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Summary

The idea of an autonomous bicycle originates from Jens G. Balchen who
wanted to make an unmanned autonomous bicycle. The idea was picked up
by Amund Skavhaug who extended the idea with the concept of using an
inverted pendulum to simulate a leaning rider. The previous attempts to
develop a bicycle capable of performing an autonomous ride has so far all
ended in failure. The main reason for the Department of Engineering Cyber-
netics is to develop such a bicycle is for use in recruitment and motivation of
students. The main goal of this thesis is to develop a bicycle that after the
implementation of a suitable control is capable of performing an autonomous
ride.
The goal of this thesis is to create a controller making the bicycle capable
of performing the first self balanced ride. The focus is not on implement-
ing the most advanced controller but creating a system actually capable of
performing this first ride. An equally important focus is that the framework
delivered at the end of this thesis is capable of handling the further develop-
ment towards a fully autonomous bicycle.
The author has during this thesis performed the additions needed in order to
be able to implement a self balancing controller. The parameters of the real
bicycle were measured and used to create a simulation environment of the
bicycle in Simulink. Several controllers were simulated in Simulink, before a
controller were implemented on the physical bicycle.
The physical bicycle delivered as a part of this thesis consists of a fully func-
tional framework both capable and ready for the further development. A
self balancing controller is implemented on the bicycle and the bicycle has
performed it’s first self balance ride.
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Chapter 1

Introduction

1.1 Motivation
The work on developing an autonomous bicycle with control of an inverted
pendulum, the steering angle and the propulsion speed started back in the
1980’s, when Amund Skavhaug picked up an idea from Jens G. Balchen
of developing an autonomous bicycle. The last few years there has been
development on the bicycle from the 1980’s by Loftum[1], Bjermeland[2],
Fossum[3], Sølvberg[4], Brekke[5] and Hatlevoll[6] with various results, but
no success developing an autonomous bicycle. The author of this thesis
performed a complete rebuild of the bicycle during a project delivered this
spring. With this as a very good starting point the author would like to
complete this framework with the result of a bicycle capable of performing
a self balance ride. The main reason for the Department of Engineering
Cybernetics to develop such a bicycle is for use in both recruitment and
motivation of students. The concept of controlling a bicycle with an inverted
pendulum simulating a leaning rider is also an interesting subject, due to the
fact that this is not done by anyone previously1.

1.2 Problem
The goal of this thesis is to implement a self balancing controller for the
bicycle without the use of the inverted pendulum. The task should be per-
formed with a theoretical approach, by first creating a model and perform
simulations before taking the step out into the real world. The following list
gives an overview of the steps towards this goal:

1At least not to the knowledge of the author of this thesis.
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2 1.3. Previous Work

• If needed, performing additions and upgrades to the framework.

• Implement basic protection features in software.

• Implement scaling and calibration of the inputs and outputs to the
Simulink model.

• Measure the physical bicycle parameters for use during the implemen-
tation of a model.

• Implement a model of the real bicycle in Simulink.

• Create and simulate different controllers for the Simulink model.

• Implement a speed controller on the real bicycle.

• Implement a self balancing controller on the physical bicycle.

A secondary and at least equally important goal is to deliver a complete sys-
tem ready for the further development towards a fully Autonomous Bicycle.

1.2.1 Leaving Out The Pendulum
The inverted pendulum currently attached to the bicycle has a mechanical
defect in the form of a rather large backlash of 2 degrees. The control of the
inverted pendulum would with this large backlash either be very relaxed or
cause the pendulum to oscillate. Both results would be unable of balancing
the bicycle as a relaxed controller would be to slow, while the oscillating
controller would make the bicycle even more unstable. The reason for not
changing the gearbox during the previous project were due to budget limita-
tions2. The inverted pendulum was therefore left out of the problem in this
thesis. This to prove that it is possible to create a self balance bicycle and
hopefully motivate the Department of Engineering Cybernetics to fund the
addition of a new gearbox for the inverted pendulum.

1.3 Previous Work
A lot of work has been done on the bicycle over the last few years, the
project was first initiated back in the 80’s, but this thesis is focusing on
the work done since Loftum[1] and Bjermeland[2] started up the work again

2The cost of a new gearbox for the inverted pendulum with the needed specifications
would cost the entire budget.
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in 2006. Bjermeland[2] focused on working with the bicycle dynamics and
mathematical modelling, while Loftum[1] developed the instrumentation and
computer system. Since 2006 the computer system and instrumentation has
been further developed and bug fixed by Fossum[3], Sølvberg[4], Brekke[5]
and Hatlvoll[6]. After this the author of this thesis has performed a com-
plete rebuild of both the hardware and software framework during a former
project[7].

1.4 Outline
Chapter 2 gives a description of the background theory relevant for the com-
pletion of this thesis.
Chapter 3 gives a brief description of the hardware and software framework
available at the start of this thesis.
Chapter 4 describes the work performed on the hardware and software frame-
work.
Chapter 5 describes the steering planetary gearbox breakdown.
Chapter 6 describes the methods and the work performed for measuring the
parameters needed to create a model of the physical bicycle.
Chapter 7 describes the development of a model with the parameters mea-
sured in Chapter 6 together with the development and simulation of different
controllers for self balance.
Chapter 8 describes the implementation and result of the self balancing con-
troller on the physical bicycle.
Chapter 9 gives a short description on the further work to be performed on
bicycle.
Chapter 10 is a discussion about the result and choices made during this
thesis.
Chapter 11 is the conclusion of this thesis.

1.5 Project Delivery
In addition to this report as part of the delivery is the complete hardware
and software framework delivered together with this thesis. The software is
available on the attached CD, together with videos documenting that the
Autonomous Bicycle is capable of performing a self balanced ride.
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Chapter 2

Background Theory

2.1 The Whipple Bicycle Model
To develop a control system it is helpful to have a good mathematical model
of the system. When it comes to bicycles there are different models available,
but most used is the Whipple[8] bicycle model. The linear equations derived
by Papadopoulos[9] are the most tested equations available today.

• In 1987 Papadopoulos[9] derived the linear equations used in this re-
port.

• In 2004 Meijaard[10] derived the linear equations using another method,
with the same result as in [9].

• In 2006 experiments were performed by Kooijman[11] on a real bi-
cycle to validate the linearised equations derived by Papadopoulos[9].
Kooijman[11] refers to a benchmark performed by Papadopoulos, Mei-
jaard and Schwab[12] in 2005, but these equations are the same as in
[9].

• In 2007 Meijaard, Papadopoulos, Ruina and Schwab[13] published a
benchmark and review of the linear dynamic equations. This publica-
tion conclude that the linear equations derived by Papadopoulos[9] are
”reliable equations for a well-delineated model for more deeply study-
ing controlled and uncontrolled stability of a bicycle”[13]. They found
that both SPACAR and AUTOSIM produced linear equations with co-
efficient matrices that correspond with the pen-and-paper calculations
to the 14. digit.

5



6 2.1. The Whipple Bicycle Model

• There are also numerous other publications available, a brief review is
included in the paper published by Meijaard, Papadopoulos, Ruina and
Schwab[13].

Chapter 2.1.1 shortly describes the model developed by Whipple[8], explain-
ing the linear equations derived by Papadopoulos[9] and the parameters
needed to complete the model. Readers interested in more information about
the model are first referred to the main source of this chapter [13] then to
Whipple[8], Papadopoulos[9] and Meijaard[10].

2.1.1 Bicycle Model Without Rider
The mechanical model of the bicycle without a rider(or with a static rider)
consist of four parts, the rear body frame(which would includes the static
rider), front handlebar frame, rear wheel and front wheel. These four parts
are connected through rotating joints at the wheel hubs and trough the steer-
ing axis as shown in Figure 2.1. The model assumes the following constraints:

inertia of the real wheel, and other neglected aspects may be paramount, e.g. the
rider’s flexibility and control reflexes. Even for the study of uncontrolled stability,
tyre deformation and frame compliance seem necessary for understanding wobble
(a rapid steering oscillation). In summary, the model here includes all the sharply
defined rigid body effects, while leaving out a plethora of terms that would require
more subtle and less well-defined modelling.

Our bicycle design is fully characterized by 25 parameters described below.
Table 1 lists the numerical values used for the numerical benchmark. Most
numerical values are representative of real bicycles, but some values (e.g. wheel
inertial thickness as represented by IRxxO IRyy/2) are exaggerated to guarantee a
detectable role in the benchmark numerical studies. The bicycle design
parameters are defined in an upright reference configuration with both wheels
on the level flat ground and with zero steer angle. The reference coordinate origin
is at the rear wheel contact point P. We use the conventions of vehicle dynamics
(J670e, SAE 2001) with positive x pointing generally towards the front contact
point, positive z pointing down and the y-axis pointing to the rider’s right.

The radii of the circular wheels are rR and rF. The wheel masses are mR and
mF with their centres of mass at the wheel centres. The moments of inertia of the
rear and front wheels about their axles are IRyy and IFyy, respectively. The
moments of inertia of the wheels about any diameter in the xz -plane are IRxx and
IFxx. The wheel mass distribution need not be planar, so any positive inertia is
allowed with IRyy%2IRxx and IFyy%2IFxx. All front wheel parameters can be
different from those of the rear so, for example, it is possible to investigate
separately the importance of angular momentum of the front and rear wheels.

Narrow high-pressure, high-friction tyre contact is modelled as non-slipping
rolling point-contact between the ground and the knife-edge wheel perimeters.
The frictionless wheel axles are orthogonal to the wheel symmetry planes and are

x

z

w
c

l

P

rear wheel, R

front wheel, F

rear frame including
rider body, B

front frame (fork and
handlebar), H

steer axis
Q

Figure 1. Bicycle model parameters. For all four parts (R, B, F and H), centre of mass locations are
expressed relative to the x - and z -coordinates shown (with origin at P and y pointing towards the
reader) and in the reference configuration shown. Other parameters are the body masses and
inertias, the wheel radii, the tilt l of the steer axis, the wheel base w and the trail c as listed in
table 1. The figure is drawn to scale using the distances in table 1. Configuration variables (lean,
steer, etc.) are defined in figure 2.

1959Bicycle dynamics benchmark

Proc. R. Soc. A (2007)

 on May 13, 2011rspa.royalsocietypublishing.orgDownloaded from 

Figure 2.1: The Whipple Bicycle model(figure taken from [13]).
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• The model assumes that both wheels have contact with ground, and
that the ground is completely horizontal.

• The model assumes symmetry about the xz plane when the bicycle is
standing straight up with the steering in neutral position, and circular
symmetry of the wheels.

• The model assumes knife-edge wheels.

• The model assumes that if a rider is included it has to be a static rider,
in other words assumes no motion of a rider with respect to the rear
body frame.

• The model assumes a 100% stiff frame.

• The model assumes no form of damping.

• The model assumes no friction in the joints.

• The model assumes a tyre model with no slip or skidding.

The four objects would without constraints and connections have 24 degrees
of freedom, each part would have 3 translational and 3 rotational degrees of
freedom. With the constraints and joints given above, 5 degrees of freedom
per joint and 1 degree per wheel contact point are removed. The slip and
skid constraints does not remove any degrees of freedom as we still are able
to move sideways by turning the wheel when moving forward1. The bicycle
can then be described in the following way(see Figure 2.2 for visualisation):

• The position of the rear wheel contact point (xP , 0, yP ) relative to the
global fixed coordinate system.

• A yaw rotation ψ around the z-axis in this contact point.

• A roll rotation φ around the x-axis of the coordinate system fixed in
(xP , 0, yP ) and rotated by ψ.

• A rotation θB that is there only to describe the small rotation of the
rear body frame during the combined steer and roll to keep both wheels
connected to ground at all times.

• A rotation δ between the rear body and front handlebar frame.

• Rotations φR and φF describes the rotation of the wheels relative to
the rear body and front handlebar frame.



8 2.1. The Whipple Bicycle Model

4. Basic features of the model, equations and solutions

(a ) The system behaviour is unambiguous

The dynamics equations for this model follow from linear and angular
momentum balance applied to each part, along with the assumption that the
kinematic constraint forces follow the rules of action and reaction and do no net
work. These equations may be assembled into a set of ordinary differential
equations, or differential-algebraic equations by various methods. One can
assemble governing differential equations using the Newton–Euler rigid body
equations, Lagrange equations with Lagrange multipliers for the in-ground-plane
rolling-contact forces, or methods based on the principle of virtual velocities (e.g.
Kane’s method), etc. But the subject of mechanics is sufficiently well defined that
we know that all standard methods will yield equivalent sets of governing
differential equations. Therefore, a given consistent-with-the-constraints initial
state (positions and velocities of all points on the frames and wheels) will always
yield the same subsequent motions of the bicycle parts. Thus, while the choice of
variables and the recombination of governing equations may lead to quite
different-looking governing equations, any difference between dynamics predic-
tions can only be due to errors.

O
x

y

z

P

Q

B

R

F

H

yf

qR

y

qB

d

qF

Figure 2. Configuration and dynamic variables. The seven-dimensional accessible configuration
space is parametrized here by the x - and y-coordinates of the rear contact P, measured relative to a
global fixed coordinate system, and five angles represented by a sequence of hinges (gimbals). The
hinges are drawn as a pair of cans which rotate with respect to each other. For a positive rotation,
the can with the arrow rotates in the direction of the arrow relative to its mate as shown on the
enlarged isolated can at the top right. The j can is grounded in orientation but not in location. For
example, a clockwise (looking down) change of heading (yaw) j of the rear frame B, is positive.
The lean (‘roll’ in aircraft terminology) to the right is f. The rear wheel rotates with qR relative
to the rear frame, with forward motion being negative. The steer angle is d with right steer positive.
The front wheel rotates with qF relative to the front frame. As pictured, j, f and d are all positive.
The velocity degrees of freedom are parametrized by _f, _d and _qR. The sign convention used is the
engineering vehicle dynamics standard J670e (SAE 2001).

1963Bicycle dynamics benchmark

Proc. R. Soc. A (2007)

 on May 13, 2011rspa.royalsocietypublishing.orgDownloaded from 

Figure 2.2: Bicycle model showing the rotations used in the linearised equa-
tions(figure taken from [13]).

This is reduced even more when we remove the four non-holonomic rolling
constraints related to the wheel-to-ground contact points(longitude and lat-
eral for each contact.). The bicycle can then be described by the three
following parameters(as seen in Figure 2.2.).:

• The lean rate of the rear body frame φ.

• The steering rate δ.

• The rotation rate of the rear wheel θR relative to the rear body frame.

Right turn and roll are considered as the positive direction. As well a forward
motion is considered the positive direction for θR. The above part of this
section gave a short description of the mechanical model, while the following
will present the linearised equations of motion and the coefficients used by
the equations. The first linear equation(Equation (2.1)) is linearised with the
assumption of straight forward and upright motion(δ = φ = 0). The equation
is valid at any constant speed. This removes any first-order coupling between

1And of course backwards, even if this is not relevant at this time
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forward motion and the steer and lean. In other words the rotational speed
of the bicycle model is not affected by the steering or lean.[

r2
RmT + IRyy +

(
rR
rF

)2
IFyy

]
θ̈R = TθR

(2.1)

Second we have the linearised equations of motion for the steer and lean
angle(δ and φ), which are a set of two coupled second-order, ordinary dif-
ferential equations with constant coefficients. These two equations are com-
bined to an equivalent set (2.2) with only the external force(Tφ and Tδ) on
the right-hand side.

Mq̈ + υC1q̇ + [gK0 + υ2K2]q = f (2.2)

The coefficients of the second linearised equations are:

• q = [φ, δ]T which is the time-varying steer and roll angles.

• f = [Tφ, Tδ]T which is the time-varying general steer and lean forces.

• M is the mass moment of inertia matrix, brings the kinetic energy into
the model.

• C1 is the damping like matrix that captures the skew-symmetric gyro-
scopic torques from turning the steer wheel and changing the roll angle.
It also captures the inertial reactions due to steer rate.

• K0 is the velocity independent stiffness matrix, brings the potential
energy into the model.

• K2 is the velocity dependant stiffness matrix, brings the gyroscopic
and centrifugal forces to the model.

To describe the different coefficients of the linearised equations below, we
need the 25 parameters described in Table 2.1. The measurement and esti-
mation of these parameters are described in Chapter 6. The equations and
notations are the same as found in [13], with subscript R corresponding to
the rear wheel, F the front wheel, B the rear body frame and H the front
handlebar frame. In addition to this T is used for the total system and A
for the front assembly(front handlebar frame and front wheel.). All calcu-
lations consider the bicycle in the upright straight forward position(neutral
position).
The definition of the total mass of the system along with the center of this
mass.

mT = mR +mB +mH +mF (2.3)
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Parameter Symbol
Wheel base ω
Trail c
Steer axis tilt λ
Gravity g
Forward speed υ
Rear wheel R

Radius rR
Mass mR

Moments of inertia (IRxx, IRyy, IRzz)
Rear body frame B

Center of mass (xB, zB)
Mass mB

Moments of inertia

IBxx 0 IBxz
0 IByy 0

IBxz 0 IBzz


Front handlebar frame H

Center of mass (xH , xH)
Mass mH

Moments of inertia

IHxx 0 IHxz
0 IHyy 0

IHxz 0 IHzz


Front wheel F

Radius rF
Mass mF

Moments of inertia (IFxx, IFyy, IFzz)

Table 2.1: Description of the 25 bicycle parameters needed to calculate the
coefficients for the linearised equations(Parameters g and υ are used in the
model but not depending on the bicycle, IByy and IHyy are not used by the
model. These four parameters comes in addition to the count of 25.).
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xT = xBmB + xHmH + ωmF

mT

(2.4)

zT = −rRmR + zBmB + zHmH − rFmF

mT

(2.5)

The definition of the total mass moment and product of inertia with respect
to the rear wheel contact point:

ITxx = IRxx + IBxx + IHxx + IFxx +mRr
2
R +mBz

2
B +mHz

2
H +mF r

2
F (2.6)

ITxz = IBxz + IHxz +mBxBzB +mHxHzH (2.7)
The moment of inertia for the wheels are the same in x and z due to symmetry
about the rotational axis giving:

IRzz = IRxx, IFzz = IFxx (2.8)

Continue to define the total mass moment and product of inertia, around the
rear wheel contact point z-axis:

ITzz = IRzz + IBzz + IHzz + IFzz +mBx
2
B +mHx

2
H +mFω

2 (2.9)

In a similar way the total mass and center of mass for the front assembly can
be defined, relative to the rear wheel contact point:

mA = mH +mF (2.10)

xA = xHmH + ωmF

mA

, zA = zHmH − rFmF

mA

(2.11)

The definition of the mass moment and product of inertia about the front
assembly center of mass:

IAxx = IHxx + IFxx +mH(zH − zA)2 +mF (rF + zA)2 (2.12)

IAxz = IHxz −mH(xH − xA)(zH − zA) +mF (ω − xA)(rF + zA) (2.13)
IAzz = IHzz + IFzz +mH(xH − xA)2 +mF (ω − xA)2 (2.14)

The position of the center of mass of the front assembly is located a small
distance in front of the steering axis and can be calculated to be:

uA = (xA − ω − c) cosλ− zA sin λ (2.15)

For the front assembly the moment of inertia about the steering axis and the
product of inertia about the global z and x axes due to acceleration about
the steer axis.

IAλλ = mAu
2
A + IAxx sin2 λ+ 2IAxz sin λ cosλ+ IAzz cos2 λ (2.16)
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IAλx = −mAuAzA + IAxx sin λ+ IAxz cosλ (2.17)

IAλz = mAuAxA + IAxz sin λ+ IAzz cosλ (2.18)

The mechanical trail ratio:
µ = c

ω
cosλ (2.19)

The gyroscopic coefficients for the rear and front wheel:

SR = IRyy
rR

, SF = IFyy
rF

, ST = SR + SF (2.20)

A frequently appearing static moment term(In conjunction with the forces
due to change in position of the center of mass for the front handlebar frame
during lean or steer.):

SA = mAuA + µmTxT (2.21)

With the above definitions and variables the matrices of the linearised equa-
tions are formed. First the mass matrix containing the mass moments of
inertia:

Mφφ = ITxx, Mφδ = IAλx + µITxz (2.22a)
Mδφ = Mφδ, Mδδ = IAλλ + 2µIAλz + µ2ITzz (2.22b)

M =
[
Mφφ Mφδ

Mδφ Mδδ

]
(2.23)

The gravity dependent stiffness matrix:

K0φφ = mT zT , K0φδ = −SA (2.24a)
K0δφ = K0φδ, K0δδ = −SA sin λ (2.24b)

K0 =
[
K0φφ K0φδ
K0δφ K0δδ

]
(2.25)

The velocity dependent stiffness matrix:

K2φφ = 0, K2φδ = ST −mT zT
ω

cosλ (2.26a)

K2δφ = 0, K2δδ = SA + SF sin λ
ω

cosλ (2.26b)

K2 =
[
K2φφ K2φδ
K2δφ K2δδ

]
(2.27)
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And finally the ’damping’2 matrix:

C1φφ = 0, C1φδ = µST + SF cosλ+ ITxz
ω

cosλ− µmT zT

(2.28a)

C1δφ = −(µST + SF cosλ), C1δδ = IAλz
ω

cosλ+ µ
(
SA + ITzz

ω
cosλ

)
(2.28b)

C1 =
[
C1φφ C1φδ
C1δφ C1δδ

]
(2.29)

2.2 Control Theory
Some of the theory described here could be considered basic knowledge for
control engineers. But it is include here in order to make this report a
complete starting point for people not familiar with the theory used. The
theory in this chapter is mostly taken from [14], [15] and [16]. In the event
of differences, the notations found in [16] are used.

2.2.1 State-Space Representation
State-Space representation is a way to describe a physical system with a set
of input, output and state variables as a mathematical model. Linear time-
invariant systems can be written on the form shown in Equation (2.30), an
illustration can be found in Figure 2.3:

ẋ = Ax+Bu (2.30a)
y = Cx+Du (2.30b)

2.2.2 Proportional(P) To Proportional-Integral-
Derivative(PID) Control

One of the most basic controller available, easily described in Figure 2.4. The
sketch describes the complete PID controller, but any controller from the P
to the PID can be described by the same sketch. To get the desired controller,
the unwanted part(s) could easily be removed. For exampled removing the
I part would result in a PD controller. It should be noted that during an

2There is no real damping in the model, but there is the damping like skew symmetric
gyroscopic torque from steer and lean rates
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Figure 2.3: State-Space representation
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Figure 2.4: PID Controller

implementation, some topics needs to be addressed. First to be noted is
the integral windup, occurring when a large change in set-point generates a
integral term larger than the maximum control signal to the process. The
system then overshoots and increases until the integral term is unwounded,
causing oscillations in the process. This should be addressed by implement-
ing some form for anti-windup, limiting the maximum integral value. Second
to be noted is a problem with the derivative term, small amounts of measure-
ment noise could cause rather large changes to the output. Some method for
removing noise should be considered during controller design, for example
low-pass filtering.
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2.2.3 Linear-Quadratic Regulator(LQR) Design
The LQR regulator is a solution to the Linear Quadratic(LQ) problem, this
is a problem described by a set of linear differential equations and a quadratic
cost function. The LQR algorithm is basically an algorithm that finds the
coefficient matrix(K) for a state-feedback controller(see Figure 2.5), based on
the supplied cost function weighting factors(Q, R and N). For a continuous

Set-point

1
1
s

-K

A

D

CB

Figure 2.5: State-feedback control of a state-space model

time system described by:
ẋ = Ax+Bu (2.31)

A optimal gain matrix K that minimises the quadratic cost function,

J(u) =
∫ ∞

0
(xTQx+ uTRu+ 2xTNu) dt where, u = −Kx (2.32)

is calculated by the following equation:

K = R−1(BTS +NT ) (2.33)

Where S is found by solving the continuous time Riccati equation:

ATS + SA− (SB +N)R−1(BTS +NT ) +Q = 0 (2.34)

The optimal gain matrix K can be calculated by the following MATLAB
function:
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[K,S,e] = LQR(A,B,Q,R,N)

The LQR regulator has the advantage of being able to handle multiple in-
puts, where the algorithm finds the optimal state-feedback matrix(K) that
minimizes the undesired behaviour specified in the weighting matrices(Q,R
and N). A disadvantage of the regulator is that the controller demands full
state feedback, which in most cases are unavailable. An observer is therefore
needed to estimate the unmeasured states.

2.2.4 Kalman Estimator
The Kalman Bucy filter is a mathematical method that can be used to esti-
mate the unmeasured states and produce estimates that are closer to the true
value than the measurement. The Kalman Bucy filter provides the optimal
solution to the continuous estimation problem:

ẋ =Ax+Bu+Gw (2.35a)
y =Cx+Du+Hw + v (2.35b)

The white process and measurement noise satisfies:

y
11

s

D

H

A

G

CB

v

w

u
1

Figure 2.6: Sketch of the Continuous State-Space model used in the estima-
tion problem

E(w) = E(v) = 0, Q = E(wwT ), R = E(vvT ), N = E(wvT ) (2.36)
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Where Q, R and N are the covariances of the noise. The optimal Kalman
Bucy filter for estimating the process states are described by the following
equation:

˙̂x = Ax̂+Bu+ L(y − Cx̂−Du) (2.37)
The Kalman Bucy filter gain is calculated by solving the following Riccati

x_
1

1
sD

A

L

C

B

y
2

u
1

Figure 2.7: Sketch of the Kalman Bucy Filter

equation:
L =

(
PCT + N̄

)
R̄−1 (2.38)

Where:
R̄ = R +HN +NTHT +HQHT (2.39)

N̄ = G
(
QHT +N

)
(2.40)

P = lim
t→∞

E
(
{x− x̂} {x− x̂}T

)
(2.41)



18 2.2. Control Theory



Chapter 3

Description Of The Existing
Bicycle

This chapter describes the Autonomous Bicycle at the start of this thesis.
The chapter describes the state of both physical hardware and software.
This chapter is mainly based on an earlier project report[7] written by the
author of this thesis. Readers interested in a more detailed description and
specifications are referred to [7].

Figure 3.1: The bicycle frame

19
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3.1 Hardware
The bicycle consists of a modern bicycle frame, as seen in Figure 3.1. The
frame is equipped with the following additional hardware:

• A propulsion motor capable of accelerating the bicycle at a rate of
about 2 − 3m/s2, with a tested top speed of more than 6.4m/s and a
theoretical top speed of about 8m/s without implementing gear shift-
ing.

• A steering motor capable of turning the steer with a rate of 317◦/s with
an acceleration above 20000◦/s2.

• A motorised inverted pendulum, simulating a leaning rider. The possi-
ble rotational speed of the pendulum is 244◦/s with acceleration similar
to the steering motor. The gear of this motor however has a backlash
of about 2◦, which is a bit too much to be able to use the pendulum
for stability control.

• Precision linear potentiometers for measuring steer and pendulum an-
gle.

• Tachometer generators for measuring motor speeds.

• XSens MTi IMU for measuring relative movement.

• A computer system case containing:

– One or two 24V 3300mAh lithium-ion polymer batteries.
– A power distribution Board, with power buttons and emergency

stop inputs.
– Power buttons and emergency stop button.
– A power converter for the 5 and 12 volt equipment.
– Three 25A motor drivers.
– Wireless router for host-target communication.
– Embedded target computer.
– Analog I/O-card, for measuring sensor input.
– I/O connection card.

The physical state of the bicycle is at a satisfying level with the exception
of the backlash in the pendulum gearbox and a noisy tachometer generator
used for measuring propulsion speed.
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3.2 Software
The software is built up as a host target environment, where the bicycles
on-board computer is the target. Any computer running windows, equipped
with a wireless network can be set up as a host system. The host platform
needs to be set up with the following software:

• QNX Software development platform(6.5.0).

• MATLAB with Simulink and RTW.

• RTW additions for QNX support1.

• Universal library2 from Diamond systems added to the QNX directory.

• Additionally a terminal interface as Putty may come handy.

With a host system up and running a Simulink model is available from [7], see
Figure 3.2. The model is set-up to generate C/C++ code with RTW, compile
the generated code for a QNX target and then upload the executable to the
target computer. It is possible to run the target system in both standalone
mode and in host-target mode with on the fly parameter tuning and value
reading from the host computer.

1Supplied on the CD attached to [7].
2Version 6.02a, also found on CD attached to [7].
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MTi
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DMM32at Read

Ad0

Ad1

Ad2
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Ad4

Figure 3.2: Simulink model containing three s-functions for input and output



Chapter 4

Modifications And Additions
To The Framework

This chapter describes the modifications performed on the bicycle and the
additions made to the Simulink model prior to the implementation of a con-
trol system.

4.1 Incremental Encoder
The propulsion tachometer generator was removed and an incremental en-
coder was attached for measuring the forward speed, see Figure 4.1. The
transmission between the encoder and the motor was also changed from the
rubber band used on the tachometer generator to a spur gear 1:1 transmis-
sion. The specifications of the encoder can be found in Table 4.1.

23
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Figure 4.1: Incremental encoder mounted to the propulsion motor

Producer Avago Technologies
Type Optical Encoder
Number of channels 2
Output TTL Quadrature
Max. rotational speed 2000rpm
Supply voltage 4.5V to 5.5V
Number of pulses 500 ppr
Rotational life cycles 12000000
Operating temperature −20◦C to +85◦C
Supply current 17mA to 40mA
High level output voltage Min. 2.4V
High level output current −40µA Max.
Low level output voltage Max. 0.4V
Low level output current 3.2mA

Table 4.1: Specifications for the incremental encoder

To be able to read the quadrature signal from the encoder, a printed circuit
board(PCB) was designed featuring an Atmel xmega, see Appendix B. The
board is equipped with a 3.3V linear regulator and level transceivers. The
board reads the quadrature signal and outputs an analog voltage signal to
be read by the analog I/O card. Figure 4.2 gives a short visualisation of how
an incremental encoder works and shows the quadrature signal generated.
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The software written for the xmega can be found on the CD attached to this
thesis.

Sensors 

LED 

Rotation 

Phase A 
 

Phase B 

Figure 4.2: Brief visual description of an incremental encoder and the pro-
duced quadrature signal

4.2 Simulink Model
This section describes the changes done to the Simulink model before imple-
menting a controller. This includes tasks as scaling, calibration, edge limiting
and signal orientation changes.

4.2.1 Scaling And Calibration Of Analog Input And
Output

Scaling and calibration of the analog input and outputs were implemented
into the Simulink model. Figure 4.3 shows the simulink diagram for scaling
the motor output signals, it also includes saturation to ensure that the value
written is in the 0 to 4095 integer range. Figure 4.4 shows the Simulink
diagram for scaling and calibration of the sensor readings. The gain is set to
scale the read values into degrees1 for the steer and pendulum. The steer and
pendulum values were calibrated with the neutral position corresponding to
a angle of 0. While the propulsion reading were scaled to correspond to the
forward speed in m/s.

1During the implementation of a controller or observer based on the linearised model,
the values needs to be converted to radians.
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Figure 4.3: Analog output scaling
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4.2.2 Edge Limiting The Steering And Pendulum Mo-
tor

The steer and pendulum movement are limited by the geometry of the bicycle.
To protect the steer and pendulum from hitting the bicycle due to faults in
the controller design, a progressive edge limiter were implemented, as shown
in Figure 4.5. The progressive edge limiter gradually limits the steer or
pendulum to move outside the -60 to 60 degree region. This is performed
from ±60 to ±90 degrees by gradually giving more control to the edge limiter.
The functionality is described by the following pseudo code, a plot of the
output compared to the input and the measured angle can be seen in Figure
4.6.

if MeasAngle > 60 then
Ratio = (MeasAngle− 60)/30
if Ratio > 1 then
Ratio = 1

end if
else if MeasAngle < −60 then
Ratio = (MeasAngle+ 60)/30
if Ratio < −1 then
Ratio = −1

end if
else
Ratio = MeasAngle

end if
if Torque > 24 then
TorqueSat = 24

else if Torque < −24 then
TorqueSat = −24

else
TorqueSat = Torque

end if
MotorTrust = TorqueSat ∗ (1− abs(Ratio))− 24 ∗Ratio
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Figure 4.5: Simulink diagram of the progressive edge limiter
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Figure 4.6: Plot showing the output of the edge limiter versus the input and
measured angle. It is shown by the plot that in the ±60 to ±90 region, the
output becomes gradually independent of the input value as it gets more
dependent of the measured angle.
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4.2.3 Orientation Changes To The IMU Roll Signal
The IMU roll angle outputs a signal from -180 to 180 degrees, during a 360
degree rotation the signal wraps around from 180 to -180. This wraparound
would normally not occur on the roll angle, but due to the mounting direction
the wraparound happens when the bicycle changes from a left lean to a right
lean and the other way around. To encounter this the logic shown in pseudo
code below for flipping the signal was implemented in Simulink, see Figure
4.7.

if ReadAngle > 0 then
Angle = ReadAngle− 180

else
Angle = ReadAngle+ 180

end if

Angle
1

Merge

Merge

If Action
Subsystem1

else { }
In1 Out1

If Action
Subsystem

if { }
In1 Out1

If

u1
if(u1 > 0)

elseReadAngle
1

Figure 4.7: Simulink diagram showing the change of roll orientation logic.

4.2.4 Free Rotation Of The IMU Yaw Signal
The IMU yaw angle outputs a signal from -180 to 180 degrees, during a 360
degree rotation the signal wraps around from 180 to -180. To use this mea-
surement we need to remove the wraparound, since this could cause serious
problems in a control loop. The simplest way to remove this is to add 360
degrees to the signal for every wraparound from +180 to -180 and subtract
360 degrees for every wraparound from -180 to +180. The implementation
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does not take care of variable overflow since this is not a problem in the fore-
seen future, since the offset is reset to zero every program start. It is possible
to create a free rotation overflow safe function, but this is more complex as
it is needed to be handled simultaneously in a controller2. Pseudo code of
the free rotation logic can be found below, see Figure 4.8 for the Simulink
diagram. A plot showing the response of the logic can be seen in Figure 4.9.

if (LastReadAngle−ReadAngle) > 180 then
Offset = Offset+ 360

else if (LastReadAngle−ReadAngle) < −180 then
Offset = Offset− 360

end if
Angle = Offset+ReadAngle

Angle
1

Unit Delay3
z

1

Unit Delay2
z

1

Merge 
Offset

Merge

If1

u1

if(u1>180)

elseif(u1<-180)

else

-360

Action
Offset Offset -360

+360

Action
Offset Offset +360

+0

Action
Offset Offset Unchanged

ReadAngle
1

Figure 4.8: Simulink diagram showing the free rotation logic.

2Can be performed by resetting the added offset simultaneously in both the control
loop and the read value
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Figure 4.9: Plot showing the result of the free rotation logic. It can be
seen that the angle output continues to rotate during a wraparound in both
directions.
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4.2.5 Total Simulink Model
The various additions to the Simulink described in this chapter were com-
bined and masked in two different subsystems. One for the MTi containing
the MTi s-function block, roll orient change and the free 360 degree rota-
tion of the yaw signal. And a Second subsystem containing the rest. The
Simulink framework creates can be seen in Figure 4.10.
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w/yaw free 360 rotation
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yaw deg
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Steering Voltage +-24

Pendulum Voltage +-24

Propulsion Voltage 0->+24

Steering pos deg

Pendulum pos deg

Propulsion speed m/s

Figure 4.10: The Simulink framework, ready for controller implementation



Chapter 5

The Catastrophe

After one of the first successful self balanced bicycle rides, a major catastro-
phe occurred. The steer planetary gearbox broke down during a test ride, 10
weeks before the final delivery of the thesis. The task of delivering a self bal-
ancing bicycle seemed almost impossible. There could be several reasons for
the breakdown, since the total history of the gearbox is unknown. The most
likely solution is that the total of the opposite directed forces from the motor
and steer were higher than the gearbox could handle. The simplest solution
of replacing the gearbox could end up being just a waist of time and money.
Because of this a redesign of the total steer gearbox and transmission com-
bination were performed. The gearbox were dismantled to investigate what
part of the gearbox that broke down. The outer upper part of the third stage
of the planetary gearbox, shown in Figure 5.1, had broken loose from the the
output shaft of the gearbox, identified as the small shaft in the center on the
image. Due to lack of time and the delivery time of suitable planetary gears,
several parallel solutions were set in motion.

5.1 Fixing The Existing Gearbox
As a temporary solution, the current gearbox were fixed by welding the
broken joint together. The attempt on fixing the gearbox failed, this can be
seen in Figure 5.2. This supports the theory of the joint being exposed to
forces above the breakdown rating of the gearbox.

5.2 New Gearbox And Transmission
The previous steer gearbox and transmission solution were not an ideal so-
lution. The planetary gearbox had a gear ratio of 91.12:1, larger than the
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Figure 5.1: Image showing the broken third stage of the planetary gearbox.

desired gear ratio. To compensate for this the transmission were built up
of two spur gears with a ratio of 1:2. This gave the previous combination a
lower combined gear ratio, with the drawback of doubling the forces on the
planetary gearbox output shaft. The previous solution had a total gear ratio
from motor to steer axis of 45.56:1, which seemed to be sufficient. With more
than enough torque to move the steer during rides. There are at least three
different solutions to the problem:

1. Ordering a new planetary gearbox with the same gear ratio capable of
handling higher forces.

2. Ordering a new planetary gearbox with a ratio about 45:1 and a new
transmission without a gear ratio.

3. Ordering a new planetary gearbox with a ratio significantly lower than
45:1 and a transmission with a gear ratio that corresponds to the se-
lected planetary gear ratio.

Since it was a lack of time, several distributors of motors and gears were
contacted to see which solutions they could deliver at a short notice. The
only distributor capable of delivering a suitable planetary gearbox within the
time and budget limits were Stork Drives in Sweden. They could deliver a
15:1 planetary gearbox in 5 weeks. The gearbox were of the same brand and
series as the previous one, making us able to reuse the motor without any
modifications. To be able to use the planetary gear above a, new transmission
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Figure 5.2: Image showing the result of the gearbox fixing, it broke again.

with a gear ratio around 3:1 were needed. Aratron located in Oslo could
deliver spur gears with 45 and 120 teeth, in only 3 weeks from the ordering
date. This would give a new total gear ratio of 40:11, with a slightly lowered
output torque. When changing the transmission some modifications were
performed on the steer motor bracket and the mechanical department created
a new steer potentiometer bracket, based on the previous design. They also
helped with milling the new spur gear, so they would fit on the steer and
motor axes. The new steer gear and transmission assembly can be seen in
Figure 5.3. With the new solution the output shaft of the planetary gearbox
is only exposed to 1

6 of the forces compared to the previous solution, and
should be more than capable of handling the torque. Technical data for the
new steer motor and gear assembly can be found in Appendix C

115:1 and 120:45 gives a total ratio of 15∗120
1∗45 = 1
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Figure 5.3: Image showing the new steer gear and transmission assembly



Chapter 6

Measurement of Bicycle
Parameters

This chapter describes the measurment of the different parameters needed for
the Whipple bicycle model described in Chapter 2.1. Most of the methods,
theory and equations used in this chapter are taken from [17]. The notations
however correspond with the ones found in [13]. Figure 6.1 places some of
the parameters in a bicycle sketch.

λht 

λbt 

λtt 

λ 

rF rR 

ω 

c 

βB3 

z x 

λst 
βB1 

βB2 

βH1 

βH2 

βH3 

cmR cmF 

cmH 

cmB 

cmT(total) 

Figure 6.1: Different parameters of the bicycle.
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6.1 Wheel Radius
The radius was measured by measuring how long each wheel traversed during
15 rotations. The length measurements were performed with a 50m long tape
measure with a resolution of 1mm and an estimated measurement accuracy
of ±10mm. The measurements were performed with the tires pumped up to
approximately 40psi. The wheel radius were calculated with the following
formula where d is the measured length:

r = d

2πn (6.1)

The front wheel traversed length were measured to 30.178m and the rear
wheel traversed length were measured to 30.202m. The radius for the front
and rear wheel were calculated using Equation (6.1):

rF = 0.3202m (6.2)

rR = 0.3205m (6.3)

6.2 Tube Angles
The angle of the tubes were measured manually with a protractor. The tube
angles were measured against a table that was measured to be parallel to
ground. The bicycle were standing on the ground with the tires pumped
up to approximately 40psi. The protractor had a resolution of 1◦ and the
measurements are considered to have an accuracy of ±1◦. The tube angles
were measured to:

λht = 70◦ (6.4)

λtt = 10◦ (6.5)

λst = 74◦ (6.6)

λbt = 43◦ (6.7)

The steer axis tilt is the complement to the head angle and can be calculated
from the measurement:

λ = 20◦ (6.8)
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6.3 Trail
To calculate trail the fork offset were measured with a vernier caliper with a
resolution of 0.05mm. The measurement were performed with the fork lying
on a table, supported such as the steer axis were parallel to the table. The
distance from the table to the center of the head tube and the distance from
the table to the center of the axle axis were measured. The accuracy of the
measurements were considered to be ±1mm. The distance from the axle
center to the table were measured to 73mm and the distance from the head
tube center were measured to fo = 35mm. The trail were calculated from
the following formula.

c = rF sinλ− fo
cosλ

(6.9)

c = 0.079m (6.10)

6.4 Wheelbase
The wheelbase is the distance between the center of the wheels and were
measured directly with a 5m long tape measure with a resolution of 1mm
and a accuracy of ±1mm.

ω = 1.051m (6.11)

6.5 Mass
The mass of the front handlebar frame, front wheel and rear wheel were
measured with 5kg scale with a resolution of 1g and the accuracy of ±1g.
The rear body frame were measured with a digital bathroom scale with a
resolution of 100g, the accuracy is assumed to be ±100g.

mH = 3.283kg (6.12)

mF = 2.055kg (6.13)
mR = 2.680kg (6.14)
mB = 23.1kg (6.15)

6.6 Center of Mass
The center of mass for the four parts of the bicycle are calculated in this
chapter. The calculations in this chapter were calculated with the help of
MATLAB and can be found in Appendix A.1.
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6.6.1 Wheels
To comply with the Whipple bicycle model the center of mass of the wheels
are assumed to be at the geometric center of the wheels. The center of mass
of the wheels in the global coordinate system are described by the following
equations:

cmF =
[
xF yF zF

]
=
[
ω 0 −rF

]
(6.16a)

cmR =
[
xR yR zR

]
=
[
0 0 −rR

]
(6.16b)

cmF =
[
1.0510 0 −0.3202

]
(6.17a)

cmR =
[
0 0 −0.3205

]
(6.17b)

6.6.2 Rear Body Frame
The center of mass for the rear body frame were calculated from measure-
ments performed during the torsion pendulum measurements. The rear body
frame were in the measurements hung in three different angles with respec-
tively the top tube, seat tube and the sloped tube parallel to ground, the
angles can be seen in Figure 6.1. The frame were hung such that the cen-
ter of mass would be in the extension of the pendulum arm. The angle of
the tubes where measured with a level to ensure that the angle offset from
horizontal would be close to zero. The accuracy of the angles are considered
to be within ±1◦ from horizontal. The horizontal distance between the rear
axle and the extension of the pendulum were measured. Together with the
tube angles the position of the center of mass can be calculate. The center
of mass is calculated by looking at the pendulum axis as a line in the global
xz coordinate system, with a slope m, a z-intercept b and a angle β between
the global x-axis and the pendulum arm with positive direction downwards.
The slope and z-intercept can be shown to be:

mi = − tan βi (6.18)

bi = −
(
aBi

cos βi
+ rR

)
(6.19)

The horizontal distance aB and β angles:

aB =

0.1690
0.4715
0.5355

m (6.20)
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βB =

196◦
100◦
313◦

 (6.21)

The center of mass can be calculated by finding the intersection between
these three lines. This is done by calculating the intersection between two
and two lines. Equations for the intersection between line 1 and 2 can be
found below, while the equations for the other line intersections can easily
be derived from the equation for line 1 and 2.[

−m1 1
−m2 1

] [
xa
za

]
=
[
b1
b2

]
(6.22)

Then the three intersections were averaged to get a more accurate position
for the center of mass:

xB = xa + xb + xc
3 (6.23)

zB = za + zb + zc
3 (6.24)

The center of mass is then described by the following:

cmB =
[
xB 0 zB

]
(6.25)

cmB =
[
0.4314 0 −0.6330

]
(6.26)

6.6.3 Front Handlebar Frame
The center of mass for the front handlebar frame was found in a similar
way as the rear body frame. The front handlebar frame was hung in two
different directions, first with the steer axis horizontal and then with the
steer axis vertical. Both directions with the center of mass in the extension
of the pendulum arm. The horizontal distance aH from the extension of the
pendulum to the front axle were measured and the β angles:

aH =
[

0.429
−0.003

]
m (6.27)

βH =
[

20◦
290◦

]
(6.28)

The z-intercept used to calculate the front handlebar frame center of mass is
changed to:

bi = w tan (βi)− rF −
(
aHi

cos βi

)
(6.29)
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The center of mass is found from only two lines, and the center of mass is
found by solving Equation (6.22). The center of mass is given by the following
matrix:

cmH =
[
xa 0 za

]
(6.30)

cmH =
[
0.9015 0 −0.7223

]
(6.31)

6.7 Moment of Inertia
The moment of inertia were measured with the assumption that the bicycle
is symmetric about the xz mid-plane. The moment of inertia around the x
and z axes was measured using a torsional pendulum, while the moment of
inertia around the y-axis were measured with a compound pendulum. The
oscillations were measured with a stop watch with a resolution of 1

10 of a
second. The time was measured for a duration between 10 to 30 oscillations
depending on the frequency, each measurement were performed three times.
All calculations were done with MATLAB and can be found in Appendix
A.2.

6.7.1 Torsional Pendulum
A torsion pendulum was created for measuring the moment of inertia around
the x and z axes, as seen in figure 6.2. The torsional pendulum consists of
three parts, a torsion rod, an upper clamp used to fasten the torsion rod to
the roof, and a variation of lower clamp combinations to fasten the bicycle
to the torsion rod. The lower clamp is hinged by a bolt and the part being
measured were hung in the torsion pendulum with the bolt loose to ensure
that the center of mass were align in the extension of the pendulum arm.
The tube connected to the pendulum were controlled to be horizontal with
a level before tightened the bolt. The angles are assumed to be withing the
accuracy of ±1◦. The torsion pendulum were calibrated against a cylindrical
rod as seen in figure 6.2, with a known moment of inertia calculated by the
following equation:

Icalib = mcalib

12
(
3 rcalib2 + lcalib

2
)

(6.32)

The measured times for ν = 20 oscillation for the calibration rod:

tcalib =

54.0
53.9
53.8

 s (6.33)
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Figure 6.2: The torsion pendulum with the calibration rod mounted

The average oscillation period time can be calculated by the following equa-
tion:

T = t1 + t2 + t3
3ν (6.34)

Together with the known moment of inertia for the calibration rod, the stiff-
ness of the torsional pendulum can be estimated by the following equation:

k = 4 Icalibπ2

T calib
2 (6.35)

When using the torsional pendulum the moment of inertia around the pen-
dulum axis can be found by the following equation:

J = kT
2

4π2 (6.36)

6.7.2 Compound Pendulum
To measure the moment of inertia about the y-axis the principle of a com-
pound pendulum were used. For the wheels a small plastic block with a hole
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in it where mounted to the inner rim of the wheel, and then the wheel were
hung on a bolt mounted to a staircase. The moment of inertia can then be
calculated from the oscillation time with Equation (6.37), where m is the
mass and l is the length from the rotation point to the center of mass of the
part measured.

Iyy =
(
T

2π

)2

mglc −ml2c (6.37)

6.7.3 Wheels
The wheels moment of inertia is quite easy to find as it is assume that the
wheels are symmetric about the three orthogonal planes. The moment of
inertia around the x and z axes are identical and were measured by hanging
the wheel in the torsional pendulum as seen in figure 6.3(a) and 6.3(b). The
moment of inertia around the y axis were measured by hanging the wheels
as a compound pendulum as seen in Figure 6.4(a) and 6.4(b). The torsional

(a) Front wheel (b) Rear wheel

Figure 6.3: The torsion pendulum with the wheels mounted

and compound pendulum measurements were performed measuring the time
for ν = 30 oscillations:

tFxz =

54.6
54.5
54.7

 s (6.38)

tRxz =

55.9
55.8
55.7

 s (6.39)
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(a) Front wheel (b) Rear wheel

tFy =

44.1
44.1
44.2

 s (6.40)

tRy =

42.0
41.9
42.1

 s (6.41)

The moment of inertia for the x and z axis can be calculated with Equation
(6.34) and (6.36). While the moment of inertia for the y axis can be calculated
with Equation (6.34) and (6.37) with the length of the pendulum lcfw

= lcrw =
0.265m, the measured distance from the rotational axis of the compound
pendulum to the center of the wheel. The moment of inertia for the front(IF )
and the rear(IR) wheel:

IF =
[
0.0758 0.1577 0.0758

]
(6.42)

IB =
[
0.0726 0.1485 0.0726

]
(6.43)

6.7.4 Rear Body Frame
For the rear body frame only the moment of inertia about the x and z axis
were needed. The rear body frame moment of inertia were measured with
the torsional pendulum, the rear body frame were hung in three different
angles perpendicular to the top, seat and bottom tubes. The measurements
were performed measuring the time for ν = 30 oscillations, the β angles are
the same as for the center of mass calculations and can be found in Matrix
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(c) Top tube torsional pendulum (d) Bottom tube torsional pendulum

Figure 6.4: Measurements performed on the rear body frame

(6.21).

tBst =

77.1
77.1
77.2

 s (6.44)

tBtt =

84.1
84.0
84.1

 s (6.45)

tBbt
=

82.2
81.8
82.0

 s (6.46)

The moment of inertia about the pendulum axes can be calculated by Equa-
tion (6.34) and (6.36). The moment of inertia about the global x and z axes
can be calculated by formulating the relation between the inertial frames:

Ji = RiIRT
i (6.47)

Ji is the moment of inertia about the pendulum axes. I is the moment of
inertia about the global reference plain. And Ri is the rotational matrix
relating the frames. The I and Ri matrices are reduced to 2 × 2 matrices
since the y axis of the two frames are the same and the two frames are
assumed lateral symmetric:

I =
[
Ixx Ixz
Ixz Izz

]
(6.48)
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Ri =
[
cos βi − sin βi
sin βi cos βi

]
(6.49)

The complete Ji can be calculated, but only the first entry is needed:

Ji = cos2 βiIxx − 2 sin βi cos βiIxz + sin2 βiIzz (6.50)

This allows us to form:J1
J2
J3

 =

cos2 β1 −2 sin β1 cos β1 sin2 β1
cos2 β2 −2 sin β2 cos β2 sin2 β2
cos2 β3 −2 sin β3 cos β3 sin2 β3


IxxIxz
Izz

 (6.51)

The moment of inertia can then be described by the following matrix:

I =

Ixx 0 Ixz
0 Iyy 0
Ixz 0 Izz

 (6.52)

The inertia for the rear body frame, Iyy is set to zero since it is not used by
the linearised equations:

IB =

1.3083 0 0.0421
0 0 0

0.0421 0 1.5411

 (6.53)

6.7.5 Front Handlebar Frame
The moment of inertia for the front handlebar frame is found by using the
torsional pendulum for finding the moment of inertia about the x and z
axes. The torsional measurements and calculations are much the same as
for the rear wheel with the following βH angles, tH times and νH number of
oscillations:

νH =

20
30
20

 times (6.54)

βH =

 20◦
290◦
147◦

 (6.55)

tH1 =

55.2
55.3
55.3

 s (6.56)
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tH2 =

40.1
40.0
40.2

 s (6.57)

tH3 =

46.0
46.0
46.1

 s (6.58)

The moment of inertia for the front handlebar frame can be written on the
form seen in Equation (6.52), IHyy is set to zero as it us not used by the
linearised equations:

IH =

 0.1727 0 −0.0169
0 0 0

−0.0169 0 0.0337

 (6.59)

(a) Torsion pendulum β = 290◦ (b) Torsion pendulum β = 147◦

Figure 6.5: Front handlebar frame measurements



Chapter 7

Simulation

7.1 Simulation Environment
This section describes the Simulink simulation model developed during this
thesis.

7.1.1 Bicycle Model
The bicycle model described in Chapter 2.1 were modelled with the parame-
ters found in Chapter 6. The parameters measured, estimated and calculated
in Chapter 6 are found in Appendix A.3. The equations were calculated with
the help of MATLAB, with the code found in Appendix A.4. The code cal-
culates the 4 matrices below, needed to complete the model described by
Equation (2.2).

M =
[
13.3618 0.8151
0.8151 0.2094

]
(7.1a)

K0 =
[
−18.7346 −1.2343
−1.2343 −0.4222

]
(7.1b)

K2 =
[
0 17.6051
0 1.2454

]
(7.1c)

C1 =
[

0 10.0187
−0.5033 1.0098

]
(7.1d)

Equation (2.2) can be arranged in the following form:

q̈ = M−1
(
f − υC1q̇ − [gK0 + υ2K2]q

)
(7.2)

Equation (7.2) was used to create a model of the bicycle in Simulink, as seen
in Figure 7.1.

49
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Figure 7.1: Simulink diagram of the bicycle model described in Equation
(7.2).

7.1.2 Environment
A simulation environment were built around the model implemented in sec-
tion 7.1.1, as seen in Figure 7.2. This environment includes real captured
measurement noise and simulated process noise(See Chapter 7.1.3.). The
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Figure 7.2: Simulink diagram of the simulation environment

simulator has the following features:
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• Possible to turn measurement noise on and off.

• Possible to simulate external force on the roll angle, force magnitude,
start-time and duration are user selectable.

• Possible to select different set-point signals from a pop-up menu.

• Saves set-point, Tφ, Tδ, states and the measured signals to workspace.

7.1.3 Process And Measurement Noise

For use in the simulation environment described in Chapter 7.1.2, a series of
measurement noise samples were recorded. This recording was performed by
capturing a 60s sample series from the physical bicycle, while standing still.
This was done by connecting the scaled and calibrated inputs described in
Chapter 4.2 to a Simulink ”To Workspace” block. The mean of each captured
signal were subtracted from the corresponding signal to form each captured
noise sample. For the roll, yaw and pitch signals, the small back and forth
drift is kept to have a signal as close to the real world as possible. Figure 7.3
shows the noise measurement for the steer and the roll angle measurements.
The measurement variance for the steer and roll angle measurement were
calculated with the help of MATLAB function ’COV’1:

Eroll meas noise = 0.0180 (7.3)

Esteer meas noise = 0.0115 (7.4)

The simulation environment uses the following variance for process noise:

Eroll process noise = 0.2 (7.5)

Esteer process noise = 0 (7.6)

1MATLAB function ’COV(x)’ calculates the variance from a vector ’x’.
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Figure 7.3: Plot showing the real captured measurement noise for the steer
and roll angle measurement.

7.2 Controller Simulations

This section describes the simulation of different controllers.

7.2.1 Proportional(P) Control

A controller containing two P regulators in cascade as shown in Figure 7.4
was simulated. The result of the simulation can be found in Figure 7.5. From
the result it can be seen that a simple P controller is quite robust and capable
of balancing the simulated bicycle.
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Figure 7.4: Simulink diagram of two P controllers, an inner loop for the
steering position and an outer loop for the bicycle roll angle
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Figure 7.5: Simulation plots for the P controller

7.2.2 Linear-Quadratic Regulator(LQR) Control

To be able to solve the LQ problem and create a LQR regulator, the system
has to be described on state-space form, as described in chapter 2.2.1. A
linear system as the one described by Equation (2.2), can be written on
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state-space form by defining x1 = q and x2 = q̇ giving:(
ẋ1
ẋ2

)
=
(

x2
M−1(x1) [−f(x1, x2) + u]

)
[14]2 (7.7)

This gives us the following matrices for representing Equation (2.2) on state-
space form:

A =

 0 0
0 0

1 0
0 1

M−1 (−K0 − (K2 ∗ v2)) M−1 (−C1v)

 (7.8)

B =

0 0
1 0
M−1

 (7.9)

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (7.10)

D = 0 (7.11)
The optimal gain matrix K was found using MATLAB(as described in Chap-
ter 2.2.3), for the following R and Q weighting matrices, the matrices pe-
nalises offsets on the roll angle. MATLAB code for calculating the LQR
controller can be found in Appendix A.5.

RLQR =
[

1
500

]
(7.12)

QLQR =


1 0 0 0
0 1

500 0 0
0 0 1

500 0
0 0 0 1

500

 (7.13)

The controller was implemented in Simulink as shown in Figure 7.6. The
environment were changed to input the four model states(qφ, qδ, q̇φ and q̇δ)
instead of the simulated measurements to the controller. From the simulation
results found in Figure 7.7, it can be seen that the generated gain matrix K
is capable of stabilising the bicycle. There is a small linear offset with respect
to the roll angle set-point, but this can easily be removed by adjusting the
scale offset.

2Note that in the equation u corresponds to the general steer and lean forces(f) in
Equation (2.2), while f corresponds to the K0, K2 and C1 matrices.
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Figure 7.6: Simulink diagram of the ideal LQR controller, all states available
directly from the model
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Figure 7.7: Simulation plots for the LQR controller

7.2.3 Linear-Quadratic-Gaussian(LQG) control
The LQR controller created in the previous sub-section needs access to all
process states. All states are not measured on the physical bicycle and the
states needs to be estimated with an observer. The combination of using a
Kalman filter for estimating the states and a LQR controller is called LQG.
A Kalman Bucy filter as described in Chapter 2.2.4 is suitable as an observer
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for estimating the four states from the simulated measurements. The Kalman
Bucy filter was implemented in simulink as shown in Figure 7.8 and is used
to estimate the states used by the LQR controller implemented in Chapter
7.2.2.
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s
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A

K*u

Sensor
Read y

2

u
1

Figure 7.8: Simulink diagram showing the Kalman Bucy filter

The Kalman Bucy filter was created with the covariance matrices found in
Equation (7.14) and (7.15). For use in the Kalman Bucy filter design the
variance from Chapter 7.1.3 was used as a starting point. The variance for
the process steer state were tuned from 0 to 4 to get the observer to be able
to estimate the correct steer rate. Attempts on tuning the noise variance
to be able to estimate the correct roll rate were performed without any no-
table significance on the result. Before tuning the process noise variance the
controller handled external forces very badly, as seen in Figure 7.9. The sim-
ulation result of the LQG controller after tuning the process noise variance
can be seen in Figure 7.10. Figure 7.12 compares the estimated states with
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Figure 7.9: Simulation plots for the LQG controller before tuning process
noise variance

the true states after the process noise variance tuning. MATLAB code for
generating the Kalman Bucy filter can be found in Appendix A.5.

QKalman =
[
0.2 0
0 4

]
(7.14)

RKalman =
[
0.0180 0

0 0.0115

]
(7.15)

After tuning the Kalman Bucy filter the LQR regulator was tuned by in-
creasing the weighting of roll angle in the QLQR matrix. The result of this
tuning can be seen in Figure 7.11.

QLQR =


1000 0 0 0

0 1
500 0 0

0 0 1
500 0

0 0 0 1
500

 (7.16)
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Figure 7.10: Simulation plots for the LQG controller after tuning process
noise variance

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

Time(s)

D
eg

re
es

 −
 F

or
ce

(N
)

Setpoint Roll Angle = 0, 10N external force from t=20s to t=40s

 

 
Roll External Force(N)
True Roll Angle(deg)
True Steer Angle(deg)
Estimated Roll Angle(deg)
Estimated Steer Angle(deg)

0 10 20 30 40 50 60
−15

−10

−5

0

5

10

15

Time(s)

D
eg

re
es

Sine Wave Setpoint(Amplitude = 10deg, Frequency = 15deg/sec) , no external force

 

 
Roll Angle Set−Point(deg)
True Roll Angle(deg)
True Steer Angle(deg)
Estimated Roll Angle(deg)
Estimated Steer Angle(deg)

Figure 7.11: Simulation plots for the LQG controller after tuning both pro-
cess noise variance and the LQR regulator
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Figure 7.12: Simulation plots comparing the true states versus the estimated
states
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7.2.4 Discussion And Comparison Of The Simulated
Controllers

It can be seen from the results from the simulations, that both the P and
the LQG controller are capable of balancing the simulated bicycle. It can
be seen by comparing the simulation plots that LQG controller deals with
external forces better than the P controller. It could be able to tune the
LQG controller even more, but there is no reason for doing so since the
LQG controller would need to be tuned before implemented on the physical
bicycle. The LQG controller has the advantage over the P controller when
it comes to flexibility in the term of handling multiple inputs. While the P
controller has the advantage of being very simple and not dependant on a
mathematical model of the system.



Chapter 8

Real World Self Balancing

This chapter describes the work performed to implement a self balancing
controller on the physical bicycle, and the implementation of a controller for
the propulsion speed. The P and LQG controller simulated in Chapter 7.2
were both capable of balancing the simulated bicycle. The P-controller has
the advantage of being able to control the bicycle with feedback directly from
the measured angles. The model and observer of the LQG controller needs to
be verified before being used, and most likely tuned before being capable of
balancing the bicycle. One way of verifying and tuning the observer would be
to use motor set-point and measurements from a self balanced ride performed
with the P controller. By logging the output of the controller together with
the measurements and see if the observer is capable of estimating correct
values. It were selected to first try out the P controller and than implement
the LQG controller depending on the performance of the P controller.

8.1 Propulsion Speed Controller
The bicycle has a free rotation hub on the rear wheel and not equipped with
brakes. This gives no possibility to physically slow down the bicycle, except
waiting for the forward friction and air resistance to slow it down. Since there
is no need for braking capabilities during this thesis, the choice of selecting
which method for implementing braking capabilities are left for the future.
This slightly complicates the implementation of a speed controller. The con-
troller implemented is a PI controller without feedback on the proportional
part. The controller is implemented with two sets of parameters, one set used
when running and one set used during the start to reduce the time used for
accelerating to the desired speed. The regulator is implemented in Simulink
as two different regulators with a switch changing from the first to the second
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controller just before the set point speed is reached. An illustration of the
controller can be seen in Figure 8.1. The controller was tuned with a person
running alongside the bicycle for stability.

Out1
1

Switch1 SwitchStep

Sat1

Relay

P1

4

P

3

Integrator1

1
s

Integrator

1
s

I1

5

I

1.4

Constant

3.2

Add1

Add

speed meas
1

Figure 8.1: Simulink diagram of the propulsion speed controller.

8.2 Self Balance With A P Controller
The P controller simulated in Chapter 7.2.1 was implemented into the Simulink
framework as seen in Figure 8.2 and 8.4. In the simulation model the steering
position is controlled by applying an external torque on the steer axis, while
on the physical bicycle the the voltage applied to the motor is controlled. The
steer angle controller were initially tuned standing still, before the first test
ride to compensate for the differences between the model and the physical
bicycle. The response of the steer angle controller when standing still can be
seen in Figure 8.3. After tuning the steer angle controller, the roll angle con-
troller was tuned to balance the bicycle. During one of the first rides trying
to tune the controller a catastrophe occurred, the steering planetary gearbox
broke down. Chapter 5 describes the gear box breakdown and the work of
replacing it. Due to this event there was only enough time to implement one
controller, the P controller were able to balance the bicycle. It can be seen
in Figure 8.6 that a P gain of 2 results in satisfying balance of the bicycle.
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When looking at Figure 8.6 is it important to compare the result with mea-
surement noise, IMU back and forth drift and the actual movement of the
bicycle. It can be seen in the video on the CD attached to the thesis that
this controller is good enough for real world self balance. The small offset
seen in the figure indicates that the bicycle has a small drift to the right.
This is by the controller compensated for with a negative movement of the
steer1 in order to balance the bicycle. The offset of the roll angle is probably
caused by a combination of the sensor offset, noise, drift and external forces
acting on the bicycle.
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Controller
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Controller
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Offset Scale
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Roll Angle Set Point(rad)
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1

Figure 8.2: Simulink diagram of the controller implemented on the physical
bicycle.
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Figure 8.3: Plot showing the steer angle controller response.

1The roll and steer measurements are positive in different directions.
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Figure 8.4: The total Simulink diagram for the physical bicycle.
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Figure 8.5: Plot showing the roll angle controller response.
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Figure 8.6: An image showing the bicycle during one of the test rides.



Chapter 9

Roadmap For Further Work

The bicycle is know finally capable of performing a self balanced ride. While
the primary focus of this thesis has been to deliver a working self balanced
bicycle, there has been an equally important secondary focus on delivering a
complete functional hardware and software framework for the further devel-
opment on the bicycle. This chapter is a recommendation on how to further
develop the bicycle. The various tasks below are described in the order that
the author would recommend further development. The chapter includes
some possible solutions for solving some of the task, this should not be seen
as a blueprint on how it should be solved, but more as an idea of a solution.

9.1 Braking Capabilities

One of the things that might come handy in the development of a low to
zero speed controller is the ability to slow down the bicycle. This to better
control and measure the actual speed of the bicycle. The author could think
of two ways for implementing braking capabilities to the bicycle. By using
either the propulsion motor or the bicycle brakes.

9.1.1 Motor Brake

Using the propulsion motor for braking is the simplest solution. To enable
this all that needs to be done is to block the free rotation hub, change the
lower analog output saturation from 0 to -2048 and implement a new speed
controller.
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9.1.2 Bicycle Brakes
To use the bicycle brakes there are needed to add servos capable of powering
the brakes. Then the motors need to be interfaced to the computer system
and at last a new speed controller fusing the propulsion and brake would need
to be implemented. The current computer system have no direct method for
controlling a brake servo, one solution could be to implement support for the
digital outputs on the I/O card and use these to control the brakes.

9.2 Verifying And Updating The Model
The bicycle is now equipped with a functional controller and before perform-
ing further development, a verification and update of the model against the
physical bicycle should be performed. One way to update the model could be
to use MATLAB ’System Identification Toolbox’ to identify the state-space
matrices from the measured system input and output of the physical bicycle.

9.3 Leaning Rider - Low To Zero Forward
Speed Balance

One of the goals for the Autonomous Bicycle to distinguish it from other
project is the simulated leaning rider in form of an inverted pendulum. The
inverted pendulum currently attached to the bicycle is fully controllable from
the Simulink model, but before being used in a balance controller the gearbox
should be replaced by a new one without backlash. This kind of gearbox is
quite expensive and two possible suppliers are ’Sumitomo Drive Technologies’
and ’Harmonic Drive AG’. It is worth to mention that there is a rather long
delivery time for these type of gears so a candidate aiming on changing the
gearbox is recommended to write both project and thesis on the Autonomous
Bicycle in order to have time to implement a controller on the physical bicy-
cle. I would recommend a candidate to use this thesis as a starting point, and
use the thesis of Bjermeland[2] as a guidance on how to add the pendulum
to the model.

9.4 Autopilot
The implementation of an autopilot could be performed independently of
the addition of the leaning rider. The implementation of an autopilot could
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be performed with several different approaches. This section describes some
different solutions.

9.4.1 Without Any Additions
An basic autopilot capable of controlling the movement of the bicycle base
on inertial navigation could be implemented without adding any sensors to
the bicycle. This kind of controller would only be capable of controlling the
bicycle relative to the starting position, but it might be sufficient to perform
short autonomous rides.

9.4.2 With GPS
If a GPS receiver is added to the system it could be possible to create a
bicycle capable of following a defined path relevant to the world, not only
relevant to the starting position. Due to the accuracy of the GPS signals,
this solution would need to perform sensor fusion of the data from both the
GPS and the IMU. To add a GPS sensor to the computer system the spare
RS-232 port could be used. In order for the Simulink model to talk to the
GPS sensor there would be needed to write a driver. The current framework
uses device managers for handling the communication with the hardware and
an MATLAB s-function that communicates with the device manager. The
MTi device manager and MATLAB s-function could be copied and used as
a starting point when creating a driver for a GPS.

9.4.3 With Computer Vision
An autopilot could also be created with some kind of vision to follow for
example a path in on the ground.

9.5 Collision Avoidance
The last thing i would like to add to the roadmap is the implementation of
collision avoidance. A completely autonomous bicycle would need to avoid
obstacles. This is a area that the author has little experience with and i would
instead of suggesting a solution advise a candidate aiming on implementing
collision avoidance to have a look on other thesis’s targeting this kind of a
challenge.
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Chapter 10

Discussion

10.1 The Catastrophe
With the benefit of hindsight is it easy to see that I should have done some
other choices regarding the steering during my previous project[7]. The choice
of gearing up the output of the planetary gear in the transmission resulted
in a broken gearbox, due to large forces acting on the gearbox. If I had
not made the mistake causing this catastrophe there would probably have
been time to test out the LQG controller or implement some kind of heading
control as an extra to the thesis. I believe that with the new transmission
solution, it should be impossible to break the new gearbox.

10.2 Measurement Of Bicycle Parameters
There could have been possible to measure the parameters of the bicycle
more accurate if better equipment had been available. However the authors
believe that the error caused by the equipment used are less then the error
caused by the assumptions made in the linearised equations.

10.3 Simulations
It can be seen from the simulations that both the P and the LQG controller
are capable of balancing the simulated bicycle. The P controller were initially
chosen to see if it were possible at all to balance the bicycle with such a
simple controller. An integral or derivative term could have been added to
improve the controller, but it was seen that the set-point offset is close to
linear and therefore compensation is performed with a gain on the set-point.
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The simulation of a LQG controller could be seen as unnecessary when we
look at the performance of the P controller on the physical bicycle. The LQG
controller however has the ability of handling multiple inputs and outputs and
the simulations could be a good starting point when an inverted pendulum
is to be added in the controller. Without the gearbox breakdown, we would
have experienced the satisfying result of the P controller and the time used
on implementing and simulating the LQR and LQG controller could have
been used on implementing a heading or path controller.

10.4 Real World Implementation
After the catastrophe with the gearbox a choice of which controller to im-
plement had to be done. It was selected to implement the P controller, this
since if before implementing the LQG controller we would need to verify the
observer to ensure that it’s able to estimate the correct states for the real
bicycle. It can be seen in Figure 8.6 that the P controller does such a good
job on balancing the bicycle that without the gearbox breakdown, I would
most likely developed a heading or path controller as an extension to the
thesis instead of developing the LQG controller. It could be discussed that
the LQG controller might give a slightly better balance, but it would also
add complexity and uncertainty regarding the robustness of the controller.
How would for exampled the LQG controller react to changes in the mea-
surement or process noise. It is important to remember that one of the main
goals of the thesis was to deliver a framework not only capable of perform-
ing a self balance ride, but a framework both capable and ready for further
development.

10.5 Other
I should have foreseen that the gearbox could breakdown. I would also say
that the choice of leaving the inverted pendulum out of the problem were a
correct choice related to the fact that it would probably have caused more
problems than help on balancing the bicycle.



Chapter 11

Conclusion

The work performed during this thesis was executed with the goal of having
the Autonomous Bicycle conduct it’s first self balanced ride. The framework
for the Autonomous Bicycle is not only capable of delivering the performance
needed to conduct self balancing, but is also capable of delivering the perfor-
mance needed during further development. The Autonomous Bicycle is now
for the first time capable of performing a self balanced ride. The goal of this
thesis was not to implement the most advanced controller, but to deliver a
self balancing bicycle as a platform for further development.
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Appendix A

Matlab Calculations

A.1 Center Of Mass

1 %GENERAL PARAMETERS
2 w = 1.051; %m Wheelbase
3 r R = 0.3205; %m Radius rear wheel
4 r F = 0.3202; %m Radius front wheel
5 alpha = 70*pi/180; %rad head tube angle
6 lambda = 20*pi/180; %rad Steer axis tilt,comp. to head
7 lambda st = 74*pi/180; %rad seat tube angle
8 lambda tt = 10*pi/180; %rad top tube angle
9 lambda bt = 43*pi/180; %rad bottom tube angle

10 %REAR WHEEL
11 cm R = [0 0 −r R] %m CM rear wheel in global coord
12 %FRONT WHEEL
13 cm F = [w 0 −r F] %m CM front wheel in global coord
14 %REAR BODY FRAME
15 a B = [−0.1690; %m distance rear axle to pend
16 0.4715;
17 0.5355];
18 b B = [(270*pi/180)−lambda st;%rad pend angle, beta
19 (270*pi/180)+lambda tt;
20 (270*pi/180)+lambda bt];
21 b = −[a B(1)/cos(b B(1))+r R;
22 a B(2)/cos(b B(2))+r R;
23 a B(3)/cos(b B(3))+r R];
24 m = −[tan(b B(1));
25 tan(b B(2));
26 tan(b B(3))];
27 xz a = inv([−m(1) 1;−m(2) 1])*[b(1);b(2)];
28 xz b = inv([−m(2) 1;−m(3) 1])*[b(2);b(3)];
29 xz c = inv([−m(1) 1;−m(3) 1])*[b(1);b(3)];
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78 A.2. Moment Of Inertia

30 cm B = [(xz a(1)+xz b(1)+xz c(1))/3 0 ...
(xz a(2)+xz b(2)+xz c(2))/3]

31 %FRONT HANDLEBAR FRAME
32 a H = [0.429; %m distance front axle to pend
33 −0.003];
34 b H = [lambda; %rad pend angle, beta
35 (360*pi/180)−alpha];
36 b = [w*tan(b H(1))−r F−a H(1)/cos(beta(1));
37 w*tan(b H(2))−r F−a H(2)/cos(beta(2))];
38 m = [−tan(b H(1));
39 −tan(b H(2));];
40 xz = inv([−m(1) 1;−m(2) 1])*[b(1);b(2)];
41 cm H = [xz(1) 0 xz(2)] %m cm rear fork in global coord

A.2 Moment Of Inertia

1 clear;
2 %GENERAL PARAMETERS
3 g = 9.81; %N/kg Gravity
4 w = 1.051; %m Wheelbase
5 m R = 2.680; %kg Mass rear wheel
6 m H = 3.283; %kg Mass front frame
7 m F = 2.055; %kg Mass front wheel
8 lambda st = 74*pi/180; %rad seat tube angle
9 lambda tt = 10*pi/180; %rad top tube angle

10 lambda bt = 43*pi/180; %rad bottom tube angle
11 %Calculating the k factor from the calib rod meas
12 m calib = 2.108; %kg Mass calib rod
13 l calib = 0.9515; %m Length calibrod
14 r calib = 0.0100; %m Radius calib rod
15 I calib = m calib/12*(3*r calibˆ2+l calibˆ2);
16 T calib = (54+53.9+53.8)/20/3;%s Osc time calib rod
17 k = (4*I calib*piˆ2)/(T calibˆ2);
18 %REAR WHEEL
19 nu R = 30; % Number of osc
20 l R = 0.265; %m Length cpend
21 t R xz = (55.9+55.8+55.7)/3/nu R;%s Average time, tpend
22 t R y = (42.0+41.9+42.1)/3/nu R;%s Average time, cpend
23 I R xx = k*t R xzˆ2 / (4*piˆ2); %kgmˆ2 MOI,x and z axis
24 I R yy = ((t R y/(2*pi))ˆ2*(m R*g*l R))−(m R*l Rˆ2);
25 I R zz = I R xx;
26 I R = [I R xx I R yy I R zz]
27 %REAR FRAME
28 nu B = 10; %Number of osc
29 t B = [(77.1+77.1+77.2)/3/nu B;%s Avg time,seat tube
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30 (84.1+84.0+84.1)/3/nu B;% top tube
31 (82.2+81.8+82.0)/3/nu B];% slope tube
32 J B = [k*t B(1)ˆ2/(4*piˆ2); %kgmˆ2 MOI
33 k*t B(2)ˆ2/(4*piˆ2);
34 k*t B(3)ˆ2/(4*piˆ2)];
35 b B = [(270*pi/180)−lambda st;%rad pend angle, beta
36 (90*pi/180)+lambda tt;
37 (270*pi/180)+lambda bt]
38 %Transformation matrix rear frame
39 JI B = [cos(b B(1))ˆ2 −2*sin(b B(1))*cos(b B(1)) ...

sin(b B(1))ˆ2;
40 cos(b B(2))ˆ2 −2*sin(b B(2))*cos(b B(2)) ...

sin(b B(2))ˆ2;
41 cos(b B(3))ˆ2 −2*sin(b B(3))*cos(b B(3)) ...

sin(b B(3))ˆ2];
42 I Bt = JI B\J B;
43 I B = [I Bt(1) 0 I Bt(2);
44 0 0 0;
45 I Bt(2) 0 I Bt(3)]
46 %FRONT FRAME
47 cm H = [0.9015 0 −0.7223]; %m cm front fork
48 r F = 0.3202; %m Radius front wheel
49 l H = sqrt((cm H(1)−w)ˆ2+(cm H(3)+r F)ˆ2);%m Length cpend
50 nu H = [20;
51 30;
52 20;
53 30];
54 t H xz = [(55.2+55.3+55.3)/3/nu H(1);%s Avg time
55 (40.1+40.0+40.2)/3/nu H(2);
56 (46.0+46.0+46.1)/3/nu H(3)];
57 t H y = (44.2+44.3+44.2)/3/nu H(4);%s Avg time cpend
58 J H = [k*t H xz(1)ˆ2/(4*piˆ2);
59 k*t H xz(2)ˆ2/(4*piˆ2);
60 k*t H xz(3)ˆ2/(4*piˆ2);];
61 b H = [20*pi/180; %rad pend angle, beta
62 290*pi/180;
63 147*pi/180];
64 %Transformation matrix front frame
65 JI H = [cos(b H(1))ˆ2 −2*sin(b H(1))*cos(b H(1)) ...

sin(b H(1))ˆ2;
66 cos(b H(2))ˆ2 −2*sin(b H(2))*cos(b H(2)) ...

sin(b H(2))ˆ2;
67 cos(b H(3))ˆ2 −2*sin(b H(3))*cos(b H(3)) ...

sin(b H(3))ˆ2];
68 I H xz = JI H\J H;
69 I H y = ((t H y/(2*pi))ˆ2*(m H*g*l H))−(m H*l Hˆ2);
70 I H = [I H xz(1) 0 I H xz(2);
71 0 I H y 0;
72 I H xz(2) 0 I H xz(3)]
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73 %FRONT WHEEL
74 nu F = 30; %Number of osc
75 l F = 0.265; %m length cpend
76 t F xz = (54.6+54.5+54.7)/3/nu F;%s Avg time, tpend
77 t F y = (44.1+44.1+44.2)/3/nu F;%s Avg time, cpend
78 I F xx = k*t F xzˆ2 / (4*piˆ2); %kgmˆ2 MOI, x and z−axis
79 I F yy = ((t F y/(2*pi))ˆ2*(m F*g*l F))−(m F*l Fˆ2);
80 I F zz = I F xx;
81 I F = [I F xx I F yy I F zz]

A.3 List Of Parameters Needed By The Model

1 %General params
2 w = 1.051; %Wheelbase(m)
3 c = 0.079; %trail(m)
4 alpha = 70*pi/180; %head angle(rad)
5 lambda = 20*pi/180; %Steer axis tilt,comp. to head(rad)
6 g = 9.81; %gravity(N/kg)
7 %Rear wheel
8 cm R = [0 0 −0.3205]; %rear wheel center of mass
9 r R = 0.3205; %rear wheel radius(m)

10 m R = 2.680; %rear wheel mass(kg)
11 I R = [0.0758 0.1577 0.0758]; %rear wheel moment of iner
12 %Rear body frame
13 cm B = [0.4254 0 −0.6427]; %rear frame center of mass
14 m B = 23.1; %rear frame mass(kg)
15 I B = [1.3002 0 0.0344; %rear frame moment of iner
16 0 0 0
17 0.0344 0 1.5436];
18 %Front handlebar frame
19 cm H = [0.9015 0 −0.7223]; %front frame center of mass
20 m H = 3.283; %front frame mass(kg)
21 I H = [0.1727 0 −0.0169; %front frame moment of iner
22 0 0.1566 0
23 −0.0169 0 0.0337];
24 %Front wheel
25 cm F = [1.0510 0 −0.3202]; %front wheel center of mass
26 r F = 0.3202; %front wheel radius(m)
27 m F = 2.055; %front wheel mass(kg)
28 I F = [0.0726 0.1485 0.0726]; %front wheel moment of iner

A.4 Creating Model
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1 clc; clear;
2 run ../bikeparametercalculations/bicycleparameters
3 disp('bicycleparameters OK')
4 %Creating variables from bicycle params, to simpl. reading:
5 la = lambda; %la short for lambda
6 x B = cm B(1); z B = cm B(3); x H = cm H(1); z H = cm H(3);
7 I Rxx = I R(1,1); I Ryy = I R(1,2); I Rzz = I R(1,3);
8 I Bxx = I B(1,1); I Bxz = I B(1,3); I Bzz = I B(3,3);
9 I Hxx = I H(1,1); I Hxz = I H(1,3); I Hzz = I H(3,3);

10 I Fxx = I F(1,1); I Fyy = I F(1,2); I Fzz = I F(1,3);
11

12 %Calculating parameters with equations from chapter 3
13 m T = m R+m B+m H+m F; %(eq.3.3)
14 x T = (x B*m B+x H*m H+w*m F)/m T %(eq.3.4)
15 z T = (−r R*m R+z B*m B+z H*m H−r F*m F)/m T%(eq.3.5)
16

17 I Txx = I Rxx+I Bxx+I Hxx+I Fxx+m R ...

*r Rˆ2+m B*z Bˆ2+m H*z Hˆ2+m F*r Fˆ2;%(eq.3.6)
18 I Txz = I Bxz+I Hxz−m B*x B*z B−m H ...

*x H*z H+m F*w*r F;%(eq.3.7)
19 %eq.3.8 performed when listing results from measuring.
20 I Tzz = I Rzz+I Bzz+I Hzz+I Fzz+m B ...

*x Bˆ2+m H*x Hˆ2+m F*wˆ2;%(eq.3.9)
21

22 m A = m H+m F; %(eq.3.10)
23 x A = (x H*m H+w*m F)/m A; %(eq.3.11)
24 z A = (z H*m H−r F*m F)/m A; %(eq.3.11)
25

26 I Axx = I Hxx+I Fxx+m H*((z H−z A)ˆ2) ...
+m F*((r F+z A)ˆ2);%(eq.3.12)

27 I Axz = I Hxz−m H*(x H−x A)*(z H−z A) ...
+m F*(w−x A)*(r F+z A);%(eq.3.13)

28 I Azz = I Hzz+I Fzz+m H*((x H−x A)ˆ2) ...
+m F*((w−x A)ˆ2);%(eq.3.14)

29

30 u A = (x A−w−c)*cos(la)−z A*sin(la); %(eq.3.15)
31 %L for lambda in I ALL, I ALx and I ALz
32 I ALL = m A*u Aˆ2+I Axx*sin(la)ˆ2+2 ...

*I Axz*sin(la)*cos(la)+I Azz*cos(la)ˆ2;%(3.16)
33 I ALx = −m A*u A*z A+I Axx*sin(la)+I Axz*cos(la);%(eq.3.17)
34 I ALz = m A*u A*x A+I Axz*sin(la)+I Azz*cos(la);%(eq.3.18)
35

36 mu = c*cos(la)/w; %(eq.3.19)
37

38 S R = I Ryy/r R; %(eq.3.20)
39 S F = I Fyy/r F; %(eq.3.20)
40 S T = S R+S F; %(eq.3.20)
41
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42 S A = m A*u A+mu*m T*x T; %(eq.3.21)
43

44 M = zeros(2); %(eq.3.23)
45 K0 = zeros(2); %(eq.3.25)
46 K2 = zeros(2); %(eq.3.27)
47 C1 = zeros(2); %(eq.3.29)
48

49 M(1,1) = I Txx; %(eq.3.22a)
50 M(1,2) = I ALx+mu*I Txz; %(eq.3.22a)
51 M(2,1) = M(1,2); %(eq.3.22b)
52 M(2,2) = I ALL+2*mu*I ALz+muˆ2*I Tzz; %(eq.3.22b)
53

54 K0(1,1) = m T*z T; %(eq.3.24a)
55 K0(1,2) = −S A; %(eq.3.24a)
56 K0(2,1) = K0(1,2); %(eq.3.24b)
57 K0(2,2) = −S A*sin(la); %(eq.3.24b)
58

59 K2(1,1) = 0; %(eq.3.26a)
60 K2(1,2) = (S T−m T*z T)*cos(la)/w; %(eq.3.26a)
61 K2(2,1) = 0; %(eq.3.26b)
62 K2(2,2) = (S A+S F*sin(la))*cos(la)/w; %(eq.3.26b)
63

64 C1(1,1) = 0; %(eq.3.28a)
65 C1(1,2) = mu*S T+S F*cos(la) ...

+I Txz*cos(la)/w−mu*m T*z T;%(eq.3.28a)
66 C1(2,1) = −(mu*S T+S F*cos(la)); %(eq.3.28b)
67 C1(2,2) = I ALz*cos(la)/w+mu*(S A+I Tzz*cos(la)/w);%(eq.3.28b)
68 disp('initModel OK'); save whipple g M K0 K2 C1;
69 disp('Parameters saved to whipple'); %clear;

A.5 Observer And LQR-Controller

1 %clear;
2 load whipple;
3 v = 4; save speed v;%Set propulsion speed
4 %CREATE LQR
5 A = [zeros(2) eye(2);
6 inv(M)*(−K0*g−(K2*(vˆ2))) inv(M)*(−C1)*v];
7 B = [zeros(2,1);
8 inv(M)*[0 1]'];
9 C = [eye(4)];

10 system = ss(A, B, C, 0);
11 rank(ctrb(A,B))
12 R = [1/500];
13 Q = diag([1000
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14 1/500
15 1/500
16 1/500]);
17 [K, S, e] = lqr(system, Q,R);
18 save lqr K; disp('Observer & Controller Created')
19 %CREATE KALMAN BUCY
20 A = [zeros(2) eye(2);
21 inv(M)*(−K0*g−(K2*(vˆ2))) inv(M)*(−C1)*v];
22 B = [zeros(2,2);
23 inv(M)];
24 C = [eye(2) zeros(2)];
25 system = ss(A, B, C, 0);
26 rank(obsv(A,C))
27 Q = diag([.2
28 4]);%process noice
29 R = diag([ 0.0180 %measurement noice
30 0.0115]);
31 [kest, L, P] = kalman(system, Q, R);
32 save kalman L A B C
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Appendix B

Incremental Decode PCB
Board

B.1 Incremental Decode Board Copper

Figure B.1: Incremental decode board copper
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86 B.2. Incremental Decode Board Schematic

B.2 Incremental Decode Board Schematic

Figure B.2: Incremental decode board schematic



Appendix C

Steering Motor And Gear Data

C.1 Steering Motor

Rated voltage 24 VDC
Continuous rated speed 3000 rpm
Continuous rated torque 17 N cm
Continuous current 2.9 A
Starting torque 143 N cm
Starting current 22.8 A
No load speed 3250 rpm
No load current 0.44 A
Demagnetization current 61 A
Rotor inertia 460 g cm2

Weight of motor 1160 g

Table C.1: Permanent magnet DC-motor GR 53x58, 60 W[18].
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88 C.2. Steering Planetary Gear

C.2 Steering Planetary Gear

Reduction ratio 15
Efficiency 0.81
Number of stages 2
Continuous torque 800 N cm
Weight of gearbox 720 g
Axial load 500 N
Radial load 350 N

Table C.2: Planetary gearbox PLG 52[19].

C.3 Steering Transmission Gears

C.3.1 45 Teeth Spur Gear

Module 1.0
Width 6 mm
Number of teeth 45
Overall diameter 47 mm
Pitch diameter 45 mm
Hub diameter 18 mm
Hub length 6 mm
Bore 6 mm
Efficiency per connection 0.98
Weight 88 g

Table C.3: Huco 45 teeth spur gear[20].
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C.3.2 120 Teeth Spur Gear

Module 1.0
Width 6 mm
Number of teeth 120
Overall diameter 122 mm
Pitch diameter 120 mm
Hub diameter 40 mm
Hub length 12 mm
Bore 10 mm
Efficiency per connection 0.98
Weight 674 g

Table C.4: Huco 120 teeth spur gear[20].

C.4 Total Steering Performance

Theoretical Steer Speed 751 rpm
4502 deg/s

Continuous Output Torque 4343 N cm

Table C.5: Total performance of the steer motor gear assembly

1Speed calculations = Continuous rated speed
planetary gear reduction ratio∗transmission gear reduction ratio = 3000

15∗ 120
45

2Speed calculations = deg per round *rpm
sec per min = 360∗75

60
3Torque calculation = torque motor ∗ planetary gear reduction ratio ∗ planetary gear

efficiency ∗ transmission gear reduction ratio ∗ transmission gear efficiency = ((17 ∗ 15) ∗
0.81) ∗ (120/45) ∗ .98
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Appendix D

How To Set Up A Host System

The following list describes how to set up a host system:

• Install MATLAB, with Simulink and RTW.

• Install QNX Software Development Platform 6.5.0.

• Install a windows terminal and file transfer interface.

• Copy the files found on the CD from ”software/host computer files/-
Matlab/rtw” to ”MATLABROOT/rtw”.

• Copy the files found on the CD from ”software/host computer QNX650/target”
to ”QNX650ROOT/target”.

• Copy the the complete folder containing the MATLAB model from the
CD to the ”MATLAB working directory”
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Appendix E

How To Start The Bicycle

The following list describes how to start the bicycle:

• Connect a fully charged battery to the bicycle.

• Push the green power button to turn on the computer system.

• Push the red power button to turn on the motor drivers(It is important
that the computer system has power when the motor drivers are turned
on)..

• Release the red emergency stop button and connect the emergency stop
cord.

• Connect to the wireless network ”bikenet” with the password ”JensG-
BalchenWeDidIt”

• Open Putty and login with root at ”192.168.1.2”.

• Check that the MTi and analog card is transmitting data(returning a
signal with noise):

– ”cat \dev\mt\orientation\roll”.
– ”cat \dev\dmm32at\analog\in\ad0”.

• If the MTi or analog card has failed:

– Type ”slay devc-mt” + ”devc-mt &” and check the driver again.
– ”slay devc-dmm32at” + ”devc-dmm32at &” and check the driver

again.

• Open ”Autonomous Bicycle.mdl” in a new MATLAB session.
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• Select desired roll angle set-point in the Simulink model

• Hit ”ctrl-b”

• Wait for a menu to pop up.

• Set IP-address to ”192.168.1.2”, select ”1” and set runtime in sec(inf
for infinity)

• Wait for Putty to load and start the model on the bicycle.

• Hit ”Connect To Target” button in the Simulink model.

• Hit ”Start real-time code” to start the bicycle.

• Any model uploaded to the bicycle could also be started in standalone
mode by typing ”/tmp/./MODELNAME -tf TIMEINSEC” in a termi-
nal to start the selected model.
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