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Abstact

The need for dynamic positioning to function in ice-infested waters is growing
as the offshore oil and gas industry enters the Arctic. The ice introduces great
challenges, some of which can be resolved through proper ice management.
This requires good knowledge of the surrounding ice-environment.

This thesis deals with the question of achieving a good state estimator for
a sea-ice model. The dynamic thermodynamic sea-ice model of Hibler III
(1979) is implemented, and it is shown through simulations that it reacts
in a realistic manner to varying air temperature. The states of this model
are estimated with an ensemble Kalman filter, and it is shown that different
states can be estimated very well by ensemble Kalman filters based on differ-
ent measurement configurations. This implemented nonlinear sea-ice model
and state estimator is meant to serve as a platform where methods designed
to select measurement configurations best suited for state estimation can be
tested.

A suggestion for a method which chooses measurement configurations on-line
is presented. The idea is that this method allows for different measurement
configurations to be applied at different time steps, all based on which one
that provides the best estimate at the current time. Unfortunately there
was no time to implement this method and test it on the previously men-
tioned test platform; it must be kept in mind that it is merely a theoretical
suggestion which must be further tested.
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Chapter 1

Introduction

The need for Dynamic Positioning (DP) systems to function in ice-infested
areas is rapidly growing, especially as the offshore oil and gas production
enters the arctic seas. The presence of ice is a factor not included in DP
systems nowadays, and this is a challenge which must be solved in order for
DP to function in the presence of ice.

This chapter is an introduction to this topic, including a general presen-
tation of DP systems and incentives for DP in ice-environments. Previous
experience with DP in the Arctic will also be presented, along with a brief
introduction to what will be addressed in this thesis and an overview of how
the report is organized.

1.1 Dynamic positioning systems

A Dynamic Positioning system is a control system for station-keeping and
low-speed maneuvering of vessels (Fossen, 2002). It was first tested in the
1970s, and has since then developed to become standard equipment on both
large ships and oil rigs. The purpose of a DP system is to control the hor-
izontal motion of a ship in surge, sway and yaw. It has traditionally been
used to keep a ship stationary with fixed heading, or to move a ship from
one location to another at low speed (Fossen, 2002). This is accomplished
solely by the means of the ship’s thrusters.

DP is also used for assisting mooring line position-keeping, known as thruster-
assisted position mooring (PM) systems (Sørensen et al., 2001). Here, most

1
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of the position-keeping is done by attaching the ship to multiple fixed ob-
jects, for instance on the seabed, by so-called mooring lines. The DP system
is employed for minimizing the tension on the mooring lines during severe
environmental conditions.

The movement of a vessel in open water will be influenced by wind, waves and
currents. The forces caused by these environmental disturbances are called
environmental loads, and must be compensated for by the DP controller in
order for the DP system to function properly. According to Fossen (2002),
these are the most important design requirements for a DP controller to
function under bad weather conditions.

There is a wide area of application for DP systems. Sørensen et al. (2001)
define some of them as:

Offshore oil and gas industry
Offshore service vessels, drilling rigs, drilling ships, shuttle tankers,
cable and pipe layers et cetera.

Shipping
Guidance systems coupled to automatic tracking control systems, au-
tomatic docking systems and precise positioning when operating in
confined waters.

Cruise and yacht
Station keeping in areas where anchors are not allowed due to vulnera-
ble coral reefs and precise positioning in confined waters and harbors.

Fisheries
Control of ships during fishing for precise positioning, reduced fuel
consumption and intelligent selective fishing.

1.2 Dynamic positioning in the Arctic

The main incentive for the usage of DP in the Arctic is by far the oil and
gas industry. The demand for oil and gas has grown rapidly over the past
three decades, and it is still steadily increasing. As many of the major oil
and gas reservoirs in the middle east, western Africa and the Gulf of Mexico
already are producing at maximum level, some of them depleted, the need
for discovering and exploiting new oil and gas reservoirs is crucial. Gautier
et al. (2009) state that approximately 13% of the undiscovered oil reservoirs
and 30% of the undiscovered gas reservoirs in the world are found in the
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Figure 1.1: Undiscovered oil in the Arctic (Gautier et al., 2009).

Arctic, most of which are offshore. DP is a major part of recovering oil
and gas from subsea reservoirs, during well drilling, installation of subsea
equipment, geological surveys and so on. Figures 1.1 and 1.2 give a graphical
representation of the mean estimated undiscovered oil and gas deposits in the
Arctic.

Other compelling reasons for developing DP for Arctic conditions are short
term operations, perhaps particularly for exploration and scientific means,
and shipping activities. DP in ice covered seas as found in the Arctic is
therefore of great current interest.

1.3 Previous experience with DP in Arctic
regions

Over the last decade some successful DP operations in ice covered areas have
been fulfilled. The first major DP operation was carried out in 1999 in the
Sakhalin region in the Sea of Okhotsk off the east coast of Russia (Keinonen
et al., 2000). Since then the oil and gas industry in this area has developed,
and DP operations with ice breakers are currently taking place there. But
the ice concentration in the Sakhalin region is quite different from the ice
concentration in potential petroleum exploration areas. In it possible that
the ice in these areas consist of multi year ice inclusion, whilst the ice in
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Figure 1.2: Undiscovered gas in the Arctic (Gautier et al., 2009).

the Sakhalin area consists of first year ice only (Jenssen et al., 2009). The
multi-year ice inclusion is thicker and thus tougher to break.

In August 2004 Moran et al. (2006) performed drilling in the severely ice-
covered Arctic Ocean north of Franz Josef Land. Figure 1.3 shows a map of
Franz Josef Land and the Sea of Okhotsk; clearly Moran et al. (2006) were
much deeper into the Arctic than Keinonen et al. (2000), and naturally they
experienced tougher ice conditions. The Arctic Ocean-drilling succeeded and
they managed to maintain the drill-ship on location continuously over many
days (Moran et al., 2006). This was done by good ice management. Two
ice-breakers were employed to break up the surrounding ice and to keep the
drill-ship relatively free of ice. One broke the larger ice-floes into medium
sized floes, and the other broke those into even smaller ones, which the drill-
ship could handle. Another important part of the ice management was to
monitor the sea ice and alert the crew at the drill-ship if ice loads too heavy
to handle were approaching. In these cases the drilling had to be aborted
until the ice conditions became manageable.

1.4 The contribution of this thesis

This thesis will address the task of estimating the ice environment surround-
ing a ship conducting DP operations in the Arctic. The problems related to
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Figure 1.3: Map of Franz Josef Land and Sea of Okhotsk.

DP in ice environments, and why estimating the sea-ice is important is fur-
ther discussed in Chapter 2, but it is quite intuitive that information about
the surrounding ice is an important part of Arctic DP operations, both in
terms of safety and carrying out the DP operation.

The scope of this thesis is not to present a complete solution to the problem
of proper ice-environment estimation, but to implement a nonlinear sea-ice
model and a state estimator, which can be applied as a platform for testing
such solutions. A method for deciding which model measurements that leads
to the best possible state estimate will also be investigated. This method can,
if time permits, be tested on the implemented model and state estimator.

1.5 Report layout

This report is divided into a total of seven chapters. Chapter 2 discusses more
in detail the challenges related to dynamic positioning in ice environments.
The concept of a state estimator, and the role it might play in a solution
to some of these challenges, are also presented here. Chapter 2 lays the
foundation for understanding how this report may contribute to a solution
to some of the challenges related to DP in the Arctic. The main content of
both this chapter as well as Chapter 1 is based on the respective chapters of
Ersdal (2010), since the work in this thesis partially builds on this project
work.

The sea-ice model used in this thesis is presented in Chapter 3, along with
an introduction to approaches for modeling sea ice. The implementation of



6

the model is described and it is also verified through simulations. In Chapter
4 the Kalman filter, the extended Kalman filter and the ensemble Kalman
filter are presented as state estimators. Two ensemble Kalman filters, based
on two different measurement matrices are also designed and implemented.

Chapter 5 is dedicated to present a suggestion for a new method which can be
used to select measurement configurations on-line, so that the best possible
state estimate can be attained at each time step.

This concludes the work done in this thesis, and Chapter 6 discusses the
results of Chapter 3, 4 and 5, while Chapter 7 contains the conclusion and
also suggest further work on the topic.



Chapter 2

Dynamic Positioning in Ice
Environments

This chapter considers the challenges related to dynamic positioning in ice
environments, and how a state estimator may fit into a solution to these
challenges. First, the general concepts of state estimators and observability
are presented in Section 2.1.1, before the challenges related to DP in ice-
environments and which of those challenges this report will focus, on are
presented in Section 2.2. Finally, Section 2.3 describes how a state estimator
may fit into a possible solution to these challenges, and why the measurement
configuration is of importance.

As mentioned to begin with, this chapter is mainly based on Chapter 2 in
Ersdal (2010). However, large parts of Section 2.1.1 and Section 2.3.1 are
altered, and some figures are added.

2.1 State estimators

Given a nonlinear system

ẋ = f (x,u) (2.1a)
y = h (x) (2.1b)

where x ∈ Rn is a vector of state variables, ẋ is the state vector time deriva-
tive, y ∈ Rm is a vector of measurements and u ∈ Rp is the system input, it
is not always given that every state is measurable. In fact, it seldom is. The
state variables of a system are often not accessible for direct connection, and

7
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if they are, it is often expensive and/or time consuming to measure them all
(Chen, 1999). In order to gain knowledge about the non-measured states, a
state estimator must be designed. A state estimator is an algorithm that,
based on the input u and the system measurements y, generates an estimate
of all the state variables of the system (Chen, 1999).

2.1.1 The concept of observability

It is not given that any arbitrary system’s state variables can be estimated
using a state estimator. Sometimes y simply does not provide enough in-
formation for the state estimator to propagate in a satisfying manner. The
concept of observability studies the possibility of estimating the system states
x given the system input u and output y (Chen, 1999). Chen (1999) de-
fines observability for a linear system as follows, but the definition is also
applicable for nonlinear systems.

The state equation (2.2) is said to be observable if for any un-
known initial state x(0), there exists a finite t1 > 0 such that
the knowledge of the input u and the output y over [0, t1] suf-
fices to determine uniquely the initial state x(0). Otherwise, the
equation is said to be unobservable.

Thus, if a system is observable a state estimator can be applied to estimate
those system state variables which cannot be measured directly.

One way to determine whether a system is observable or not is through the
system’s observability gramian. The observability gramian of a linear system

ẋ = Ax+Bu (2.2a)
y = Cx+Du (2.2b)

where x, y and u are defined as for (2.1), is given as

W o,linear =
∫ ∞

0
eA

T τCTCeAτdτ (2.3)

and the system (2.2) is observable if and only if W o,linear is nonsingular (is
of full rank) (Chen, 1999).

For nonlinear systems, the conditions for observability are not as clear. Dur-
ing the past two decades, many have tried to derive conditions for the ob-
servability of nonlinear systems, resulting in conditions too complex to be
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useful for all but very simple systems (Singh and Hahn, 2005). One alterna-
tive to these complex conditions is to use the empirical observability gramian
(EOG) (Singh and Hahn, 2005). As the name implies, the empirical observ-
ability gramian is calculated from simulated data, and is thus an empirical
approximation of the observability gramian.

The EOG is found trough perturbation around (one of) the systems’s steady
state(s), and it is based on the different output-trajectories generated by each
perturbation. The following matrices are defined before the definition of the
EOG is presented:

T =
{
T 1, · · · ,T r; T i ∈ Rn×n, T T

i T i = I, i = 1, · · · , r
}

(2.4)
M = {c1, · · · , cs; ci ∈ R, ci > 0, i = 1, · · · , s} (2.5)
E = {e1, · · · , en; standard unit vectors in Rn} (2.6)

where r is the number of matrices for the perturbation directions, s is the
number of different perturbation sizes for each direction, and n is the number
of states in the system (Singh and Hahn, 2005). The largest perturbation
size should be chosen so that the system stays within the region of attraction
of the steady state (Singh and Hahn, 2005). Given this, the EOG for the
stable, nonlinear system (2.1) is defined as (Singh and Hahn, 2005)

W o =
r∑
l=1

s∑
m=1

1
rsc2

m

∫ ∞
0
T lΨlm(t)T T

l dt, (2.7)

where Ψlm(t) ∈ Rn×n equals

Ψlm(t) =
(
yilm(t)− yss

)T (
yilm(t)− yss

)
, (2.8)

and yilm(t) is the output trajectory of the system corresponding to the initial
condition x0 = xss + cmT lei. The vectors xss and yss are the steady state
and steady-state output of the system, respectively. If the EOG of system
(2.1) is nonlinear (has full rank), then the system is observable.

Since it is hardly possible to generate output trajectories lasting into infinity,
the simulations should be carried until the system has reached steady state
and Ψlm(t) ≈ 0.

It is important to notice that the output-trajectories are generated using the
nominal value of the system inputs, and the EOG is therefore only applicable
for nominal values of the inputs around the steady state xss.
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2.1.2 The concept of degree of observability

There are examples in the literature where the observability gramian, both
for linear and nonlinear systems, have been used to define measures for degree
of observability. A measure for degree of observability is a scalar measure
beyond simply observable/non-observable, and they are used to rank different
measurement configurations who all result in observable systems against each
other.

The idea is that the higher the degree of observability for a system with a
given measurement configuration is, the more process information lies in
those measurements. Hence, a state estimator based on a measurement
configuration resulting in a system with higher degree of observability will
provide a better estimate than one based on a measurement configurations
resulting in a system with lower degree of observability.

Different measures for degree of observability (MDO) based on the observ-
ability gramian were discussed in Ersdal (2010). Here, linear systems were
discussed, but the MDOs are applicable for nonlinear systems and empirical
observability gramians as well.

2.1.3 Determining the output, y

Since the system dynamics f (x,u) are given and cannot be altered, it is the
system measurement configuration y = h (x) which can be changed in order
to obtain the best (in one respect or another) state estimator. Since h (x)
states which state variables that are being measured, it can be changed by
altering the measurement configurations, and the key to a satisfying state
estimator is to choose a measurement configuration which provides the most
information possible about the state variables. Obviously, there are many
constraints to the choice of h (x), ranging from access to state variables to
economic questions. These constraints must of course be taken into consid-
eration when determining h (x), but they will not be further elaborated in
this thesis.

2.2 Challenges related to DP in ice

The environmental conditions in the Arctic are very different from those
found in open waters where DP is applied today. This leads to a number
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Figure 2.1: Underwater view of the hull before and after it’s been redesigned
(Jenssen et al., 2009).

of challenges when it comes to performing operations in these waters. They
include everything from the effects of low temperature (e.g., formation of ice
on deck and various instruments) to atmospheric phenomena as darkness,
fog and precipitation (Bonnemaire et al., 2007). However, the single most
important challenge when it comes to station keeping in the Arctic is the ice
environment.

The ice environment in the Arctic leads to several challenges when perform-
ing DP operation. One is due to the varying ice-drift direction. Wind,
current and tidal influences will in the Arctic often lead to a circular ice drift
direction-pattern (Bonnemaire et al., 2007). One of the schemes for station
keeping in the Arctic is to keep the vessel heading directly towards the ice
drift. Due to the varying ice drift direction, the vessel will constantly rotate
in the same direction and special ice management schemes must be employed
in order to avoid wind up of umbilicals and choking line hoses (Jenssen et al.,
2009).

As ice hits the vessel, it will often be broken downwards and forced under the
it. This causes a second challenge: ice being forced under the vessel could
easily damage equipment mounted on the hull. The vessel must therefore
be designed with “built-in ice management characteristics” (Jenssen et al.,
2009). This could include properties such as proper hull design and the use
of azimuth thrusters and riser systems to effectively remove the ice prior to
being led under water (Bonnemaire et al., 2007). Jenssen et al. (2009) showed
what an improvement that good hull design may lead to, with less ice floes
being forced under water, see Figure 2.1.

The presence of ice also adds another dimension to the environmental loads.
The average ice forces acting on the vessel can at times be very high, both
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in surge and sway, as ice builds up around the hull (Jenssen et al., 2009). In
addition to this, there are occurrences of force peaks as larger ice floes hit the
hull at high speed. The magnitude of the ice load is decided by factors such
as ice drift velocity, ice dimensions, ice properties and size-distribution of the
ice floes. Knowledge of these forces are essential for being able to carry out
the dynamic positioning, both in terms of station keeping and with respect
to safety. Sometimes the ice load will become too severe, and the vessel will
not be able to keep its position. This must be known in advance, so that the
operation can be put on hold and the vessel may drift with the ice until the
conditions improve.

2.3 The use of state estimators within DP in
the Arctic

In Section 2.2 several challenges related to carrying out DP in an ice en-
vironment were mentioned. This report addresses the last challenge listed,
namely that an ice environment adds another dimension to the environmen-
tal loads acting on the vessel. However, the ice load can be very difficult
to estimate. The ice fields have their own dynamics which again is coupled
with the vessel dynamics, and in order to determine the forces acting from
the ice on the vessel, an ice-vessel interaction model is needed. Deriving
such a complex, coupled model is a topic of current research, and will not
be within the scope of this thesis. Here, the vessel is disregarded, and the
well known dynamic thermodynamic sea-ice model of Hibler III (1979) will
be applied. In this model the vessel itself is not included, and the focus will
be on the ice dynamics only.

It is crucial, both to safety and to the station keeping that knowledge about
the upcoming ice loads exists so that proper ice management may be exe-
cuted. Eik (2010) defines ice management in the following manner:

Ice management is the sum of all activities where the objective
is to reduce or avoid actions from any kind of ice features. This
will include, but is not limited to:

• Detection, tracking and forecasting of sea ice, ice ridges and
icebergs.

• Threat evaluation.
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Figure 2.2: Ice management with the drill ship, UAV and two ice breakers
(Arctic DP operation, courtesy of Joakim Haugen).

• Physical ice management such as ice breaking and iceberg
towing.

• Procedures for disconnection of offshore structures applied
in search for or production of hydrocarbons.

In this report, it is the first point listed above which is the main focus,
and a state estimator based on a good sea-ice model could be very helpful
in this matter. If all the state variables can be estimated accurately, this
information can be used both to optimize the ice management and to carry
out the station keeping in a satisfying manner. Ice management is crucial for
DP to function in ice-covered waters, and with an accurate state estimator
of the ice movement in the surrounding waters, one could in a better way
plan and carry out the ice management. Figure 2.2 shows a possible ice
management scheme. The physical ice management is carried out by two
ice breakers. One breaks the larger ice-floes into medium sized floes, and
the other one breaks them into even smaller pieces, which the drill-ship can
handle. An unmanned aerial vehicle (UAV) making ice measurements is also
depicted.

Some of the factors determining the ice load from an ice field are given in Sec-
tion 2.2, and they are typically ice-drift velocity, ice coverage, ice properties
and ice thickness. Most sea-ice models will most likely include some of these
factors in their state variables, and they will therefore be estimated by a state
estimator based on these models. Incorporating this information into the ice
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Figure 2.3: Control loop with ship, DP controller, state estimator and ice
management.

management will improve the efficiency of the DP operation as a whole. Fig-
ure 2.3 shows the DP control loop including the ship, DP controller, state
estimator and ice management. The set point is the DP operating point or
desired trajectory and the environmental disturbances include wind, waves,
currents and ice environment.

2.3.1 Ice system measurements

As mentioned in Section 2.1.3, the state-estimator designers can alter the
measurement configurations by determining which state variables they want
to measure. If the measurements are made using a mobile sensor network,
different measurements can be taken at different times, and which of the pos-
sible measurement configurations that provides the best information about
the system at the current time becomes an interesting question.

In addition to summarizing different observability-gramian based MDOs, Ers-
dal (2010) discussed methods based on these MDOs for selecting the measure-
ment combination that results in the best state estimator for linear systems.
The sea-ice model ant state estimator which is implemented in this thesis
can be used to test methods such as these. A new method based partially
on Ersdal (2010) is also investigated here.
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2.4 Chapter summary

It has been seen in this chapter that the presence of ice may lead to several
challenges when it comes to carrying out DP operations in the Arctic. The
ones mentioned here are

• Damages to line hoses et cetera due to the vessel’s constant rotation
following the circular ice-drift direction pattern,

• sea ice being forced under the vessel, possibly causing damage to equip-
ment mounted on the hull,

• and the extra dimension added to the environmental loads which must
be compensated for by the DP controller.

It is the last challenge listed which is focused on in this thesis.

The general state estimator was also presented, and the observability gramian
was introduced as a tool for determining whether a system is observable or
not, and for deciding its degree of observability. How a state estimator may
fit into a solution to the challenge of determining the extra environmental
load has also been evaluated.
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Chapter 3

The Sea-Ice Model

This chapter deals with the sea-ice model which is applied in this thesis.
A brief overview of the different features characterizing an ice environment
is presented in Section 3.1, before an introduction to different approaches
to modeling of sea ice is given in Section 3.2. In Section 3.3 the dynamic
thermodynamic sea-ice model of Hibler III (1979) is presented, and the imple-
mentation and validation of it is described in Section 3.4 and 3.5, respectively.

The Hibler-model is well established and has become the standard sea-ice
dynamics model (Hunke and Dukowicz, 1997). It is widely used for ice sim-
ulations, and it was chosen because it is relatively simple while still being
complex enough for the scope of this thesis.

3.1 Ice environment characteristics

Roughly, one can say that an ice environment is characterized by ice features
and ice properties (Løset et al., 2006), see Figure 3.1. Ice properties concern
the structure of the ice itself, e.g. porosity, salinity and crystallography,
while ice features describe the type of ice present. The ice may take on
many different forms depending on the physical processes the ice undergoes
after formation (Løset et al., 2006). Level ice is ice which is unaffected by
deformation, rafted ice is deformed ice where the floes are overriding one
another, ridges are lines of broken ice forced up by pressure, rubble ice is
a random collection of ice fragments or small pieces of ice covering a large
area and icebergs are massive pieces of land ice floating at sea (Løset et al.,
2006). These different ice features are again characterized by factors such

17
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Figure 3.1: Overview of main features of an ice environment, recreated from
Figure 5.1.1 in Løset et al. (2006).

as the percentage of ice cover, if it consists of first year or multi-year ice,
ice-floe dimensions and ice-floe velocity. Figure 3.2 includes pictures of some
ice features.

3.2 Approaches to modeling of ice

In the 1960s, numerical modeling of sea ice dynamics began in the Soviet
union and in the USA (Leppäranta, 2005). The sea-ice models started out
as quite simple, linear models, but by the end of the 1970s the modern
theory of nonlinear sea-ice dynamics was developed. Since then, coupled ice-
ocean models have been developed and the spatial resolution has improved.
Today, these models are mainly used for short-term ice forecasting, weather
forecasting and long-term simulation of climate change (Leppäranta, 2005).

3.2.1 Scales and continuum vs discrete models

When modeling sea ice, there are two dimensions to consider: whether to use
a discrete or a continuum model, and which scale this model should consider.
In discrete models each individual ice floe is modeled as a “particle”, and the
ice environment as a whole is modeled as a granular assembly (Heinonen,
2004). The shape, the size and the speed of each “particle” is approximated,
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(a) Ice ridge

 

 

(b) Rubbled ice
 

(c) Iceberg

Figure 3.2: Some ice features.

and the interaction between them is given through contact forces and rel-
ative displacements (Heinonen, 2004). While discrete models view each ice
floe as an individual unit, the continuum models do not share the same level
of detail. The latter considers the behavior of a volume of ice in an average
sense, where the number of ice floes in this volume and their particular prop-
erties are unknown, and where the interaction between the ice is described
by continuous stress and strain functions (Heinonen, 2004).

The other dimension to consider is, as mentioned, the scaling of the model.
When modeling sea ice there is a number of different scales one can consider,
dependent on the desired level of detail (Leppäranta, 2005):

• Microscale: When investigating individual ice particles from submil-
limeters to 0.1 m

• Local scale: Extending from 0.1−10 m. When one does not care about
the ice particles, and the sea ice is considered to be solid.

• Ice-floe scale: Reaching from 10 m to 10 km. Here, individual ice floes
and different ice features are included.

• Mesoscale: Operating at 100 km, regarding larger areas of ice environ-
ments.

• Large scale: Operating at 1000 km, regarding even larger areas of ice
environments.

When considering scales as mesoscale and large scale, the ice medium is
referred to as drift ice or pack ice (Leppäranta, 2005).

The discrete models are often more physically correct, but for modeling larger
ice environments they usually become too complex, and difficulties arise when
the geometry of the internal structures and the contact phenomena are to be



20 Chapter 3. The Sea-Ice Model

x

y

1 2 3

1

2

3

(a) Unstaggered grid
x

y

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3

(b) Staggered grid

Figure 3.3: Unstaggered and staggered grid. In the unstaggered grid every
property is calculated at the circles, in the staggered grid some properties
are calculated at the circles and some at the triangles.

modeled accurately (Heinonen, 2004). So for larger scales, such as mesoscale
and large scale, all workable dynamic sea-ice models are continuum models
(Leppäranta, 2005). Ice management is often carried out on a mesoscale or
large-scale level, and it is therefore the continuum models which are discussed
in the following.

3.2.2 Grids and Eulerian/Lagrangian frames

When implementing a continuum model, the area of interest is covered by
an imaginary grid, containing multiple grid cells. The idea is that every
attribute is constant within one grid cell, and that the adjacent cells affect
each others properties. In practice, most sea-ice models use a rectangular
grid, but in theory it may have any geometry (Leppäranta, 2005). Grids
may also differ with regards to which grid points the different ice properties
are calculated at. The very first models calculated every attribute in the same
grid points (Leppäranta, 2005), which is known as an unstaggered or Arakawa
A-grid. The most common grid today is the staggered or Arakawa B-grid,
which evaluates different properties at two different grid points (Leppäranta,
2005). Figure 3.3 illustrates these two types of grid.

Another choice to be made when developing a continuum model is whether
to use an Eulerian or a Lagrangian frame. With an Eulerian frame, the grid
is fixed in space and with a Lagrangian frame the grid is fixed in the medium,
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i.e., it moves with the sea ice. It is the Eulerian frame that has gained most
popularity within sea ice dynamic models, but for some areas of application,
such as when modeling ice drift, the Lagrangian frame is more applicable.

3.2.3 System of equations

Leppäranta (2005) states that a full sea ice model consists of four basic ele-
ments: The sea-ice state(s), the sea-ice rheology, conservation of momentum
and conservation of ice. The sea ice states

J =
[
J1 J2 J3 · · ·

]T
(3.1)

are model properties such as ice floe diameter, ice thickness, et cetera. Rhe-
ology is the study of the flow of matter, and it examines how the stress in
a medium depends on its material properties and strain (Leppäranta, 2005).
When one speaks of the sea-ice rheology in a model, it is thus a function
describing the sea-ice stress σ given by the sea-ice state J , the sea-ice strain
ε and the sea-ice strain rate ε̇.

σ = σ(J , ε, ε̇) (3.2)

The basic models for rheology are linear elastic (assumes that stress is propor-
tional to strain), linear viscous (assumes that stress in proportional to strain
rate) and ideal plastic (collapses once stress stress achieves yield strength)
(Leppäranta, 2005).

The conservation of momentum is an equation which contains the derivative
of the ice velocity U

DU

Dt
= f(U ,σ, τ ) (3.3)

where τ are external forces acting on the ice, and the equation for conserva-
tion of ice contains the derivatives of the ice states

JD

Dt
= ψ + β (3.4)

where ψ is the mechanical deformation and β the thermodynamic changes
(Leppäranta, 2005). These equations therefore work as update equations for
the ice velocity and ice states.
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3.2.4 The finite element and finite difference approaches

When solving these partial differential equations (PDE), one must also decide
which numerical technique to apply when approximating the spatial deriva-
tives: the finite element or the finite difference approach. While the finite
difference method approximates the solutions to differential equations by re-
placing the derivatives with approximately equivalent difference expressions
(Süli and Mayers, 2004), the finite element methods either eliminates the
differential equation from the problem, or converts the PDE into an approx-
imating system of ordinary differential equations (Strikwerda, 2003).

3.3 The Hibler-model

The model chosen to be implemented in this thesis is the model described
by Hibler III (1979). It is a continuum model with a square staggered grid
and Eulerian frame, which uses the finite difference approach to approximate
the spatial derivatives. It is a widely used model, and many present sea-ice
models are based on it (Leppäranta, 2005). The Hibler-model mainly consists
of four different components:

The momentum balance
Describes the derivative of the ice velocity. It includes air and water
stresses, Coriolis force, internal forces and ocean tilt.

The ice strength
Describes the ice strength as a function of the ice thickness and fraction
of open water.

The constitutive law
Describes the nature of the ice interaction and the ice rheology. It
relates the ice stress to the strain rate and the ice strength, which
again can be related to the internal forces in the momentum balance.

The ice-thickness distribution
Describes the derivatives of the thickness and compactness of ice. It
includes growth or ablation of ice as well as advection and deformation.

These components are related to (3.1) - (3.4) in the following manner: The
sea ice states J of (3.1) are the ice thickness h and the sea ice compactness
A, i.e., J =

[
h A

]T
. The constitutive law and the ice strength equation

are related to the ice rheology and fits in under equation (3.2), while the ice
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thickness distribution is the equations for conservation of mass (3.4) and the
momentum balance is the conservation of momentum (3.3).

The equations related to each of the components listed above will now be
described in detail, and then a summary of the cell properties this system of
equations requires will be given.

3.3.1 The momentum balance

The momentum balance is a two-dimensional equation given by

m
DU

Dt
= −mfk ×U + τ a + τw −mg∇H + F (3.5a)

DU

Dt
= ∂U

∂t
+U∇U (3.5b)

where U =
[
u v

]T
is the planar ice velocity [m/s] and equation (3.5b) the

material derivative [m/s2]. m the ice mass per unit area [kg/m2], f the Coreolis
parameter [s−1], and k a unit vector normal to the sea surface [−]. τ a and
τw are forces per unit area due to air and water stresses [N/m2], H the sea
surface dynamic height [m], g acceleration due to gravity [m/s2], and F the
internal ice forces per unit area [N/m2]. In this thesis it is assumed that H is
constant over the entire simulation grid, and mg∇H therefore equals zero.

The forces due to air and water stresses are given as

τ a = ρaCa|U g|
(
U g cos (φ) + k ×U g sin (φ)

)
(3.6)

τw = ρwCw|Uw −U |
(
(Uw −U) cos (θ) + k × (Uw −U) sin (θ)

)
(3.7)

U g is the geostrophic wind [m/s], Uw the geostrophic ocean current1 [m/s], Ca
and Cw air and water drag coefficients [−], ρa and ρw air and water densities
[kg/m3], and φ and θ air and water turning angles [−], respectively. Both
φ and θ are assumed to be constant. Because U g � U , the ice motion is
neglected in (3.6).

1The geostrophic wind and current are theoretical values which would form if there
was an exact balance between the Coriolis force and the pressure gradient force (Holton,
2004).
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3.3.2 The ice strength

The ice strength P [N] is coupled to the ice thickness through the following
equation

P = P ?he−C(1−A) (3.8)
where h is the mean ice thickness of the cell [m], 0 ≤ A ≤ 1 the ice com-
pactness [−], and P ? [N/m] and C [−] are fixed empirical constants. This
formulation makes the ice strength strongly dependent on the amount of
thick ice present (through A), as well as allowing it to increase as this thick
ice becomes thicker.

3.3.3 The constitutive law

The constitutive law describes the nature of the ice interaction. This is mod-
eled by means of the relationship between the ice-stress tensor and the ice
strain-rate tensor. The ice-stress tensor of rank two σ [N] is a matrix con-
taining the intensity of the internal forces acting within the ice, and the ice
strain-rate tensor of rank two ε̇ [s−1] is a matrix containing the ice defor-
mation rate (Riley et al., 2007). For the two-dimensional case, σ and ε̇ are
defined as

σ =
[
σxx σxy
σyx σyy

]
and ε̇ =

[
ε̇xx ε̇xy
ε̇yx ε̇yy

]
(3.9)

where

ε̇xx = ∂u
∂x
, ε̇yy = ∂v

∂y
and ε̇yx = ε̇xy = 1

2

(
∂u
∂y

+ ∂v
∂x

)
. (3.10)

Hibler III (1979) considers the ice to be a nonlinear, viscous, and compressible
fluid, which leads to the following relationship between σkl and ε̇kl (k ∈ {x, y},
l ∈ {x, y})

σkl = 2ηε̇kl + (ζ − η) (ε̇xx + ε̇yy) δkl −
P

2 δkl (3.11)

where δkl is the Kronecker delta

δkl =
{

1 if k = l
0 if k 6= l

(3.12)

P is the ice strength, ζ the nonlinear bulk viscosity, and η the nonlinear
shear viscosity. The nonlinear viscosities are given as functions of P and ε̇.
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These functions are set so that the stress state lies on an elliptical yield curve
passing through the origin:

ζ = P

2∆ (3.13)

η = ζ

r2 (3.14)

where

∆ =
√(

ε̇2
xx + ε̇2

yy

) (
1 + 1

r2

)
+ 4
r2 ε̇

2
yx + 2ε̇2

xε̇
2
yy

(
1− 1

r2

)
(3.15)

and r is the ratio of principal axes of the ellipse. For more details on this
ellipse, see Hibler III (1979).

The internal forces F of the momentum balance (3.5) are given by (Lep-
päranta, 2005)

F = ∇σ (3.16)
which are equal to

Fx = ∂σxx
∂x

+ ∂σxy
∂y

= ∂

∂x

[
(η + ζ) ∂u

∂x
+ (ζ − η) ∂v

∂y
− 1

2P
]

+ ∂

∂y

[
η

(
∂u

∂y
+ ∂v

∂x

)]
(3.17)

Fy = ∂σyy
∂y

+ ∂σyx
∂x

= ∂

∂y

[
(η + ζ) ∂v

∂y
+ (ζ − η) ∂u

∂x
− 1

2P
]

+ ∂

∂x

[
η

(
∂u

∂y
+ ∂v

∂x

)]
(3.18)

Hence, the internal forces acting within the ice are given as functions of the
ice planar velocity U , the ice strength P as well as the ice strain-rate tensor
ε.

3.3.4 The ice thickness distribution

The sea-ice cover will typically consist of several ice thicknesses, and in a
given region, fractions of both thin and thick ice may be present at the
same time. In order to approximately parameterize this variable thickness
ice cover, Hibler III (1979) introduces two idealized thickness levels: thick
and thin. As long as the ice thickness is less than some cutoff thickness h0
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Ocean

Ice with thickness larger than h0

Ice with thickness smaller than h0

Figure 3.4: An example of ice-thickness distribution in a random cell. In this
case A ≈ 0.75 and h is the mean thickness of the gray ice if it was distributed
over the entire area.

(and falls under the category thin ice), it is considered as being open water.
The amount of open water in a region is given by the compactness A, which
is the percentage of an area that is covered by thick ice. The thick ice is ice
with thickness larger than h0, and it is considered to be of equal thickness
h. This is the mean thickness that the thick ice would have if it covered the
entire area. Figure 3.4 illustrates the relationship between the two idealized
thickness levels and the compactness A. The light blue area, representing ice
with thickness smaller than h0, is not thick enough to be considered when
calculating A. A only represents the gray ice with thickness larger than h0,
and therefore becomes approximately 0.75.

Thus there are two variables which describe the ice-thickness distribution:
the compactness A and the mean thickness h. The following continuity equa-
tions are used in updating them:

∂h

∂t
= −∂(uh)

∂x
− ∂(vh)

∂y
+ Sh + ξh (3.19)

∂A

∂t
= −∂(uA)

∂x
− ∂(vA)

∂y
+ SA + ξA (3.20)

Here A ≤ 1 and Sh and SA are thermodynamic terms given as

Sh = g (h/A)A+ (1− A) g(0) (3.21)

SA =
{

g(0)
h

(1− A) if g(0) > 0
0 if g(0) < 0 +

{
0 if Sh > 0

A
2hSh if Sh < 0 (3.22)
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where g(h) is the growth rate of ice with thickness h. Even though the
growth rate is represented as a function of h here, it is also dependent on
the air temperature. Hibler III (1979) uses different growth-rate functions
for each month, thereby including the air temperature as a monthly varying
parameter. This is accurate enough when simulating for several years, as was
done in Hibler III (1979), but when simulating for about one or two weeks
it will probably be beneficial to include a more accurate ice growth-rate
function.

If one includes the ice-atmosphere coupling and the heat flux from the water,
but excludes the effect of snow, Leppäranta (1993) presents the following
expression for ice growth rate. It is a function of both the ice thickness h
and the air temperature Ta:

g(h, Ta) = 1
ρiL

[
κi

h+ κi/ka
(Tf − Ta)−Qw

]
(3.23)

where ρi is the ice density [kg/m3], L the latent heat of freezing [J/kg], κi the
thermal conductivity of ice [W/Km], ka a heat exchange coefficient [W/Km2],
Tf the freezing point of sea water [◦C] and Qw the heat flux from the water
[W/m2].

The terms ξh and ξA are diffusion terms, and consist of both harmonic and
biharmonic diffusion. They are small, and have only been added for numerical
stability:

ξh = D1∇2h−D2∇4h (3.24)
ξA = D1∇2A−D2∇4A (3.25)

where

∇2 = ∂2

∂x2 + ∂2

∂y2 (3.26)

∇4 = ∂4

∂x4 + ∂4

∂y4 + 2 ∂4

∂x2y2 (3.27)

and D1 and D2 are constant diffusion coefficients.

In Hibler III (1979) it seems that both the harmonic and the biharmonic
diffusion terms are positive. The reason that the latter is set to be negative
in this thesis is that during simulation it seemed that a positive biharmonic
term would not stabilize the ice states, but that a negative one would. The
use of a negative biharmonic diffusion term in general is supported by Del-
hez and Deleersnijder (2006) and Samuelson and Vallis (1997). Delhez and
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Deleersnijder (2006) define the diffusion flux of a general scalar property w
as

G = −k1∇w + k2∇3w (3.28)
where k1 and k2 are diffusion coefficients. It is given from Fick’s law of
diffusion that

∂w

∂t
= −∇G = k1∇2w − k2∇4w (3.29)

and the biharmonic diffusion term is clearly negative. Also in Equation (2.5)
of Samuelson and Vallis (1997), the harmonic diffusion for the ocean tem-
perature is positive and the biharmonic diffusion for the ocean temperature
is negative. Based on this, the biharmonic diffusion is chosen to be negative
in this thesis.

3.3.5 Summary of the model equations

In order to give a general overview of the equations that must be imple-
mented, a summary of the model equations is given in Appendix A.

3.3.6 The grid and its cell properties

Some variables in the equations of Sections 3.3.1 - 3.3.4 are considered to
be cell properties. It is within these properties that the information about
the ice state of each cell lies. The main ones are of course the model state
(the mean ice thickness h and cover A), the two-dimensional ice velocity U ,
and the ice mass per unit area m. But the ice strength P , the bulk and
shear viscosities ζ and η, and the strain rate tensor ε̇ are equally important
properties which contain a lot of information about the ice state of the cell.
A summary of these properties is given in Table 3.1.

As mentioned earlier, Hibler III (1979) uses a square, staggered grid equal
to that in Figure 3.3b, where each grid cell has sides of length d. For each
of these cells, the cell properties in Table 3.1 must be calculated. Figure
3.5 shows how Hibler III (1979) separates these properties between the two
points of the staggered grid. It shows that u, v and m are calculated at
integers of x and y and are constant within each “dashed” grid cell, while h,
A, ε̇, ζ, η and P are calculated at half-integers of x and y and are constant
within each “full” grid cell.

In Hibler III (1979) D1 and D2 are also defined at grid points. This is because
these diffusion coefficients are zero at grid boundaries bordering land, and
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Property Connected to
Velocity in x-direction u The Momentum balance
Velocity in y-direction v
Ice mass per unit area m

The ice strength P The constitutive law
The strain-rate tensor ε̇
The bulk viscosity ζ
The shear viscosity η

The ice mean thickness h The ice conservation equations
The ice cover A

Table 3.1: Cell properties.

constant in the grid interior. For simplicity, sea ice will only be simulated for
open water areas in this thesis, and the diffusion coefficients will therefore be
constant for the entire grid, and are not calculated at certain grid points.

h, A, ε̇,

ζ, η, P

u, v, m u, v, m

u, v, mu, v, m

x

y

Figure 3.5: Placement of properties in cells of the staggered grid used by
Hibler III (1979).

3.4 Implementing the model

When implementing and simulating the Hibler-model, it is treated as a gen-
eral nonlinear dynamic system with state x and input Υ:

ẋ = f(x,Υ) (3.30)
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The system states and inputs are defined as

x =
[
u1 v1 h1 A1 · · · up vp hp Ap

]T
(3.31)

Υ =
[
χ Ta U g Uw φ θ

]T
(3.32)

where p is the number of cells in the grid, and χ is the boundary conditions,
which will be discussed later.

It is worth noticing that the air temperature Ta, though varying with time,
is not set to vary in space. The air temperature is therefore equal for all grid
cells.

3.4.1 Classes, objects and class attributes

The Hibler-model was implemented in object-oriented MATLAB through
two classes; the grid class and the cell class. Each cell of the grid is
represented as an object of the cell class which contains information about
the properties of this particular cell. The entire grid is represented as an
object of the grid class which contains properties common for the entire
grid as well as a table which keeps track of each cell object in this grid.
When a property is connected to a class, and hence an object of this class,
it is referred to as a class attribute. Table 3.2 gives an overview of the most
important class attributes.

Attributes of the cell class Attributes of the grid class
Variables Ice velocity Air temperature

Ice mass per unit area Ocean current velocity
Mean ice thickness Wind velocity
Ice coverage
Ice strength
Strain rate tensor
Bulk and shear viscosities

Constants Cell number Size of grid area
x and y coordinates in grid Grid resolution (cell length)

Table containing all grid cells

Table 3.2: Important class attributes.

Even though these attributes in reality are calculated at different grid points
(as described in section 3.3.6), they are, for simplicity, all attached to the
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same cell object when the model is implemented. I.e., both {u, v,m}ij and
{h,A, ε̇, ζ, η, P}i+ 1

2 ,j+
1
2
are attached to, and constant for, cell object (i, j).

All of the cell properties listed in Table 3.2 are attributes of the cell class,
but there are also other attributes in addition to these, i.e.,

cell properties ⊂ cell class attributes.

3.4.2 Numerical details

Spatial finite differences

The model equations of the Hibler-model contains derivatives with regards
to both time and space. In order to be able to integrate over time only,
Hibler III (1979) uses spatial finite differences (SFD) to approximate the
spatial derivatives. Finite differences are approximations of derivatives, and
are often used to find numerical solutions of partial differential equations.
There are several finite difference operators (Ames, 1992), and the following
central difference is what will be used in this thesis:

dz

dn
≈ 1

∆n
(
zn+ 1

2
− zn− 1

2

)
(3.33)

The SFDs needed in this thesis, and the expressions for them are given in
Appendix B. Two of the SFDs differ from the expression given in Hibler III
(1979), but it is assumed that there is a misprint in Hibler III (1979). See
Appendix B for further details.

Limits on the viscosities

It is seen by (3.13) - (3.15) that when the strain rate ε̇ becomes very small,
the bulk and shear viscosities ζ and η become arbitrarily large. Hibler III
(1979) avoids this by placing an upper limit on ζ and η which is dependent
on the ice strength P .

ζmax = 2.5 · 108P (3.34)

ηmax = ζmax
e2 (3.35)
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When implemented here, this maximum limits for ζ and η are converted into
a minimum limit for ∆:

P

2∆ ≤ 2.5 · 108P (3.36)

⇓
∆ ≥ 2 · 10−9 (3.37)

and

∆min = 2 · 10−9 (3.38)

To avoid nonlinear instability Hibler III (1979) also places a lower boundary
on ζ and η, independent of P .

ζmin = 4 · 108 (3.39)

ηmin = ζmin
e2 (3.40)

This leads to the following upper boundary for ∆:

∆max = 1.25 · 10−9P (3.41)

The viscous-plastic rheology used by Hibler III (1979) is known to suffer from
numerical difficulties related to the model’s large range of viscosities, which
leads to a demand for large computational resources (Hunke and Dukowicz,
1997). With the limits given above this is exactly what happens; the time
step of the simulation becomes very small and the simulation time exceeds
the limit for practical use. Through trial and error the following limits were
found to give an acceptable simulation time.

∆min = 2.5 · 10−7 (3.42)
∆max = 1.25 · 10−12P (3.43)

Clearly there are values of P where ∆max < ∆min, in these cases ∆min is
ignored and ∆ = ∆max (Hunke and Dukowicz, 1997).

3.4.3 Boundary conditions

Earlier the boundary conditions for ice environment simulations have been
either solid land or open water (free of sea ice). In such cases the boundary
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Open waters

Ice environment

Solid land

Simulation grid

Boundary condition grid

Figure 3.6: Simulation area with surrounding boundary-condition cells.

conditions can, in general, be implemented as (Leppäranta, 2005)

σ · n ≤ 0 solid land boundary
σ · n = 0 open water boundary (3.44)

where n is a vector normal to the ice. These boundary conditions are often
replaced by a simplified form (Leppäranta, 2005)

U = 0 solid land boundary
h = 0 open water boundary (3.45)

In this thesis a smaller area of the entire ice environment will be simulated,
and consequently the grid will be surrounded by neither open waters nor solid
land, but waters containing sea ice. None of these boundary conditions can
therefore be applied here, and a new set of boundary conditions containing
ice properties must be developed.

When calculating the SFDs of cell (i, j) one must have knowledge of the
properties of cells (i± 1, j ± 1) as well as (i± 2, j ± 2); i.e. two “rounds” of
boundary-condition cells are needed. Figure 3.6 portrays the simulation grid
and the boundary-condition grid in a larger ice environment. The “dashed”
grid is left out for simplicity.

The ice properties which must be set for each of the boundary-condition cells
are u, v, h, A, ζ and η. For simplicity, u and v are chosen to be constant
and equal for all the boundary-condition cells, while h, A, ζ and η are set to
vary with the air temperature, however also equal for all boundary-condition
cells:

χ (Ta) = {ubc, vbc, hbc(Ta), Abc(Ta), ζbc(Ta), ηbc(Ta)}
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hbc (Ta) and Abc (Ta) are design choices, and must be chosen in accordance
with the initial values for h and A of the simulation grid.

Since U bc =
[
ubc vbc

]T
is constant for the boundary-condition grid, it can

be found through the stationary solution of (3.5a) (remember that ∇H = 0):

0 = −mfk ×U bc + τ a + τw + F (3.46)

Since U bc are equal for all boundary-condition cells, F ≈ 0. In addition, the
forces due to water stress τw may be ignored as the forces due to air stress
τ a are the prevailing ice driving forces (Leppäranta, 2005). This results in
the equation

0 = −mfk ×U bc + τ a (3.47)
which easily solves for U bc, given Ug and φ:

U bc =
[
ubc
vbc

]
= ρaCa

mf

[
Ugy
−Ugx

]([
Ugy
Ugx

]
cos(φ) +

[
Ugx
−Ugy

]
sin(φ)

)
(3.48)

For the same reason that F ≈ 0, ∆ = ∆min. This leads to ζbc = ζmax (Pbc)
and ηbc = ηmax (Pbc). Thus, given hbc (Ta) and Abc (Ta) (and hence Pbc (Ta)),
ubc, vbc, ζbc (Pbc) and ηbc (Pbc) may be calculated.

3.5 Simulation and validation of model

In order to validate the implemented model, it was simulated over one year
with varying air temperature. Even though simulation times of this length
are not required for the application discussed in this thesis, it allows one to
check whether or not the model responds reasonably to annual temperature
changes, and hence validate it.

3.5.1 Air temperature, wind, current and other con-
stant parameters

The air temperature used for simulation was decided based on arctic tem-
perature data from Meteorological conditions (2011), shown in Figure 3.7a.
If the air temperature at Franz-Josef Land is used as a sketch, the seasonal
air temperature can be modeled as a shifted cosine wave with amplitude of
10 ◦C, period of one year and mean equal to −10 ◦C:

Ta(t) = −10 cos
(

πt

24 · 182

)
− 10 (3.49)
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(a) Measured seasonal air temperatures
(Meteorological conditions, 2011).
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(b) Generated seasonal air temperatures.

Figure 3.7: Measured and generated seasonal air temperatures in the Arctic.

where t is given in hours, see Figure 3.7 for comparison. For simplicity, the
same air temperature is used for the entire grid.

When it comes to the geostrophic wind and current, inspiration was taken
from Wang and Ikeda (2004), where the following geostrophic wind and cur-
rent were used

(U g)i,j =
[

3.2 + 0.1(i+ j)/d
−3.6 + 0.2(i+ j)/d

]
(3.50)

(Uw)i,j =
[
0.010− 0.001(i− j)/d
0.052 + 0.001(i+ j)/d

]
(3.51)

where d is the cell length and (i, j) is the cells spatial location in the grid.
In reality, both the geostrophic wind and current are time dependent. The
expressions given above are however not, and they must be seen as a sim-
plification of real-life conditions. When calculating U bc, only the part of U g

which is constant for the entire grid is used.

Table 3.3 lists the values which were used for the constant model parameters
during simulation. Most of the values are equal to those used by Hibler III
(1979), except ∆min and ∆max (as described above above), and P ? which,
according to Leppäranta (1993), has been found to be higher than first as-
sumed by Hibler III (1979). Hibler III (1979) used P ? = 5 · 103 N/m, while
Leppäranta (1993) states that normal levels for P ? is around 20 − 30 · 103

N/m. The values of the properties connected to the growth-rate function are
from Leppäranta (1993).
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Ca = 0.0012 ρw = 1027 kg/m3

Cw = 0.0055 ρa = 1.3 kg/m3

C = 20 ρice = 920 kg/m3

P ? = 25 · 103 N/m ∆min = 2.5 · 10−7 s−1

f = 1.46 · 10−4 s−1 ∆max = 1.25 · 10−12P (Ns)−1

h0 = 0.5 m D1 = 0.004d
r = 2 D2 = 0.004d3

d = 125 km φ = θ = 25◦
L = 335 · 103 J/kg κi = 2.1 W/Km

ka = 21 Tf = −1.9 ◦C
Qw = 2 W/m2

Table 3.3: Parameters used during simulation.

3.5.2 Simulation flow chart

When simulating the Hibler-model, the execution sequence described by the
flow chart in Figure 3.8 was applied. It shows the high-level order of the
different updates made for each cell.

3.5.3 Initial values

Since the area simulated here is fictional, there are no data to lean on when
choosing realistic initial values for h and A. But since other numerical pa-
rameters are, to a large extent, set equal to those used by Hibler III (1979),
and the fictive area is assumed to be in the Arctic, the initial values for h
and A are inspired by those in Hibler III (1979). There, hinit = 3.2967 m
and Ainit = 1.0 for every cell on Julian Day 12 (Hibler III, 1979), and so hinit
and Ainit were chosen to be 3 m and 1.0, respectively. The initial values for
u and v are simply set equal to zero.

In order to get an even more realistic initial state, the system is simulated for
365 “Julian Day 1-days”, so that the state stabilizes at equilibrium values.
Ignoring the year, Julian Day 1 is January 1st, at which the air temperature is
about −20 ◦C. I.e., the system is first simulated for one year with constant
air temperature of −20 ◦C, before the actual simulation with varying air
temperature begins. The simulation results from cell number 11-15, with the
initial values given above, Ta = −20 ◦C, Ug and Uw as in (3.50)-(3.51), and

2According to Julian Day (2011), Julian Day 1 is the 1st of January 4713 BC.
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Update u, v, h, A, P in each cell

Update SFDs in each cell

Update time derivatives in each cell

Increase time

Integrate u, v, h and A

time < simulation time
YES

End simulation

Start simulation

in each cell over time

Figure 3.8: Flow chart for each time step.
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Figure 3.9: Simulation results for constant air temperature at −20 ◦C.

the boundary conditions given below, can be seen in Figure 3.9. It clearly
shows that u stabilizes around 0.01 − 0.02 m/s, v at around −0.055 m/s, h
between 2.5 and 3 m and A at about 0.98−0.99. The remaining cells are left
out as their results are similar to those in cell 11-15. The results from this
simulation are the actual initial values for the system given these conditions.

3.5.4 Choosing the boundary condition parameters

The mean thickness and the compactness of the boundary-condition cells
hbc (Ta) and Abc (Ta) influence the simulation results, especially the mean ice
thickness of the cells. This is because, in addition to the air temperature and
the geostrophic wind and current, it is the boundary conditions which drive
the model.

As long as the ice velocity is non-zero, the ice properties of each cell will be
highly influenced by the properties of its surrounding cells. The boundary-
condition cells will therefore affect the cells around the edges of the grid,
which again will affect the cells one step further in, and so on. Since the
geostrophic wind and current in each cell are dominated by terms which are
constant for the entire grid, the cells positioned at grid edges directly exposed
to this constant wind and current are especially influenced, and it is mainly
from here that the boundary-condition effect propagates through the grid.

When choosing hbc(Ta) and Abc(Ta), emphasis was placed on making them
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Figure 3.10: Temperature-dependent mean ice thickness and ice compactness
of boundary-conditions cells.

somewhat realistic functions of the air temperature Ta. It is assumed that the
thickness and compactness of the ice in the boundary-condition cells “follows”
the air temperature by increasing as the air temperature decreases, and from
(3.23) it can be seen that, given a certain air temperature, the growth rate of
the ice will be smaller for thicker ice. Hence, it is natural that both hbc(Ta)
and Abc(Ta) are functions which are steep for small negative air temperatures,
and which flatten out as the air temperature becomes increasingly negative.
Since Ta ≤ 0, it is sufficient that hbc(Ta) and Abc(Ta) are defined for negative
air temperatures.

Two functions which meet these criteria, and keep the mean thickness of the
grid cells around 2− 3 m are

hbc(Ta) = 2 +
(
1− e0.15Ta

)
(3.52)

Abc(Ta) = 0.6 + 0.3
(
1− e0.3Ta

)
(3.53)

where Ta ≤ 0. Plots of these functions can be seen in Figure 3.10.

3.5.5 Simulation and validation

The system is simulated with the air temperature, constant parameters, ini-
tial values and boundary conditions given above. First it is simulated with
no geostrophic wind or current in order to show that the states behaves rea-
sonably with approximately stagnant ice, before U g and Uw are set as in
(3.50)-(3.51).
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Figure 3.11: The simulation grid with numbered cells.

The fictive area which is simulated, is part of a larger ice-environment, and
consists of a 4 × 5-grid containing cells of length 125 km. The entire simula-
tion area is thus 500 km i x-direction and 625 km in y-direction. Figure 3.11
shows the simulation grid displaying the number of each cell, as well as the
boundary-condition grid. Because it a fictive area that is being simulated, it
is difficult to find any results from the literature to validate against; the val-
idations rather consists of evaluating the model’s response to a realistically
varying seasonal air temperature up against intuitive knowledge.

No geostrophic wind or current

Figure 3.12 displays how u, v, h and A respond to the varying air temperature
with zero geostrophic wind and current. It clearly shows that the ice melts
in the summer months and freezes up again as the air temperature drops.

It is also seen from Figure 3.12b and 3.12c that the cells in the inner part of
the grid (cell number 7− 9 and 12− 14) are less affected by the temperature
increase than those around the edges, which is consistent with the propa-
gation of the boundary-condition effect mentioned in the previous section.
Since both the geostrophic wind and current are set equal to zero, one might
think that the ice velocity is zero and that the boundary-conditions has no
effect. In that case, it would be the air temperature alone that influences h
and A. But the fact is that even with zero geostrophic wind and current,
the velocity of the ice will not remain zero, and the boundary conditions will
influence the grid cells. However, as will be seen next, the effect becomes
greater when the ice velocity increases due to non-zero geostrophic wind and
current.

All in all, the system responds as expected: Both the ice compactness and
the mean ice thickness decrease as the air temperature rises, and increase
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(b) Cell number 6− 10.
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(c) Cell number 10− 15
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(d) Cell number 16− 20.

Figure 3.12: u, v, h and A from simulating with no geostrophic wind or
current.
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(b) Cell number 6− 10.
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(c) Cell number 10− 15
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(d) Cell number 16− 20.

Figure 3.13: u, v, h and A from simulating with geostrophic wind and current.

again as the air temperature drops; due to the resulting change in ice mass,
the ice velocity is also affected by the varying air temperature.

Non-zero geostrophic wind and current

The system is now simulated with non-zero geostrophic wind and current,
the results are displayed in Figure 3.13. The results are quite similar to those
in Figure 3.12, except that the absolute value of the ice velocity is larger,
and that the effect from the boundary conditions are more prominent, both
as expected. It is seen from Figure 3.13b, 3.13c and 3.13d that cells which
are not directly exposed to the dominating geostrophic wind and current, are
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a bit delayed in their mean thickness-response and compactness-response to
the temperature rise. And the further away the cells are from the “exposure”-
edges, the more delayed these responses are, and the less is the effect of the
temperature rise.

Cell number 1−5 are all directly exposed to the dominating geostrophic wind
and current, and the boundary conditions affect them all equally. Figure
3.13a clearly shows this, as both h and A responds in a somewhat similar
manner for all cells. From Figure 3.13b, 3.13c and 3.13d it is seen that
cell number 10, 15 and 20, which are the remaining cells at the “exposure”-
edges, responds to the temperature rise both quicker and heavier than the
rest. The mean thickness-response and compactness-response of cell number
8−9, 13−14 and 18−19, and the compactness-response of cell number 6−7,
11−12 and 16−17, are all delayed and down-scaled versions of 10, 15 and 20,
respectively, while the mean thickness of cell number 6−7, 11−12 and 16−17
is less affected. This is a natural effect of the chosen boundary conditions,
and shows how it spreads through the grid as mentioned in Section 3.5.4.

3.6 Chapter summary

In this chapter, the dynamic thermodynamic sea-ice model of Hibler III
(1979) was presented, its implementation was described and it was validated
through simulation.

When modeling sea ice there are roughly four topics to consider:

• Deciding which scale(s) the model should include, and whether to use
a continuum or discrete model.

• Deciding what sort of grid to use, and whether to use an Eulerian or
Lagrangian frame.

• Defining the system states, and

• whether to use finite element or finite difference approach to solve the
PDE.

The Hibler-model is a continuum model with a square staggered grid and Eu-
lerian frame, which uses finite difference approach to approximate the spatial
derivatives. The boundary conditions were set to be temperature-varying
and spatially independent. Hence, they are equal for the entire boundary-
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condition grid. For simplicity, some assumptions were made during the im-
plementation of the Hibler-model. They are as follows:

• It was assumed that the sea-surface dynamic height H is constant for
the entire grid,

• that the time varying air temperature Ta(t) is common for the entire
grid,

• and that the geostrophic wind and current U g and Uw, are time in-
variant.

Even though these simplifications of real-life conditions lead to some inac-
curacies, they do not affect the model’s realistic behavior, as seen by the
simulations in Section 3.5.



Chapter 4

The State Estimator

In this chapter the ensemble Kalman filter will be presented as a state esti-
mator for the sea-ice model presented in Chapter 3.

In Section 4.1, both the original Kalman filter for linear systems and the ex-
tended Kalman filter for nonlinear system are described, before the ensemble
Kalman filter is presented as an alternative to the extended Kalman filter.

Possible measurements of the Hibler-model are discussed in Section 4.2, and
suggestions for measurement-matrix candidates are given. Process and mea-
surement noise is added in Section 4.3, and the performance of different
ensemble Kalman filters based on different measurement matrices, are shown
in Section 4.4.

4.1 The Kalman Filter

In 1960, Rudolf E. Kalman published a paper describing an new method for
estimating the states of a linear process, known as Kalman filtering (Simon,
2006). The Kalman filter is a recursive algorithm which exploits knowledge
of both the process as well as the noise it is subjected to, in order to estimate
the state vector so that the mean of the squared estimate error is minimized.
The Kalman filter has become popular within many areas of application, from
navigation to weather forecasting, especially since the the extended Kalman
filter was introduced in the late 1960s (Simon, 2006), which is a Kalman
Filter for non-linear processes.

The Kalman filter can be given both as discrete or continuous in time. The

45
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discrete-time Kalman filter is the most common one, and it is also applied
in this thesis. It is therefore only the discrete-time Kalman filter which is
discussed further, and it will from now on be referred to merely as the Kalman
filter.

The Kalman filter is a sequential estimator. Assuming that there is a mea-
surement available at each time step, each cycle of the Kalman filter can
be divided into four main parts: the integration, the computation of the
Kalman gain, the measurement update and the incrementation of time, see
Figure 4.1. After the time is incremented, the estimate is integrated forward
in time, this estimate is then refined during the measurement update, using
the current measurement and the Kalman gain.

Integrate forward in time

Execute measurement update

Compute Kalman gainIncrement time
k = k + 1

Initialisation, x̂+
0 and P+

0

Measurement, yk

Figure 4.1: The Kalman filter cycle.

There are many different versions of the Kalman filter, such as linear (the
original Kalman filter for linear systems), extended (for nonlinear systems)
and ensemble (for large, nonlinear systems). They all share the structure of
Figure 4.1, but the equations within each part of the cycle vary for each of
them.

4.1.1 The linear Kalman filter

The linear Kalman filter (KF) was the one first presented by Rudolf E.
Kalman, and it has later proven to be the optimal linear state estimator
(Simon, 2006). The KF is not applied in this thesis, but it is presented here
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as a foundation for understanding the later presented extended and ensemble
Kalman Filter.

Given a linear discrete-time system
xk = Axk−1 +Buk−1 +wk−1 (4.1a)
yk = Cxk + vk (4.1b)

where wk and vk are the process and measurement noise, respectively. They
are white, zero-mean and uncorrelated with known covariance matrices Q
and R.

wk ∼ (0,Q) (4.2)
vk ∼ (0,R) (4.3)

During the execution, the KF keeps track of, and make use of, the error
covariance matrix P k, which denotes the covariance of the error between the
estimated and actual state vector (Simon, 2006).

P k = E
[
(xk − x̂k)(xk − x̂k)T

]
(4.4)

The error covariance matrix is an important part of the KF, as it is where
the information about the correctness of the estimate is kept. Along with the
covariance matrix of the process noise, it plays an important role in deter-
mining the Kalman gain, which again controls how much the measurements
influence the estimate.

With measurements being made at every time step yk, the linear Kalman
filter follows the pattern of Figure 4.1, with the following equations imple-
mented at each step:

Initialization
The initial estimate x̂+

0 is set to be the expected value of the initial
state, and the initial error covariance matrix P+

0 is set so that it rep-
resents the uncertainty in the initial estimate of x0 (Simon, 2006).

x̂+
0 = E(x0) (4.5)

P+
0 = E

[
(x0 − x̂+

0 )(x0 − x̂+
0 )T

]
(4.6)

Integration
The estimate and the error covariance matrix are integrated forward in
time.

x̂−k = Ax̂+
k−1 +Buk−1 (4.7)

P−k = AP+
k−1A

T +Q (4.8)
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Computing the Kalman gain

Kk = P−kC
T (CP−kCT +R)−1 (4.9)

Measurement update
The estimate and error covariance matrix are updated using the mea-
surement yk and the Kalman gain Kk.

x̂+
k = x̂−k +Kk

(
yk −Cx̂

−
k

)
(4.10)

P+
k = (I −KkC)P−k (I −KkC)T +KkRK

T
k (4.11)

The estimates x̂−k and x̂+
k are called the a priori and a posteriori estimate,

respectively. The a priori estimate is calculated directly from the model
equations. It represents the time update of the previous a posteriori estimate,
and is the best estimate at time k before the measurements yk has been
processed. The error covariance matrix of the a priori estimate P−k is also a
time update based on the previous error covariance matrix and the covariance
matrix of the process noise.

The a posteriori estimate is a refinement of the a priori estimate, based on the
current measurements yk, and so is the a posteriori error covariance matrix
P+
k . The a posteriori estimate is the best estimate at time k after yk has

been processed, and it is also the basis for the next cycle of the Kalman filter.
The relationship between these estimates and error covariance matrices are
depicted in Figure 4.2.

Timek − 1 k

x̂−
k−1

P−
k−1 P+

k−1

x̂+
k−1

P−
k

x̂−
k x̂+

k

P+
k

Figure 4.2: A priori and a posteriori estimates and error covariances (Simon,
2006).

4.1.2 The extended Kalman filter

For nonlinear systems, the linear Kalman filter is not applicable, and non-
linear extensions of the Kalman filter must be employed. The most common
nonlinear extension of the Kalman filter is the extended Kalman filter (EKF).
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The EKF was first proposed by Stanley Schmidt, and the idea is to linearize
the nonlinear system around the Kalman filter estimate x̂, and then use
linear Kalman-filter theory to estimate the state value (Simon, 2006).

Given the discrete nonlinear system

xk = fk(xk−1,uk−1) +wk−1 (4.12a)
yk = Cxk + vk (4.12b)
wk ∼ (0,Q) (4.12c)
vk ∼ (0,R) (4.12d)

where x is a state vector of size n. The equations for the extended Kalman
filter, which can be placed directly into Figure 4.1, are as follows.

Initialization

x̂+
0 = E(x0) (4.13)

P+
0 = E

[
(x0 − x̂+

0 )(x0 − x̂+
0 )T

]
. (4.14)

Integration

x̂−k = fk(x̂+
k−1,uk−1) (4.15)

P−k = F k−1P
+
k−1F

T
k−1 +Q (4.16)

where

F k−1 = ∂fk
∂x

∣∣∣∣∣
x̂+

k−1

(4.17)

Kalman gain
Kk = P−kC

T
k (CkP

−
kC

T
k +R)−1 (4.18)

Measurement update

x̂+
k = x̂−k +Kk[yk −Cx̂−k ] (4.19)

P+
k = (I −KkCk)P−k (I −KkCk)T +KkRK

T
k (4.20)
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The EKF and complex nonlinear system

There are many nonlinear systems which are so complex that the explicit
term for equation (4.17) is not easily found. For systems such as these,
(4.17) must be approximated through forward differencing.

The method of forward-difference approximation is described in Chapter 8
of Nocedal and Wright (2006). Given a vector function g(x) : Rn → Rm, its
Jacobian can be approximated as

J(x) =
[
∂gj
∂xi

]
=
[
∂g(x)
∂x1

· · · ∂g(x)
∂xn

]
(4.21)

where

∂g(x)
∂xi

≈ g(x+ εei)− g(x)
ε

(4.22)

i = 1, · · · , n, j = 1, · · · ,m, ε is the perturbation parameter and ei is the
ith unit vector. Thus, n + 1 perturbations are needed to approximate the
Jacobian of g(x), and for complex functions with large n this can be very
time consuming.

4.1.3 The ensemble Kalman filter

The EKF works very well for most nonlinear systems, and Simon (2006)
states that it undoubtedly is the most widely used nonlinear state-estimation
technique, in large part due to the extensive increase of computational power
that the world has witnessed the past few decades.

There are, however, two major drawbacks of the EKF when estimating the
states of highly dimensional and complex nonlinear systems (Evensen, 2009).
The first one is related to computational issues. It is seen by the previous
section that a system with n states requires n + 1 perturbations at each
time step to calculate F k−1, and hence execute the time update of the error
covariance matrix. For large, complex systems the time update of the error
covariance matrix can therefore be very time consuming (Evensen, 2009),
often too time consuming for the state estimator to function properly in
connection with a controller.

The second drawback of the EKF is that the linearization of nonlinear sys-
tems can lead to poor error covariance evolution, and for some systems unsta-
ble error-covariance growth (Evensen, 2009). This may be overcome by using
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higher order closure schemes, but this requires even greater computational
effort and is therefore not applicable for large systems.

The ensemble Kalman filter (EnKF) was presented by Evensen (1994) as a
less time consuming alternative to the EKF, and it was designed to resolve
the issues described above (Evensen, 2009). The key differences between the
EKF and the EnKF are depicted in Figure 4.3.

EKF

tk−1 tk tk+1

x̂+
k−1

x̂+
k

x̂−
k

x̂−
k+1

P+
k−1

P−
k

P+
k P−

k+1

o
observation

update x̂ and P

integrate x̂ and P

EnKF

tk−1 tk tk+1

x̂i+
k−1

x̂i+
k

x̂i−
k

x̂i−
k+1

o
observation

update ensemble

integrate

members x̂i

ensemble of
states and compute
sample covariance P

P−
k

P−
k+1

Figure 4.3: Time developement of extended Kalman filter (EKF) and ensem-
ble Kalman filter (EnKF) (Reichle et al., 2002).

The idea behind the EnKF is to replace the deterministic representation of
the error covariance matrix in the EKF with a statistical one. As the KF and
the EKF, also the EnKF works sequentially from one measurement time to
the next, executing first a time update and secondly a measurement update
(see Figure 4.1). The EnKF is, however, not dependent on the Jacobian of
fk(·) to calculate P−k , and with the EnKF there is no need for a measurement
update of P .

The reason for this is that the EnKF consists of an ensemble of state-vector
estimates which it propagates in parallel, each a representation of a particular
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realization of the possible model trajectory (Reichle et al., 2002). The EnKF
does not need to explicitly integrate the error covariance matrix P , since it
computes it diagnostically from the distribution of the state estimates across
the ensemble (Reichle et al., 2002). And since P−k is not calculated based on
P+
k−1, there is no need to calculate P+

k .

The actual state estimate of the EnKF x̂ is given by the mean of the ensemble
members, and the uncertainty of this estimate is thus represented through the
spreading of the ensemble members; the larger the spread the more uncertain
is the estimate and vice versa.

Given again the nonlinear system (4.12), and defining the ensemble size as
N , the equations of the ensemble Kalman filter can be inserted into Figure
4.1, and are as follows.

Initialization
The EnKF is initialized by generating an ensemble of initial conditions
X̂

+
0 =

[
x̂1+

0 · · · x̂N+
0

]
. The spread of these initial estimates repre-

sents the initial error covariance.

Integration

x̂i−k = f(x̂i+k−1,uk−1) + w̄i
k , i = 1, · · · , N (4.23)

P−k = 1
N − 1DkD

T
k (4.24)

where

Dk =
[
x̂1−
k − x̂

−
k · · · x̂N−k − x̂−k

]
(4.25)

x̂−k = 1
n

N∑
i=1
x̂i−k (4.26)

Kalman gain
Kk = P−kC

T
k (CkP

−
kC

T
k +R)−1 (4.27)

Measurement update

x̂i+k = x̂i−k +Kk[yk − h(x̂i−k ) + v̄ik] (4.28)

It is clearly seen from (4.23) and (4.24) that the number of times fk(·) must
be calculated at each time step is reduced relative to the EKF from n + 1
to N . The accuracy of the stochastic error covariance matrix depends on
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the ensemble size N , and for linear dynamics, the EnKF estimate actually
converges exactly to the KF solution with increasing ensemble size (Evensen,
2009). For nonlinear dynamics, the EnKF estimate becomes closer to the
EKF-estimate with increasing ensemble size. Hence, there is a trade off
between having an accurate covariance matrix (large N) and a rapid state
estimator (small N).

4.2 Model measurements

When estimating the states of a sea-ice model in real life, one needs to mea-
sure not only a selection of the model’s state but also the different inputs
that drives the model. In the case of the Hibler-model this would be the
boundary conditions χ, the air temperature Ta, the geostrophic wind and
current U g and Uw as well as their respective turning angles φ and θ. As
presented in Chapter 3, all of these inputs are assumed to be known, and
measuring them is therefore not a topic in this thesis.

Since measurements are made at time instances, the system measurements
yk are discrete, and are in this thesis represented through the following linear
equation

yk = Cxk (4.29)

where C is referred to as the measurement matrix. The measurement matrix
normally consists of both positive and negative numbers of all sizes, repre-
senting whether or not a state is measured, as well as the measurement gain.
In this thesis, however, the measurement matrix will only consist of the num-
bers 0 and 1. The state is either measured or it is not. It is assumed that
new measurements are made every hour.

4.2.1 Sensor platform

When measuring the states of the sea-ice model several sensor platforms
may be applied, for example a satellite platform, an underwater platform or
a UAV platform (Haugen et al., 2011). Even though all the platforms have
their pros and cons, the UAV is emphasized as a strong candidate by Haugen
et al. (2011), and it is also the only platform which is considered here.

The system states, which consist of u, v, h and A for every grid-cell, are
all measurement candidates. With UAVs as sensor platform, each of these
states can in theory be measured all at once, but in practice this will be
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both expensive and time consuming. It is the following therefore discussed
which of the system states that easily can be measured together, and hence
constitute a measurement-matrix candidate.

A UAV is an unmanned aircraft that flies without any human crew or pilot
on board. It can either be remotely piloted (often referred to as a drone)
or autonomous. Small UAVs are suitable for carrying cameras, sensors and
communication equipment, and they can be used to scan the ice floes to
obtain information about the ice properties and dimensions. The different
sensor types suitable for measuring u, v, h and A from a UAV are presented
in Haugen et al. (2011), and in general one can say that u, v and A can be
measured by the same, fairly light sensor, while h needs another sensor which
is somewhat heavier.

Some key properties of a UAV are weight, maximum payload, altitude, en-
durance, range and speed (Haugen et al., 2011). UAVs dimensioned for
carrying more instruments (both in terms of space and weight) are often not
able to match the endurance, altitude and speed of those dimensioned for
carrying less instruments. The range of the UAVs dimensioned for carrying
more instruments is therefore often shorter since they can fly for a shorter
period of time before they must land again.

Given this, and assuming that the platform base is located in one particular
grid cell (along with the drillship), one can construct an imaginary UAV
sensor platform consisting three different UAVs:

• One that carries a fairly light instrument which measures u, v and A.
This UAV can fly to all cells of the grid.

• One that carries a somewhat heavier instrument which measures h.
This UAV can also fly to all cells of the grid.

• One that carries a fairly light instrument measuring u, v and A and
another, somewhat heavier instrument, measuring h. This UAV can
only fly to cells adjacent to the base cell.

4.2.2 Measurement-matrix candidates

Given the implemented Hibler-model, let cell number 7 be the base cell. The
first step in determining some measurement-matrix candidates is to divide the
grid cells into close cells and distant cells. The close cells are cells adjacent
to the base cell, defining the remaining cells as distant cells, see Figure 4.4
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Figure 4.4: Grid sections.

For simplicity it is decided that when the UAV is sent out to make mea-
surements it only measures one cell, and then it returns back to base. In
practice this will most likely not be the case, but in order to avoid factors
such as current location of UAV, remaining flight time and so on, this choice
is made. Since the UAV measures either {u, v, A} or {h} for distant cells
and {u, v, h, A} for close cells, there are 31 different measurement matrix
candidates. These are all listed in Table 4.1.

4.2.3 Spatial location and the importance of an accu-
rate estimate

Not every state of the state vector x is of equal importance when estimating
the states of the sea-ice model. It is quite intuitive that it is more important
to have accurate information about the ice conditions near the drillship,
since the drillship is directly exposed to these conditions. It is, of course,
also important to have accurate information about the ice conditions further
away from the drillship as well, especially when it comes to the part of ice
management which concern the removal of larger icebergs. But in general
one can say that the closer the grid cell is to the drillship, the more important
it is to have accurate knowledge of its cell states.

The main ice-drift direction also plays an important role when it comes to
which areas that are more important to have proper estimates in. The main
ice-drift direction is a result of the ocean current direction and wind direction,
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Measurement Cell Measurements Measurement Cell Measurements
matrix matrix
C1 1 u, v, h, A C16 10 u, v, A
C2 2 u, v, h, A C17 10 h
C3 3 u, v, h, A C18 14 u, v, A
C4 6 u, v, h, A C19 14 h
C5 7 u, v, h, A C20 15 u, v, A
C6 8 u, v, h, A C21 15 h
C7 11 u, v, h, A C22 16 u, v, A
C8 12 u, v, h, A C23 16 h
C9 13 u, v, h, A C24 17 u, v, A
C10 4 u, v, A C25 17 h
C11 4 h C26 18 u, v, A
C12 5 u, v, A C27 18 h
C13 5 h C28 19 u, v, A
C14 9 u, v, A C29 19 h
C15 9 h C30 20 u, v, A

C31 20 h

Table 4.1: Measurement-matrix candidates.

and knowledge of the ice conditions upstream from the drillship is far more
important than those downstream, naturally.

Figure 4.5 shows the drill ship located in cell number 7, with ice surrounding
it. It is assumed that ice-management is being carried out, so that the ice-
floes near the ship are smaller than those far away from it. However, for
simplicity, the ice breakers included in this ice management are left out. The
figure shows three circles of different radius, representing zones of different
importance, with the area within the red circle as the most important one. In
addition to this, the upstream zone of each circle is highlighted, indicating
that these three areas are more important than the remaining part of the
circles. Comparing Figure 4.4 and Figure 4.5, it can be seen that, in addition
to cell number 7, cell number 2, 3, 4, 8 and 9 are somewhat more important
to estimate that the rest.
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Mean ice-drift
direction

Figure 4.5: Important areas to identify cell states in.

4.3 Adding noise to the system

The full system consisting of the Hibler-model and the measurement vector
is a dynamic system with continuous dynamics and discrete measurements.

ẋ = f(x,Υ) (4.30a)
yk = Cxk (4.30b)

In order to evaluate the performance of the EnKF, one needs to include
process and measurement noise to the system. This process and measurement
noise represents unmodeled process features and uncertainty introduced by
the measurement methods, respectively. Both the process and measurement
noise is additive, and they are included as if the system was discrete, through
the following equations.

xk+1 = f d (xk,Υ (t)) +wk (4.31a)
yk = Cxk + vk (4.31b)

where wk and vk are vectors of appropriate dimensions containing zero-mean
white noise, and f d(·) si the discretized f(·).
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Figure 4.6: The states of cell number 7 with and without process noise.

However, the Hibler-model is a complex model, and discretizing it by finding
the explicit expression for ∂f

∂x
would be time consuming and potentially quite

difficult, or even impossible. The model was therefore discretized by simply
using the MATLAB-solver ode15s to simulate from one time step to the next,
with the previous state vector xk as initial values. The system dynamics are
therefore still continuous (the input Υ is for instance not constant through
one time step), but from the noise’s point of view it is discrete. The time
step of the “discrete” system is set to 1 hour.

Process noise

The variance of the process noise is set to

var (wk) =
[
var (wk,1)T · · · var (wk,p)T

]T
(4.32)

where p is the number of grid cells and

var(wk,i) = var
[
ui vi hi Ai

]T
=
[
10−5 10−4 10−2 10−4

]T
(4.33)

which it is equal for every cell i. These values were chosen based on simulating
with and without process noise to see how much it effected the states. Plots
of all the cell states with and without process noise can be seen in Appendix
D. Here only the results for cell number 7 will be presented, see Figure 4.6.
It clearly shows that the noise has an impact on the states, but not to severe,
this is also the case for the other cells.
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Figure 4.7: The states of cell number 7 (with process noise) with and without
measurement noise.

The system was only simulated once, and the process noise is therefore equal
for every Kalman filter.

Measurement noise

The dimension of the measurement noise v varies of course with the chosen
measurement matrix, so in order to be able to use the same measurement
noise for every measurement matrix, (4.31b) was rewritten to

yk = Cxk +Cvk = C (xk + vk) (4.34)

Thus, the measurement noise for every state is generated at once, and they
are only generated one time. The variance of the measurement noise was set
to

var (vk) =
[
var (vk,1)T · · · var (vk,p)T

]T
(4.35)

where p is the number off grid cells and

var(vk,i) = var
[
ui vi hi Ai

]T
=
[
10−4 10−4 0.06 0.01

]T
(4.36)

which is also equal for every cell i. These values were chosen based on the
magnitude of the different states. See Figure 4.7 for plots of u, v, h and A
of cell number 7 with and without measurement noise. When adding the
measurement noise, actions were made to ensure that none of the As with
measurement noise exceed A = 1.
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4.4 Implementing the ensemble Kalman fil-
ter

In this section, the EnKF described in Section 4.1.3 will be implemented and
tested for some of the measurement-matrix candidates presented in Section
4.2. The reason that the EnKF was chosen is that the system has many
states, even with this quite small grid, and simulating many perturbations
to find the partial derivatives in an EKF would be too time consuming.

Two of the measurement-matrices are chosen: C3 and C23, resulting in two
different EnKFs. These two measurement matrices are chosen to attempt to
show how the EnKF estimate depends on both the cell states that are being
measured and the spatial location of the measured cells.

4.4.1 The EnKF system model

The model used in the EnKF is very similar to that used to simulate the “real
world” with process and measurement noise. The continuous Hibler-model
is discretized in the same way, the only difference being that the model this
time has constant input Υ through one time step, and the EnKF is thus
based on a model which is entirely discrete. Also this time a time step of 1
hour was used.

Notice that the process and measurement noise of the EnKF are not the
same as the process and measurement noise of the system. The process and
measurement noise of the EnKF are tuning parameters which indicate how
much one trusts the model and the measurements, respectively. The more
one trusts the model, the less process noise is added, and the more one trusts
the measurements, the less measurement noise is added. Hence, there is a
connection between {w̄k, v̄k} and {w,vk}, but they do not necessarily share
the same variance.

4.4.2 Tuning the EnKF

The EnKF has several tuning parameters;

• the number of ensemble members N ,

• the initial value of the ensemble members X̂0,
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• the measurement noise v̄ and its covariance matrix R (these must of
course coincide), and the process noise w̄.

The number of ensemble members and their initial values are common for all
three EnKF, and are presented here, while R, v̄ and w̄ vary somewhat from
filter to filter, and are therefore presented individually later on.

There is no definite way of deciding how many members the ensemble should
have. On one hand it needs to be large enough so that the scheme of the
EnKF works, on the other hand it must be small enough so that the com-
putational benefits of the EnKF are preserved. With a total of 80 states
(4 per cell), the choice of ensemble members landed on N = 10. With 10
ensemble members, the the amount of integrations needed is much smaller
than with an EKF and it is also big enough to give a reasonable ensemble
representation of the error covariance matrix.

When it comes to choosing the initial ensemble, Evensen (2003) suggests
that one should create the initial ensemble by adding some perturbation to
an initial best-guess estimate, and then integrate the ensemble over a time to
ensure that the system is in dynamical balance, and that proper multivariate
correlations have developed. The initial best guess to perturb around is
chosen to be

x̄0 =
[
0 0 2.5 0.9 · · · 0 0 2.5 0.9

]T
(4.37)

The perturbation was done so that the different perturbed states of the state
vector still was somewhat physically correct relative each other, and the mag-
nitude of the perturbation was chosen so that it represented the uncertainty
of the initial best guess x̄0. The entire initial ensemble X̂0 can be seen in
Appendix C.

Each of these ensemble members were then simulated with constant air tem-
perature Ta = −20 for 24 hours in order to insure dynamical balance. The
results from these simulations are used as the actual initial ensemble.

4.4.3 C3 as measurement matrix

C3 is the measurement matrix that measures u, v, h and A in cell number 3
of Figure 4.4.

The measurement noise v̄ and the process noise w̄ of the EnKF are zero
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mean white noise with the following variances:

var (w̄k) =
[
var(w̄k,1)T · · · var(w̄k,p)T

]T
(4.38)

var (v̄k) =
[
var(v̄k,1)T · · · var(v̄k,p)T

]T
(4.39)

where p is the number of grid cells and

var(w̄k,i) = var
[
ui vi hi Ai

]T
=
[
10−4 10−4 10−2 10−3

]T
(4.40)

var(v̄k,i) = var
[
ui vi hi Ai

]T
=
[
5 · 10−4 10−3 0.6 0.01

]T
(4.41)

which is equal for every cell i. These variances were found by first tuning
the EnKF for the system simulations with neither process nor measurement
noise. Starting with var(w̄k,i) = var(wk,i) and var(v̄k,i) = var(vk,i), the
variance of w̄k,i and v̄k,i was altered until the best estimate was attained.
Then, some further tuning was done for the system simulations where both
process and measurement noise were included. The covariance matrix of the
measurement noise R, is given directly from v̄.

How many hours ahead that need to be estimated accurately depends how
long it takes to prepare the drillship for heavy ice forces, and the time it
takes to remove icebergs et cetera, that is in danger of colliding with the
drillship. How long it takes to prepare the drillship for heavy ice forces
depends on the drillship as well as the ice environment and weather conditions
in the operating area. In this thesis the system states are estimated 14 days,
starting at day number 80 (approximately after 2.7 months). This probably
far exceeds the required estimate window, but the reason that the system
states are estimated for so long is so that there is time for the estimates to
converge and follow the state.

The overall result of the estimation is given by means of the scaled estimate
error, es. The estimate error is defined as the error between the system
simulation with process noise x, and the EnKF estimate x̂. This error is
then scaled by x:

es,i = xi − x̂i
xi

= ei
xi

(4.42)

where i = 1, · · · , n, and n is the number of system states.

Plots of all the scaled state errors can be seen in Figure 4.8. It clearly shows
that overall, the error stays relatively close to zero. The estimated u, û,
deviates about 5 − 10% from the actual u, v̂ deviates about 2 − 4% from
the actual v, ĥ deviates about 5 − 15% from the actual h and Â deviates
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Figure 4.8: Scaled errors from estimating with C = C3.

about 1−2% from the actual A. Hence, it is the estimates of u and h which
deviate the most from the actual values. This is also supported by the sum
of the euclidean norm of each property’s scaled-error time vector

etot,u = ‖es,u1‖2 + · · ·+ ‖es,u20‖2 (4.43)
etot,v = ‖es,v1‖2 + · · ·+ ‖es,v20‖2 (4.44)
etot,h = ‖es,h1‖2 + · · ·+ ‖es,h20‖2 (4.45)
etot,A = ‖es,A1‖2 + · · ·+ ‖es,A20‖2 (4.46)

which is the following for the EnKF with C = C3.

etot,u = 56.3312 (4.47)
etot,v = 18.8200 (4.48)
etot,h = 116.3967 (4.49)
etot,A = 13.3633 (4.50)

Overall, the EnKF based on C = C3 is thus worst at estimating h. However,
also this stays within 20% of the actual values, which is a decent, but not
particularly good estimate. Some of the estimates of u also deviates quite
a lot, but many of them keep within 5% deviation, which is not bad. All
the estimates of both v and A stay well within 5% deviation, and can be
considered good estimates. Further details of the estimation results will be
given later on, when comparing the estimation results from both C = C3
and C = C23.
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Figure 4.9: Measured and estimated states in cell number 3.

Plots of the measurements made in cell number 3 versus the estimates of the
states in cell number 3 are given in Figure 4.9, it clearly shows (even though
the h-estimate is somewhat off) that the measurement noise is filtered out
by the EnKF.

4.4.4 C23 as measurement matrix

C23 is the measurement matrix that measures h in cell number 16 of Figure
4.4. The measurement noise v̄ and the process noise w̄ of the EnKF were
set to

var (w̄k) =
[
var(w̄k,1)T · · · var(w̄k,p)T

]T
(4.51)

var (v̄k) =
[
var(v̄k,1)T · · · var(v̄k,p)T

]T
(4.52)

where p is the number of grid cells and

var(w̄k,i) = var
[
ui vi hi Ai

]T
=
[
10−5 10−5 10−2 10−3

]T
(4.53)

var(v̄k,i) = var
[
ui vi hi Ai

]T
=
[
10−4 10−4 0.06 0.01

]T
(4.54)

which is equal for every cell i. These were tuned in a similar manner as
with C = C3. However, since only h is being measured, there is no point in
altering ui, vi and Ai of var (v̄k,i). The covariance matrix of the measurement
noise R is given directly from v̄.



4.4. Implementing the ensemble Kalman filter 65

85 90 95
−0.5

0

0.5

time [days]

e s
,u

85 90 95
−0.1

−0.05

0

0.05

0.1

time [days]

e s
,v

85 90 95

−0.2

−0.1

0

0.1

0.2

time [days]

e s
,h

85 90 95
−0.04

−0.02

0

0.02

0.04

time [days]

e s
,A

Figure 4.10: Scaled errors from estimating with C = C23.

Plots of all the scaled state errors can be seen in Figure 4.10. It shows that
also here, the error stays relatively close to zero. After the estimates has
converged, û deviates around 10− 20% from the actual u, v̂ around 4− 6%
from the actual v, ĥ around 10− 20% from the actual h and Â around 2%
from the actual A. Hence, it is again the estimates of u and h which deviate
the most from the the actual values. This is again supported by etot. For
the EnKF with C = C23, the values are

etot,u = 152.4857 (4.55)
etot,v = 39.2577 (4.56)
etot,h = 148.0657 (4.57)
etot,A = 13.4263 (4.58)

Even though the numbers stated above would imply that the EnKF based
on C23 is overall worst at estimating u, it could be argued by investigating
Figure 4.10, that this is not case. Initially, the u-errors deviate quite a lot,
but as they converge they seem to stay closer to zero than the h-errors. This
implies that also the EnKF based onC23 is overall worst at estimating h. The
u-estimates are not particularly good either, stying within 20% deviation.
Some of the u-estimates does stay closer than this, but there are many which
do not. The estimates of v and A are however quite good, stying within 6%
and 2% deviation, respectively. Further details of the estimation results will
be given in the next section, when comparing the estimation results from
both C = C3 and C = C23.

The measured h in cell number 16 and its estimate can be seen in Figure 4.11.
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Figure 4.11: Measured and estimated h in cell number 16.

It clearly shows that the measurement noise is removed from the estimate by
the EnKF.

4.4.5 Comparing the C3 and C23 estimates

As seen from the two previous sections, it is probably the estimates based on
C3 which results in the overall best state estimator. But, as will be returned
to in Chapter 5, it is not the overall best estimate that is of interest here.
In this thesis, it is desirable to unveil which states that are better estimated
using different measurement matrices, and this is therefore discussed in the
following. The EnKF based on C3 is defined as EnKF3 and the EnKF based
on C23 as EnKF23. Plots of all states can be seen in Appendix E, as only a
selection of them are presented here.

A cell that represents a typical result is cell number 13, which can be seen
in Figure 4.12. It shows that EnKF3 is better at estimating u and v, while
both EnKF3 and EnKF23 are somewhat off when estimating h, and equally
good when estimating A. Generally, EnKF23 also oscillates much more than
EnKF3 in the beginning, except for the h-estimates. This has the natural
explanation that it has no direct measurements of any u, v or As, so it takes
longer until it is able to “tune in”, while EnKF3 gets direct measurements
of all four properties in cell number 3, and this oscillation does not appear.
However, this is a typical result. Meaning that there are several other cells
where this is not the case. Some individual cases, both confirming and deny-
ing this typical behavior, will be presented next.
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Figure 4.12: Simulated and estimated states in cell number 13.

Table 4.2 lists some of the states that EnKF3 and EnKF23 provides good
estimates for. These are further elaborated in the following.

Cell nr. u v h A

Good estimate with C3 3
√ √ √

8
√

10
√

15
√

Good estimate with C23 16
√

17
√

20
√ √

Table 4.2: Summary of the well estimated states presented here.

Figure 4.13 and 4.14 shows the simulated and estimated states of cell number
3 and 16, respectively. They both show that each EnKF estimates their
respective measured states better than the other EnKF, which is expected.
However, u, v and A of Figure 4.14 also shows that, apart from the constant
deviation in A, EnKF3 estimates these states better than EnKF23. This is
probably because C3 gains some general knowledge of all u, v and As by
measuring them in cell 3, while C23 receives no direct information about
these properties whatsoever.

When it comes to the remaining cells, it is safe to say that EnKF3 is better
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Figure 4.13: Simulated and estimated states in cell number 3.
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Figure 4.14: Simulated and estimated states in cell number 16.
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Figure 4.15: Simulated and estimated v.
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Figure 4.16: Simulated and estimated u.

at estimating v. In 11 out of 20 cells, EnKF3 clearly outperforms EnKF23.
Figure 4.15 shows two examples (cell number 8 and 15) where EnKF3’s es-
timate is very good, and clearly outperforms that of EnKF23. There are no
examples where EnKF23 outperforms EnKF3 with regards to estimating v.
When it comes to estimating u, EnKF3 is often better, but there are also
examples where EnKF23’s estimate is best. Figure 4.16 shows u in cell num-
ber 10 and 20. In cell 10, EnKF3 is better and in cell 20 EnKF23 is better.
Both of the EnKFs had some difficulties when estimating h in many cells, but
there are some examples where EnKF23 shows good results. The simulated
and estimated values of h in cell number 17 and 20 can be seen in Figure
4.17. In both of these cells, EnKF23 estimates h quite well, and outperforms
EnKF3. When estimating A, both EnKFs are close to the actual value. The
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Figure 4.17: Simulated and estimated h.

estimate of EnKF3 often follows the simulated curve better, but EnKF23 is
not far off, either. The results from cell 13 in Figure 4.12, is a good example
of this.

EnKF3 thus estimates not only u, v and A in cell 3 very well, but also (among
others) v in cell 8 and 15 and u in cell 10. As expected, EnKF23 estimates h
in cell 16 very well, it also provides quite good estimates of u in cell 20 and
h in cell 17 and 20 as well. See summary in Table 4.2. Apparently, it is not
only the states that are actually measured that are better estimated by one
EnKF than the other, but also other, perhaps seemingly random states.

4.5 Chapter summary

In this chapter the linear Kalman filter and the extended/ensemble Kalman
filter have been presented as state estimators for linear and nonlinear systems,
respectively. For large, complex systems, the EnKF is often superior to the
EKF since the EKF often becomes a time consuming state estimator for such
systems. The EnKF is based on a scheme which shortens the calculation time
at each time step, making it much more applicable for large, complex systems,
such as systems containing the Hibler-model.

A UAV-based platform is also presented as a possible platform for making
measurements, and based on this, a suggestion for measurement-matrix can-
didates were given. The importance of accurate estimates upstream and close
to the ship were also emphasized.
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The EnKF was implemented and tested for two different measurement ma-
trices, resulting in two different EnKFs: EnKF3 and EnKF23. In general one
can say that the EnKF3 gave the overall best estimate, but both of them pro-
duced estimates whose scaled error stayed relatively close to zero, and both
of them estimated the measured states very well (except one). In addition
to this, they both produced good estimates of different other states.
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Chapter 5

Method for Selecting
Measurement Matrix On-Line

In this chapter, a new way of deciding on-line which measurement matrix to
apply, will be presented. This method is based on combing information from
the Kalman filter covariance matrix and the observability gramian of the
systems based on the different measurement matrices. Both of these topics
are therefore revisited, and how they may contribute when choosing C is
explained in Section 5.2 and 5.3, respectively.

A new measure for degree of observability based on the observability gramian
is introduced, before the method which combines the covariance matrix and
observability gramian in order to select a C-matrix on-line, is presented in
section 5.4.

5.1 The optimal measurement matrix

As seen by the estimates described in Section 4.4, different measurement
matrices can be “best” at estimating different states, and singling out one
measurement matrix as optimal for estimating the entire state vector can
be difficult. There are of course some measurement matrices which lead to
estimators that overall perform better than others, but in general it is safe to
say that there is no optimal measurement matrix for a system as large and
complex as the one presented in this thesis.

It is therefore not a question of selecting one optimal measurement matrix,
but choosing the measurement matrix that is best suited at the current time.
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An on-line method for selecting which measurement matrix to apply should
be based on information about which states that are more important to
estimate accurately (see Section 4.2.3) and information about which states
that are poorly estimated at the current time. If a state that is important to
estimate accurately is poorly estimated, a measurement matrix containing
information about that state needs to be applied.

In the following, the question of how to obtain information about poorly
estimated states at the at current time is treated, before the use of the
observability gramian to determine the state information connected to each
measurement matrices is discussed.

5.2 The Kalman filter covariance matrix

As mentioned in Section 4.1.1, the error covariance matrix of the Kalman
filter is defined as the covariance of the error between the estimated and
actual state vector.

P k = E
[
(xk − x̂k) (xk − x̂k)T

]
(5.1)

Defining ek = xk − x̂k, P k can be written out as

P k = E


e2
k,1 ek,1ek,2 · · · ek,1ek,n

ek,1ek,2 e2
k,2 · · · ek,2ek,n

... ... . . . ...
ek,1ek,n ek,2ek,n · · · e2

k,n

 (5.2)

The diagonal elements of P k are hence the variance of the error between
the estimated and actual state vector. The variance of ek for an x̂k with
values that are close to xk is smaller than for an x̂k with values that differ
considerably from xk. The diagonal elements of P k therefore reflects the
uncertainty of the estimate x̂.

States with a corresponding higher diagonal term in P k thus have a weak
estimate, and the covariance matrix of the Kalman filter can be applied on-
line to determine which states that are poorly estimated at time k. Even
though the covariance matrix of the EnKF is an approximation of the actual
estimate-error covariance, it represents the same information and is therefore
fully applicable for finding poorly estimated states.
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5.3 The observability gramian

As mentioned earlier, Ersdal (2010) discusses how the observability gramian
can be used to define MDOs, and also tests how these MDOs can be used
to select an optimal measurement matrix. However, in Ersdal (2010), this
choice is made off-line, and the state estimator (a Luenberger observer) uses
this measurement matrix throughout the entire estimation.

The MDOs discussed in Ersdal (2010) are therefore not applicable when the
measurement matrices are chosen on-line, and knowledge about the need
for information about certain states is incorporated in the decision. The
reason for this is that all of these MDOs consider every state as equally
important, and the aim for them is to choose the measurement matrix that
provides an overall best estimate, without favoring certain states. Here,
a new method that withdraws knowledge about how much information a
measurement matrix can provide about each individual state is needed.

5.3.1 Properties of the observability gramian

The linear observability gramian W o,linear and the empirical observability
gramian W o were defined in Section 2.1.1. The output energy of a linear
system (with real valued system matrices) can be found through the linear
observability gramian in the following manner (Ersdal, 2010).

Eo = xT (0)W o,linearx (0) (5.3)

One can therefore say that the same expression based on the empirical ob-
servability gramian

Eo = xT (0)W ox (0) (5.4)
is an approximation of the output energy of a nonlinear system, which will
hold locally (Singh and Hahn, 2006). Based on this, Singh and Hahn (2006)
state that the singular values ofW o represents the part of the output energy
along the direction of the corresponding singular vector, and that the sum of
the singular vectors represents the total output energy of the system.

Two properties of linear observability gramians (based on real-valued system
matrices) is that it is a symmetric and non-negative matrix (Ersdal, 2010).
It holds for all symmetric and non-negative matrices that the eigenvalues λi
are equal to its singular values ςi

ςi = λj with i, j = 1, · · · , n, (5.5)



76 Chapter 5. Method for Selecting Measurement Matrix On-Line

and that the left (U) and right (V ) singular vectors of the singular value
decomposition

W o,linear = USV T (5.6)
are equal, but not necessarily unique. S is a diagonal matrix containing the
singular values of W o.

This leads to the conclusion that also the eigenvectors of W o,linear are equal
to (one set of) its singular vectors:

νi = γj with i, j = 1, · · · , n, (5.7)
where νi are eigenvectors and γj singular vectors. Note that in both (5.7)
and (5.5), i does not necessarily equals j.

Hence it is summarized that forW o,linear, the eigenvalues equals the singular
values and the eigenvectors equals (one set of) singular vectors. Since all of
this applies for the linear observability gramian, it also applies locally for the
empirical observability gramian.

5.3.2 A new MDO

An idea for how to decided the amount of information a certain measurement
matrix provides about each state will now be presented; the author of this
thesis has not been able to find any literature suggesting that this idea has
been tested previously.

Since the eigenvalues of W o states the amount of output energy along the
corresponding eigenvector, one can decompose each eigenvector into unit-
state vectors, and multiply them with the corresponding eigenvalue. All of
the eigenvalue/eigenvector-pairs are then summarized for each state. This
will provide a measure of how much of the output energy that relates to each
state, and hence how much information the output contains about each state.

Figure 5.1 shows how the eigenvector is decomposed for a system with three
states. The amount of information in νi-direction is, as stated earlier, λi. A
measure for the amount of information in x1-direction is λi · νi (1)x1, in x2-
direction λi · |νi (2)|x2, and in x3-direction λi · νi (3)x3, where {x1,x2,x3}
are unit-state vectors.

Defining the amount of information about state xi in the output signal as
µi, the expression for it is thus given as

µi =
n∑
j=1

λj · |νj (i)| (5.8)
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x3

x2

x1

νi

Figure 5.1: Decomposed eigenvector for a system with 3 states.

where n is the number of states, and λj and νj are the eigenvalues and
eigenvectors ofW o, respectively. Since it does not matter if the information
is in positive or negative direction, the absolute value of νj (i) is applied.

Example 5.1 New MDO

Given a random observability gramian

W o =

10 7 3
7 15 5
3 5 6

 (5.9)

Its eigenvalues, λi, and eigenvectors, νi, were found using the MATLAB
function [L,D] = eig(W), and they are

λ1 = 3.7672 and ν1 =
[
−0.0557 0.8433 0.5345

]T
(5.10)

λ2 = 5.1904 and ν2 =
[
0.4348 −0.4614 0.7733

]T
(5.11)

λ3 = 22.0428 and ν3 =
[
−0.8988 −0.2754 0.3410

]T
(5.12)

The measure of the amount of information about x1 in the output energy
is thus

µ1 = λ1 · |ν1(1)|+ λ2 · |ν2(1)|+ λ3 · |ν3(1)|
≈ 22.28 (5.13)
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and equal for µ2 and µ3

µ2 = λ1 · |ν1(2)|+ λ2 · |ν2(2)|+ λ3 · |ν3(2)|
≈ 11.64 (5.14)

µ1 = λ1 · |ν1(3)|+ λ2 · |ν2(3)|+ λ3 · |ν3(3)|
≈ 15.60 (5.15)

The measurement configuration that this observability gramian is based
on thus provides most information about x1.

5.4 Combining the covariance matrix and ob-
servability gramian

The covariance matrix of the EnKF thus provides information about which
of the states that are poorly estimated, and the new MDO presented in the
previous section provides knowledge of how much information the output
contains about each state. If this is combined, one can choose to use the
measurement matrix which provides most information about the states whose
estimate needs improving.

Such a combination can be formulated as an optimization problem where one
wants to maximize the process information µ, but where the diagonal terms
of the covariance matrix P ii are used to weight µi. Hence, information about
a state whose estimate needs improving counts for more than information
about a state whose estimate is fine. In addition to this, a scaling S is
added. This can include scaling of P and µ relative each other, as well as
scaling that deals with which states that are more important to estimate
well, such as states located upstream.

The following optimization problem is hence proposed as an on-line method
for selecting the measurement matrix best suited for estimate updating at
time k:

max
Cj

n∑
i=1
Sk,iiP k,ii · µi (Cj) (5.16)

where Cj, j = 1 · · ·m, are the measurement matrix candidates and P k,ii

diagonal element i of the covariance matrix at time k. µ is given by W o,
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which again is given by C, which lead to µ (C). This optimization problem
can also be extended to include limitations/minimization of economic costs,
flight distance, UAV properties, et cetera, but this is not further discussed
in this thesis.

Example 5.2 New selection method

Given a random system with four system states, and two measurement-
matrix candidates; Ca and Cb. This system is estimated by a Kalman
filter which uses the method presented above to choose which of these
measurement matrices to apply on-line.

Assume that at a given time k, the Kalman filter covariance matrix is as
follows

P k =


3 0 0 0
0 7 0 0
0 0 2 0
0 0 0 4

 (5.17)

Hence, it is the estimate error for x2 and x4 which is expected to be
largest. Also assume that the system is scaled in advance, and that the
“importance” scaling is given as

Sk =


1 0 0 0
0 10 0 0
0 0 0 0
0 0 0 4

 (5.18)

implying that it is most important to estimate x2 correctly followed by x4,
x1 and finally x3, whose estimate does not matter.

Again, assume that µ (Ca) and µ (Cb) are as follows

µ (Ca) =
[
µ1 (Ca) µ2 (Ca) µ3 (Ca) µ4 (Ca)

]T
=
[
0.1667 0.0333 2.1254 0.8722

]T
(5.19)

µ (Cb) =
[
µ1 (Cb) µ2 (Cb) µ3 (Cb) µ4 (Cb)

]T
=
[
0.0625 0.1667 0.1250 0.0333

]T
(5.20)
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The optimization problem would then develop in the following manner

max
Cj

n∑
i=1
Sk,iiP k,ii · µi (Cj) (5.21)

= max {16.79, 12.39} (5.22)

and based on this measurement-selection method, Ca should be applied at
time step k.

The system described in Example 5.2 is not a real system. The calculation
are based on fabricated observability gramians and covariance matrices, and
it’s sole purpose is to illustrate the optimization problem presented here. It
is not an attempt to verify the method.

5.4.1 Calculating Wo

In order to execute the optimization problem (5.16) at each time step, one
must calculate the empirical observability gramian for each measurement
matrix candidate at each time step.

It is seen from Section 2.1.1 that when calculating the EOG, r · s different
output-trajectories are needed, and the system must therefore be simulated
r · s times. Singh and Hahn (2005) state that T often is chosen equal to
{I,−I}, and the number of simulations needed to find each W o is thus 2s.
With m measurement-matrix candidates, the total number of simulations
needed is 2sm. Since the system in this thesis is a system with very high
time constants, it must be simulated for quite some time before it reaches
steady state. In addition to this it is a complex system which takes a while to
simulate, and the entire process of calculating all the EOGs can therefore be
very time consuming, most likely too time consuming to function in practice.

But as commented in Section 2.1.1, the EOG is applicable for nominal values
of the input around the steady state xss. This means that the EOGs does
not need to be calculated again until the steady state has changed more than
some pre-defined limit, which possibly takes quite some time since the steady
state of the system varies slowly with the air temperature and boundary
conditions. The initial EOGs can also be calculated off-line.
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5.4.2 Tuning the EnKF

The question of tuning the EnKF after altering the C matrix also becomes
apparent. The optimal tuning of the EnKF is dependent on the measure-
ments, but tuning the EnKF each time a new measurement matrix is chosen,
is not an option. This would lead to time gaps between the time the mea-
surement matrix is chosen as the time it is actually implemented into the
state-estimator/DP-loop. This is clearly not optimal since the chosen C is
the best measurement matrix at the current time, not some time steps into
the future.

But if the measurement matrices are defined in advance, such as they were in
in this thesis, the EnKF could be tuned off-line, forming C-matrix/tuning-
pairs. The EnKF tuning would then be given directly from the chosen mea-
surement matrix.

Calculate each Wo

Select measurement matrix C

Perform measurements

Pre tuned
EnKF settings

Perfrom estimation

Select EnKF tuning based on C

x̃ss > limit
YESNO

Figure 5.2: Flowchart for estimation loop.

Figure 5.2 shows the flowchart for the estimation and C-selection loop. In
the figure x̃ss is defined as the absolute value of the difference between the
current steady state xss and the steady state that the current EOG is based
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on x̄ss: x̃ss = |xss − x̄ss|.

5.5 Chapter summary

In this chapter, suggestions for a new MDO based on the observability
gramian, and a new on-line measurement-selection method combining this
new MDO and the covariance matrix of a Kalman filter is presented.

The new MDO is a suggestion for how one can extract information about the
amount of knowledge a given measurement matrix will provide about each
individual system state, and not the entire state vector as a whole. In the
selection method, this is then combined with information about which states
that are poorly estimated, provided by the Kalman filter covariance matrix.
Based on this the measurement matrix which provides more knowledge about
those states that are poorly estimated is chosen. A scaling is also included,
so that it is possible to identify some states as more important than others.

Ideally, this thesis would include the implementation and simulation of the
optimization problem and estimation loop. But unfortunately there was no
time for this.



Chapter 6

Discussion

In this chapter some concluding remarks on the main topics of the thesis are
given, and the choices made throughout the report are deliberated. Some
weaknesses are identified, and the results of the thesis are discussed.

All software developed for this thesis is available upon request.

6.1 The model

In Chapter 3, a general overview of the modeling of sea ice was given, and
the dynamic thermodynamic model of Hibler III (1979) was presented as the
model chosen for implementation in this thesis. Through simulations lasting
one year, the Hibler-model proved to respond in an intuitive manner to the
annually varying air temperature, by reaching a steady state through winter
and by displaying ice melting during summer.

Hibler III (1979) uses this model with a cell size of 125 km, which is quite
large. This cell size was also applied in this thesis. For some ice management
schemes, this may not provide a sufficient level of detail, such as when more
detailed information concerning the ice conditions near the ship is needed.
But in order for the continuum approximation to be valid, the cell size must
be much larger than the individual ice-floe sizes within the cells (Leppäranta,
2005), and when using the Hibler model to model ice-environments with large
ice floes, cell sizes of this magnitude are necessary. The model described in
this chapter is therefore not applicable for small scales with a high level of
detail, in such cases a discrete model must be applied.
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The implemented grid is of size (4 × 5), which is a fairly small grid. This
leads to a state vector which is highly influenced by the boundary conditions,
but when it comes to the simulation of the sea ice, this seems to work fine,
as seen be the simulations of Section 3.5.

One important aspect of the Hibler-model, which should be noted, is that
the expression for DU

Dt
from the momentum balance becomes invalid when

the mean ice thickness h approaches zero. Since the ice mass per unit area
m is given as

m = ρiceh (6.1)

and
DU

Dt
= 1
m

(· · · ) (6.2)

DU
Dt
→∞ when h→ 0, which clearly leads to numerical problems as well as

model instability. In this thesis, h never approaches zero, and this problem is
therefore avoided here. But when simulating this model in conditions leading
to mean ice thicknesses close to zero, precautions must be taken.

6.2 The state estimator

In Chapter 4 the EnKF was presented as the state estimator which would be
applied for estimating the states of the Hibler-model. This state estimator
was chosen because of the large number of states that is related to the Hibler-
model, and because of the model’s complexity. Using the EKF would be too
time consuming to function properly in an ice management/DP-loop, such
as the one depicted in Figure 2.3, and the less computationally demanding
EnKF was chosen instead.

One aspect of the EnKF which should be mentioned is that it, unlike the
EKF, uses particular w̄ and v̄ realizations, and not just their covariance
matrices. These noise realizations are too extensive to tune directly, and
they are therefore generated from their receptive variances, which function
the actual tuning parameters. This should not affect the result much, but
it does mean that there are some aspect of the tuning of the EnKF which
cannot be controlled completely.

A table of possible measurement matrices was also listed, and some of the
choices made when creating this list drastically simplified the UAV-based
measurement scheme. It was assumed that the UAV should only measure
one cell before returning to base, and the flight time should be ignored. These
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are assumptions which clearly does not hold in a real setting, as the question
of where the UAV is located at the current time, and how long it takes for it
to reach the different grid cells are important aspects of determining which
measurement matrix to apply at the current time. But in this thesis, these
aspects are ignored, mainly because it deals with the foundation for a more
complete measurement-selection algorithm.

The EnKF was also tested for two of these measurement-matrix candidates.
One measured u, v, h and A in a close cell situated upstream from the base
cell (EnKF3), and the other measured h in a distant cell situated downstream
from the base cell (EnKF23). Both of the EnKFs produced estimates that
kept somewhat close to the actual states, but there were also differences be-
tween the two. EnKF3 produced the overall best estimate, and often outper-
formed EnKF23 at estimating u and v. At estimating A they were, however,
often equally good. They both had more trouble estimating h, even though
EnKF23 did very well in some cells. The reason for this might be found by
investigating Figure 4.6 (and the rest of the plots in Appendix D). Here it
is clear that the process noise added to represent unmodeled aspects of the
process, caused h to deviate more from the model which the EnKF is based
on, than the other cell properties. Hence, the model applied in the EnKF
to calculate the state’s progression, is less accurate for the h-states than the
others, leading to greater difficulties in estimating them.

That EnKF3 had the overall best estimate is not unexpected. Both since
EnKF3 receives direct knowledge of representatives of all four cell properties,
but also because the measurements that EnKF3 is based on are made at an
edge of the grid where the mean ice-drift enters. This means that many future
states are highly influenced by these measurements. EnKF23, on the other
hand, receives direct information only about h in the corner of the grid where
the mean ice-drift leaves. Next stop for the ice in this cell is outside the grid,
without traveling through any other cells on its way. Hence, the measured
h does not affect the properties of other cells as much as the measurements
that EnKF3 is based on.

Despite that there are differences between the two estimates, it might seem
odd that they after all are so alike, and that EnKF23 manages to estimate
every state relatively well based solely on measuring h in cell 16. The reason
for this is that the boundary conditions are considered to be known, hence
they are given to the EnKFs as known input. In addition, this is a relatively
small grid, and the boundary conditions affects the states quite a lot. Thus,
no matter the measurement matrix, every EnKF has access to the boundary-
condition information, which provides a good input on how the states of the
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system behaves. In a larger grid, or a model where the boundary conditions
are included as unknown, one would probably see a greater difference between
the two estimates.

As expected, both EnKFs estimated the measured values very well, except
EnKF3’s h in cell 3. In addition to this, they both produced very good
estimates of different other states. Even though some of these other well
estimated states showed to be located somewhat near the measured cell, it
was not the case for all of them. That EnKF23 would estimate u of cell 20
better than EnKF3, would for example be difficult to predict based simply
on the fact that it measures h in cell 16. It is thus not always intuitive which
states that are better estimated with one EnKF than another.

6.3 The measurement-selection method

In Chapter 5 a new on-line measurement-selection method was proposed.
This method is based on a new observability-gramian based MDO (also pre-
sented in this chapter), and the Kalman filter covariance matrix. It also
contains a scaling factor which can include both scaling of the covariance
matrix and observability gramian relative to each other, as well as scaling
that represents the importance of having good estimates of the different states
of the system.

One possible weakness of this method is that it does not account for the
connection between the system states. Systems states are often closely re-
lated, and whether or not one is able to estimate a certain state properly
often depends on how well these closely-related states are estimated. Rela-
tions such as these are not included in this on-line method, and even though
the estimate-error covariance of such closely related states often are strongly
connected themselves, meaning that if one estimate-error covariance is high
so is the other and vice versa, one can always preponderate this through the
scaling.

Unfortunately, there was no time to implement the method and test it in loop
with the Hibler-model and ensemble Kalman filter. It is therefore important
to emphasize that this on-line selection method, including the new MDO, is
merely a theoretical suggestion. It has not been tested on any system, and
the author can therefore not provide any results which neither supports that
this could work nor concludes that it can not.
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Conclusion and Further Work

The work done in this report is motivated by the need for good ice manage-
ment when carrying out DP operations in ice-infested environments, such as
the Arctic. It was emphasized in Chapter 2 that knowledge of the surround-
ing ice environment is crucial for executing proper ice management and hence
a successful DP operation. In order to gain this knowledge a good state esti-
mator which can estimate the states of a sea-ice model is needed. The topic
of this thesis has been to implement such a sea-ice model and state-estimator.
It also includes a discussion on how to select the optimal measurement inputs
to this state estimator on-line.

It has been shown in this report that the dynamic thermodynamic sea-ice
model of Hibler III (1979) is a model that, despite some assumptions and
the fact that the development of the model states are strongly affected by
the boundary conditions, is a model well suited to simulate large scale sea-ice
response to varying air temperature. However, since it is a continuum model,
it is not suited to simulate small scale scenarios with a high level of detail.
When applying the Hibler-model to areas with little ice, care must be taken
since the model does not handle scenarios where the mean thickness h of a
cell approaches zero.

Two ensemble Kalman filters (EnKF) were implemented as state estimators,
based on two different measurement matrices. They both estimate the sys-
tem states quite well, partially because of the state’s dependency on the
boundary conditions, which are assumed to be known. As expected, it was
shown that the EnKF based on four measurements at the entrance edge of
the mean ice drift performed better overall than the EnKF based on one
measurement at the exit edge of the mean ice drift. But there were some
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states where the latter performed better, which shows that when trying to
estimate certain states of a system better than others, it is not always the
overall best estimator that is best suited for the task.

A new on-line measurement selection method has also been presented, in
the form of a simple optimization problem. This method was only suggested
theoretically, and there was no time for implementation and testing. The au-
thor is therefore aware that there might be aspects of the optimization prob-
lem which makes it unsuited for the presented task of on-line measurement-
selection, but this can not be elaborated further until such implementation
and testing has been performed.

7.1 Further work

The results presented in this thesis are mainly a starting point for further
work regarding the problem presented in Chapter 2: estimating ice-model
properties for proper execution of ice management. Suggestions for further
work include

• Further tuning and optimization of the ensemble Kalman filters.

• Implementing ensemble Kalman filters for the remaining measurement-
matrix candidates.

• Implementing and testing the on-line measurement selection method.

• Further extend the optimization problem of the on-line measurement
selection method to include for example economical aspects.
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Appendix A

Summary of model equations

The momentum equation

m
DU

Dt
= −mfk ×U + τ a + τw −mg∇H + F (A.1)

DU

Dt
= ∂U

∂t
+U∇U (A.2)

with air and water drag forces,

τ a = ρaCa|U g| (U g cos(φ) + k ×U g sin(φ)) (A.3)
τw = ρwCw|Uw −U | ((Uw −U) cos(θ) + k × (Uw −U) sin(θ)) (A.4)

ice strength
P = P ?he−C(1−A) (A.5)

and internal forces.

∆ =
√(

ε̇2
xx + ε̇2

yy

) (
1 + 1

e2

)
+ 4
e2 ε̇

2
yx + 2ε̇2

xε̇
2
yy

(
1− 1

e2

)
(A.6)

ζ = P

2∆ , η = ζ

e2 (A.7)

Fx = ∂

∂x

[
(η + ζ) ∂u

∂x
+ (ζ − η) ∂v

∂y
− 1

2P
]

+ ∂

∂y

[
η

(
∂u

∂y
+ ∂v

∂x

)]
(A.8)

Fy = ∂

∂y

[
(η + ζ) ∂v

∂y
+ (ζ − η) ∂u

∂x
− 1

2P
]

+ ∂

∂x

[
η

(
∂u

∂y
+ ∂v

∂x

)]
(A.9)
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The ice mean thickness and compactness

∂h

∂t
= −∂(uh)

∂x
− ∂(vh)

∂y
+ Sh + ξh (A.10)

∂A

∂t
= −∂(uA)

∂x
− ∂(vA)

∂y
+ SA + ξA (A.11)

with thermodynamic terms

Sh = g (h/A)A+ (1− A) g(0) (A.12)

SA =
{

g(0)
h

(1− A) if g(0) > 0
0 if g(0) < 0 +

{
0 if Sh > 0

A
2hSh if Sh < 0 (A.13)

and growth function.

g(h, Ta) = 1
ρiL

[
κi

h+ κi/ka
(Tf − Ta)−Qw

]
(A.14)



Appendix B

Spatial finite differences

The spatial finite differences (SFD) used in this thesis, and the expressions
for them will be presented here. The SFDs were calculated using central
differencing (Ames, 1992):

dz

dn
≈ 1

∆n(zn+ 1
2
− zn− 1

2
) (B.1)

Note that since the grid is square, ∆x = ∆y = d. Sometimes, attributes can
be required at other grid points than where they are calculated, e.g. ui+ 1

2 ,j

is part of (B.5), even though the value of u at this grid point does not exists.
To solve this, one simply uses the following average as an approximation.

ui+ 1
2 ,j
≈ 1

2 (ui+1,j + ui,j) (B.2)

First the derivatives connected to the momentum balance through the ma-
terial derivative will be presented. These are calculated at (i, j) because u,
and hence the momentum balance is calculated here.(

∂u

∂x

)
i,j

≈ 1
d

(
ui+ 1

2 ,j
− ui− 1

2 ,j

)
≈ 1
d

(1
2(ui+1,j + ui,j)−

1
2(ui,j + ui−1,j))

)
= 1

2d (ui+1,j − ui−1,j) (B.3)(
∂u

∂y

)
i,j

= 1
2d (ui,j+1 − ui,j−1) (B.4)
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and similar for ∂v
∂x

and ∂v
∂y
.

Secondly the derivatives connected to the constitutive law, and hence the
internal forces F are presented. These are also calculated at (i, j) since F is
used in the momentum balance.

(
∂

∂x

(
η
∂u

∂x

))
i,j
≈ ∂

∂x

(
η

1
d

(
ui+ 1

2 ,j
− ui− 1

2 ,j

))
≈ 1
d2

(
ηi+ 1

2 ,j
(ui+1,j − ui,j)− ηi− 1

2 ,j
(ui,j − ui−1,j)

)
≈ 1

2d2

((
ηi+ 1

2 ,j+
1
2

+ ηi+ 1
2 ,j−

1
2

)
(ui+1,j − ui,j)

−
(
ηi− 1

2 ,j+
1
2

+ ηi− 1
2 ,j−

1
2

)
(ui,j − ui−1,j)

)
(B.5)(

∂

∂y

(
η
∂u

∂y

))
i,j
≈ 1

2d2

((
ηi+ 1

2 ,j+
1
2

+ ηi− 1
2 ,j+

1
2

)
(ui,j+1 − ui,j)

−
(
ηi+ 1

2 ,j−
1
2

+ ηi− 1
2 ,j−

1
2

)
(ui,j − ui,j−1)

)
(B.6)(

∂

∂x

(
η
∂u

∂y

))
i,j
≈ 1
d2

(
ηi+ 1

2 ,j

(
ui+ 1

2 ,j+
1
2
− ui+ 1

2 ,j−
1
2

)
− ηi− 1

2 ,j

(
ui− 1

2 ,j+
1
2
− ui− 1

2 ,j−
1
2

))
≈ 1
d2

(1
2

(
ηi+ 1

2 ,j+
1
2

(
ui+ 1

2 ,j+1 − ui+ 1
2 ,j

)
+ ηi+ 1

2 ,j−
1
2

(
ui+ 1

2 ,j
− ui+ 1

2 ,j−1

))
− 1

2

(
ηi− 1

2 ,j+
1
2

(
ui− 1

2 ,j+1 − ui− 1
2 ,j

)
+ ηi− 1

2 ,j−
1
2

(
ui− 1

2 ,j
− ui− 1

2 ,j−1

)))
≈ 1

2d2

(
ηi+ 1

2 ,j+
1
2

(1
2 (ui+1,j+1 + ui,j+1)− 1

2 (ui+1,j + ui,j)
)

+ ηi+ 1
2 ,j−

1
2

(1
2 (ui+1,j + ui,j)−

1
2 (ui+1,j−1 + ui,j−1)

)
− ηi− 1

2 ,j+
1
2

(1
2 (ui,j+1 + ui−1,j+1)− 1

2 (ui,j + ui−1,j)
)

− ηi− 1
2 ,j−

1
2

(1
2 (ui,j + ui−1,j)−

1
2 (ui,j−1 + ui−1,j−1)

))
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= 1
4d2

(
ηi+ 1

2 ,j+
1
2

(ui+1,j+1 + ui,j+1 − ui+1,j − ui,j)

+ ηi+ 1
2 ,j−

1
2

(ui+1,j + ui,j − ui+1,j−1 − ui,j−1)
− ηi− 1

2 ,j+
1
2

(ui,j+1 + ui−1,j+1 − ui,j − ui−1,j)

− ηi− 1
2 ,j−

1
2

(ui,j + ui−1,j − ui,j−1 − ui−1,j−1)
)

(B.7)(
∂

∂y

(
η
∂u

∂x

))
i,j
≈ 1

4d2

(
ηi+ 1

2 ,j+
1
2

(ui+1,j+1 + ui+1,j − ui,j+1 − ui,j)

+ ηi− 1
2 ,j+

1
2

(ui,j+1 + ui,j − ui−1,j+1 − ui−1,j)
− ηi+ 1

2 ,j−
1
2

(ui+1,j + ui+1,j−1 − ui,j − ui,j−1)

− ηi− 1
2 ,j−

1
2

(ui,j + ui,j−1 − ui−1,j − ui−1,j−1)
)

(B.8)

(
∂P

∂x

)
i,j
≈ 1
d

(
Pi+ 1

2 ,j
− Pi− 1

2 ,j

)
≈ 1

2d
(
Pi+ 1

2 ,j+
1
2

+ Pi+ 1
2 ,j−

1
2
− Pi− 1

2 ,j+
1
2
− Pi− 1

2 ,j−
1
2

)
(
∂P

∂y

)
i,j
≈ 1

2d
(
Pi+ 1

2 ,j+
1
2

+ Pi− 1
2 ,j+

1
2
− Pi+ 1

2 ,j−
1
2
− Pi− 1

2 ,j−
1
2

)
(B.9)

and similar for ∂
∂x

(
ζ ∂u
∂x

)
, ∂
∂y

(
ζ ∂u
∂y

)
, ∂
∂x

(
ζ ∂u
∂y

)
, ∂
∂y

(
ζ ∂u
∂x

)
, ∂
∂x

(
η ∂v
∂x

)
, ∂
∂y

(
η ∂v
∂y

)
,

∂
∂x

(
η ∂v
∂y

)
, ∂
∂y

(
η ∂v
∂x

)
, ∂
∂x

(
ζ ∂v
∂x

)
, ∂
∂y

(
ζ ∂v
∂y

)
, ∂
∂x

(
ζ ∂v
∂y

)
and ∂

∂y

(
ζ ∂v
∂x

)
.

The derivatives connected to the ice-thickness distribution are as follows.
They are calculated at (i + 1

2 , j + 1
2) since h and A are calculated at these

points.(
∂(uh)
∂x

)
i+ 1

2 ,j+
1
2

≈ 1
d

(
ui+1,j+ 1

2
· hi+1,j+ 1

2
− ui,j+ 1

2
· hi,j+ 1

2

)

≈ 1
d

(1
2 (ui+1,j+1 + ui+1,j) ·

1
2
(
hi+ 3

2 ,j+
1
2

+ hi+ 1
2 ,j+

1
2

)
− 1

2 (ui,j+1 + ui,j) ·
1
2
(
hi+ 1

2 ,j+
1
2

+ hi− 1
2 ,j+

1
2

))
= 1

4d

(
(ui+1,j+1 + ui+1,j)

(
hi+ 3

2 ,j+
1
2

+ hi+ 1
2 ,j+

1
2

)
− (ui,j+1 + ui,j)

(
hi+ 1

2 ,j+
1
2

+ hi− 1
2 ,j+

1
2

))
(B.10)



98 Appendix B. Spatial finite differences

(
∂(vh)
∂y

)
i+ 1

2 ,j+
1
2

≈ 1
4d

(
(vi+1,j+1 + vi,j+1)

(
hi+ 1

2 ,j+
3
2

+ hi+ 1
2 ,j+

1
2

)
− (vi+1,j + vi,j)

(
hi+ 1

2 ,j+
1
2

+ hi+ 1
2 ,j−

1
2

))
(B.11)(

∂2h

∂x2

)
i+ 1

2 ,j+
1
2

≈ ∂

∂x
· 1
d

(
hi+1,j+ 1

2
− hi,j+ 1

2

)

≈ 1
d2

(
hi+ 3

2 ,j+
1
2
− hi+ 1

2 ,j+
1
2
− hi+ 1

2 ,j+
1
2

+ hi− 1
2 ,j+

1
2

)
= 1
d2

(
hi+ 3

2 ,j+
1
2
− 2hi+ 1

2 ,j+
1
2

+ hi− 1
2 ,j+

1
2

)
(B.12)(

∂2h

∂y2

)
i+ 1

2 ,j+
1
2

≈ 1
d2

(
hi+ 1

2 ,j+
3
2
− 2hi+ 1

2 ,j+
1
2

+ hi+ 1
2 ,j−

1
2

)
(B.13)

(
∂4h

∂x4

)
i+ 1

2 ,j+
1
2

≈ ∂

∂x
· 1
d3

((
hi+ 3

2 ,j
− 2hi+ 1

2 ,j
+ hi− 1

2 ,j

)
−
(
hi+ 1

2 ,j
− 2hi− 1

2 ,j
+ hi− 3

2 ,j

))
≈ 1
d4

((
hi+2,j − 2hi+1,j + hi,j − hi+1,j + 2hi,j − hi−1,j

)
−
(
hi+1,j − 2hi,j + hi−1,j − hi,j + 2hi−1,j − hi−2,j

))
= 1
d4 (hi+2,j − 4hi+1,j + 6hi,j − 4hi−1,j + hi−2,j) (B.14)(

∂4h

∂y4

)
i+ 1

2 ,j+
1
2

≈ 1
d4 (hi,j+2 − 4hi,j+1 + 6hi,j − 4hi,j−1 + hi,j−2) (B.15)

(
∂4h

∂x2y2

)
i+ 1

2 ,j+
1
2

≈ ∂

∂y
· 1
d3

((
hi+ 3

2 ,j+1 − 2hi+ 1
2 ,j+1 + hi− 1

2 ,j+1

)
−
(
hi+ 3

2 ,j
− 2hi+ 1

2 ,j
+ hi− 1

2 ,j

))
≈ 1
d4

((
hi+ 3

2 ,j+
3
2
− 2hi+ 1

2 ,j+
3
2

+ hi− 1
2 ,j+

3
2
− hi+ 3

2 ,j+
1
2

+ 2hi+ 1
2 ,j+

1
2
− hi− 1

2 ,j+
1
2

)
−
(
hi+ 3

2 ,j+
1
2
− 2hi+ 1

2 ,j+
1
2

+ hi− 1
2 ,j+

1
2
− hi+ 3

2 ,j−
1
2

+ 2hi+ 1
2 ,j−

1
2
− hi− 1

2 ,j−
1
2

))
(B.16)
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= 1
d4

(
hi+ 3

2 ,j+
3
2
− 2hi+ 1

2 ,j+
3
2

+ hi− 1
2 ,j+

3
2

− 2hi+ 3
2 ,j+

1
2

+ 4hi+ 1
2 ,j+

1
2
− 2hi− 1

2 ,j+
1
2

+ hi+ 3
2 ,j−

1
2
− 2hi+ 1

2 ,j−
1
2

+ hi− 1
2 ,j−

1
2

)
(B.17)(

∂4h

∂y2x2

)
i+ 1

2 ,j+
1
2

≈ 1
d4

(
hi+ 3

2 ,j+
3
2
− 2hi+ 3

2 ,j+
1
2

+ hi+ 3
2 ,j−

1
2

− 2hi+ 1
2 ,j+

3
2

+ 4hi+ 1
2 ,j+

1
2
− 2hi+ 1

2 ,j−
1
2

+ hi− 1
2 ,j+

3
2
− 2hi− 1

2 ,j+
1
2

+ hi− 1
2 ,j−

1
2

)
(B.18)

and similar for A. It should be noted that (B.10) differ somewhat from the
expression for ∂(uh)

∂x
in Hibler III (1979). Hibler III (1979) claims that(

∂(uh)
∂x

)
i+ 1

2 ,j+
1
2

= 1
4d

(
(ui+1,j+1 + ui+1,j)

(
hi+ 3

2 ,j+
1
2

+ hi+ 1
2 ,j+

1
2

)
− (ui−1,j+1 + ui−1,j)

(
hi+ 1

2 ,j+
1
2

+ hi− 1
2 ,j+

1
2

))
(B.19)

but based on the calculations shown in (B.10) it is assumed that this probably
is a misprint, and that (B.10) is the correct SFD for ∂(uh)

∂x
and similar for A.
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Appendix C

Initial ensemble

The initial ensemble for every EnKF was set to:

X̂0 =
[
x̂1

0 x̂2
0 x̂3

0 x̂4
0 x̂5

0 x̂6
0 x̂7

0 x̂8
0 x̂9

0 x̂10
0

]
, (C.1)

where

x̂1
0 =

[
0.002 0.01 2.55 0.92 0.001 0.01 2.6 0.92

· · · 0.001 0.01 2.6 0.92 0.001 0.01 2.7 0.92
· · · 0.002 0.02 2.7 0.92 0.002 0.02 2.52 0.92
· · · 0.002 0.02 2.55 0.92 0.002 0.02 2.6 0.92
· · · 0.002 0.02 2.7 0.92 0.003 0.02 2.7 0.92
· · · 0.003 0.02 2.52 0.92 0.003 0.02 2.55 0.92
· · · 0.003 0.02 2.6 0.92 0.003 0.02 2.7 0.92
· · · 0.005 0.02 2.7 0.92 0.005 0.02 2.52 0.92
· · · 0.005 0.02 2.7 0.92 0.005 0.02 2.6 0.92
· · · 0.005 0.02 2.6 0.92 0.005 0.02 2.7 0.92

]T

(C.2)

x̂2
0 =

[
−0.002 −0.01 2.45 0.88 −0.001 −0.01 2.4 0.88

· · · −0.001 −0.01 2.4 0.88 −0.001 −0.01 2.3 0.88
· · · −0.002 −0.02 2.3 0.88 −0.002 −0.02 2.48 0.88
· · · −0.002 −0.02 2.45 0.88 −0.002 −0.02 2.4 0.88
· · · −0.002 −0.02 2.3 0.88 −0.003 −0.02 2.3 0.88
· · · −0.003 −0.02 2.48 0.88 −0.003 −0.02 2.45 0.88
· · · −0.003 −0.02 2.4 0.88 −0.003 −0.02 2.3 0.88
· · · −0.005 −0.02 2.3 0.88 −0.005 −0.02 2.48 0.88
· · · −0.005 −0.02 2.3 0.88 −0.005 −0.02 2.4 0.88
· · · −0.005 −0.02 2.4 0.88 −0.005 −0.02 2.3 0.88

]T

(C.3)
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x̂3
0 =

[
0.004 0.02 2.6 0.94 0.002 0.02 2.7 0.94

· · · 0.002 0.02 2.7 0.94 0.002 0.02 2.9 0.94
· · · 0.005 0.03 2.9 0.94 0.005 0.03 2.53 0.94
· · · 0.005 0.03 2.6 0.94 0.005 0.03 2.7 0.94
· · · 0.005 0.03 2.9 0.94 0.006 0.03 2.9 0.94
· · · 0.006 0.03 2.53 0.94 0.006 0.03 2.6 0.94
· · · 0.006 0.03 2.7 0.94 0.006 0.03 2.9 0.94
· · · 0.007 0.03 2.9 0.94 0.007 0.03 2.53 0.94
· · · 0.007 0.03 2.9 0.94 0.007 0.03 2.7 0.94
· · · 0.007 0.03 2.7 0.94 0.007 0.03 2.9 0.94

]T
(C.4)

x̂4
0 =

[
−0.004 −0.02 2.4 0.86 −0.002 −0.02 2.3 0.86

· · · −0.002 −0.02 2.3 0.86 −0.002 −0.02 2.1 0.86
· · · −0.005 −0.03 2.1 0.86 −0.005 −0.03 2.47 0.86
· · · −0.005 −0.03 2.4 0.86 −0.005 −0.03 2.3 0.86
· · · −0.005 −0.03 2.1 0.86 −0.006 −0.03 2.1 0.86
· · · −0.006 −0.03 2.47 0.86 −0.006 −0.03 2.4 0.86
· · · −0.006 −0.03 2.3 0.86 −0.006 −0.03 2.1 0.86
· · · −0.007 −0.03 2.1 0.86 −0.007 −0.03 2.47 0.86
· · · −0.007 −0.03 2.1 0.86 −0.007 −0.03 2.3 0.86
· · · −0.007 −0.03 2.3 0.86 −0.007 −0.03 2.1 0.86

]T
(C.5)

x̂5
0 =

[
0.006 0.03 2.65 0.96 0.004 0.03 2.8 0.96

· · · 0.004 0.03 2.8 0.96 0.004 0.03 3 0.96
· · · 0.007 0.04 3 0.96 0.007 0.04 2.54 0.96
· · · 0.007 0.04 2.7 0.96 0.007 0.04 2.8 0.96
· · · 0.007 0.04 3 0.96 0.008 0.04 3 0.96
· · · 0.008 0.04 2.54 0.96 0.008 0.04 2.7 0.96
· · · 0.008 0.04 2.8 0.96 0.008 0.04 3 0.96
· · · 0.01 0.04 3 0.96 0.01 0.04 2.54 0.96
· · · 0.01 0.04 3 0.96 0.01 0.04 2.8 0.96
· · · 0.01 0.04 2.8 0.96 0.01 0.04 3 0.96

]T

(C.6)
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x̂6
0 =

[
−0.006 −0.03 2.35 0.84 −0.004 −0.03 2.2 0.84

· · · −0.004 −0.03 2.2 0.84 −0.004 −0.03 2 0.84
· · · −0.007 −0.04 2 0.84 −0.007 −0.04 2.46 0.84
· · · −0.007 −0.04 2.3 0.84 −0.007 −0.04 2.2 0.84
· · · −0.007 −0.04 2 0.84 −0.008 −0.04 2 0.84
· · · −0.008 −0.04 2.46 0.84 −0.008 −0.04 2.3 0.84
· · · −0.008 −0.04 2.2 0.84 −0.008 −0.04 2 0.84
· · · −0.01 −0.04 2 0.84 −0.01 −0.04 2.46 0.84
· · · −0.01 −0.04 2 0.84 −0.01 −0.04 2.2 0.84
· · · −0.01 −0.04 2.2 0.84 −0.01 −0.04 2 0.84

]T
(C.7)

x̂7
0 =

[
0.008 0.04 2.7 0.98 0.006 0.04 2.9 0.98

· · · 0.006 0.04 2.9 0.98 0.006 0.04 3.05 0.98
· · · 0.01 0.05 3.05 0.98 0.01 0.05 2.55 0.98
· · · 0.01 0.05 2.8 0.98 0.01 0.05 2.9 0.98
· · · 0.01 0.05 3.05 0.98 0.01 0.05 3.05 0.98
· · · 0.01 0.05 2.55 0.98 0.01 0.05 2.8 0.98
· · · 0.01 0.05 2.9 0.98 0.01 0.05 3.05 0.98
· · · 0.02 0.05 3.05 0.98 0.02 0.05 2.55 0.98
· · · 0.02 0.05 3.05 0.98 0.02 0.05 2.9 0.98
· · · 0.02 0.05 2.9 0.98 0.02 0.05 3.05 0.98

]T
(C.8)

x̂8
0 =

[
−0.008 −0.04 2.3 0.82 −0.006 −0.04 2.1 0.82

· · · −0.006 −0.04 2.1 0.82 −0.006 −0.04 1.95 0.82
· · · −0.01 −0.05 1.95 0.82 −0.01 −0.05 2.45 0.82
· · · −0.01 −0.05 2.2 0.82 −0.01 −0.05 2.1 0.82
· · · −0.01 −0.05 1.95 0.82 −0.01 −0.05 1.95 0.82
· · · −0.01 −0.05 2.45 0.82 −0.01 −0.05 2.2 0.82
· · · −0.01 −0.05 2.1 0.82 −0.01 −0.05 1.95 0.82
· · · −0.02 −0.05 1.95 0.82 −0.02 −0.05 2.45 0.82
· · · −0.02 −0.05 1.95 0.82 −0.02 −0.05 2.1 0.82
· · · −0.02 −0.05 2.1 0.82 −0.02 −0.05 1.95 0.82

]T

(C.9)
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x̂9
0 =

[
0.01 0.05 2.75 1 0.008 0.05 2.95 1

· · · 0.008 0.05 3 1 0.008 0.05 3.1 1
· · · 0.015 0.06 3.1 1 0.015 0.06 2.56 1
· · · 0.015 0.06 2.85 1 0.015 0.06 3 1
· · · 0.015 0.06 3.1 1 0.02 0.06 3.1 1
· · · 0.02 0.06 2.56 1 0.02 0.06 2.85 1
· · · 0.02 0.06 3 1 0.02 0.06 3.1 1
· · · 0.025 0.06 3.1 1 0.025 0.06 2.56 1
· · · 0.025 0.06 3.1 1 0.025 0.06 3 1
· · · 0.025 0.06 3 1 0.025 0.06 3.1 1

]T
(C.10)

x̂10
0 =

[
−0.01 −0.05 2.25 0.8 −0.008 −0.05 2.05 0.8

· · · −0.008 −0.05 2 0.8 −0.008 −0.05 1.9 0.8
· · · −0.015 −0.06 1.9 0.8 −0.015 −0.06 2.44 0.8
· · · −0.015 −0.06 2.15 0.8 −0.015 −0.06 2 0.8
· · · −0.015 −0.06 1.9 0.8 −0.02 −0.06 1.9 0.8
· · · −0.02 −0.06 2.44 0.8 −0.02 −0.06 2.15 0.8
· · · −0.02 −0.06 2 0.8 −0.02 −0.06 1.9 0.8
· · · −0.025 −0.06 1.9 0.8 −0.025 −0.06 2.44 0.8
· · · −0.025 −0.06 1.9 0.8 −0.025 −0.06 2 0.8
· · · −0.025 −0.06 2 0.8 −0.025 −0.06 1.9 0.8

]T

(C.11)



Appendix D

Process noise simulations

Plots of all the states with and without process noise are presented here.
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Figure D.1: The states of cell number 1 with and without process noise.
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Figure D.2: The states of cell number 2 with and without process noise.
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Figure D.3: The states of cell number 3 with and without process noise.
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Figure D.4: The states of cell number 4 with and without process noise.
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Figure D.5: The states of cell number 5 with and without process noise.
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Figure D.6: The states of cell number 6 with and without process noise.
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Figure D.7: The states of cell number 7 with and without process noise.
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Figure D.8: The states of cell number 8 with and without process noise.
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Figure D.9: The states of cell number 9 with and without process noise.
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Figure D.10: The states of cell number 10 with and without process noise.
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Figure D.11: The states of cell number 11 with and without process noise.
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Figure D.12: The states of cell number 12 with and without process noise.
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Figure D.13: The states of cell number 13 with and without process noise.
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Figure D.14: The states of cell number 14 with and without process noise.
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Figure D.15: The states of cell number 15 with and without process noise.
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Figure D.16: The states of cell number 16 with and without process noise.
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Figure D.17: The states of cell number 17 with and without process noise.
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Figure D.18: The states of cell number 18 with and without process noise.
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Figure D.19: The states of cell number 19 with and without process noise.
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Figure D.20: The states of cell number 20 with and without process noise.
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Appendix E

Estimation results

Plots of all the state estimates are presented here.
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Figure E.1: Simulated and estimated states of cell number 1.
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Figure E.2: Simulated and estimated states of cell number 2.
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Figure E.3: Simulated and estimated states of cell number 3.
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Figure E.4: Simulated and estimated states of cell number 4.
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Figure E.5: Simulated and estimated states of cell number 5.
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Figure E.6: Simulated and estimated states of cell number 6.
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Figure E.7: Simulated and estimated states of cell number 7.
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Figure E.8: Simulated and estimated states of cell number 8.
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Figure E.9: Simulated and estimated states of cell number 9.
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Figure E.10: Simulated and estimated states of cell number 10.
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Figure E.11: Simulated and estimated states of cell number 11.
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Figure E.12: Simulated and estimated states of cell number 12.
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Figure E.13: Simulated and estimated states of cell number 13.
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Figure E.14: Simulated and estimated states of cell number 14.
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Figure E.15: Simulated and estimated states of cell number 15.
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Figure E.16: Simulated and estimated states of cell number 16.
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Figure E.17: Simulated and estimated states of cell number 17.
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Figure E.18: Simulated and estimated states of cell number 18.
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Figure E.19: Simulated and estimated states of cell number 19.
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Figure E.20: Simulated and estimated states of cell number 20.
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