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Abstract—A generic framework for model-based regulariza-
tion and reconstruction is described, with applications in a wide
range of noisy measurement scenarios. The framework employs
automatic differentiation and stochastic gradient optimizers to
perform online measurement fitting and regularization, and was
implemented as a scalable CPU and GPU library with high-
performance operation even in compute- or memory-intensive
contexts, such as for 4D cardiac vector flow imaging. The
framework was demonstrated by reconstructing 4D vector flow
mapping through the incorporation of the incompressible Navier-
Stokes equations. Furthermore, the achieved performance was
within bedside applicability requirements.

I. INTRODUCTION

Ultrasound vector flow imaging (VFI) has been demon-
strated using different approaches such as vector-Doppler,
blood speckle tracking (BST), or by imposing tissue boundary
conditions and mass conservation to estimate the blood veloc-
ity vector from color-Doppler images, a method known as vec-
tor flow mapping (VFM) [1]. The main challenge is to estimate
the lateral velocity component, which for transthoracic cardiac
ultrasound implies a small transducer footprint and a limited
lateral resolution. Further, to increase the temporal resolution,
we would like to take advantage of broad ultrasound beam
emissions to enable a high degree of parallel beamforming. In
result, the signal-to-noise suffers due to the loss of transmit
focusing, and the measurement variance increases. Finally,
to be able to extract the blood signal we perform tissue
rejection by high-pass filtering the received temporal data
sequences, suppressing the more echoic and stationary tissue
signal. This filtering will currently also suppress parts of the
blood signal depending on its direction and velocity, which
leads to measurement dropouts in the images where the flow
is near perpendicular to the beam angle.

Current state-of-the-art 2D methods employing model-
based regularization and dropout reconstruction suffer under
the assumption of zero through-plane flow gradients and
scale poorly when moving to 3D/4D imaging due to memory
constraints when solving matrix formulations of the problem.
Another limitation with this approach is the difficulty to
incorporate nonlinear models. The problem of model-based
reconstruction and regularization has roots in data assimilation
and nonlinear constrained optimization theory. In a noisy mea-
surement scenario, many sources of conflicting information

may be available, ranging from noisy measurements (sensors),
idealized system models (PDEs) and smoothness constraints
on the solution. In this context, we want a robust method
that allows arbitrary information sources to be interpolated
onto a solution variable, while minimizing a global energy
term defined through data fitting terms with added physical
constraints.

With this project we aim to solve 4D measurement regular-
ization and reconstruction challenges by adopting optimization
techniques used in machine learning, and by building upon
the massively scalable technology that powers this field. The
goal is to provide a general framework that allows rapid and
symbolic prototyping and deployment of fast model-based
regularization even on consumer-grade hardware. By adhering
to the energy optimization formulation when designing the
framework, the generic nature of the method is retained
and applications to various regularization problems can be
imagined and explored.

II. METHOD

A. Components

1) Tensor product splines: The linear combination of 1D
B-splines [2] is generalized to a scalar spline field of dimension
D by
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where C is the coefficient tensor for the grid of B-spline
functions positioned at the knot vectors T = (t1, t2, · · · , tD),
p = (p1, p2, · · · , pD) are the spline orders in each dimension
and I denotes the combined operator for interpolation and
differentiation to orders n = (n1, n2, ..., nD) on the grid C.
From the definition of B-splines, (1) requires the computation
of the contribution from the

∏D
d=1(pd + 1) coefficients closest

to the query position x.



2) Automatic Differentiation: Reverse mode automatic dif-
ferentiation (AD) is a method for computing the gradient of
a function composition J = (fk ◦ fk−1 ◦ · · · ◦ f1)(C) by
traversing the chain rule starting with the innermost partial
derivatives,
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Differentiating (1) with respect to the coefficient tensor C
causes the gradient to be given simply by the elementwise
support at the query point provided by each function on the
grid. Since the gradient is nonzero only for the limited number
of coefficients whose function provides support at x, the
gradient is well suited for a sparse representation. Registering
the gradient ∂I

∂C in an AD system enables the computation of
gradients in nonlinear function compositions that depend on
interpolated and differentiated splines in their graph.

3) Stochastic Gradient Descent: Stochastic Gradient De-
scent (SGD) is an iterative procedure for minimizing an objec-
tive function whose gradient has a known analytical form. The
term stochastic refers to the use of a limited set of randomly
drawn samples to obtain an approximated function gradient at
each iteration such that the approximation stochastically drives
convergence towards a minimum of the system.

Coupling a SGD optimizer to an AD system allows the op-
timizer to obtain the analytical gradients of any differentiable
cost function through the AD system at each iteration and
update the current state according to the optimizer heuristics.

B. Implementation

A few elements had particular focus in the design of the
framework

• Easy
The framework should be easy to use even for users
unfamiliar with the implementation details

• Flexible
The framework should be flexible enough to handle a
range of problems without modification

• Scalable
The framework should not have any limitation on the
problem size given enough computation time

• Fast
The framework should be fast enough to use for
moderately sized problems on common hardware

• Deployable
The framework should be available for most common
platforms

The open source TensorFlow machine learning framework
was chosen as suitable a platform [3]. TensorFlow provides
a major part of the required infrastructure for the method with
an expressive symbolic system for constructing computational
graphs with full AD functionality and a set of powerful
adaptive optimizers that are designed for interoperation with
the graphs.

In addition, an interpolator was required for arbitrary
measurement support. A large part of the effort in this project

went into the development and testing of a spline interpolation
operator along with gradient computations for all inputs. The
resulting interpolation operator was made compatible with
TensorFlow and its AD system for seamless integration with
other elements of the energy term formulation. The developed
interpolator provided support for tensor product splines with
arbitrary spline order, unlimited directional differentiation and
optional periodicity in each grid dimension independently.
Cross-platform CPU and GPU codes were written for both
forward and backward operations to improve performance and
enable use on multiple compute system configurations.

C. VFM application

For the VFM approach, a single vector component and
the boundaries of the fluid domain are required. We tar-
geted a duplex mode ultrasound acquisition scheme which
simultaneously records color-Doppler and B-mode images.
In this setup, radial blood velocities are obtained from the
averaged autocorrelation at each beamformed voxel from the
color-Doppler after high-pass filtering to remove clutter from
the tissue. Boundary conditions are obtained from automatic
or manual segmentation of the endocardium layer from the
anatomical B-mode sequence.

1) Analysis scheme: Given a spline grid with 4D time-
periodic spatiotemporal 3-channel coefficient state C, we
define the operator I in the analysis as the vector function
interpolating the channels (Vx, Vy, Vz) at observation locations
x, which represent the 4-vector (time-inclusive) position. In
the VFM approach only the radial velocity component Vz is
measured and inference of the states Vx and Vy is achieved
through a coupling of the scalar grids and their derivatives
using a set of constraints, specifically free slip conditions at
the boundaries, incompressibility and momentum conservation
in the fluid.

Descriptions of the energy terms employed in the VFM
reconstruction problem are presented followingly.

• Data fit
The data fit requires that the radial component of the
interpolation at each measurement location x agrees
with the corresponding Doppler estimate vD.

I(x,C) · n̂D = vD, (3)

where n̂D is the ultrasound beam angle at the mea-
surement location.

• Boundary condition
In the reconstruction problem we include free slip
boundary conditions. Given a boundary segment ∂Ω
positioned at x∂Ω and its corresponding normal vector
n̂⊥, we impose a tangential velocity at this surface by
requiring

I(x∂Ω,C) · n̂⊥ = v⊥, (4)

where v⊥ is the normal velocity of the boundary
segment. Note that the boundary condition is identical
to the Doppler fitting term in that a scalar velocity is
imposed along a specified direction in the fluid.



• Mass continuity
To model an incompressible fluid, we impose the
incompressible continuity equation at each observation
location x inside the fluid

∇ · I(x,C) = 0. (5)

• Momentum balance
We impose momentum balance in the fluid accord-
ing to the incompressible Navier-Stokes convection-
diffusion equation

∂I(x,C)

∂t
+∇· (I(x,C)⊗ I(x,C)) = ν∇2I(x,C),

(6)
where ν is the dynamical viscosity parameter of the
fluid. External forces and internal source terms have
been excluded.

2) Optimization procedure: All the necessary operations
to calculate the interpolation errors and PDEs described in
the analysis scheme were expressed in terms of the interpo-
lation kernel I(x,C) in the symbolic framework provided by
TensorFlow. The total sum of all deviations was constructed
as a computational graph and minimized with the Adam [4]
optimizer using minibatches with N = 10000 samples randomly
drawn with replacement from the set of measurements until
convergence.

3) In silico validation: A computational fluid dynamics
(CFD) phantom [5] of a neonatal left ventricle created with
the Ansys Fluent CFD package was used as a reference for the
flow reconstruction. The phantom captures the main ventricular
blood flow events such as filling, vortex characteristics and
ejection.

4) In vivo feasibility: In vivo 4D data was acquired using
a GE Vivid E95 system with a 4V phased array probe on
a healthy adult volunteer, where 3D hybrid BST provided
dealiased Doppler velocity radially over the entire temporal
data sequence. The left ventricular (LV) domain was extracted
automatically using the open source FAST framework [6].

III. RESULTS

A. Kernel performance

The framework performance was evaluated on two hetero-
geneous compute systems

• Workstation [4x Xeon E5, TITAN V]

• Mobile workstation [1x Core i7, Quadro M2200]

Figure 1 shows the kernel performance on the different com-
pute units. On average, the 4D reconstruction converged after 3
minutes with tuned gradient stepping parameters on the mobile
workstation.

B. In silico analysis

Figure 2 shows the distribution in of the reconstructed
velocity error along with comparison to the reference veloc-
ities. The scatter diagrams point to some underestimation in
both angular directions, but stronger in elevation. From the
spatial distribution we observe that the majority of the error
is located near the base of the ventricle close to the inlets

Fig. 1. Performance of the interpolation kernel and gradients across different
compute platforms. The number of coefficients involved in each interpolation
and update depends on the spline order.

and outlets. Overall, root-mean-square error (RMSE) in the
reconstructed velocities was 11.3% normalized at the 99.9th
angular magnitude percentile (3.1 cm/s).

Fig. 2. The figure summarizes the component-wise reconstruction error in
the two angular directions viewed in the ALAX-orientation. Scatter diagrams
comparing the reconstructed velocities to the phantom are drawn along their
respective axes with the (long) abcissæ representing the reference velocity.
The relative distribution of the error inside the reconstructed field is indicated
in the top right corner of the figure.

1) In vivo demonstration: Figure 3 shows the framework
applied to a 4D dataset, resulting in physically convinc-
ing reconstructions with the radial velocity magnitude being
preserved after reconstruction of the angular velocities. The
boundary mesh was sliced at the base to avoid spurious wall
bouncing in this area.



IV. DISCUSSION

As observed in figure 2, the errors are within tolerable
ranges. Most of the error is located near inlet or outlets,
and this may be caused by the lack of internal source terms
in the Navier-Stokes regularizer to account for accelerative
pressure forces during the valve events in the phantom. Due
to the global nature of the regularization procedure, this likely
impacts the internal field reconstruction also. The framework
relies on a combination of measurements and regularization
terms and this data driven approach may allow for simplified
models. However, the effect of imprecise boundaries or pres-
sure gradients should be investigated further.

The strengths of the framework lie in its ability to rapidly
prototype and iterate on different model constraints used in the
regularization by the symbolic representation of the problem.
The main benefits over a matrix formulation is the ability to
perform online training on memory-constrained systems, in

addition to avoiding setup steps for the required sparse matrices
for the observation and finite difference operators. The exact
energy gradient with respect to the solution is obtained by
automatic differentiation of the symbolic formulation of the
cost function. The performance of the regularization method
is sufficient on common hardware to suggest clinical applica-
bility in the future after further validation. Moving forward,
the framework should undergo thorough in vivo vector flow
validations, e.g. by comparison to phase contrast MRI.

V. CONCLUSION

A fast regularization framework with an efficient B-spline
interpolator at its core was successfully developed and demon-
strated for 4D VFM. As volume flow methods become in-
creasingly available, efficient processing libraries are necessary
in order to successfully incorporate physical models and the
described framework provides a positive preliminary outlook.
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Fig. 3. The figure shows left ventricular vector flow reconstruction in a healthy adult volunteer at five different points during the cardiac cycle.
Dealiased Doppler measurements were used in the reconstruction and the streamlines are colored according to the estimated velocity.


