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Summary

This master’s thesis explores the current indoor environmental conditions in selected rooms
intended for teaching and learning at NTNU and suggests a neural network based model to
predict future occupancy.

The first part of the study investigates how the current HVAC and temperature control systems
behave under different circumstances. Based on a large number of sensors in different rooms,
environmental variables are logged and compared across time and room types. The study shows
that the environmental variables at NTNU are largely good, but that CO2 levels remain too high
for certain times of the week, and that this may have a negative effect on the students’ learning
abilities.

In the second part of the thesis, a neural network based model to predict future occupancy
is proposed, implemented and tested. The model is able to predict occupancy before it oc-
curs with good accuracy and is able to adjust its predictions based on current sensor read-
ings and historical data. This represents an promising alternative to the current system used
at NTNU.

i



Sammendrag

Denne masteroppgaven undersøker innendørsklimaet på utvalgte undervisnings- og læringsarealer
ved NTNU og foreslår en modell basert på nevrale nettverk for å forutse fremtidig rombruk.

Den første delen av studien undersøker hvordan det nåværende systemet for kontroll av venti-
lasjon og temperatur oppfører seg under forskjellige situasjoner. Basert på et stort antall sen-
sorer i forskjellige rom blir variabler for innendørsmiljøet logget og sammenlignet på tvers av
romtyper og over tid. Studien viser at innendørsmiljøet på NTNU stort sett er bra, men at
CO2-nivået tidvis er for høyt på enkelte rom. CO2-konsentrasjonen er til tider så høy at det
kan påvirke studentenes evne til å lære.

I den andre delen av studien foreslås, implementeres og testes en modell basert på nevrale
nettverk for å forutse fremtidig rombruk. Modellen er i stand til å gjøre dette med god nøyak-
tighet og kan tilpasse sine prediksjoner basert på gjeldende sensoravlesninger og historiske
data. En slik modell utgjør et lovende alternativ til det nåværende systemet som er i bruk ved
NTNU.
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Chapter 1

Introduction

1.1 Background and motivation

In the fall of 2018, Telenor started conducting a pilot study for IoT at the Norwegian University of
Science and Technology (NTNU). Several different rooms were outfitted with IoT sensors from
Yanzi measuring CO2, temperature, Volatile Organic Compound (VOC), sound level, humidity,
human motion, occupancy and people’s movement through identified choke-points. The data
collection happens as a part of a project at NTNU, investigating how rooms can be retrofitted
and changed to better suit modern ways of teaching students. Collecting data on indoor climate
and room usage helps build a better understanding of how students interact with the rooms and
how the indoor climate responds to students’ presence and outside factors. The data collected
from these senors are stored and were made available to the author of this thesis so that that
new useful insights could be extracted from them.

1.2 Current HVAC and temperature control system at NTNU

NTNU has a central control system called sentralt driftsanlegg (SD). The SD controls lights,
ventilation, cooling and heating. There is little public information on the system, but NTNU-
internal documentation shows that it is made up of a combination of mainly Honeywell and
Schneider based systems. 1 This system has access to a varying amount of sensors embedded in
ventilation shafts, rotary encoders and other sensors. Telenor (2019)’s pilot study report points
out some of the shortcomings of the current system. These include a lack of sensor data across
different sub-systems and the fact that the system is hard to extend and program. In addition
there is no unified dashboard to make sensor readings easy to see and act upon.

The system mainly relies on hard-coded on and off times and operates on a reduced setting
during non-peak hours and weekend days.

1https://fuglane.it.ntnu.no/pages/viewpage.action?pageId=722009#SD-anlegg(SentraltDriftsanlegg)
-Forvaltning/administrasjon - Internal documentation not available outside the IT department

1

https://fuglane.it.ntnu.no/pages/viewpage.action?pageId=722009##SD-anlegg(SentraltDriftsanlegg)-Forvaltning/administrasjon
https://fuglane.it.ntnu.no/pages/viewpage.action?pageId=722009##SD-anlegg(SentraltDriftsanlegg)-Forvaltning/administrasjon


1.3 Research goals

The two research goals (RG) presented below are the starting point of this thesis, and form the
basis of the work carried out.

Two research goals (RG) were defined based on background and motivation as well as informa-
tion about the current HVAC system. These are as follows:

• RG1 - Investigate current indoor conditions. How conducive to learning are the current
indoors conditions at NTNU. Are the registered parameters within guidelines and in ac-
cordance with new research?

• RG2 - Create predictive models based on historic data. In what way can historic data
be used to model future behaviour(s) and how can these models be used to improve the
indoor learning space?

1.4 Thesis Outline

The outline of the rest of this report is as follows:

• Chapter 2 defines a baseline for good indoor conditions based on available research.

• Chapter 3 introduces the methodology used as a base for the thesis.

• Chapter 4 details the particular sensors used in the setup, as well as their placement at
NTNU.

• Chapter 5 presents information on the dataset, the processing on data and any problems
encountered with sensor faults.

• Chapter 6 shows how NTNU performs in terms of indoor environmental factors as laid
out in Chapter 2 and points out some interesting trends in the data, both in terms of dif-
ferences between week days, and some observations on the efficiency of the heating and
HVAC system.

• Chapter 7 details how a predictive model of occupancy was constructed using a convo-
luted neural network trained on the data presented in Chapter 5.

• Chapter 8 sums up the findings for the two research goals and lays out some of the impli-
cations.

• Appendix B contains a short and simplified introduction to neural networks, in an effort
to aid readers in understanding the solution presented in chapter 7.

2



Chapter 2

Indoor environmental factors, acceptable
limits and their impact on learning

Indoor environmental factors such as temperature, humidity, CO2 (carbon dioxide), sound lev-
els and VOC (volatile organic compound) affect the people using and staying inside buildings.
Research has shown that certain factors such as CO2 can have detrimental effect on school per-
formance (Myhrvold et al., 1996) and that high VOC levels can cause health issues within rel-
atively short amounts of time (Pitten et al., 2000). It is therefore paramount that buildings are
built and operated in ways that ensure that these factors are kept within acceptable ranges, and
that readings are taken to ensure that actual real-life variables are within acceptable levels.

Today new buildings must be built to certain standards, Norway has a standard known as TEK171

governing among other things ventilation. However, less stringent standards are placed on old
buildings still in use, or spaces in old buildings converted into new uses such as conversion from
meeting rooms into office spaces.

This chapter aims to establish acceptable limits for the environmental variables collected at
NTNU (CO2, VOC, temperature and humidity based on available research.

CO2, temperature and humidity will be measured based on their impact on student perfor-
mance. Special focus will be given to studies measuring these variables impact on student’s
or pupils’ performance since NTNU’s main function is that of an university. Two different inter-
vals/levels are defined; acceptable which entails that little to no negative impact on health or
learning is found, detrimental where there are some proven detrimental effects on learning but
no ill health effects.

Due to a lack of detail in Yanzi’s manual as to exactly what VOC are measured, no safe or unsafe
levels will be presented. VOC will be discussed in general terms.

The chapter is broken down into subsections, each pertaining to a specific variable among the
sensor readings at NTNU.

1https://lovdata.no/dokument/SF/forskrift/2017-06-19-840
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2.1 Temperature

Temperature and its effect on the human body is easily observed and felt by people. The human
body performs relatively well over a large temperature interval, and there is little reason to be-
lieve that any real-life temperatures inside an office or university building will be outside safe
levels in terms of low temperatures, excluding any specialized rooms such as walk-in freezers.
As such, no lower limits for the unsafe level will be used for the temperature variable in the rest
of this thesis.

One study (Park, 2017) found that students’ performance on exams is detrimentally affected by
high outside temperature. Park (2017)[p.37] found that an increase of 18 degrees Fahrenheit in
outside temperature reduced test scores by 4.5 percent.

Wargocki et al. (2005) explored the link between decreased room temperature and air supply
rate and their effects on school work performance on children. This was done by measuring the
change in speed of mathematical operations (subtraction) as well as acoustic proof-reading and
reading comprehension. By keeping the error rate constant, the change in speed could be mea-
sured while ensuring that speed did not affect the correctness of the students’ work. Reducing
the average room air temperature from 23.6°C to 20°C had a measurable and significant positive
effect on study performance. Wargocki et al. (2005)[table 2] showed an increase in subtraction
speed of 28 percent, a reduced error rate of 10 percent for proof-reading and an increase of 24
percent in speed of reading and comprehension.

Typing speed is also negatively impacted by heat stress. Wyon (1974) showed that both typing
speed and work output was significantly increased at temperatures of 20 °C compared to 24 °C.
This particular study was carried out on typewriters, but it is fair to assume that similar effects
will be seen when using computers.

The studies show that high temperatures reduce student performance, both for tests with a var-
ied content (Park, 2017), typing speed (Wyon, 1974) and mathematics and reading (Wargocki
et al., 2005). Based on the results obtained across the cited studies, the following temperatures
and their impact on students and workers was devised:

A temperature range between 20 °C and 22 °C will be deemed ideal, and a temperature range
above 22, but below 24 °C will be classified as acceptable. Temperature ranges outside the
ideal and acceptable ranges will be deemed as having a detrimental effect on student perfor-
mance.

2.2 Air humidity

While air humidity poses few health effects by itself, it influences other variables directly and
indirectly. High levels of air humidity drive spore growth, spread biotics (Baughman and Arens,
1996) and may induce problems for people with dust mite asthma (Andersen and Korsgaard,
1986). Elevated humidity levels may also cause long-term structural issues in school buildings,
despite the air conditioning being operated correctly (Bayer et al., 2002).

4



Arundel et al. (1986) found that the majority of ill-health effects can be minimized or even re-
moved completely by ensuring that air humidity is kept between 40 and 60 percent. Andersen
and Korsgaard (1986) found that a relative humidity under 45 percent at 20-22 °C reduces the
amount of airborne dust mite to very low levels.

Too low levels of relative air humidity can also cause problems. Uchiyama et al. (2007) shows
that reduced relative air humidity causes increased evaporation of the tear film and may trigger
the sensation of dry eyes for some people.

Since the available literature shows some ill effects at very low levels of relative humidity (sub
30 percent) and there are few apparent positive health effects and reduced airborne pollutants
below 40 percent, a range of 30-50 percent relative humidity will be used as a the preferable
interval for relative air humidity. This interval should ensure that the humidity stays low enough
to reduce the number of airborne irritants, and yet remain high enough to reduce the risk of
dry eyes and other adverse physical reactions. This interval also allows for seasonal differences
caused by differences in humidity of outdoor air in summer and wintertime.

A relative humidity outside the range of 35-50 is deemed unacceptable as it may cause respira-
tory problems in some students, cause irritation of the eyes as well as pose long term problems
for the structure of the building.

2.3 CO2 concentration

The concentration of CO2 is a major driver when designing new buildings and their HVAC sys-
tems. The largest source of increased CO2 concentration in school rooms is the occupants and
their exhaled breath with concentrations ranging from 35.000 PPM to 50.000 PPM (Prill, 2000).
The CO2 concentration in school rooms has been shown to have a major effect on students’ and
pupils’ performance at different mental tasks (Satish et al., 2012).

A study (Corsi et al., 2002) conducted at several Texas elementary schools showed median CO2
concentration of 1,268 ppm and a peak concentration of 2,062 ppm. Peak C02 concentration
exceeded 1,000 ppm for 88 percent of the classrooms in the study.

As shown by Satish et al. (2012) in figure 2.1, the room CO2 concentration can have a dramatic
effect on students’ performance. The study was based on the subjects’ performance in nine
categories:

1. Basic activity: the numbers of actions taken within a period of time

2. Applied activity: the number of opportunistic actions

3. Focused activity: strategic actions

4. Task orientation: the focus on concurrent demanding tasks

5. Initiative: the development of new activities during the test

6. Information search: the ability and openness to search for information

5



7. Breadth of approach: the flexibility in approaching a task

8. Basic strategy: the number of strategic actions taken

Most tasks show a statistical significant reduction in performance under conditions where the
room CO2 concentration is only about 600 ppm above the outdoor background concentration
of about 400 ppm (Monastersky, 2013) . Increasing the CO2 concentration above 1000 ppm to
2500 ppm leads to further reductions in student’s performance, and in some tests (initiative and
basic strategy) the performance drops into dysfunctional levels (<25 percentile).

Figure 2.1: CO2 concentration in ppm and its affect on several mental tasks (Satish et al., 2012)

While there are statically significant reductions in student performance across certain tasks at
as low levels as 1000 ppm, the reductions are relatively small and should not impact student’s
ability to learn the material.

Based on these studies, a CO2 concentration of <1000 PPM will be used as the preferable inter-
val. CO2 concentrations between 1000 and 2000 will be deemed as having a detrimental effect
on student performance, and even higher levels will be viewed as having unacceptable impact
on student performance.

2.4 VOC concentration

Volatile Organic Compounds (VOC) are organic chemicals whose vapour pressure at ambient
room temperatures makes them prone to turn into a gaseous state. VOCs in the indoor climate
can come from many sources, i.e human breath (Phillips et al., 1999), newly painted surfaces
(Wieslander et al., 1996), off-gassing from building materials (Wolkoff, 1995), other sources such
as room fresheners, mothballs and consumer products Guo (2011) as well as from the outside

6



air. VOC concentrations in rooms are therefore the sum of emmisions from outside the room
entering through ventilation and windows, as well as the emissions produced within the room
itself. Some VOCs are known to have detrimental effect on long term health if present in large
enough concentrations (Jones, 1999).

The Yanzi user manual does not indicate what VOCs are measured by the COM sensor. It is
therefore impossible to ascertain whether nor not the measured concentration poses any short-
or long-term health problems to occupants of a given room. No detrimental and safe ranges
will be given for VOC in this thesis, as it is not indicated what VOCs are measured, and the
relative concentration needed to cause negative health impacts vary wildly between VOCs. The
measurements of VOC are still included because they show changes over time, and such serve as
a point of comparison between rooms. The relative concentrations between rooms thus become
the interesting factor, and not the absolute readings.

7



Chapter 3

Methodology

This chapter will explain the reasons behind and elaborate on the methodology used in this
thesis. The use of quantitative data vs qualitative data is discussed and the reader is presented
to the execution of the project.

3.1 Research approach

To ensure that research was performed in a proper and productive way, the methodology pro-
posed by Peffers et al. (2007) was used as a basis for the work carried out. This methodology can
be broken into six sub-tasks, each defining a set of rules. In addition each sub-task describes
possible research entry points. The problems to be solved were defined based on 1.3. Central
in the methodology proposed by Peffers et al. (2007) is the concept of an "artifact". An artifact
is understood to mean IT products/solutions that can be applied to a known problem or well-
defined set of problems. In the case of this thesis work, the artifact produced is a system that
uses neural networks to predict future human occupancy in a room. The six activities are as
follows:

• Activity 1: Identify problem and motivate.. The problem is defined; what are its bound-
aries, the nature of the problem. The output of this sub-task/activity is to show the impor-
tance of solving the given problem. Why is it worth spending time and resources attempt-
ing to solve or better describe this particular problem?

• Activity 2: Define Objective of Solution. How would the artifact help resolve the problem,
what does it accomplish?

• Activity 3: Design and development. A novel IT system is developed based on the identi-
fied problems and motivations. The IT system is implemented to ensure that the objective
of the solution is met. The output of this activity is the IT system itself, artifact.

• Activity 4: Demonstration. Use the created artifact to solve a problem, showing that the
solution works in the given context.

8



• Activity 5: Evaluation. Observe the efficiency and efficacy of the solution. Does it work?
Could it work better? Iterate on the design.

• Activity 6: Communication. Publish the results, in order to create and share disciplinary
knowledge.

These steps can be visualized as shown below. Note the iterative process and the possible re-
search entry points.

Figure 3.1: Design Process Model (Peffers et al., 2007)

In addition to using Peffers et al. (2007)s work to shape the research approach for designing and
testing the predictive system, a data-driven methodology was used as a basis for the analysis of
data.

3.2 A quantitative and data-driven methodology and design

Because the dataset this thesis is based on consists of sensor readings from different rooms over
a period of time, it makes sense to approach the problems through a quantitative approach. The
research referred to in 2 makes it possible to extrapolate qualitative insights based on quantita-
tive data; namely the indoor air quality’s, as measured by the sensors, effect on student perfor-
mance and well-being.

McAfee et al. (2012) describes the mindset of a data-driven company motivated by "what do we
know", "what data do we have", and not by "what do we think". This touches on perhaps the
most important aspect of data-driven methodologies. The available data is used as a starting
point to extract knowledge and new information as opposed to using preconceived notions,
hunches and instincts as the starting point. Eriksson et al. (2010) describe how the gene linked to
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the photic-sneeze reflex 1 was uncovered based on 23AndMe’s extensive database of customer-
supplied genome and a web-questionnaire. The questionnaire allowed the participants to be
divided into ever-expanding cohorts of self-selected individuals. By comparing the genome of
these cohorts, traits that were common across the cohort could be correlated to specific genes
only present in the cohort. This is one example of using existing data as a starting point to new
discoveries.

This thesis aims to extract new information from the existing dataset, namely to establish how
good the indoor climate is at NTNU. While the users of the building may have some hunches
based on their own qualitative experience of using the building, the analysis of quantitative
data may lead to a more robust understanding of the indoor climate, as well as how previous
research indicates that these factors affect the occupants. The analysis of the dataset and the
chosen methodology can therefore be said to constitute a data-driven approach.

Due to time-constraints and scope of this thesis, no qualitative data was collected from the oc-
cupants of the rooms included in the dataset. This leads to the loss of an important dimension,
namely how the occupants subjectively rate and experience the indoor environment. While it
would be both useful and interesting to correlate the qualitative data from occupants with the
quantitative data, it would fall outside the scope of this thesis. It does however represent an
interesting avenue for future work.

3.3 Data acquisition and research goals

Since the methodology is largely data-driven, it is paramount that enough high quality data is
collected to ensure that there is a good dataset to draw conclusions from. Data was collected
with high frequency, primarily to ensure a wide dataset, but this also enables different tech-
niques in post-processing to remove noise, erroneous readings and other problems.

In some of the rooms, more than one sensor of each type were installed at different points in
the room. This has several distinct advantages, such as increased total dataset size, redundancy
in case of sensor failure. It sldo allows measuring environmental factor gradients such as tem-
perature differences inside the room and gives a better understanding of how different parts of
a room are used. The data acquisition from several different rooms within roughly the same
time period enables a greater understanding of how different rooms differ in their environmen-
tal factors such as CO2 concentration, temperature and other relevant factors. All this is needed
to create a better understanding of the indoor environment at NTNU, RG1

In order to create a model to predict future occupancy, RG2, a complete time-series of occu-
pancy had to be recorded. This allows the creation of a model which accurately captures and
predicts future occupancy based on historic trends, current occupancy and relevant factors such
as time of day.

1A sudden increase in the light level may cause some people to sneeze in response to the light.
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Chapter 4

Sensors and installation

4.1 Sensors and installation

This chapter details the sensors installed at NTNU and gives relevant information about the
particular installation in the different rooms studied in this thesis.

4.1.1 Sensor background

All the sensors installed at NTNU are from the Swedish company Yanzi, which specializes in
smart buildings and collecting sensor data using an IoT architecture 1 and post-processing

Telenor installed four different Yanzi sensors at NTNU. Comfort, Motion+, Footfall Camera and
Presence Mini. In addition, a Yanzi gateway (GW) was installed in each room, working as an
4G internet gateway allowing sensor data collected from the sensors to be passed on to Yanzi’s
server-side architecture. The sensors communicate with the GW through a star-topology. In
the event of a communication error between a sensor and the GW, the sensor itself can store a
backlog of sensor reading to pass onto the GW once communication is resumed. The GW can
also store a backlog of sensor readings if its internet connection is lost. Most sensors and the GW
operate either solely on battery power, or have a built-in battery reserve to ensure that they can
operate even when the electricity provided by the grid is turned off. This ensures that the data
collection is robust, and can handle both intermittent power and communication loss.

1urlhttps://www.yanzi.se/solution/
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4.1.2 Sensor details

Figure 4.1: Sensors installed. GW: Gateway, PM: Presence Mini, Com: Comfort, M: Motion + and
FS: Footfall sensor

Presence Mini

The presence mini (PM) sensor is a small rectangular box mounted on the underside of tables
using a double-sided tape. The PM is battery operated, and has an expected running time of
approximately 12 months 2. The PM uses a built-in temperature sensor to measure the ambient
room temperature, as well as to detect if a person is sitting directly below it. One PM has to be
mounted for each seating place/chair that is to be monitored.

The PM transmits two data variables to the GW; temperature (in kelvin) and occupancy (binary,
0 or 1). If the occupancy bit is set to "1", the sensor is indicating that someone is seated under
the sensor at the time of transmit. 0 denotes no detected person.

Due to time constraints and technical difficulties, no data from the PM sensors were used in this
thesis.

Comfort

The Comfort (COM) sensor is a small rectangular box mounted on the side of a wall using
double-sided tape. The COM is powered using a wall adapter providing 5V over a USB Type-
C cable. The COM has no built-in battery backup and will seize collection and transmitting of
data upon power-loss.

2Yanzi user manual
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The COM records VOC (volatile organic compound, PPB), CO2 (PPM), temperature (Kelvin),
sound pressure (decibels), barometric pressure (hPa) and humidity (relative humidity in per-
centage). The Comfort sensor automatically calibrates every 24 hours to ensure correct CO2
readings. In order to do this, the sensor assumes that the lowest measured CO2 concentration is
400 PPM and calibrates accordingly. The Yanzi user manual stresses that the CO2 readings may
be incorrect if the sensor is placed in an area where the CO2 concentration remains elevated
over the expected background concentration of 400 PPM over a whole 24 hour period.

The barometric pressure data was not used in this thesis, as most buildings and rooms are not
built to keep constant indoor air pressure. The sound pressure readings were also disregarded
for most rooms, as sound readings can vary wildly from second to second. Averaged sound
readings are used as a proxy measure for motion event readings for in cases where no M+ sensor
was installed.

Motion+

The Motion+ (M+) sensor is a small rectangular box mounted on the side of a wall using double
sided tape. The sensor needs to be mounted in such a way that it has a clear line of sight to the
area of movement to be recorded. The sensor has a 30 degree angle sensor, and thus has a wide
field of view. The sensor is battery powered, and has a battery life of up to 5 years, depending on
the amount of movement registered. The M+ sensor records the number of motion events that
have occurred since the last time data was recorded.

Footfall sensor

The Footfall sensor (FS) is a round, roof mounted sensor equipped with a camera and is powered
using Power-over-ethernet (PoE) Cat5 cable. The FS uses the camera and artificial intelligence
(AI) to count the number of people entering or leaving a pre-defined area. The activation area
is defined using a web interface, and the camera is used in combination with the AI to not only
count the number of people passing the camera, but also what direction they are moving. This
gives it superior accuracy (Kim et al., 2002) (Velipasalar et al., 2006) to conventional infrared
systems usually employed to count the number of people passing through a section of space
(Kajala, 2007). Using direction/vector information, the FS can record information on the direc-
tion to travel, and not just people crossing in general.

No data from the FS sensors were included in the data-set supplied by Telenor, and no data from
the FS sensors are therefore used in this thesis.

4.2 Polling frequency and other details

The polling frequency varies depending on the sensor type. The table below details the polling
frequency, as well as how the sensor is powered. All battery powered sensors have a running
time of up to 5 years, but battery life depends on usage patterns.
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Sensor Name Polling frequency (s) Power
Presence Mini 30-120 Built-in battery
Comfort 30-120 Wall outlet
Motion+ 30-120 Built-in battery
Footfall 30-120 a Power over ethernet (PoE)

aThe footfall sensor sends two values, one for the number of entry events and one for the number of exit events

Most of the sensors in every room had their polling frequency set to 60 seconds, though the
dataset indicates that there may be some differences in how the sensors were configured with
regards to polling frequency. This could be caused by

4.3 Sensor installation and room configuration

This section describes the installation of each sensor in every room used in this thesis and the
placement of individual sensors and the configurations of the rooms themselves. All the rooms
examined a this thesis are part of a pilot project at NTNU that aims to investigate and evalu-
ate alternatives to the old classroom and auditorium settings. Existing rooms and auditoriums
were retrofitted with new audio and video equipment, new setting areas and the rooms were
reconfigured.

The following symbols are used for sensors: Blue F - Footfall sensor, Green GW - Gateway, Red
M - Motion+ sensor, Blue A - Comfort sensor, Purple P - Presence sensor.

4.3.1 Smia

Smia is located at the Gløshaugen campus, and consists of a remodelled room that was pre-
viously used for meetings, group assignments and other group-based activities 3. One of the
rooms’ walls make up the facade of the building the room is in, and is therefore equipped with
several windows. This may affect the temperature ranges measured for the room, as solar en-
ergy will heat the room, and opening of windows by occupants may decrease the temperature
and affect the CO2, VOC and humidity readings.

Smia was equipped with two COM sensors, a single M+ sensor and one footfall camera to track
occupant traffic in an out of the room. No data from the footfall sensor was included in the
dataset used in this thesis.

3https://www.ntnu.no/laeringsarealer/smia
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Figure 4.2: Smia after remodelling, picture courtesy of NTNU

Smia features several large oval-shaped tables, each with 6-8 chairs. Each table is equipped with
audio and video equipment, allowing the users of the table to project images and video from
their personal computers onto a whiteboard mounted at each table. The whiteboard can also
be used as a conventional dry-erase board.

Smia is used for lectures, group assignments and by student’s discussing the curriculum in study
groups.

Figure 4.3: Room layout of Smia and approximate sensor placement
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4.3.2 R2

R2 is used to investigate new takes on the old tried and tested auditoriums commonly seen in
universities across the world. 4

No data from R2 was included in the dataset used as a basis for this thesis. The room description
is therefore included solely due to its inclusion in the pilot project to study innovative learning
spaces.

Figure 4.4: R2 in use. Picture courtesy of NTNU

Seating has been changed from the old layout consisting of staggered rows of chairs into differ-
ent levels consisting of large oval tables and chairs surrounding these. Video screens have been
mounted at each table, allowing students to plug in their personal computers to display images
and videos on these. In addition, the lecturer can control the screens and project the same im-
age and video on all screens in the auditorium. This is commonly used during lectures, where
the lecturer can draw and explain on his or her screen or tablet and have the pictures broadcast
live to all screens. This replaces the old black/white boards usually seen in lecture halls and
auditoriums.

R2 was fitted with a single footfall sensor, registering the number of people entering and leav-
ing the room through the main door. In addition two COM sensors were installed at different
points in the room, registering indoor climate data such as temperature, CO2 concentration,
VOC concentration, sound pressure, barometric pressure, humidity and light levels.

4https://www.ntnu.no/laeringsarealer/r2
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Figure 4.5: Room layout of R2 and approximate sensor placement

4.3.3 Sandkassa

Sandkassa was constructed to test the same layout and equipment as Smia, but was constructed
at the Dragvoll campus 5. Like Smia, Sandkassa was equipped with three COM sensors, three M+
and three footfall sensors. In addition, three motion sensors were mounted in the room.

No data from the footfall sensor was in the dataset used as a basis for this thesis, and the pres-
ence sensor data could not be used due to technical difficulties.

5https://www.ntnu.no/laeringsarealer/sandkassa
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Figure 4.6: Sandkassa’s present layout. Picture courtesy of NTNU

Like Smia, Sandkassa is equipped with large oval tables, each with 6-8 chairs. Students can
project images and video from their personal computers onto the whiteboards present at each
desk.

Sandkassa’s areas of usage are similar to Smia, consisting of zones for group work and lec-
tures.

Figure 4.7: Room layout of Sandkassa and approximate sensor placement
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4.3.4 Koopen

Koopen is a work area inside a large structure known as "Glassgården". Glassgården consists
of a series of buildings linked together with large walls and roofs consisting of glass and metal
framing, reminiscent of greenhouses.

Koopen is placed inside one of the atriums and is mainly used by students when performing
project work and group assignments in subjects such as electronics and cybernetics. Koopen’s
seating area consists of several large tables, each with 8-10 chairs.

Figure 4.8: Seating areas in Koopen. Picture courtesy of NTNU

The large glass covered walls and roofs of glass allow large amount of sunlight to enter over the
course of the day. This can cause some issues during the day, especially during the summer, as
Koopen is prone to getting quite hot. The opposite problem is observed in the winter, as the
large glass surface conducts heat better than standard walls, and heat loss occurs during hours
of little to no sun.

Students have complained about cold temperatures during the winter, and additional heat-
ing ducts have been installed in an effort to improve the working conditions during the win-
ter. Koopen was entered into the pilot study partly to evaluate the effectiveness of these mea-
sures.
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Figure 4.9: Outside view of the atrium Koopen is located in. Note the large glass surfaces.
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Figure 4.10: Room layout of Koopen and approximate sensor placement

4.3.5 U1

U1 consists of a combination of different room types and caters to a wide array of use cases.
U1 covers approximately 1000 square meters and includes a maker workshop containing 3D
printers and soldering stations, a large reading room consisting of a re-purposed library, four
smaller rooms set aside for group work and a large lounge with couches and seating arrange-
ments.

Since U1 hosts such a varied selection of work spaces, the analysis of sensor data is broken down
into two sections: small group rooms and the maker space. The large reading room has been
omitted as several other room types of similar layout has been covered in this thesis. The maker
space and the smaller group rooms on the other hand present an unique type of room not stud-
ied elsewhere in this thesis. This allows identification of differences in indoor environmental
variables depending on room layout, occupancy and the type of activity in the room.
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Figure 4.11: Layout of U1 and the different rooms and work spaces
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Chapter 5

Dataset and data processing

The data used in this thesis is comprised of a complete data dump obtained from Telenor, for the
period 09.10.2018 to 29.11.2018. The dataset includes all sensor readings from all the installed
sensors in every room in the pilot study. Due to some intermittent sensor problems and a grad-
ual roll-out, the amount of data and the period of data collection vary from room to room.

All of the data manipulation was done using Python 3.6 and a series of commonly used Python
frameworks, such as Pandas 1; a framework designed to read, manipulate and extract data from
formatted textfiles and SciPy 2; a framework for mathematics, science and engineering. All plot-
ting of data was done using the framework Matplotlib 3.

5.1 Data dump and formatting

The data dump was in the form of a single .CSV file, totalling 978 MB and 6.6 million lines of
sensor readings. Each line represent a single sensor reading from a single sensor. Below is a
sample of the first 4 lines of the data dump.

RowID Sensor Value Timestamp PropertyID
0 294.03 2018-10-29T15:12:57.147Z 5bebf9df0bbbb500081e0ccf
1 294.03 2018-10-29T15:13:22.769Z 5bebf9df0bbbb500081e0ccf
2 1 2018-10-29T15:13:22.779Z 5bebf9df0bbbb500081e0cd0
3 294.2 2018-10-29T15:14:24.031Z 5bebf9df0bbbb500081e0ccf

The RowID is simply the zero-index row number of the data dump. The sensor value is the
raw data from the sensor. RowID 0, 1 and 3 are CO2 readings (in PPM). RowID 2 is the motion
counter for a M+ sensor, indicating that there has been a single motion event detected since the

1https://pandas.pydata.org/
2https://www.scipy.org/
3https://matplotlib.org/
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last sensor reading. The Time stamp indicates the year, month, day, hour, minute and millisec-
ond the reading was taken. The PropertyID represents the sensor’s unique ID, which allows us
to isolate data readings on a per-sensor basis.

Please note that the first rows are from the initial initialization of the sensors, so the amount of
data and polling frequency are rather low.

5.2 Environmental variables and their inertia

The data in the dataset is comprised of what I refer to as slow/high inertia variables and fast/in-
stantaneous variables. The temperature of a room is an example of a slow variable; turning up
the heating setting on an electric radiator does not instantly raise the temperature of the room.
Due to the thermal mass of the room and the air inside the room, the systems experiences a slow
rise in temperature until the target temperature is reached. Turning on the light switch, on the
other hand, instantly changes the light level in the room; the variable is instantaneous. Readings
of such variables only represent a snapshot of the system’s state with regards to that variable at
a single point in time. A sensor reading of a slow variable is less dependent on the timing of the
reading, as such variables change slowly over time.

Variable Slow/Fast
Light Fast
Temperature Slow
CO2 Slow
Humidity Slow
VOC Slow
Sound Fast

Table 5.1: Variables and their response time

It is important to keep this in mind when analyzing the dataset. Sensor readings of a fast variable
may not be representative of the average or aggregate sum over a period of time.

Chapter 7.4 details how we can use predictive models to better adjust slow variables such as
temperature and CO2, to not only increase comfort but also save energy and reduce running
costs.

5.3 Data transformation

While most of the data from the data dump is usable in its raw form, some sensor data has
to be transformed into a more useful state. The temperature output of the COM sensor is in
°Kelvin, which is converted into °Celsius by adding 273.15 to the sensor reading and storing
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the new value. The sound-pressure data from the COM has to be divided by 10,000 to get the
corresponding decibel reading.

Further inspection of some of the sensor readings indicates that there is some noise in some of
the readings, especially for the PM sensor. The PM sensor has a tendency to indicate that there
is someone sitting on a chair for a prolonged time, before suddenly indicating that the chair
is empty for a single sensor reading, before going back to indicating that the seat is occupied.
While it is possible that the occupant simply left the chair for a short amount of time, the num-
ber of such occurrences is so high that it seems to be mostly caused by a sensor glitch. This is
discussed further and a fix is proposed in 5.4.

5.4 Resampling sensor data

Sensors are polled for data in a round-robin way, where each sensor sequentially transfers data
to the GW. This causes some issues, as data may be registered at the GW somewhat later than the
time the readings took place, and data that is temporally close may spread out due to differences
in polling time. A temperature reading may for example arrive at the GW 1 minute later than the
CO2 reading of the same room, but due to these variables being of a slow type, we can group
them together in a temporal matter.

Grouping data with close temporal likeness can be very useful, especially when the data is run
through neural networks. Since many of the variables are "slow"/have a high degree of inertia
(as explained in 5.2), there is little reason to look at second-by-second changes.

Pandas’ built-in resample function 4 was used to resample the dataset. All sensor variables were
resampled into 10 minute bins, using either the sum or avg function.

The sum function was used on motion count data. This helps eliminate the problems regarding
noise in PM sensor readings, as previously pointed out. A single non-correct reading’s impact is
reduced when the readings are summed up over a longer time period. The sum function works
by adding all the readings seen during the resampling period, and combines these into a single
number.

The avg function was used on the rest of the variables and helps reduce sensor noise by aver-
aging the readings over a longer time period. This also makes the fast variable readings much
more descriptive as to the long-term value of a given variable, as no single reading is used by
itself and is instead averaged out with temporally close readings. The average function averages
all the readings for the resampling period, producing a single value representing the average
sensor reading for the time period.

Tables 5.2 and 5.3 show what the data looks like before and after resampling. Resampling the
data into larger intervalls is one way of reducing the impact of sensor noise and erronous read-
ings.

4https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html
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Timestamp Sensor reading
2000-01-01 00:00:00 1
2000-01-01 00:01:00 2
2000-01-01 00:02:00 3
2000-01-01 00:03:00 4
2000-01-01 00:04:00 5
2000-01-01 00:05:00 6
2000-01-01 00:06:00 7
2000-01-01 00:07:00 8
2000-01-01 00:08:00 9

Table 5.2: Sensor readings before resampling

Timestamp Sensor reading
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21

Table 5.3: Sensor readings after resampling to 3
minutes using sum function
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Chapter 6

NTNU indoor environmental quality

This chapter compares the data collected at a handful of rooms in the pilot study, and compares
the results with the limits and ranges set out in Chapter 2. The data used has been processed
as described in 5.4. First the results for each room will be given, and then these results will be
compared and discussed in chapter 6.5.

All boxplots presented below consist of an orange line indicating the median reading value. The
bounding box encompasses quartile 1 (Q1) to quartile 3 (Q3), 25-75 percent of the data ob-
served. The whiskers encompass Q1 - 1.5IQR (interquartile range) and Q3 + 1.5IQR.

All data has been resampled on an hourly or daily basis, unless otherwise specified. All data was
resampled using the built-in avg function of Pandas, unless otherwise specified.

The VOC readings from the dataset were very high, the minimum observed value was 12,500
PPB. This is probably not a correct reading, as the baseline level is expected to be lower.This
Yanzi user manual does not contain enough information to correctly identify the source of this
phenomenon. Every VOC reading has therefore been divided by 1,250 to produce a floor of a
100 PPB. This means that the VOC readings are not absolute, and every room’s reading should
only be used for comparison between relative concentrations.

6.1 Smia

The complete dataset from Smia consists of data collected by two sensors; a COM sensors and
one M+ sensor. The readings from the COM sensor and the M+ sensor were resampled, as per
5.4. The dataset consists of 10665 readings, from 29-10-2018-15:24 to 29-11-2018-12:11.
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6.1.1 CO2

Weekday Mean Min Max
Monday 583.76 400 1103
Tuesday 525.84 399 854
Wednesday 562.77 399 1178
Thursday 541.01 400 1079
Friday 500.80 400 745
Saturday 774.21 400 1599
Sunday 1203.13 400 2431

Table 6.1: CO2 concentration data

Table 6.1 contains a brief summary of the CO2 data from Smia, broken down on a weekday
basis. The min CO2 level is as expected approximately 400 PPM. An interesting thing to note is
that the mean CO2 levels are severely elevated on Saturdays and Sundays compared to the rest
of the week days. The max values are also the highest for Saturday and Sunday.

Weekday Readings Readings Above 1000 Readings above 1500 %>1000 %>1500
Monday 1855 14 0 0.75 0
Tuesday 2178 0 0 0 0

Wedensday 1416 1 0 0.07 0
Thursday 1618 12 0 0.74 0

Friday 1159 0 0 0 0
Saturday 1166 344 76 29.50 6.51
Sunday 1273 627 431 49.25 33.86

SUM 10665 998 507 9.36% 4.75%

Table 6.2: Readings relative to the limits set out in 2.3

CO2 readings for most days are excellent, but the CO2 levels remain elevated for Sundays and
Saturdays. Almost 50 percent of the readings on Sunday are above 1000 PPM, a level shown to
have detrimental effects on student performance 2.1

6.1.2 Temperature

The temperature data comes from the COM sensor, and is processed as described in 5.3. Please
note that the temperature readings can be affected by sunlight falling on the sensor. While the
COM sensor was mounted in such a way to minimize the risk of this happening, solar reflection
off of other surfaces may cause sunlight to indirectly fall on the sensor, potentially skewing the
measurements to above actual room temperature readings. No attempt has been made to cor-
rect such effects, as there are no other sensors in the room that can be used to attempt to filter
out such variables. This could be mitigated by placing several COM sensors in a room, allowing
the use of averages or median values to yield a better understanding of room temperature.
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Figure 6.1: Temperature for Smia, re-sampled to 60 minutes and binned by the hour

One of the most noticeable data-points in this plot is the rapid increase in temperature for the
hours 04.00 to 05.00. This increase in temperature is not caused by sunlight, as the sun rises
above the horizon much later 1 than 05.00 in Trondheim for the the dates in the dataset. The
rapid increase in temperature is thus most likely caused by a pre-programmed system increas-
ing the temperature in anticipation of potential occupants. Also note the very short tail towards
lower temperatures for the 06.00-06.59 readings.

Another interesting trend to note is that the temperature ranges remain relatively wide for the
whole period, in fact 86 percent of all temperature readings for the period 07.00-17.00 fall within
the range 19.2 °C and 21.8 °C. The wide range indicates that the system for regulating the tem-
perature is unable to keep a constant temperature. This can be caused by a difference in outside
temperature over the data collection period, or a sign of cycling, where the temperature regula-
tion system works based on a duty cycle with an unknown ratio of on and off periods.

The occupants’ actions may also cause changes in temperature. In fact, the mere presence of
a person sitting still in a room will affect the room temperature due to heat dissipation, even
at basal metabolic rates. Starner (1996) found that humans expend about 116 watts of energy

1https://www.timeanddate.com/sun/norway/trondheim?month=10&year=2018
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Figure 6.2: Temperature readings re-sampled to the days of the week.2

based on the work of Morton (1952) while sitting still. While there was no direct measurement of
the occupants specific activity inside Smia, a fair assumption is that most of the activity involved
sitting down and either discussing or reading silently.

While most human activity inside the room will lead to an increase in the system’s total heat
energy, some actions may reduce it. Opening a window and letting in outside air will reduce
the temperature inside the room provided that the outside temperature is lower than that of the
room. Since no sensors are installed to directly record this activity, it is hard to estimate the rate
at which such events occur. The motion counter data may give us some indirect information as
to the likelihood of an open window affecting the results. Provided that all windows are closed
by the occupant(s) by the time the last person leaves the room, no open-window effect will be
observed in the period 23.00-05.59, based on the motion counter.

6.1.3 Motion data

The M+ sensor registers movement in its field of view, in the form of movement events. Sum-
ming these events over a period of time, hour, day or week basis, allows us to gain an insight
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into the relative amount of movement inside the room. The footfall camera inside Smia had
some problems due to bad mounting, and it has not been possible to extract useful data from
this sensor. The M+ sensor’s movement counter will therefore be used a a proxy measurement
of the number of people inside the room at a given time. The data has been re-sampled on a
daily, hourly and 30 minute basis, summing up every motion event within the time period. The
aggregate counter data is assumed to be proportional to the number of people inside the room
at a given time; larger counter means more movement which means more people. While this
is not as precise as the data the footfall camera could have provided, it should help put other
sensor readings into perspective.

Figure 6.3: Motion counter for Smia, re-sampled to 1 hour slices and binned based on hour of
day

The sensor data from the M+ sensor indicates that most of the activity inside Smia happens
between 07.00 and 20.00. 11.00-12.00 has the highest median traffic, but some late-day traffic
spikes are seen between 15.00 and 17.00. No activity was registered on the M+ sensor between
23.00 and 05.00, which corresponds well to the room’s expected usage patterns. Smia is mostly
used for group assignments and group-based lectures.
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Figure 6.4: Motion counter for Smia, resampled to daily and binned based on weekday

Re-sampling the data to a daily basis, summing up all motion events for a given day, and bin-
ning the information into the seven days of the week shows the usage patterns for each of days
of the week. Please note that the dataset for the M+ sensor at Smia only contains four week’s
worth of data, rendering it difficult to draw definitive conclusions. There is little difference in
usage patterns between Mondays and Thursdays, the median values are relatively close. Both
Saturdays and Sundays see a great deal of variance in the motion registered within the room.
This could be caused by extra-curricular activity during the weekend taking place inside Smia.
A single Sunday had the most activity out of any days in the data-set, and may help explain the
elevated readings on Sundays, as pointed out in Table 6.1 and Table 6.10.

6.1.4 VOC

VOC levels are the result of resampling and averaging the VOC readings across the COM sensors
in the room. Smia has no equipment or installations expected to produce large amounts of VOC.
Most of the VOC registered in the room should stem from the occupants’ and the surfaces of the
room itself. It is unknown how long it has been since the room has been painted, and whether or
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Figure 6.5: Hourly VOC readings for Smia

not this was done as a part of the remodelling of the room. Freshly painted surfaces will increase
VOC production.

The hourly VOC readings indicate that the HVAC system is able to keep the concentration under
good control. As expected the highest VOC readings are around peak traffic periods, but the
reduction in VOC concentration is slow after 16.00, as the HVAC is turned over to a low duty
cycle mode, reducing the ventilation rate.

As seen in the CO2 readings, the VOC readings are also elevated on Saturdays and Sundays com-
pared to the working days. This is most likely caused by the redcued ventilation rate of these
days.
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Figure 6.6: VOC readings binned by the day of the week
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6.1.5 Humidity

Figure 6.7: Relative humidity for Smia, binned to weekday intervals

The humidity data for Smia shows that most readings are between 35 and 23 percent relative
humidity. There seems to be a trend towards higher relative air humidity in the weekends. This
could be caused by a reduction in the HVAC system, as shown in the CO2 data.
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Figure 6.8: Relative humidity for Smia, binned to hourly intervals

67 percent of the readings are below 30 percent relative humidity when re-sampled to an hourly
binning. This may cause irritation of the eye for some people, as noted in 2.2, but should ensure
a reduction in many airborne pollutants. The difference between Q3 and Q1 remains about 10
percentage points for most hours, indicating the the HVAC system is able to keep the humidity
levels relatively stable.

6.2 U1

Since U1 consists of several distinct zones with different activities and usage patterns, this sec-
tion has been split into two subsections, each covering the two zones of U1 investigated in this
thesis. U1 is outfitted with three footfall cameras, logging the number of people entering and
leaving U1, in addition to tracking the usage pattern for each door covered. Footfall camera
data was not present in the data-set used in this thesis, and is therefore not covered in this sec-
tion.

Only two of the three zones in U1 are investigated and presented below. These are the maker
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space and the group rooms. This is because these two zones represent a type of room and setup
that are unique in the dataset.

6.2.1 Maker space

The maker space section consists of a room containing workbenches outfitted with 3D printers,
soldering stations and other equipment and tools used for electronics and mechanical construc-
tion.

The maker space is outfitted with three M+ sensors and three COM sensors. The readings from
each of these sensors are averaged to produce an aggregate number of the room as a whole as
opposed to looking a sub-sections of the room.

CO2

Weekday Mean Min Max
Monday 571.05 395 886
Tuesday 603.60 395 996
Wednesday 588.72 399 883
Thursday 564.16 399 913
Friday 525.76 398 806
Saturday 546.70 399 1203
Sunday 575.96 440 1110

Table 6.3: CO2 concentration data in PPM

Weekday Readings Readings Above 1000 Readings above 1500 %>1000 %>1500
Monday 323 0 0 0 0
Tuesday 381 0 0 0 0

Wednesday 391 0 0 0 0
Thursday 327 0 0 0 0

Friday 316 0 0 0 0
Saturday 360 17 0 7.72 0
Sunday 339 17 0 5.01 0

SUM 6255 34 0 0.54% 0%

Table 6.4: Readings relative to the limits set out in 2.3

The CO2 readings of the maker space are excellent. The highest observed reading was 1203PPM.
Median readings are only about 150-200PPM above baseline levels (400PPM). Little to no nega-
tive effects are expected at the CO2 levels recorded for the maker space.
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Temperature

Figure 6.9: Temperature readings for the maker space, averaged across three sensors and binned
by the hour

The hourly temperature readings shows that the HVAC and heating system is able to keep the
maker space at a narrow temperature interval. For most of the hours in the dataset the range
between maximum and minimum readings are about two degree Celsius. The pre-set heating
time for the room seems to be set to somewhere between 06.00 and 07.00 based on the median
temperature rise between these hours.

The hourly temperature range would probably be classified as comfortable by most occupants,
but a minority would probably prefer the temperatures to be increase 0.5 to 1 degree Celsius.
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Figure 6.10: Temperature readings for the maker space, averaged across three sensors and
binned by the day of the week

The dataset is relatively small for U1, making it difficult to draw clear conclusions for the tem-
perature readings on a daily basis. The Q1 and Q3 ranges remain relatively low for most days,
with Saturday having the biggest range of about 0.9 degree centigrade. This indicates that the
temperature control system is well-tuned and able to keep the temperature within the set inter-
val.

Motion data

The motion data indicates that the hours 11.00 to 18.00 are on average the busiest hours for
the maker space. There is also relatively little variance in traffic for the hours 11.00 to 16.00, as
indicated by the close grouping of Q1 and Q3. No activity has been registered in the period 0.00
to 05.00.
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Figure 6.11: Motion data for the maker space, averaged across the M+ sensors and binned by the
hour of the day
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Figure 6.12: Motion data for the maker space, averaged across the M+ sensors and binned by the
day of the week

The maker space sees the most activity Monday through Friday, with Wednesday being the bus-
iest day, both in terms of median traffic as well as peak traffic. Sunday has a surprisingly large
amount of traffic, especially compared to Saturday. This could be due to non-curricular activity,
as the maker space is often used by students’ for hobby projects and the like.
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Humidity

Figure 6.13: Relative air humidity binned by the hour of the day

The hourly relative humidity measurements show that the HVAC system is able to keep the hu-
midity well regulated, with median values only differing by 0.5 percent relative humidity from
the lowest to the highest median reading. There is a drop in the relative humidity between 05.00
and 06.00, indicating that the HVAC system has been pre-programmed to increase the ventila-
tion rate, leading to a drop in the humidity.
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Figure 6.14: Relative air humidity binned by the day of the week

The relative humidity rates when binned by the day of the week shows that the Q1 and Q3 group-
ings are spaced wider apart than for the hourly readings. This may be due to the fact that there
are few sensor readings available for U1 in the dataset, causing a wider grouping.

VOC

Since the maker space contains both soldering stations and 3D printers, the VOC levels are ex-
pected to be elevated. Note that the VOC data has been re-sampled and calibrated to ensure
that 100 PPB is the baseline value.
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Figure 6.15: Hourly VOC concentrations for maker space

The hourly VOC readings have a wide separation between Q1 and Q3. Outliers also indicate that
there is a great degree of variation between the readings for a given hour. This could be due
to the aforementioned soldering and 3D printing activities, as these are expected to generate
VOCs. There is also an increase in the median VOC levels between 19.00 and 01.00, indicating
that the concentration is going up. The reasons for this is unknown. The motion counter data
indicates that there is relatively little activity between 21.00 and 23.00. One possible explanation
is that the reduced operating setting of the HVAC system allows the relative VOC concentration
to increase due to the reduced ventilation rate.
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Figure 6.16: Dail VOC concentrations for maker space

The median VOC readings when resampled to a daily basis shows that the median value is more
or less constant, with some variation. There is too little data available to make robust conclu-
sions for the daily readings.

6.2.2 Group rooms

U1 contains four group rooms, each equipped with a table, 6-8 chairs and a whiteboard. Every
group room is an enclosed individual room, with walls, a door and ceiling. New air is delivered
into each room from the HVAC system via air-ducts in the ceiling.

Each group room is outfitted with a M+ sensor and COM sensor. This allows logging motion,
CO2, VOC, temperature and humidity in addition to barometric pressure and sound levels. The
latter two will not be covered in this section.

One out of the four group rooms was chosen at random. The rooms are identical so the readings
from one room should be representative for the group rooms as a whole.
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CO2

Weekday Mean Min Max
Monday 803.31 400 1929
Tuesday 683.99 399 2022
Wednesday 752.37 400 2801
Thursday 683.71 400 2245
Friday 890.20 398 4078
Saturday 1460.64 399 3081
Sunday 1388.96 440 4508

Table 6.5: CO2 concentration data in PPM

Weekday Readings Readings Above 1000 Readings above 1500 %>1000 %>1500
Monday 432 115 54 26.62 12.5
Tuesday 478 86 8 17.99 1.67

Wednesday 363 66 30 18.18 8.26
Thursday 374 40 17 10.70 4.54

Friday 381 73 63 19.16 16.54
Saturday 384 243 176 63.28 45.83
Sunday 383 213 121 55.61 31.59

SUM 6255 836 469 13.36% 7.49%

Table 6.6: Readings relative to the limits set out in 2.3

The group rooms show very high CO2 peak CO2 readings, with the maximum observed being
more than 4000 ppm. Peak values for all days are close to or exceed 2000 PPM. This indicates
that the HVAC system is unable to replace the air at sufficient rates to keep the CO2 levels at
acceptable levels. The weekend days have by far the highest concentration of CO2, and more
than 30 percent of the time the concentration is above what have been shown to reduce learning
rate, coordination and problem solving.
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Temperature

Figure 6.17: Average room temperature of the group rooms, binned by the hour of the day

The group rooms as U1 show some interesting behaviour for the temperature binned by the
hour of the day; usually the temperature falls over the night time and then start increasing when
the heating system turns on, usually around 06.00. This is not the case for the group rooms. The
temperature slowly falls as indicated by the median temperature between 23.00 and 04.00, be-
fore it falls rapidly between 05.00 and 07.00. The reason for this in unknown. There is no active
cooling installed in the room, so the most likely explanation is that HVAC system is removing
hot air and replacing it with colder air, thus dropping the room-temperature. The median tem-
perature then rises slowly until 11.00 when it begins fluctuating between a narrow interval until
16.00 when the temperature starts increasing quickly. This is probably when the HVAC system
enters its reduced speed mode, and the rooms increase in temperature as air is not replaced as
quickly.
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Figure 6.18: Average room temperature of the group rooms, binned day of the week

The median temperature for the days Monday to Friday remain more or less constant, before
they increase dramatically for Saturday and Sunday. This is most likely caused by the reduced
HVAC setting for the weekend.

48



Motion

Figure 6.19: Average motion counter data for the group rooms, binned by the hour of the day

The hourly usage patterns for the group rooms are similar to those of the maker space. Most
activity is seen between 09.00 and 16.00. Interestingly some activity has been observed between
0.00 and 03.00. Whether or not this is actually caused by occupants in the room or is due to
sensor glitches or badly placed sensors is unknown.
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Figure 6.20: Average motion counter data for the group rooms, binned by the day of the week

Monday through Thursday show very similar median motion counter data. Tuesday has the
highest Q3 reading, but this may be caused by sensor malfunctions. Friday sees somewhat re-
duced room usage, but not by a significant amount. Saturdays and Sundays show the lowest
room usage, just as for the maker space. Interestingly Sundays have a higher median motion
event readings than Saturdays, indicating that the rooms are more frequently used.

VOC

The group rooms are expected to have a lower concentration of VOCs than the maker space,
as the group rooms contain no soldering stations or 3D printers, potentially emiting a large
amount of VOCs when in use.
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Figure 6.21: Average VOC concentration for the four group rooms, binned by the hour

The hourly VOC readings indicate that the HVAC system returns to it normal running mode
somewhere between 04.00 and 05.00, as the VOC levels drop quickly. This happens around the
same time as the median temperature of the rooms drop, indicating that the HVAC is indeed
returning to normal run mode around those hours. A rapid increase is seen between 16.00 and
18.00, indicating that the HVAC is being put into its slower running night mode. During this
period the median VOC concentration increases by about 400 PPB.
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Figure 6.22: Average VOC concentration for the four group rooms, binned by the day of the week

Saturdays see the highest VOC concentration. This is somewhat unexpected as the room usage
is usually lower than on Sundays, and yet the Sunday VOC concentrations are lower, despite
both days seeing continued reduced HVAC settings. The reason for this is unknown, but it could
simply be that the concentration continuously falls from Saturday to Sunday as the air is slowly
exchanged over the course of the days.

6.3 Sandkassa

Sandkassa contains three COM sensors, but no motion counter sensors. Instead Sandkassa was
equipped with three presence sensors, indicating whether a specific part of the workplace was
occupied or not. Due to technical difficulties, the data from these sensors could not be extracted
from the provided dataset. The data below is therefore presented without the added clarity of a
relative motion count to put the data in perspective. The data from Sandkassa contained in the
dataset only stretches over 23 days, making it difficult to draw any definitive conclusions as to
the long-term indoor climate at Sandkassa. The data does however give a good indication of the
indoor climate during the period the readings were recorded.
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6.3.1 CO2

The CO2 data from the COM sensors was averaged, producing an average CO2 concentration
for Sandkassa as a whole.

Weekday Mean Min Max
Monday 942.33 400 1624
Tuesday 1039.75 399 1990
Wednesday 1149.28 400 2104
Thursday 756.15 400 1447
Friday 532.57 398 911
Saturday 915.29 399 2018
Sunday 1161.70 440 2286

Table 6.7: CO2 concentration data in PPM

Sandkassa has poor CO2 readings. Most days expect Thursday and Friday have mean CO2 read-
ings close to or exceeding 1000 PPM, and that includes the whole 24 hour period of each day.
This indicates that the ventilation is inadequate for the student volume using the room, or that
ventilation control system is badly tuned. As in the other rooms analyzed in this study, the CO2
readings for Saturdays and Sundays are high, though the difference between weekend and week
days are smaller than for the other rooms. The observed CO2 concentrations are so high that
the levels set out in 2.3 are more than exceeded, and the concentration is expected to have a
detrimental effect on students’ ability to perform and may affect their ability to learn new ma-
terial.

Weekday Readings Readings Above 1000 PPM Readings above 1500 %>1000 %>1500
Monday 201 100 5 49.75 2.48
Tuesday 183 91 36 49.73 19.67

Wednesday 246 178 29 72.35 11.78
Thursday 242 48 0 19.83 0

Friday 190 0 0 0 0
Saturday 192 71 43 36.98 22.40
Sunday 192 107 45 55.73 23.44

SUM 1446 505 158 34.92% 10.92%

Table 6.8: Readings (in PPM) relative to the limits set out in 2.3
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6.3.2 Temperature

Figure 6.23: Temperature for Sandkassa, binned by the hour of the day

The hourly temperature readings show the same pattern as observed with Smia and Koopen;
the temperature starts rising somewhere between 07.00 and 08.00 due to the automatic pre-
programmed heating system kicking in. The temperature slowly rises before it starts dropping
down again around 17.00-18.00, yet again due to the pre-programmed cycle. The temperature
readings are good, and the boxplot indicates that the temperature control system is able to keep
the temperature within acceptable ranges. Some of the tails are relatively long, indicating either
sensor misreadings or outside factors affecting the temperatures. This could be caused by an
open door or window, or other factors.
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Figure 6.24: Temperature for Sandkassa, binned by the the day

The time frame for the data included for Sandkassa in the supplied dataset is relatively short, 23
days, thus reducing the number of data points available when binning by weekday. It is there-
fore not possible to draw robust conclusions as to the difference between temperatures across
weekdays. Despite this, an interesting observation is the very narrow bands for the temperature
ranges for Saturdays and Sundays.
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Humidity

Figure 6.25: Relative air humidity re-sampled and binned by the hour.

The hourly humidity readings indicate that the HVAC system is able to maintain a relatively
stable relative air humidity throughout the day. The median values are below 30 percent relative
humidity for all hours, and the highest recorded relative humidity was 37.4 percent. While the
humidity level is relatively stable, the median humidity of 27.7 percent is below what may be
considered as optimal, according to the studies cited in 2.2. Some students may report sensation
of dry eyes and mucous membranes at such levels.
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Figure 6.26: Relative air humidity re-sampled and binned by the day.

While the number of data points available when the data is binned according to weekday is low,
there seems to be a trend towards higher relative rates of humidity towards the weekend. This
may be caused by the pre-programmed reduction in the HVAC systems duty cycle. Further data
recording is needed to verify this trend, though it would be in line with other findings.

6.3.3 Noise

The other rooms studied include one or more motion sensors, allowing us to put the other read-
ings into perspective. The data dump from Sandkassa does not contain motion sensor data,
meaning that it is difficult to gauge the relative activity an occupancy rate within the room. Us-
ing the average sound pressure level for 15 minute intervals, binned by the hour, should provide
some of the same context. Higher median sound pressure indicates a higher baseline noise rate,
and should correspond to the activity inside the room.
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Figure 6.27: 15 minute average sound pressure in Sandkassa, binned by the hour

The noise readings indicate that the room sees little to no usage between 20.00 and 05.00. The
activity quickly increases, before reaching a median maximum at 10.00 to 11.00. Activity slowly
tapers off until 16.00. The noise readings from Sandkassa are roughly in line with the motion
counter data seen in the other rooms equipped with the M+ sensor. While there may not be a
perfect 1-to-1 relationship between the M+ and noise sensor readings, a fair assumption is that
the average noise level should track the motion counter data closely.
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6.3.4 VOC

Figure 6.28: VOC concentration binned by the hour of the day

The abnormal readings from Monday are most likely caused by sensor low amount of data when
binned by the day. Only two full days’ worth of data were collected for Monday in the data-set
used in this thesis. The median values of Saturday and Sunday exceed all other days, with the
exception of Tuesday. This is most likely caused by the reduced HVAC ventilation rate during
the weekend. More data needs to be collected before robust conclusions can be drawn.
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Figure 6.29: VOC concentration binned by the day of the week

A sharp rise in the hourly VOC values are observed from 16.00 to 17.00. This is most likely caused
by the reduced operating speed of the HVAC system. A sharp decrease is also observed between
05.00 and 06.00, indicating that the HVAC system is programmed to increase airflow at those
hours. The source of the VOCs are unclear. Sandkassa contains no lab equipment or other items
that are expected to produce large amounts of VOCs, it is therefore most likely that the VOC
originates either from the occupants themselves, the items the occupants bring into the room
as well as any VOC produced by the surfaces of the room and its building materials. It is also
possible for the HVAC system to distribute VOC from other rooms due cross-contamination via
the air circulation.

6.4 Koopen

Koopen has two COM sensors installed, one in each corner of the room as well as three M+
sensors mounted at the entrance to the seating area and inside the seating area itself. Koopen
consists of a working area made up of approximately 50 chairs, split over 12-15 tables. The
working area is inside a large open building and the working area is sectioned off from the rest
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of the building by some bookcases and partitioning walls. This setup means that the working
area’s effective air volume to number of seats ratio is very high. This will affect both the CO2
readings, as the exhaled CO2 is diluted in a much larger air volume than in the other rooms
examined, and the temperature readings, as the total amount of air to be heated is significantly
larger than any of the other rooms examined in this thesis.

Since Koopen is equipped with two COM sensors, and thus logs the same environmental factors
twice in a single time period, the sensor readings are averaged across the two sensors. This
should reduce sensor noise as well as give a good understanding of the aggregate values of the
environmental variables recorded. The motion data is also averaged across the three sensors, to
get an understanding of the total use of the room, and not within the room itself.

6.4.1 CO2

Koopen contains two COM sensors, each measuring CO2 concentration. The data from these
two sensors were combined, and the average values of the sensors were used in the tables and
calculations below.

Weekday Mean Min Max
Monday 590.87 400 1021
Tuesday 676.08 398 1080
Wednesday 662.17 397 1162
Thursday 576.39 398 1063
Friday 527.01 398 995
Saturday 459.47 399 789
Sunday 505.6 399 955

Table 6.9: CO2 concentration data in PPM

Koopen has very good CO2 readings, the maximum observed value was just 1163 PPM. While
this level has shown to be detrimental to student performance, as per Chapter2.3, the effect
should be relatively small. One potential explanation for the good numbers at Koopen stem
from the fact that the air-volume of the building compared to the floor space occupied by the
room ratio is very high, ensuring that the exhaled CO2 is distributed and diluted lowering the
readings. While some values below the expected floor of 400 PPM were measured, the offset was
relativity small, indicating that the sensors are well calibrated.

A closer examination of the daily readings show that Monday through Wednesday are the only
days with CO2 concentration in excess of 1000 PPM. This is in line with the motion data shown
in 6.33. Monday to Wednesday show the highest CO2 concentration, and the heaviest use. While
the cumulative motion events for Thursday are close to those of Wednesday, a lower CO2 con-
centration is observed. This indicates that the combined occupancy of the room is similar for
both days, but that the usage on Thursdays is distributed more evenly over the course of the
day.
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Weekday Readings Readings Above 1000 PPM Readings above 1500 PPM %>1000 %>1500
Monday 501 10 0 2.00 0
Tuesday 573 67 0 11.69 0

Wednesday 704 97 0 13.7 0
Thursday 631 0 0 0 0

Friday 576 0 0 0 0
Saturday 576 0 0 0 0
Sunday 576 0 0 0 0

SUM 4137 174 0 4.21% 0%

Table 6.10: Readings relative to the limits set out in 2.3

6.4.2 Temperature

Since the total air-volume of Koopen is so large, the inertia of the temperature is expected to be
higher than in many of the other rooms in the pilot study. Koopen also heavily features glass
roof and some glass walls. This should help the building absorb energy from the sun light and
the concrete floor will act as a thermal mass during the later hours of the day. The glass features
do come with a drawback; glass is a poorer insulator than non-glass walls and roofs and this
should speed up energy loss during the hours of little to no sunlight.
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Figure 6.30: Koopen temperature re-sampled to 60 minutes and binned by the hour of the day

The hourly temperature readings show that the median temperature for the hours 21.00 to 07.00
remains more or less constant. The tail ends move towards lower temperatures as the night
progresses, indicating that heat is lost from the system during night time. This is to be expected
as the temperature control system is set for a lower ambient temperature in the evening and
night hours to conserve energy. No outside temperature readings were taken during the time
period, making it difficult to gauge the effect of outside temperature on the internal temperature
readings.

The hourly temperature readings for Koopen are also much smoother and than those found in
Smia, fig. 6.1. This may be caused by the increased total air volume, leading to higher tempera-
ture inertia, causing a smoother curve and a less sharp response curve.

63



Figure 6.31: Koopen temperature re-sampled to 1 day intervals and binned by the day of the
week.

Unlike the daily temperature readings of Smia, the median readings at Koopen show little to no
sign of being lower during the weekend days. Since the period time period of sensor recordings
only encompasses about 5 weeks, it is difficult to draw any clear conclusions based on such a
limited dataset. It does however appear that the temperature control system operated at Koopen
is not based on the day of the week, or that the temperature outside and the incoming sunlight
is having a large effect on the system’s ability to effectively control the temperature.

6.4.3 Motion data

All registered motion data from the 3 three motion sensors installed at Koopen was combined
and re-sampled. This is to give a better indication of the room usage as a whole, rather than
measuring smaller parts of the work space. One of the motion sensors was mounted in such
a way that they could theoretically pick up someone walking close by the entrance to the work
space, without actually entering. It is unknown how much this affected the results as there are
no supplementary readings available to filter out such occurrences.
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Figure 6.32: Motion counter for Koopen, re-sampled to 1 hour slices and binned based on hour
of day

The hourly motion sensor data indicates that Koopen sees its most heavy use between 9.00 and
15.00. This is in line with the data registered at Smia, fig. 6.1.3, all though the traffic at Koopen
drops off earlier than at Smia. An interesting observation is the registered movement between
05.00 and 06.00. While these movements may be caused by students, it may also be caused by
people passing near the entrance and being registered despite not entering. The author does
not have any information on when maintenance, cleaning and other facility services is carried
out in the building Koopen is in, but it could very well be caused by maintenance operations
such as cleaning.
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Figure 6.33: Motion counter for Koopen, re-sampled to daily and binned based on weekday

The daily motion sensor data shows that Monday through Thursday show very similar usage
patterns, with median and average values grouping closely. The usage drops down on Fridays,
and remain low on Saturdays and Sundays. The data shows that students make use of the work
space even during the weekends. This may be due to the fact that most of the sensor data was
collected late in the semester, and that weekend days see more use as the exams are approach-
ing.

6.4.4 Humidity

The hourly humidity data for Koopen indicates that the HVAC system is able to regulate the
humidity well. The largest difference between Q3 and Q1 for any given hour is about 30 per-
centage points. This indicates that the moisture level fluctuates over time, most likely caused by
differences in the humidity of the outdoor air over time.
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Figure 6.34: Relative humidity for Koopen, re-sampled to hourly intervals

The building Koopen is in also features some large climbing plants and trees planted inside in
concrete beds sunk into the floor. These plants are regularly watered, and it is possible that
this leads to some added air humidity through evaporation of the top layers of the soil. Plants
can also release large amounts of water from their leaves during photosynthesis, this process is
known as transpiration. The transpiration rates of plants vary wildly (Rawson et al., 1977), and
the author did not attempt to measure or estimate transpiration rates for the particular plants
and trees in the building. Any effects caused by the plants transpiration or watering of the plants
is not visible in the dataset.

67



Figure 6.35: Relative humidity for Koopen, re-sampled to daily intervals

The daily humidity readings indicate a slow rise in median humidity from Tuesday to Saturday,
before the median start falling again towards Monday. This may be caused by changes in the
outside air humidity, and it is difficult to draw any definite conclusions as the dataset contains
too few daily readings to draw a robust conclusion. The rise in humidity may also be caused by
gradual build-up of humidity due to occupants’ actions and presence, which slowly tapers off as
the HVAC system is able to correct it during the slower weekend period.

6.5 Discussion of findings

The data collected at NTNU show some interesting findings with regard to the benchmarks set
out in chapter 2. First The CO2 concentration is generally speaking too high, especially dur-
ing the weekends. This is most likely caused by the reduced HVAC ventilation rate during the
weekend due to the pre-programmed schedule. The readings for the rest of the week also show
elevated CO2 readings, many of which are so high that they may impair students’ ability to per-
form optimally. All the data was collected during fall and winter months, a period when doors
and windows leading outside are less likely to be opened. It is possible that the CO2 readings will
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be better during the summer, as students open the windows and doors to let in the fresh summer
air. Despite this, the HVAC system should be designed, operated and sized to keep indoor CO2
levels acceptable without needing to rely on occupant’ actions such as opening windows. Sand-
kassa saw very high CO2 readings, often over 1500 PPM, a level that has shown to be detrimental
to learning.

Second, the temperature readings recorded across the rooms show that the temperature control
is generally speaking effective for all the rooms across the dataset. Some rooms show a high
degree of thermal inertia, taking a considerable amount of time to change the temperature in
either direction. While this trait may be desirable as it creates stable and slowly changing tem-
peratures, it also means that temperatures outside the desirable range are hard to correct within
a reasonable amount of time. Koopen’s placement means that the amount of sunlight collected
pr square meter of seating area is very large, and this could create situations where the tem-
perature is too high for comfort. This is probably most pronounced during the summer, when
the days are long and the solar potential pr square meter is the largest. None of the data con-
tained in the dataset encompasses the summer months, so no clear conclusion can be drawn as
to how the indoor temperature responds to increased outside temperatures. The group rooms
in U1 were interesting in that they behaved differently from the other rooms and work spaces
studied. Instead of the temperature dropping during the evening and night hours, they stayed
relatively high until the HVAC system was switched over to normal day-running speed and the
temperature fell. The rooms largely had temperature readings that were within acceptable mar-
gins. None of the rooms had temperatures that were excessively high, but Koopen’s tempera-
tures were on the low side. This could be due to the heat loss occurring due to the glass walls
and ceilings providing poor insulating capacities.

Third, humidity readings across the rooms contained in the dataset indicates that humidity lev-
els are well regulated, although there seems to be an increase towards the weekend. This is
probably due to the reduced HVAC setting. Even though the humidity readings are stable, the
median readings are below the recommendations laid out in 2.2. It is possible that the studies
cited are too pessimistic as to the effects of low relative humidity. Tracking subjective experi-
ences of the indoor climate and any eye or mucosal membrane complaints and correlating it to
the indoor humidity may shed some light on the status quo. This is however outside the scope
of this thesis.

Fourth, VOC readings indicated that there is a great degree of difference in the concentration
through-out the days. The maker space at U1 had surprisingly low VOC readings, despite the
room having both 3D printers and soldering stations. It is possible that the VOC sensor do not
pick up the gasses produced by the equipment, or that they were not operated extensively dur-
ing the data collection. Due to the lack of clarity as to exactly which VOCs are measured, it is not
possible to draw any conclusions as to the potential health or learning effect of the VOC levels
observed.
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6.5.1 Limits, constraints and future work

Due to a relatively short time of data recording, it is uncertain how representative the data-
set actually is. Based on the author’s personal impression of campus activity, there is a stark
difference in room usage, working patterns and other occupancy patterns in different parts of
the semester. The reading rooms are usually quite full close up to the exam period, and the traffic
drops off steeply as students finish their exams and go home for winter or summer holidays. It
is fair to assume that the environmental factors recorded and discussed in this chapter will be
affected by this, but specifically in what way and by to what degree remains unclear until data
can be collected for a longer period of time. The data collection period itself therefore represents
a limit and constraint to the validity of the results.

There were also issues with some of the sensors. The author noticed during check-ups that some
sensors were unplugged, especially the COM sensors, as students were using the wall outlets to
charge their cellphone. Sometimes the sensors were not plugged back in once the student had
finished using the outlet. This reduces the data collection, and happens during the vital period
where the room is actually seeing occupant traffic. The footfall sensors were also problematic
when it came to mounting them. The first mounting attempts involved adhering the sensors to
the ceiling plates using double-sided tape. This fastening technique was not sufficient enough
to hold the sensors in place, and they would eventually come loose and fall down. This meant
that no detailed data on the rate of which people entered and left the room was recorded. This
data could have added a much needed dimension to the motion counter data and allow for even
better understanding of the movement patterns of occupants in different rooms.

Future work should include the acquisition of qualitative data from room occupants based on
questionnaires and in-depth interviews. Correlating this with sensor readings can give impor-
tant insights to which environmental factors affect people’s experience of working in an in-
door environment. It could also give important cues as to how the indoor environment can
be changed to maximize occupant health, well-being and work performance. Another inter-
esting avenue would be to install additional sensors. These can for example monitor the rate
of which windows are opened, to better understand how this affects temperature and CO2 of
rooms. Furthermore it would also be interesting to see whether or not the rate at which win-
dows are opened correspond to high temperatures, high CO2 levels and subjective experiences
such as "stale air". This could be used as a proxy measurement of which environmental factors
reduce well-being among occupants.
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Chapter 7

Predicting future occupancy

This chapter details the implementation and results of a feed-forward based neural network
model to predict future occupancy in a room based on historic trends coupled with current
sensor readings. Data was extracted on a room-by-room basis and re-sampled into different
time periods. The optimal time period for the re-sample function was found through a simple
trial-and-error approach. The model was continuously evaluated and iterated upon as shown
in Peffers et al. (2007). Each tunable parameter of the model was changed individually and the
outcome evaluated. The proposed model is by no means proven to be mathematically optimal,
but the results are good enough to give a reasonable approximation of future occupancy.

The chapter assumes that the reader has some prior knowledge of neural networks, their imple-
mentation and concepts such as ground truth, dropout layers, epochs and so on. For a quick,
and very basic introduction to neural networks, please consult Appendix B.

Due to time constraints, the model was only trained on the motion counter data from Smia, so
the results may not be applicable to the rest of the rooms in the dataset. 25 percent of the motion
counter data from Smia was used as validation data, and the model was never trained on this
part of the dataset.

7.1 Background

Increasingly strict energy efficiency demands are placed on buildings in order to reduce green-
house gas emissions and reduce the long-term impacts of global warming. The European Union
has set a goal to reduce greenhouse gas emissions by 20 percent in 2020 compared to the emis-
sions of year 1990 (Štreimikienė and Balezentis, 2016). Schools and universities are not exempt
from the attempts made to lower energy usage, and ongoing efforts are made to reduce the en-
vironmental impacts of these institutions, both in terms of emissions from day-to-day activities
as well as during construction and planning. Indoor environmental variables are not only about
optimizing and reducing energy usage, but also maximizing the occupants’ comfort levels.

In some cases, simple changes such as replacing the ballast of old fluorescent lighting tubes can
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yield significant energy savings and thus reduce emissions (Di Stefano, 2000). Installation of
automatic light switches based on movement may also yield significant energy savings without
reducing occupant comfort. Lighting is one area where energy savings can be obtained relatively
easily, switching on and off lighting is instantaneous and optimal comfort level can be reached
within seconds. However, as described in chapter 5.2, some of the variables making up the total
indoor environment are "slow variables", whose system inertia means that it takes a consider-
able amount of time for peak occupant comfort to be reached. For those slow variables, it is
therefore important to estimate indoor occupancy before it actually occurs, so that the systems
can adjust and reach optimal comfort before the first occupants arrive. While there has been ex-
tensive research on present building occupancy based on a wide array of measurements, such
as CO2 (Han et al., 2013), little research has been done on predicting future occupancy. The fol-
lowing sections will detail the implementation of a NN based solution that accurately predicts
future occupancy before it occurs based on historic data and live sensor readings.

7.2 Neural network model

While there are many different neural network models and methods to deal with prediction of
time-series, such as Hybrid ARIMA (Zhang, 2003), feed-forward and fuzzy networks (Gao and
Er, 2005), recurring networks (Zhang and Xiao, 2000) and convoluted neural networks (CNN)
(Yang et al., 2015), a simple sequential model using a combination of dense and dropout layers
was chosen. This is due to two factors. First the initial prototypes showed that the sequential
model using dense layers produced superior results compared to CNN and recurrent networks.
Secondly the author is most experienced with using sequential dense models, allowing for faster
prototyping and iterations. It is possible that other types of neural networks may provide similar
or better performance than the proposed model, but time constraints meant that only a single
model could be constructed and thoroughly tested.

The neural network consists of a series of input neurons. ten neurons are used as input for the
ten latest historical motion counter readings, stretching back 480 minutes (12*40 minutes). 1
neuron is used as input for the current motion counter reading for of the last 40 minutes, and a
single neuron whose input value is derived from the current time. The time neuron is described
in more detail in 7.2.4.

7.2.1 Data processing

Since one of the methodologies used in this thesis is a data-driven approach, as detailed in 3.2,
a natural starting point is to take a look at the data itself. Below is the plot of motion counter
data from Smia over a period of 7 days. The data has been re-sampled as described in 5.4, and
a re-sample period of 40 minutes was chosen. This re-sample period helps reduce sensor noise
by reducing the impact of a single bad reading.

Visualizing the motion counter data immediately uncovers an interesting, yet not unexpected,
cyclical pattern. As shown in fig. 6.3, the periods between 22.00 and 06.00 have very little to no
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Figure 7.1: Motion data from Smia taken over a 7 day period, re-sampled to 40 minute intervals.
Y axis is the 40 minute summed motion events and X axis is the line number in the data dump.

motion activity, and the periods between 10.00 and 18.00 show the most activity. This causes
a cyclical pattern with lows between the periods of 22.00 and 06.00 an high between 10.00 and
18.00. The average period of the first recorded 0 motion counter for a 40 minute interval and
the last recorded 0 motion counter for the 40 minute interval (falling and rising edge) is a about
13,27 periods, or about 8 hours and 50 minutes 1. This corresponds well with fig. 6.3.

While the amplitude of this cyclical pattern changes from day to day, the time between high
and low motions period seems to remain relatively constant. Any model trying to predict future
motion and thus room occupancy should therefore incorporate time of day as an input. The
finding of this cyclical pattern was used as a basis for the decision to use time as one of the input
neurons. This is explained in more detail in chapter 7.2.4.

The initial dataset before re-sampling consisted of 98407 sensor readings, and re-sampling to 40
minute intervals leaves 1837 sensor readings for training and validation. While an even longer
re-sample period may be chosen, it does reduce the amount of data left for training and eval-
uating the model. Since the dataset available for this thesis was rather limited, a 40 minute

113,27 periods of 40 minutes * 40 minutes = 530.8 minutes

73



re-sample interval was chosen to reduce sensor noise significantly, yet retain enough data for
the training and validation of the neural network model. No other transformation or process-
ing of the data was outside the previously mentioned re-sampling, the normalization detailed in
chapter 7.2.2 and the time data to sine function described in chapter 7.2.4 was performed.

7.2.2 Normalizing data

While the normalization of data used in training of neural networks is optional, data normaliza-
tion tends to increase learning speed and reduce errors (Sola and Sevilla, 1997). There are many
different techniques for normalizing data, depending on the dataset, as well as the relative size
of the inputs to be used. The input neuron for the time is normalized in such a way that the in-
put value stays between 0.0 and 1.0, as given by the formula in chapter 7.2.4. It therefore makes
sense to normalize the motion counter data to the same interval. A very simple and efficient way
of normalizing input data is to divide each value in the input dataset by the maximum value ob-
served, something which reduces the input space to the interval 0.0 to 1.0. This technique was
used for the motion data used as input. The lowest observed motion counter data re-sampled to
40 minute intervals was 0. The largest observed value was 179. The normalized data can easily
be converted back into a non-normalized scale by multiplying the normalized sensor readings
by 179.

All data used in the training of the model was normalized, but all plots derived from the neural
network model was de-normalized and represented in original scale.

7.2.3 Dealing with historical data using a sliding window approach

Using a dense model with input neurons for historical data necessitates transforming the his-
torical sensor data into discrete inputs. There are many different ways of accomplishing this,
and the author decided to split the historical data into partly overlapping vectors of a fixed
length. This approach was selected based on initial prototyping attempts and personal expe-
rience.

A small python script was created to automatically split the historical data into a list of lists, each
containing one set of inputs. The script was written with a single tunable parameter; lookback
which controls how many historical data points are passed as the output of the function. The
overlap between two consecutive lists is (lookback)-1. The lookback parameter was tuned based
on a trail and error method using an iterative approach, as described in chapter 3.1. In addition
to outputting a list of overlapping sensor data, the script also outputs the value used as the
ground-truth value for training the neural network. The ground truth value is the n+1 reading,
n denoting the index of the last reading in the sublist.

An example of a sample input and the output of the script is given below. In order to help with
readability, sensor values have been replaced with the numbers 1 through 8. This should help
make it more clear how the input is parsed and split into sublists using the sliding window ap-
proach. Please note that the example below is given in Python-like syntax, "[]" denotes a list.
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The lookback parameter for the example table was set to 3.

Sensor data [1 2 3 4 5 6 7 8]
Sensor data transformed [[1 2 3] [2 3 4] [3 4 5] [4 5 6] [5 6 7]]

Ground truth [4 5 6 7 8]

Table 7.1: Example of data transformation using a sliding window approach

This shows how historical sensor data can be split into smaller chunks suitable for feeding
through a neural network, with one neuron for each element in the list.

7.2.4 Time as an input

Since the data used as the input in the model shows a cyclical nature, as detailed previously,
it makes sense to incorporate time of day as an input in the model. Initial attempts used the
number of minutes elapsed since midnight (0.00) as the input for the time neuron, though this
seemed to cause less than optimal results. The reason(s) for this is not clear, it could be due to a
relatively small dataset making it difficult to optimize the model across the spectrum of inputs.
After some experimentation, it was found that using the number of hours passed since midnight
transformed by a simple sine function yielded the best results:

x = sin(2∗pi ∗ x

24
)

Fig. 7.2 shows how the cyclical nature of the motion counter data aligns well with the sine trans-
formed hour since midnight signal. Note that the output of the sine function has been multi-
plied by 40 to make the plot easier to read.

75



Figure 7.2: Motion data from Smia re-sampled to a 40 minute interval (orange) and the sine
transformed hour of day (blue). Y axis is the motion sensor events resampled to 40 mins. X axis
represents the line number in the data dump

While the sine signal is out of phase with the motion data, some interesting observations can be
made without shifting the sine signal. The bottom of the sine signal aligns well with the steep
decline observed for the motion data towards the end of the work day. The top part of the sine
signal aligns well with the rising edge of the motion counter data. This sine signal can provide
vital context to the prediction model by allowing the model to incorporate the time signal as a
marker for the rise and fall of the motion counter data.

The sine signal by itself replicates the current time-based schedule of the HVAC system and the
temperature control. In an effort to explore how useful the time signal is by itself, a simple model
using only the sine transformed hour after midnight signal was created. This model uses a single
input neuron; the sine transformed hour of day and has a single output neuron; the predicted
motion counter data. The hidden layers consisted of a dense feed forward network consisting
of 250, 100 and 30 neurons. In between each of these layers, a dropout layer with a dropout rate
of 20 percent was applied.

The model was trained for 1000 epochs, the optimizer used was Kera’s ADAM and the loss func-
tion used was Kera’s built-in mean squared error. The ground truth the model was trained for
was the actual 40 minute re-sampled motion data, without normalization. The input was split
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into a training and validation dataset with a ratio of 4 to 1, meaning that 25 percent of the total
dataset was set aside for validation.

Figure 7.3: Model prediction of future occupancy with time of day as the only input. Y axis is the
motion sensor events resampled to 40 mins. X axis represents the line number in the data dump

This simplistic model is obviously ill-suited to predict actual occupancy based solely on the time
of day. Shifting the sine-signal to the left or right so that it better matches the cyclical nature of
the actual occupancy data should help improve the accuracy, as the sine values better fit the
actual data. No further exploration of this was done however, as the proposed model should
depart from the current time of day and calendar controlled HVAC system in use at NTNU.

7.2.5 A sample of input data used in the model

The model relies on a combination of historical data, time of day and the current sensor read-
ing.
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7.3 Results

This section details the results of the model and shows its performance over a wide range of
different parameters. The validation data was only used for validating the model, and it was not
used in the training of the model. This is to ensure that the model does not try to predict on data
it has already seen before, and thus has been able to fit in the training sessions.

7.3.1 How wide should the sliding window be?

A wide variety of window sized was tested, validated and scored. Using a large window size
slows down training, and makes the input layer larger. While a larger window size may allow
the model to learn long-term patterns in more detail, it may also lead to over-fitting, where the
model learns to replicate specific patterns and does not learn the general shape and pattern of
the motion counter data. Please see chapter 7.2.3 for more details on how the sliding window
technique is applied.

All losses were computed using mean squared error, and the output activation function for the
output neuron is Kera’s built-in RELU function. The RELU function was used as it has been
shown to produce excellent results across a variety of neural networks (Dahl et al., 2013), (Xu
et al., 2015), and the RELU function is readily available within Keras. The model was trained
for 10, 100, 250 and 1000 epochs at each window size setting. Each test was run 5 times, and
average loss value was computed for each run. Note that the mean squared error measurement
has been de-normalized, indicating the error rate for the actual sensor motion data and not the
0 to 1 normalized input.

Window Size Loss at 10 epochs Loss at 100 epochs Loss at 250 epochs Loss at 1000 epochs
4 20.194 6.169 3.071 11.521
6 12.814 5.051 3.12 5.351
8 12.13 3.205 5.38 7.501

10 9.903 4.99 2.412 5.13
12 17.821 6.301 4.68 9.7433
14 24.792 5.056 4.649 12.981

Table 7.2: Window size and epoch size and their impact on measured MSE for validation data

The data indicates that there is a U-shaped curve for the parameters window size and epoch size
with regards to MSE. Increasing window size leads to a drop in MSE, but once the window size
becomes too big, the error stops decreasing and starts increasing. The same trend is observed
for epoch size. Based on these results, a window size of 10 and an epoch size of 250 will be used
for the rest of the results. While it it possible that there exists an even better combination of
both window size and epoch size, an MSE loss of 2-3 is low enough for this particular use-case.
This combination should represent the local minima in terms of loss, but there may be other
combinations that produce better loss values.

78



A window size of 10 periods and a period length of 40 minutes means that the model will take the
last 400 minutes (6 hours and 40 minutes) of movement data into consideration when predicting
the next periods motion data.

7.3.2 Predicting future occupancy

Below is a plot of the predicted motion data and the actual motion data (ground truth). The
plot consists solely of validation data, and the model has not been trained with the validation
data, and has thus had no opportunity to "memorize" this data. The model was given the last 10
sensor input readings, re-sampled to 40 minutes, as well as the current hour of day, as detailed
in chapter 7.2.4. The model predicts a single 40 minute period into the future, producing one
data point pr set of inputs.

Figure 7.4: Motion prediction based on historical data. 10 window size and 250 epoch

The model does a good job of capturing the actual motion data as recorded by the sensor. It
does however have a tendency to produce large spikes. One can be observed in the prediction
for 25/11/2018 and two spikes in the prediction for 27/11/2018. The reasons for these spikes are
unknown, but could be due to modelling errors, a small size of training inputs or other factors.
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The model quickly recovers after making such errors, and the next prediction is much better
once the model is fed the next set of input data, and "realizes" that it has made a mistake.

The interesting thing to note is that the predicted graph fits the shape of the actual motion data
well. The phase looks correct, and the predicted period of activity aligns well with the actual
data. While the model does at time misjudge the size of the cumulative motion events, the
timing accuracy is good.

Since the aim of this master’s thesis is to produce a model that accurately predicts when room
occupancy is going to happen, and not the relative size of room usage, the model should be
useful in accomplishing RG2.

7.3.3 Transforming the predictions into on/off events

While the model as shown above is able to predict the relative motion in the room with rea-
sonable accuracy, this is not very useful when it comes to controlling the HVAC system or the
temperature control of a room. By extending and making some small changes to the model, the
output of the model can be used to turn on the temperature control system of a room before
occupants are expected to arrive.

In order to achieve this, some changes were made to the input data and the ground truth data.
Every reading above 5 motion events per period had its value set to 1, and every period with less
than 5 motion events per period was set to 0. This causes the input data to represent people
being present or not present, as opposed to the relative amount of activity happening inside the
room.
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Figure 7.5: Room activity

This transformed data will be used as the ground truth when training the neural network. In-
stead of training the neural network to predict the relative size and frequency of motion, the
network will instead be trained to predict future occupancy. As shown in fig. 7.5, there is some
noise in the data, but this is inevitable when dealing with sensor readings.

In addition, the model is trained not to predict the occupancy for the next period, but for two pe-
riod steps into the future. This means that the resultant model will attempt to predict future oc-
cupancy 80 minutes into the future, instead of the previous 40. This will allow slow-responding
systems such as temperature control enough time to raise the temperature sufficiently before
the first occupants arrive. A successful model will therefore indicate a rise in the predicted oc-
cupancy 40-80 minutes before the motion sensor indicates actual occupancy.
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Figure 7.6: Predicted occupancy and sensor data

As the plot above shows, the model is able to predict future occupancy with a good degree of
accuracy. The output of the model has been multiplied by 40 from the original 0 or 1 state, to
enhance readability when plotted against the actual motion data. The data shown in the plot is
from the validation dataset, and has not been used when training the model.

The model is able to correctly predict future occupancy at least 40 minutes before the actual
occupancy occurs. While the model does incorrectly predict future occupancy both on 25th of
November and the 28th of November, the model quickly adjusts its predictions as new motion
sensor data is made available.

7.3.4 Adjusting for non-work days and other outlier days

Since the model makes predictions based on historical data, it has limited capability to predict
future occupancy for days that are abnormal, or whose room usage pattern deviates significantly
from what the model has previously observed and been trained to model. It is also possible
to add additional input neurons to represent other relevant parameters. A single input neuron
could for example be used to indicate to the network whether or not the current day is a national
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holiday, or how much of the semester has elapsed. No attempts were made to implement this,
as the data pool available for Smia is too short to properly optimize and test such models.

7.4 Future occupancy and systems with high inertia, practical
uses

As described in chapter 5.2, some of the environmental variables are slow to respond. This
includes, among others, temperature, CO2 and humidity. By being able to predict future oc-
cupancy before it happens, systems with slow response times can be pre-adjusted so that they
reach an optimal state before people enter and start using the room(s). The temperature in a
room can for example be turned up 40-80 minutes before the first occupants arrive, and thus
ensure that the room temperature reaches an optimal state before actual occupancy occurs.
The current system at NTNU today tries to do this by using pre-programmed on and off times
and days for different systems. While this may prove satisfactory most of the time, the system is
very rigid and is unable to cope with and learn from new patterns of room usage.

The model shown in this thesis is able to learn and adapt based on historical trends and data,
as well as the current sensor readings and can predict future occupancy before it occurs. The
system also shows that it is able to adjust and correct itself it if makes a wrong prediction by using
new sensor data as it becomes available. If a room sees unexpected usage based on historical
trends, the model adjusts is output to reflect actual occupancy.

7.5 Discussion and future work

The proposed model shows positive results. The model is seemingly able to accurately predict
future occupancy before it occurs, allowing it to be used for slow variables such as temperature.
This would allow increasing the temperature to comfortable levels before the first occupants
arrive. The model sometimes misjudges future occupancy, but quickly corrects itself once new
sensor data is being made available. Incorporating time as in an input in addition to historical
occupancy and current sensor readings allow the model to better simulate future occupancy. In
addition the proposed model is less rigid than the current time and date based system, which is
unable to respond well to occupancy behaviour that is outside the expected norm. Room usage
probably varies over time, especially around holiday season and close to the exam. Having a
system that is able to model this behaviour could lead to better indoor climate, reduced energy
usage as well as increasing occupants’ comfort.

The results of the model are promising; the model appears to accurately predict future occu-
pancy based on historic trends and current sensor data. The model has only been tested an
tuned for a specific room, Smia, so it is unknown how well it will perform in other rooms. As
shown in Chapter 6, there is a great degree of difference in room usage for the different rooms
in the pilot study. While most of the rooms have a similar occupancy curve as given by the mo-
tion counter data, the model may be more or less accurate for other rooms than Smia. A natural
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extension of the research presented in this thesis is to apply the proposed model to the complete
dataset containing all rooms in the pilot study.

The data used to train the neural network for Smia consists of about 45 days of data, covering
the later parts of the semester. A training set consisting of more data over a longer period of
time may yield better results and allow the model to incorporate even more nuances of room
usage. Future work on the prediction model should focus on data obtained over a longer period
of time.

In addition, a long term study comparing rooms with the old system to rooms controlled by the
prediction model could uncover any energy savings, as well as any change in indoor climate
variables. Such a study would provide useful and robust insights into the practical uses of the
proposed models, and allow the testing of the theorized improvements.

84



Chapter 8

Concluding remarks

In the following, the main findings in chapters 6 and 7 will be summarized and seen in context
of the two research goals defined in chapter 1.3.

Research goal 1 was to investigate the current indoor conditions at NTNU and their effect on the
students’ learning environment. The current indoor climate at NTNU is relatively good. Tem-
perature and humidity seem to be well regulated, but the humidity appears to be somewhat on
the low side. This may be caused by the fact that the data was collected during the winter/fall
period, where the outside air is naturally drier and helps dry out the inside air when the HVAC
system brings in outside air to replace stale air inside the building. The temperature readings
will by most occupants be seen as comfortable, but Koopen may see problems with low temper-
atures during winter, especially if the outside temperature drops to low levels.

The CO2 readings on the other hand ranged from good to very poor. The CO2 levels seen at
Sandkassa were especially problematic. Such levels as those observed will have detrimental ef-
fect on the mental and physical capacities of the occupants potentially causing dizziness, com-
plaints of stale air and poorer learning abilities. The latter is especially problematic as the rooms
are used for both lectures and by students reading and discussing the curriculum. Greater care
should be taken to adequately size the ventilation in rooms occupied by a great number of peo-
ple. The motion counter data shows that most of the rooms see usage outside of the expected
07.00-17.00 time frame. This has implications for the programming of the HVAC system.

Research goal 2 aimed to build a predictive model for future occupancy in an effort to improve
the indoor climate variables identified in research goal 1. The current control systems at NTNU
are based on time of day and the day of the week. While this simplifies the system and con-
figuration, it does present some major drawbacks. First of all the designers of the system have
to make assumptions as to the usage patterns of the rooms, often without having a good un-
derstanding on how the rooms are used. This is especially problematic if the decisions as to the
run times of these systems are decided upon designing or building the rooms. Unforeseen usage
patterns may occur, the rooms’ areas of usage may change and the usage patterns do not remain
constant over the whole semester. One way of addressing this would be to log the actual room
usage and the relevant indoor climate variables after the room has been used for a while and
then make adjustments to the system. This does however require data collection equipment,

85



manual processing of the data as well as trying to make generalized assumptions on the usage
patterns. This method is also not able to cope with outlier days or periods with room usage that
differs from the norm.

The neural network based system presented in this thesis solves some of those issues. The net-
work can use historical data to make a projection about future room usage and act accordingly.
The system also has access to current sensor readings and can update its predictions to better
reflect actual room usage. This presents exiting possibilities; the system can dynamically adjust
its operating to actual room usage and should be better able to cope with activity outside the
expected norm. The system should also see its accuracy improve as more data is recorded and
analyzed.

Obtaining a more diverse dataset covering a longer period of time will allow the model to bet-
ter project future occupancy before it happens. Installing the proposed model as a part of a
pilot study comparing the old control system to the new proposed model will make it possible
to uncover any improvements both to indoor environmental variables, energy conservation as
well as occupants comfort levels. The proposed model represents a promising and potentially
useful addition to the systems already in use at NTNU as it may help improve both the indoor
environment and the comfort levels of its occupants. Furthermore, it may prove to be a more
robust and agile system that is able to adapt to changing occupancy patterns and unforeseen
changes.
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Appendix A

Acronyms

AI Artificial Intelligence

CNN Convoluted Neural Network

CO2 Carbon dioxide

FNN Feed-forward Neural Network

HVAC Heating, Ventilation and Air Conditioning systems

IoT Internet of Things

IQR Interquartile Range

NN Neural Network

NTNU Norwegian University of Science and Technology

PPB Parts Per Billion

PPM Parts Per Million

VOC Volatile Organic Compound

Q1 Quartile 1 (25 percent)

Q3 Quartile 3 (75 percent)

SD Sentralt driftsanlegg
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Appendix B

Neural Networks: a short introduction

This appendix aims to give a short and succinct introduction to neural networks, and some of
the terms used in chapter 7. The section is strictly intended for readers with no or very little
prior knowledge of neural networks. In order to keep this section short, some aspects of neural
networks have been simplified and other parts have been omitted because they are not relevant
to understanding the neural networks described in the thesis. This appendix will omit activation
functions, and only explain the fully-connected topology. Keywords are highlighted in bold face.
The appendix will use present a practical example of how neural networks can be used.

Artificial neural networks take inspiration from biological neural networks, especially those found
in the brains of mammals. Neural networks take one or more inputs, transmit it through 0 more
hidden layers and finally produces one or more outputs in the output layer.

The figure below shows a simple neural network consisting of an input layer with three neurons
(nodes), a hidden layer with two neurons and a final output layer with a single neuron. Note the
yellow arrows connecting the neurons in a directed acyclical graph. The information is passed
from one layer to another, and is transformed along the way. Each node in the input layer is fed
with a variable from the input dataset, and the output from the output layer is compared to the
actual observed value, also known as ground truth.
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Figure B.1: Neural Network with Input layer (green), Hidden layer (yellow) and Output layer
(gray)

To give a very simplified example of how this works in practice; assume that a bank wants to
train a neural network to make a decision as to how much money to loan to a person. The neu-
ral network based system is to replace the old system based on look-up tables. The bank wants
the neural network to take some factors into consideration: (1) income of the borrower, (2) age
of the borrower, and (3) the amount of debt the borrower has already accrued. The bank settles
on a very simple neural network topology: a single input layer with three neurons, one for each
factor and an output layer consisting of a single neuron whose output value is the amount of
money the bank is willing to lend to the particular customer. Each of the input neuron In is con-
nected to the output neuron through a connection with a weight of Wn . One way to model this
network mathematically, in a very simplified manner, is as a linear combination of the inputs

and their respective weights:
n∑

i=1
Wi ∗ In . The input of of every input neuron has its respective

values multiplied with the weights of the pathways connecting them to the output neuron, and
the sum of these products is the value of the output neuron.
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A practical example; a prospecting borrower has an income of 500,000 NOK (I1), an age of 32
years (I2) and existing debts amounting to 320,000 NOK (I3). Initially all the weights (Wi ) are set
to 1. Running this through our neural network yields 820,032 NOK 1 as the sum of money the
bank is willing to lend. The bank’s current method of estimating willingness to loan indicates
that the bank is willing to loan the customer 1,300,000 NOK.

All weights being set to one leads to some issues; first of all the amount of current debt is mul-
tiplied by a positive value of one, although pre-existing debt should lead to a reduction in the
amount of money the bank is willing to lend. The weight of this factor thus needs to be negative
to reflect this. The second problem is that the age of the borrower is multiplied by one, the same
factor used for the income. This causes a distortion; the maximum value for income could be
in millions of NOKs, whereas the age of the prospective borrower probably will never pass 100
years. The income of the borrower will always dwarf the age of the borrower in this equation
when the weights are equal.

The neural network obviously needs to be trained in order to improve the results. One way of
doing this, also known as supervised learning, is to give the neural network some inputs and
compare the neural network’s output to the expected value, also known as ground truth. In this
case the bank has a pre-existing system for calculating the amount of money its willing to lend
to a borrower. The bank decides to use the old system as the ground truth for the new neural
network-based system. There are many ways to calculate the difference, also known as loss,
between the output given by the neural network and the ground truth. The bank decides on the
simplest form: the difference between the neural network and the old system’s willingness to
loan. The output of the neural network is subtracted from the expected output as dictated by
the old system.

The difference between the produced and the expected output is used to change the weights of
the neural network. After evaluating the first iteration, also known as epoch, the neural network
is re-weighted, and the input is run through the neural network again. This time the weights
have been adjusted to W1 = 3, W2 = −70 and W3 = −0.8. This time the neural network’s output
is 1,241,760 NOK 2, an absolute difference (loss) of 58,240. The output of the neural network is
now much closer to the ground truth than in the previous iteration. The network can improve
its accuracy by going through even more iterations/epochs, slowly adjusting its weights until the
neural network’s loss relative to the ground truth diminishes.

This very simplified neural network is able to approximate the old system relatively well, but its
performances in a real life situation would be poor. The network has only been trained for a
single input, and it would probably give poor predictions if faced with a set of inputs it has not
encountered previously. In practice neural networks are fed with large datasets, allowing them
to learn based on a wide span of inputs, hopefully yielding a network that makes good general
approximations instead of "memorizing" the inputs and expected outputs, also known as over-
fitting. Most neural networks used for real life applications also feature one or more hidden
layers, this allow the networks to better model more advanced system. The network previously
described in this section only consists of linear combinations, whereas many systems in real life

1500,000∗1+1∗32+320,000∗1
2500,000∗3−70∗32−320,000∗0.8
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are far more complex and may require higher functions in order to get good approximations. A
larger number of hidden layers allow the networks to construct more and more complex models
of output approximations.

While this section contains a grossly simplified introduction to neural network, it has hopefully
left the reader with a better understanding of how neural networks are constructed and how
they are trained.
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