Implement other search criteria.

• Develop guidelines for setting criterion parameters.

• Propose, and implement a qualitative measure for information in data

segments.

• Pursue the proposed expansion of SHDMI concerning MIMO-systems.

• Implement SHDMI in a visual environment.



Appendix A

Matlab Implementation

A.1 inputStep.m

function[returnedData] = inputStep(u, windowSize, stepSize)

size = length(u);

returnedData = zeros(size,1);

for i = 2:(windowSize/2)

if(u(i) >= (u(i-1) + stepSize) || u(i) <= (u(i-1) - stepSize))

returnedData(1:windowSize) = 1;

end

end

for i = ((windowSize/2)+1):(size-(windowSize/2))

if(u(i) >= (u(i-1) + stepSize) || u(i) <= (u(i-1) - stepSize))

window = (i-(windowSize/2)):(i+(windowSize/2));

returnedData(window) = 1;

end

end
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for i = (size-(windowSize/2)+1):size

if(u(i) >= (u(i-1) + stepSize) || u(i) <= (u(i-1) - stepSize))

returnedData((size-windowSize+1):size) = 1;

end

end

A.2 meanChange.m

function [returnedData] = meanChange(y, windowSize, minChange)

size = length(y);

returnedData = zeros(size,1);

means = zeros(size, 1);

meanChanges = zeros(size, 1);

for i = ((windowSize/2)+1):(size - (windowSize/2))

sum = 0;

for j = (i - (windowSize/2)):(i + (windowSize/2))

sum = sum + y(j);

end

mean = sum/(windowSize + 1);

means(i) = mean;

end

for i = ((windowSize/2)+1):(size - (windowSize/2))
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meanChange = means(i) - means(i-1);

meanChanges(i) = meanChange;

if(meanChange >= minChange || meanChange <= (-minChange))

window = (i-(windowSize/2)):(i+(windowSize/2));

returnedData(window) = 1;

end

end

figure

plot(1:length(means), means)

legend(’Mean calculated by meanChange.m’)

xlabel(’Time’)

ylabel(’Mean’)

axis([0 length(means) -10 30])

end

A.3 variance.m

function[returnedData] = variance(y, windowSize, minVariance)

size = length(y);

returnedData = zeros(size,1);

var = zeros(size, 1);

for i = ((windowSize/2)+1):(size - (windowSize/2))
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sum = 0;

sumSecond = 0;

for j = (i - (windowSize/2)):(i + (windowSize/2))

sum = sum + y(j);

sumSecond = sumSecond + ((y(j))^2);

end

mean = sum/(windowSize + 1);

meanSecond = sumSecond/(windowSize + 1);

variance = meanSecond - (mean^2);

var(i) = variance;

if(variance >= minVariance)

window = (i-(windowSize/2)):(i+(windowSize/2));

returnedData(window) = 1;

end

end

figure

plot(1:length(var), var)

legend(’Variance’)

xlabel(’Time’)

ylabel(’Variance calculated by variance.m’)

axis([0 length(var) -10 30])
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A.4 meanVariance.m

function [returnedData] = meanVariance(y, windowSize, minVariance)

size = length(y);

returnedData = zeros(size,1);

means = zeros(size, 1);

meanVar = zeros(size, 1);

for i = ((windowSize/2)+1):(size - (windowSize/2))

sum = 0;

for j = (i - (windowSize/2)):(i + (windowSize/2))

sum = sum + y(j);

end

mean = sum/(windowSize + 1);

means(i) = mean;

end

figure

plot(1:length(means), means)

legend(’Mean calculated by meanVariance.m’)

xlabel(’Time’)

ylabel(’Mean’)

axis([0 length(means) -10 30])
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for i = (windowSize + 1):(size - windowSize)

meanSum = 0;

meanSumSecond = 0;

for j = (i - (windowSize/2)):(i + (windowSize/2))

meanSum = meanSum + means(j);

meanSumSecond = meanSumSecond + ((means(j))^2);

end

meanMean = meanSum/(windowSize + 1);

meanMeanSecond = meanSumSecond/(windowSize + 1);

variance = meanMeanSecond - (meanMean^2);

meanVar(i) = variance;

if(variance >= minVariance)

window = (i - (windowSize/2)):(i+ (windowSize/2));

returnedData(window) = 1;

end

end

figure

plot(1:length(meanVar), meanVar)

legend(’Variance’)

xlabel(’Time’)

ylabel(’Variance calculated by meanVariance.m’)

axis([0 length(means) -10 30])
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end

A.5 criterionCombination.m

function[vectorOut] = criteriaCombination(vectorOne, vectorTwo)

size = length(vectorOne);

vectorOut = zeros(size,1);

for i = 1:size

switchCaseFlag = 0;

if (vectorOne(i) == 1)

switchCaseFlag = 1;

end

if (vectorTwo(i) == 1)

switchCaseFlag = 2;

end

switch switchCaseFlag

case 1

match = 0;

for j = i:size

if(vectorOne(j) == 0 && vectorTwo(j) == 0)

i = j;
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break;

end

if(vectorTwo(j) == 1)

match = 1;

end

if(match == 1)

vectorOut(i:j) = 1;

end

end

case 2

match = 0;

for j = i:size

if(vectorTwo(j) == 0 && vectorOne(j) == 0)

i = j;

break;

end

if(vectorOne(j) == 1)

match = 1;

end
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if(match == 1)

vectorOut(i:j) = 1;

end

end

end

end

A.6 segmentSelect.m

function[sysIdSegmentU, sysIdSegmentY, valSegmentU, valSegmentY] =

segmentSelect(u, y, returnedData)

size = length(u);

sysIdSegmentU = [];

sysIdSegmentY = [];

valSegmentU = [];

valSegmentY = [];

k = 1;

for i = 1:size

if(returnedData(i) == 1)

for j = i:size

if(returnedData(j) == 0)

sysIdSegmentU = u(i:(j-1));

sysIdSegmentY = y(i:(j-1));
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k = j;

break;

end

end

break;

end

end

flag = 0;

for m = k:size

if(returnedData(m) == 1)

flag = 1;

for n = m:size

if(returnedData(n) == 0 || k == size)

valSegmentU = u(m:(n-1));

valSegmentY = y(m:(n-1));

break;

end

end

break;

end

end

if(flag == 0)

valSegmentU = sysIdSegmentU;
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valSegmentY = sysIdSegmentY;

end

A.7 shdmi.m

function [sysIdSegmentU, sysIdSegmentY, valSegmentU, valSegmentY] =

shdmi(u, y, windowSize, stepSize, minMeanChangeU, minMeanChangeY,

minVarianceU, minVarianceY, minMeanVarU, minMeanVarY)

size = length(u);

firstCriterion = 0; % 0: first vector to be combined

% 1: not first vector to be combined

returnedData = []; % vector to hold returned data from functions

%%%%%%%%%%%%%%%%%%% inputStep.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(stepSize ~= 0)

returnedDataStep = inputStep(u, windowSize, stepSize);

if(firstCriterion == 0)

returnedData = criteriaCombination(returnedDataStep,

returnedDataStep);

firstCriterion = 1;

else

returnedData = criteriaCombination(returnedDataStep,

returnedData);

end
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end

%%%%%%%%%%%%%%%%%%% meanChange.m U %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(minMeanChangeU ~= 0)

returnedDataMeanChangeU = meanChange(u, windowSize,

minMeanChangeU);

if(firstCriterion == 0)

returnedData = criteriaCombination(returnedDataMeanChangeU,

returnedDataMeanChangeU);

firstCriterion = 1;

else

returnedData = criteriaCombination(returnedDataMeanChangeU,

returnedData);

end

end

%%%%%%%%%%%%%%%%%%% meanChange.m Y %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(minMeanChangeY ~= 0)

returnedDataMeanChangeY = meanChange(y, windowSize,

minMeanChangeY);

if(firstCriterion == 0)

returnedData = criteriaCombination(returnedDataMeanChangeY,

returnedDataMeanChangeY);
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firstCriterion = 1;

else

returnedData = criteriaCombination(returnedDataMeanChangeY,

returnedData);

end

end

%%%%%%%%%%%%%%% variance.m U %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(minVarianceU ~= 0)

returnedDataVarU = variance(u, windowSize, minVarianceU);

if(firstCriterion == 0)

returnedData = criteriaCombination(returnedDataVarU,

returnedDataVarU);

firstCriterion = 1;

else

returnedData = criteriaCombination(returnedDataVarU,

returnedData);

end

end

%%%%%%%%%%%%%%%%%% variance.m Y %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(minVarianceY ~= 0)
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returnedDataVarY = variance(y, windowSize, minVarianceY);

if(firstCriterion == 0)

returnedData = criteriaCombination(returnedDataVarY,

returnedDataVarY);

firstCriterion = 1;

else

returnedData = criteriaCombination(returnedDataVarY,

returnedData);

end

end

%%%%%%%%%%%%%% meanVariance.m U %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(minMeanVarU ~= 0)

returnedDataMeanVarU = meanVariance(u, windowSize, minMeanVarU);

if(firstCriterion == 0)

returnedData = criteriaCombination(returnedDataMeanVarU,

returnedDataMeanVarU);

firstCriterion = 1;

else

returnedData = criteriaCombination(returnedDataMeanVarU,
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returnedData);

end

end

%%%%%%%%%%%%%% meanVariance.m Y %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(minMeanVarY ~= 0)

returnedDataMeanVarY = meanVariance(y, windowSize, minMeanVarY);

if(firstCriterion == 0)

returnedData = criteriaCombination(returnedDataMeanVarY,

returnedDataMeanVarY);

firstCriterion = 1;

else

returnedData = criteriaCombination(returnedDataMeanVarY,

returnedData);

end

end

%%%%%%%%%%%%%% segmentSelect.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sysIdSegmentU = [];

sysIdSegmentY = [];

valSegmentU = [];

valSegmentY = [];



72 APPENDIX A. MATLAB IMPLEMENTATION

[sysIdSegmentU, sysIdSegmentY, valSegmentU, valSegmentY] =

segmentSelect(u, y, returnedData);

A.8 shdmiMISO.m

function [sysIdSegmentU, sysIdSegmentU2, sysIdSegmentY, valSegmentU,

valSegmentU2, valSegmentY] = shdmiMISO(u, u2, y, windowSize,

minVarianceU, minVarianceU2, minVarianceY, minMeanVarU, minMeanVarU2,

minMeanVarY)

size = length(u);

firstCriterion = 0; % 0: first vector to be combined

% 1: not first vector to be combined

returnedData = []; % vector to hold returned data from functions

%%%%%%%%%%%%%%% variance.m U %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(minVarianceU ~= 0)

returnedDataVarU = variance(u, windowSize, minVarianceU);

if(firstCriterion == 0)

returnedData = criteriaCombination(returnedDataVarU,

returnedDataVarU);

firstCriterion = 1;

else

returnedData = criteriaCombination(returnedDataVarU,

returnedData);

end
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end

%%%%%%%%%%%%%%% variance.m U2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(minVarianceU2 ~= 0)

returnedDataVarU2 = variance(u2, windowSize, minVarianceU2);

if(firstCriterion == 0)

returnedData = criteriaCombination(returnedDataVarU2,

returnedDataVarU2);

firstCriterion = 1;

else

returnedData = criteriaCombination(returnedDataVarU2,

returnedData);

end

end

%%%%%%%%%%%%%%%%%% variance.m Y %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(minVarianceY ~= 0)

returnedDataVarY = variance(y, windowSize, minVarianceY);

if(firstCriterion == 0)

returnedData = criteriaCombination(returnedDataVarY,

returnedDataVarY);

firstCriterion = 1;
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else

returnedData = criteriaCombination(returnedDataVarY,

returnedData);

end

end

%%%%%%%%%%%%%% meanVariance.m U %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(minMeanVarU ~= 0)

returnedDataMeanVarU = meanVariance(u, windowSize, minMeanVarU);

if(firstCriterion == 0)

returnedData = criteriaCombination(returnedDataMeanVarU,

returnedDataMeanVarU);

firstCriterion = 1;

else

returnedData = criteriaCombination(returnedDataMeanVarU,

returnedData);

end

end

%%%%%%%%%%%%%% meanVariance.m U2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(minMeanVarU2 ~= 0)
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returnedDataMeanVarU2 = meanVariance(u2, windowSize, minMeanVarU2);

if(firstCriterion == 0)

returnedData = criteriaCombination(returnedDataMeanVarU2,

returnedDataMeanVarU2);

firstCriterion = 1;

else

returnedData = criteriaCombination(returnedDataMeanVarU2,

returnedData);

end

end

%%%%%%%%%%%%%% meanVariance.m Y %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if(minMeanVarY ~= 0)

returnedDataMeanVarY = meanVariance(y, windowSize, minMeanVarY);

if(firstCriterion == 0)

returnedData = criteriaCombination(returnedDataMeanVarY,

returnedDataMeanVarY);

firstCriterion = 1;

else

returnedData = criteriaCombination(returnedDataMeanVarY,

returnedData);
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end

end

%%%%%%%%%%%%%% segmentSelect.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sysIdSegmentU = [];

sysIdSegmentU2 = [];

sysIdSegmentY = [];

valSegmentU = [];

valSegmentU2 = [];

valSegmentY = [];

[sysIdSegmentU, sysIdSegmentU2, sysIdSegmentY, valSegmentU,

valSegmentU2, valSegmentY] = segmentSelectMISO(u, u2, y, returnedData);

A.9 segmentSelectMISO.m

function[sysIdSegmentU, sysIdSegmentU2, sysIdSegmentY, valSegmentU,

valSegmentU2, valSegmentY] = segmentSelectMISO(u, u2, y, returnedData)

size = length(u);

sysIdSegmentU = [];

sysIdSegmentU2 = [];

sysIdSegmentY = [];

valSegmentU = [];

valSegmentU2 = [];

valSegmentY = [];

k = 1;

for i = 1:size

if(returnedData(i) == 1)
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for j = i:size

if(returnedData(j) == 0)

sysIdSegmentU = u(i:(j-1));

sysIdSegmentU2 = u2(i:(j-1));

sysIdSegmentY = y(i:(j-1));

k = j;

break;

end

end

break;

end

end

flag = 0;

for m = k:size

if(returnedData(m) == 1)

flag = 1;

for n = m:size

if(returnedData(n) == 0 || k == size)

valSegmentU = u(m:(n-1));

valSegmentU2 = u2(m:(n-1));

valSegmentY = y(m:(n-1));

break;

end
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end

break;

end

end

if(flag == 0)

valSegmentU = sysIdSegmentU;

valSegmentU2 = sysIdSegmentU2;

valSegmentY = sysIdSegmentY;

end
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