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Summary

Execution time control is a technique that allows execution time budgets to be set
and overruns to be handled dynamically to prevent deadline misses. This removes
the need for the worst-case execution time (WCET) of tasks to be found by offline
timing analysis – a problem that can be very hard to solve for modern computer
architectures. Execution time control can also increase the processor utilization,
as the WCET will often be much higher than the average execution time.

This thesis describes how the GNU Ada Compiler and a bare-board Ravenscar run-
time environment were ported to the Atmel AVR R©32 UC3 microcontroller series
making the Ada programming language available on this architecture for the first
time, and an implementation of Ada execution time control for this system that
supports full execution time control for interrupt handling. Usage patterns for this
brand new feature are demonstrated in Ada by extending the object-oriented real-
time framework with execution time servers for interrupt handling, allowing the
system to be protected against unexpected bursts of interrupts that could otherwise
result in deadline misses. Separate execution time measurement for interrupt hand-
ling also improves the accuracy of measurement for tasks. As a direct result of the
work presented in this thesis separate execution time measurement for interrupts
will be included in the forthcoming ISO-standard for Ada 2012.

While the implementation of execution time control is for the Ada programming
language and the UC3 microcontroller series, the design and implementation should
be portable to other architectures, and the principles of execution time control for
interrupt handling applicable to other programming languages.

Low run-time overhead is important for execution time control to be useful for real-
time systems. Therefore a hardware Time Management Unit (TMU) was designed
to reduce the overhead of execution time control. This design has been imple-
mented for the UC3 and performance tests with the developed run-time environ-
ment shows that it gives a significant reduction of overhead. The memory-mapped
design of the TMU also allows it to be implemented on other architectures.
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Chapter 1

Introduction

1.1 Background and motivation

Embedded systems are everywhere in today’s society – to such an extent that we
take their functionality for granted. They are present in equipment such as mobile
phones, washing machines and televisions that we use every day, and in automo-
biles, airplanes and rail-road systems upon which our lives depend when we use
them. A sign of this omnipresence is that the sale of processors for embedded
systems far outweigh that of processors used in personal computers and servers.
Common for embedded systems is that they are an integral part of the larger system
that depend on its functionality. Therefore, the malfunction of an embedded sys-
tem may cause great economic losses, or in the worst case, even result in material
damage and loss of life.

The term dependability describes the systems’ ability to provide its functionality
according to specification. The system experiences a failure when this functional-
ity cannot be provided. A failure is caused by an error that is a manifestation of an
underlying fault in the system. Faults may be physical like component wear-out;
transient, like electromagnetic interference; intermittent that come and go for in-
stance due to components overheating; or logical human-made faults in hardware,
software or the interaction between these. To achieve the desired level of depend-
ability one can apply techniques to prevent faults from being introduced in the
design. This is known as fault prevention. However, as it is hubris to declare any
system fault-free, it is equally important to make sure that errors does not cause
failure. This is known as fault tolerance.
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1.1.1 Real-time systems

As embedded systems often interact with the physical world, they have temporal
requirements to the produced output in addition to the value of the output itself.
Thus, if the output is not produced on time it is an error in the timing domain. Such
systems are commonly known as real-time systems.

A task is an entity that performs some work in the system, and is released either
periodically or by some sporadic event. Each release is called an instance of the
task. Real-time tasks also have an associated deadline relative to the release time
for finishing their work and producing the output. Deadlines are commonly classi-
fied as hard if a deadline miss is an error which may result in system failure, firm
if a missed deadline means that the result has no value but does not cause failure,
and soft if the value of the result gradually drops after the deadline. In this work
deadlines are considered hard unless explicitly stated otherwise.

For practical and economical reasons a set of tasks is usually executed on the same
computer, sharing the processor cores and other resources such as data and hard-
ware units among them. The resources, and in particular the processor execution
time, are shared among the tasks according to some scheduling policy. A schedul-
ing policy is static if the task priorities are always the same, and dynamic if it
changes at run-time. Scheduling analysis is applied to make sure that system is
schedulable which means that all tasks will be able to meet their deadlines.

1.1.2 Worst-case execution time (WCET)

Scheduling analysis requires the worst-case execution time (WCET) of tasks to be
known. The WCET is computed by applying timing analysis on the task, either
by static analysis of the source code and the compiled executable using an abstract
model of the computer architecture, or by measuring the execution time of the
task or parts of the task when executed on the targeted hardware [62]. Finding
the WCET may be hard for all but the most trivial tasks as a large space of input
data and initial conditions need to be considered. Furthermore, timing analysis is
made magnitudes harder by performance enhancing techniques such as multi-level
cache, deep pipelines with shared execution units, and more. These techniques in-
troduce timing anomalies that can be counter-intuitive and hard to predict [62].
Timing analysis is even harder for multi-core computer architectures as the exe-
cution on the different cores will be affected by how the others use the coherent
cache hierarchy and other shared resources.

The precision of the timing analysis is how close the computed WCET is to the
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actual WCET, while the safety tells if the timing analysis provides a guaranteed
bound for the actual WCET or just a prediction [62]. For hard real-time systems
safety is paramount as deadline misses could be the result if the WCET used for
scheduling analysis is less than the actual WCET. The overestimation of state-of-
the-art timing analysis tools is reported to be in the range of 30-50% [62]. Further-
more, even if a computed WCET is very precise, the actual WCET can be magni-
tudes higher than the average execution time, since it includes the unlikely event of
several performance enhancing techniques failing at the same time. Therefore, us-
ing the WCET as the tasks execution time budget leads to waste of computational
resources as the tasks usually will require much less execution time than budgeted
for in the scheduling analysis. For some systems there may be soft tasks that can
utilize the additional available execution time, but this may not always be the case.

A survey published as recently as 2008 describes several state-of-the-art methods
and tools for timing analysis, both prototypes and commercial [62]. Out of the
many tools listed, all but one assume uninterrupted task execution due to the ef-
fects interruption has on the state of the cache, and can therefore not be used with
preemptive scheduling. Furthermore, none of the described tools work with multi-
core processors with a shared cache. The tools also require detailed descriptions of
the hardware used, and are therefore limited to a handful of computer architectures
used in embedded systems. For high-end architectures using performance enhanc-
ing techniques the timing analysis of a task can take as much as a day [62]. While
the survey reports that the problem of finding safe bounds to WCET is solved, and
that the described tools has found successful use, this use seems to be limited to
high-integrity projects with large budgets and long development time, such as the
aviation, automotive, defense and space industry.

Timing analysis has been subject of much research effort since the survey of 2008,
and recent research does try to address the multi-core WCET problem [16, 35].

1.1.3 Execution time control

Execution time control allows dynamic control of the tasks execution time instead
of solely relying on static guarantees, and thus provides fault tolerance in the tim-
ing domain instead of just fault prevention. This is done by setting an execution
time budget for the tasks at release time and handling budget overruns according to
some application-dependent policy to prevent deadlines being lost [60]. Note that
execution time control requires some form of timing analysis, as knowledge of the
execution time properties is needed to set reasonable task budgets. However, as
safety is provided by execution time control, the requirements for the timing ana-
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lysis are less strict – guaranteed bounds on the WCET are no longer needed. This
means that simpler measurement based techniques can be used to find a reasonable
budget for the tasks.

Execution time control is also a prerequisite for execution time servers such as the
deferrable and sporadic server that allows for soft sporadic tasks to have short aver-
age response time whilst guaranteeing for the deadlines of hard periodic tasks [14].
Furthermore, execution time control facilitates tasks executing algorithms where
there is an increasing reward with increased service (IRIS) [36]. In this case, the
algorithm is stopped when it has converged or its execution time budget is ex-
hausted. If no acceptable result was computed in time a simpler algorithm may be
executed.

The mechanism for execution time control is provided by the run-time environment
and measures the time a task has been executing on the system by providing a high
accuracy execution time clock that can either be explicit or implicitly defined in
the system. Execution time monitoring allows applications to provide handlers for
a clock that are called when the execution time of the clock reaches a specified
timeout value. The mechanism for this is referred to as an execution time timer,
and is a type of alarm. The run-time overhead incurred by the mechanisms should
be as low as possible for execution time control to be acceptable for use in real-
time systems.

1.1.4 Interrupts

Interrupts cause the normal execution of tasks to be paused and a handler to be ex-
ecuted, either as a result of an asynchronous hardware interrupt line being asserted
or a synchronous software interrupt being triggered. An interrupt is said to occur,
and an occurrence is pending in the time between its generation and its delivery to
the system in the form of the appropriate handler being called. It depends on the
hardware whether a generated interrupt occurrence is lost if another of the same
type is already pending.

This work deals with hardware interrupts unless explicitly stated otherwise. These
interrupts may be generated by components of the computer system such as peri-
pheral units, or by external sources. Often the computer architecture has an inter-
rupt controller that multiplexes and groups interrupt lines, and triggers the inter-
rupt handling on the processor. There may also be several interrupt levels, where
interrupts may be interrupted by others of a higher level. With the exception of
non-maskable interrupts, the delivery of interrupts may be blocked by the use of
masks. Whether a blocked interrupt remains pending or is lost depends on the
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architecture and hardware.

The execution time of interrupt handlers has usually been charged to the inter-
rupted task. This causes inaccuracy in the execution time measurement of tasks,
which again means that the budgets of all tasks have to be extended to allow for
the additional execution time of interrupt handlers as it cannot be known in ad-
vance which tasks will be interrupted. Furthermore, as interrupt handling have
higher priority than normal task execution, deadlines may be lost in the case of an
unexpected high rate of interrupts, either due to a design or analysis fault, or an
error in hardware generating more interrupts than the system can handle. While
it is possible to count the number of occurrences and deduce the execution time
from these, this is an inaccurate method and relies on the WCET of the interrupt
handlers being known.

The lack of proper protection against unexpectedly high rates of interrupt occur-
rences motivates the development of execution time control for interrupt handling
similar to that for tasks. The overhead to interrupt handling has to be very low for
this new feature to be usable in real-time systems, and specialized hardware may
therefore also be needed.

1.2 Research goals and methods

The primary goals of this research are:

1. To establish a research platform by porting the GNU Ada Compiler (GNAT)
and a bare-board run-time environment to the Atmel AVR32 UC3 micro-
controller series and implement execution time control for this system.

2. To design and implement execution time control for interrupt handling and
demonstrate usage patterns for this new feature in the Ada programming
language.

3. To design and implement a dedicated hardware Time Management Unit
(TMU) for reducing the overhead of execution time control.

The Ada programming language was chosen for this research work as it is renowned
within high-integrity systems, has built-in real-time tasking support, and has sup-
ported execution time control for tasks since Ada 2005 [32]. Also, there is a fairly
small but active community researching on Ada for real-time systems, with the In-
ternational Real-Time Ada Workshop (IRTAW) being an important meeting place
for proposing and discussing new real-time features for the language.
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GNAT is a front-end for the GNU Compiler Collection (GCC) maintained by Ada-
Core. Both GCC and GNAT are open-source software available under the GNU
Public License (GPL) [54] and the research can therefore be shared freely, bene-
fiting the whole community. The GNAT bare-board Ravenscar run-time environ-
ment [47] was used as real-time kernel for the research. Due to the limited tasking
support of the Ravenscar profile [10, 11], the run-time environment is small in
code size and is therefore easy to understand and make changes to. The run-time
environment is also of high quality and forms a solid base for the research.

Due to the close relation between NTNU and Atmel Norway, it was decided to use
their new AVR32 architecture and the UC3 microcontroller series [3, 4, 57] as a
hardware platform for the research. This allowed for the TMU to be implemented
and tested with Atmel’s proprietary synthesizable code for the UC3. Also, there
is an open-source GCC back-end available for AVR32 so that GNAT can easily be
ported to the architecture.

1.3 Related work

Execution time control is supported in different ways by many systems. For
decades mainframe computer systems have allowed setting execution time budgets
for jobs and users in order to protect and share the valuable processing time. Often
general purpose operating systems have a periodic scheduling tick in the frequency
range 10 to 1000 Hz, and will find a statistical approximation of the execution time
by counting which process is running when this tick handler is called. However,
the coarse-grained precision and uncertainty of this execution time measurement
method makes it unusable for real-time systems.

Real-time POSIX has supported execution time control since POSIX.1b standard-
ized in 1993. It defines execution time clocks for processes and threads, and timers
to signal overruns for these clocks [20,55]. Using these POSIX features Harbour et
al. at the University of Cantabria implemented execution time control for Ada 95
and demonstrated usage patterns for real-time applications [21]. The same re-
search group also implemented and demonstrated these features on the embedded
MaRTE OS [45]. The execution time control features were proposed added to the
Ada language standard and discussed at IRTAW-10 [44]. The proposal was later
refined [41] and was forwarded by IRTAW-12 to the Ada Rapporteur Group (ARG)
for the process of ISO-standardization [1].

Execution time control was standardized together with other new real-time fea-
tures in Ada 2005 [32]. However, the standard did not state which execution time
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budget, if any, that is to be charged the execution time of interrupt handlers. All
implementations known to the candidate when this research work started, charged
the running task [17,21,22,45,56]. This causes inaccuracy to execution time mea-
surement and was pointed out as an issue when the new Ada 2005 real-time fea-
tures were evaluated [59]. At IRTAW-14 where the candidate proposed adding full
execution time control for interrupt handling [24], the developers of MaRTE OS
also proposed adding a execution time clock for all interrupt handling combined,
primarily to improve the accuracy of execution time measurement for tasks [46].
These two independent proposals were forwarded to ARG for the process of ISO-
standardization [40] and are to be included in the forthcoming Ada 2012 stan-
dard [33].

Execution time control was also implemented for the Open Ravenscar Kernel
(ORK) by de la Puente and Zamarano at the Polytechnical University of Madrid
prior to standardization of the feature in Ada 2005, and execution time control
policies within the limitations of the Ravenscar profile were demonstrated [17].
As the Ravenscar prohibits asynchronous task control and changes of priorities,
most of the policies possible with the full Ada 95 tasking model [21] could not be
used, leaving only overrun detection and system reconfiguration as options. How-
ever, it was concluded that execution time control indeed could be useful with the
Ravenscar profile [17]. Yet, when execution time control was standardized with
Ada 2005, execution time timers were explicitly prohibited with the profile [32]
primarily because of the static nature of Ravenscar tasking and the lack of mech-
anisms to handle overruns. Still, ORK and the GNAT bare-board kernel based on
it [47] have continued to support execution time control [56].

1.3.1 Other languages and systems

The Real-Time Specification for Java (RTSJ)1 supports execution time control by
an integrated approach referred to as cost monitoring [50]. In essence the RTSJ
allows budgets, or the cost, to be set for periodic threads. This cost is the same
for each release. In the case of a cost overrun the offending thread will only be
allowed to continue executing if this will not cause lower priority threads to miss
their deadlines, otherwise it will be immediately blocked until its next release. The
cost monitoring scheme is intended to be independent of scheduling policy [50].

The QNX R©Neutrino R©RTOS2 supports execution time control by allowing reser-
vation of CPU time for partitions consisting of processes and tasks. The OS uses

1Web: http://www.rtsj.org
2Web: http://www.qnx.com/products/neutrino-rtos
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an approach that is adaptive in that CPU time not used by one partition may be
utilized by others. The limits on CPU time are only enforced when the system is
overloaded in order to guarantee that the reserved CPU resources are available for
specified processes. Partitions are configured, not programmed, and are therefore
flexible in use, no recompilation is needed in order to change the allocation of CPU
resources.

1.4 Thesis organization

The reminder of this thesis is organized as follows:

Chapter 2: Theoretical background of the thesis, giving a brief introduction to
real-time scheduling systems and execution time control; the Ada program-
ming language and GNAT; and the Atmel AVR32 architecture.

Chapter 3: Description of the main contributions of this PhD in the form of pub-
lished and submitted material.

Chapter 4: Conclusions on the main contributions of this PhD and a brief discus-
sion of future work topics.

Appendix A: The published and submitted material forming the basis of this the-
sis in chronological order.

Appendix B: The presentations of interrupt execution time control by the candi-
date at IRTAW-14 that formed the basis for ISO standardization of this new
feature.

Appendix C: Description of how to obtain the sources for GNATforAVR32 and
set up the development environment.

Appendix D: Additional code listings.
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Chapter 2

Background theory

2.1 Real-time systems and execution time control

2.1.1 Scheduling policies

The scheduling policy decides which tasks that are to be executed and for how
long by allocating the processors available in the system. The runnable tasks are
placed in one or more ready queues waiting to be scheduled for execution. Tasks
are removed from the ready queue when blocked by a system call or delayed until
a specified relative or absolute time. Employing preemptive scheduling, a run-
ning task may be replaced by another runnable task and put back on the ready
queue, while employing non-preemptive scheduling, tasks run until they are de-
layed, blocked by a system call or voluntarily yield the processor. This work only
considers preemptive scheduling.

The most widely used policy is Fixed Priority Scheduling (FPS), where each task
is given a fixed priority and resources are allocated to the task according to this
priority. Usually tasks with the same priority are handled in first-in-first-out (FIFO)
order, and the following rules apply:

• A blocked task that becomes ready is added at the tail of the ready queue for
its active priority.

• When a task loses inherited priority, the task is added at the head of the ready
queue for its new active priority.

• When a task executes a non-blocking delay statement or yield, it is added to
the tail of the ready queue for its active priority.
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• A running task is preempted whenever there is a nonempty ready queue
with a higher priority and is then added at the head of the ready queue for its
active priority.

Round-robin (RR) arbitration may be used instead of FIFO order to manage tasks
with equal priorities. In this case the running task is moved to the end of the ready
queue for its active priority after having been executed for a given time. Execution
time clocks and timers may be used internally by the scheduler for an efficient
and accurate implementation of this scheme [45]. While RR gives some degree
of fairness between tasks of the same priority it does not improve schedulability,
and also makes it harder to reason about the response time of tasks. Thus it is best
suited for non-real-time tasks.

Another policy is Earliest Deadline First (EDF), where the processor is allocated to
the task with least remaining time until its deadline. Thus EDF is a dynamic policy
as priorities are decided and changed at run-time. EDF is optimal for uni-processor
systems, allowing up to 100% utilization, but is more complex to implement and
is also vulnerable to cascades of missed deadlines if tasks are allowed to continue
executing after a deadline miss.

2.1.2 Scheduling analysis

Rate monotonic analysis (RMA) may be used to assign priorities to tasks and check
the schedulability with FPS under the assumption that the processor is the only
shared resource, that all tasks are periodic, that the deadline equals the next release,
and that there is zero overhead of context switch between tasks [37].

With RMA each task i is assigned a priority according to their period Ti – the task
with the shortest period is given the highest priority and so on. Note that when
using RMA the priority of a task does not say anything about the importance of
the task. Also, the required amount of execution time needed by task i is assumed
to be a known constant Ci. It is assumed without further evidence here, that the
task set is schedulable also if the tasks use less thanC, thus the WCET or execution
time budget may be used as C.

The utilization-based test is sufficient but not necessary as it gives the least upper
bound (LUB) of the total processor utilization U for a task set with N tasks:

N∑
i=1

Ci

Ti
≤ N(2

1
N − 1) = LUB (2.1)
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Figure 2.1: The least upper bound (LUB) of processor utilization with rate monotonic
analysis (RMA) for N tasks.

As seen in Figure 2.1 the LUB asymptotically approaches 69.3% utilization when
the number of tasks in the set increases towards infinity.

Response time analysis provides a sufficient and necessary test for schedulability.
The test it will not be described formally here, and is instead performed by drawing
Gantt charts. The test is done by releasing all tasks simultaneously at what is called
the critical instant. If a task is schedulable when released at the critical instant it
will also be schedulable at any other release configuration [37]. Only the time of
the longest task period after the critical instance has to be considered. If all tasks
reach their deadlines within this interval the system is schedulable.

Task T C

A 20 5
B 40 10
C 60 20

Table 2.1: Example periodic task set. Priorities are pA > pB > pC .

An example task set is shown in Table 2.1. The total utilization for the task set
is 83.3% and thus the utilization-based test fails as the LUB for N = 3 is 78%.
However, this does not necessarily mean that the task set is not schedulable – as
seen from the Gantt chart in Figure 2.2 all tasks reach their deadlines, and the task
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t0 25 50

A

B

C

Figure 2.2: Gantt chart for the example task set in Table 2.1. Task release is shown by a
black arrow. Tasks are drawn as a white rectangle when running, and gray when another
task preempts it. Completion before deadline is indicated by a white circle.

set is indeed schedulable.

2.1.3 Shared resources

When using preemptive scheduling, shared resources must be protected with mu-
tual exclusion. This can be done using explicit semaphores and protected regions
of the code, but this primitive method is prone to programming faults that may
cause a deadlock – a situation where several tasks all are blocked waiting for each
other to release the shared resources. A better approach is to use a monitor that
contains the shared resources and automatically takes care of the mutual exclusion.

It is also important to avoid unbounded priority inversion – a situation where a task
is waiting for a lower priority task to release a shared resource, while this task again
is preempted by a third task preventing it from finishing with the resource. This
can be avoided by using a priority inheritance protocol with shared resources, the
most practical being the ceiling protocol where a shared resource is given a fixed
priority ceiling equal to or higher than the priority of all tasks accessing it. When
a task acquires the resource it inherits the ceiling priority and thus no unbounded
priority inversion can occur – the worst-case time waiting for a task with lower
priority to release the shared resource is the highest WCET of all its operations.

Response time analysis is also possible for monitors using different priority inher-
itance protocols.
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Figure 2.3: Six alarms associated with one clock. All alarms but a6 are set. Assuming
that FIFO order is used and that a2 was set before a3 the events will be handled in the
order e1, e2, e3, e4 and e5.

2.1.4 Timing services

A clock measures the passage of time using a physical process as reference, typ-
ically a crystal oscillator. Clocked time is discrete and represented by a count of
ticks c ∈ N0. Each tick corresponds to a duration T , so the measured time is
t = T · c. Most clocks have inaccuracies caused by jitter and drift when compared
to a reference clock. If the duration between the ticks is not a constant T but a
stochastic function T̂ it is called jitter. If the expected duration E(T̂ ) between
the ticks is not equal to T the clock will also drift compared to a reference clock.
This drift will accumulate over time. Such inaccuracies are not considered in this
work. Clocks are allowed to be stopped and resumed, but required to be mono-
tonic. Therefore the following relation holds between samples where ti denotes
the i’th sample of a clock:

t1 ≤ t2 ≤ . . . ≤ ti−1 ≤ ti ∀i ∈ N (2.2)

The real-time clock (RTC) is used for system operations such as task release and
setting task deadlines. There is only one instance of this clock. The clock is
activated at system start-up, also called its epoch, and is never stopped. Execution
time clocks are used to measure the total time an executable entity has been running
on the system. There is one clock for each entity. The clock is started when
the entity is scheduled for execution and stopped when it is suspended, blocked,
preempted by another entity, or terminated. In this work the executable entities
considered are tasks and interrupt handlers.

An alarm is associated with a clock and is used to generate an event that occurs
when the clock reaches a specified time te. An alarm is said to be set with a handler
that is to be called when the event occurs, at a time t ≥ te. Several alarms may
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be associated with a single clock as seen in Figure 2.3. Event occurrences for one
clock are required to be handled in order with earliest event first. The order for
events occurring at the same time is not specified, but FIFO order will be used in
this work unless stated otherwise.

2.1.5 Overrun handling

Different overrun handling policies exist to prevent deadline miss and system fail-
ure in the case of a task execution time overrun. Harbour et al. describes the
following schemes [21]:

• Handled: The overrun is recorded and the task allowed to continue execut-
ing. This may be used for testing, for critical tasks that must be allowed to
finish their work, or in cases where an occasional overrun is acceptable.

• Stopped: The task instance is stopped in the case of an overrun by the use of
asynchronous control such as the abort statement in Ada, and is not repeated.
The task starts executing normally the next time it is released.

• Imprecise: The task consists of a mandatory part that is usually short, and
an optional part that refines the result. The optional part is aborted in case of
an overrun. This scheme allows fixed priority for tasks executing algorithms
where predicting the WCET is hard.

• Lowered: The task is lowered to background priority in the case of an over-
run to avoid deadline miss for tasks with lower priority. The task may finish
if there is sufficient CPU resources. The task priority is restored at the next
release.

Another alternative is to reconfigure the system into a safe-state when an execution
time overrun is detected. This is also possible when asynchronous task control is
not available such as for the Ravenscar profile [17].

2.1.6 Execution time servers

Execution time servers allow a group of sporadic tasks with soft deadlines to be
executed with higher priority than the periodic tasks with hard deadlines – thus
giving low average response time for the sporadic tasks while guaranteeing a re-
sponse time within the hard deadline for the periodic tasks. To set a budget for the
sporadic tasks a group budget mechanism is needed.
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The deferrable and sporadic server are the most used algorithms. Both allow the
group of sporadic tasks to be modeled as a periodic task with period T when ap-
plying RMA. The deferrable server works by replenishing the group budget for the
sporadic tasks registered with the server periodically with period T . If the budget
is exhausted the tasks can either be halted by asynchronous task control, or given
a priority below that of the periodic tasks to avoid further interference. When the
budget is replenished the tasks are resumed or restored to the high priority. An
appealing aspect of the deferrable server is that no knowledge of how the sporadic
tasks execute is needed.

The sporadic server is quite similar to the deferrable server except that the con-
sumed execution time for a sporadic task starting at time t is returned to the server
at t + T . The sporadic server is much more complex than the deferrable, and the
sporadic task must communicate with the server during execution. However, the
benefit of the sporadic server is improved average response time.

2.2 The Ada programming language

In the 70s the U.S. Department of Defense ordered a programming language to
replace the myriad of languages and dialects used for its different projects. A
french team won the contract with the programming language Ada, named after
Ada Lovelace – the daughter of the poet lord Byron and allegedly the world’s first
programmer, working on the mechanical Babbage machine.

The programming language was ISO-standardized in 1983 as Ada 83. There was a
major revision of the language in 1995, known as Ada 95, bringing changes to task-
ing, added object-oriented programming (OOP) through tagged types, and more.
The current revision is Ada 2005, which is an amendment to Ada 95, and brings
Java-inspired improvements to the OOP-model such as supporting prefix method
call notation and interfaces, more flexible access types, enhanced structure and
visibility control for packages, extensions to the standard library, and new tasking
and real-time features [8]. The coming Ada 2012 brings dynamic contracts, more
flexible expressions, further extensions to the standard library, improved support
for multi-processor system, and execution time measurement for interrupt hand-
ling [9].

Since Ada was designed for use in large high-integrity systems it has many safe-
guards against common programming faults. The language also has excellent
support for development and maintenance of large applications by its notation of
packages. Furthermore, Ada has language support for tasking and a rich set of
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Listing 2.1: Task type example.

task type Worker
(P : System.Priority;
N : Character)

is
pragma Priority (P);

end Worker;

task body Worker is
Next : Time := Clock;

begin
loop

delay until Next;
Put_Line ("Hello! My name is " & N & ’.’);
Next := Next + Seconds (1);

end loop;
end Worker;

A : Worker (Default_Priority + 2, ’A’ );
B : Worker (Default_Priority + 1, ’B’ );

synchronization primitives, making even multitasking applications portable.

2.2.1 Tasking features

Ada allows tasks to be specified either as a single instance, or as a task type with
many possible instantiations that can be declared with discriminants as parameters.
The body of the task defines the code that the task is to execute. An example
defining a task type and two instances is shown in Listing 2.1. In this example the
real-time package shown in Listing D.1 with its high-precision real-time clock is
used for task delay.

Several real-time scheduling policies, or dispatching policies, are supported by
Ada: FPS with FIFO within priorities or round-robin dispatching, EDF [13] and
coherent mixes of these.

Protected objects, a type of monitors, provide mutual exclusive access to internal
data through protected operations – procedures, functions and entries. Protected
objects are also used for communication and synchronization between tasks, and
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Listing 2.2: Protected type implementation of mutex.

protected type Mutex is
entry Lock;
procedure Unlock;
function Is_Open return Boolean;

private
Open : Boolean := True;

end Mutex;

protected body Mutex is

entry Lock when Open is
begin

Open := False;
end Lock;

procedure Unlock is
begin

Open := True;
end Unlock;

function Is_Open return Boolean is
begin

return Open;
end Is_Open;

end Mutex;

as interrupt routine handlers. As with tasks, a single instance may be defined or a
protected type with many instances. Entries are associated with a guard condition
which will block entry callers until the guard evaluates to true. This allows task
synchronization through protected objects. How protected objects achieve mutual
exclusion and queue tasks blocked on an entry is implementation dependent. Ada
defines the priority ceiling protocol, and FIFO and priority queuing policies for
entries.

An example of a protected object type used as a mutex is shown in Listing 2.2.
The mutex is only used as example as its functionality is well known, otherwise it
is meaningless to use a high-level synchronization primitive such as the protected
object to implement a low-level primitive such as the mutex.

Full Ada tasking supports more complex features than shown in the example, such
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as task rendezvous with entries and the select statement, allowing tasks to com-
municate directly, with the possibility of timeout for the task waiting for others;
asynchronous abortion of code blocks; and the requeue statement to move a task to
the queue of another entry. Since these features are not supported by the Ravenscar
run-time environment they are not described further. The reader is referred to the
excellent books by John Barnes [7] and Alan Burns and Andy Wellings [12, 15].

2.2.2 The Ravenscar profile

While Ada is much used within high-integrity systems, the concurrent constructs
of the language have often been excluded as being non-deterministic and ineffi-
cient [11]. Instead methods such as the cyclic executive [5, 12] has been used.
Advances in static analysis have made it possible to check hard deadlines when
using preemptive fixed priority scheduling. This has led to development of the
Ravenscar profile [10], a sub-set of the Ada tasking model designed to provide the
static and deterministic environment needed to perform static analysis [11]. The
simplicity of the tasking model also allows efficient run-time environments. The
sequential parts of Ada are not affected by the profile [11].

The Ravenscar profile is specified as a set of configuration pragmas defining re-
strictions to the Ada tasking model and the required dynamic semantics [10, 32].
The following features are supported [11]:

• Tasks types and objects defined at library level.

• Protected types and objects, defined at library level, limited to one entry
having a simple guard and a queue length of one.

• FIFO within priorities dispatching policy for tasks.

• Ceiling locking protocol for protected objects.

• The Ada.Real_Time package and the delay until statement.

• The Ada.Execution_Time and Ada.Execution_Time.Interrupts packages for exe-
cution time measurement of tasks and interrupt handling.

• Synchronous task control with suspension objects.

• Protected procedures as statically bounded interrupt handlers.

A static set of tasks and protected objects is achieved by only allowing such ob-
jects to be statically declared at library level and disallowing task termination.
Dynamic attachment of interrupt handlers and dynamic change of task priorities
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with the exception of changes caused by ceiling locking is also prohibited. Tasks
may not have entries, thereby allowing task communication and synchronization
only through protected objects or suspension objects. A protected object may have
a single entry with a queue length of one using a simple barrier. The requeue
statement and asynchronous control are disallowed. There can be no relative de-
lay statements and the profile forces the use of the real-time package for timing
purposes.

2.2.3 Timing events

Timing events allow protected procedures to be called at a specified time without
the need for a task or delay statement to control their activation. The package used
for timing events is defined as shown in Listing D.2.

A Timing_Event object is said to be set if associated with a non-null handler and
cleared otherwise. The type Timing_Event_Handler identifies a protected procedure
that will be executed when the timing event occurs. There are two procedures
for setting a timing event with a handler, both named Set_Handler. One takes the
absolute time of the event and the other uses relative time. If Set_Handler is called
for an already set event, the handler is replaced. If called with a null handler the
event is cleared. Handlers may be cancelled using Cancel_Handler which returns
whether the handler was cancelled or not. The function Current_Handler returns
the current handler of the event, while the function Time_Of_Event returns the time
when the event will occur.

Implementations are required to perform operations on a timing event object atom-
ically, and are also required to document the upper bound on the overhead of the
handler being called.

2.2.4 Execution time control

The package Ada.Execution_Time shown in Listing D.3 defines the type CPU_Time
which represents the elapsed execution time and the function Clock to get the exe-
cution time of a task [33]. The execution time of a task is defined as the time spent
by the system executing that task, including the time spent executing run-time or
system services on its behalf [33].

With Ada 2005 it was implementation defined which task, if any, that was charged
the execution time used by interrupt handlers. Ada 2012 has the ability to account
for either the total or separate execution time of interrupts handlers. The constant
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Interrupt_Clocks_Supported indicates if the system supports measuring the total exe-
cution time of interrupt handlers by the use of the function Clock_For_Interrupts.
The function will raise a Program_Error when called if this is not supported. The
constant Separate_Interrupt_Clocks_Supported indicates whether or not the system
supports measuring the execution time of interrupt handlers separately. This func-
tionality is provided by the child package Interrupts shown in Listing D.4. In this
child package the function Clock returns the execution time for the handler of the
given interrupt or raises Program_Error if separate execution time for interrupts is
not supported.

The child package Timers shown in Listing D.5 defines the tagged type Timer. An
object of this type represents the source of an execution time event for a single
task and is capable of detecting execution time overruns. As for timing events a
timer is said to be set if associated with a non-null handler and cleared otherwise.
All timers are initially cleared. The type Timer_Handler identifies a protected pro-
cedure to be executed when the timer expires. Timers are set and cancelled as with
timing events with the exception of the absolute time for Set_Handler being given
as CPU_Time. The function Time_Remaining replaces Time_Of_Event and returns the
time remaining until the timer expires. Operations on a timer-object are required
to be atomic. The number of timers possible for a single task is allowed to be lim-
ited by the implementation, and an exception Timer_Resource_Error is to be raised
if this number of timers is exceeded.

The child package Group_Budgets shown in Listing D.6 allows execution time bud-
gets to be set and replenished for a group of tasks. A user-provided handler is
called when the budget has expired. Tasks may be added or removed from the
group at any time, but a task can only belong one group at a time, and all tasks in
a group has to be bound to the same CPU. Handlers are set and cancelled in the
same way as timing events and timers.

2.2.5 The object-oriented real-time framework

The object-oriented real-time framework for Ada 2005 was initially designed and
implemented by Andy Wellings and Alan Burns at the University of York [15, 60,
61], and has since become a de-facto standard within the real-time Ada research
community. The framework has been extended with support for operating modes
and mode changes [43], multi-processor systems using the coming Ada 2012 fea-
tures [49], and execution time servers for interrupt handling using the non-standard
interrupt execution time timers by the candidate [31].

The original framework consists of four major components [60]:
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Listing 2.3: The basic real-time task type of the framework.

task body Simple_RT_Task is
begin

S. Initialize ;
loop

R.Wait_For_Next_Release;
S.Code;

end loop;
end Simple_RT_Task;

1. The package Real_Time_Task_States defining the abstract tagged task state
type that contains the task initialization code and the code to be executed at
each release, the relative deadline, execution time budget, the priority of the
task, and notification handlers for deadline miss and overruns. Child pack-
ages define periodic, sporadic and aperiodic abstract task states inheriting
the abstract task state, each adding relevant parameters for the type of task.

2. The package Release_Mechanisms defining the synchronized interface for re-
leasing tasks either as a result of the passage of timer or some event. Ex-
tended interfaces with overrun detection and deadline miss detection are
also defined. Child packages implement periodic release mechanisms and
one sporadic mechanism triggered by a procedure call with a minimal inter-
release time (MIT), both types with and without overrun and deadline miss
detection; and aperiodic release triggered with execution time servers. The
release mechanisms use the attributes of their corresponding task states.

3. The package Real_Time_Tasks defining the task types that perform the work
by dispatching calls to the provided release mechanism and task state. The
simplest of the types shown in Listing 2.3 first initializes the object, and
then waits for release and executes the code in an infinite loop. The two
more advanced task types use asynchronous control to abort the task code
in the case of deadline miss or execution time overrun, and then inform the
task state by calling the corresponding handlers.

4. The package Execution_Servers defining the synchronized interface for exe-
cution time servers and generic parameters for this. Child packages imple-
ment the deferrable and sporadic server for use with aperiodic tasks.

Using this framework, the programmer needs only create a tagged task state type
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Figure 2.4: The GNU Compiler Collection with front- and back-ends.

inheriting the desired abstract type, and implement the abstract procedures for the
tasks code and handlers. Objects of this task state can then be declared together
with the appropriate release mechanism, real-time task type, and execution time
server in the case of aperiodic tasks. Using the framework is easy as the boiler-
plate parts are predefined, and also very flexible as the parts are interconnected
through dispatching calls.

2.3 The GNU Ada Compiler (GNAT)

The GNU Compiler Collection (GCC) was released in 1987 by Richard M. Stall-
man, initially named the GNU C Compiler, and is the heart of the GNU Project
maintained by the Free Software Foundation (FSF). Following the philosophy of
FSF, GCC is open-source and “free as in liberty” – everyone can obtain the code,
modify, compiler and redistribute it under the GNU Public License (GPL) as long
as they do not deny this right to others [54].

GCC supports a great number of programming languages and computer architec-
ture targets by a design as shown in Figure 2.4. It uses language front-ends that
compile code into the internal tree representation, and target back-ends that cre-
ate the assembler output from this and perform machine dependent optimization.
The GNU Project also comes with assemblers, linkers and other tools in the GNU
Tool-chain, the GNU Debugger (GDB) and more.

The GNU Ada Compiler (GNAT) is the GCC front-end for the Ada program-
ming language. It was developed at the University of New York on contract with
the U.S. Air Force and was originally called the GNU Ada Translator, hence the
acronym GNAT. In a parallel project, the POSIX based real-time run-time library
was developed at the University of Florida. After the completion of the project,
the company AdaCore was established by project members to provide support for
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Figure 2.5: The GNU Ada Library (GNARL). Here the GNU Low-level Library (GNULL)
is implemented by the bare-board real-time kernel to the right.

GNAT and further develop it into a full-featured industrial strength compiler [42].
AdaCore distributes GNAT both as the supported PRO version and the free/libre
GPL version. The latest version is GNAT 2011 that brings supports for Ada 2012.

GNAT is more than just a language front-end; it also consists of the GNU Ada
Run-time Library (GNARL), and Ada specific tools such as the binder, linker,
builder with support for project files, and more, making it a complete development
tool-chain for high-integrity systems.

2.3.1 Restricted GNARL

The GNU Ada Run-time Library (GNARL) seen in Figure 2.5 implements the fea-
tures of Ada not directly supported by the compiler such as tasking, interrupt hand-
ling, standard libraries, distributed programming, system interfaces, and more. The
routines of GNARL are called by the application either directly or indirectly by
compiler generated code.

The restricted Ravenscar version of GNARL is carefully designed to take advan-
tage of the simplifications allowed by the profile [47]. Task management is sim-
plified since all tasks are defined at library level, cannot terminate, and have fixed
base priority. All task data structures are statically allocated, thus memory require-
ments are determined at link time. Protected objects are simplified since there
are no asynchronous operations, no time-out on entry calls and no varying queue
length on entries. On single processor systems mutual exclusion is ensured by
the ceiling priority protocol and scheduling policy. Evaluation of protected entries
may be done by proxy, thereby improving performance by reducing the number of
context switches [47].
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Figure 2.6: Thread states of the bare-board real-time core: Runnable when in the ready
queue; Suspended when unconditionally blocked (on an entry); and Delayed when blocked
until a specified absolute time.

2.3.2 The bare-board Ravenscar run-time environment

For most systems the GNU Low-Level Library (GNULL) is a translation layer be-
tween generic and actual operating system calls, but for the bare-board run-time
environment it fully implements the needed dynamic semantics of the Ravenscar
profile as to the right of Figure 2.5. This is done by including a multi-tasking core
based on the Open Ravenscar Kernel (ORK) [18, 48]. This kernel was developed
at the Polytechnical University of Madrid (UPM) on contract with the European
Space Agency (ESA) for use on the ERC32 and LEON space application proces-
sors, and was later integrated into GNARL by José F. Ruiz at AdaCore [47].

The core implements preemptive fixed priority scheduling with ceiling locking,
having 256 priorities including the interrupt priorities. However, the total number
of priorities can easily be changed if needed. To allow interrupt nesting whilst
avoiding priority inversion, each interrupt priority has its own interrupt stack [47].
Interrupts are masked as long as the running task has higher or equal priority to
the given interrupt. All interrupts are masked while modifying core data in order
to ensure mutual exclusion.

The thread type used for tasking is very simple due to the limitations of the Raven-
scar profile and only has three states as seen in Figure 2.6. All thread operations
on runnable threads are done on the running thread first in the ready queue. The
queue is only modified as a result of threads being inserted, removed, and when
the priority of the running thread is changed according to the FIFO within priori-



25

ties dispatching policy. Whenever the first thread in the queue is not equal to the
running thread a context switch will take place before leaving the core. There is
no idle thread in the run-time environment. Instead the thread that finds the ready
queue empty when leaving the kernel is reinserted into the queue and enters an
idle-loop waiting for any thread to be made runnable by an interrupt. The thread
only leaves the idle-loop when itself or another thread is runnable again. Threads
enter the idle-loop one at the time.

The timing services of the core provides as high precision as possible while sup-
porting the 50 year time span required by the Ada standard [33]. This is done by
using a 64-bit value for time divided into two parts. The least significant part is
present in the system timer called the clock. The most significant part is stored in
memory and is incremented every time the clock timer overflows. A second timer,
the alarm, is used in one-shot mode to release delayed tasks with high-precision
between the clock overflows.

The multitasking core builds on a device specific Board Support Package (BSP)
consisting of peripheral drivers, CPU primitives and assembler files facilitating
context switch, low-level interrupt handling and interrupt masking.

2.4 The Atmel AVR32 architecture

The Atmel AVR32 [3] was designed at Atmel Norway in close cooperation with
NTNU, and is a 32-bit RISC architecture optimized for high code density and high
computational throughput with low power consumption [57].

The architecture has a fairly small register file consisting of 13 general purpose
registers (named R0 to R12), the link register (LR) used for storing the routine
return address, the program counter (PC) and the system register (SR). Instructions
are both 16- and 32-bit wide for higher code density. Being a RISC architecture,
the AVR32 has a number of load / store operations, many with the possibility to
increment or decrement the pointer register before or after memory access. There
are also instructions to load or store multiple registers.

The AVR32 has four interrupt levels, and exceptions such as the Non-Maskable
Interrupt (NMI) and illegal address exception. The entry point for each of the
four levels is configurable, and registers R8 to R12, LR, SR and PC are automat-
ically stored before entering the handler. For the AVR32A microarchitecture the
registers are stored on the system stack, while for the high-performance AVR32B
microarchitecture shadow register files are used.



26 Background theory

Interrupts are managed by the interrupt controller that groups the interrupts of the
specific part, and allows each such interrupt group to be assigned to any interrupt
level.

2.4.1 The UC3 microcontroller series

The UC3 microcontroller series [4] is the second implementation of the AVR32
architecture, and the first of the AVR32A microarchitecture. It is primarily in-
tended for embedded control applications where deterministic execution time is
paramount. The UC3 implements the DSP instructions of the AVR32 architec-
ture set such as several single-cycle multiply and accumulate instructions for both
modular and saturated arithmetic.

The UC3 has a three-stage hazard-free pipeline consisting of:

1. The instruction fetch stage optimized for on-chip Flash memory.

2. The decode stage that decodes the instructions and sets up control signals.

3. The execution stage consisting of the ALU preforming arithmetic and log-
ical operations, the multiplication unit preforming multiply and multiply-
accumulate operations, and the load / store unit accessing the SRAM and
high-speed bus.

An important feature of the UC3 is the internal SRAM integrated with the CPU
pipeline. The system bus is bypassed, allowing deterministic, single-cycle read-
/write memory access. A high-speed bus (HSB) slave interface to the SRAM al-
lows DMA controllers or other HSB masters to directly write or read data from
memory. Arbitration with a programmable priority scheme is performed if the
CPU and a high speed slave request access simultaneously.

2.4.2 Hardware timers

The 32-bit COUNT / COMPARE system registers of the Atmel AVR32 architecture
are used to count the number of elapsed CPU cycles and allow an interrupt to be
triggered. The COUNT register is reset to zero at system start-up and is incremented
by one every CPU clock cycle. The COMPARE interrupt is triggered when COUNT

equals COMPARE, cleared when COMPARE is written, and disabled when COM-
PARE is zero, which is also the reset value of the register. For newer UC3 revisions
the COUNT register is reset on COMPARE match. It is however possible to disable
this behavior in the CPU configuration register.
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The Timer / Counter peripheral of the UC3 may be used for signal waveform gen-
eration and measurement, and as an one-shot or periodical timer generating inter-
rupts. The peripheral has three 16-bit channels with selectable clock source and
prescaling.
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Chapter 3

Main contributions

3.1 GNAT for AVR32

Article A.1 is titled “An efficient and deterministic multi-tasking run-time en-
vironment for Ada and the Ravenscar profile on the Atmel AVR32 UC3 micro-
controller” [26] and describes how the GNU Ada Compiler (GNAT) was ported
to the Atmel AVR32 architecture and how the GNAT bare-board run-time envi-
ronment was ported from the LEON architecture to the UC3 series of microcon-
trollers. This work made Ada available for the AVR32 for the first time, and pro-
vided a solid research platform for Ada real-time systems.

Refer to Appendix C for details about how the source code of the compiler and
run-time environment is obtained, configured and build.

3.1.1 Porting the GNAT front-end to the AVR32 GCC back-end

The GCC back-end for the AVR32 architecture was initially developed at NTNU
and is now maintained by Atmel Norway. It is not yet in the official code distribu-
tion of GCC, but patches for GCC 4.3 are available at Atmels web-pages.

Since both the front-end and back-end are open source components of GCC, port-
ing GNAT to the AVR32 was mainly a matter of applying the GNAT patches from
AdaCore to the already patched GCC source code provided by Atmel. Due to
changes to the source code by the AVR32 patches, some of the GNAT patches
failed to apply and needed to be fixed manually.
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The ported compiler may also be used together with AVR32 Linux on the AVR32
AP7 series of application processors [2]. In this case the standard POSIX based
run-time environment should be used. This work was not prioritized as Linux was
not found suitable for the research and the AP7 has now become deprecated.

3.1.2 Porting the run-time environment

When porting the run-time environment to the UC3, the board support package
(BSP) including the context switch routine, low-level interrupt handler and peri-
pheral drivers needed to be rewritten due to differences in hardware.

The context switch routine for the UC3 could be written in as few as 15 instructions
with no branches due to the small register file of the AVR32. This was a significant
reduction compared to the LEON architecture that has a large register file with
register windows which means that the execution time of the routine will vary
depending on the current window size. The UC3 context switch has a constant
execution time which eases execution time analysis of applications.

The AVR32 has a peripheral interrupt controller that groups interrupts. Each group
is configured to one of the architectures four interrupt levels by software, and there
is a low-level handler for each level. The interrupt ID is found by first reading
the interrupt cause register of the level to find the interrupt group, and then the
interrupt request register of that group to find the interrupt line.

The timing services uses two hardware timers named clock and alarm. On the
AVR32 two channels of the 16-bit Timer / Counter peripheral are used for these
timers. The clock timer keeps the least significant part (LSP) of the system clock.
On overflow, the most significant part (MSP) of the clock that resides in system
memory, is incremented by the clock interrupt handler. The alarm timer is used in
one-shot allowing fine grained task release within the clock periods.

3.2 Implementation of Ada 2005 execution time control

Article A.4 is titled “Implementing the new Ada 2005 timing event and execution
time control features on the AVR32 architecture” [30] and describes how the new
Ada 2005 timing event and execution time control features were implemented for
the GNAT bare-board run-time environment on the Atmel AVR32 UC3. A novel
feature of this implementation is that the execution time for interrupt levels are
measured separately, and there is an interrupt timer for all levels except the highest
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one. This increases the accuracy of execution time measurement for tasks and
allows execution time control for interrupts for the first time.

3.2.1 Timing events

Prior to implementing Ada 2005 timing events the alarm timer was used exclu-
sively for waking up delayed tasks. The functionality needed for this was spread
over three kernel packages. When implementing timing events it was decided
to use the same alarm mechanism both for waking up tasks and handling timing
events and to gather all the functionality needed in System.BB.Time. By using the
same mechanism both for timing events and waking up delayed tasks, a clean
implementation was achieved. Furthermore, lower overhead may be achieved as a
timing event and a task release occurring at the same time are handled by the same
alarm interrupt.

Internally, alarms are organized as a queue in ascending order by the timeout value
of the events with a sentinel at the end. The queue is implemented as a doubly
linked list in order for alarms to be quickly extracted if cancelled. The sentinel
was added to simplify the code by removing the special case of having an empty
queue. When inserting an alarm the queue is searched from the front to the end.
The one-shot alarm timer is reprogrammed whenever the first alarm is changed.
When the alarm timer interrupt is triggered, all alarms with timeout less than or
equal to the current time are called and removed from the queue by the interrupt
handler.

3.2.2 Execution time control

The execution time control features were implemented in a new package named
System.BB.TMU where TMU stands for Time Management Unit. The package de-
fines the type CPU_Time representing elapsed execution time as a 64-bit modular
integer, and the timer mechanism that is used for execution time control combining
a clock and a single alarm in one type. This is done as implementations are allowed
to limit the number of timers for tasks. As recommended for the Ravenscar pro-
file [17], the implementation allows for at most one timer for each execution time
clock.

The system measures execution time as the number of CPU clock cycles used by
a task since its activation by using the COUNT / COMPARE registers of the AVR32
architecture. The Base_Time of a timer is initially zero and is used for keeping
track of absolute execution time. The execution time for an active timer is the sum
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of the base time and the value of the COUNT system register. When a timer is
deactivated its base time is incremented with the value of the COUNT register, thus
the execution time of inactive tasks equals the base time. The correctness of the
execution time measurement depends on the CPU counter never overflowing. To
prevent this the value written to COMPARE is never greater than a constant Cmax

set to 231−1. When COUNT equals this value a COMPARE interrupt will be pending
causing the timer to be inactivated and its base time updated when handled.

Accuracy of task execution time measurement is improved by charging the execu-
tion time of interrupt handlers to the clock of a pseudo interrupt task for the corre-
sponding interrupt level. This allows task budgets to be tighter and therefore allow
for a higher utilization of the processor. Even more important, it allows the use
of execution time timers for interrupt handling in order to set budgets and handle
overruns. This allows protection against faults in interrupt generation or handling,
for instance by blocking the handling of an interrupt when its budget is exceeded.
Interrupt timers are not allowed for the highest interrupt priority since the kernel
interrupts are of this level, and blocking these will result in system malfunction.

Execution by proxy improves system performance by reducing the number of con-
text switches needed. When task τa executes a protected operation releasing task
τb that is blocked on an entry, τa will also execute the entry on behalf of τb. By
charging τb the execution time spent on the entry this implementation improves the
accuracy of the execution time measurement and the execution time of the entry
does not have to be added to the budget of τa. The usefulness of this feature is
highly dependent on the implementation overhead for changing timers compared
to the execution time of the entry. Testing of the implementation indicates that the
overhead of changing clocks may be larger than the execution time of the entry.
Still there is some usefulness in exchanging a variable overhead of entry-by-proxy
execution with a constant.

3.2.3 Modifications to Ada 2005 standard library

In order to support execution time control for interrupts, additions had to be made
to Annex D of the Ada 2005 standard [32] as shown in Listing 3.1. These changes
were made in the existing execution time control packages specified instead of
adding new packages to the standard library. In Ada.Execution_Time the function
Interrupt_Clock was added to support execution time measurement for interrupt pri-
orities. It returns the total time spent by all interrupt handlers of the given interrupt
priority since start-up.

Also, the tagged type Interrupt_Timer was added to Ada.Execution_Time.Timers to
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Listing 3.1: First API proposal for interrupt execution time control.

package Ada.Execution_Time is
...
function Interrupt_Clock ( Priority : System.Interrupt_Priority )

return CPU_Time;
...

end Ada.Execution_Time;

package Ada.Execution_Time.Timers is
...
Pseudo_Task_Id : aliased constant Ada.Task_Identification.Task_Id

:= Ada.Task_Identification .Null_Task_Id;

type Interrupt_Timer ( I : System.Interrupt_Priority )
is new Timer (Pseudo_Task_Id’Access) with private;

end Ada.Execution_Time.Timers;

support execution time timers for interrupt priorities as shown in Listing 3.1. The
type inherits Timer and takes the interrupt priority as discriminant. None of the
operations of Timer are overridden as it is assumed that the same underlying mech-
anism will be used both for task and interrupt timers and that the only reason for
having a separate type for interrupt timers is the difference in the discriminant.

3.3 Usage of execution time control in Ada

Article A.2 is titled “A real-time framework for Ada 2005 and the Ravenscar pro-
file” [28] and describes how an object-oriented real-time framework for Ada 2005
[60] was adapted to the limitations of the Ravenscar profile. The framework is ex-
tended using the novel features described in Article A.4 to support execution time
control for interrupt handling. The article also describes an example application
demonstrating the use the framework.

3.3.1 Task states and release mechanisms

While the original framework takes advantage of the full Ada 2005 tasking model,
the described framework cannot use mechanisms such as asynchronous control,
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requeue and select statements, and dynamic priorities. Instead it has to rely on
tasks voluntarily giving up the processor within the specified recovery time after
an overrun is signaled by calling the procedure Overrun of the task state. If the task
has not stopped within the recovery time the overrun handler is called again and
some emergency action should be taken.

It is not specified in which way overruns are to be handled by the task state, but
flag polling seems to be the most viable approach. Arguably this is not an elegant
solution, but the options are limited without asynchronous control. The example
applications have a periodic task state with an overrun flag that is polled in the
loop performing the work of the task. The task aborts its work when the flag is set
by the handler.

3.3.2 Extensions for interrupt handling

Flexible interrupt handling is supported by the framework by specifying an inter-
face for interrupt states and an underlying interrupt handling mechanism, similar
to the task state and underlying real-time tasks. However, the sporadic interrupt
release mechanism is also implemented as in the original framework since this is
more efficient for interrupts that simply release tasks.

An interface Interrupt_Server is defined for controlling the execution time of in-
terrupt levels. This interface is implemented by the deferrable interrupt server
that replenishes the execution time budget periodically and blocks all registered
interrupts of its interrupt level if the budget is overrun. This allows applications
to limit the execution time spent on interrupts and protect against burst of inter-
rupts that would otherwise cause tasks to miss their deadlines. This functionality
depends on the special interrupt level execution time timers implemented on the
GNATforAVR32 run-time environment as described in article A.4 and is therefore
architecture specific.

3.4 IRTAW-14 and ISO standardization

Article A.3 is titled “Execution time control for interrupt handling” [29] and was
presented at the 14th International Real-Time Ada Workshop (IRTAW-14) held in
Portovenere, Italy, 7 to 9 October 2009. The article is a sub-set of article A.4, pre-
senting execution time control for interrupts by adding execution time clocks and
timers for interrupt levels as shown in Listing 3.1. It proposes that these features
should be added to the next revision of the ISO standard for the Ada programming
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Listing 3.2: Updated API proposal for interrupt execution time control.

package Ada.Execution_Time.Interrupts is
function Clock (I : Ada.Interrupts. Interrupt_ID) return CPU_Time;

private
...

end Ada.Execution_Time.Interrupts;

package Ada.Execution_Time.Timers.Interrupts is

type Timer (I : Ada.Interrupts. Interrupt_ID)
is new Ada.Execution_Time.Timers.Timer

(Ada.Task_Identification .Null_Task_Id’Access) with private;

private
...

end Ada.Execution_Time.Timers.Interrupts;

language. The presentation of execution time control for interrupts given by the
candidate is included in Appendix B.

3.4.1 Updated API proposal using interrupt ID

The reason for using execution time clocks for each interrupt priority instead of
using interrupt IDs was primarily ease of implementation, efficiency and to reduce
system requirements. Typically there will be many more interrupts than interrupt
levels, which means that using IDs will require more memory. Also, the interrupt
level is known when the system initiates the interrupt handler, while getting the
interrupt ID often requires queries to a peripheral interrupt controller. This means
that one can switch clocks earlier using interrupt priorities, which reduces the in-
accuracy to the tasks execution time clock. Moreover, using interrupt priorities
allows for automatic switching to interrupt clocks in hardware such as done by the
earlier TMU design at NTNU [19, 52].

However, the use of interrupt levels instead of interrupt IDs raises some issues.
On multi-processor systems several interrupts of the same level may be handled
at the same time. This could be solved by having a separate set of interrupt level
clocks for each CPU, but this is not an elegant solution. Also, knowing the execu-
tion time spent handling each interrupt gives better control than just knowing the
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execution time spent handling interrupts of a given priority. After some discussion
the workshop agreed that the candidates alternative proposal of interrupt clocks
for each interrupt ID was preferable, and that the new functionality should be sep-
arated in new packages. The candidate presented an updated API proposal shown
in Listing 3.2. The slides from this presentation are also found in Appendix B.

3.4.2 Other API proposals and workshop decision

At the workshop, the developers of the MaRTE run-time environment presented a
solution of measuring the combined execution time of all interrupt handling using
a single clock [46]. This gives the same benefits in increased accuracy of execution
time measurement for tasks, but does not allow for interrupt execution time control.
Using only one clock for interrupt handling with no timer also allows for more
efficient implementation with low overhead.

The workshop decided to suggest execution time measurement both for separate
interrupt IDs as presented by the candidate and all interrupts combined to be added
to Ada 2012 [40,58]. These features are now included in the working draft for the
Ada 2012 standard [33] with some minor additions to check for run-time environ-
ment support as seen in Listing D.3 and D.4. However, interrupt timers allowing
full execution time control for interrupt handling were deferred being viewed as
too experimental, and are not available for Ada 2012.

3.5 Implementation of Ada 2012 execution time control

Article A.6 is titled “Implementation and usage of the new Ada 2012 execution
time control features” [31] and describes how the run-time environment was up-
dated to support the new execution time control features in Ada 2012. Execution
time control for interrupts is now on Interrupt_ID basis instead of interrupt priori-
ties as in article A.4. Furthermore, the real-time and execution time features use
the same clock and alarm abstraction, reducing the amount of code needed for the
implementation. This design also allows a single hardware timer to support these
features, freeing other timer hardware for application use. Clock measurement is
tick-less, removing the periodic clock overflow interrupts. Performance tests are
done to find the additional overhead to context switches and interrupt handling
caused by execution time control.

The interrupt timer is not included in Ada 2012, only interrupt clocks. The article
describes the implementation of the interrupt timer updated to use Interrupt_ID and
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the updated real-time framework extensions facilitating full execution time con-
trol for interrupt handling. An example application using this feature is given to
demonstrate why interrupt timers should be included in the next revision of Ada.

3.5.1 Design and implementation

The functionality of the real-time clock (RTC) and execution time clocks are quite
similar: both clocks support high accuracy measurement of the monotonic passing
of time since an epoch, and both support calling a protected handler when a given
timeout time is reached. The main difference is that the RTC is always active, while
an execution time clock is only active when its corresponding task or interrupt is
executed. The similarities allow a design where one implementation of clocks and
alarms provides support for both execution time control and the real-time features.
These types are defined in the internal bare-board run-time environment package
System.BB.Time as shown in Listing D.7.

The package body declares the RTC, interrupt clocks, and the internal idle clock
used when the system is executing the idle-loop. In order to save memory there
is a pool of interrupt clocks and a look-up table with Interrupt_ID as index, instead
of having a Clock_Descriptor for every interrupt. This is done since the bare-board
Ravenscar run-time environment does not use dynamic memory in the kernel. Al-
ternatively, memory for the interrupt clocks can be allocated on the heap when
interrupts are registered. As before, the thread’s execution time clock is stored in
the thread descriptor type defined in the package System.BB.Threads. This type also
has an alarm used for real-time delay.

After initialization of the package there are precisely two active clocks: the RTC
that is always active and the ETC that points either to the execution time clock
of the running thread, to the clock for the interrupt being handled, or to the non-
visible idle clock. The ETC is changed as a result of a context switch between
tasks; through interrupt handling where the interrupted execution time clock is
pushed onto the stack and is later reactivated when the handler has been called; or
by system idling where the idle clock is activated while the task executes the idle
loop. To support the latter the task descriptor has an access named Active_Clock that
points to the idle clock when executing the idle loop and the task’s execution time
clock otherwise. Execution time measurement does not take the effects of entry by
proxy execution as in Article A.4 in consideration anymore since the overhead of
doing this was deemed higher than the benefits.

The 32-bit COUNT / COMPARE registers of the AVR32 architecture are still used,
but now both for execution time control and the real-time clock. In order to do
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Figure 3.1: Relation between the RTC and ETC, and the hardware timer registers. The
base time of the clocks are here aligned, and the safety region is shown in dark gray.

this the COUNT value is reset every time the ETC is changed. The base times
of both clock are updated, and COMPARE is set according to the closest alarm
of the RTC and the new ETC with the same safety region to prevent overflows.
The relation between these variables and registers is shown in Figure 3.1. The
COMPARE interrupt handler is called on COMPARE match and calls the handler of
all expired alarms for the RTC and the interrupted execution time clock found on
top of the stack.

3.5.2 Interrupt timer

To allow execution time control for interrupt handling, the proposed child pack-
age shown in Listing 3.3 defines the tagged type Interrupt_Timer that inherits from
Timer. No body is needed for this package as all operations are inherited. The
initialization procedure for timers checks if the object is of type Interrupt_Timer in
which case it uses the interrupt clock instead of the task clock. Interrupt timers are
used in the exact same way as task timers.

The interrupt timer is not a part of the Ada 2012 standard. It should however be
considered added to the next revision as it provides execution time control for in-
terrupts similar to that for tasks. If we measure the execution time for interrupts it
should also be controllable by means such as the framework extensions described
in Article A.6. This is important as the execution time spent handling interrupts
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Listing 3.3: Interrupt timer specification

package Ada.Execution_Time.Interrupts.Timers is

type Interrupt_Timer ( I : Ada.Interrupts. Interrupt_ID)
is new Ada.Execution_Time.Timers.Timer

(Ada.Task_Identification .Null_Task_Id’Access)
with private;

private

type Interrupt_Timer ( I : Ada.Interrupts. Interrupt_ID)
is new Ada.Execution_Time.Timers.Timer

(Ada.Task_Identification .Null_Task_Id’Access)
with null record;

end Ada.Execution_Time.Interrupts.Timers;

may be very hard to predict, since the interrupts may be generated by external
hardware that are not directly controlled by the application. Alternatives to inter-
rupt timers are to count the number of interrupts and disable the interrupt if the
count gets too high, or to poll the execution time of the interrupt after the handler
is called and disable the interrupt if the budget is exceeded. These solutions are
less precise and also less efficient than using interrupt timers.

3.5.3 Framework extensions

The framework components related to interrupt handling can be separated into
three parts: (1) the interface Interrupt_Controller used to control hardware interrupt
generation; (2) the protected interface Interrupt_Server used to control the execution
time spent handling a given Interrupt_ID in accordance with some policy; and (3)
the protected interrupt handlers of the application, the framework already provides
the release mechanism Sporadic_Interrupt to release tasks as a result of an interrupt.

The interrupt timer was used to extend the object-oriented real-time framework to
also provide execution time servers for interrupts following the same pattern as
used for task execution time servers. While the task server controls the execution
time for a group of tasks released sporadically, the interrupt server controls the exe-
cution time spent invoking one interrupt handler many times. The object-oriented
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nature of the framework allows the creation of servers suitable for different needs.
The deferrable server was implemented under the assumption that it is acceptable
to ignore interrupts for a while. Another scheme may be to reconfigure the system
into fail-safe mode in the case of interrupt overruns.

The deferrable interrupt server has a budget that is replenished periodically, and
disables generation of the interrupt it controls if this budget is exceeded. Since
there is no way to cancel the interrupt being handled in Ada, the budget has to
allow for an overrun of one additional handler invocation for the cases where the
budget is exceeded right after entering the low-level handler. A possible future
enhancement could be to add a user handler that is called to notify the application
when an interrupt is disabled, to allow for hardware diagnostics or other applica-
tion dependent handling.

3.5.4 Example application

To demonstrate the usage of interrupt timers and the extensions to the real-time
framework, a simple example application was developed. In this application the
USART RX interrupt is used to read data received on the serial line. For this
example, this is reasonable and efficient since intended usage of the system is
that the characters are sent by the user typing in a serial communication program,
which will limit the rate of interrupts. However, the high baud rate of the USART
line means that the system could be overloaded with interrupts if this limitation is
not respected. In turn this could cause the periodic real-time task in the example
application to miss its deadline.

By using the deferrable interrupt server of the real-time framework, one can easily
set a budget for the interrupt so that the real-time task is guaranteed sufficient
execution time to meet its deadline. The server has the same replenishing period
as the release period of the real-time task, allowing both events to be handled
by the same RTC alarm handler. The severs budget is set so that the system is
known to be schedulable using RMA. To test the interrupt server, data was also
sent on the USART at full baud rate. It was observed that the USART interrupt
was disabled when its budget was overrun and re-enabled when it was replenished.
No deadlines were lost due to bursts of interrupts when the application was tested
with the deferrable server, while several deadlines were lost during the bursts when
the server was not used. This gives a good indication that the deferrable interrupt
server works as intended.

The example application is typical in that we must assume a particular rate of in-
terrupts, but cannot guarantee it as the generation of the interrupts is not controlled
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Figure 3.2: Core and TMU connected to the HSB.

by the application. Bursts of interrupts may also be caused by permanent or tran-
sient hardware faults. The result is that the system has to handle more interrupts
than the budget allows for in the real-time analysis, if the effects of interrupt hand-
ling were analyzed at all, causing deadlines to be missed. The interrupt timers and
extensions to the real-time framework provide an easy and robust way to protect
real-time applications against these situations.

3.6 The hardware Time Management Unit (TMU)

Article A.5 is titled “Functional specification of a Time Management Unit” [24]
and describes a dedicated hardware Time Management Unit (TMU) designed to
improve the performance of execution time control. The TMU is designed for
efficient memory-mapped access through the high-speed bus (HSB) of the micro-
controller. The simplicity of the TMU design allows it to be added to existing
System-on-Chip (SoC) designs with minimal effort.

3.6.1 Functional specification

The TMU was designed as a memory-mapped device accessible through the HSB
as shown in Figure 3.2. The bus address and data are both assumed to be 32-bit
wide. In addition to bus interface the TMU has a clock signal as input. The clock
source of the TMU need not be the same as that used by the core. The TMU
generates an interrupt signal that will usually be routed to the core through an
interrupt controller.
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Internally the TMU has a 64-bit COUNT register that is incremented on every pos-
itive edge of the clock signal. After COUNT is incremented it is compared with
the 64-bit COMPARE register. If COUNT ≥ COMPARE then the interrupt signal
is asserted. In order to atomically swap a new set of COUNT / COMPARE values
with the current, two swap registers are provided. The registers are swapped when
the final word of the swap registers is written, and the previous values of COUNT

and COMPARE may then be read back. The swap registers allow for simple and
efficient change of execution time clocks.

The COUNT register may also be accessed directly. When reading the high-word of
COUNT the low-word is stored in an internal 32-bit buffer, and this buffered value
is returned when the low-word is read. Similarly, the high-word value is buffered
when writing the high-word of COUNT and the whole register is updated when the
low-word subsequently is written using the buffered high-word and the provided
low-word. Due to the buffering care must be taken not to interleave writing and
reading of COUNT. If available it is recommended to use double-word load / store
instructions so that the registers are read and written atomically.

The functional specification of the TMU is given in SystemC, a C++ library for
high-level modeling and simulation of SoC designs. The specification is therefore
executable, and can be integrated with other SystemC components for simulation
in a larger system. The TMU was simulated with a minimal core running a set of
tasks with FPS scheduling to verify the design.

3.6.2 Design rationale

By using 64-bit COUNT and COMPARE registers the absolute execution time values
can be stored in registers instead of storing relative values as done when using 32-
bit registers. Therefore, there is no need for translating the absolute execution time
values used by applications into relative values loaded into the registers. Also by
having a less-or-equal comparison instead of only equality it is no longer necessary
to check if COMPARE is less than COUNT before setting the registers. Even more
important is the ability of the TMU to swap COUNT / COMPARE registers atom-
ically. This simplifies the change of execution time clocks in the context switch
routine and low-level interrupt handlers. The design provides a simple, yet highly
efficient hardware mechanism for implementing execution time control that leaves
the policy entirely for the software. This simplifies the hardware implementation,
and is also more flexible as the usage of the TMU is decided by software.

In contrast, in an earlier design at NTNU [52] that was implemented for the LEON
architecture, the execution time of interrupts was measured automatically in hard-
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ware by changing to the correct interrupt clock before the processor started hand-
ling an interrupt [19]. This design also supported blocking the interrupt in hard-
ware after the deferrable server pattern. While the benefit of this design is zero
overhead to interrupt handling, it is costly to implement and also limits the choice
of execution time control policy to one predefined in hardware.

Also, the earlier TMU design had one interrupt clock for each interrupt level. This
worked well for the LEON architecture that has one level for each interrupt, but
would not work on the AVR32 architecture where the level of the interrupt groups
are configurable, and several interrupts may be of the same level. The pending
interrupt is found in the low-level interrupt handler, and the interrupt clock cannot
be activated before this. However, if relative register values were used it would
be possible to reset it before it is known which clock to activate. The early TMU
design would also work well with the originally proposal for execution time control
scheme where interrupt levels and not interrupt IDs were used.

3.6.3 Implementation for the UC3 microcontroller series

The above given TMU design was implemented and tested for the Atmel AVR32
UC3 microcontroller series by master student Stian Søvik at NTNU in cooperation
with Atmel Norway [53]. This work was supervised by Amund Skavhaug and
guided by the candidate.

When the TMU was implemented for the UC3, some technical changes were
needed [53]. The unit was moved away from the high-speed bus to the peripheral
bus to ease the implementation, and the clock signal driving the TMU was bound
to the clock of the peripheral bus to allow for a synchronous design. This resulted
in slightly longer access time and limited the frequency of the TMU clock to that
of the peripheral bus, which may be lower than the CPU frequency.

Several registers were added to the interface of the TMU as shown in Table 3.1
to make it more like other UC3 peripherals and usable for a wider range of pur-
poses [53]. A control register was added for enabling and disabling the TMU. The
peripheral unit is now disabled by default in order to save power. Even though
the COUNT register is 64-bit and not expected to overflow with the usage intended
when the TMU was designed, an overflow interrupt was added to allow for other
usages. Also, registers for getting the interrupt status, clearing the status flags,
and enabling, disabling and masking interrupts were added following the pattern
of existing UC3 peripherals.

The main design of the TMU was kept when it was implemented for the UC3 se-
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Offset Register Description

0x00 CTRL Control register

0x04 MODE Mode register

0x08 SR Status register
0x0c SCR Status clear register

0x10 IER Interrupt enable register
0x14 IDR Interrupt disable register
0x18 IMR Interrupt mask register

0x1c COMPARE_HI
Compare register

0x20 COMPARE_LO

0x24 COUNT_HI
Count register

0x28 COUNT_LO

0x2c SWAP_COMPARE_HI
Swap compare register

0x30 SWAP_COMPARE_LO

0x34 SWAP_COUNT_HI
Swap count register

0x38 SWAP_COUNT_LO

Table 3.1: User interface of the TMU on the Atmel AVR32 UC3.

ries. The most noticeable change is that the TMU has been placed on the peripheral
bus instead of the high-speed bus as originally intended. However, the UC3 allows
the creation of a special CPU local bus to the TMU [53]. If implemented this
would provide single-cycle deterministic access to the TMU registers. Another as-
pect of moving the TMU is that it will be deactivated in some of the system sleep
modes that turn off the clock for peripherals. This is not a problem for execution
time measurement as only the non-visible execution time clock for idling is active
when within sleep modes.

3.7 Ada 2012 execution time control using the TMU

Article A.7 is titled “Improving the performance of execution time control by using
a hardware Time Management Unit” [25], describes how the TMU was used to
reduce the overhead of execution time control, and gives test results obtained from
simulation with the synthesizable RTL code of the AVR32 UC3L microcontroller.
Only minor changes were needed to the earlier implementation of execution time
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control in order to use the TMU.

3.7.1 Implementation with the TMU

The implementation of Ada 2012 execution time control described in Article A.6
was modified to take advantage of the TMU. The original implementation is re-
ferred to as CC-ETC, where CC stands for COUNT / COMPARE, while the imple-
mentation using the TMU is referred to as TMU-ETC.

The specification of System.BB.Time was not altered when the TMU was used, and
there is still one clock and alarm abstraction used both for the RTC and execution
time clocks. However, the execution time clocks now use the TMU instead of
sharing hardware timer with the RTC. This means that the low-level procedures
interfacing with the hardware had to be updated to use different timers. Also the
COMPARE interrupt handler had to be updated since it now only serves the RTC,
and a new interrupt handler for the TMU was added. In addition an interface to the
TMU peripheral unit was added to the package System.BB.Peripherals.

The context switch routine now changes the execution time clock directly as shown
in Listing 3.4, not through a wrapper Ada routine done with CC-ETC. The ETC
is changed to the Active_Clock of the first thread by first loading Base_Time and
First_Alarm.Timeout for this clock. When these values are loaded, the TMU swap
operation is initiated using the multiple store instruction of the AVR32 architec-
ture. Notice that the registers are stored in reverse order and therefore the high-
word is stored before the low-word. Hence, all swap registers are written before
the swap operation is triggered. After the swap operation the COUNT value is
read back from the swap register and stored as the Base_Time of the previous ETC.
Finally, the ETC is updated to point to the new active execution time clock.

Compared to CC-ETC, the TMU-ETC package body of System.BB.Time has three
more statements and five less declarations, meaning that is has two logical code
line less than the earlier implementation. For the peripheral packages the differ-
ences in code lines also include the changes going from the UC3A to the UC3L
microcontroller series. In these packages 50 logical code lines were added for
using the TMU, whereof only 8 are statements. For the context switch only 8 ad-
ditional instructions were needed for using the TMU as seen in Listing 3.4. All
of these are simple load, store or move instructions, there are no calculations or
branches that complicate the assembler code. In essence the complexity of the
run-time environment as a whole is unchanged by using the TMU.
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Listing 3.4: Changing clocks in context switch routine with the TMU.

/∗ Load Active_Clock of first_thread (stored in r9) ∗/
ld.w r0, r9[THREAD_ACTIVE_CLOCK_OFFSET]

/∗ Load First_Alarm.Timeout and Base_Time ∗/
ld.w r1, r0[CLOCK_FIRST_ALARM_OFFSET]
ld.d r4, r1[ALARM_TIMEOUT_OFFSET]
ld.d r2, r0[CLOCK_BASE_TIME_OFFSET]

/∗ Do TMU swap operation ∗/
mov r1, TMU_ADDRESS + TMU_SWAP_OFFSET
stm r1, r2−r5
ld.d r4, r1 [8]

/∗ Load ETC address ∗/
lda.w r1, system__bb__time__etc

/∗ Load current ETC and store its Base_Time ∗/
ld.w r2, r1
st.d r2[CLOCK_BASE_TIME_OFFSET], r4

/∗ Active_Clock of first_thread is now ETC ∗/
st.w r1, r0

3.7.2 Performance improvements

Performance testing is done by simulation as the TMU has not yet been included
in an UC3 microcontroller chip. However, the synthesizable RTL code of the UC3
system is used, and the results are therefore as accurate as if the testing was done
on real hardware. The run-time environment and test programs are compiled and
linked to an ELF file as normal, and no special code or libraries were needed to
execute on the simulator. The tests programs are the same with the exception of
the non-simulated tests sending data over the USART line, whereas the simulated
TMU tests store data in memory because it can be read directly using the simulator.
Some updates to the run-time environment were also needed since the simulated
microcontroller is of version UC3L, while the earlier tests were for the UC3A [31].
These differences do not affect the test results.

Testing showed that using the TMU for the implementation of Ada 2012 execu-
tion time control reduced the overhead and therefore improved the performance
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Test
Improvement

CPU cycles Reduction (%)

Context switch overhead 65 54
Interrupt handler overhead 30 25
Timing event overhead 4 4
Interruption cost 42 21

Table 3.2: Performance improvements with TMU.

of the system. As seen from the overview in Table 3.2 some improvements were
more significant than others. The overhead of handling timing events is hardly
reduced at all. This is explained by the RTC now being reset in Compare_Handler
before calling the handler in addition to changing to the interrupt clock. The CC-
ETC implementation does both in one operation when the ETC is updated and is
therefore almost as efficient as TMU-ETC.

For general interrupt handling there is a noticeable reduction of latency caused
by the reduced overhead of changing execution time clocks when using the TMU
swap operation. Related to this is the improvement in cost to the interrupted task
that also has a noticeable improvement. However, the absolute cost of interruption
is still quite high.

The best improvement happens for the context switch. This was expected, since
the simplicity of the TMU allowed a call to an Ada procedure changing the task
clock to be replaced with a few lines of assembly code as seen in Listing 3.4.
Combined with the general speed-up of changing clocks for the TMU, this more
than halved the overhead introduced by execution time control compared to the
earlier implementation. In systems with frequent context switches, this should
give a noticeable performance improvement.
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Chapter 4

Conclusions and future work

4.1 Evaluation of contributions

The research goals of the PhD project described in this thesis has been successfully
accomplished. The main contributions can be separated into three parts:

1. The porting of GNAT to the AVR32 architecture and a bare-board Ravenscar
run-time environment to the UC3 microcontroller series.

2. The development of execution time control for interrupt handling and the
establishment of usage patterns for this brand new feature. Execution time
measurement for interrupts is now in the ISO standard for Ada 2012.

3. The design of a Time Management Unit (TMU) to reduce the overhead of
execution time control that has been implemented and tested with the UC3.

Each of these contributions are evaluated in the following.

4.1.1 Ada development for the AVR32 architecture

As a result of the contributions described in this thesis, Ada is now available for
the AVR32 architecture for the first time. The high-quality bare-board run-time
environment for the UC3 microcontroller series supports the restricted Ravenscar
tasking profile with additional support for full execution time control both for tasks
and interrupt handling. The object-oriented Ada real-time framework has been
adapted to the limitations of the Ravenscar profile and is also available with the
run-time environment.
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Using the run-time environment and the real-time framework, developing advanced
multi-tasking applications for the UC3 microcontroller series is possible for any-
one with a basic knowledge of the Ada programming language. This could open
for new applications for the AVR32 within high-integrity embedded real-time sys-
tems, and also open up new markets for Ada and GNAT. The system is also suitable
for educational purposes.

The run-time environment is freely available under the GNU Public License, and
can be modified and used by anyone for any purpose as long as changes are shared
back to the community. There has already been some academic and commercial
interest for the run-time environment.

4.1.2 Execution time control for interrupt handling

Prior to this research work, the execution time of interrupt handling was charged
to the interrupted task by all implementations known to the candidate. This caused
inaccuracy to the execution time measurement of tasks. By implementing separate
execution time measurement for interrupt handling this inaccuracy was reduced to
a small constant cost to the interrupted task. This allows task budgets to be tighter,
and thereby making higher CPU utilization possible.

However, the contributions of this thesis go further, implementing full execution
time control for interrupt handling similarly to that of tasks. This allows accurate
and efficient control of the execution time spent handling interrupts for the first
time, allowing the system to be protected against unexpected bursts of interrupts
caused by hardware errors, design faults or usage errors. This new feature was
demonstrated by extending the real-time framework with an interface for interrupt
execution time servers and implementing a deferrable server, allowing interrupt
handling to be modeled as a periodic task in the scheduling analysis.

Initially, execution time control for interrupt handling was developed for interrupt
levels, measuring the execution time of a pseudo task handling all interrupts of a
given level. This approach was chosen because it required less memory resources
and also made hardware implementation of execution time control easier since
the interrupt level is known by the hardware upon entering the low-level handler.
When this new feature was presented at IRTAW-14 and proposed added to the next
revision of Ada, the alternative proposal of using interrupt IDs instead of levels
was favored. The reason for this is primarily that it gives finer control over the
execution time of individual interrupts and is also better suited for multiprocessors.
While full execution time control for interrupt handling was postponed, execution
time measurement for individual interrupt IDs is now included in the ISO standard
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draft for the forthcoming Ada 2012.

4.1.3 The hardware Time Management Unit

The final contribution of this thesis is the design of a Time Management Unit
(TMU) to reduce the overhead incurred by execution time control. The TMU was
designed as a simple memory-mapped 64-bit timer with a special swap operation
for efficient atomic change of the running clock. The simple design makes the
TMU straightforward to implement for different computer architectures. Under
the guidance of Amund Skavhaug and the candidate the TMU has been success-
fully implemented for the Atmel AVR32 UC3 microcontroller series as part of a
master’s thesis at NTNU in close cooperation with Atmel Norway.

The implementation of Ada 2012 execution time control has been modified to use
this TMU and has been tested on a simulated UC3L microcontroller using Atmels
proprietary synthesizable RTL code and tools. Test results have shown that the
TMU significantly reduces the overhead of execution time control, both for context
switches and interrupt handling. This is important for the adaptation of execution
time control, as a too high overhead may not be acceptable for many real-time
systems.

4.2 Future work

4.2.1 Execution time control with speed scaling

As of now execution time measurement in Ada is related to the passage of time and
not the use of CPU cycles. Therefore a task with a budget of a time span T will be
allowed to execute for this amount of time regardless of which speed the CPU is
running at. However, the execution time needed by the task to finish its work will
clearly be dependent on this speed. It should be clarified how speed scaling is to
be handled with execution time control. Also, an API for dynamic speed scaling
should be added to Ada in order to support this energy saving feature.

4.2.2 Further development of GNATforAVR32

Further work is needed for GNATforAVR32, particularly to make the system eas-
ier to configure and build for different versions of the UC3. The system has already
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been updated to an extended version of GNARL, supporting exception propaga-
tion, synchronized interfaces and larger parts of the standard library. This will be
released to the general public as soon as more testing has been performed.

4.2.3 Further development of the TMU

Experience gained by implementing execution time control with the TMU and
evaluation of the performance test results gave insight into some possible improve-
ments to the design. The primary concern is that the interrupt overhead is still high.
In order to achieve further reduction to this overhead a hybrid solution between the
earlier and current TMU design may be needed to automatically change to inter-
rupt clocks upon entering an interrupt level.

Another possible improvement to the TMU is to use the CPU local bus for ac-
cessing the swap registers. This would allow more efficient clock changes with
constant execution time.

4.2.4 Thermal aware scheduling

The power wall [38] and thermal gradients [51] are another future challenge for
real-time systems. While future architectures may have a vast number of cores run-
ning at high frequencies, the power limit is expected to remain constant at 198 W
due to packaging constraints with regards to temperature. It is not feasible to dis-
sipate more power while keeping below the temperature threshold. Exceeding this
threshold may cause errors in computation, reduce the lifetime of the chip or even
cause permanent damage [51]. Temperature gradients may also cause damage to
the chip even if the temperature is below the threshold. Power-saving techniques
are not enough to counter these problems, motivating modeling and control of the
temperature at the architectural level [51].

Several methods for controlling the temperature of computer architectures exist.
These may be hardware or software-based, and either reactive or predictive. Many
designs already use hardware-based Dynamic Thermal Management (DTM) to
avoid dangerous overheating by for instance applying Dynamic Voltage Scaling
(DVS) to keep components below the thermal threshold, clock gating to turn off
overheating components, and possibly also enabling spare components to reduce
the performance penalty [51]. There are also software thermal scheduling tech-
niques that use knowledge of the application load to balance the temperature and
keep below the thermal threshold, thereby avoiding the performance loss inflicted
when DTM is activated. Examples of such techniques are task migration [39],
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speed scaling of processor cores [6], and alternating between running tasks with
higher and lower thermal profiles [34]. A novel approach taken by [63] is to use a
model of the thermal properties of the system and control theory to assign optimal
core speeds to balance the core temperatures.

Amund Skavhaug and the candidate have done some research on simulating the
thermal properties at the architecture level of multi-processor system-on-chip (MP-
SoC) architectures [27] and controlling the temperature of such systems using
model predictive control (MPC) and a genetic algorithm [23]. However, this re-
search has not been included in this thesis as it is not within the main topic.
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Appendix A

Published material

In this appendix the published material forming the basis of this thesis is included.
The papers are included as they appear in the publications, with the exception of
the header and footer being removed.
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Abstract

This paper describes how an efficient and deter-
ministic multitasking run-time environment supporting
the Ravenscar tasking model of Ada 2005 was imple-
mented on the Atmel AVR32 UC3A microcontroller.
The open source GNU Ada Compiler (GNAT GPL
2007) was also ported to AVR32 as a part of this
work, making a working Ada development environment
available on the architecture for the first time.

1. Introduction

Dependability is essential in many embedded and
real-time systems. Failures can often result in financial
losses, environmental damage and even the loss of
lives. Ada is a programming language designed for
high-integrity systems and has many safeguards against
common programming errors. The language is an
ISO standard [1], making programs portable within
different compilers, run-time libraries and operating
systems.

While Ada is much used within high-integrity sys-
tems, the concurrent constructs of the language have
often been excluded as being non-deterministic and
inefficient [2]. Instead such methods as the cyclic exec-
utive [3], [4] has been used. Advances in static analysis
have made it possible to check hard deadlines when
using preemptive fixed priority scheduling. This has
led to development of the Ravenscar profile [5], a sub-
set of the Ada tasking model designed to provide the
static and deterministic environment needed to perform
static analysis [2]. The simplicity of the tasking model
also allows efficient run-time environments.

The Polytechnical University of Madrid developed
the Open Ravenscar Kernel (ORK) [6] on contract
to the European Space Agency for the ERC32 ar-
chitecture. The Open Ravenscar Kernel was further

developed and integrated into the GNU Ada Run-Time
Library (GNARL) by José F. Ruiz at AdaCore [7].

The Atmel AVR32 [8] is a brand new architec-
ture designed by Atmel Norway in cooperation with
the Norwegian University of Science and Technology
(NTNU), and is optimized for code density and high
computational throughput with low power consump-
tion [9]. By porting the GNU Ada Compiler (GNAT)
to AVR32 and the bare-board Ravenscar run-time
environment to the UC3A microcontroller [10] Ada is
made available on this architecture for the first time.

It is shown how the simplicity and power of the
AVR32 architecture and the UC3A microcontroller
combined with the restricted Ravenscar tasking model
allows the multi-tasking run-time environment to be
deterministic and efficient, making it well suited for
high-integrity embedded applications.

2. The Ravenscar profile

The Ravenscar profile is specified as a set of config-
uration pragmas [1], [5] defining restrictions to the Ada
tasking model and the required dynamic semantics.
The following features are supported [2]:

• Tasks types and objects defined at library level.
• Protected types and objects, defined at library

level, limited to one entry having a simple guard
and a queue length of one.

• Ceiling Locking policy with FIFO dispatching
policy within priorities.

• The Ada.Real Time package for high-precision tim-
ing and the delay until statement.

• Synchronous task control, including suspension
objects for simple synchronization.

• Protected procedures as statically bounded inter-
rupt handlers.

The sequential parts of Ada are not affected by the
profile [2].
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3. GNARL

The Ravenscar version of the GNU Ada Run-Time
Library (GNARL) is designed to take advantage of
the simplifications allowed by the profile [7]. Task
management is simplified since all tasks are at library
level, cannot terminate and have fixed priority. All task
data structures are statically allocated, thus memory
requirements are determined at link time. Protected
objects are simplified since there are no asynchronous
operations, no time-out on entry calls and no varying
queue length on entries. Evaluation on protected entries
may be done by proxy, thereby improving performance
by reducing the number of context switches [7].

The GNU Low-Level Library (GNULL) is a transla-
tion layer between generic and actual operating system
calls on most systems, but in this case it fully imple-
ments the needed dynamic semantics of the Ravenscar
profile by including a multitasking core based on the
Open Ravenscar Kernel [6], [7].

The core implements preemptive fixed priority
scheduling with ceiling locking, having 256 priorities
including the interrupt priorities. The number of pri-
orities can easily be changed if needed. Each interrupt
priority has its own interrupt stack allowing interrupt
nesting while avoiding priority inversion [7]. Interrupts
are masked as long as there is a task with higher or
equal priority to that interrupt and all interrupts are
masked while modifying core data.

The timing services of the core provides as high
precision as possible while supporting the needed 50
year time span. This is done by using a 64-bit value
for time divided into two parts. The least significant
part is present in the hardware timer, while the most
significant part is stored in memory and is incremented
every time the hardware timer overflows.

4. The AVR32 architecture

The Atmel AVR32 architecture [8] is a 32-bit RISC
architecture designed for high computational through-
put with low power consumption [9]. The architecture
defines instruction lengths of both 16 and 32-bits for
high code density and there is a rich set of load /
store instructions for high efficiency, supporting byte,
half-word, word and double word memory access. The
register file of the AVR32 architecture is fairly small
having only 13 general purpose registers (R0 to R12),
the link register (LR) used for storing routine return
addresses, the program counter (PC) and the system
register (SR).

The UC3 core [10] is the second implementation
of the AVR32 architecture and is primarily intended

for embedded control applications where deterministic
execution times is important. The UC3 has an internal
SRAM integrated with the CPU pipeline in order
to bypass the system bus. This allows deterministic,
single-cycle read/write memory access. The UC3 fully
implements the DSP instructions of the AVR32 ISA
such as single-cycle multiply and accumulate instruc-
tions for both modular and saturated arithmetic. Atmel
claims it to deliver 1.3 Dhrystone MIPS / MHz.

5. Porting to the AVR32 architecture

5.1. Hardware setup

The EVK1100 evaluation board with the UC3A0512
microcontroller [10] was used for developing and
testing the run-time environment. The UC3A0512 has
64 KB of internal SRAM, 512 KB of internal flash
and is clocked by a 12 MHz external oscillator. The
Atmel JTAG ICE Mk II was used for programming
and debugging the device.

5.2. Porting the GNAT front-end

The GNU Ada compiler (GNAT) is an Ada front-end
for the GNU Compiler Collection (GCC) developed at
the University of New York and is now maintained
by AdaCore. The GCC back-end for AVR32 was
developed at the Norwegian University of Science and
Technology and is now maintained by Atmel Norway.
Both the front-end and back-end are open source soft-
ware licensed under the GNU Public License (GPL).

Figure 1. The GNU Compiler Collection.

Since both the front-end and back-end are open
source components of GCC, porting GNAT to the
AVR32 architecture was much matter of applying the
GNAT GPL 2007 patches from AdaCore to the already
patched GCC version 4.1.2 source code supplied by
Atmel. There were however some incompatibilities
caused by register promotion of return values from
functions. A quick fix disabling register promotion was
provided by Atmel, the problem should however be
investigated further.
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5.3. Porting the Ravenscar run-time

Only the code that needed to be changed due to
differences between the ERC32 and the AVR32 was
altered when porting the run-time environment.

5.3.1. Context switch. The context switch code con-
sists of only 15 instructions with no branches:
/∗ Get a d d r e s s o f r u n n i n g t h r e a d ∗ /
lda .w r8 , r u n n i n g t h r e a d
ld .w r9 , r8 [ 0 ]

/∗ Save c o n t e x t o f r u n n i n g t h r e a d ∗ /
sub r9 , −48
stm −−r9 , r0−r7 , sp , l r
mfsr r0 , SYSREG SR
s t . w −−r9 , r0
s t . w −−r9 , r12

/∗ Get a d d r e s s o f f i r s t t h r e a d ∗ /
lda .w r1 , f i r s t t h r e a d
ld .w r9 , r1 [ 0 ]

/∗ F i r s t t h r e a d i s now r u n n i n g t h r e a d ∗ /
s t . w r8 [ 0 ] , r9

/∗ Load c o n t e x t o f f i r s t t h r e a d ∗ /
ld .w r12 , r9++
ld .w r0 , r9++
mtsr SYSREG SR , r0
sub pc , −2
ldm r9 ++ , r0−r7 , sp , pc

The addresses of the running and first thread are
stored in memory instead of being passed as arguments
for debugging purposes [7].

5.3.2. Interrupt handling. The AVR32 has a periph-
eral interrupt controller which groups different inter-
rupt lines. Each interrupt group is assigned to one of
the 4 interrupt levels by the software driver.

There is a low-level handler for each interrupt level.
The interrupt ID is found by reading the interrupt cause
register of the level to find the interrupt group, and then
the interrupt request register of that group to find the
interrupt line. The highest numbered asserted line is
chosen if there are more than one.

The handler loads the interrupt stack for the given
level and calls the interrupt wrapper with the interrupt
ID. Prior to returning from the handler the task stack
pointer is restored and a context switch is done if
needed.

5.3.3. Peripheral drivers. The power manager unit is
used to enable the external oscillator upon initialization
of the system and setup the CPU and peripheral clocks
relative to it. For simplicity, it was chosen to run both
the CPU and the peripherals at the same clock rate as
the external clock.

The interrupt controller provides the functionality to
activate interrupts and read the interrupt ID. The pack-
age provides the mapping between interrupt identities
and groups, and is specific to a given MCU series. The
interrupt priorities are also defined in this package.

Two 16-bit counters are used by the timing services.
One counter is used as the least significant part of
the system clock, counting the whole 16-bit range
and generating an interrupt on overflow. The other
counter is used in one-shot mode for setting off alarms
between the regular interrupts, allowing fine grained
task release.

6. Metrics

6.1. Code size

The context switch for the AVR32 consists of only
15 assembler code lines. The number of assembler
code lines for interrupt handling is only 18 compared
to more than 100 for the ERC32. In total the number of
assembler code lines is reduced from about 400 with
the ERC32 to about 50 with the AVR32. The AVR32
implementation needs more peripheral drivers resulting
in more Ada code lines as seen from Table 1. Most of
the added lines are however register declarations for
the peripherals and not executable statements.

Table 1. Comparison of Ada code metrics.

Metric ERC32 AVR32
Statements 261 378
Declarations 528 896
Total 789 1274

6.2. Memory requirements

The memory requirements of the multitasking core
are generally low, only the interrupt handling package
uses a noticeable amount of SRAM memory due to
the interrupt stacks in its BSS section. The size of the
text section used by the run-time core is about 5.5
KB which is just above 1% of the total Flash memory
available on the UC30512.

6.3. Performance

A simple test of the time needed to switch context
was performed by having one task assert an external
pin, unblock a second task and then go to sleep,
when the second task started executing it negated the
same pin. The time the external pin was asserted was
measured to be about 15 µs when the system was
running on 12 MHz, this equals approximately 180
clock cycles.
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7. Discussion

7.1. Choice of hardware

The AVR32 is a brand new architecture with an in-
struction set created from scratch, making it interesting
for research purposes. The architecture was created by
Atmel Norway in Trondheim in collaboration with the
NTNU located in the same city. The relationship be-
tween Atmel Norway and NTNU makes it possible to
later design and test new hardware solutions supporting
the run-time environment together with the code for the
AVR32 core.

The UC3 core was chosen over the more powerful
AP7 core out of several reasons. System implemen-
tation was easier on the UC3 since it requires less
software drivers. However the deterministic one-cycle
access time to internal SRAM was the primary reason
for choosing the UC3. The AP7 has a higher average
performance, but relies on external cached SDRAM
resulting in a high worst-case time for memory access.

7.2. Multitasking core

The context switch is highly efficient and has a con-
stant execution time, avoiding the problem of having
a worst-case execution time that is significantly longer
than the average. This should make it easier to preform
accurate static analysis of applications.

The timer/counter module of the UC3 is only 16-
bit causing frequent overflows. Division of the clock
signal used by the timer reduces the frequency of
timing interrupts but also the resolution of the system
clock. Which is preferred depends on the application.

The programmable interrupt handling model of the
AVR32 is very flexible. Different applications may
assign different priorities to interrupt groups instead of
having these decided by hardware. Only a modification
of constants in the interrupt specification file and a
recompilation is needed to change the priorities.

7.3. Memory requirements

The memory requirements are dominated by the task
and interrupt stacks. The number of interrupt stacks
is reduced from 15 on the ERC32 implementation to
only 4 on the AVR32, reducing the amount of memory
needed for these stacks with more than 73%. The size
of the stacks may easily be altered. The secondary
stack is used for returning objects of variable size
from routines, and may be removed altogether for some
systems further reducing the memory requirements.

8. Conclusion

The simplicity and power of the AVR32 architecture
allows several enhancements compared to the original
ERC32 implementation with regards to determinism,
analyzability and efficiency. In particular the context
switch and interrupt handling code are simplified. The
context switch execution-time is deterministic easing
schedulability analysis.

By porting the GNAT to AVR32 Ada is made
available on this architecture for the first time. This
could open new applications for AVR32 within high-
integrity embedded real-time systems, and also open
new markets for Ada 2005 and GNAT. The system
may also be suitable for educational purposes.
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Abstract

This paper describes an object-oriented real-time
framework for Ada 2005 and the Ravenscar profile.
The framework uses the Ada 2005 real-time features
implemented on the AVR32 UC3 microcontroller series
to control the execution-time of tasks and interrupt
handlers. An example application using the framework
and test results are given.

1. Introduction

Dependability is essential for embedded and real-
time systems as failure of such systems may result
in financial losses, environmental damage or even the
loss of lives. As the complexity of embedded software
increases system failures caused by software faults is
getting ever more prevalent.

Failures are often classified as being either in the
value or time domain. The Ada programming language
[1] was designed for use in high-integrity systems
and has many safeguards to prevent failures in the
value domain. The language is strongly typed and has
strict checks for access types, making many common
programming faults being detected already at compile
time. Furthermore the language has run-time checks to
catch errors not detectable at compilation time.

Failures in the time domain may be harder to prevent
as the errors may occur due to obscure faults such
as race conditions in the underlying tasking environ-
ment. The Ada tasking model with its rich set of
synchronization primitives has traditionally not been
considered suitable for high-integrity systems due to
its non-deterministic nature. The Ravenscar profile [2]
standardized as a part of Ada 2005 defines a sub-set
of the tasking model designed to provide the static and
deterministic environment needed for such systems.

Static analysis techniques for the time domain such
as Rate Monotonic Analysis (RMA) [3] relay on
tasks not exceeding their execution-time budget. These

budgets may be determined by analysis on the task
code in order to estimate its Worst-Case Execution-
Time (WCET). However this analysis may not be
trivial on simple architectures and may be very hard
and time consuming for more advanced architectures
with features such as deep pipelines, cache and branch
prediction [4]. This leads to the use of conservative
estimates for the budgets. Furthermore the WCET will
often be much greater than the average execution-time.

An alternative is to use less conservative budgets
and handle execution-time overruns dynamically. In
order to facilitate this Ada 2005 defines execution-time
clocks and timers [1]. The Ravenscar profile does not
allow execution-time timers. However, research prior
to the writing of the Ada 2005 standard concluded
that these timers were useful and compatible with the
Ravenscar profile [5].

A framework for common real-time paradigms such
as periodic and sporadic tasks with detection of dead-
line misses and execution-time overruns may be useful
in order to ease development and reduce the number
of software faults. Such a real-time framework was
developed for Ada 2005 by Andy Welling and Alan
Burns [6]. Their framework is however not compatible
with the tasking model of the Ravenscar profile. This
paper seeks to implement a version of the framework
compliant with the Ravenscar profile with the excep-
tion of using execution-time timers.

The Atmel AVR32 [7] is a brand new architec-
ture designed by Atmel Norway in cooperation with
the Norwegian University of Science and Technology
(NTNU). The UC3 microcontroller series [8] is the
second implementation of the architecture. The GNU
Ada Compiler (GNAT) and the GNAT bare-board run-
time environment [9] were ported to UC3 at NTNU,
and are used for demonstrating the framework.

In the following there is an introduction to the Ada
2005 real-time features and their implementation on
the AVR32 GNAT bare-board run-time environment
[10], [11]. Then follows a description of the developed
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real-time framework. An example application using the
framework and test results are given.

2. The Ravenscar profile

The Ravenscar profile is specified as a set of prag-
mas [1], [2], [12] defining restrictions to the Ada
tasking model and the required dynamic semantics.

A static set of tasks and protected objects is achieved
by only allowing such objects to be statically declared
at library level and disallowing task termination. Dy-
namic attachment of interrupt handlers and dynamic
change of task priorities (with the exception of changes
caused by ceiling locking) is also prohibited. Tasks
may not have entries, thereby only allowing task
communication and synchronization through protected
objects or suspension objects.

Several restrictions are applied to ensure a determin-
istic execution model. A protected object may have a
single entry with a queue length of one using a sim-
ple barrier. The requeue statement and asynchronous
control are disallowed. Relative delay statements are
prohibited and the profile forces the use of the real-
time package for timing purposes.

The profile requires that the task dispatching model
to be used is FIFO_Within_Priorities and that
Ceiling_Locking should be used for protected objects.

3. The Ada 2005 real-time features

Timing events allow protected procedures to be
called at a specified time without the need for a task
or delay statement [1, D.15]. The Ravenscar profile
allows timing events declared at library level. The
tagged type Timing_Event is set with a handler of the
type Timing_Event_Handler that identifies a protected
procedure to be executed when the timing event occurs.
A timing event may be set to occur at a absolute time
or a relative time.

The package Ada.Execution_Time defines the type
CPU_Time for representing the execution-time of a task,
which is defined as the time spent by the system
executing that task, including the time spent executing
run-time or system services on its behalf [1, D.14].
The language standard does not specify which task,
if any, that is to be charged the execution-time of
interrupt handlers. The AVR32 implementation does
not charge the interrupted task the execution-time
of interrupt handlers [11]. This is instead charged a
pseudo interrupt task for the given interrupt priority.
Also a task executing an entry by proxy is not charged
the execution-time of the entry, this time is charged
the task blocked on the entry.

The package Ada.Execution_Time.Timers is used
for execution-time events [1, D.14.1]. The tagged
type Timer represents an execution-time event for a
single task and is capable of detecting execution-
time overruns. The type Timer_Handler identifies a
protected procedure to be executed when the timer
expires. A timer is set and cancelled the same way as
timing events with CPU_Time as absolute time instead
of Time. The AVR32 implementation defines the type
Interrupt_Timer, which extends Timer and takes the
interrupt priority as discriminant [11]. Each interrupt
priority but the highest one has an interrupt timer.

4. The real-time framework

The framework presented below is based on a
framework by Andy Wellings and Alan Burns [6]
referred to as the original framework. It has some
extensions to the original, supporting more flexible
interrupt handling and interrupt execution-time servers.
Execution-time servers for tasks are not implemented
due to the limitations of the Ravenscar profile.

4.1. Task states

The task state contains the code to be executed
by tasks, the associated state and procedures to be
executed in case of deadline misses and execution-time
overruns:
package Task_States is

type Task_State is abstract tagged limited
record

Tid : aliased Task_Id := Null_Task_Id;
Budget : Time_Span := Time_Span_Last;
Recovery : Time_Span := Time_Span_Last;

end record;
procedure Initialize

(S : in out Task_State) is abstract;
procedure Code

(S : in out Task_State) is abstract;
procedure Deadline_Miss

(S : in out Task_State) is null;
procedure Overrun

(S : in out Task_State) is null;
type Any_Task_State is

access all Task_State’Class;
end Task_States;

The task state differs from that of the original
framework by not including an explicit deadline, the
deadline is instead implicitly defined by properties of
the inheriting task states, and by adding the task ID
of the underlying task and the recovery time, which is
the time a task has to voluntarily stop executing after
an overrun.

Two types inheriting Task_State are defined in
child packages as in the original framework: the
Periodic_Task_State which adds Period and the
Sporadic_Task_State which adds MIT (minimal-
interrelease time).
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4.2. Release mechanisms

The framework defines sporadic and periodic release
mechanisms with and without overrun detection in
child packages. Only the release mechanisms with
overrun detection are detailed. The interface for release
mechanisms is defined as:
package Release_Mechanisms is

type Release_Mechanism is limited interface;
procedure Wait_For_Next_Release

(R : in out Release_Mechanism) is abstract;
type Any_Release_Mechanism is

access all Release_Mechanism’Class;
type Open_Release_Mechanism is

limited interface and Release_Mechanism;
procedure Release

(R : in out Open_Release_Mechanism) is abstract;
type Any_Open_Release_Mechanism is

access all Open_Release_Mechanism’Class;
end Release_Mechanisms;

The definition of release mechanisms is the same
as in the original framework with exception of being
defined as limited interfaces instead of synchronized
interfaces due to the run-time environment not sup-
porting the latter, and the addition of an interface for
release mechanisms with a public release procedure.

4.2.1. Periodic. Controlled_Periodic_Release im-
plements Release_Mechanism and includes a protected
object of the private type Mechanism implementing the
actual release mechanism:
protected type Mechanism

(S : Any_Periodic_Task_State) is
procedure Initialize;
entry Wait;
pragma Priority (System.Any_Priority’Last);

private
procedure Release (TE : in out Timing_Event);
procedure Overran (TM : in out Timer);
Event_Period : Timing_Event;
Execution_Timer : access Timer;
Next : Time;
Open : Boolean := False;

end Mechanism;

The timing event and handler Release are used to
release the task blocked on the entry Wait periodically
and also set the budget for the task:
procedure Release (TE : in out Timing_Event) is
begin

if Wait’Count = 0 then
S.Deadline_Miss;

end if;
Execution_Timer.Set_Handler

(S.Budget, Overran’Access);
Open := True;
Next := Next + S.Period;
TE.Set_Handler (Next, Release’Access);

end Release;

The first release is on the system epoch time. The
deadline of a task is the same as its period. If the task
is not blocked on the entry when released it has missed
its deadline. The handler Overran simply sets itself to

be called again after the recovery time has passed and
calls the Overrun procedure of the task state.

procedure Overran (TM : in out Timer) is
begin

TM.Set_Handler (S.Recovery, Overran’Access);
S.Overrun;

end Overran;

The entry Wait has Open as guard which is set to
false when the entry is executed.

4.2.2. Sporadic. Controlled_Sporadic_Release im-
plements Open_Release_Mechanism and also includes
a private protected type Mechanism implementing the
actual release mechanism:

protected type Mechanism
(S : Any_Sporadic_Task_State) is
procedure Initialize;
procedure Release;
entry Wait;
pragma Priority (Any_Priority’Last);

private
procedure Release_Allowed

(TE : in out Timing_Event);
procedure Overran (TM : in out Timer);
Execution_Timer : access Timer;
Event_MIT : Timing_Event;
Released : Boolean := False;
Allowed : Boolean := False;
Open : Boolean := False;

end Mechanism;

The timing event and the handler Release_Allow

enforce the minimal-interrelease time (MIT):

procedure Release is
begin

Released := True;
Open := Allowed;

end Release;

procedure Release_Allowed
(TE : in out Timing_Event) is

begin
if Wait’Count = 0 then

S.Deadline_Miss;
end if;
Allowed := True;
Open := Released;

end Release_Allowed;

The deadline of the task is the same as the MIT.
The task has missed its deadline if not blocked on
Wait when the handler is called. The task budget and
MIT event are set when the task is released:

entry Wait when Open is
begin

Execution_Timer.Set_Handler
(S.Budget, Overran’Access);

Event_MIT.Set_Handler
(S.MIT, Release_Allowed’Access);

Released := False;
Allowed := False;
Open := False;

end Wait;

The procedure Overran is similar to the that of the
controlled periodic release mechanism.
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4.3. Real-time task

The task type Real_Time_Task has its priority, an
access to a task state and an access to a release
mechanisms as discriminants, and the following body:
task body Real_Time_Task is
begin

S.Tid := Current_Task;
S.Initialize;
loop

R.Wait_For_Next_Release;
S.Code;

end loop;
end Real_Time_Task;

The only difference from the original framework is
the statement initializing the task ID.

4.4. Interrupt handling

In order to support more flexible interrupt handling
an interface for interrupt states resembling that of task
states is added to the framework:
package Interrupt_States is

type Interrupt_State is limited interface;
procedure Handler
(S : in out Interrupt_State) is abstract;

procedure Enable
(S : in out Interrupt_State) is abstract;

procedure Disable
(S : in out Interrupt_State) is abstract;

type Any_Interrupt_State is
access all Interrupt_State’Class;

end Interrupt_States;

Device drivers for peripherals with interrupts may
implement this interface and provide a handler and
procedure for enabling and disabling the interrupt. A
protected object for interrupt handling resembling the
Real_Time_Task is defined as:
protected type Interrupt_Handler
(Id : Interrupt_Id;
Pri : Interrupt_Priority;
S : Any_Interrupt_State) is
pragma Interrupt_Priority (Pri);

private
procedure Handler;
pragma Attach_Handler (Handler, Id);

end Interrupt_Handler;

The private handler of the protected objects simply
calls the handler of the interrupt state.

4.5. Interrupt servers

Interrupt servers take advantage of the interrupt
level timers implemented on the AVR32 architecture to
control the execution-time spent on handling interrupts
of a given interrupt priority. The interrupt servers are
therefore not portable to other run-time environments.
An interface for these servers is defined as:

package Interrupt_Servers is
type Interrupt_Server_Parameters is

record
Pri : Interrupt_Priority;
Budget : Time_Span;
Period : Time_Span;

end record;
type Interrupt_Server is limited interface;
procedure Register
(S : in out Interrupt_Server;
I : Any_Interrupt_State) is abstract;

type Any_Interrupt_Server is
access all Interrupt_Server;

end Interrupt_Servers;

The interrupt server parameters give the interrupt
priority, budget and replenishing period of the interrupt
server. A tagged type Deferrable_Interrupt_Server

implements the interface, takes an access to interrupt
server parameters as discriminant, and has a private
protected object defined as:
protected type Mechanism
(Param : access Interrupt_Server_Parameters)

is
procedure Register (I : Any_Interrupt_State);
pragma Priority (Any_Priority’Last);

private
procedure Replenish (TE : in out Timing_Event);
procedure Overran (TM : in out Timer);
Replenish_Event : Timing_Event;
Execution_Timer : access Interrupt_Timer;
Next : Time;
Disabled : Boolean := True;
Registered : Natural := 0;
States : State_Array;

end Mechanism;

The interrupt execution-time is controlled by using
the interrupt timer of the given level and a timing event
replenishing the budget. All registered interrupts are
disabled on overrun and enabled every time the budget
is replenished:
procedure Replenish (TE : in out Timing_Event) is
begin

Execution_Timer.Set_Handler
(Param.Budget, Overran’Access);

if Disabled then
Disabled := False;
for I in 1 .. Registered loop

States (I).Enable;
end loop;

end if;
Next := Next + Param.Period;
TE.Set_Handler (Next, Replenish’Access);

end Replenish;

procedure Overran (TM : in out Timer) is
begin

if not Disabled then
Disabled := True;
for I in 1 .. Registered loop

States (I).Disable;
end loop;

end if;
end Overran;

Interrupts are assumed to be initially disabled. The
first replenish event, which enables all registered inter-
rupts, is set to occur at the system epoch time when
the first interrupt state is registered.
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5. Example application

An example application was developed to demon-
strate the use of the real-time framework. The applica-
tion has an interrupt handler for an external interrupt
signal, a sporadic task released after a given number of
external interrupts and a set of periodic tasks with hard
deadlines. In order to ease implementation the tasks
busy-wait for a given number of milliseconds instead
of executing a “real” algorithm.

The Atmel EVK1100 evaluation board with the
AVR32 UC3A0512 microcontroller [8] was used for
the application. In addition the AVR Butterfly evalua-
tion board with the AVR ATMega 169 microcontroller
[13] was used for generating an external interrupt
signal used by the application. Test data was sent on
the USART channel from the EVK1100 to the PC
serial port where it was retrieved and analyzed. The
Atmel JTAG ICE Mk II was used for programming
the microcontrollers. A schematic view of the system
is shown in Figure 1.

PC

EVK1100

USART

JTAG

Butterfly

Figure 1. Hardware schematics.

The application has two sources of randomness,
the pseudo-random number generator implemented on
the AVR32 and the pseudo-random external interrupt
signal generated by the ATMega 169 microcontroller.

The “Minimal Standard” generator [14] was imple-
mented for generating a pseudo-random discrete and
uniform distribution X in the range 0 to 99. The
equation for generating the sample xi for the internal
state si is:

s0 = S (1)

si+1 = 75 · si mod (231 − 1) (2)

xi =
100 · si
231

(3)

The initial seed s0 of the generator instances is set
to the same non-zero value every time the application
is executed.

The external interrupt signal X was generated using
the “primitive polynomials modulo 2” method [14].
The equation for sample xi is:

s0 = 1 (4)

si+1 = (2 · si) mod 232 + xi (5)
xi = si,18 ⊕ si,5 ⊕ si,3 ⊕ si,1 (6)

The signal X has equal probability for high and
low values at any sample, thus there is on average one
edge every two samples and a falling edge every four
samples. The signal was sampled at 800 Hz giving an
average time between falling edges of 5 ms.

5.1. Tasks

The tagged type Simulated_Periodic extends
Periodic_Task_State and has the period T and budget
C in microseconds as discriminants. It has a pseudo-
random number generator Gen and an atomic flag
Timeout that is used for voluntarily giving up control
of the processor. The initialization procedure resets the
generator, and sets the budget and recovery time of the
task state as follows:
procedure Initialize

(S : in out Simulated_Periodic) is
begin

Reset (S.Gen, 7 * S.T + 13 * S.C);
S.Period := Milliseconds (S.T);
S.Recovery := Microseconds (250);
S.Budget := Milliseconds (S.C) - S.Recovery;

end Initialize;

Notice that the actual budget for the task is the
budget C used in the analysis minus the recovery time
which is 250 microseconds. The code executed by the
simulated tasks is:
procedure Code (S : in out Simulated_Periodic) is

W : Integer;
begin

S.Timeout := False;
if Random (S.Gen’Access) < 50 then

W := (30 * S.C) / 4;
else

W := (50 * S.C) / 4;
end if;
for I in 1 .. W loop

Busy_Wait (100);
exit when S.Timeout;

end loop;
end Code;

The code needs 75% of C to complete half of
the times executed and 125% the rest, not includ-
ing overhead. In the latter case the code will need
more execution-time than budgeted. The code is then
executed while polling the timeout flag every 100
microseconds. The procedure is exited when the work
is done or the timeout flag set.
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The timeout flag is set by the Overrun procedure. If
the procedure is called when the timeout flag is already
set an overrun exception is raised. The Deadline_Miss

procedure raises a deadline miss exception.
The tagged type Simulated_Sporadic used for the

sporadic task extends Sporadic_Task_State and is
implemented similarly to Simulated_Periodic with
the exception of the period being exchanged with the
maximal-interrelease time (MIT).

5.2. Interrupt handling

The tagged type Simulated_Interrupt extends
External_Interrupt which again implements
Interrupt_State and defines the procedure to enable
and disable external interrupts. It has the external
interrupt Id, the number of microseconds for the
handler to execute C, the number of invocations
between releases N, and an access to an open release
mechanism R as discriminants. The handler of the
interrupt state takes slightly more than C microseconds
to execute and calls R.Release on every N invocation:
procedure Handler (S : in out Simulated_Interrupt) is
begin

S.Clear;
Busy_Wait (S.C);
S.Count := S.Count + 1;
if S.Count mod S.N = 0 then

S.R.Release;
end if;

end Handler;

While the execution-time of the handler itself is
constant there will be an varying overhead associated
with handling the interrupt.

5.3. Scheduling

The application task set has an interrupt pseudo task
I for the interrupt level of the external interrupt, a
sporadic task S, and four periodic tasks A, B, C and
D. The scheduling parameters are shown in Table 1.

Table 1. Application task set

Task T [ms] C [ms] U
I 25 2 0.08
S 25 10 0.40
A 25 2 0.08
B 50 5 0.10
C 100 20 0.20
D 200 20 0.10

The total CPU utilization of the tasks set is 0.96
so the utilization-based schedulability test fails, yet as
seen from the Gantt chart in Figure 2 all tasks are
expected to meet their deadlines.

5.4. Execution

Instances of the simulated periodic and sporadic task
states with the parameters as in Table 1 were declared
and combined with controlled release mechanism and
real-time tasks:
S_S : aliased Simulated_Sporadic ( 25, 10);
S_A : aliased Simulated_Periodic ( 25, 2);
S_B : aliased Simulated_Periodic ( 50, 5);
S_C : aliased Simulated_Periodic (100, 20);
S_D : aliased Simulated_Periodic (200, 20);

R_S : aliased Controlled_Sporadic_Release (S_S’Access);
R_A : aliased Controlled_Periodic_Release (S_A’Access);
R_B : aliased Controlled_Periodic_Release (S_B’Access);
R_C : aliased Controlled_Periodic_Release (S_C’Access);
R_D : aliased Controlled_Periodic_Release (S_D’Access);

T_S : Real_Time_Task (200, S_S’Access, R_S’Access);
T_A : Real_Time_Task (190, S_A’Access, R_A’Access);
T_B : Real_Time_Task (180, S_B’Access, R_B’Access);
T_C : Real_Time_Task (170, S_C’Access, R_C’Access);
T_D : Real_Time_Task (160, S_D’Access, R_D’Access);

The simulated interrupt state, an interrupt handler
and an interrupt server with the parameters from Table
1 were declared as:
S_I : aliased Simulated_Interrupt

(EIM_5, 250, 5, R_S’Access);

H_I : Interrupt_Handler
(EIM_5, EIM_5_Priority, S_I’Access);

P_I : aliased Interrupt_Server_Parameters :=
(Pri => EIM_5_Priority,
Period => Milliseconds (25),
Budget => Milliseconds (2));

E_I : Deferrable_Interrupt_Server (P_I’Access);

The execution-time of all tasks and interrupt levels
were polled every major period using a timing-event
and sent on the USART by a background task. Uti-
lization statistics based on 25000 samples are listed in
Table 2.

Table 2. Utilization statistics

Task Max Min Mean Svar
I 0.0676 0.0372 0.0521 0.0041
S 0.3915 0.2268 0.3322 0.0240
A 0.0732 0.0608 0.0670 0.0022
B 0.0969 0.0746 0.0858 0.0056
C 0.1983 0.1508 0.1745 0.0168
D 0.0992 0.0754 0.0873 0.0118

As seen when comparing Table 2 to Table 1 no task
exceeds it budget. Recall that if any task exceeded its
budged or failed to meet its deadline an exception
would occur. When the application was run using
release mechanisms without overrun detection task D
lost its deadline after a few major periods.

The test results are not exactly reproducible due
to the external interrupt signal being generated asyn-
chronously with the main system. However replication
of the test show only minor variance in the result.
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Figure 2. Gantt chart for application task set

6. Discussion

6.1. Framework

With the exception of the interrupt handling part the
framework described in this paper has fewer features
than the original framework due to the limitations of
the Ravenscar profile. While the original framework
takes advantage of the full Ada 2005 tasking model, the
described framework cannot use mechanisms such as
asynchronous control, requeue and select statements,
and dynamic priorities. Instead it has to rely on tasks
voluntarily giving up the processor after an overrun
within the specified recovery time. It is not specified
in which way overruns are to be handled.

Due to the limitations of the Ravenscar profile
and the run-time environment execution-time servers
could not be implemented. This limits the possibility
of implementing aperiodic tasks, as their execution-
time has to be controlled. However, it is possible
to implement an aperiodic release mechanism with
a built-in execution-time server. This scheme relies
on the task blocking itself after a procedure Hold

is called, and resuming execution when Continue is
called. This may be done by the aperiodic task polling
a flag and suspend on a suspension object. The Overrun

procedure will be called if the aperiodic task fails to
suspend within the recovery time.

Flexible interrupt handling is supported by the
framework by specifying an interface for interrupt
states and an underlying interrupt handling mechanism,
similar to the task state and underlying real-time tasks.
This allows for complex interrupt handlers. However,
the sporadic interrupt release mechanism is also im-
plemented as in the original framework as it is more
efficient for interrupts simply releasing tasks.

The execution-time server for interrupt levels de-
pends on the special interrupt level execution-time
timers implemented on the AVR32 GNAT bare-board
run-time environment [11]. This feature is therefore
architecture specific. The interrupt server blocks all
interrupts of an interrupt level if the execution-time
budget is extinguished. This allows applications to
limit the execution-time spent on interrupts and protect
against burst of interrupts that would otherwise cause
tasks to miss their deadlines.

The release mechanisms were implemented using a
private protected object called through wrapper proce-
dures implementing a limited interface instead of using
synchronized interfaces due to the latter not being
supported by the AVR32 run-time environment. This
is not considered a problem as the wrapper procedures
do not introduce a large overhead. Converting to using
synchronized interfaces should be trivial as the private
protected objects implement the operations of the
interface. However, this would require the interface
to include an initialization procedure as the requeue
statement cannot be used to initialize the protected
object on the first call.

6.2. Example application

The example application is not designed to be as
realistic as possible but to demonstrate the usage of
the real-time framework. Therefore the tasks execute a
busy-wait for a given period instead of a real algorithm.
This makes task execution-time easy to control. The
tasks are programmed to overrun their budget 50% of
the times executed, which is not very realistic. The
high overrun frequency is chosen so that worst-case
conditions occur more frequently.
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The problem of execution-time overruns is solved
by having the tasks poll a timeout flag set by the
overrun procedure at regular intervals. While not an
elegant solution, flag polling may be applicable to
many systems as there will often be a loop or some
recursive structure in the code executed by the real-
time tasks. Alas, in order to use this solution the worst-
case execution-time (WCET) between the pollings of
the flags has to be known. The recovery time has to
be greater than the sum of the WCET between the
flag being polled and the WCET for exiting the task
code and blocking on the release mechanism. Finding
this WCET time may not be trivial. However it should
be simpler than finding the WCET of the whole task,
which again should lead to a less conservative budget.

There are also other possible ways of handling over-
runs than the method used by the example application.
One possibility is to simply log the overrun and restart
the system after a predefined number of overruns.
Another possibility is to reconfigure the system after
an overrun, choosing simpler algorithms for some or
all of the tasks.

7. Conclusion

We have presented a new object-oriented real-time
framework for Ada 2005 that is compliant with the
Ravenscar profile. The framework allows periodic and
sporadic tasks to be implemented as tagged types
containing the task state and the code to be executed.
The release mechanisms associated with the tasks
support monitoring of execution-time overruns and
deadline misses. By overriding procedures called in the
case of execution-time overruns and deadline misses
these events may be handled in an application-specific
manner.

The framework also allows the execution-time spent
on interrupt handlers of a given priority to be con-
trolled by using the special AVR32 interrupt execution-
time timers. When the execution-time budget for the
interrupt priority is overrun all interrupts of that prior-
ity are disabled until the budget is replenished. The in-
terrupt execution-time server is specific to the AVR32
architecture, while the rest of the framework is portable
to other architectures and run-time environments.

The example application demonstrates how the
framework may be combined with flag polling to han-
dle execution-time overruns and avoid lower priority
tasks missing their deadlines. Flag polling is used
due to the restricted tasking model of the Ravenscar
profile. While this scheme may not be as elegant as
using asynchronous control it may easily be applied to
algorithms with loops or recursion.

The described framework combined with the GNAT
bare-board run-time environment provide an efficient
object-oriented development platform which may re-
duce or remove an important class of software faults.

Acknowledgment

Many thanks to Andy Wellings and Alan Burns for
allowing the use of their framework.

References

[1] ISO/IEC, Ada Reference Manual - ISO/IEC
8652:1995(E) with Technical Corrigendum 1
and Amendment 1. [Online]. Available: http:
//www.adaic.com/standards/05rm/html/RM-TOC.html

[2] A. Burns, “The Ravenscar profile,” Ada Lett., vol. XIX,
no. 4, pp. 49–52, 1999.

[3] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J.
ACM, vol. 20, no. 1, pp. 46–61, 1973.

[4] R. Wilhelm et al., “The worst-case execution-time
problem—overview of methods and survey of tools,”
Trans. on Embedded Computing Sys., vol. 7, no. 3, pp.
1–53, 2008.

[5] J. A. de la Puente and J. Zamorano, “Execution-time
clocks and Ravenscar kernels,” Ada Lett., vol. XXIII,
no. 4, pp. 82–86, 2003.

[6] A. Wellings and A. Burns, Ada-Europe 2007. Springer
Berlin / Heidelberg, 2007, ch. Real-Time Utilities for
Ada 2005, pp. 1–14.

[7] Atmel Corporation, AVR32 - Architecture Document.

[8] ——, AT32UC3A Series - Preliminary Datasheet.

[9] J. F. Ruiz, “GNAT pro for on-board misson-critical
space applications,” Ada-Europe, 2005.

[10] K. N. Gregertsen and A. Skavhaug, “An efficient and
deterministic multi-tasking run-time environment for
Ada and the Ravenscar profile on the Atmel AVR32
UC3 microcontroller,” in Proc. DATE’09, April 2009,
IP5-7.

[11] ——, “Implementing the new Ada 2005 timing event
and execution-time control features on the AVR32
architecture,” February 2009, submitted to Journal of
Systems Architecture.

[12] A. Burns, B. Dobbing, and T. Vardanega, “Guide for
the use of the Ada Ravenscar profile in high integrity
systems,” Ada Lett., vol. XXIV, no. 2, pp. 1–74, 2004.

[13] Atmel Corporation, ATmega169p Preliminary.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery, Numerical recepies in C++. Cambridge
University Press, 2002.

78 Published material



79

A.3 Article No. 3

K. N. Gregertsen and A. Skavhaug:

“Execution time control for interrupt handling”

Published in proceedings of IRTAW-14 [29].





Execution-time control for interrupt handling

Kristoffer Nyborg Gregertsen, Amund Skavhaug
Department of Engineering Cybernetics, NTNU

N-7491 Trondheim, Norway
{gregerts,amund}@itk.ntnu.no

Abstract

This paper proposes that execution-time control features for interrupt handling should be
added to the Ada standard library. By measuring the execution-time for interrupts separately
the accuracy of task execution-time measurement will be also improved. It is described how the
proposed features were implemented for the GNAT bare-board Ravenscar run-time environment
on the Atmel AVR32 architecture. Test results for the implementation and an example of usage
are presented.

1 Introduction

The execution-time clocks and timers standardized with Ada 2005 allow the execution-time of tasks
to be monitored and overruns to be handled [7]. This feature is useful as the worst-case execution-
time (WCET) of tasks may be hard to compute [12] and may also be significantly higher than the
average execution-time. By utilizing the new execution-time control features it is possible to use less
conservative budgets and instead handle execution-time overruns dynamically by methods such as
asynchronous control [11] in order to avoid deadline misses. It is also possible to implement execution-
time servers using these features [3].

The Ada 2005 standard does not specify which task, if any, that is to be charged the execution-time
of interrupt handlers [7]. Most implementations charges the running task the execution-time of the
interrupt handler [9]. This leads to inaccuracy in task execution-time measurement, and the worst-case
overhead of interrupt handling has to be added to all task budgets as it is not possible to predict which
task will be interrupted. This inaccuracy was raised as an issue when implementations of the new Ada
2005 features were evaluated [10].

By separately measuring the execution-time for interrupt priorities this inaccuracy in task execution-
time measurement is addressed. This would also allow execution-time control for interrupt handling,
thereby making it possible to protect the system from burst of interrupts that could otherwise result
in tasks missing their deadlines. This additional safety may be very useful for high-integrity real-time
systems. A demonstration of these feature is developed for the Atmel AVR32 architecture [2].

The AVR32 is a brand new architecture developed by Atmel Norway in cooperation with the
Norwegian University of Science and Technology (NTNU). The GNU Ada Compiler (GNAT) and a
bare-board Ravenscar run-time environment (GNATforLEON) were ported to AVR32 [1] at NTNU [4].
GNATforLEON is based on the Open Ravenscar Kernel developed for the ERC32 and LEON space
application processors that was integrated into the GNU Ada Run-time Library (GNARL) by Josẽ F.
Ruiz at AdaCore [8]. The version ported to the AVR32 did not include the Ada 2005 real-time features.
These features were later implemented in GNATforLEON 1.3 [9]. This implementation charges the
running task the execution-time of interrupt handlers.

The Ada 2005 real-time features were implemented from scratch for the AVR32 architecture and
the UC3 core [5]. Improved accuracy for execution-time measurement compared to GNATforLEON
1.3 was achieved by using separate execution-time clocks for each interrupt level and accounting for
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the effects of executing entries by proxy. It should be noted that the Ravenscar profile does not allow
execution-time timers. Therefore strict compliance with the profile is broken by including this feature.

In the following there is a short introduction to the AVR32 architecture before the proposed ad-
ditions to Ada standard library are presented. Next follows a description of how these features were
implemented on the AVR32 UC3 core and test results for this implementation. An example of how the
features may be used is given. Finally there is a discussion of the value added by the proposed features,
the additions to the standard, the AVR32 implementation, and the portability of the features.

2 The AVR32 architecture

The Atmel AVR32 [2] is a 32-bit RISC architecture optimized for high code density and high com-
putational throughput with low power consumption. The register file consists of 13 general purpose
registers (R0 to R12), the link register (LR) used for storing the routine return address, the program
counter (PC) and the system register (SR). The AVR32 has four interrupt levels, a Non-Maskable
Interrupt (NMI) and exceptions.

The UC3 core [1] used in this paper is the second implementation of the AVR32 architecture. It is
primarily intended for embedded control applications where deterministic execution-time is paramount.
It has a three-stage pipeline integrated with an internal SRAM that bypasses the system bus, allowing
deterministic, single-cycle read/write memory access. The core is shown in Figure 1.

Figure 1: The AVR32 UC3 core
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The UC3 has a programmable interrupt controller making it possible to configure the priority
of interrupt groups. Prior to entering an interrupt level the UC3 automatically pushes registers R8
through R12, PC, LR and the system register on the stack.

The 32-bit COUNT/COMPARE system registers are used for execution-time measurement. The
COUNT register has the value 0 at start-up. It is incremented on every clock cycle of the CPU and
overflows silently. The COMPARE register is used for setting off the COMPARE interrupt when
COUNT equals COMPARE. The interrupt is disabled when COMPARE has the value 0, which is the
start-up value of the register. The interrupt is cleared by writing to the COMPARE register.

3 Standard library modifications

In order to support interrupt execution-time measurement and timer some additions had to be made
to Annex D of the Ada 2005 standard [7]. It was chosen to make these changes in the existing
execution-time packages specified in D.14 and D.14.1 instead of adding new packages to the standard
library.

3.1 Execution-time measurement

In Ada.Execution_Time specified in section D.14 a function was added to support execution-time mea-
surement for interrupt priorities:

function Interrupt_Clock

(Priority : System.Interrupt_Priority)

return CPU_Time;

This function returns the total execution-time spent by all interrupt handlers of the given interrupt
priority since system start-up. It may be thought of as the execution-time clock of a pseudo task
serving all interrupts of that interrupt priority.

3.2 Execution-time timers

In Ada.Execution_Time.Timers specified in section D.14.1 a tagged type Interrupt_Timer with the inter-
rupt priority as discriminant that inherits Timer was defined for supporting execution-time timers for
interrupt priorities:

Pseudo_Task_Id : aliased constant

Ada.Task_Identification.Task_Id

:= Ada.Task_Identification.Null_Task_Id;

type Interrupt_Timer

(I : System.Interrupt_Priority)

is new Timer (Pseudo_Task_Id ’Access) with private;

None of the operations of Timer are overridden as it is assumed that the same underlying mechanism
will be used both for task and interrupt timers and that the only reason for having a separate type for
interrupt timers is the difference in the discriminant.

An access to the constant Pseudo_Task_Id with the value Null_Task_Id is used as the discriminant T

for all interrupt timers. This violates the Ada 2005 standard which states that a program error is to
be raised for all operations on Timer if the value of T.all is Null_Task_Id. It was however needed to do
this in order to define the Interrupt_Timer type.

4 AVR32 implementation

The execution-time control features were implemented in a new package System.BB.TMU (Time Manage-
ment Unit) of the bare-board run-time environment.
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The package defines the type CPU_Time representing execution-time as a 64-bit modular integer,
a limited private type Timer used both for execution-time measurement and timers, an access type
Timer_Id for the pointing to timers, and a procedure access type Timer_Handler taking an address as
argument for low-level timer handlers. The type Timer is defined in the private part of the package as:

type Timer is

record

Active_TM : Timer_Id;

Base_Time : CPU_Time;

pragma Volatile (Base_Time );

Timeout : CPU_Time;

Handler : Timer_Handler;

Data : System.Address;

Active : Boolean;

Acquired : Boolean;

end record;

Internally the TMU package may be though of as having two layers, a high-level layer managing
timers, making sure that the correct timer is always active, and a low-level layer performing operations
such as swapping timers and measuring execution-time.

4.1 Timer management

There are several possible active timers in the context of the running task since there are separate
timers for the pseudo tasks such as the idle task and the interrupt server tasks, and the timer of
another task is to be active when executing an entry by proxy. The possible timers in the context of a
task and the relation among them are shown in Figure 2. The figure is simplified by only showing an
arrow representing interruption of one level by the next one. When traversing the graph the history is
kept so that the correct timers may be restored later.

TaskIdle Proxy

Level 1 Proxy 1

Level 2 Proxy 2

Level 3 Proxy 3

Level 4 Proxy 4

Figure 2: Possible timers of a task

After system initialization there is one and only one active timer at any time indicated by the field
Active of the timer being set. The first active timer is that of the environment task. If the running
task is not executing an interrupt, the idle loop, or an entry by proxy then the timer of the running
task is active.
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A stack of timer accesses is used for keeping track of the different interrupt level timers. The
bottom element of the stack always points to the timer of the running task and is updated when a
context switch is executed. The stack is pushed and popped when moving in the vertical direction of
Figure 2, entering and leaving interrupt levels.

The field Active_TM is used for keeping track of horizontal movement in Figure 2 pointing to another
timer when executing an entry by proxy or the idle loop.

4.2 Execution-time measurement

Execution-time is measured as the number of CPU clock cycles used since start-up. The Base_Time of a
timer used for keeping track of absolute execution-time, also referred to as tbase, is initially zero. The
execution-time for an active timer is the sum of the base time and the value of the COUNT system
register, referred to as c:

t = tbase + c, where c ∈ {0, 1, . . . , 232 − 1} (1)

When a timer is deactivated its base time is updated:

tbase ← tbase + c (2)

The execution-time measurement depends on the CPU counter never overflowing. To prevent
this the value C written to COMPARE is never greater than a constant Cmax chosen to be 231 − 1.
When COUNT equals this value a COMPARE interrupt will be pending causing the timer to be
inactivated and its base time updated when the interrupt is handled. The time-line for execution-time
measurement is shown in Figure 3.

t0 tbase tbase + Cmax tbase + 232 264 − 1

Pending interrupt

Figure 3: Execution-time for a timer from 0 to the final overflow.

4.3 Execution-time events

Execution-time events for timers are supported by having a Timeout field also referred to as ttimeout

specifying when the timer is to expire, an access to a procedure Handler that is to be called when the
timer expires, and an address Data to be given as an argument when calling the handler.

The COMPARE register is updated with the value C when timers are swapped, an active timer
is set or an active and set timer is cancelled. If the timer is cleared C is set to CMax, otherwise C is
computed from the difference d between ttimeout and tbase by the following equation:

C =


1 if d < 1,

d if 1 ≤ d and d ≤ Cmax,

Cmax if d > Cmax

(3)

The handler for the COMPARE interrupt has the highest interrupt priority. When executed the
timer of the highest interrupt priority is active and on the top of the stack, the timer causing the
interrupt is pointed to by Active_TM of the timer below on the stack. The handler gets this timer and
checks if it has expired as false interrupts may occur due. If expired the timer is cleared and the
handler called with Data as argument. No further action is taken in the case of a false interrupt.
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4.4 CPU counter primitives

Four primitive operations to manipulate the COUNT and COMPARE system registers were added to
the architecture specific CPU_Primitives package:

• The function Get_Count that returns the value of COUNT system register.

• The procedure Reset_Count that resets COUNT and sets the COMPARE register to the value C
given as argument without causing any false interrupts.

• The procedure Swap_Count that performs the same operation as Reset_Count but also returns the
previous value of COUNT incremented in order to avoid execution-time leakage.

• The procedure Adjust_Compare that changes the value of COMPARE to C without losing an
interrupt. If the procedure is called with a C that is less than COUNT, the COMPARE interrupt
will be pending when leaving the procedure.

All these routines were written as inline assembler code for maximal control and efficiency.

4.5 Application Programming Interface

The tagged type Timer visible through the package Ada.Execution_Time.Timers includes a Timer_Id pointing
to the associated kernel timer and a field holding the current handler.

The Timer_Id is initialized the first time Set_Handler is called. The initialization procedure acquires
the kernel timer for an interrupt priority if the timer is in Interrupt_Timer’Class or else the timer for
the task ID. If the timer is already acquired or not available a Timer_Resource_Error is raised.

When the kernel timer is set, the Data address argument is the address of the timer object and the
Handler an access to an internal procedure. When called by the COMPARE handler this procedure
type-casts the argument Data to an timer access before calling the handler provided by the programmer.
This resembles the use of void pointers in C, and may be seen as a breach of Ada programming practice,
but was chosen for reasons of simplicity and efficiency.

All operations performed on timers objects are done atomically by using the kernel protection
package.

5 Tests

There is a non-zero overhead to the execution-time measurement of a task being interrupted or a task
executing an entry by proxy. Test programs were made to measure this overhead.

The Atmel EVK1100 evaluation board with the UC3A0512 microcontroller [1] clocked at 60 MHz
was used for the tests. Results were sent on the USART channel from the EVK1100 to a PC where it
was retrieved and analyzed. The Atmel JTAG ICE Mk II was used for programming and debugging
the UC3.

5.1 Cost of interruption

This program has a single loop executed by the environment task where the execution-time is first
measured using Clock, then a busy wait for 50 ms is executed before the execution-time is measured
again. The two measured execution-times are sent to the PC and the loop is repeated.

The only active interrupt in this program is the real-time clock overflow that will occur at most
once between the two measurements of execution-time. The difference between the shortest and
longest measured execution-time between the clock calls should give an indication on the overhead of
interruption.

When the test was run and 5000 samples were gathered, there were only three unique values of
the difference between the clock before and after executing the busy wait: 600050, 600182 and 600183.
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This is a testament of the deterministic nature of the AVR32 UC3 microcontroller. It is inferred that
the interruption overhead is 133 CPU clock cycles.

5.2 Cost of executing an entry by proxy

This test program has two tasks named A and B and a protected object. The protected object has
an entry with a guard and a procedure that opens that guard. The protected object has the highest
priority in order to avoid interruption while executing its operations.

Task A has higher priority than B and measures its execution-time before and after executing the
protected procedure. After executing the procedure, A sends its execution-time measurements to the
PC before it is delayed until next release. Task B will simply call the entry and then be delayed until
next release. By releasing A after B half of the times, A will call the procedure both when B is blocked
on the entry, in which case the entry will be executed by proxy, and when B is not blocked.

When running the test gathering 5000 samples, the execution-time between reading the clock was
measured to be 387 CPU cycles when no entry by proxy was executed and 610 when the entry was
executed, giving a cost of 223 CPU cycles. As with the previous test the unique values are due to the
determinism of the AVR32 UC3 microcontroller. However 223 CPU cycles is the best-case cost, the
worst-case situation is when task B has a handler set long into the future due to the calculation of
the COMPARE value C for task B when swapping timers. When task B has a timer set to expire at
CPU_Time’Last, the cost was measured to be 237 CPU cycles.

6 Application

Extensions were be made to the real-time framework by Andy Wellings and Alan Burns [11] to utilize
the interrupt execution-time control features [6].

6.1 Interrupt handling

In order to support more flexible interrupt handling an interface for interrupt states was defined:

package Interrupt_States is

type Interrupt_State is limited interface;

procedure Handler

(S : in out Interrupt_State) is abstract;

procedure Enable

(S : in out Interrupt_State) is abstract;

procedure Disable

(S : in out Interrupt_State) is abstract;

type Any_Interrupt_State is

access all Interrupt_State ’Class;

end Interrupt_States;

Device drivers for peripherals associated with an interrupt may for instance implement procedures
for enabling and disabling the interrupt while the application has a type that inherits the device driver
and implements the interrupt handler itself.

A protected object for handling interrupts was defined as:

protected type Interrupt_Handler

(Id : Interrupt_Id;

Pri : Interrupt_Priority;

S : Any_Interrupt_State) is

pragma Interrupt_Priority (Pri);

private

procedure Handler;

pragma Attach_Handler (Handler , Id);

end Interrupt_Handler;
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The private handler of the protected objects simply executes a dispatching call to the handler of
the interrupt state.

6.2 Interrupt servers

Interrupt servers take advantage of the interrupt timers to control the execution-time spent on handling
interrupts of a given interrupt priority. An interface for these servers was defined as:

package Interrupt_Servers is

type Interrupt_Server_Parameters is

record

Pri : Interrupt_Priority;

Budget : Time_Span;

Period : Time_Span;

end record;

type Interrupt_Server is synchronized interface;

procedure Register

(S : in out Interrupt_Server;

I : Any_Interrupt_State) is abstract;

type Any_Interrupt_Server is

access all Interrupt_Server;

end Interrupt_Servers;

The interrupt server parameters give the interrupt priority, budget and replenishing period of
the interrupt server. The synchronized interface Interrupt_Server has a single operation Register for
registering interrupts to be controlled.

The type Deferrable_Interrupt_Server implements the interface Interrupt_Server and was defined as:

protected type Deferrable_Interrupt_Server

(Param : access Interrupt_Server_Parameters)

is new Interrupt_Server with

procedure Register (I : Any_Interrupt_State );

pragma Interrupt_Priority (Any_Priority ’Last);

private

procedure Replenish (TE : in out Timing_Event );

procedure Overran (TM : in out Timer );

Replenish_Event : Timing_Event;

Execution_Timer : access Interrupt_Timer;

Next : Time;

Disabled : Boolean := True;

Registered : Natural := 0;

States : State_Array;

end Deferrable_Interrupt_Server;

The interrupt execution-time is controlled by using the interrupt timer of the given level and a
timing event replenishing the budget. The first call to Register initializes the object and sets the first
replenish event. All registered interrupts are disabled on overrun and enabled every time the budget
is replenished:

procedure Replenish (TE : in out Timing_Event) is

begin

Execution_Timer.Set_Handler

(Param.Budget , Overran ’Access );

if Disabled then

Disabled := False;

for I in 1 .. Registered loop

States (I). Enable;

end loop;

end if;

Next := Next + Param.Period;

TE.Set_Handler (Next , Replenish ’Access );

end Replenish;
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procedure Overran (TM : in out Timer) is

begin

if not Disabled then

Disabled := True;

for I in 1 .. Registered loop

States (I). Disable;

end loop;

end if;

end Overran;

Interrupts are assumed to be initially disabled and are enabled on the first replenish event.

6.3 Usage

In order to use the interrupt system the programmer could define a tagged type My_Interrupt extending
the AVR32 device driver External_Interrupt which implements the interface Interrupt_State. The device
driver implements the procedures to enable, disable and clear the external interrupt identified by its
discriminant, so My_Interrupt only needs to implement the interrupt handler:

procedure Handler (S : in out My_Interrupt) is

begin

S.Clear;

-- Do work of handler ...

end Handler;

The interrupt state, an interrupt handler and an interrupt server may be declared as:

S_I : aliased My_Interrupt (EIM_5);

H_I : Interrupt_Handler

(EIM_5 , EIM_5_Priority , S_I ’Access );

P_I : aliased Interrupt_Server_Parameters :=

(Pri => EIM_5_Priority ,

Period => Milliseconds (25),

Budget => Milliseconds (2));

E_I : Deferrable_Interrupt_Server (P_I ’Access );

The interrupt state S_I needs to be registered to the interrupt server E_I when the application is
initialized.

7 Discussion

7.1 Interrupt execution-time control

When charging the interrupted task the execution-time of interrupt handlers the WCET of all possible
interrupt handler invocations have to be added to the execution-time budget of all tasks as there
is no way of predicting how many times each task will be interrupted. This leads to reduced CPU
utilization. By not charging the interrupted tasks the execution-time of interrupt handlers the accuracy
of execution-time measurement is improved and the task budgets can be tighter. Ideally there should
be zero execution-time cost to the interrupted task.

The approach taken by this paper is to charge the execution-time of interrupt handlers to a pseudo
task though to execute all interrupt handlers of a given interrupt priority. This allows the execution-
time spent on handling interrupts of a given task to be retrieved, which may be useful for debugging
purposes, but more importantly it allows execution-time timers for interrupt handling.

By using interrupt timers it is possible to implement execution-time servers for interrupts priorities
making it possible to protect the system against bursts of interrupts that would otherwise result in
system failure. Such an execution-time server has been implemented in a real-time framework based
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on work by Andy Wellings and Alan Burns [6, 11]. It should be noted that system interrupts such
as the clock interrupt, timing event interrupt and the interrupt for execution-time should never be
disabled as this could cause run-time environments to malfunction.

An alternative approach would be to not charge any task the execution-time of interrupt handlers.
This would give the same improvement in execution-time measurement for tasks without any addi-
tions to the Ada standard library, but would obviously not allow execution-time control for interrupt
handling. The additional safety provided by the having execution-time timers for interrupt priorities
seems to justify the modifications to the Ada standard library.

7.2 Standard library modifications

The proposed changes to the Ada standard library are in the existing packages Ada.Execution_Time and
Ada.Execution_Time.Timers. Changes were made to existing packages instead of adding new ones since
the additions are few and fairly simple. However it might be argued that the interrupt execution-time
control features should be isolated in child packages so that architectures were these features are not
implementable may simply leave these packages out.

The package Ada.Execution_Time is modified by adding a function Interrupt_Clock for retrieving the
execution-time spent on handling interrupts of the given interrupt priority. The function works in the
same way as Clock would for an interrupt pseudo task serving all interrupts of priority. An alternative
would be to measure the execution-time spent handling each type of interrupt. This approach would
require more run-time support, but would be more suitable for multiprocessors where several interrupts
of the same priority may be handled at the same time in which case the pseudo task approach taken
is this paper would not be possible.

The package Ada.Execution_Time.Timers is modified by adding the aliased constant Pseudo_Task_Id, and
the tagged type Interrupt_Timer inheriting Timer taking the interrupt priority as discriminant, and using
Pseudo_Task_Id as the discriminant T for Timer indicating that it is not bound to an ordinary task. This
conflicts with the Ada 2005 standard as the Pseudo_Task_Id has the value Null_Task_Id. An alternative
would be to have a special Task_Id defined for each pseudo interrupt server task, and use the type Timer

for both ordinary task timers and interrupt timers. However this approach was not used as other parts
of the run-time environment then would have to include checks for the special Task_Id.

7.3 AVR32 implementation

The Ada 2005 real-time features were implemented from scratch on the Atmel AVR32 architecture [5].
The addition of interrupt execution-time control and taking into account the effects of entry-by-proxy
execution is the main difference between this implementation and GNATforLEON 1.3 [9].

The AVR32 implementation is not ideal with regards to interrupt execution-time measurement as
there is an overhead to the interrupted task due to the timers being switched by software. The cost of
interruption by the clock interrupt was found by testing to be 133 CPU cycles. This the best-case cost
for general interrupts as the highest level interrupt timer is never set with a handler. The additional
cost of being interrupted by an interrupt timer with a handler set long into the future is 14 CPU cycles
as observed with execution of entries by proxy, giving a worst-case cost of 147 CPU cycles.

Execution by proxy improves system performance by reducing the number of context switches
needed. This implementation always charges the blocked task the execution-time spent on the entry
thereby improving the accuracy of the execution-time measurement as this execution-time does not
have to be added to the budget of the task executing the entry by proxy. The usefulness of this
feature is however highly dependent of the implementation overhead of changing timers compared to
the execution-time of the entry. As seen from the test results the worst-case cost of executing an entry
by proxy is 237 CPU cycles, which definitely is more than the cost of executing an entry with a null
body. Still the benefit of having a known constant worst-case cost instead of an unknown cost when
executing entries by proxy seems to justify the overhead.
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7.4 Portability and hardware support

The implementation of the proposed interrupt execution-time control features were done on the AVR32
UC3 microcontroller. Unfortunately recent changes to the COUNT / COMPARE semantics [1] for the
UC3 core has made the registers less useful for execution timing. The new semantics state that when
COUNT equals COMPARE the interrupt line should be asserted and COUNT set to 0. The original
semantics were used in this paper since only the engineering presample version was available with the
EVK1100 at the time of development. The implementation could be adapted to the new semantics by
adding more logic to the CPU primitives.

The bare-board GNAT implementation of the Ada 2005 execution-time features is portable to other
architectures as long as it is possible to implement the CPU primitives with fairly low overhead. The
features should also be portable to other embedded run-time systems that allow direct control of the
timer hardware. In order to port the features to operating systems such as Linux, the kernel would
have to be modified to support interrupt execution-time measurement. This would be harder, but fully
possible.

8 Conclusion

The main contributions of this work is an extension to the Ada 2005 standard library allowing
execution-time control for interrupt handling, and the implementations of these features on the Atmel
AVR32 architecture. The benefits of this are twofold:

1. The accuracy for task execution-time measurement is improved as the execution-time of interrupt
handlers is not charged the interrupted task. This allows task budgets to be tighter, and thereby
higher CPU utilization.

2. It is possible to monitor and control the execution-time spent on handling interrupts of a given
priority using execution-time servers. This makes it possible to protect the systems from bursts
of interrupts that could otherwise result in tasks missing their deadline.

In the authors opinion the proposed features would be a valuable addition to the Ada programming
language and should be particularly useful for high-integrity real-time systems. Therefore the authors
recommend that the features are added to the next revision of the Ada standard.
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1. Introduction

The size and complexity of embedded software increases, moti-
vating the use of high-level programming languages to master the
complexity and reduce the number of programming faults. Ada is
an ISO standard programming language [1] that was designed for
use in high-integrity systems and has many safeguards against
common programming faults. The language also has excellent sup-
port for development and maintenance of large applications by its
notation of packages. Furthermore Ada has language support for
tasking and a rich set of synchronization primitives, making even
multi-tasking applications portable.

The latest version of the language standard is Ada 2005 [1]
which is an amendment to the Ada 95 standard and not a full lan-
guage revision. Ada 2005 makes significant improvements to Ada
95, especially within high-integrity and real-time systems [2].
Among the changes are improvements to the OO-model such as
supporting prefix method call notation and Java-like interfaces,
more flexible access types, enhanced structure and visibility con-
trol for packages, extensions to the standard library, and new task-
ing and real-time features [2].

This paper focuses on two of the new real-time features in Ada
2005: timing events and execution time control. Timing events al-
low protected procedures to be executed at a given time without

the use of tasks and delay statements. This feature is useful for a
wide range of purposes, for instance to replenish execution time
budgets and handling deadline misses in real-time systems [3].
The execution time control feature allows the execution time of
tasks to be monitored and overruns to be handled. This may sim-
plify software development as the worst-case execution time
(WCET) of tasks may be difficult to compute [4] and may also be
significantly higher than the average execution time, especially
for architectures using performance-enhancing techniques such
as deep pipelines, cache, branch prediction and similar. Execution
time control allows the programmer to use less conservative bud-
gets and instead handle execution time overruns dynamically. A
task that has exceeded its budget may be stopped by means of such
as asynchronous control to avoid other tasks missing their dead-
lines [3]. It is also possible to implement execution time servers
using group execution time budgets [5].

The Ada 2005 standard does not specify which task, if any, is to
be charged the execution time of interrupt handlers [1]. Earlier
implementations known to the authors charge the running task
this execution time [6,7]. This leads to inaccuracy in execution
time measurement, and the time budget of all tasks has to be aug-
mented with the worst-case overhead of interrupt handling as it is
not possible to predict which task will be interrupted. This inaccu-
racy was raised as an issue when implementations of the new Ada
2005 features were evaluated [8]. The implementation described in
this paper addresses this issue by measuring the execution time of
interrupt handlers separately for each interrupt priority instead of
charging the interrupted task. This also allows execution time
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control for interrupt handling, making it possible to protect the
system from bursts of interrupts, an error that cannot be prevented
by design and that could result in deadlines being missed.

The timing event and execution time control features were
implemented from scratch on the AVR32 UC3 microcontroller ser-
ies [9]. The new AVR32 architecture [10] is developed by Atmel
Norway in cooperation with the Norwegian University of Science
and Technology (NTNU). The AVR32 was chosen as the close ties
between NTNU and Atmel Norway make it possible to add and test
new hardware features. The GNU Ada Compiler (GNAT) and the
run-time environment were ported to AVR32 and the UC3 micro-
controller series by the authors at NTNU making Ada available
for this architecture [11]. The ported run-time environment is
based on the Open Ravenscar Kernel (ORK) developed at the Tech-
nical University of Madrid (UPM) for the ERC32 and LEON proces-
sors used by the European Space Agency. This kernel was later
integrated into the run-time library as GNATforLEON [12].

The Ravenscar profile defines a sub-set of the Ada tasking model
designed to provide the static and deterministic environment
needed in some high-integrity systems [13,14]. By removing com-
plex tasking features the profile also allows more compact and effi-
cient run-time environments to be developed. Execution time
timers are not allowed by Ravenscar [1], so strict compliance with
the profile is lost by implementing this feature. However this
restriction is debated in the community. Research on execution
time timers for Ravenscar kernels done at UPM [15] prior to the
writing of the Ada 2005 standard concluded that these timers were
useful and indeed compatible with the Ravenscar profile. The fea-
tures were also implemented at UPM for the Open Ravenscar Ker-
nel [16] and later ported to version 1.2 of GNATforLEON [7]. We
consider the value added to the system by implementing execution
time control greater than the value of retaining strict compliance
with the Ravenscar profile.

In the following there is an introduction to the AVR32 architec-
ture, the model of clocks and timers used in this paper, and the
new Ada 2005 real-time features. Next follows a description of
how timing events and execution time control were implemented
on the AVR32 UC3 microcontroller, and test results for this
implementation are presented. Finally there is a discussion of the
implementation, possible applications of the implemented fea-
tures, the portability of the implementation to other architectures,
and how the design could be transferred to other languages.

2. The AVR32 architecture

The Atmel AVR32 [10] is a 32-bit RISC architecture optimized
for high code density and high computational throughput with
low power consumption. The architecture has a fairly small regis-
ter file consisting of 13 general purpose registers (R0–R12), the link
register (LR) used for storing the routine return address, the pro-
gram counter (PC) and the system register (SR). The AVR32 has

four interrupt levels, and exceptions such as the Non-Maskable
Interrupt (NMI) and illegal address exception.

The UC3 core [9] used in this paper is the second implementa-
tion of the AVR32 architecture. It is primarily intended for embed-
ded control applications where deterministic execution time is
paramount. It has a three-stage pipeline integrated with an inter-
nal SRAM that bypasses the system bus, allowing deterministic,
single-cycle read/write memory access.

The 32-bit COUNT/COMPARE system registers are used for exe-
cution time measurement. The COUNT register has the value 0 at
start-up and is incremented on every clock cycle of the CPU. The
COMPARE register is used for triggering the COMPARE interrupt
when COUNT equals COMPARE. The interrupt is disabled when
COMPARE has the value 0, which also is the start-up value. The
interrupt is cleared by writing the COMPARE register.

3. Clocks and timers

A clock measures the passage of time using a physical process as
reference, typically a crystal oscillator. Clocked time is discrete and
represented by a count of ticks c 2 N0. Each tick corresponds to a
duration T, so the measured time is t ¼ T � c. Most clocks have inac-
curacies caused by jitter and drift when compared to a reference
clock. Jitter is the phenomenon such that the duration between
the ticks is not a constant T but a stochastic function bT . If the ex-
pected duration EðbT Þ between the ticks is not equal to T the clock
will also drift compare to a reference clock. This drift will accumu-
late over time. Such inaccuracies are not considered in this paper.
Clocks are allowed to be stopped and resumed, but are required to
be monotonic. Therefore the following relation holds between
samples where ti denotes the i’th sample of a clock:

t1 6 t2 6 . . . 6 ti�1 6 ti 8i 2 N: ð1Þ

The real-time clock is used for system operations such as task
release and setting task deadlines. There is only one instance of this
clock. The clock is activated at system start-up, also called the
epoch, and is never stopped. Execution time clocks are used to
measure the total time an executable entity has been running on
the system. There is one clock for each entity. The clock is started
when the entity is scheduled for execution and stopped when it is
suspended, blocked or terminated, or preempted by another entity.
In this paper the executable entities considered are tasks and inter-
rupt handlers.

A timer is associated with a clock and is used to generate an
event that occurs when the clock reaches a specified time te. A
timer is said to be set with an event. An event occurrence is han-
dled at a time t P te, usually by a user-specified procedure to be
called by the system kernel. Several timers may be associated with
a single clock as seen in Fig. 1. Event occurrences for one clock are
required to be handled in time order with earliest event first. The
order for events occurring at the same time is not specified, but
FIFO order will be used in this paper.

Fig. 1. Six timers associated with one clock. All timers but s6 are set with events. Timers s1 and s3 are set with events e2 and e3 occurring at the same time t2;3. Assuming that
FIFO order is used and s2 was set before s3 the events will be handled in the order e1, e2, e3, e4 and e5.
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4. The new Ada 2005 real-time features

4.1. Timing events

Timing events allow protected procedures to be called at a spec-
ified time without the need for a task or delay statement to control
their activation. The package used for timing events is defined in
section D.15 of the standard as shown in Listing 1.

A Timing_Event object is said to be set if associated with a non-
null handler and cleared otherwise. All timing event objects are
initially cleared. The type Timing_Event_Handler identifies a pro-
tected procedure that is to be executed when the timing event oc-
curs. The timing event is cleared before the handler is called. There
are two procedures for setting a timing event with a handler, both
named Set_Handler: one taking the absolute time of the event and
the other a relative time. If Set_Handler is called for an already set

event, the handler is replaced. If called with a null handler the
event is cleared. Handlers may be cancelled using Cancel_Handler
which returns whether the handler was cancelled or not. The func-
tion Current_Handler returns the current handler of the event,
while the function Time_Of_Event returns the time of the event.

Implementations are required to perform operations on a tim-
ing event object atomically. Implementations are also required to
document the upper bound on the overhead of the handler being
called. The Ravenscar profile only allows timing events declared
at library level.

4.2. Execution time control

There are three packages associated with execution time con-
trol, Ada.Execution_Time that defines the types used for execution
time measurement and execution time clocks, and two child

Listing 1. Timing events definition.

Listing 2. Execution time definition.
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packages Timers and Group_Budgets used for handling execution
time overruns of single tasks and groups of tasks respectively.
Group budgets are not implemented in this work for reasons of
efficiency, and will therefore not be described any further here.

The execution time package is defined in section D.14 of the
standard as shown in Listing 2. The type CPU_Time represents
the execution time of a task, which is defined as the time spent
by the system executing that task, including the time spent execut-
ing run-time or system services on its behalf [1, D.14]. It is imple-
mentation defined which task, if any, is charged the execution time
used by interrupt handlers and run-time services on behalf of the
system. The package defines the function clock for getting the exe-
cution time of a task.

The child package for execution time timer is defined in section
D.14.1 of the standard as shown in Listing 3. An object of tagged
type timer represents the source of an execution time event for a
single task and is capable of detecting execution time overruns.
As for timing events a timer is said to be set if associated with a
non-null handler and cleared otherwise, and all timers are initially
cleared. The type Timer_Handler identifies a protected procedure
to be executed when the timer expires. Timers are set and cancelled
as with timing events with the exception of the absolute time for
Set_Handler being given as CPU_Time. The function Time_Remain-
ing replaces Time_Of_Event and returns the time remaining until
the timer expires.

As with timing events the implementation is required to per-
form the operations on a timer object atomically. Implementations
are allowed to limit the number of timers possible for a single task.
If this number of timers is exceeded then Timer_Resource_Error is
raised. In this work there is a limit of one timer for each task for
reasons of efficiency. This limitation was also recommended for

use with the Ravenscar profile [15]. As stated earlier the Ravenscar
profile does not allow this feature.

4.3. Standard library modifications

In order to support execution time control for interrupts some
additions had to be made to Annex D of the Ada 2005 standard
[1]. It was decided to make these changes in the existing execution
time packages specified in D.14 and D.14.1 instead of adding new
packages to the standard library.

The two functions shown in Listing 4 were added to Ada.Execu-
tion_Time in order to support execution time measurement for the
system idle task and interrupt priorities. The function Idle_Clock
returns the execution time the system has been idling since
start-up, while Interrupt_Clock returns the total time spent by all
interrupt handlers of the given interrupt priority since start-up.

The tagged type Interrupt_Timer shown in Listing 5 was added
to Ada.Execution_Time.Timers shown in Listing 3 to support exe-
cution time timers for interrupt priorities. The type takes the inter-
rupt priority as discriminant and inherits Timer. None of the
operations of Timer are overridden as it is assumed that the same
underlying mechanism will be used both for task and interrupt
timers and that the only reason for having a separate type for inter-
rupt timers is the difference in the discriminant.

An access to the constant Pseudo_Task_Id with the value Null_-
Task_Id is used as the discriminant T for all interrupt timers. This
violates the Ada 2005 standard which states that a program error
is to be raised for all operations on Timer if the value of T.all is
Null_Task_Id. It was however needed to do this in order to define
the Interrupt_Timer type.

Listing 3. Execution time timers definition.

Listing 4. Additions to execution time package.
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5. Implementation of timing events

5.1. Design

The timing services of the bare-board run-time environment are
based on the use of two hardware timers named clock and alarm.
On the AVR32 two channels of the Timer/Counter module are used
for these timers. The clock timer keeps the least significant part
(LSP) of the system clock. On overflow the most significant part
(MSP) of the clock resident in system memory is incremented by
the clock interrupt handler. The alarm timer is used for setting
off alarm interrupts within clock periods. Before implementing
timing events the clock interrupt was handled before the alarm
interrupt if both interrupt lines were asserted.

Prior to implementing Ada 2005 timing events the alarm timer
was used exclusively for waking up delayed tasks. The functional-
ity needed for this was spread over three kernel packages. The
queue of future alarms for waking up tasks was managed as a
linked list in the package System.BB.Threads.Queues. The type
Thread_Descriptor of System.BB.Threads included fields for the
alarm timeout and linking to the next alarm in the alarm queue.
Setting the hardware alarm timer, handling the clock interrupt,
and waking up delayed tasks were all done in the package Sys-
tem.BB.Time. When implementing timing events it was decided
to use one alarm mechanism for both waking up tasks and han-
dling timing events, and to gather all the functionality needed in
System.BB.Time. The new relationship between these packages
are shown in Fig. 2.

The alarm mechanism is represented by the type Alarm_
Descriptor shown in Listing 6 that was added to the package Time.

When calling the routines of the package the access type Alarm_Id
is used. This follows the naming pattern of the package Threads
where the types Thread_Descriptor and Thread_Id are used for
kernel threads.

The type Alarm_Handler is an access to procedure taking Sys-
tem.Address as argument. The procedure is called when the alarm
expires. This way of passing data resembles the use of void point-
ers in C and might be seen as a breach of good Ada programming
practice, but was chosen for reasons of performance and simplicity.
The procedure Set_Handler sets an alarm with a handler to be
called at a given time with the given address passed as argument.
The procedure Cancel_Handler for cancelling alarms and the func-
tion Time_Of_Alarm to get the time when an alarm expires are also
defined.

5.2. Alarm queue

Internally there is a queue of pending alarms organized as a
doubly linked list with a sentinel alarm at the end as shown in
Fig. 3. The alarms in the queue are sorted in ascending order
according to the value of the Timeout field. The first element of
the queue is pointed to by the access First_Alarm while the sentinel
at the end of the queue is named Last_Alarm. The sentinel is set to
expire at Time’Last and is not associated with a handler since it is
assumed that this time will never be reached.

When an alarm is set using the procedure Set_Handler the
queue is searched from the beginning for an element where the
timeout of the next element is greater than that of the new alarm.
The alarm is then inserted into the queue before this element. If
the new alarm is first in the queue the hardware alarm timer is

Listing 5. Additions to execution time timers package.

Fig. 2. Packages using alarm timers. An arrow pointing from one package to another indicates a dependency in the specification of the first (the other package is with’ed).

Listing 6. The private definition of the Alarm_Descriptor.
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updated. The new alarm will always be inserted before the sentinel
as the constant Time_Last exported through the real-time API is
one less than the timeout Time’Last of the sentinel. This ‘‘trick” re-
moves the need to check for the sentinel when searching the
queue, which again speeds up the procedure.

When an alarm is cancelled using the procedure Cancel_Han-
dler it is first checked whether the alarm is set or not. If the alarm
is set it is extracted from the queue and cleared. If the extracted
alarm was first in the queue the hardware alarm timer is updated.
The procedure has no effect on alarms that are not set.

5.3. Interrupt handlers

There are two interrupt handlers used for timing services, the
Clock_Handler called when the clock timer overflows and the
Alarm_Wrapper called when the alarm timer expires. Both han-
dlers have the highest interrupt priority and will therefore execute
atomically, also with regard to each other, since all interrupts will
be blocked while the handlers are executing.

The Clock_Handler increments the MSP of the system time and
checks whether there is a pending alarm. An alarm may be pending
due to computational delay when setting the alarm timer making it
expire at the beginning of the next clock period. In this case no fur-
ther action is taken by this handler, the pending alarm will be han-
dled by Alarm_Wrapper. If there is no pending alarm and the
timeout of First_Alarm is within a clock period the hardware alarm
timer is set.

The Alarm_Wrapper is called when the alarm timer expires and
is responsible for calling alarm handlers. The procedure first calls
the handler of First_Alarm and then continues to the next alarm
until all expired alarms are handled. Since alarm handlers may in
turn call the procedures Set_Handler and Cancel_Handler the
alarm queue has to be in a consistent state before calling them.
In order to reduce overhead a flag signaling that the alarm timer
should not be updated is set prior to calling the handlers. Thus
the alarm timer is only updated after all handlers are executed. If
the clock timer overflows while executing Alarm_Wrapper the
MSP is updated and the clock interrupt cleared in order to reduce
overhead. Due to this the alarm handler will be executed before
the clock handler if both interrupt lines are asserted when the
interrupt request register is read. This is done to reduce the over-
head of alarm handlers.

5.4. Delaying and waking up threads

The Alarm_Time and Next_Alarm fields of the kernel type
Thread_Descriptor were replaced by an Alarm_Descriptor. When
a thread is to be delayed until the future time T the thread state
is set to Delayed, the thread is extracted from the ready queue,
and its alarm is set to expire at T with the handler Wakeup and
the address of the thread as data. If T is not in the future the thread
yields the processor by moving itself to the end of the ready queue
for its priority.

The alarm handler wake-up is called when the alarm expires
and typecasts the address argument to a thread pointer, sets its
state to Runnable and inserts it into the ready queue. If necessary
a context switch will be executed before returning to normal task
execution.

5.5. Application programming interface (API)

The API is as defined in the Ada 2005 reference manual. The
tagged type Timing_Event has an Alarm_Timer for setting off
alarms and a Timing_Event_Handler for holding the current han-
dler. The operations are performed atomically by using the kernel
protection package to set and clear the global interrupt mask.

When a timing event is set with a handler its alarm is first can-
celled using the procedure Cancel_Handler that removes a previ-
ously set alarm from the queue. If the alarm was not set this
operation has little overhead. If the user handler is non-null the
alarm is set with the handler Execute_Handler and the address of
the timing event as data. The procedure Execute_Handler is called
when the alarm expires and typecasts the address to a timing
event access that is cleared before the handler is called. When a
timing event is cancelled its alarm is first cancelled using the pro-
cedure Cancel_Handler and then Cancelled is set to true if the han-
dler is non-null and false otherwise.

6. Implementation of execution time control

6.1. Design

The execution time control features were implemented in a new
package System.BB.TMU where TMU stands for Time Management
Unit. This packages implements all the functionality needed for
execution time control and is used by several other packages as
shown in Fig. 4.

The package System.BB.TMU defines the type CPU_Time repre-
senting execution time as a 64-bit modular integer, and the type
Timer_Descriptor that is used for execution time control. The def-
inition of the latter is shown in Listing 7. The access type Timer_Id
points to timers and is used as argument for the operations of the
package, following the same naming pattern as for threads and
alarm timers.

The operations of the package System.BB.TMU may be divided
into two categories: those used for managing timers, making sure
that the correct timer is always active, and those performing oper-
ations on single timers. The first category of operations are called
from internal packages in Fig. 4 that are not visible to the user,
while the second category of operations are called by the user
through the API. Both categories of operations need to call the
TMU through wrappers in the package System.Tasking.Primi-
tive_Operations if calling with an argument of the type Task_Id,
as this has to be translated to the Thread_Id type that is used by
the kernel. The operations of the TMU are detailed in the following
sections.

There is a circular dependency in Fig. 4 between the TMU and
threads packages caused by the first package needing to know
about the type Thread_Id of the latter, while this package needs
to know about Timer_Descriptor that is a component of the
type Thread_Descriptor. The circular dependency is broken by
using the new ‘‘limited with” construct of Ada 2005 which
allows System.BB.TMU to have a limited view of the package
System.BB.Threads. The type Threads_Id has to be redefined in
the TMU package due to this limited view, but this is not a problem
as it is possible to type-cast between the two types.

Fig. 3. Alarm queue with three alarms and sentinel at the end. Notice that the timeout value of the sentinel is always greater than that of the other alarms in the queue.
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6.2. Timer management

There are several possible active timers in the context of the
running task since there are separate timers for the pseudo tasks
of system idling and interrupt handling, and the timer of another
task is to be active when executing an entry by proxy. The pseudo
task timers do not belong to real tasks and are declared in the body
of the TMU package.

Immediately after system initialization there is one and only
one active timer at any time. The first active timer is that of the
environment task. After initialization the active timer is only chan-

ged as a result of one of the timer management operations being
called. Normally the timer of the running task is active. The other
possible timers in the context of a task and the relation among
them are shown in Fig. 5.

Movement up- and downwards in Fig. 5 represents entering
and leaving interrupt handlers. The corresponding operations of
the TMU are Enter_Interrupt which takes the interrupt level as
argument, and Leave_Interrupt that restores the previous active
timer. These procedure are called from the interrupt handling sys-
tem immediately after entering the low-level interrupt handler
and just before leaving it. All interrupt levels but the highest

Fig. 4. Packages using the TMU. An arrow pointing from one package to another indicates a dependency in the specification of the first. The asterisk indicates the use of
‘‘limited with” for avoiding circular dependencies. The dashed arrow indicates that the package body is dependent on another package. All dependencies of the TMU package
but the dependency of the threads package are omitted for simplicity.

Listing 7. Private definition of timer type.
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may be interrupted by a higher interrupt level. An entry by proxy
may also be executed after the user provided interrupt handler has
been executed. Context switches may occur before returning to
normal execution, changing the running task and thus also the
timer to be activated.

Movement from the center to right and back again represents
using the timer of another task when executing an entry by proxy.
The corresponding operations for this movement are Enter_Proxy
that takes Thread_Id translated from the Task_Id of the task
blocked on the entry as argument, and Leave_Proxy that restores
the previous active timer.

Movement from the center to the left and back again is done
when the task is executing the idle loop. The system has no dedi-
cated idle task. Instead a task that has removed itself from the run-
ning queue when there are no other runnable tasks will insert itself
at the head of the ready queue and enter the idle loop in the pro-
cedure Leave_Kernel of the package System.BB.Protection. The task
does not execute any operations while idling but may of course be
interrupted, otherwise no task would ever become runnable. At
most one task will be idling at any time as the idling task is in-
serted into the ready queue. Prior to entering the idle loop the pro-
cedure Enter_Idle of the TMU is called to enable the idle timer.
After leaving it Leave_Idle is called to restore the timer of the task
that is now runnable. Tasks executing interrupt handlers will never
enter the idle loop.

Internally a stack of timer accesses is used for keeping track of the
different interrupt level timers. The bottom element of the stack al-
ways points to the timer of the running task and is updated when a
context switch is executed. The stack is pushed when entering inter-
rupt handlers moving upward in Fig. 5, and popped when leaving
interrupt level handlers, moving downward in the same figure.
The field Active_TM of Timer_Descriptor is used for keeping track
of those computational states depicted as horizontal movement in
Fig. 5, pointing to the timer of either the task blocked on the entry
or the timer of the pseudo idle task after executing Enter_Proxy or
Enter_Idle. The procedures Leave_Proxy and Leave_Idle restore the
task on the top of the stack. Interrupt timers are pushed on the stack
and activated by the procedure Enter_Interrupt while the procedure
Leave_Interrupt pops the interrupt timer from the stack and reacti-
vates Active_TM of the timer below on the stack.

6.3. Execution time measurement

The system measures the execution time as the number of CPU
clock cycles used by a task since its activation. The Base_Time of a
timer, also referred to as tbase, is initially zero and is used for keep-
ing track of absolute execution time. The execution time for an ac-
tive timer is the sum of the base time and the value of the COUNT
system register, referred to as c:

t ¼ tbase þ c; where c 2 f0;1; . . . ;232 � 1g ð2Þ

When a timer is deactivated its base time is updated:

tbase  tbase þ c ð3Þ

The Clock function returns the execution time of the given
timer. If the timer is not active the function returns the base time
of the timer as COUNT is only associated with the active timer. If
active the function enters a loop where the base time and value
of COUNT are read, the loop is exited if the base time has not been
updated after being read. This allows the time to be read without
blocking interrupts. After the loop the execution time is computed
as the sum of the base time and COUNT value. There are three
internal wrapper functions used for getting the clock of a thread
timer, an interrupt level timer and the idle timer, named Thread_-
Clock, Interrupt_Clock and Idle_Clock respectively.

The execution time measurement depends on the CPU counter
never overflowing. To prevent this the value C written to COMPARE
is never greater than a constant Cmax chosen to be 231 � 1. When
COUNT equals this value a COMPARE interrupt will be pending
as shown in Fig. 6, causing the timer to be inactivated and its base
time updated when handled.

6.4. Execution time events

Execution time events for timers are supported by having a
Timeout field also referred to as ttimeout specifying when the timer
is to expire, an access to a procedure Handler that is to be called
when the timer expires, and an address Data to be given as an
argument when calling the handler. The procedure Set_Handler
sets the handler to be called at the given time, the procedure Can-
cel_Handler cancels the handler, and the function Time_Remaining
returns the CPU time remaining until the event. The COMPARE
register is updated with the value C when timers are swapped,
an active timer is set or an active and set timer is cancelled. If
the timer is cleared C is Cmax as before. If set, C is computed from
d ¼ ttimeout � tbase by the following equation:

C ¼
1 if d < 1;
d if 1 6 d and d 6 Cmax;

Cmax if d > Cmax

8><
>: ð4Þ

The procedure Compare_Handler is the handler for the COM-
PARE interrupt. The handler has the highest interrupt priority
and the corresponding interrupt timer is therefore active when it
is called. The timer causing the COMPARE interrupt has to be the
timer pointed to by Active_TM of the timer below the top of the
stack. The procedure gets this timer and first checks if it has
expired since false interrupts may occur due to the overflow pre-
vention earlier mentioned. If expired the timer is cleared and the
handler called.

6.5. CPU counter primitives

Architecture dependent primitive operations written as inline
assembler code were added to the package CPU_Primitives in order
to manipulate the COUNT and COMPARE system registers. The
function Get_Count returns the value of COUNT by using the

Fig. 5. Possible timers of a task. The figure is simplified by only showing an arrow
representing interruption of one level by the next one. When traversing the graph
the history is kept so that the correct timers may be restored later.
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system register read instruction. When inlined this function is a
single instruction. The procedure Reset_Count takes the COMPARE
value C as argument. In order to prevent a false interrupt COUNT is
first set to C, then COMPARE to C and finally COUNT to 0. The pro-
cedure Swap_Count performs the same operation and returns the
previous value of COUNT plus 4, which is the number of CPU cycles
it takes to reprogram the COUNT register. This number of CPU cy-
cles is added in order to avoid execution time leakage. The proce-
dure Adjust_Compare changes the value of COMPARE to C. If the
procedure is called with a C that is less than COUNT, the COMPARE
interrupt will be pending after leaving the procedure.

6.6. Application programming interface

The execution time API is as specified by the Ada 2005 reference
manual with the addition of the functions Interrupt_Clock and
Idle_Clock shown in Listing 4 that call the corresponding functions
of the TMU. The function Clock calls Thread_Clock of the TMU
through a wrapper function that translates the Task_Id used by
the API to the Thread_Id used by the kernel.

The execution time timers API is as specified in the reference
manual with the addition of the tagged type Interrupt_Timer
shown in Listing 5. The tagged type Timer includes a Timer_Id
pointing to the associated kernel timer and a field holding the cur-
rent handler. The Timer_Id is initialized the first time Set_Handler
is called. The initialization procedure acquires the kernel timer for
the interrupt priority corresponding to the discriminant if the
timer is in Interrupt_Timer’Class or else the timer for the task ID.
If the timer is already acquired or not available a Timer_Resour-
ce_Error is raised.

The operations on timer objects are performed in the same way
as for timing events with the exception of timers not needing to be
cancelled before they are set. As for timing events the package Sys-
tem.BB.Protection is used for executing the operations atomically.

7. Tests

7.1. Setup

The Atmel EVK1100 evaluation board with the UC3A0512
microcontroller [9] was used when testing the developed software.
Test data was sent on the USART channel from the EVK1100 to an
ordinary PC running GNU/Linux where it was retrieved and ana-
lyzed using GNU Octave [17]. The Atmel JTAG ICE Mk II was used
for programming and debugging. The setup for the tests is shown
in Fig. 7.

A source of randomness was needed for the tests. For this pur-
pose the pseudo-random simple multiplicative congruential algo-
rithm was used to generate a uniform discrete distribution X
between A and B:

s0 ¼ S ð5Þ
siþ1 ¼ 75 � si modð231 � 1Þ ð6Þ

xi ¼ Aþ ðB� Aþ 1Þ � si

231 ð7Þ

With the chosen parameters this algorithm is referred to as the
‘‘Minimal Standard” and has been tested and used extensively over
the years [18]. The algorithm has a period of 2,147,482,647 sam-
ples. The seed S is set when initializing the test program and
should be the same every time so that the test results are
reproducible.

7.2. Timing events

A test program for the timing event implementation was made
as the Ada standard requires the following metric to be docu-
mented [1]:

An upper bound on the lateness of the execution of a handler.
That is, the maximum time between when a handler is actually
executed and the time specified when the event was set.

We will refer to this metric as the overhead of calling the han-
dler. The documentation requirement is somewhat unclear regard-
ing the context for testing implementation, that is the number of
timing events involved and if the effects of tasks and other inter-
rupts are to be considered. These factors will affect the worst-case
overhead, but may only be found on a per application basis. The
documentation requirement is therefore interpreted to be for a sin-
gle timing event with no running or ready tasks and no other inter-
rupts than those internal to the system. For this implementation
the only other interrupt will be the clock interrupt that occurs
when the 16-bit hardware clock overruns. The criterion of good-
ness is the measured worst-case overhead, yet the best-case and
average overhead will also be evaluated.

The program has one Timing_Event object, a protected object
with the event handler, and uses the environment task to transfer
test data to the PC. The test is run in batches, each starting with the
event being set to occur at te ¼ t þ ð10000þ XÞ ls, where t is the
current clock time and X is a pseudo-random distribution between
150 and 350 produced by the algorithm listed earlier. Batches ter-
minate after 100 occurrences starting a new batch when the batch
data has been transferred. The event handler reads the clock t,
computes the overhead D ¼ t � te, and stores this value together
with X and the event time te mod 216 in the array holding the batch
data. The latter of these values is used to find how close te is to the
clock overflow interrupt which occurs when t mod 216 ¼ 0. A
checksum is also computed and stored in the data array in order
to verify the correctness of the data transferred to the PC. If the
number of handler calls is less than 100 the event time is set to
te ¼ te þ X ls where X is distributed as earlier. Results based on
five million recorded occurrences are shown in Table 1.

All observations with overhead of 22 or more, and 18 or less in
Table 1 correspond to event occurrences with an offset in the
range of �21–9 ticks relative to the clock overflow interrupt. The

Fig. 6. Execution time for a timer from 0 to the final overflow.

Fig. 7. Hardware setup for the tests.
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overhead of all observations with offset in the range �25–15 are
plotted in Fig. 8. All observations outside of this plot are either
19, 20 or 21.

7.3. Execution time drift

A test was made to check for drift of the execution time mea-
surement against the system clock. If there is any drift accumulat-
ing over time the implementation fails the test.

The test program has four periodic tasks with characteristics
shown in Table 2. The periodic tasks wake-up, busy wait for a given
time C and delay until the next release. The system clock and the
execution time of all tasks in the system, including the pseudo
tasks and the environment task, are polled every major period
(400 ms) by using a timing event. A background task sends these
values to the PC where the difference D is computed as:

D ¼ tclock �
X

i2tasks

texecution time;i ð8Þ

No drift in the execution time compared to the real-time clock
was measured in 20000 samples gathered while running the test
program. There was however small fluctuations in D caused by
the CPU time measurement having 32 times higher resolution than
the real-time clock.

7.4. Cost of interruption

There is some execution time cost of being interrupted since
interrupt timers are not activated by hardware prior to entering
interrupt handlers. A simple test program using only the environ-
ment task was made to measure this cost. The criterion of good-
ness is the worst-case cost to the interrupted task.

The program has a single loop where the execution time is first
measured using Clock, then a busy wait for 50 ms (600,000 CPU cy-
cles) is executed before the execution time is measured again. The
two measured execution times are sent to the PC and the loop is
repeated. Since the test program just has a single task only the sys-
tem clock overflow interrupt calling the Clock_Handler is enabled.
The 16-bit timer is clocked at 375 KHz and overflows every
174.76 ms, thus there will be at most one interruption between
the clock calls. The difference between the shortest and longest
measured execution time between the clock calls should give an
indication on the overhead owing to interrupt preemption.

When running this test there were only three unique values of
the difference between the clock before and after executing the
busy wait: 600,050, 600,182 and 600,183. Thus the execution time
is 600,050 when not interrupted, and 600,182 or 600,183 when
interrupted, giving a worst measured interruption cost of 133
CPU clock cycles.

7.5. Cost of executing an entry by proxy

In the same way as with interrupts there is a non-zero execu-
tion time cost for a task executing an entry by proxy on behalf of
another. A test program was made to measure this cost. The crite-
rion of goodness is the worst-case cost to the task that executes the
entry by proxy.

The test program has two tasks named A and B and a protected
object. The protected object has an entry with a guard and a proce-
dure that opens that guard, releasing any task blocked on the entry,

Table 1
Observed overhead for timing event. The smallest observed overhead is 16 clock ticks
or 8.53 ls, the largest is 30 ticks or 16 ls. The average overhead 10.6 ls. As seen from
the table 99.98% of the observations are 19, 20 and 21.

Overhead Observations

Ticks ls Count Freq. %

16 8.5333 30 0.0006
17 9.0667 67 0.00134
18 9.6000 85 0.0017
19 10.133 876764 17.535
20 10.667 3507692 70.154
21 11.200 614571 12.291
22 11.733 245 0.0049
23 12.267 80 0.0016
24 12.800 88 0.00176
25 13.333 82 0.00164
26 13.867 63 0.00126
27 14.400 67 0.00134
28 14.933 83 0.00166
29 15.467 73 0.00146
30 16.000 10 0.0002

Fig. 8. Overhead of observations plotted against offset relative to clock overflow. The plotted values are in clock ticks and not ls. Notice that the best and worst-case overhead
are for the same offset, depending on whether the alarm handler is called before the clock handler or not.

Table 2
Periodic task set for execution time measurement.

Task T (ms) C (ms) U (%)

A 50 5 10
B 100 10 10
C 200 20 10
D 400 40 10
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and has the highest system priority in order to avoid interruption
while executing its operations. Task A has higher priority than B
and measures its execution time before and after executing the
protected procedure. After executing the procedure, A sends its
execution time measurements to the PC before it is delayed until
the next release. Task B will simply call the entry and then be de-
layed until the next release. The test is formed so that A will call
the procedure both when B is blocked on the entry, in which case
the entry will be executed by proxy, and when B is not blocked.
This is done by releasing A sufficiently long (10 ms) after B half
of the times.

When running the test the execution time for task A between
reading the clock was found to be 387 CPU cycles when no entry
by proxy was executed and 610 when the entry was executed, giv-
ing a cost of 223 CPU cycles. It should be noted that this is the best-
case cost, the worst-case situation is when task B has a handler set
at a time long into the future. This is due to the calculation of the
COMPARE value C for task B when swapping timers. After modify-
ing the test adding a timer of task B set to expire at CPU_Time’Last,
the cost was then measured to be 237 CPU cycles.

8. Discussion

8.1. Timing events

The timing event features were fully integrated into the kernel
timing services by adding an alarm mechanism. By using this
mechanism both for timing events and waking up delayed tasks
a clean implementation was achieved. Furthermore, lower over-
head may be achieved as a timing event and a task release occur-
ring at the same time are handled by the same alarm interrupt.
This way, timing events may be piggybacked on task releases with
very little cost. Internally, alarms are organized as an ordered
queue with a sentinel at the end. The queue is doubly linked in or-
der for alarms to be quickly extracted if cancelled, while the senti-
nel was added to simplify the code by removing the special case of
having an empty queue. When inserting an alarm the queue is
searched from the front to the end. The worst-case execution time
is when the inserted alarm is to be before the sentinel in the queue,
in which case all N alarms already present have to be searched.
However the search loop is very tight, each iteration only takes se-
ven CPU cycles.

The use of System.Address for passing data to handlers might be
seen as a breach of Ada programming practice. One alternative
would be to use a tagged type for passing data. This would be bet-
ter from a design perspective, but would require a child package as
the pragma No_Elaboration_Code applies to Threads and the use of
tagged types requires elaboration code. Another possibility is to
store user handlers in an array in Ada.Real_Time.Timing_Events
and pass the array index instead of the address. This approach is
taken by the GNATforLEON [7]. While this may be better from a de-
sign perspective it requires additional memory and puts an artifi-
cial limit on the number of timing event objects possible. The
use of System.Address was chosen for efficiency, and considered
safe as the handler and data are always set and cleared at the same
time, reducing the risk of calling a handler with a wrong argument.
The same considerations apply for the implementation of execu-
tion time timers.

8.1.1. Overhead
The Ada 2005 standard [1] does not specify how the overhead

for timing events should be measured. The worst-case overhead
will be greater for systems where many timing events may occur
at once than those with only one timing event. If many timing
events the occur at once the execution time for each event handler

will also affect the worst-case overhead. Furthermore tasks and
other interrupts also affect the overhead as all interrupts are
blocked when executing within the kernel. These factors will vary
between applications, so a measurement of the overhead for one
application will have limited value for another. In order to have
meaningful results the documentation requirement was inter-
preted to be for a minimal system having only a single timing
event that is not affected by other factors than those internal to
the kernel. In the authors opinion the Ada standard should be re-
vised to be more specific on conditions for this documentation
requirement.

The test program used has a single timing event, no tasks that
can interfere with this event, and no other interrupts enabled than
those used internally in the kernel. Thus only the clock interrupt
may cause timing events to be delayed. As seen from the test re-
sults in Table 1 the worst-case measured overhead is fairly low,
only 16 ls or 960 CPU cycles. The average overhead is 10.64 ls
or about 638 CPU cycles. As expected the worst-case overhead oc-
curs when timing events are set close to the clock overflow, so that
the clock handler is called before the alarm handler. This situation
can be seen at offset 1 in Fig. 8. Curiously the best-case also occurs
at this offset. The reason is that if the clock interrupt is asserted
and interrupts the processor, and the alarm interrupt is asserted
just before the interrupt request register is read by the low-level
interrupt handler, then the alarm handler is called instead and will
have saved some time. The alarm timer is set with a value relative
to the clock, so there is a lag of a few ticks between the hardware
clock and the alarm clock. The overhead values of 22 in the offset
range �21 to �4 are caused by the clock overflowing before the
clock is read. This causes some extra computation in the function
Clock called from the event handler, adding to the overhead.

8.2. Execution time control

The timer management is the main difference between the de-
sign of execution time features in this work and others. While
other implementations such as GNATforLEON version 1.3 [7] only
measure the execution time of the running task between context
switches, this implementation improves accuracy by taking into
account the effects of interrupts and execution by proxy.

Accuracy of execution time measurement for tasks is improved
by charging the execution time of interrupt handler to a pseudo
interrupt task of the corresponding interrupt level. This allows task
budgets to be tighter and therefore higher utilization of the proces-
sor. Furthermore, it is possible to use execution time timers on
interrupt levels in order to set a budget and block interrupts if this
budget is exceeded. Timers are not used for the highest interrupt
level since the kernel interrupts are of this level. Blocking these
interrupts will result in system malfunction. The cost of interrup-
tion by the clock interrupt, found by testing to be 133 CPU cycles,
is the best-case cost for general interrupts as the highest level
interrupt timer is never set. The additional cost of being inter-
rupted by an interrupt timer with a handler set far into the future
is 14 CPU cycles as observed with execution of entries by proxy,
giving a worst-case cost of 147 CPU cycles.

Execution by proxy improves system performance by reducing
the number of context switches needed. When task A executes a
protected operation releasing task B that is blocked on an entry,
A will also execute the entry on behalf of B. In this work B is
charged the execution time spent on the entry thereby improving
the accuracy of the execution time measurement as this execution
time does not have to be added to the budget of A. The usefulness
of this feature is however highly dependent of the implementation
overhead of changing timers compared to the execution time of the
entry. As seen from the test results the worst-case cost of executing
an entry by proxy is 237 CPU cycles, which definitely is more than
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the cost of executing an entry with a null body. Still the benefit of
having a known constant worst-case cost instead of an unknown
cost when executing entries by proxy seems to justify the
overhead.

The implementation also measures the time spent on system id-
ling. One potential use of this feature is to read the execution time
spent on idling periodically and use this as a measurement of CPU
utilization within the time interval.

8.3. Execution time measurement

The correctness of the execution time measurement relies on
the COUNT register never overflowing. The use of a maximal value
Cmax ¼ 231 � 1 for COMPARE guarantees that the COUNT register
will never overflow as long as the system does not run with inter-
rupts disabled for more than 231 clock cycles, which is about 179 s
when clocked at 12 MHz. We find it reasonable to assume that sys-
tems tasks and interrupts will not be continuously active long en-
ough for c to equal Cmax. Typically real-time systems will have
several context switches and interrupts each second making them
safe from overflows. Therefore one could argue that the use of Cmax

is unneeded altogether, yet this additional safety comes at a low
cost and may also be needed for systems with very high CPU
frequency.

The test for execution time drift gave conclusive results that
there are no leakage of execution time as no accumulative drift
was observed over a long period of time. The only place leakage
could occur is in the procedure Swap_Count of the CPU primitives
due to an incorrect number of cycles added to the previous COUNT
value. The number of cycles needed to complete these instructions
will always be the same since interrupts are disabled and there are
no branches or memory accesses between reading the previous va-
lue and writing the new one.

8.4. Portability and hardware support

The implementation of the proposed interrupt execution time
control features were done on the AVR32 UC3 microcontroller.
Unfortunately recent changes to the COUNT/COMPARE semantics
[9] for the UC3 core has made the registers less useful for execution
timing. The new semantics state that when COUNT equals COM-
PARE the interrupt line should be asserted and COUNT set to 0.
The original semantics were used in this paper since only the engi-
neering presample version was available with the EVK1100 at the
time of development. It is also assumed that new hardware with
semantics similar to the original CPU counter semantics will be
introduced in later revisions of the UC3.

It is possible to implement the execution time control features
using the new semantics, however this would require additional
code to prevent the COUNT register from equaling COMPARE and
being reset several times before the COMPARE interrupt is handled
resulting in execution time drift. Such a situation would occur if
COMPARE has a low value. The situation could be avoided by add-
ing a sufficiently large offset value to both COUNT and COMPARE,
and adding code to handle this offset. All of this could be done
within in the CPU primitives, requiring no change to the TMU.
However the change would increase the overhead associated with
the execution time control features.

The bare-board GNAT implementation of the Ada 2005 execu-
tion time features is portable to other architectures as long as it
is possible to implement the CPU primitives with fairly low over-
head. The features should also be portable to other embedded
run-time systems that allow direct control of the timer hardware.
In order to port the features to operating systems such as Linux, the
kernel would have to be modified to support interrupt execution
time measurement. This would be harder, but is fully possible.

8.5. Applications

The Ravenscar profile forbids the use of asynchronous task con-
trol and requires the priority of tasks to be constant. Therefore an
execution time overrun handler can not terminate the task that ex-
ceeded its budget or reduce its priority as is possible for programs
using the full Ada 2005 tasking model [5]. An alternative action the
handler can take is to set a timeout-flag that is polled by the task
and a fallback handler [19]. The next time the offending task polls
the timeout-flag it will see that the flag is set, cancel the fallback
handler and voluntarily give up control over the processor. If the
task fails to cancel the fallback handler it should be treated as a
system error.

The Deferrable Server algorithm for single tasks may be imple-
mented with the functionality provided by the execution time con-
trol and timing event features. A timing event may be used to reset
the execution time budget periodically. Overruns have to be han-
dled by setting a flag and a fallback handler as described earlier.
The Deferrable Server algorithm may also be used for interrupt
handling, disabling the interrupt upon execution time overrun
and re-enabling it when the execution time budget of the interrupt
level is replenished [19]. A fallback handler may be used to ensure
system safety. The use of the Deferrable Server algorithm for inter-
rupt handling makes it possible to protect the system against
bursts of interrupts that would otherwise result in system failure.

The flag polling combined with the fallback handler provides
the safety needed to prevent overruns of high priority tasks making
lower priority tasks miss their deadlines, yet it is neither a very ele-
gant solution nor an efficient one. Other solutions should be eval-
uated, possibly defining an extended Ravenscar profile allowing
limited asynchronous control or dual-band scheduling. This would
allow more efficient and elegant handling of execution time over-
runs for tasks.

8.6. Other programming languages

The implementation described in this paper is written in Ada
2005 for the GNAT run-time library. However the concepts pre-
sented in this paper are not limited to Ada 2005, and may be imple-
mented in other programming languages and real-time systems.

8.6.1. POSIX
The real-time extension to POSIX defines execution time control

for POSIX processes and threads [20]. The POSIX specification uses
the type clockid_t to identify clocks such as the real-time clock and
execution time clocks, and the type timer_id to identify timers. The
general model is the same as in this paper, each timer is associated
with a clock, and a clock may have several timers. The POSIX func-
tions used for clocks and timers shown in Listing 8.

The functions defined in Listing 8 provide similar features for
execution time control as those defined for Ada 2005. The function
clock_gettime retrieves the current time of a clock, while the func-
tion timer_create is used to create a timer associated with a given
clock. Note that in POSIX a timer can only be used to generate one
type of signal event, specified by the argument of type sigevent
provided at creation. After a timer is created it may be set to expire
in a given time using timer_settime. An armed timer is cancelled
using the same function with a zero time argument. The function
timer_gettime is used to get the time until the event occurs. Only
one signal may be pending for a timer at any time, if more events
occur before it is handled the timer overruns. If the real-time sig-
nals extension is supported the function timer_getoverrun returns
the number of overruns for a timer.

The POSIX definition of execution time control is quite similar
to that of Ada 2005. This is no surprise as the Ada features were de-
signed to be implemented using POSIX timers [6]. Due to the
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similarity the implementation described in this paper could serve
as a blueprint for POSIX implementations. No changes to the POSIX
API would be needed as the implementation would only have to
provide a system specific clockid_t for each interrupt level in order
to support interrupt execution time control.

8.6.2. RTSJ
The Real-Time Specification for Java (RTSJ) [21] takes an inte-

grated approach to execution time control, referred to by the spec-
ification as cost monitoring. In essence the RTSJ allows budgets, or
the cost, to be set for periodic threads [22]. The cost is the same
for each release and is set by calling for instance the method set-
ReleaseParametersIfFeasible of a RealTimeThread object. Periodic
release of the thread object is initiated by calling schedulePeriodic.
In the case of a cost overrun the offending thread will only be al-
lowed to continue executing if this will not cause lower priority
thread to miss their deadlines. Otherwise the thread will be imme-
diately blocked until its next release. The cost monitoring scheme
is intended to be independent of the scheduling policy [22].

Clocks and timers as described in this paper may be used ‘‘un-
der the hood” to implement cost monitoring in RTSJ run-time envi-
ronments. Furthermore RTSJ applications applying cost monitoring
would also benefit from the improved accuracy provided by not
charging the running thread the execution time of interrupt han-
dlers. However, since interrupts are asynchronous events they can-
not be integrated into the current model that only supports cost
monitoring for periodic threads. Santos and Wellings have pointed
to errors in the current model and made suggestion for a new im-
proved model for cost monitoring [22]. Their proposed model cor-
rects these errors and also allows cost monitoring for sporadic and
aperiodic schedulable objects such as asynchronous event han-
dlers. If their proposal is included in the RTSJ, then the ideas of this
paper could be applied to allow cost monitoring for interrupt han-
dling for Java.

9. Conclusion

The main contribution of this work is an implementation of the
new Ada 2005 execution time control features that addresses inac-
curacies reported by other implementations [7]. Our implementa-
tion does not charge the execution time of interrupt handlers on
the interrupted task, this time is instead charged a pseudo inter-
rupt task for the given interrupt priority. Furthermore, a task exe-
cuting an entry by proxy on behalf of another task is not charged
the execution time of the entry, this time is instead charged the
task blocked on the entry. The benefits of this are twofold:

1. The accuracy for task execution time measurement is improved,
allowing task budgets to be tighter, and thereby allowing higher
CPU utilization.

2. It is possible to monitor and control the execution time spent on
handling interrupts of a given priority using execution time
servers. This makes it possible to protect the systems from
bursts of interrupts that could otherwise result in tasks missing
their deadline.

The increased accuracy offered by this implementation makes it
possible to set tight execution time budgets for tasks as the worst-
case execution time cost of interruption and executing an entry by
proxy are reduced to known constants. This will make develop-
ment of real-time applications easier and allow higher CPU utiliza-
tion without compromising safety. The addition of execution time
clocks and timers for each interrupt priority pseudo task also al-
lows measurement and restriction on the time spent on interrupt
handling by the use of such methods as the Deferrable Server algo-
rithm (new interrupt occurrences may be blocked even with the
Ravenscar profile). This increases the safety of applications as burst
of interrupts that may have caused system failure now can be han-
dled in a simple and efficient manner.

The new Ada 2005 timing events feature were also imple-
mented. A flexible and efficient alarm mechanism was added to
the timing services of the kernel supporting both timing events
and task wake-up. Since they use the same alarm mechanism tim-
ing events may be piggybacked on task releases with very low
additional cost since the same interrupt handler call will serve
both operations.

The Ravenscar profile does not support asynchronous control or
dynamic task priorities, therefore applications for now have to re-
sort to methods such as flag polling for detecting overflows and
voluntarily giving away control over the processor. Other possible
usages is just to log the overruns and only take action if they ex-
ceed a certain number. In order to allow more efficient execution
time control an extension to the Ravenscar profile allowing execu-
tion time timers, limited asynchronous control and dual-band pri-
orities should be developed and evaluated.

Although this implementation of the new Ada 2005 real-time
features is for the AVR32 it can easily be ported to any architecture
having similar timer functionality as the AVR32. Furthermore the
usefulness of execution time control for interrupts goes beyond
the Ada programming language. In the authors opinion the design
presented in this paper should be applicable and useful for a wide
range of programming languages and computer architectures.
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Abstract

This paper gives a functional specification for a
Time Management Unit (TMU) used to support ex-
ecution time control in real-time systems. The TMU
is designed for efficient access though the high-speed
bus (HSB) of the microcontroller. The simplicity of
the described TMU allows it to be added to existing
System-on-Chip (SoC) designs with minimal effort.

1. Introduction

Real-time scheduling algorithms usually depend on
the worst-case execution time (WCET) of tasks being
known in order to guarantee for all deadlines be-
ing reached. For modern computer architectures using
performance enhancing techniques such as pipelines,
cache and branch prediction, finding this WCET may
be very hard [1], and therefore prohibitively expensive
and time consuming for most embedded projects. Also
the WCET will often be much greater than the average
execution time. Given that the WCET is not known the
developer has to choose whether to use conservative
budgets and have poor CPU utilization, or to use op-
timistic budgets and risk deadlines occasionally being
lost. Neither of the alternatives may be acceptable.

By using execution time control developers may
use less conservative budgets and handle overruns
dynamically in order to prevent deadline loss. In order
to do this the run-time system has to provide execution
time clocks that measure the total time an executable
entity has been running on the system. The clock is
started when the entity is scheduled for execution and
stopped when it is done executing or preempted by
another entity. A timer is associated with a clock and
is used to call an event handler when its clock reaches
a specified time. We will refer to clocks and timers
combined as execution time monitoring.

Execution time monitoring for Ada 2005 was im-
plemented on the AVR32 architecture by the authors

at NTNU [2]. Our implementation differs from other
implementations known to the authors by not charging
the interrupted task the execution time of interrupt
handlers. This time was instead charged a pseudo
interrupt task for the given interrupt priority. The
benefits of doing this are twofold: (1) The accuracy
for task execution time measurement is improved,
allowing tighter task budgets, and thereby higher CPU
utilization. (2) It is possible to monitor and control the
execution time spent on handling interrupts of a given
level. This makes it possible to protect the systems
from bursts of interrupts that could otherwise result in
tasks missing their deadline.

For these features to be efficient the overhead of
switching clocks when entering an interrupt handler
and performing a context switch should be as low as
possible, preferably also with a deterministic execution
time. The AVR32 implementation of execution time
monitoring used the CPU cycle COUNT / COMPARE
system registers of the architecture. Since these regis-
ters are only of 32-bits, relative time had to be used
resulting in computational overhead when translating
the absolute execution time into a relative one. Spe-
cial care was also needed to prevent COUNT from
overflowing. The lack of timers that allow sufficient
efficiency for execution time monitoring motivates a
dedicated timer unit which we will refer to as a Time
Management Unit (TMU).

A TMU for the LEON architecture has been de-
signed at NTNU and implemented on a FPGA [3].
This design is more complex than the one described
in this paper. This TMU has the IRQ lines as input
from the interrupt controller and forwards these to the
core. The active timer is changed according to the run-
level. Therefore it has one set of COUNT / COMPARE
registers for the ordinary execution level and each
interrupt level. If the budget for an interrupt level is
exhausted it is masked, and the CPU would not handle
interrupts of this level until the budget is replenished.
The replenishing of interrupt execution time budgets is
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also designed to be done within the TMU, using either
the sporadic or deferrable server algorithms. While this
TMU is design powerful it considered too complex to
implement and not flexible enough to be useful for
different real-time systems.

In the following a functional description of a simple
yet efficient TMU is given using the SystemC mod-
eling library [4]. Then follows examples of how to
use the TMU to implement execution time monitoring
on the AVR32 architecture [5]. Finally the design of
the TMU is discussed, and a conclusion and plan
for a hardware implementation on the AVR32 UC3
microcontroller series [6] are given.

2. Functional specification

The TMU is designed as a memory-mapped slave
device accessible by the processor core though the
high-speed bus (HSB) as shown in Figure 1. The HSB
address and data are both assumed to be 32-bit wide.
The registers available on the high-speed bus are listed
in Table 1.

Core

Bus Master

Clock

TMU

Bus Slave

Clock

32-bit High-Speed Bus (AHB Lite or similar)

IRQC

TMU interrupt

Figure 1. Core and TMU connected to the HSB.

Table 1. Memory interface of the TMU.

Offset Register Reset state
0x0 TMU COMPARE HI 0xffffffff
0x4 TMU COMPARE LO 0xffffffff
0x8 TMU COUNT HI 0
0xc TMU COUNT LO 0
0x10 TMU SWAP COMPARE HI 0xffffffff
0x14 TMU SWAP COMPARE LO 0xffffffff
0x18 TMU SWAP COUNT HI 0
0x1c TMU SWAP COUNT LO 0

In addition to HSB interface the TMU has a clock
signal as input. This clock need not be the same as that
used by the core. The TMU also generates an interrupt
signal. This signal will usually be routed to the core
through the interrupt controller as shown in Figure 1.
The SystemC definition of the TMU module is shown
below:

c l a s s tmu : p u b l i c sc module , p u b l i c h s b i f
{
p u b l i c :

s c i n<bool> c l o c k ;
s c ou t<bool> i n t e r r u p t ;

bool r e a d ( h s b a d d r addr , h s b d a t a& d a t a ) ;
bool w r i t e ( h s b a d d r addr , h s b d a t a d a t a ) ;

tmu ( sc module name name , h s b a d d r ba se )
: sc module ( name )
{

SC HAS PROCESS( tmu ) ;
SC CTHREAD( t i c k , c l o c k ) ;
t h i s−>base = bas e ;

compare = swap [ 0 ] = −1;
c o u n t = swap [ 1 ] = 0 ;

}

p r i v a t e :
void t i c k ( ) ;
s c u i n t <64> compare , count , swap [ 2 ] ;
s c u i n t <32> b u f f e r ;
h s b a d d r ba se ;

} ;

Internally the TMU has a 64-bit COUNT register
that is incremented on every positive edge of the clock
signal. After COUNT is incremented it is compared
with the 64-bit COMPARE register. If COUNT is
greater than or equal to COMPARE then the interrupt
signal is asserted. The SystemC code for incrementing
COUNT is shown below:

void tmu : : t i c k ( )
{

i n t e r r u p t = f a l s e ;

whi le ( t ru e ) {

/ / Wait f o r p o s i t i v e c l o c k f l a n k
w a i t ( ) ;

/ / I n c r e m e n t c o u n t and check f o r o v e r r u n
c o u n t ++;
i n t e r r u p t = ( compare <= c o u n t ) ;

}
}

In order to atomically swap a new set of COUNT /
COMPARE values with the current two 64-bit swap
registers are provided. The swap operation is per-
formed when the low-word of SWAP COUNT is writ-
ten. After the operation the previous values of COUNT
and COMPARE may be read from the swap registers.

The COUNT and COMPARE registers may also be
accessed directly by using an internal 32-bit buffer.
When reading the high-word of COUNT or COM-
PARE the low-word is buffered, and this buffered value
is returned when subsequently reading the low-word.
When writing the high-word of COUNT or COMPARE
the high-word value is buffered. When the low-word
subsequently is written the register is updated using the
buffered high-word and the provided low-word value.
A shortened version of the SystemC code for accessing
the TMU registers is shown below:
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bool tmu : : r e a d ( h s b a d d r addr , h s b d a t a& d a t a )
{

sw i t ch ( add r − base ) {

case TMU COMPARE HI:
/ / Re tu rn high−word and s t o r e low−word i n b u f f e r
d a t a = compare . r a n g e ( 6 3 , 3 2 ) ;
b u f f e r = compare . r a n g e ( 3 1 , 0 ) ;
break ;

case TMU COMPARE LO:
/ / Re tu rn low−word from b u f f e r
d a t a = b u f f e r ;
break ;

. . .

case TMU SWAP COUNT HI:
/ / Re tu rn high−word o f SWAP[ 1 ]
d a t a = swap [ 1 ] . r a n g e ( 6 3 , 3 2 ) ;
break ;

case TMU SWAP COUNT LO:
/ / Re tu rn low−word o f SWAP[ 1 ]
d a t a = swap [ 1 ] . r a n g e ( 3 1 , 0 ) ;
break ;

d e f a u l t :
re turn f a l s e ;

}
re turn true ;

}

bool tmu : : w r i t e ( h s b a d d r addr , h s b d a t a d a t a )
{

sw i t ch ( add r − base ) {

case TMU COMPARE HI:
/ / S t o r e high−word i n b u f f e r
b u f f e r = d a t a ;
break ;

case TMU COMPARE LO:
/ / Update COMPARE
compare . r a n g e ( 6 3 , 3 2 ) = b u f f e r ;
compare . r a n g e ( 3 1 , 0 ) = d a t a ;
break ;

. . .

case TMU SWAP COUNT HI:
/ / Update SWAP[ 1 ] high−word
swap [ 1 ] . r a n g e ( 6 3 , 3 2 ) = d a t a ;
break ;

case TMU SWAP COUNT LO:
/ / Update SWAP[ 1 ] low−word
swap [ 1 ] . r a n g e ( 3 1 , 0 ) = d a t a ;

/ / Swap COMPARE and COUNT
{

s c u i n t <64> tmp [ 2 ] = {compare , c o u n t } ;
compare = swap [ 0 ] ;
c o u n t = swap [ 1 ] ;

swap [ 0 ] = tmp [ 0 ] ;
swap [ 1 ] = tmp [ 1 ] ;

}
break ;

d e f a u l t :
re turn f a l s e ;

} ;
re turn true ;

}

Care must be taken not to interleave the writing of
the high and low-word of COUNT and COMPARE

with other accesses as this could cause unwanted
behavior. It is recommended to use 64-bit load / store
instructions such as those available for the AVR32
architecture so that both the registers are read or
written in one atomic operation.

3. Usage

The design of the TMU and the powerful load /
store instructions of the AVR32 architecture allows
efficient operations such as writing the whole TMU
context using one instruction. In this code the COUNT
and COMPARE register values are stored in memory
together with the task context next after the register
values. Thus this implementation supports at most one
timer for each execution time clock. The context switch
may then be done as follows:

/∗ S t o r e CPU−c o n t e x t o f r u n n i n g t h r e a d ∗ /
lda .w r8 , r u n n i n g t h r e a d
ld .w r9 , r8 [ 0 ]
sub r9 , −60
stm −−r9 , r0−r7 , sp , l r
mfsr r0 , SYSREG SR
s t . w −−r9 , r0

/∗ Load a d d r e s s o f f i r s t t h r e a d ∗ /
lda .w r10 , f i r s t t h r e a d
ld .w r10 , r10 [ 0 ]
s t . w r8 [ 0 ] , r10

/∗ Load TMU−c o n t e x t o f f i r s t t h r e a d ∗ /
lda .w r8 , t m u a d d r e s s
sub r8 , −16
ldm r10 ++ , r4−r7
stm r8 ++ , r4−r7

/∗ S t o r e TMU−c o n t e x t o f r u n n i n g t h r e a d ∗ /
sub r8 , 16
ldm r8 ++ , r4−r7
stm −−r9 , r4−r7

/∗ Load CPU−c o n t e x t o f f i r s t t h r e a d ∗ /
ld .w r0 , r10++
mtsr SYSREG SR , r0
sub pc , −2
ldm r10 ++ , r0−r7 , sp , pc

Changing to an interrupt clock after entering the
low-level interrupt handler may be done in the same
way as for the context switch. Reading the clock is
just a matter of reading the double-word stored at
TMU COUNT and may be done directly from high
level code. To set or adjust a timer one only has to write
the double-word at TMU COMPARE. If the written
value is less than COUNT the interrupt line will be
asserted in the next clock cycle.

It should also be noted that if only execution
time measurement is to be used it suffices to write
to TMU COUNT and TMU SWAP COUNT. The
COMPARE value will then remain in the initial state.
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4. Discussion

While the earlier AVR32 implementation of execu-
tion time monitoring using the COUNT / COMPARE
system registers works according to its specification,
it inflicts a too high overhead on interrupt handling
and context switches, as software logic is needed to
use the smaller 32-bit registers for the 64-bit execution
time values used by applications [2]. The WCET for
switching execution time clocks for this implementa-
tion is about 50 CPU cycles, adding about 100 cycles
to the overhead of each task interruption and context
switch. The overhead varies depending on whether the
timer is set to expire within the next 231 clock cycles or
not. By adding execution time monitoring the WCET
of the context switch more than doubles.

This experience was used for the TMU specifica-
tion presented in this paper. By using 64-bit registers
for COUNT and COMPARE there is no need for
translating the absolute execution time values used
by applications into relative values loaded into the
registers. Also by having a less-or-equal comparison
instead of only equality it is no longer necessary
to check if COMPARE is less than COUNT before
setting the registers. Most important however, is the
ability of the TMU to swap COUNT / COMPARE
registers atomically. As seen by the context switch
code example this makes it possible to change the
context of the TMU using only two instructions. Each
of these instructions will only take the time needed to
transfer 4 words over the bus, and the execution time
of the context switch will be the same regardless of
whether or when the timers are set given that there
are no other masters with higher priority accessing the
bus. If the system has several cores, as some embedded
architectures now have, then one TMU module is
needed for each core.

The TMU of this paper is much simpler than that
designed and implemented for the LEON architecture
[3]. This more complex TMU takes IRQ lines from the
interrupt controller as inputs and changes execution
time clocks automatically when the processor is to
enter an interrupt level. It also masks the handling
of an interrupt level according to a predefined policy.
This makes it hard to get this design implemented on
existing SoCs as the IRQ signals a vital part of the
system that microcontroller providers will probably be
reluctant to change. One benefit of the complex TMU
is that it has zero overhead on interrupt handling. This
comes at the cost of low flexibility, as the execution
time control policy is hard-coded. In contrast the
simple TMU of this paper does not modify interrupt
signals and leaves policy entirely to software, allowing

different run-time systems and applications to user
their own policies. This simplicity makes this TMU
easier to implement on different hardware architectures
and useful for a wider range of real-time systems.

5. Conclusion

The main contribution of this paper is the functional
specification of a simple and efficient Time Man-
agement Unit (TMU) for facilitating high-resolution
execution time control on real-time systems. The TMU
is designed for maximal flexibility leaving the policy
decisions of the execution-time control entirely to the
software. By using special swap registers the TMU
allows for efficient atomic change of the running
execution time clock for instance when entering an
interrupt level or performing a context switch. The
TMU is accessible as a memory-mapped slave through
the high-speed bus and may thus be used for a wide
range of existing System-on-Chip (SoC) designs.

6. Further work

Work is being initiated at NTNU to implement the
described TMU on the UC3 microcontroller series of
the Atmel AVR32 architecture in close cooperation
with Atmel Norway. The TMU will be used for the
AVR32 implementation of the Ada 2005 execution-
time control features.
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Abstract

This paper describes an implementation of Ada 2012
execution time control supporting the new separate exe-
cution time clocks for interrupts that has a design with
several benefits. The real-time and execution time fea-
tures use the same clock and alarm abstraction reduc-
ing the amount of code needed for the implementation.
The design also allows a single hardware timer to sup-
port these features, freeing other timer hardware for
application use. Clock measurement is tick-less, remov-
ing the periodic clock overflow interrupts. While the
implementation is for a GNAT bare-board run-time en-
vironment, the presented design principles should be
applicable for other systems. Performance tests are
done to find the additional overhead to context switches
and interrupt handling caused by execution time control.
In addition to execution time measurement for inter-
rupts we also provide an interrupt timer, and extend
the object-oriented real-time framework to facilitate
execution-time control for interrupts. An example appli-
cation using this feature is given.

Keywords: Ada 2012, execution time control, interrupt
clocks, real-time, embedded, GNAT.

1 Introduction
Scheduling analysis of real-time systems rely on the worst-
case execution time (WCET) of tasks being known. However,
finding the WCET of an algorithm may be hard, for some
cases it is not even possible to predict if an algorithm will
ever halt [1]. Furthermore, pipelines, caches and other perfor-
mance enhancing techniques used on contemporary computer
architectures makes the WCET even harder to find [2]. This
makes WCET analysis a costly and time consuming process.
Also, the WCET will often be considerably longer than the
average execution time as it includes the very unlikely event
of many or all of the performance enhancing techniques fail-
ing. Therefore pessimistic scheduling is needed in order to
provide an offline guarantee that all hard deadlines will be
met, which again leads to poor processor utilization if there
are not enough tasks with soft, or no, deadlines to use the
remaining processor resources.

Execution time control is a simple, yet powerful tool that
allows the total time a task has been executed on a processor
to be measured, and a handler to be called when this execution
time reaches a specified timeout value. Combined with a
scheduling policy taking advantage of this feature, it allows

online control of task execution time instead of relying solely
on offline guarantees [3]. Execution time control also allows
execution time servers such as the deferrable and sporadic
server for soft sporadic tasks [4]. Furthermore, it facilitates
tasks executing algorithms were there is an increasing reward
with increased service (IRIS) [5]. In this case the algorithm
is stopped when it has converged or its execution time budget
is exhausted. If no acceptable result was computed in time a
simpler algorithm may be executed.

Execution time control was standardized together with other
new real-time features in Ada 2005 [6]. The standard did
not state which execution time budget, if any, that is to be
charged the execution time of interrupt handlers. All imple-
mentations known to the authors up to this point charged the
running task this execution time [7,8,9,10]. This causes inac-
curacy to execution time measurement and was pointed out
as an issue when the new Ada 2005 real-time features were
evaluated [11]. The authors at NTNU have ported GNATfor-
LEON [12], a bare-board run-time environment supporting
the Ravenscar restricted tasking model, to the Atmel AVR32
UC3 microcontrollers series [13] and developed it further [14].
When Ada 2005 execution time control was implemented for
this run-time environment, special execution time clocks for
interrupts handling were added, one for each interrupt pri-
ority [15, 16]. This improved accuracy of execution time
measurement for tasks and also allowed execution time con-
trol for interrupts. These features were presented by the
authors at IRTAW 14 and suggested added to Ada 2012 [17].
At the same workshop the developers of MaRTE suggested
measuring the execution time of all interrupt handling com-
bined [18]. The workshop decided to suggest execution time
measurement both for separate interrupt IDs and all inter-
rupts combined to be added to Ada 2012 [19, 20]. These
features are now included in the working draft for the Ada
2012 standard [21].

In this paper there is first a brief presentation of the Ada
2012 execution time control. Then follows an abstraction for
clocks and alarms supporting both the real-time clock and
timing events, and execution time clocks and timers for tasks
and interrupts. It is shown how this design is implemented
on the AVR32 UC3 microcontroller series, and performance
test results are presented. After this, it is described how
execution time control for interrupts is integrated into the
object-oriented real-time framework, and an example appli-
cation is given. Finally there is a discussion on the design
and implementation, the implementation cost compared to
the benefits of execution time control, the portability of the
design, and the real-time framework extensions.
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Listing 1: Interrupt execution time clocks

package Ada.Execution_Time is
...

Interrupt_Clocks_Supported : constant Boolean
:= implementation−defined;

Separate_Interrupt_Clocks_Supported : constant Boolean
:= implementation−defined;

function Clock_For_Interrupts return CPU_Time;

...
end Ada.Execution_Time;

package Ada.Execution_Time.Interrupts is

function Clock
( Interrupt : Ada.Interrupts. Interrupt_Id )

return CPU_Time;

function Supported
( Interrupt : Ada.Interrupts. Interrupt_Id )

return Boolean;

end Ada.Execution_Time.Interrupts;

2 Ada 2012 real-time features
2.1 Execution time measurement and timers

The package Ada.Execution_Time defines the type CPU_Time rep-
resenting elapsed execution time measurement and the func-
tion Clock to get the execution time of a task [21]. The execu-
tion time of a task is defined as the time spent by the system
executing that task, including the time spent executing run-
time or system services on its behalf [21]. For Ada 2005
it was implementation defined which task, if any, that was
charged the execution time used by interrupt handlers and
run-time services on behalf of the system. Ada 2012 has the
ability to account for either the total or separate execution
time of interrupts handlers. Listing 1 shows the additions to
the specification of Ada.Execution_Time and its new child pack-
age Interrupts to support this feature.

The constant Interrupt_Clocks_Supported indicates if the system
supports measuring the total execution time of interrupt hand-
lers by the use of the function Clock_For_Interrupts . The func-
tion will raise Program_Error when called if not supported. The
constant Separate_Interrupt_Clocks_Supported indicates if the sys-
tem supports measuring the execution time of interrupt hand-
lers separately by the child package Interrupts . In this child
package the function Clock returns the execution time for the
handler of the given interrupt or raises Program_Error if separate
execution time for interrupts is not supported. If Supported re-
turns false for the given interrupt Clock is to return a CPU_Time
equal to Time_Of (0).

2.1.1 Timers

The child package Ada.Execution_Time.Timers defines the tagged
type Timer which is used for detecting execution time overruns
for a single task. The type Timer_Handler identifies a protected
procedure to be executed when the timer expires. Handlers are

set to expire at a given execution time or after a given time in-
terval using two overloading Set_Handler procedures, and may
be cancelled using the procedure Cancel_Handler. The function
Time_Remaining returns the time remaining until the timer ex-
pires. Implementations are allowed to limit the number of
timers possible for a single task and raise Timer_Resource_Error
if this limit is exceeded. In this work there is a limit of one
timer for each task as this limitation is recommended for
use with the Ravenscar profile [9]. The Ravenscar profile
does however not allow timers, so by including these strict
compliance with the profile is lost.

2.2 The real-time clock and timing events
The package Ada.Real_Time defines the types Time and Time_Span
used for the monotonic real-time clock, and the function
Clock to retrieve the value of this clock. The real time clock
corresponds to the passing of physical time, either with the
time of system initialization as epoch or another reference
time frame.

2.2.1 Timing events

The child package Ada.Real_Time.Timing_Events defines the
tagged type Timing_Event that allows protected procedures to be
called at a specified time without the need for a task or delay
statement. The type Timing_Event_Handler identifies a protected
procedure to be executed when the timing event occurs. With
the exception of the function Time_Of_Event returning the abso-
lute time of the event instead of the time remaining, timing
events are used in the same way as timers. Implementations
are required to document the upper bound on the overhead of
the handler being called. The Ravenscar profile only allows
timing events declared at library level.

3 Implementation
3.1 Design
The functionality of the real-time clock (RTC) and execution
time clocks (ETCs) are quite similar: both clocks support
high accuracy measurement of the monotonic passing of time
since an epoch, and both support calling a protected handler
when a given timeout time is reached. The main difference
is that the RTC is always active, while an ETC is active
only when its corresponding task or interrupt is executed.
The similarities allow a design where one implementation
of clocks and alarms in the internal package System.BB.Time
provides support for both execution time control and the
real-time features. In addition alarms are used internally for
real-time task delay.

The package System.BB.Time defines the type Time to represent
the passing of time since the epoch as a 64-bit modular in-
teger, and the type Time_Span as a 64-bit integer with range
from −263 to 263 − 1 to represent time differences. The
package defines the limited private types Clock_Descriptor and
Alarm_Descriptor to represents clocks and alarms respectively,
and Clock_Id and Alarm_Id as access types for these. The private
definitions of clocks and alarms are shown in Listing 2.

The package also defines public routines for clock and alarm
operations used by the Ada 2012 execution time control and
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Listing 2: Definition of clocks and alarms

type Clock_Descriptor is
record

Base_Time : Time;
−− Base time of clock

First_Alarm : Alarm_Id;
−− Points to the first alarm of this clock

Capacity : Natural;
−− Remaining alarm capacity, no more alarms if zero

end record;

type Alarm_Descriptor is
record

Timeout : Time;
−− Timeout of alarm when set

Clock : Clock_Id;
−− Clock of this alarm

Handler : Alarm_Handler;
−− Handler to be called when the alarm expires

Data : System.Address;
−− Argument to be given when calling handler

Next : Alarm_Id;
−− Next alarm in queue when set, null otherwise

end record;

real-time packages. These are also used by the internal pack-
age System.BB.Threads for thread wake-up. In addition there
are procedures for changing the active execution time clock
used by System.BB. Interrupts , System.BB.Protection and the context
switch routine. The routines are described in more detail in
the following.

3.2 Hardware timer
The 32-bit COUNT / COMPARE system registers of the
Atmel AVR32 architecture are used as hardware timer in
this work. The COUNT register is reset to zero at system
start-up and is incremented by one every CPU clock cycle.
The COMPARE interrupt is triggered when COUNT equals
COMPARE, cleared when COMPARE is written, and dis-
abled when COMPARE is zero, which is also the reset value
of the register. For newer UC3 revisions the COUNT register
is reset on COMPARE match, which is not desirable for our
use. It is however possible to disable this behavior in the CPU
configuration register.

Three hardware timer operations are provided in the package
System.BB.CPU_Primitives and implemented using in-line assem-
bler code. The function Get_Count returns a snap-shot value
of COUNT. The procedure Adjust_Compare sets COMPARE ac-
cording to the argument C while preventing that the interrupt
is lost:

COMPARE← max(C,COUNT + ε)

Here ε is a small number of clock cycles, so that an interrupt
will be pending immediately after leaving the procedure if C

was less than COUNT. The procedure Reset_Count sets COUNT
to zero and returns the previous COUNT value cp in one
atomic operation:

cp ← COUNT− (1)
COUNT+ ← 0 (2)

This is done by two instructions, the first reading cp from
COUNT, the second writing the value 2 to COUNT as this
is the number of clock cycles the two instructions take. The
operation is done atomically as interrupts are disabled when
executing kernel calls. No clock cycles are lost when resetting
the COUNT register: the sum of cp and COUNT equals the
value COUNT would have had without reset. The COMPARE
register is not altered by the reset procedure, and has to be
updated with a call to Adjust_Compare if needed.

3.3 Clocks
The type Clock_Descriptor seen in Listing 2 represents clocks
and has three data members: (1) The Base_Time that holds the
part of the clocks elapsed time not present in the hardware
timer. It is initialized to zero. (2) The First_Alarm pointing to
the first set alarm of the clock. It is initialized to a sentinel
alarm and is never null after this. (3) The Capacity gives the
remaining number of alarms allowed for this clock. For the
real-time clock it is initialized to Natural ’Last which in practice
means no limit on the number of alarms. For task clocks
Capacity is initialized to one as is recommended for the Raven-
scar profile [9]. We also allow one alarm for interrupt clocks
for interrupts not of the highest interrupt priority.

The package body has Clock_Descriptors for the RTC, interrupt
clocks, and the internal idle clock used when the system is
executing the idle-loop. In order save memory there is a
pool of interrupt clocks and a look-up table with Interrupt_ID
as index, instead of having a Clock_Descriptor for every in-
terrupt. This Ravenscar run-time environment is designed
not to use dynamic memory in the kernel [12]. The pool
size is set to allow at most ten interrupts, but this can be
easily be changed in the package System.BB.Parameters. The
Clock_Descriptor of threads is stored in the type Thread_Descriptor
of the package System.BB.Threads.

3.3.1 Clock management

After initialization of the package there are precisely two
active clocks: the RTC that is always active and the ETC that
points either to the clock of the running thread, to the clock
for the interrupt being handled or to the idle clock. The ETC
is changed as a result of a context switch, interrupt handling,
or system idling.

The low-level interrupt handler of the run-time environment
calls Enter_Interrupt with the Interrupt_ID prior to calling the
interrupt handler. This procedure pushes the current ETC on a
stack and activates the interrupt clock found in the look-up
table as the new ETC. After the interrupt handler is called a
call to Leave_Interrupt pops and reactivated the old ETC. The
interrupt handler may also be interrupted by a higher priority
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Enter Interrupt

Leave Interrupt
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Enter Interrupt

Leave Interrupt

2

Figure 1: Stack states with two interrupt levels.

interrupt as seen in Figure 1. The stack size is limited by the
systems number of interrupt levels.

There is no idle thread in the run-time environment. Instead
the thread τa that finds the ready queue empty when leaving
the kernel enters an idle-loop waiting for any thread to be
made runnable by an interrupt. Prior to entering the idle
loop a call to Enter_Idle activates the idle clock as the ETC. If
τa is made runnable it calls Leave_Idle to reactivate its clock.
Also a context switch may take place and change clock to
the new running thread τb as seen in Figure 2. When τa
resumes execution the idle clock will be activated by the
context switch again instead of the task clock. In order to
do this the Thread_Descriptor has a field Active_Clock that points
either to the tasks own clock, or the idle clock if the tasks is
executing the idle loop. Only one thread at a time will enter
the idle loop.

τa

Enter Idle

Ia

Leave Idle

Context Switch

τb

Context Switch

Figure 2: System idling with two tasks.

The states in Figure 2 are sub-states of state 0 in Figure 1, any
of the states can be interrupted and will be restored when the
interrupt handler is left. Since no task can have a base priority
in the interrupt priority range in the Ravenscar profile context
switches can only occur in state 0, after the task priority has
be lowered back to the tasks base priority.

3.3.2 Measuring time

The use of the hardware timer is tick-less and therefore
does not require a periodic clock overflow interrupt. Instead
COUNT is reset using Reset_Count when the ETC is changed,
and the base time of the RTC and the old ETC is incremented
with the previous COUNT value cp. By doing this the same
hardware timer may be used for both the RTC and the ETC
as seen in Figure 3.

The elapsed time of a clock t since the epoch is retrieved by
the function Elapsed_Time, and is computed from the base time
b and the COUNT register value:

t =

{
b+ COUNT if clock is active
b else

An interrupt may occur after reading the base time but before
reading COUNT in Elapsed_Time. This will update the base
time and reset COUNT, making the sum of the earlier read
base time and COUNT invalid. To avoid this there is a check

RTC 0

ETC 0

bR

bE

COUNT

tR

tE

COMPARE

TR

TE

CM

Figure 3: Relation between the RTC and ETC, and the hard-
ware timer registers. The base time of the clocks are aligned.

after reading COUNT to see if the base time has been updated,
in which case the updated base time will be returned as the
elapsed time.

3.3.3 Setting the hardware timer
The COMPARE register is adjusted after updating ETC or after
changing the first alarm of an active clock. If within the light
gray region in Figure 3 the value C given to Adjust_Compare is
the smallest difference d for the RTC and ETC between the
first timeout T of the clock and its base time b:

C = min(min(dR, dE), CM )

In rare cases bmay be slightly larger than T . To handle this so
that the COMPARE interrupt will be pending immediately af-
ter calling Adjust_Compare and prevent overflow d is computed
as:

d = T −min(T, b)

Correct time measurement depends on COUNT never over-
flowing and CM is a safety mechanism to prevent this critical
error. By having CM = (232 − 1) − CS there will always
be a pending COMPARE interrupt the last CS clock cycles
before overflow. This region is marked darker gray in Fig-
ure 3. If interrupts are not blocked by the system for longer
than Cs the interrupt will be handled and COUNT reset when
Enter_Interrupt is called, preventing overflow. The COMPARE
interrupt handler will simply ignore this “false” interrupt. We
use a large safety region Cs = 231 to provide ample time for
the interrupt to be handled.

3.4 Alarms
The type Alarm_Descriptor seen in Listing 2 is used for repre-
senting internal alarms and has five data members: (1) Timeout
that gives the time of event when set. (2) The Clock of the
alarm given as argument to the alarm initialization procedure.
If the Capacity for the clock is zero the initialization will not
succeed and the alarm cannot be used. (3) Handler which is an
access to the procedure that is called when the alarm expires
and (4) the argument Data of type System.Address given when
calling this handler. The handler and data are set during ini-
tialization of the alarm and remain constant after this. (5) The
access Next pointing to the next alarm in the queue when the
alarm is set, null otherwise.
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Figure 4: Three clocks set with two, one and zero alarms in
addition to the sentinel at the end of the queue.

3.4.1 The alarm queue
The queue of pending alarms for clocks is managed as a
linked list sorted in ascending order after the Timeout value of
the alarms. Alarms with equal Timeout value are queued in
FIFO order. To avoid the special condition of an empty queue
there is a sentinel alarm with timeout at Time’Last that is always
present at the end of the queue. The constant Time_Last seen
by the user is set to Time’Last − 1 so that the sentinel is always
last. This avoids an additional check when searching the
queue. One sentinel alarm without handler is shared between
all clocks as shown in Figure 4 to save memory.

The procedure Set takes the alarm and timeout as argument,
sets the timeout field of the alarm, and searches the queue of
the clock associated with the alarm for another alarm with
timeout greater than the Timeout, the alarm is then inserted
before this one and always before the sentinel. The procedure
Cancel first checks that the alarm is set, and if so searches
for the alarm in the queue and removes it. It is necessary to
search the queue since to find the alarm before the one being
removed as it is implemented as a single linked list. Both
procedures reprogram the hardware timer if the alarm inserted
or removed is first in the queue of an active clock.

3.4.2 Calling alarm handlers
The COMPARE interrupt handler has the highest interrupt pri-
ority. When this handler is called the procedure Alarm_Wrapper
is called first for the RTC and then for the interrupted ETC
on top of the stack. At this point the active ETC is that of the
COMPARE interrupt itself, for which no alarms are allowed,
so only the interrupt ETC on top of the stack or the RTC may
be the cause of the interrupt. As the wrapper is called for both
clocks there is no need to check which caused the interrupt.
The alarm wrapper removes all alarms with timeout less or
equal to the base time of the clock from the head of alarm
queue one at the time, clears the alarm and calls the handler
with the data as argument. The alarm handler can, and very
often will, alter the alarm queue, so it is important to have
the queue in a consistent state before calling the handler and
reread the first alarm of the clock after calling the handler.

3.5 Ada 2012 interface
The implementation of the application programming interface
as described by the Ada reference manual [6] is quite similar
for the real-time and execution time control features as they
use the same internal time, clock and alarm types.

Listing 3: Interrupt timer specification

package Ada.Execution_Time.Interrupts.Timers is

type Interrupt_Timer ( I : Ada.Interrupts. Interrupt_ID)
is new Ada.Execution_Time.Timers.Timer

(Ada.Task_Identification .Null_Task_Id’Access)
with private;

private

type Interrupt_Timer ( I : Ada.Interrupts. Interrupt_ID)
is new Ada.Execution_Time.Timers.Timer

(Ada.Task_Identification .Null_Task_Id’Access)
with null record;

end Ada.Execution_Time.Interrupts.Timers;

3.5.1 Clocks

The functions named Clock in the packages Ada.Real_Time,
Ada.Execution_Time and Ada.Execution_Time. Interrupts all call
Elapsed_Time with the Clock_Id of the RTC, a task clock or an
interrupt clock as argument respectively. If there is no internal
clock for a given interrupt CPU_Time_First is returned. To get
the total execution time spent on interrupt handlers interrupts
Clock_For_Interrupts iterates through all Interrupt_ID s and finds
sum of calling Clock for each.

3.5.2 Timing events and timers

The tagged types Timing_Events and Timer both have an
Alarm_Descriptor, an Alarm_Id that points to this after initializa-
tion and a user handler of type Event_Handler and Timer_Handler
respectively. Both types use their alarm to call a wrapper
with the object as argument, that again calls the user han-
dler. The difference is in the initialization of the alarm where
Timing_Events use the RTC, while Timer uses the execution time
clock of the task. The alarm initialization may fail for Timer
in which case the exception Timer_Resource_Error will be raised.
For Timing_Event the initialization is asserted to succeed.

For both types the procedure Set_Handler first calls Cancel of
System.BB.Time to remove the alarm from the queue if necessary
before it sets the user handler and calls Set if this handler is
not null. This has to be done as Set expects the alarm to
be cleared. The procedure Cancel_Handler checks if the user
handler is set in which case Cancel is called and Cancelled is set
to true. Operations are done atomically by using the package
System.BB.Protection for blocking interrupts.

3.5.3 Interrupt timers

To allow execution time control for interrupts the non-
standard package Ada.Execution_Time. Interrupts .Timers shown in
Listing 3 defines the tagged type Interrupt_Timer that inherits
Timer and its operations. Note that the constant Null_Task_Id
from Ada. Task_Identification has to be marked aliased to be used
as discriminant when inheriting Timer. No body is needed for
this package. The initialization procedure for timers checks
if the object is of type Interrupt_Timer in which case it uses the
interrupt clock instead of task clock. Interrupt timers are used
in the exact same way as task timers.
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Table 1: Performance test results in CPU cycles

Test
Implementation

TI-ETC T-ETC N-ETC

Context switch 602 602 471
Timing event 381 272 270
Interruption cost 296 503 –

4 Performance
Performance testing of the implementation is done with the
Atmel AVR32 UC3A0512 microcontroller on the EVK1100
evaluation board. For the tests the microcontroller is run at
60 MHz, and is programmed and debugged using the Atmel
JTAG ICE Mk II. Test data is sent over the serial line to the
PC where it is retrieved and analyzed using GNU Octave.

The implementation with support for task and interrupt execu-
tion time control (TI-ETC) is tested against two other versions
of the run-time environment: one where support for execution
time control is completely removed (N-ETC), and one that
supports execution time control for tasks only (T-ETC). Here
N-ETC use the COUNT / COMPARE registers for the RTC
in the same way as TI-ETC, with the exception of COUNT
being reset in the COMPARE handler. This means that it has
zero additional overhead to context switches and interrupt
handling. For T-ETC the difference from TI-ETC is that the
interrupt clocks and corresponding packages are removed,
together with the calls to Enter_Interrupt and Leave_Interrupt in
the low-level interrupt handler. This implementations should
have zero additional overhead to interrupt handling compared
to N-ETC, but the same additional overhead as TI-ETC for
context switches.

4.1 Context switch overhead

The purpose of this test is to find the overhead to context
switches by changing the execution time clock. We test with-
out an alarm being set for the clock as the overhead is found
to be the same regardless of alarm status. The test is done
by having a task τa release a higher priority task τb that is
blocked on an entry of a protected object. The release time
is read by the protected procedure opening the entry, and is
returned to τb by the entry. After being released τb reads the
clock and the two time values are transferred over the USART
line before the task blocks again and the test is repeated.

The first row in Table 1 shows the results for the implementa-
tions. The exact same number of clock cycles was measured
in all samples for this test. This is due to simplicity of the
executed test program and the deterministic nature of the UC3
microcontroller. The additional overhead caused by execution
time control is inferred to be 131 clock cycles or 2.2 µs at the
clock frequency used in the test.

4.2 Timing event overhead

The system is required to document the overhead of handling
timing event occurrences. This is also a good measure of
interrupt handling overhead in general caused by execution

time control. The program has a single timing event that is
programmed to occur with random intervals between 1 and
3 milliseconds. When the handler is called the difference
between the timeout and the clock is recorded. After 100
samples the data is transferred over the USART line and the
test is repeated.

The second row in Table 1 shows the results for the imple-
mentations in clock cycles. As before there was only one
measured overhead value for each implementation due to
the simplicity of the test program and the determinism of
the UC3. It is inferred from the results that execution time
control gives an additional overhead of 111 clock cycles to
interrupt handling, or 1.85 µs at the clock frequency used for
the test. The difference of two clock cycles between T-ETC
and N-ETC is inferred to be caused by small differences in
the function Elapsed_Time reading the real-time clock.

4.3 Cost to interrupted task

The execution time cost to the task being interrupted is greater
than zero, as the interrupt clock is activated by the low-level
interrupt handler, and not by hardware. The purpose of this
test is to find this cost. The test is done by having a single
task τ first setting a timer for its own execution time clock to
expire in 20 ms if this timer is not already set, then reading its
execution time clock, busy waiting 10 millisecond, and then
reading this clock again. The clock values are transferred over
the USART line and the test is repeated. Only the interrupt
caused by the timer can occur between the two clock readings,
and it can occur only once. A protected procedure with null
as the only statement is used as handler. To find the cost we
compare the difference in execution time when interrupted to
when the task is not interrupted. This test is only relevant for
TI-ETC and T-ETC.

The last row in Table 1 shows the cost to the interrupted task
in clock cycles for the implementations with and without
separate execution time clocks for interrupts. The execution
time when not interrupted was always the same number of
clock cycles for both implementations due to the deterministic
nature of the UC3 microcontroller. When interrupted the
execution time varied with one clock cycle. The worst-case
cost of interruption is shown.

5 Use of interrupt timers
To ease development of real-time applications an object-
oriented framework has been developed by several contrib-
utors in the Ada community [22]. The framework pro-
vides common real-time patterns such as periodic and spo-
radic tasks, detection of deadline miss and overrun detection,
execution-time servers and more. By integrating the non-
standard Interrupt_Timer into this framework it is also possi-
ble to control the execution-time spent on interrupt handling
and thereby prevent deadlines being lost due to bursts of
interrupts. The framework components related to interrupt
handling can be separated into three parts: (1) the interface
Interrupt_Controller used to control hardware interrupt gener-

ation; (2) the protected interface Interrupt_Server used to con-
trol the execution time spent handling a given Interrupt_ID
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Listing 4: Definition of interrupt controller

package Interrupt_Controllers is

type Interrupt_Controller is limited interface;

procedure Enable
(C : in out Interrupt_Controller ;
I : Interrupt_ID) is abstract;

procedure Disable
(C : in out Interrupt_Controller ;
I : Interrupt_ID) is abstract;

function Supported
(C : Interrupt_Controller ;
I : Interrupt_ID) return Boolean is abstract;

type Any_Interrupt_Controller is
access all Interrupt_Controller ’Class;

Unsupported_Interrupt : exception;

end Interrupt_Controllers ;

in accordance with some policy; (3) the protected interrupt
handlers, the framework provides the release mechanism
Sporadic_Interrupt to release tasks as a result of an interrupt.

5.1 Interrupt controller
The interface Interrupt_Controller is defined as shown in Listing
4. The interface will typically be implemented by a peripheral
driver. Depending on the peripheral it may control one or
more interrupts. Use of the interface is very straight-forward:
Enable enables the generation of given Interrupt_ID and Disable
disables it. The function Supported indicates if the controller
supports the interrupt, if other operations of a controller is
called with an unsupported interrupt the Unsupported_Interrupt
exception will be raised.

5.2 Interrupt servers
The interface Interrupt_Server shown in Listing 5 uses
Interrupt_Controller to control the execution time spent han-

dling a given interrupt according to a policy by en-
abling and disabling its generation. The tagged type
Interrupt_Server_Parameters is used to pass the controller and

the execution time budget to implementations of the interface.

The protected object Deferrable_Interrupt_Server shown in List-
ing 6 and 7 implements this interface following the deferrable
server policy. This allows us to model the execution time
spent handling the given interrupt as a periodic task with a
given period and budget. The type Deferrable_Server_Parameters
defines the additional parameters needed by the server, in
this case the replenishing period of the execution time budget.
Notice that the Interrupt_ID is given as a separate discriminant,
this is needed to declare the timer statically in the protected
object. Internally the deferrable server has a timing event
used to call the procedure Replenish periodically with the pe-
riod given as parameter. The procedure sets the execution
time budget for the interrupt using the interrupt timer, and
enables the interrupt if necessary. The first call to Replenish
is at the system epoch, and will enable the generation of the

Listing 5: Interrupt server interface

package Interrupt_Servers is

type Interrupt_Server_Parameters is tagged
record

Controller : Any_Interrupt_Controller;
Budget : Time_Span;

end record;

type Interrupt_Server is protected interface;

procedure Initialize
(S : in out Interrupt_Server) is abstract;

type Any_Interrupt_Server is access all Interrupt_Server;

end Interrupt_Servers;

Listing 6: Deferrable interrupt server specification

package Interrupt_Servers.Deferrable is

type Deferrable_Server_Parameters
is new Interrupt_Server_Parameters with
record

Period : Time_Span;
end record;

protected type Deferrable_Interrupt_Server
( I : Interrupt_ID ;
Param : access Deferrable_Server_Parameters) is
new Interrupt_Server with

procedure Initialize ;

pragma Priority (Any_Priority ’Last);

private

procedure Replenish (Event : in out Timing_Event);
procedure Overrun (TM : in out Timer);

Replenish_Event : Timing_Event;
Execution_Timer : Interrupt_Timer (I );
Next : Time;
Disabled : Boolean := True;

end Deferrable_Interrupt_Server;

end Interrupt_Servers.Deferrable;

interrupt. The procedure Overrun is called when the execution
time budget is exceeded and disables the generation of the
interrupt.

5.3 Example application
Our example application has a real-time task implemented by
a tagged type inheriting Periodic_Task of the real-time frame-
work. The task has period 10 ms and a 5 ms budget, and we
use the periodic release mechanism with overrun and deadline
miss detection. For each release the task simply busy waits
75% of its budget.

In addition the application receives data from the PC through
the USART line. We use the same hardware setup as for
the performance tests. The tagged type USART_Controller im-
plements Interrupt_Controller and is used to setup, enable and
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Listing 7: Deferrable interrupt server body

package body Interrupt_Servers.Deferrable is

protected body Deferrable_Interrupt_Server is

procedure Initialize is
begin

pragma Assert (Param.Controller.Supported (I));
Next := Epoch;
Replenish_Event.Set_Handler

(Next, Replenish’Access);
end Initialize ;

procedure Replenish (Event : in out Timing_Event) is
begin

Execution_Timer.Set_Handler
(Param.Budget, Overrun’Access);

if Disabled then
Disabled := False;
Param.Controller.Enable (I );

end if ;
Next := Next + Param.Period;
Event.Set_Handler (Next, Replenish’Access);

end Replenish;

procedure Overrun (TM : in out Timer) is
begin

pragma Assert (not Disabled);
Disabled := True;
Param.Controller.Disable (I );

end Overrun;

end Deferrable_Interrupt_Server;

end Interrupt_Servers.Deferrable;

disable the RX interrupt of the USART. A protected object
with the USART interrupt handler counts the number of char-
acters received. The environment task outputs this count every
second. This task has lower priority than the real-time task
and no deadline.

The baud rate of the USART line is a far higher rate than
the system is able to receive using interrupts. However, the
intended usage is that characters are typed one-by-one to the
serial line by the user, and therefore will be limited to a few
characters per second. Since we do not fully trust this limita-
tion to be respected, a deferrable interrupt server is included
to control the execution time spent handling receive USART
interrupt. We let the server have a replenishing period of 10
ms, the same period as the real-time task, and a budget of
1 ms. Hence, the total utilization not considering the back-
ground task, is 60% which is known to be safe using RMA.
The parts of the application related to interrupt handling are
shown in Listing 8.

Running on the UC3A0512 of the EVK1100 evaluation board,
the application correctly counts each character sent by typing
in the serial communication program “minicom”. In order
to test the interrupt execution time control, we use the “cat”
command to write the entire source code of the application to
the serial device file, and observe that the USART interrupt is
disabled when the budget is exceeded and re-enabled when
it is replenished. During the test the real-time task did not
miss any deadline. However, only 40% of the characters

Listing 8: Usage of interrupt server

package body Test is

USART : aliased USART_Controller (USART_1_Address);

Param : aliased constant Deferrable_Server_Parameters
:= ( Controller => USART’Access,

Budget => Milliseconds (1),
Period => Milliseconds (10));

USART_Server : Deferrable_Interrupt_Server
(USART_1, Param’Access);

protected RX_Counter is
pragma Interrupt_Priority (USART_1_Priority);
function Get_Count return Natural;

private
procedure Increment;
pragma Attach_Handler (Increment, USART_1);
Count : Natural := 0;

end RX_Counter;

protected body RX_Counter is
function Get_Count return Natural is
begin

return Count;
end Get_Count;
procedure Increment is
begin

USART.Clear (USART_1);
Count := Count + 1;

end Increment;
end RX_Counter;

procedure Run is
Next : Time := Epoch;

begin
loop

delay until Next;
Put (RX_Counter.Get_Count);
New_Line;
Next := Next + Seconds (1);

end loop;
end Run;

begin
USART.Initialize;
USART_Server.Initialize;

end Test;

sent were successfully received by the system. This loss
could be prevented by using USART hardware flow control
or buffering, but we want to keep the example application
simple. As expected the real-time task misses all its deadlines
during the burst when the interrupt server is removed from
the system.

6 Discussion
6.1 Design and implementation
Our design supports both the real-time clock and timing
events, and execution time clocks and timers using one in-
ternal clock and alarm implementation. This removes most
of the near duplicate code compared to separate implemen-
tations. Table 2 shows code metrics for the implementations
with full, task only and no execution time control as reported
by the “gnatmetric” tool. Only packages that are different for
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Table 2: Code metrics for implementations

Implementation Decl. Stat. SLOC

TI-ETC 243 516 759
T-ETC 221 473 694
N-ETC 158 264 422

the implementations are included. As seen the difference be-
tween full and task only execution time control is small, only
65 logical code lines which includes two additional packages
for interrupt clocks and timers. For System.BB.Time the differ-
ence is only 11 logical code lines. The difference between
full and no execution time control is greater, 337 logical code
lines, but this includes seven additional packages for execu-
tion time control. For System.BB.Time the difference is only 27
logical code lines. Overall the number of code lines added by
execution time control seems small and acceptable compared
to the features provided.

Another benefit of our design is that one hardware timer is
sufficient to support both the RTC and the ETC. By using only
one hardware timer and one clock interrupt, our system is
easier to understand and debug as there are no race conditions
between interrupts of different hardware timers that need to be
handled. The reduced hardware requirements for the run-time
environment also frees timers for the application. Compared
to the earlier implementation of execution time control [16]
that used one of the two Timer / Counter hardware timer
units of the UC3A microcontroller, both these are available
for the application with the new design and can be used for
pulse-wave modulation (PWM), external signal generation
and more.

The tick-less design means that there are no periodic clock
interrupts to increment the most significant part (MSP) part
of the time value. If context switches and interrupts occur
more often than CM which is 35.8 seconds on our system
running at 60 MHz, there will be no interrupts caused by
clock measurement. For typical real-time systems there will
be more frequent context switches and interrupts than this.
The execution time of the clock overflow handlers may not be
negligible, meaning that it could affect scheduling analysis.
While the tick-less design comes at the cost of additional over-
head to context switches and interrupt handling, the benefits
of removing the periodic clock tick is greater.

6.2 Portability

While our design is implemented on the AVR32 UC3 mi-
crocontroller series, it should be portable to any architec-
ture where it is possible to implement the routines Get_Count,
Adjust_Compare and Reset_Count according to their specification.
With minor modifications it should also be possible to use
16-bit hardware timers instead of the 32-bit timer used in this
paper. In this case it would be necessary to reduce the clock
resolution as overflow interrupts would occur every 546 µs at
the resolution of 60 MHz used in this paper.

Our implementation uses a hardware timer within the pro-
cessor core, giving the benefit of a deterministic, constant

access time. It is possible to use a peripheral hardware timer,
although it may be harder to implement Reset_Count without
clock cycle leakage as the access time for reading and writing
timer registers over the peripheral bus would not be constant
for most systems.

6.3 Overhead caused by switching clocks
The two overhead tests measure the time it takes either be-
tween two clock readings, or the time between an event taking
place at a known time and reading the clock. It is known
whether this time includes changing execution time clocks
or not for the implementation being tested. When compar-
ing results it is important to remember that there are minor
changes in the compiler output that affect the result, and that
the function reading the clock also has minor changes be-
tween the implementations with and without execution time
control. However, the main difference in overhead is caused
by changing clocks and the results are considered valid. The
context switch and interrupt handling overhead was found
to be 131 and 111 clock cycles respectively. The small dif-
ference of 20 clock cycles between the two results is due to
differences in clock management.

The additional overhead to context switches and interrupt
handling caused by the full implementation is significant. At
the clock frequency of 60 MHz used in the tests this additional
overhead is 2.2 µs and 1.85 µs respectively. This adds to the
latency for interrupt handlers and task release, and reduces
the overall system performance. Still, the overhead is not
prohibitively high taking into account the benefits provided
by execution time control. Also, this overhead includes the
cost of the tick-less timer that removes the overhead to tasks
and interrupts caused by the periodic clock interrupt.

6.4 Cost of interruption
The test measuring the execution time cost to a task being
interrupted is more accurate than the overhead tests as we
compare the difference when the interrupt did and did not
happen for the same implementation. By design we know
that at most one interrupt may occur between reading the
clocks. The cost of interruption to the task when using in-
terrupt clocks was 297 or 298 clock cycles. When using the
clock of the interrupted task the cost was 502 or 503 clock
cycles. The difference between the two implementations is
thus 205 clock cycles, but without interrupt clocks the cost
includes the whole execution time overhead of calling the
timer handler including the Alarm_Wrapper and Execute_Handler
procedures. The cost would be less if an ordinary interrupt
handler was used.

The small but noticeable cost to the interrupted task when
using interrupt clocks means that if a task is interrupted many
times its budget may have to be extended to allow for this.
Without interrupt clocks the cost of interruption is varying,
depending on what is done in the interrupt handler. In the
case of very simple handlers this cost may even be lower than
when using interrupt clock due to the overhead of changing
clocks. Still, having a constant cost regardless of what is
done in the handler is better for analysis. It is also possible
to transfer execution time from the task clock to the interrupt
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clock before and after calling the interrupt handler to refund
the tasks cost without its clock going backwards observably.
While this scheme would reduce the cost to interrupted tasks,
it would increase the complexity and also would need to
be tuned depending on compiler output, and was therefore
discarded.

6.5 Hardware support

Ideally we would like to have near zero overhead to context
switches and interrupt handling caused by execution time con-
trol, and near zero cost of interruption for tasks. This is not
feasible without a specialized hardware timer that allows exe-
cution time clocks to be changed more efficiently. Therefore
the authors have designed a Time Management Unit (TMU)
supporting 64-bit timer values and atomic clock changes [23].
It is designed to have a simple memory mapped interface
accessible though the peripheral bus, making it portable to
different architectures. The TMU has been implemented with
the AVR32 UC3 core as a part of a masters thesis at NTNU
in cooperation with Atmel Norway [24]. Simulation results
indicates that the overhead of switching clocks can be reduced
to less than 50 clock cycles by using this hardware timer.

6.6 Interrupt timer

The interrupt timer is not a part of the Ada 2012 standard but
should in the authors opinion be added to the next revision
for the following reasons. First it provides execution time
control for interrupts similar to that for tasks. If we measure
the execution time for interrupts it should also be controllable
by means such as the framework extensions described in this
paper. This is important as the execution time spent handling
interrupts may be very hard to predict as the interrupts may
be generated by external hardware that are not controlled by
the application. Alternatives to interrupt timers are to count
the number of interrupts and disable the interrupt if the count
gets to high, or to poll the execution time of the interrupt after
the handler is called and disable the interrupt if the budget
is exceeded. These solutions are less precise and also less
efficient than using interrupt timers.

Also, the cost of including interrupt timers is small for our
implementation as the same clock abstraction and hardware
timer is used for task and interrupts. Since the interrupt timer
inherits the operations from the task timer, no additional code
is needed other than the definition of the tagged type and the
code to initialize interrupt timers.

6.7 Framework extensions

The interrupt timer allows us to extend the object-oriented
real-time framework to also provide execution time servers
for interrupts following the same pattern as used for task
execution time servers. While the task server controls the
execution time for a group of tasks released sporadically, the
interrupt server controls the execution time spent invoking one
interrupt handler many times. The object-oriented nature of
the framework allows us to create servers suitable for different
needs. We have implemented the deferrable server under the
assumption that it is acceptable to ignore interrupts for a while,

but other schemes may for instance be to reconfigure the
system into fail-safe mode in the case of interrupt overruns.

The deferrable interrupt server has a budget that is replenished
periodically, and disables interrupt generation if this budget
is exceeded. Since there is no way to cancel the interrupt
being handled in Ada, the budget has to allow for an overrun
of one additional handler invocation for the cases where the
budget is exceeded right after entering the low-level handler.
It should be considered adding a user handler that is called to
notify the application when an interrupt is disabled, to allow
for instance hardware diagnostics. This could of course also
be done in the Disable procedure of the peripheral driver. In
this case it could be useful to add a cause argument to this
procedure.

6.8 Example application
The example application is typical in that we must assume
one rate of interrupts, but cannot guarantee it as the genera-
tion the interrupt is not controlled by the application. Burst
of interrupts may also be caused by permanent or transient
hardware faults. The result is that the system has to handle
more interrupts than budgeted for in the real-time analysis,
if the effects of interrupt handling was analyzed at all. This
could cause deadlines to be missed and thereby system failure.
The presented extensions to the real-time framework provides
an easy way to protect our real-time application against these
situations.

In the example application we use the USART RX interrupt
to receive data sent on the serial line. This is reasonable and
efficient given that we know that the characters are sent by
the user typing in a serial communication program. However
the high baud rate means that the system could be overloaded
with interrupts if this limitation is not respected. By using
the deferrable interrupt server of the real-time framework
we can easily set a budget for the interrupt so that our real-
time task is guaranteed sufficient execution time to meet its
deadline. No deadlines were lost due to burst of interrupts
when the application was tested with the deferrable server,
while several deadlines were lost during the burst when the
server was not used. This gives a good indication that the
deferrable interrupt server works as intended.

7 Conclusion
Our implementation of Ada 2012 execution time control has
a design with several benefits. By using a single clock and
alarm abstraction to support both the real-time and execution
time clocks, we have reduced the amount of code needed
for the implementation. This also allows just one hardware
timer to support both these clocks, reducing the complexity
of the system and the hardware requirements of the run-time
environment. This frees valuable hardware timers for the
application. We use the hardware timer in a tick-less manner,
meaning that there are no periodical clock interrupts. By
requiring only one hardware timer the design should also be
easy to port to other architectures with similar timers.

Performance testing shows a noticeable overhead to context
switch and interrupt handling caused by our implementation
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of execution time control. However, this is in our opinion
justified by the value of the provided features, and the tick-
less clock measurement. We also found that there is a low
constant execution time cost to tasks being interrupted. While
zero cost is the ideal, this constant cost is an improvement
in analyzability compared to the varying, and in most cases
higher, cost without separate execution time measurement for
interrupts.

We have presented an interrupt timer providing execution time
control for interrupts similar to that for tasks. This feature is
not a part of the Ada 2012 standard where the execution time
for interrupts can only be measured, and not controlled. By
extending the object-oriented real-time framework using the
interrupt timer we provide a deferrable execution time server
for interrupts so that the time spent on interrupt handling
may be analyzed as a periodic task. The example application
shows that our framework extensions provide an easy and
elegant solution to prevent deadlines being missed due to
bursts of interrupts. In the authors opinion interrupt timers
should be added to the next revision of the Ada programming
language.

8 Further work
Work is in progress with an implementation using a special-
ized Time Management Unit (TMU) for execution time con-
trol instead of the COUNT / COMPARE timer, and test this
implementation with the AVR32 UC3 core in cooperation
with Atmel Norway.
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Abstract. This paper describes how a dedicated Time Management
Unit (TMU) is used to reduce the overhead of execution time control.
While the implementation described here is for Ada 2012 and a GNAT
bare-board run-time environment, the principles should be applicable to
other languages and run-time systems. The TMU has been implemented
as a peripheral unit for the Atmel AVR R©32 UC3 series of microcon-
trollers, and test results from simulation with the syntheziable RTL code
of this system-on-chip are presented.

1 Introduction

Scheduling analysis of real-time systems relies on the worst-case execution time
(WCET) of tasks being known. However, finding the WCET of an algorithm
may be very hard, and performance enhancing techniques such as pipelines and
caches makes it even harder [22]. This makes WCET analysis a costly and time
consuming process. Also, the WCET will often be considerably longer than the
average execution time, as it includes the unlikely event of many or all of the
performance enhancing techniques failing. Therefore scheduling will often be
pessimistic to provide an offline guarantee that all deadlines are met, which
again leads to poor processor utilization.

Execution time control allows the total time a task has been executed on a
processor to be measured, and a handler to be called when this execution time
reaches a specified timeout value. Combined with a scheduling policy taking
advantage of this feature, it allows online control of task execution time instead
of relying exclusively on offline guarantees [21]. Execution time control also allows
execution time servers for soft sporadic tasks [3], and algorithms where there is
an increasing reward with increased service (IRIS) [13].

Many systems support execution time control, examples are real-time POSIX
[19], real-time Java [16], and Ada since the 2005 revision of the language stan-
dard [11]. Common for most execution time control implementations is that they
charge the running task the execution time of interrupt handlers. When the au-
thors at NTNU implemented Ada 2005 execution time control for our AVR32
version of the GNAT bare-board run-time environment [7], separate execution
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Fig. 1. Initial design with the CPU core and TMU connected to a high-speed bus.

time measurement for each interrupt level was added [5, 9]. This improved ac-
curacy of execution time measurement and allowed execution time control for
interrupts. This solution was presented at IRTAW 14 [8]. Another solution pre-
sented by the developers of MaRTE measures the combined execution time of
interrupt handling [15]. Following the recommendations of the workshop [14,20],
the draft for the Ada 2012 standard [12] includes both combined execution time
measurement and separate for each interrupt. The new features have been im-
plemented by the authors [10] 1.

Performance testing has shown a significant overhead to context switches and
interrupt handling, introduced by implementing execution time control [9, 10].
This motivated the authors to design a hardware Time Management Unit (TMU)
to reduce the overhead [6]. The design has been implemented for Atmel AVR32
UC3 by a master student at NTNU in cooperation with Atmel Norway [18].

In the following there is a description of the TMU design and its UC3 imple-
mentation. Then follows a description of the Ada 2012 execution time control
features, and our implementation of this without the TMU. After this it is shown
how our implementation is modified for using the TMU and performance test re-
sults are given. Finally there is a discussion on the TMU design, the performance
test results, and the portability of the solution.

2 The Time Management Unit (TMU)

The TMU was designed as a memory-mapped device accessible through a high-
speed bus as shown in Figure 1. In addition to bus interface the TMU has a
clock signal as input that need not be the same as the clock used by the core.
The TMU generates an interrupt signal that will usually be routed to the core
through an interrupt controller.

Internally the TMU has a 64-bit COUNT register that is incremented on
every positive edge of the clock signal. After COUNT is incremented it is com-
pared with the 64-bit COMPARE register. If COUNT ≥ COMPARE then the

1 Code available at http://github.com/gregerts/GNATforAVR32
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Table 1. User interface of the TMU.

Offset Register Description

0x00 CTRL Control register
0x04 MODE Mode register
0x08 SR Status register
0x0c SCR Status clear register
0x10 IER Interrupt enable register
0x14 IDR Interrupt disable register
0x18 IMR Interrupt mask register
0x1c COMPARE HI

Compare register
0x20 COMPARE LO
0x24 COUNT HI

Count register
0x28 COUNT LO
0x2c SWAP COMPARE HI

Swap compare register
0x30 SWAP COMPARE LO
0x34 SWAP COUNT HI

Swap count register
0x38 SWAP COUNT LO

interrupt signal is asserted. In order to atomically swap a new set of COUNT
/ COMPARE values with the current, two swap registers are provided. The
registers are swapped when the final word of the swap registers is written, and
the previous values of COUNT and COMPARE can be read back. The swap
registers allow for simple and efficient change of execution time clocks.

The COUNT and COMPARE register may also be accessed directly. When
reading the high-word of the registers, the low-word is stored in an internal 32-
bit buffer, and this buffered value is returned when the low-word is later read.
Similarly, the high-word value is buffered when writing the high-word of COUNT
and COMPARE. The whole register is updated when the low-word subsequently
is written. Due to the buffering care must be taken not to interleave writing and
reading of COUNT. If available it is recommended to use double-word load /
store instructions so that registers are read and written atomically.

2.1 UC3 implementation of TMU

The Atmel AVR32 [1] is a 32-bit RISC architecture optimized for code density
and power efficiency. The AVR32 has four interrupt levels, and a number of ex-
ceptions. The UC3 is the second implementation of the architecture [2], intended
for embedded control applications. It has a three-stage pipeline integrated with
an internal SRAM allowing deterministic, single-cycle memory access.

When TMU was implemented for the UC3 some technical changes were
needed [18]. The unit was moved from the high-speed bus to the peripheral bus
to ease the implementation, and the clock signal driving the TMU was bound to
the clock of the peripheral bus to allow a synchronous design. To make the TMU
more like other UC3 peripherals and usable for a wider range of purposes, several
registers were added as seen in Table 1. The control register allows enabling and
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disabling the TMU. It is disabled by default to save power. Even though the
64-bit COUNT register is not expected to overflow with the intended usage, an
overflow interrupt was added to allow for other usages. Also interrupt control
registers were added following the pattern of existing UC3 peripherals.

3 Ada 2012 execution time control

The package Ada.Execution Time defines the type CPU Time and the function Clock

for execution time measurement of tasks [12]. The execution time of a task is
defined as the time spent by the system executing that task, including the time
spent executing run-time or system services on its behalf [12]. For Ada 2005
it was implementation defined which task, if any, was charged the execution
time used by interrupt handlers and run-time services on behalf of the system.
Ada 2012 has the ability to account for the total or separate execution time
of interrupts handlers. If supported the function Clock For Interrupts returns the
total execution time of interrupt handlers since system start-up. The child pack-
age Interrupts is new for Ada 2012, and has a function Clock that returns the
execution time spent handling the given Interrupt Id since start-up if supported.

The child package Timers defines the tagged type Timer used for detecting
execution time overruns for a single task. The type Timer Handler identifies a
protected procedure to be executed when the timer expires. Handlers are set to
expire at an absolute or relative execution time using two overloading Set Handler

procedures, and may be cancelled using the procedure Cancel Handler. To allow
execution time control for interrupts in the same way as for tasks we have added
a child package Interrupts .Timers. It defines the tagged type Interrupt Timer that
inherits Timer and its operations [10]. This package is not in Ada 2012, but should
in the authors opinion be added to the next revision of the language.

4 Implementation without TMU

We have modified our earlier implementation of Ada 2012 execution time control
[10] to use the TMU. To understand the changes and the overall design of the
system a brief description of this implementation is needed.

4.1 Design

The real-time clock (RTC) and execution time clocks (ETCs) are quite similar in
functionality: both clocks support high accuracy measurement of the monotonic
passing of time since an epoch, and both support calling a protected handler
when a given timeout time is reached. The main difference is that the RTC
is always active, while an ETC is active only when its corresponding task or
interrupt is executed. Our design takes advantage of this by having a single
implementation of clocks and alarms in the internal package System.BB.Time.

In this package the type Time represents the passing of time since the epoch
as a 64-bit modular integer, and Time Span represents time differences as a 64-bit
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integer with range from −263 to 263 − 1. The limited private types representing
clocks and alarms are defined as shown in Listing 1, and there are access types
Clock Id and Alarm Id for these. The package also defines public routines for clock
and alarm operations, and procedures used by the run-time environment for
changing the active execution time clock. Note that the alarm type is also used
internally for task wake-up.

4.2 Hardware timer

The 32-bit COUNT / COMPARE system registers of the AVR32 are used both
for the RTC and execution time clocks in the implementation without TMU.
The COUNT register is reset to zero at system start-up and is incremented by
one every CPU clock cycle. The COMPARE interrupt is triggered when COUNT
equals COMPARE, and cleared when COMPARE is written. The interrupt is
disabled when COMPARE is zero, which is the reset value of the register.

The package CPU Primitives provides three hardware timer operations for the
COUNT / COMPARE registers. A snap-shot value of COUNT is returned by the
function Get Count. The procedure Adjust Compare sets COMPARE according to
the argument C, while making sure no interrupt is lost. If C is less than COUNT,
an interrupt will be pending immediately after leaving the procedure. The pro-
cedure Reset Count sets COUNT to zero and returns the previous COUNT value
cp in one atomic operation. The COMPARE register is not altered by the reset
procedure and has to be updated with a call to Adjust Compare if needed.

4.3 Clock management

The package body has Clock Descriptors for the RTC, interrupt clocks and the
internal idle clock. Threads have a Clock Descriptor stored in the Thread Descriptor

type. After initialization there are two active clocks: the RTC that is always
active and the ETC that points to the clock of the running thread, that of the
interrupt being handled or to the idle clock. The ETC is changed by the procedure
Update ETC as a result of a context switch, interrupt handling, or system idling.

The low-level interrupt handler calls Enter Interrupt prior to calling the in-
terrupt handler. This procedure activates the interrupt clock found in a look-up
table as the new ETC. A stack is used to keep track of nested interrupts. After
the interrupt has been handled the procedure Leave Interrupt is called, and the
interrupted clock is popped from the stack and reactivated.

The run-time environment has no idle thread. Instead the thread τa that finds
the ready queue empty when leaving the kernel, enters an idle-loop waiting for
any thread to be made runnable by an interrupt. Prior to entering the idle loop
a call to Enter Idle activates the idle clock as the ETC. If τa is made runnable it
calls Leave Idle to reactivate its clock. Also a context switch may change to a new
running thread τb. When τa resumes execution the idle clock has to be activated
by the context switch. Therefore the Thread Descriptor has a field Active Clock that
points either to the task’s own clock, or the idle clock if the task is executing
the idle loop. Only one thread at a time will enter the idle loop.
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Fig. 2. Relation between the RTC and ETC, and the hardware timer registers. The
base time of the two clocks are aligned in the figure.

4.4 Measuring time

The use of the hardware timer is tick-less and does not require a periodic clock
overflow interrupt. Instead COUNT is reset using Reset Count when the ETC
is changed by Update ETC, and the Base Time of the RTC and the old ETC
is incremented with the previous COUNT value cp. By doing this the same
hardware timer may be used for both the RTC and the ETC as seen in Figure 2.

The elapsed time of a clock t since the epoch is retrieved by the function
Elapsed Time, and is computed from the base time b and the COUNT register
value:

t =

{
b+ COUNT if clock is active

b else

An interrupt may occur while within Elapsed Time. This would reset COUNT
and update the base time. To avoid an invalid result there is a check after reading
COUNT to see if the base time has been updated, in which case the updated
base time will be returned as the elapsed time.

4.5 Setting the hardware timer

The COMPARE register is adjusted after updating ETC and after the first
alarm of an active clock is changed. This is done by calling the procedure
Update Compare. As seen in Figure 2, the value C given to Adjust Compare is
shortest remaining time until timeout T for the RTC and ETC. However, this
value is never greater than the maximal COMPARE value CM to avoid COUNT
from overflowing. This safety region is marked with a darker shade in Figure 2.
The interrupt will be pending within this region and COUNT is reset when it
is handled, preventing overflow. The COMPARE interrupt handler will simply
ignore this “false” interrupt. A large safety region of 231 cycles is used to provide
ample time for the interrupt to be handled.
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4.6 Alarms

Each clock has a queue of pending alarms managed as a linked list and sorted
in ascending order after the Timeout of the alarms. In the case of equal Timeout

values alarms are queued in FIFO order. To avoid the special condition of an
empty queue, there is a sentinel alarm with timeout at Time’Last that is always
present at the end of the queue. The constant Time Last seen by the user is set
to Time’Last − 1 so that the sentinel is always last. This avoids an additional
check when searching the queue. One sentinel alarm without handler is shared
between all clocks to save memory. The procedures Set and Cancel both search
the queue from the start for the place to insert or remove an alarm, and call
Update Compare if the first alarm in the queue of an active clock is changed.

4.7 Interrupt handler

The COMPARE interrupt handler has the highest interrupt priority. The handler
calls the procedure Alarm Wrapper first for the RTC and then for the interrupted
ETC on top of the stack. At this point the active ETC is that of the COMPARE
interrupt itself, for which no alarms are allowed, so only the interrupt ETC on
top of the stack or the RTC may be the cause of the interrupt. As the wrapper is
called for both clocks there is no need to check which one caused the interrupt.
The alarm wrapper removes all alarms with timeout less or equal to the base
time of the clock from the head of alarm queue one at the time, clears the alarm
and calls the handler with the data as argument.

5 Modifications for using the TMU

The package specification of System.BB.Time was not altered when using the
TMU. However, the routines interfacing with hardware and the COMPARE
interrupt handler has to be updated. Also, an interrupt handler for the TMU has
to be added, and an interface to the TMU in the package System.BB.Peripherals.

5.1 TMU interface

A modular integer type TMU Interval is defined to represent the 64-bit timer
values of the TMU, and the memory-mapped interface is defined in the child
package Registers . Public routines were added to read the COUNT register, set
the COMPARE register and perform the swap operation. The TMU is configured
and enabled as a part of the peripheral initialization.

5.2 Hardware timer usage

The updates needed to use two separate hardware timers are shown in Listing 2.
The function Elapsed Time is updated to use the TMU if the given clock is the
ETC. No check for interruption is needed for this as the double-word read cannot

137



be interrupted. If the clock is neither the RTC nor the ETC, it is not active and
its elapsed time equals the Base Time. The procedure Update Compare updates
the correct hardware timer if the given clock is active. The RTC is no longer
updated by Update ETC the TMU swap operation simplifies the procedure.

5.3 Interrupt handlers

The COMPARE interrupt handler now only handles alarms for the RTC. As
the RTC is no longer updated when changing the ETC, we reset COUNT and
update the base time of the RTC first in this handler. The flag Defer Updates

is set while calling Alarm Wrapper to avoid needless COMPARE updates. Notice
the use of the flag in Update Compare in Listing 2. The COMPARE register is
updated after the user handlers are called.

The TMU interrupt handler only calls Alarm Wrapper for the interrupted clock
on top of the stack. This as before this interrupted clock is the only possible
source of the interrupt. Updates to the TMU need not be deferred as the clock
is not active.

5.4 Context switch

The context switch routine now changes the active ETC directly as shown in
Listing 3. First the Base Time and First Alarm .Timeout of the new running threads
Active Clock are loaded. Then a TMU swap operation is initiated using the mul-
tiple store instruction of the AVR32 architecture. Notice that the registers are
stored in reverse order and therefore the high-word is stored before the low-word.
After the swap operation the COUNT value of the previous ETC is read back
and stored as its Base Time. Finally, the ETC is updated to the new active clock.

6 Performance testing

To evaluate the implementation of execution time control using the TMU, we
execute performance tests and compare the results with those for the imple-
mentation using the COUNT / COMPARE registers [10]. We also compare to
results without execution time control to find the absolute overhead caused by
implementing this feature. The implementations are referred to as TMU-ETC,
CC-ETC, and N-ETC respectively.

The testing of the TMU was done by simulation as it has not yet been
included in a produced UC3 chip. However, since the syntheziable RTL code of
the UC3 was used the results are the same as if obtained on hardware. The run-
time environment and test programs are compiled and linked to an ELF file as
normal, and no special code or libraries were needed to execute on the simulator.
The test programs are the same with exception of the non-simulated tests sending
data over the USART line, while the simulated store data in memory to be read
directly using the simulator. Some updates to the run-time environment were
needed as the simulated microcontroller is of version UC3L, while the earlier
tests were for the UC3A [10]. These differences do not affect the test results.
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Table 2. Performance test results in CPU cycles.

Test
Implementation

TMU-ETC CC-ETC N-ETC

Reading the RTC 43 51 41
Reading the ETC 47 56 –
Context switch 529 602 471
Interrupt handler 294 324 204
Timing event 369 381 270
Interruption cost 244 295 –

6.1 Reading the RTC and ETC

The purpose of this test is to find the overhead of reading the RTC and the active
execution time clock (ETC). This is important as this overhead affects most of
the later test results. The test is done by a task reading the RTC twice, and
then its own execution time clock twice before the results are stored in memory.
After this the task is delayed for a short while so that COUNT is reset and there
will be no interrupts while reading the clocks. The overhead is calculated as the
difference between the two clock values read.

Due to the deterministic nature of the UC3 microcontroller and the simplicity
of the test program, all samples for all implementations were of the exact same
value for this test. As seen from Table 2, the time to read the RTC and the
ETC is reduced by 7 and 9 clock cycles for TMU-ETC compared to CC-ETC,
a reduction of 14% and 16% respectively. The overhead of reading the RTC for
TMU-ETC is only 2 cycles or 5% more than for N-ETC.

6.2 Context switch overhead

The purpose of this test is to find the overhead to context switches by changing
the execution time clock. We test without an alarm being set for the clock as the
overhead is found to be the same regardless of alarm status. The test is done by
task τa releasing a higher priority task τb that is blocked on a protected entry.
The release time is read by the protected procedure opening the entry and is
returned to τb. After being released τb reads the clock and stores the data in
memory before it blocks again and the test is repeated. The time between the
two clock readings thus include finishing the protected procedure, executing the
entry by proxy on behalf of τb, leaving the protected object, the context switch
to τb and retrieving the results of the entry call.

For the same reasons as the previous test, all samples were of the same value
for this test. If we subtract the overhead of reading the RTC from the results in
Table 2, it can be inferred that TMU-ETC has a context switch overhead caused
by execution time control of 56 clock cycles compared to 121 for CC-ETC. This
is an reduction of 65 cycles, or 54%.
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6.3 Interrupt handler overhead

The purpose of this test is to find the interrupt handler overhead caused by
implementing execution time control for interrupts. The test is done by using
the 16-bit Timer / Counter (TC) peripheral unit of the UC3. The TC is set up to
generate interrupts at regular intervals each time its counter is reset. The counter
value is read by the interrupt handler and stored in memory. This provides a
good measurement of the overhead from the interrupt line is asserted to interrupt
handler is called. The sample values are multiplied with the clock division factor
used by the TC to get the time in CPU cycles.

As before, all samples were of the same value for this test. As seen from Table
2, the overhead caused by execution time control is reduced from 120 clock cycles
for CC-ETC to 90 clock cycles for TMU-ETC. This is a reduction of 30 clock
cycles or 25%.

6.4 Timing event overhead

The system is required to document the overhead of handling timing event occur-
rences. While not related to the execution time control, this overhead is expected
to be changed by our implementation using the TMU and had to be found. The
test program has a single timing event that is programmed to occur with random
intervals between 1 and 3 milliseconds. When the handler is called the difference
between the timeout and the value of the RTC is stored in memory.

As before, all samples were of the same value for this test. By subtracting
the overhead of reading the RTC from the results found in Table 2, it can be
inferred the timing event overhead caused by execution time control is reduced
from 101 clock cycles for CC-ETC to 97 clock cycles for TMU-ETC. This is a
reduction of 4 clock cycles, or 4%.

6.5 Cost to interrupted task

The execution time cost to the task being interrupted is greater than zero, as
the interrupt clock is activated by the low-level interrupt handler. The purpose
of this test is to find this cost. The test is done by a task τ first setting its own
execution time timer to expire in 20 ms, then reading its execution time clock,
busy waiting 10 millisecond and then reading this clock again. The clock values
are stored in memory and the test is repeated. Only the interrupt caused by the
timer can occur between the two clock readings, and it can occur only once. To
find the cost we compare the difference in execution time when interrupted to
when the task is not interrupted. This test is not possible for N-ETC due to the
lack of execution time measurement.

For this test there was a difference of one clock cycle between the maximal and
minimal sample for CC-ETC. The maximal sample value for this implementation
is shown in Table 2. If we subtract the overhead of reading the execution time
clock from the results found in Table 2, it can be inferred that the cost to the
interrupted task is 239 clock cycles for CC-ETC and 197 clock cycles for TMU-
ETC. This is a reduction of 42 clock cycles or 21%.
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Table 3. Performance improvements with TMU.

Test
Improvement

CPU cycles Reduction (%)

Reading the RTC 7 14
Reading the ETC 9 16
Context switch 65 54
Interrupt handler 30 25
Timing event 4 4
Interruption cost 42 21

7 Discussion

7.1 Performance improvements

Testing showed that the TMU reduced the overhead and therefore improves the
performance of the system. However, as seen from the overview in Table 3 some
improvements were more significant than others. The overhead of handling tim-
ing events is hardly reduced at all. This is explained by the RTC now being reset
before calling the handler in addition to the change of ETC. The implementation
CC-ETC does both in one operation when the ETC is updated and is therefore
almost as efficient as TMU-ETC. Also, while the relative overhead reduction for
reading clocks is good, the absolute reduction is only a few clock cycles and does
not affect the system performance much.

There is a noticeable improvement in interrupt handling latency. This is
caused by the reduced execution time of Update ETC using the TMU swap op-
eration. Related to this is the improvement in cost to the interrupted task, that
also has a noticeable improvement. Further improvements could be achieved if
the swap operation was moved to the assembler part of the low-level interrupt
handler. Yet, this has to be weighted against the added complexity and reduced
maintainability by moving functionality from Ada to assembler.

The best improvement is for the context switch. This was expected as a
complex procedure was replaced by the few assembly code lines seen in Listing 3.
Combined with the general speed-up of changing clocks for the TMU, this more
than halves the overhead introduced by execution time control compared to the
earlier implementation. In systems with frequent context switches this should
give a noticeable performance improvement.

7.2 Modifications of run-time environment

As the package specification of System.BB.Time is unchanged the modifications for
using the TMU are isolated to the package body, the context switch routine, the
package System.BB.Peripherals and its child package Registers . The modifications
within the package body of System.BB.Time are limited to the low-level parts
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interfacing with hardware clocks. The high-level parts concerned with alarms
and managing clocks are unchanged.

The body of System.BB.Time has two logical code lines less when using the
TMU. For the peripheral packages 50 logical code lines were added for interfacing
with the TMU, whereof only 8 are statements. For the context switch only 8
additional instructions were needed, all simple load, store or move instructions.
In essence the complexity of the run-time environment as a whole is unchanged
when using the TMU.

7.3 TMU design, implementation and portability

Our TMU is a simple, yet highly efficient, hardware mechanism for implement-
ing execution time control that leaves the policy entirely for the software. This
simplifies the hardware implementation and is also more flexible as the usage of
the TMU is decided by software. In contrast, an earlier design [17] implemented
for the LEON 2 architecture, changed clocks automatically before the processor
started handling an interrupt [4]. This design also supported blocking the inter-
rupt in hardware after the deferrable server pattern. While the benefit of this
design is zero overhead to interrupt handling, it is costly to implement and also
limits the choice of execution time control policy to one predefined in hardware.

When the TMU was implemented for UC3 some minor changes were needed
for easing the implementation, and making the unit more usable for a wider
range of applications [18]. The only noticeable change for our implementation
of execution time control is that the TMU was moved from the high-speed bus
to the peripheral bus. This eased the hardware implementation and reduced the
cost in number of gates, but also increases the access latency for the registers.
However, the UC3 allows the creation of a CPU local bus to the TMU [18]. If
implemented this would provide single-cycle access to the TMU registers.

Since the TMU is designed as a simple memory-mapped device without any
special system requirements, it should be portable to other architectures. In
essence only the parts needed for interfacing with the memory-mapped bus need
to be changed, and the TMU can be integrated with the system-on-chip by con-
necting the bus and interrupt line. In contrast the earlier TMU design modified
the interrupt lines and is much harder to implement on existing architectures.

8 Conclusion

The careful design of our Time Management Unit (TMU) with 64-bit time mea-
surement and the special swap operation, allowed us to develop a highly efficient
implementation of Ada 2012 execution time control for the Atmel AVR32 UC3
microcontroller series. Only minor changes were needed to our earlier implemen-
tation in order to use the TMU. Performance testing with the UC3 has shown
that the TMU gives a significant reduction of the overhead for context switches
and interrupt handling, and also reduces the execution time cost for the inter-
rupted task. This makes real-time applications taking advantage of execution
time control more efficient and analyzable.
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Listing 1. Definition of clocks and alarms

type Clock Descriptor is
record

Base Time : Time;
−− Base time of clock

First Alarm : Alarm Id;
−− First alarm of clock

Capacity : Natural ;
−− Remaining alarm capacity

end record;

type Alarm Descriptor is
record

Timeout : Time;
−− Timeout of alarm when set

Clock : Clock Id ;
−− Clock of this alarm

Handler : Alarm Handler;
−− Handler called when alarm expires

Data : System.Address;
−− Argument when calling handler

Next : Alarm Id;
−− Next alarm in queue when set

end record;
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Listing 2. Updates to use TMU as hardware timer.

function Elapsed Time (Clock : not null Clock Id) return Time is
begin

if Clock = RTC’Access then
return T : Time := Clock.Base Time do

T := T + Time (CPU.Get Count);
CPU.Barrier;
if T < Clock.Base Time then

T := Clock.Base Time;
end if ;

end return;
elsif Clock = ETC then

return Time (Peripherals .Get Count);
else

return Clock.Base Time;
end if ;

end Elapsed Time;

procedure Update Compare (Clock : Clock Id) is
T : constant Time := Clock.First Alarm.Timeout;

begin

if Clock = RTC’Access and then not Defer Updates then
declare

R : constant Time := T − Time’Min (T, Clock.Base Time);
begin

CPU.Adjust Compare (CPU.Word (Time’Min (R, Max Compare)));
end;

elsif Clock = ETC then
Peripherals .Set Compare (Peripherals .TMU Interval (T));

end if ;

end Update Compare;

procedure Update ETC (Clock : Clock Id) is
use Peripherals ;

begin
pragma Assert (Clock /= null);

Swap Context (TMU Interval (Clock.First Alarm.Timeout),
TMU Interval (Clock.Base Time),
TMU Interval (ETC.Base Time));

ETC := Clock;

end Update ETC;
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Listing 3. Context switch routine

/∗ Store address of running thread in r9 ∗/
lda.w r8 , running thread
ld.w r9 , r8

/∗ Add size of context ∗/
sub r9 , −CONTEXT SIZE

/∗ Save CPU context of running thread ∗/
stm −−r9, r0,r1, r2 , r3 , r4 , r5 , r6 , r7 ,sp, lr
mfsr r0 , SYSREG SR
st.w −−r9, r0

/∗ Store address of first thread in r1 ∗/
lda.w r1 , first thread
ld.w r9 , r1

/∗ First thread is now also running thread ∗/
st.w r8 , r9

/∗ Load Active Clock of first thread ∗/
ld.w r0 , r9 [THREAD ACTIVE CLOCK OFFSET]

/∗ Load First Alarm.Timeout and Base Time ∗/
ld.w r1 , r0 [CLOCK FIRST ALARM OFFSET]
ld.d r4 , r1 [ALARM TIMEOUT OFFSET]
ld.d r2 , r0 [CLOCK BASE TIME OFFSET]

/∗ Do TMU swap operation ∗/
mov r1 , TMU ADDRESS + TMU SWAP OFFSET
stm r1 , r2−r5
ld.d r4 , r1 [8]

/∗ Load ETC address ∗/
lda.w r1 , system bb time etc

/∗ Load current ETC and store its Base Time ∗/
ld.w r2 , r1
st.d r2 [CLOCK BASE TIME OFFSET], r4

/∗ Active Clock of first thread is now ETC ∗/
st.w r1 , r0

/∗ Load CPU context of first thread ∗/
ld.w r0 , r9++
mtsr SYSREG SR, r0
sub pc, −2
ldm r9++, r0,r1,r2 , r3 , r4 , r5 , r6 , r7 ,sp,pc
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Appendix B

Presentations at IRTAW-14

In this appendix are the slides from the presentations by the author at the 14th
International Real-Time Ada Workshop (IRTAW-14). The workshop was held in
Portovenere, Italy, from the 7 to 9 of October 2009. The slides are included as they
were presented at the workshop.
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Proposed additions

— Propose adding support for:

• Execution-time measurement for interrupt priorities
• Execution-time timers for interrupt priorities

— Defines one pseudo server task for each interrupt priority
handling all interrupts of that priority

— Have execution-time clock and timer for these pseudo tasks
— Based on my master thesis at NTNU in spring 2008
— Implemented on GNAT bare-board Ravenscar run-time

environment for the Atmel AVR32 UC3 microcontroller series

www.ntnu.no K. N. Gregertsen, A. Skavhaug, Execution-time control for interrupt handling
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Execution_Time

with Ada . T a s k _ I d e n t i f i c a t i o n ;
with Ada . Real_Time ; use Ada . Real_Time ;
package Ada . Execution_Time is

type CPU_Time is pr ivate ;

. . .

function Clock (T : Ada . T a s k _ I d e n t i f i c a t i o n . Task_Id
:= Ada . T a s k _ I d e n t i f i c a t i o n . Current_Task ) return CPU_Time ;

function I n t e r r up t_ C l ock ( I : System . I n t e r r u p t _ P r i o r i t y ) return CPU_Time ;

. . .

private
. . .

end Ada . Execution_Time ;

www.ntnu.no K. N. Gregertsen, A. Skavhaug, Execution-time control for interrupt handling
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Timers

with Ada . Real_Time ; use Ada . Real_Time ;
with Ada . T a s k _ I d e n t i f i c a t i o n ; use Ada . T a s k _ I d e n t i f i c a t i o n ;
with System ;
package Ada . Execution_Time . Timers is

type Timer (T : not nul l access constant Task_Id ) is tagged l imi ted pr ivate ;

. . .

Pseudo_Task_Id : aliased constant Task_Id := Nul l_Task_Id ;

type I n te r rup t_T imer ( I : System . I n t e r r u p t _ P r i o r i t y )
is new Timer ( Pseudo_Task_Id ’ Access ) with pr ivate ;

. . .

private
. . .

end Ada . Execution_Time . Timers ;

www.ntnu.no K. N. Gregertsen, A. Skavhaug, Execution-time control for interrupt handling
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AVR32 implementation

— Use COUNT / COMPARE registers
— Very low overhead to reprogram timer (50 CPU cycles)
— Change active timer from low-level interrupt handler
— Manages timers in a stack to allow nested interrupts
— At most one timer per task and interrupt priority
— No timer for highest interrupt priority
— Low cost for interrupt task (150 CPU cycles)
— Also account for execution-by-proxy of entries

www.ntnu.no K. N. Gregertsen, A. Skavhaug, Execution-time control for interrupt handling
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Interrupt state and server
package I n t e r r u p t _ S t a t e s is

type I n t e r r u p t _ S t a t e is l imi ted inter face ;

procedure Handler (S : in out I n t e r r u p t _ S t a t e ) is abstract ;
procedure Enable (S : in out I n t e r r u p t _ S t a t e ) is abstract ;
procedure Disable (S : in out I n t e r r u p t _ S t a t e ) is abstract ;

type Any_In te r rup t_Sta te is access a l l I n t e r r u p t _ S t a t e ’ Class ;

end I n t e r r u p t _ S t a t e s ;

package I n te r rup t_Hand le rs is

protected type I n te r rup t_Hand le r
( Id : I n t e r r u p t _ I d ;

P r i : I n t e r r u p t _ P r i o r i t y ;
S : not nul l Any_In te r rup t_Sta te ) is
pragma I n t e r r u p t _ P r i o r i t y ( P r i ) ;

private
procedure Handler ;
pragma Attach_Handler ( Handler , Id ) ;

end I n te r rup t_Hand le r ;

end I n te r rup t_Hand le rs ;

www.ntnu.no K. N. Gregertsen, A. Skavhaug, Execution-time control for interrupt handling
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Interrupt server

package I n t e r rup t_Se rve rs is

type In ter rupt_Server_Parameters is
record

P r i : I n t e r r u p t _ P r i o r i t y ;
Budget : Time_Span ;
Per iod : Time_Span ;

end record ;

type I n t e r r u p t _ S e r v e r is l imi ted inter face ;

procedure Regis te r
(S : in out I n t e r r u p t_ S e r v e r ;

I : Any_ In te r rup t_Sta te ) is abstract ;

type Any_In ter rup t_Server is access a l l I n t e r r u p t _ S e r v e r ;

end I n t e r r up t_Se rve rs ;

www.ntnu.no K. N. Gregertsen, A. Skavhaug, Execution-time control for interrupt handling
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Deferrable interrupt server
protected type Defe r rab le_ In te r rup t_Serve r

( Param : access In ter rupt_Server_Parameters )
is new I n t e r r u p t_ S e r v e r with

procedure Regis te r ( I : Any_ In te r rup t_Sta te ) ;
pragma I n t e r r u p t _ P r i o r i t y ( Any_Pr io r i t y ’ Last ) ;

private

procedure Replenish (TE : in out Timing_Event ) ;
procedure Overran (TM : in out Timer ) ;

Replenish_Event : Timing_Event ;
Execution_Timer : access I n te r rup t_T imer ;

Next : Time ;
Disabled : Boolean := True ;
Registered : Natura l := 0 ;
States : State_Array ;

end Defe r rab le_ In te r rup t_Serve r ;

www.ntnu.no K. N. Gregertsen, A. Skavhaug, Execution-time control for interrupt handling
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Deferrable interrupt server
procedure Replenish (TE : in out Timing_Event ) is
begin

Execution_Timer . Set_Handler ( Param . Budget , Overran ’ Access ) ;
i f Disabled then

Disabled := False ;
for I in 1 . . Registered loop

States ( I ) . Enable ;
end loop ;

end i f ;
Next := Next + Param . Per iod ;
TE . Set_Handler ( Next , Replenish ’ Access ) ;

end Replenish ;

procedure Overran (TM : in out Timer ) is
begin

i f not Disabled then
Disabled := True ;
for I in 1 . . Registered loop

States ( I ) . Disable ;
end loop ;

end i f ;
−− Set f a l l b a c k handler f o r TM

end Overran ;

www.ntnu.no K. N. Gregertsen, A. Skavhaug, Execution-time control for interrupt handling
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Benefits

1. Improves accuracy of execution-time measurement for tasks
allowing tighter task budgets

2. Possible to control execution-time spent handling interrupts
making it possible to protect the system from burst of interrupts

www.ntnu.no K. N. Gregertsen, A. Skavhaug, Execution-time control for interrupt handling
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Multiprocessor issues

— Implemented and tested on uni-core AVR32
— For multiprocessors need to define pseudo server tasks for

each processor that may handle interrupts
— An alternative is to use Interrupt_Id instead of priority:

• Will also work for multiprocessors
• Implemented (took 20 min to change from using priorities)
• Needs more memory (no big deal for larger systems)

— Used priorities as this is most efficient for uni-processors

www.ntnu.no K. N. Gregertsen, A. Skavhaug, Execution-time control for interrupt handling
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Other issues

— Definition of Interrupt_Timer may be more elegant
— Need to have an Task_Id since inheriting Timer

— Maybe define abstract type Root_Timer that is inherited by both
Timer and Interrupt_Timer

— This would remove need for (nasty) Pseudo_Task_Id

— May be better to have new functionality in child packages?

www.ntnu.no K. N. Gregertsen, A. Skavhaug, Execution-time control for interrupt handling
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Kristoffer Nyborg Gregertsen

IRTAW-14 – Portovenere
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2

Proposed API

— Defines one execution-time clock for each Interrupt_ID

— Returns time spent handling that interrupt
— May also have timers associated with these clocks
— Interrupt timer inherits ordinary (task) timer
— Has Null_Task_Id as discriminant (need to be aliased)

www.ntnu.no Kristoffer, Execution-time control for interrupt handling
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Ada.Execution_Time.Interrupts

with Ada . I n t e r r u p t s ;

package Ada . Execution_Time . I n t e r r u p t s is

function Clock ( I : Ada . I n t e r r u p t s . I n t e r r u p t _ I D ) return CPU_Time ;

private
. . .

end Ada . Execution_Time . I n t e r r u p t s ;

www.ntnu.no Kristoffer, Execution-time control for interrupt handling
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Ada.Execution_Time.Timers.Interrupts

with Ada . I n t e r r u p t s ;

package Ada . Execution_Time . Timers . I n t e r r u p t s is

type Timer ( I : Ada . I n t e r r u p t s . I n t e r r u p t _ I D )
is new Ada . Execution_Time . Timers . Timer

(Ada . T a s k _ I d e n t i f i c a t i o n . Nul l_Task_Id ’ Access ) with pr ivate ;

private
. . .

end Ada . Execution_Time . Timers . I n t e r r u p t s ;

www.ntnu.no Kristoffer, Execution-time control for interrupt handling
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Rationale

— Having a Task_Id for pseudo tasks may seem elegant, but:

• These are not normal Ada tasks
• Cannot do task operations on them (like Set_Priority)
• Need checks for these special Task_Ids everywhere

— Using Interrupt_ID for identifying the pseudo task:

• Works with multiprocessors
• Only need to allocate data when registering a handler

— Having one pseudo task for each Interrupt_Priority works well
on uni-processors, but on multiprocessors need to define
these for each processor

www.ntnu.no Kristoffer, Execution-time control for interrupt handling
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Why?

— Not charging interrupted tasks the execution-time of interrupt
handlers improves accuracy of execution-time measurement

— If tasks are not to be charged the execution-time of interrupts
then another entity should be

— If it makes sense to monitor the execution-time of tasks, why
not also monitor the execution-time of interrupts?

— Interrupt timers allows for protecting the system from bursts of
interrupts caused by hardware error (or other reasons)

— You may count occurrences using Ada 2005, but you cannot
know how much execution-time is spent handling them

www.ntnu.no Kristoffer, Execution-time control for interrupt handling
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Appendix C

GNATforAVR32

This appendix describes how the sources for GNATforAVR32 are obtained and
how to configure and build the cross-development environment under GNU / Linux.
The most important files of the run-time environment are also described.

The system is under active development by the author and the source code is
available for download and online browsing through the github web-service at
https://github.com/gregerts/GNATforAVR32.

Since Git is used for distributed version control others may easily check out dif-
ferent branches, contribute to the project, or even fork the code to start their own
GNAT run-time environment project.

The instructions in this appendix have only been tested on the Debian and Ubuntu
distributions. Basic knowledge of GCC and the GNU / Linux environment is as-
sumed.

C.1 Installing GNAT on the host machine

In order to to build the cross-compiler for AVR32, one first needs to install the
GNAT 2010 GPL compiler from AdaCore available for download at http://
libre.adacore.com. The installation of the compiler is automatic and straight-
forward using the provided install-script.

After the installation update the path and test the compiler. If the installed compiler
fails to find crt0 .o there installation has failed to detect the standard C-library on
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the machine due to different naming conventions. This may work to solve this
problem:

cd /lib
sudo mkdir x86_64−pc−linux−gnu
cd x86_64−pc−linux−gnu
sudo ln −s ../x86_64−linux−gnu 4.3.6
cd /usr/lib
sudo mkdir x86_64−pc−linux−gnu
cd x86_64−pc−linux−gnu
sudo ln −s ../x86_64−linux−gnu 4.3.6

GNATforAVR32 currently works with GNAT 2010 that is based on GCC 4.3, as
GNAT 2011 is based on GCC 4.4 while the AVR32 back-end is only available for
GCC 4.3. This will not be solved until Atmel updates the AVR32 back-end to a
more modern version.

C.2 Installing the GNU toolchain for AVR32

The GNU cross-toolchain for AVR32 is also needed to setup the development en-
vironment. As the toolchain available through Atmels repository is outdated it
is recommended obtain the newer version by downloading and installing AVR32
Studio version 2.7 from http://www.atmel.no/beta_ware/.

After the ZIP-file is downloaded execute the following commands to extract the
files and put the toolchain on the path:

cd /opt
sudo unzip /path/to/download/ase4−ide−2.7.0∗.zip
sudo chgrp −R users as4e−ide
sudo ln −s $(find ./ −name avr32−gcc −printf "%h\n") as4e−ide/bin
export PATH="/opt/as4e−ide/bin:$PATH"

It is handy to add the export of PATH for GNAT and the AVR32 toolchain to the
.bashrc file.

C.3 Obtaining and building the cross compiler

To build the cross-compiler first download and extract the patched source code:
mkdir avr32−gnat
cd avr32−gnat
wget folk.ntnu.no/gregerts/avr32gnat/avr32−gnat−2010.tar.bz2
tar xjf avr32−gnat−2010.tar.bz2
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Now we may configure and build the compiler using GNAT GPL 2010:

mkdir obj
cd obj
../src/configure −−target=avr32 \
−−enable−languages="c,ada" \
−−disable−libada −−disable−threads \
−−disable−libmudflap −−without−headers \
−−disable−libssp −−disable−libgomp \
−−with−gnu−as −−with−as=/opt/as4e−ide/bin/avr32−as \
−−with−gnu−ld −−with−ld=/opt/as4e−ide/bin/avr32−ld

make
make −C gcc cross−gnattools
sudo make install

The compiler will take some time to build. It is recommended to find a good cup
of tea or coffee – and enjoy philosophizing over a compiler compiling a compiler.

C.4 Obtaining and building the run-time environment

The run-time environment has been moved to github in order to ease the devel-
opment process and allow others to participate. The source is downloaded using
git:

git clone git://github.com/gregerts/GNATforAVR32.git

Now we may build the run-time environment using our newly built compiler:

cd GNATforAVR32/src
make
make install

We need to manually make links from the compiler install directory to library
directory of the run-time environment in order to build ordinary applications:

cd /usr/local/lib/gcc/avr32/4.3.3
sudo ln −s /path/to/GNATforAVR32/build/adainclude
sudo ln −s /path/to/GNATforAVR32/build/adalib

If everything went well you may now compile and test a simple application for the
EVK1100 evaluation board programmed with the Atmel JTAG ICE Mk. II:

cd GNATforAVR32/tests/timers−1
make
make install
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s-bb.ads Parent package of bare-board kernel.
s-bbcppr.ad{s,b} CPU dependent operations.
s-bbinte.ad{s,b} Interrupt registration and handling.
s-bbpara.ads Configuration parameters for kernel.
s-bbpere.ads Peripheral register definitions.
s-bbperi.ad{s,b} Peripheral interface.
s-bbprot.ad{s,b} Protection by interrupt masking and idle loop.
s-bbseou.ad{s,b} Serial output to facilities.
s-bbthqu.ad{s,b} Queue management for ready tasks.
s-bbthre.ad{s,b} Thread definition and operations.
s-bbtime.ad{s,b} Timing definition and operations.

Table C.1: Bare-board kernel files.

The most important files of the run-time environment for this work are those of
the bare-board kernel in the package hierarchy below System.BB. Table C.1 gives
a brief overview over these files.

C.5 Debugging applications

Applications may also be debugged using GDB with the JTAG ICE Mk II:

cd GNATforAVR32/tests/application
make
make install
make debug

This starts the program avr32gdbproxy. Now you may start a debugging session
using avr32-gdb. In avr32-gdb (executed in the application directory with the bi-
nary ’main’ as argument) type the following:

target extended−remote:4242
dir ../common
dir ../../src

You may now set breakpoints in the application and run-time environment code.
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Appendix D

Additional listings
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Listing D.1: The real-time package

package Ada.Real_Time is

type Time is private;
Time_First : constant Time;
Time_Last : constant Time;
Time_Unit : constant := implementation−defined−real−number;

type Time_Span is private;
Time_Span_First : constant Time_Span;
Time_Span_Last : constant Time_Span;
Time_Span_Zero : constant Time_Span;
Time_Span_Unit : constant Time_Span;

Tick : constant Time_Span;
function Clock return Time;

function "+" (Left : Time; Right : Time_Span) return Time;
... −− more overloaded operators

function To_Duration (TS : Time_Span) return Duration;
function To_Time_Span (D : Duration) return Time_Span;

function Nanoseconds (NS : Integer) return Time_Span;
function Microseconds (US : Integer) return Time_Span;
function Milliseconds (MS : Integer) return Time_Span;
function Seconds (S : Integer) return Time_Span;
function Minutes (M : Integer) return Time_Span;

type Seconds_Count is range implementation−defined;

procedure Split(T : in Time; SC : out Seconds_Count; TS : out Time_Span);
function Time_Of(SC : Seconds_Count; TS : Time_Span) return Time;

private
... −− not specified by the language

end Ada.Real_Time;
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Listing D.2: Timing events definition

package Ada.Real_Time.Timing_Events is

type Timing_Event is tagged limited private;
type Timing_Event_Handler

is access protected procedure (Event : in out Timing_Event);

procedure Set_Handler (Event : in out Timing_Event;
At_Time : in Time;
Handler : in Timing_Event_Handler);

procedure Set_Handler (Event : in out Timing_Event;
In_Time : in Time_Span;
Handler : in Timing_Event_Handler);

function Current_Handler (Event : Timing_Event)
return Timing_Event_Handler;

procedure Cancel_Handler (Event : in out Timing_Event;
Cancelled : out Boolean);

function Time_Of_Event (Event : Timing_Event) return Time;

private
... −− not specified by the language

end Ada.Real_Time.Timing_Events;
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Listing D.3: Execution time definition

with Ada.Task_Identification;
with Ada.Real_Time; use Ada.Real_Time;

package Ada.Execution_Time is

type CPU_Time is private;
CPU_Time_First : constant CPU_Time;
CPU_Time_Last : constant CPU_Time;
CPU_Time_Unit : constant := implementation−defined−real−number;
CPU_Tick : constant Time_Span;

function Clock
(T : Ada.Task_Identification .Task_Id

:= Ada.Task_Identification .Current_Task)
return CPU_Time;

function "+" (Left : CPU_Time; Right : Time_Span) return CPU_Time;
... −− more overloaded operations

procedure Split
(T : in CPU_Time; SC : out Seconds_Count; TS : out Time_Span);

function Time_Of (SC : Seconds_Count;
TS : Time_Span := Time_Span_Zero) return CPU_Time;

Interrupt_Clocks_Supported : constant Boolean :=
implementation−defined;

Separate_Interrupt_Clocks_Supported : constant Boolean :=
implementation−defined;

function Clock_For_Interrupts return CPU_Time;

private
... −− not specified by the language

end Ada.Execution_Time;
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Listing D.4: Execution time for interrupts definition

with Ada.Interrupts;

package Ada.Execution_Time.Interrupts is

function Clock (Interrupt : Ada.Interrupts. Interrupt_Id )
return CPU_Time;

function Supported (Interrupt : Ada.Interrupts. Interrupt_Id )
return Boolean;

end Ada.Execution_Time.Interrupts;
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Listing D.5: Execution time timers definition

with System;
package Ada.Execution_Time.Timers is

type Timer (T : not null access constant
Ada.Task_Identification .Task_Id) is

tagged limited private;

type Timer_Handler is
access protected procedure (TM : in out Timer);

Min_Handler_Ceiling : constant System.Any_Priority :=
implementation−defined;

procedure Set_Handler (TM : in out Timer;
In_Time : in Time_Span;
Handler : in Timer_Handler);

procedure Set_Handler (TM : in out Timer;
At_Time : in CPU_Time;
Handler : in Timer_Handler);

function Current_Handler (TM : Timer) return Timer_Handler;

procedure Cancel_Handler (TM : in out Timer;
Cancelled : out Boolean);

function Time_Remaining (TM : Timer) return Time_Span;

Timer_Resource_Error : exception;

private
... −− not specified by the language

end Ada.Execution_Time.Timers;
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Listing D.6: Group budget definition

with System;
with System.Multiprocessors;
package Ada.Execution_Time.Group_Budgets is

type Group_Budget (CPU : System.Multiprocessors.CPU :=
System.Multiprocessors.CPU’First)

is tagged limited private;

type Group_Budget_Handler is access
protected procedure (GB : in out Group_Budget);

type Task_Array is array (Positive range <>) of
Ada.Task_Identification .Task_Id;

Min_Handler_Ceiling : constant System.Any_Priority :=
implementation−defined;

procedure Add_Task (GB : in out Group_Budget;
T : in Ada.Task_Identification .Task_Id);

procedure Remove_Task (GB: in out Group_Budget;
T : in Ada.Task_Identification .Task_Id);

function Is_Member (GB : Group_Budget;
T : Ada.Task_Identification .Task_Id) return Boolean;

function Is_A_Group_Member
(T : Ada.Task_Identification .Task_Id) return Boolean;

function Members (GB : Group_Budget) return Task_Array;

procedure Replenish (GB : in out Group_Budget; To : in Time_Span);
procedure Add (GB : in out Group_Budget; Interval : in Time_Span);
function Budget_Has_Expired (GB : Group_Budget) return Boolean;
function Budget_Remaining (GB : Group_Budget) return Time_Span;

procedure Set_Handler (GB : in out Group_Budget;
Handler : in Group_Budget_Handler);

function Current_Handler (GB : Group_Budget)
return Group_Budget_Handler;

procedure Cancel_Handler (GB : in out Group_Budget;
Cancelled : out Boolean);

Group_Budget_Error : exception;

private
−− not specified by the language

end Ada.Execution_Time.Group_Budgets;



168 Additional listings

Listing D.7: Clock and alarm definition

type Clock_Descriptor is
record

Base_Time : Time;
−− Base time of clock

First_Alarm : Alarm_Id;
−− Points to the first alarm of this clock

Capacity : Natural;
−− Remaining alarm capacity, no more alarms if zero

end record;

type Alarm_Descriptor is
record

Timeout : Time;
−− Timeout of alarm when set

Clock : Clock_Id;
−− Clock of this alarm

Handler : Alarm_Handler;
−− Handler to be called when the alarm expires

Data : System.Address;
−− Argument to be given when calling handler

Next : Alarm_Id;
−− Next alarm in queue when set, null otherwise

end record;




