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Abstract—The Empirical Mode Decomposition (EMD) is a
signal analysis method that separates multi-component signals
into single oscillatory modes called intrinsic mode functions
(IMFs). These IMFs can generally be associated to a physical
meaning of the process from which the signal is obtained.
When the phenomena of mode mixing occurs, as a result of the
EMD sifting process, the IMFs may lose their physical meaning
hindering the interpretation of the results of the analysis. Previous
research presents a rigorous mathematical analysis that shows
how EMD behaves in the case of a composite two-components
signal, explaining the roots of the mode mixing problem. Also,
the frequency-amplitude region within which a good separation
is achieved with EMD is well identified and discussed. However,
a solution that offers good IMF separation when components
reside within the same octave is not yet available. In this paper,
a method to separate spectral components that reside within the
same octave, is presented. This method is based on reversing the
conditions by which mode mixing occurs presented in the paper
One or Two frequencies? The Empirical Mode Decomposition
Answers, in [3]. Numerical experiments with signals containing
spectral components within the same octave shows the effective
separation of modes that EMD can perform after this principle is
applied. This separation technique has potential application for
identifying the cause of different oscillatory modes with spectral
proximity present in the smart grid.

Keywords—EMD, Mode Mixing, Sifting process, Intermittency,
Masking signal, Close spectral proximity.

I. INTRODUCTION

Empirical Mode Decomposition (EMD) has since it was
first proposed in [1], demonstrated its capabilities within many
application areas. Within electric power engineering, the tech-
nique is used to study power system oscillations in a nonlinear
and non-stationary perspective [5] as well as to analyze time-
varying waveforms related to power quality issues [6]. Both
[5] and [6], highlight the challenge of separating closely
spaced spectral components (frequency components that exist
within the same octave) which is the main focus of this
paper. The EMD technique, being a data driven approach,
does not require any a-priory assumption about the signal
model and is able to handle both non-linear and non-stationary
signals. However, the algorithm has shown some limitations in
separating closely spaced spectral components and components
appearing intermittently in the signal. In such cases, the EMD
will not be able to separate well modes with spectral proximity
contained in the signal. This paper addresses the problem of
separation of these modes and proposes a new method for
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separating modes located within the same octave. The paper is
structured in the following sequence: the concept and the roots
of mode mixing are first discussed, then some of the existing
solutions are highlighted before the new method is presented.
A case study based on a synthetic signal demonstrates the
method’s capabilities.

A. What is Mode Mixing?

Although Mode Mixing has not been strictly defined in the
literature, it is known to happen as a result of the Empirical
Mode Decomposition mechanism to extract mono-components
from a multi-component signal. As a result of this mechanism,
only modes that clearly contribute with their own maxima and
minima can be identified by the sifting process of the EMD.
When a mode cannot clearly contribute with extremas, the
EMD will not be able to separate the mode in a single IMF
and the mode will remain mixed in another IMF. The paper
in [3], provides restrictions on when it is possible to extract
a component from a composite two-components signals. The
ratio of the amplitudes and of the frequencies of the individual
components of the signal, will determine whether the EMD
will be able to separate them in two different IMFs or whether
they will be interpreted as one single IMF.

In this paper, Mode Mixing is broadly categorized in
two groups. Depending on the source at the origin, they
can be originated by a) presence of closely spaced spectral
components (one frequency is twice or less than the other),
b) presence of intermittence. In general, the reported literature
offers solutions to the mode mixing caused by the presence
of intermittence, while separation of closely spaced spectral
components has remained unsolved [11]. This paper proposes
a principle that when implemented improves the ability of
the EMD to separate closely spaced spectral components.
An introduction of the principle is available in the preprint
uploaded to the open repository arXiv [4]. In the following
section, the main contributions to the solution of the mode
mixing problem are discussed in light of their evolution in
time. The new method is introduced within this perspective.

B. Existing Methods for Mode Mixing Separation

Mode mixing, observed in the context of the Empirical
Mode Decomposition, and caused either by intermittency or
close spectral proximity of the signal components, is a well
recognized limitation of the EMD method [2] [3] [7].



The mechanism behind EMD works in a way that always
extract the highest frequency component present is the residue
of the signal. In the presence of intermittence, the next lower
frequency components may appear in the same IMF where
the intermittent signal is identified, even though they are in
different octaves and should appear as individual components.
In the case of closely spaced spectral components, the signals
will appear in the same IMF unless successfully separated. In
2005, in the paper: The Use of Masking Signal to Improve
Empirical Mode Decomposition, Ryan Deering and James
F. Kaiser [2] discuss the phenomena of mode mixing and
presented for the first time the idea of using a masking
signal to separate mixed components caused by the presence
of intermittency in the signal. A formula for choosing the
masking signal was suggested based on the observations of
empirical trials with several signals with mode mixing. The
demonstration was essentially made for mode mixing caused
by the presence of intermittency, since the frequency ratio
between the signals was 0.57 which from the perspective
of closely spaced spectral components, was only moderately
mixed. Rilling and Flandrin presented in 2008 a theoretical
analysis that explains the behavior of the EMD in the presence
of two closely spaced spectral components and the roots of the
mode mixing problem. Their work demonstrates which spectral
components could be expected to be separated by the EMD
based on their frequency and amplitude ratios. A Boundary
Map prepared by the authors, provides a visual indication
of the efficiency of separation of two components depending
on their amplitude and frequency ratios. A similar map is
shown in Figure 1 in this paper to illustrate how the separation
boundary works depending on frequency and amplitude ratios.
The authors of this work did not present a solution for the mode
mixing problem caused by closely spaced spectral components.
They rather established restrictions on when it is possible,
using EMD, to extract a component from a composite two-
components signals. In 2009, Wu and Huang presented the
Ensemble Empirical Mode Decomposition (EEMD) as a solu-
tion to cope with the mode mixing phenomena [7] [8]. Again,
this approach was intended to solve the mode mixing caused
by the presence of intermittent components in the signal. The
principle behind EEMD is to average the modes obtained by
EMD after several realizations of Gaussian white noise that
are added to the original signal. After this work by Huang,
several versions of the Ensemble EMD were proposed in the
literature and the method is widely used [9] but it is considered
to be computationally expensive. Most recently, in April 2017,
a patent application, System and Method of Conjugate Adaptive
Conjugate Masking Empirical Mode Decomposition filed by
Norden Huang et. al [10] discloses a method for directly
processing an original signal into a plurality of mode functions
without mode mixing. The invention claims to exclude the
problem of mode mixing caused by an intermittent disturbance
but does not apparently address the mode mixing caused by
closely spaced spectral components.

Although Deering and Kaiser introduced the idea of a
masking signal and proposed empirical formulations for fre-
quency and amplitude selection, the principle behind the choice
of frequency and amplitude of the masking signal, to achieve
a good separation of closely spaced spectral components,
remains an open question. The following section presents and
discusses the principle that can enable EMD to separate this

class of mode mixing. Based on the idea of the masking signal
presented by Deering and Kaiser and the knowledge of the
restrictions of the boundary map presented by Rilling and
Flandrin, a masking signal can be designed in order to reverse
an existing mode mixing condition.

II. THE PROPOSED MASKING SIGNAL: PRINCIPLE FOR

AMPLITUDE AND FREQUENCY CHOICE

The method is based on the original idea of Deering
and Kaiser, of injecting a masking signal to the original
signal. The contribution to this original idea is in the general
principle used to determine the amplitude and frequency of
the masking signal. In contrast to the empirical way in which
these parameters are defined in [2], in this work, there is a
clear mathematical principle that decides the frequency and
amplitude of the masking signal. The same mathematical
formulations and boundary conditions used to build up the map
presented in [3] and portrayed in Figure 1, are the basis that
form the principle for choosing the amplitude and frequency
of the proposed masking signal in this paper. This principle is
explained in the following. Figure 1 illustrates the frequency
and amplitude ratios of a signal components for which mode
mixing occurs (attraction region for mode mixing: red region)
and for which a good separation of components is obtained
(non-attraction region for mode mixing: blue region). Based
on the conditions of attraction of these regions, it will be
possible to identify a masking signal with the appropriate
frequency and amplitude so that the existing mode mixing
conditions of the original signal can be reversed. This will
be achieved by adding a masking signal that can create a
controlled artificial mode mixing with one of the original
signal’s components. By ensuring that the masking signal and
the higher frequency component of the original signal become
mode mixed in the first IMF of the original signal + masking
signal, the first IMF of the original signal can be separated.
The controlled artificial mode mixing can be easily removed,
since the masking signal is known. In the process of choosing
the masking signal frequency and amplitude, care must be
taken to keep the masking signal outside the attraction region
to the second component of the original signal. If these two
conditions are observed, the two components that were mode
mixed after the EMD of the original signal will be free of
mode mixing.

The step by step procedure for extracting IMFs when
modes are mixed, based on the proposed method in this paper
is the following:

1) Construct masking signal xm based on the new
principle defined in this paper,

2) Perform EMD on x+ = x + xm and obtain the IMF
y+. Similarly obtain y

−
from x

−
= x - xm

3) Define IMF as y = (y+ + y
−
)/2

Step 1 will require to obtain the frequency information
from the original data. This information is obtained as ex-
plained in section II.B.

A. Mode Mixing of Closely Spaced Spectral Components

In [3], it is explained that the amplitude and frequency
ratios of the signal components are crucial for the under-
standing of the roots of mode mixing. In the same work, a



Fig. 1. Mode mixing boundary conditions map reproduced from [3] used for
defining masking signal

Boundary Condition Map portrays the different regions where
mode mixing is likely to occur as a function of the relative
frequencies and amplitudes involved in the two signals. It can
be observed from the map that in the region where the ratio
between the frequencies involved are between 0 and 0.5, mode-
mixing will not be observed for a range of amplitude ratios.
Mode mixing is observed as the frequency ratio is higher
than 0.67 and approaches 1.0, where mode mixing will always
occur for all amplitude ratios. For the sake of clarity and to
aid the discussions, the same Boundary Map is reconstructed
in this paper and shown in Figure 1. It is important to note
that the boundary of this map is a property of the signals
involved and parameters such as sampling time, frequency
resolution and EMD parameters will affect the accuracy of the
boundaries between attraction and non-attraction regions. The
map illustrates well how closely spaced spectral components
attract each other in a mode mixing (red attraction region).
This same property is exploited in this paper for constructing
effective masking signals to separate closely spaced spectral
components.

B. Principle for Separation of Closely Spaced Spectral Com-
ponents

The principle proposed in this paper is based on the
combination of the idea presented by Kaiser and the Boundary
Map conditions presented by Flandrin [2] [3]. The bound-
ary conditions guides in the choice of the masking signal’s
frequency and amplitude. To be able to extract a frequency
component by applying this principle, the ratio between the
frequency of that component and the frequency of the masking
signal, must be located in the red region of the Boundary
Map (mode mixing region), while the ratio between the next
component frequency and the masking signal frequency should
be located in the blue region of the map (non-attraction region).
The amplitude ratios need to be adopted to ensure these same
conditions. It is therefore necessary to operate with a frequency
sufficiently close to the first mode and sufficiently distant from
the next mode, to be successful. This criteria will be discussed
in more detail in the case study.

Assume a signal with the two frequencies f1 and f2 (f1 >
f2 ), where the ratio between them will create mode mixing
due to their close spectral proximity (f1/f2 ≤ 2). A masking
signal of frequency fm larger than f1 will attract f1 if the ratio
f1/fm falls into the attraction region of the map (red color).
If the ratio between f2/fm falls into the non-attraction region
(blue color), adding a positive masking signal of frequency fm
will separate the two signal f1 and f2 and the first IMF will
have a controlled mode mixing of the signals f1 and fm. To
separate f1 and fm, a negative masking signal is added, and
by averaging the two first IMFs, the new IMF will be a signal
of frequency f1. However, depending on how close the two
frequencies f1 and f2 are, some amplitude modulation will be
observed between the separated signals f1 and f2. To identify
the frequencies involved in the original signal, a Fast Fourier
Transform (FFT) can be used as first screening tool. In this
paper, a technique has been developed to identify the involved
instantaneous frequencies and amplitudes, to assist in choosing
the right masking signal. Assume a signal x defined by:

x = A sin(2πf1t) +B sin(2πf2t) (1)

After a standard EMD, these two signals will be mixed into
one IMF. After a Hilbert-transform of the mode mixed IMF
(s = x + jy) followed by an amplitude and an instantaneous
frequency calculation, the required information for identifying
the amplitudes and frequencies of the two signals involved,
will be available. The instantaneous frequency used here is
defined by:

f =
1

2π

∂φ

∂t
(2)

where:

tanφ =
y

x
(3)

φ = arctan
y

x
(4)

From the amplitudes of the Hilbert-transformed signal, the
following expressions can be derived:

Kmin =
√

A2 +B2 − 2AB = (A−B) (5)

Kmax =
√

A2 +B2 + 2AB = (A+B) (6)

Similarly, the expressions for the extreme values of the
instantaneous frequency plots are:

Fmin =
A∆f

(A+B)
+ f2 (7)

Fmax =
A∆f

(A−B)
+ f2 (8)

Kmin Minimum value of the amplitude plot

Kmax Maximum value of the amplitude plot

Fmin Minimum value of the instantaneous frequency plot

Fmax Maximum value of the instantaneous frequency plot

∆f Difference between the two frequencies (f1 − f2)



Through these derivations, it is also demonstrated that ∆f
is equivalent to the number of peaks/second in the instanta-
neous frequency and the amplitude plots. The frequencies f1
and f2 can now be calculated and may be further validated by
using a Fast Fourier Transformation. In Equation 8, it should
be noted that A = B represents a discontinuity of the equation
system where the first term of the equation will change from
positive to negative when B > A and originate a significant
positive or negative spike when the signals have almost the
same amplitude. The case where A > B is shown with the
blue curve in figure 5. Switching A and B would turn the
spikes downwards.

In the case of synthetic signals, these calculations are
accurate and in principle the signal components could have
been calculated directly by applying the above presented tech-
nique. However, for real signals the instantaneous amplitude
and frequency functions are less smooth. Still they can reveal
information about the amplitudes and frequencies involved in
the different periods of a mode mixed signal and from this, an
optimal mask signal based on the map can be defined.

III. CASE STUDY

To demonstrate the principle for mode mixing separation
presented in this paper, a synthetic signal consisting of the
following components is chosen:

x = 0.7 sin(2π8t) + 0.7 sin(2π24t) + 1.4 sin(2π30t) (9)

The individual components and the final signal are shown
in Figure 2. From simple inspection of the frequency compo-
nents we can expect that there will be mode mixing between
the 24 and 30 Hz components (30/24=1.25 ≤ 2)

After separation with a standard EMD, the IMFs are shown
in Figure 3. The first plot corresponds to the signal. The first
IMF is the mix of the signals 24Hz and 30 Hz while the
second IMF is the 8Hz signal well separated. The other IMFs
reported are not relevant and only a result of end-effect con-
ditions, sifting process and applied tolerances. To identify the
frequencies and amplitudes involved in the first IMF, a Hilbert
transform is performed and the instantaneous amplitudes and
frequencies are calculated. The instantaneous amplitudes are
shown in Figure 4 and the instantaneous frequencies in Figure
5. Both figures portray the instantaneous values from the two
IMFs.

Fig. 2. Synthetic signal and its components for case study

Fig. 3. Original signal, two IMFs and residuals after separation with a
standard EMD

Fig. 4. Instantaneous amplitudes of IMF1 and IMF2

TABLE I. MAXIMUM VALUES OBTAINED FROM INST. AMPLITUDE

AND INST. FREQUENCY PLOTS

Frequency (Peaks/s) ∆f 6

Extreme values Minimum Maximum

Amplitudes 0.74 2.08

Instantaneous Frequencies 27.9 35.5

TABLE II. ESTIMATED (AMPLITUDES / FREQUENCIES) FROM MODEL

Estimated parameters Mode 1 (A and f1) Mode2 (B and f2)

Amplitudes 1.41 0.67

Frequencies 30.06 24.06

To estimate the amplitudes and frequencies of the compo-
nents involved, we need to find the maximum and minimum
of the amplitude function and of the instantaneous frequency
function. Additionally we have to find the ∆f which is the
number of peaks/second in either the instantaneous amplitude
or the instantaneous frequency plots. The maximum values
extracted from the plots are indicated in Table 1. Substituting
the obtained values in Table I into Equations 5-8, the estimated
amplitudes and frequencies involved in the IMF with mode
mixing are shown in Table II. These values are in good
agreement with the original signal components. Using the
estimated values of A and B in Equation 8, the estimated
frequency is: f2 = 24.06. The process of extracting the IMFs
depends on the number of iterations in the sifting process and
may introduce some inaccuracies. This is verified by applying
the technique directly on the signal, which gives exact values.
For a synthetic signal, the separation could have been done
directly. When applied in conjunction with EMD, the purpose



Fig. 5. Instantaneous frequencies of the IMF1 and IMF2

Fig. 6. IMFs after applying the masking signal defined by the proposed
method

is to extract amplitudes and frequencies for different parts of
the signal to assist in constructing an optimal masking signal.
Based on the values obtained in Table II and following the
recommendation of amplitude and frequency ratios observed
in the Boundary Map for mode mixing f1/fm > 0.67 (red
attraction region) and separation f2/fm << 0.67 (blue non-
attraction region), an appropriate masking signal is defined.
Generally, a good compromise will be to keep f1/fm >
0.7 and f2/fm < 0.6 if possible. According to the map, a
value of am = 2.5 for the amplitude will be appropriate as
log10(a1/am) = −0.25 and log10(a2/am) = −0.4. With these
values, IMF1 after masking, will be located in the attraction
region (red color) while IMF2 in the non-attraction region (blue
color).

Now, using the defined masking signal, a new separation
with EMD is conducted on the original signal + the masking
signal:

xm = 2.5cos(2πfmt) (10)

Following the step by step procedure described in section II,
the IMFs obtained with this procedure are shown in Figure
6. The three spectral components are now well separated.
However, some amplitude modulation is observed on the 24
Hz and 30 Hz signals. When increasing the masking signal
frequency, the amplitude modulation moves from the 30 Hz
signal to the 24 Hz signal, while reducing the frequency
will move the amplitude modulation to the 30Hz signal as
the attraction is stronger according to the Boundary Map. A
Hilbert-transform is now performed on the two first IMFs
followed by instantaneous amplitude and instantaneous fre-

Fig. 7. Instantaneous amplitudes of IMF1 and IMF2 after proposed masking
signal

Fig. 8. Instantaneous frequencies of IMF1 and IMF2 after proposed masking
signal

quency calculations. The results are shown in Figures 7 and 8.
The instantaneous amplitude plots clearly shows the amplitude
modulation and the presence of the other frequency component
in both, IMF1 and IMF2. As the instantaneous frequency plots
are less smooth, it is more difficult to identify the real extreme
values needed in Equations 7 and 8. However, in this case
we extract values from both IMF1 and IMF2. The extracted
values are shown in Table III. Using the extracted values from
Table III into Equations 5-8, the estimated amplitudes and
frequencies involved in the IMF1 and IMF2 are shown in Table
IV.

TABLE III. EXTREME VALUES FROM INST. AMPLITUDE AND INST.
FREQUENCY PLOTS

Frequency (Peaks/s) ∆f 6

Extreme values Minimum Maximum

IMF1: Amplitudes 1.0 1.6

IMF1: Instantaneous Frequencies 28.8 31.79

IMF2: Amplitudes 0.32 0.55

IMF2: Instantaneous Frequencies 21.4 26.9

TABLE IV. ESTIMATE (AMPLITUDES / FREQUENCIES) FROM MODEL

Estimated parameters Mode 1 (A and f1) Mode2 (B and f2)

IMF1: Amplitudes 1.3 0.3

IMF1: Frequencies 29.96 23.96

IMF2: Amplitudes 0.12 0.43

IMF2: Frequencies 29.7 23.7

With reference to Equation 1, and the estimated values



Fig. 9. First IMF and estimated model - plot for 0.5 s

from Table IV, the IMF1 and IMF2 are estimated by:

x1 = 1.3 sin(2π29.96t) + 0.3 sin(2π23.96t) (11)

x2 = 0.12 sin(2π29.96t) + 0.43 sin(2π23.96t) (12)

The frequency components should be exactly the same (in
Table IV) but since the extreme values of the instantaneous
frequency were identified with low reliability, this can explain
the difference. The plot of the estimates of the IMF1 (red
curve) together with the IMF1 from the EMD (blue curve)
are shown in Figure 9 for a period of 0.5 second. A very good
agreement is also observed for the period of 2 seconds. For
IMF2, the agreement between the model and the IMF was also
very good. In principle, the two corresponding components
could have been added to get two pure sinusoidal functions of
frequency 30 Hz and 24 Hz without any amplitude modulation.
However, the phase shift of the sinusoidal functions are not
accurately accounted for and therefore the conclusion could
be misleading. A similar accuracy is found for the IMF2 [4].

A. Summary of Findings

This research aimed at enhancing the ability of the Empir-
ical Mode Decomposition to separate closely spaced spectral
components in a signal. When two components are in the
same octave (f1/f2 ≤ 2), the standard EMD will generate
IMFs that will exhibit mode mixing. The main findings prove
that by reversing the mode mixing conditions observed in
the Boundary Map presented in [3], it is possible to define
a masking signal which separates closely spaced spectral
components. Even cases where the ratio f2/f1 exceeds 0.8, are
separated with limited amplitude modulation. It is also found
that by using the instantaneous amplitudes and instantaneous
frequencies obtained from the Hilbert-transform of the signal,
it is possible to identify the frequencies and the amplitudes of
the components present in the IMF with mode mixing. This
information can be used to propose an optimal masking signal
for separation of the closely spaced spectral components.

IV. DISCUSSION AND CONCLUSIONS

This work has essentially proposed a new method for
separating closely spaced spectral components when using
EMD. The principle for separating mode mixed components
was demonstrated and validated using synthetic signals. A

relatively simple but challenging signal from a separation
point of view, was used in this paper for demonstrating the
concept. The model estimation process uses essentially local
information obtained as a result of the EMD and Hilbert
Transform process (number of peaks/s, extreme values of
instantaneous amplitudes and instantaneous frequencies). The
information is used to estimate the properties of the signal
after a standard EMD has produced IMFs that may present
mode mixed IMFs. This mode mixing separation method is
presented in the context of smart grid, as spectral components
with the proximity discussed in this paper have been reported
in smart grids. The presence of power electronics units that
introduces switching events and are dominated by controllers,
have introduced oscillatory modes in the system often lying
within the same octave.

REFERENCES

[1] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-
C. Yen, C. C. Tung, and H. H. Liu, The empirical mode decomposition

and the Hilbert spectrum for nonlinear and non-stationary time series

analysis, Proc. of the Royal Society of London A: Math., Physical and
Engineering Sciences, vol. 454, no. 1971, pp. 903995, 1998.

[2] R. Deering and J. F. Kaiser, The use of a masking signal to improve

empirical mode decomposition, in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP 05), 2005, vol. 4, pp. 1823.

[3] G. Rilling and P. Flandrin, One or two frequencies? The empirical mode

decomposition answers, IEEE Trans. Signal Process., vol. 56, no. 1, pp.
8595, Jan. 2008.

[4] Olav B. Fosso and Marta Molinas, Method for Mode Mixing Separation

in Empirical Mode Decomposition, eprint arXiv:1709.05547, pp. 1-7,
September 2017

[5] Arturo Roman Messina, Inter-area Oscillations in Power Systems,
Springer, ISBN 978-0-387-89529-1, 2009.

[6] N. Senroy, S. Siddharth Suryanarayanan and P. Ribeiro, An Improved

Hilbert-Huang Method for Analysis of Time-Varying Waveforms in Power

Quality, IEEE Trans. on Power Systems., vol. 22, No. 4, pp. 18431850,
November 2007

[7] Z. Wu, N. E. Huang, and X. Chen, The multi-dimensional ensemble

empirical mode decomposition method, Adv. Adapt. Data Anal., vol. 1,
no. 3, pp. 339372, 2009.

[8] Z.Wu and N. E. Huang, Ensemble empirical mode decomposition: A

noise-assisted data analysis method, Adv. Adapt. Data Anal., vol. 1, no.
1, pp. 141, 2009.

[9] M.A. Colominas, G. Schlotthauer, M.E. Torres, P. Flandrin, 2012 : Noise-

assisted EMD Methods in Action, Adv. Adapt. Data Anal., Vol. 4, No.
4, pp. 1250025.1-1250025.11

[10] Norden E. Huang, Zhao-Hua Wu and Jia-Rong Yeh, System and

Method of Conjugate Adaptive Conjugate Masking Empirical Mode

Decomposition, U.S. Patent 2017/0116155 A1, April 27, 2017

[11] Maans Klingspor: Hilbert transform: Mathematical theory

and applications to signal processing, Thesis, University of
Linkoping, November 2015, Electronic version: http://liu.diva-
portal.org/smash/record.jsf?pid=diva2


