
Master of Science in Engineering Cybernetics
June 2011
Geir Mathisen, ITK
Sigurd Aksnes Fjerdingen, SINTEF

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Using the Kinect Sensor for Social
Robotics

Sigurd Mørkved Albrektsen

Master thesis

Using the Kinect Sensor
for Social Robotics

Author:
Sigurd Mørkved
Albrektsen

Supervisors:
Geir Mathisen

Sigurd Aksnes
Fjerdingen

Øystein Skotheim

June 13, 2011

Abstract

This thesis presents an innovative approach to social robotics through
gesture recognition. The focus is on recognizing gestures because this is
an important aspect regarding interpretation of a person’s intent when he
or she gives commands to a robot.

The equipment used is a Kinect sensor, developed by Microsoft, attached
to a moving platform. The Kinect communicates with software running
on a PC through the OpenNI interface and uses the NITE middleware by
PrimeSense.

The results of this thesis are:

• a broad literature study presenting the state of the art of gesture
recognition

• a system which handles the problems that arise when the Kinect is
non-stationary

• a gesture recognizer that observes and analyzes human actions

There are mainly two problems that are solved by the implemented system.
First, user labels might be incorrectly swapped when the Kinect’s standard
algorithm loses track of a user for a few frames. Second, false-positive
users are detected, as the Kinect is assumed stationary. Because of this,
everything that moves relative to the Kinect is marked as a user. The first
problem is counteracted by mapping the observed label to where it was
last seen. The second problem is solved using a combination of optical
flow and feature analysis.

The gesture recognizer has been developed to allow robust and efficient
segmentation, joint detection and gesture recognition. To achieve both

iii

Abstract

high efficiency and good results, these algorithms are tailored to be used
with the high quality user silhouettes detected by the Kinect. In addition,
the default Kinect algorithm needs some time to initialize when a new
human user is detected. The implemented gesture recognizer has no such
delay.

iv

Problem Description

The Kinect sensor from Microsoft has recently given the opportunity to
interface with machines in a more natural way than ever before. This may
reveal new possibilities for creating social robots – robots that interact
and coexist with humans. Such robots include e.g. mobile service robots
in home or office environments and robot manipulators lending an extra
hand in work environments. This assignment will focus on how the Kinect
sensor best is able to assist a social robot when interacting with humans.
The assignment is held in conjunction with an ongoing SINTEF project
(Next Generation Robotics for Norwegian Industry), where SINTEF is
interested in investigating new methods for communicating and interacting
with robots.

1. Perform a literature survey on social robotics, focusing on

a) Sensors for visual perception.

b) How human interaction is handled.

2. Give a practical analysis of the performance of the Kinect sensor.
The analysis should at least include accuracy, update frequency, and
an overview of good and bad environmental conditions for the sensor.

3. Design a set of algorithms which allows reliable user detection from
a non-stationary platform.

4. Design a set of algorithms demonstrating use of the Kinect sensor
in a social robotics setting using a mobile robot driving in an office
environment. The robot should be able to recognize a human while
moving and detecting defined gestures telling the robot to come or
go away.

v

Problem Description

5. Implement and analyse the algorithms in simulation.

6. If time allows, implement the algorithms on a physical robot avail-
able at SINTEF.

vi

Acknowledgements

First of all I would like to thank Geir Mathisen for accepting me as a
student and supervising this thesis. Second, I would like to thank my
co-supervisors Sigurd Aksnes Fjerdingen and Øystein Skotheim for sup-
porting me and advising me regarding the problem description, in addition
to their review of parts of my thesis.

Finally, I would like to thank Tonje Gauslaa Sivertzen for her invaluable
support and reviewing. Thank you very much for using your precious time
in your exam period on my thesis.

vii

Contents

Abstract iii

Problem Description v

Acknowledgements vii

1. Introduction 1
1.1. Contributions . 2
1.2. Report Overview . 3

2. State of the Art 5
2.1. Gesture Recognition Equipment 6

2.1.1. Close Proximity Sensors 6
2.1.2. Vision Sensors . 8

2.2. Gesture Analysis . 12
2.2.1. Static Gestures . 13
2.2.2. Dynamic Gestures 14

3. The Kinect as a Sensor 19
3.1. Hardware Specifications 20
3.2. Detection Algorithm . 21
3.3. Limitations . 24

3.3.1. Sunlight . 24
3.3.2. Reflective and Transparent Surfaces 25
3.3.3. Limited Resolution 25
3.3.4. Certain Objects Simplified or Undetected 25
3.3.5. The Kinect is Assumed Stationary 26
3.3.6. User Initialization Takes Time 26
3.3.7. Inconsistent User Labels 27

ix

Contents

4. System Design 29
4.1. Kinect Publisher . 29
4.2. User Detector Filter . 30
4.3. Gesture Recognition . 31
4.4. Visualization and Control 31

5. User Detector Filter 33
5.1. Inconsistent User Labels 34
5.2. Optical Flow User Filter 36
5.3. Feature User Filter . 38
5.4. Implementation Details . 38

6. Gesture Detection 41
6.1. Segmentation and Labeling 41

6.1.1. Leg Detection . 42
6.1.2. Torso Detection . 43
6.1.3. Head Detection . 44
6.1.4. Arm Detection . 45

6.2. Joint Detection . 47
6.2.1. Shoulder Detection 47
6.2.2. Hand Detection . 48
6.2.3. Elbow Detection 48
6.2.4. Joint Rejection . 49

6.3. Pose State Machine . 49

7. Results 51
7.1. User Relabeling . 51
7.2. User Detector Filter . 54

7.2.1. Optical Flow Filter 54
7.2.2. Feature Filter . 62
7.2.3. Combined Filters 66

7.3. Segmentation and Joint Recognition 71
7.4. Gesture Detection . 75

8. Discussion 79
8.1. User Detector Filter . 79

8.1.1. User Relabeling . 80

x

Contents

8.1.2. Optical Flow Filter 80
8.1.3. Feature Filter . 81

8.2. Gesture Detector . 82
8.2.1. Segmentation . 83
8.2.2. Joint Detector . 83
8.2.3. Pose State Machine 84

8.3. Limitations . 84
8.3.1. Limited Testing Database 85
8.3.2. Execution Speed 85
8.3.3. Hardware Limitations 86
8.3.4. Pose State Machine Transitions 86

9. Conclusion 87
9.1. Further Work . 88

References 89

Appendices 97

A. Optimizations 97

B. Relabeling Improvement 99

xi

Terms and Abbreviations

C# A programming language developed by Microsoft avail-
able for Windows through the .Net package and Linux
through the Mono project.

Emgu CV A cross platform .Net wrapper to the Intel OpenCV
image processing library [7].

Fps Frames per second
GUI Graphical User Interface
Middleware “In a distributed computing system, middleware is de-

fined as the software layer that lies between the operat-
ing system and the applications on each site[sic] of the
system.” [16]

OpenCV Open Source Computer Vision. An open source li-
brary of algorithms for use with real-time image data.

OpenNI Open Source Natural Interaction. An open source li-
brary which provides communication between low level
devices and high level middleware.

px From the word “pixel” which is an abbreviation for “pic-
ture element”. A pixel is the smallest unit of a picture
which can be represented or controlled.

Polling Polling is the process of repeatedly checking if a variable
has changed, also known as “busy waiting”.

xiii

Contents

Segmentation
and labeling

Segmentation is, in the context of image analysis, the
procedure of splitting specific parts of an image into re-
gions. Labeling is the process of identifying what the
region represents. In this thesis segmentation and la-
beling are done at the same time, thus both terms are
used for the same procedure.

ROI Region Of Interest. When using images, it is not al-
ways necessary to calculate features for the whole im-
age. If what you are looking for is in a defined area of
the image, the ROI can be set so that only this part is
processed.

Wrapper A wrapper in programming language context is a trans-
lation between two languages. This makes features
written in a specific language available in another and
often helps to make the features available in a way which
is natural for the target programming language.

xiv

1. Introduction

The discipline of controlling mobile robots has until recently consisted of
computing paths for the robot to follow, with or without object collision
avoidance. Robots are traditionally controlled using a special interface,
such as an operative panel or a computer. To change a moving robot’s ob-
jective will in most cases consist of stopping the robot and then reprogram
it using an on-board interface or a computer.

However, one might imagine a scenario where a robot interacts with hu-
mans operating in a more fluent way. This is the idea behind social
robotics. What if the robot would not only detect you as an object it
has to avoid, but as a human it has to obey? What if you could tell the
robot to perform a task, only using your own body?

This thesis brings that scenario one step closer.

The main aspect of social robotics boils down to solving one problem: for
robots to understand human commands. Although humans may commu-
nicate using speech alone, gestures such as pointing or signaling actions
are frequently used in daily life, especially when explaining actions. Hence,
gesture recognition is an important task to master for robots and humans
to coexist in the same environment.

November 4th, 2010 the Kinect sensor for XBox 360 was launched by
Microsoft in North America. According to the retailer Play.com [29], the
Kinect allows “Full-body play”:

Kinect provides a new way to play where you use all parts
of your body - head, hands, feet and torso. With controller-
free gaming you don’t just control the superhero, you are the
superhero. Full-body tracking allows the Kinect sensor to cap-

1

1. Introduction

ture every move, from head to toe, to give players a full-body
gaming experience

However, as developers discovered the Kinect’s potential beyond use in
games, efforts were made to be able to connect it to a PC and use the
sensor’s depth camera. Drivers were released after short time due to effort
made by open source communities, and high quality closed source mid-
dleware modules were released soon after that. The drivers allow robust
tracking of human users when the Kinect is stationary. However, as will
be shown in this report, problems arise when the Kinect moves.

This thesis aims to conquer these problems, and thus to allow the Kinect
to be used on a mobile platform in a social robotics context.

1.1. Contributions

This thesis has four major contributions:

• An innovative, customizable approach to identify human silhouettes
- User Detector Filter.

• A “segmentor” which partitions a human silhouette into different
body parts.

• A body joint detector which detects certain joints of a segmented
human body.

• A robust gesture detector, which uses approximations of the po-
sitions of a user’s shoulders, elbows and hands to detect dynamic
gestures.

One of the two main problems with using the Kinect on a moving platform
is that when it is non-stationary, many false-positive (non-human) users
are detected. This thesis presents a system for filtering out these false-
positives, which is implemented with focus on extendability and efficiency.
The user detector filter consists of three components: a data handler,
filters and a voter. The data handler buffers and stores data, the filters

2

1.2. Report Overview

apply different criteria which specify if a detected user is human or not,
and the voter combines the output from the filters.

Furthermore, an efficient segmentation algorithm which is optimized for
use on the high-quality silhouettes from the Kinect interface is imple-
mented. This algorithm labels the legs (if they are visible), head, torso
and arms of a user with low computational complexity.

In addition, a joint detector, which approximates the shoulders, elbows
and hands of a user, was created. Effort has been made to make the
joint detector robust and reliable. The joint detector focuses on making
accurate estimations of the vertical position of the shoulder joint, the hor-
izontal position of the elbow and an accurate position of the hand.

A robust gesture detector has also been made. This consists of a finite
state machine (FSM) with four states per arm: Undetected, ArmStraight,
ArmRaised and ArmTowardsHead. As this needs very little initializa-
tion time per user, the overhead for detecting new users is very low, com-
pared to the Kinect’s library.

1.2. Report Overview

This thesis starts with presenting the state of the art of devices and algo-
rithms used for gesture recognition in Chapter 2. The chapter focuses on
a range of equipment that could be used for detection of both static and
dynamic gestures. As already mentioned, the Kinect depth sensor from
Microsoft was selected for this thesis. This will be described in Chapter
3, with focus on hardware specifications, the detection algorithm which
is already implemented by PrimeSense and limitations of the Kinect sen-
sor.

As the Kinect’s algorithms assume that it is stationary, a system has been
made to improve performance when placed on a moving platform. An
overview of the system is presented in Chapter 4, and a more detailed de-
scription of how the most important parts of this system works is provided
in Chapter 5 and Chapter 6.

3

1. Introduction

The system’s general behaviour, in addition to some special cases, is shown
in Chapter 7 where each of the interesting parts are presented in its own
section. A discussion of the implementation and behaviour of the system,
in addition to limitations, is presented in Chapter 8. Chapter 9 summa-
rizes the thesis and suggests further work.

4

2. State of the Art

Gesture recognition is the process of interpreting motions or signs that a
user performs. There are several approaches of detecting a gesture, which
differ both in the equipment used and how the information is processed.
This chapter gives an overview of existing technologies with respect to
both equipment and gesture analysis.

Gestures can be divided into two main categories, static and dynamic
gestures. Examples of static gestures are holding up the index finger,
indicating the number one, holding up the index and middle finger, indi-
cating the number two, or showing the palm of your hand, indicating a
stop signal. Examples of dynamic gestures could be nodding or shaking
your head, indicating yes or no, or waving your hand to gain attention.
Some dynamic gestures can be thought of as moving static gestures.

Several approaches that focus on recognizing hand gestures use signs from
the American Sign Language (ASL). ASL is a visual language which deaf
people use to communicate. Recognizing ASL signs by just observing
the hands of the user is rather difficult. One of the reasons for this is
that whole of the body is used when communicating in ASL, as National
Association of the Deaf [23] states:

The shape, placement, and movement of the hands, as well
as facial expressions and body movements, all play important
parts in conveying information.

5

2. State of the Art

2.1. Gesture Recognition Equipment

To recognize gestures, the first step is to obtain information about the
object that performs the gesture. This object could for example be the
head of a human being, the hands, the arms or the whole body. To
perform this task, a diversity of different sensor systems can be used.
These systems could be divided into two main categories: systems that
use close proximity sensors, where one or more devices are attached to
or held by the user, and systems that only perform measurements from a
distance.

2.1.1. Close Proximity Sensors

Close proximity sensors often provide high quality and accurate informa-
tion. However, they tend to impose additional time to prepare for usage,
and may restraint natural behaviour while using the system. Natural be-
haviour could be restrained as these devices often have wires attached to
them, and even holding an object may change the way a person moves.
In addition, this sort of equipment is usually rather expensive as it is
produced to perform very specific tasks.

Data Gloves

There exists a variety of data gloves [22, 32, 38, 39] which provide real
time information about a hand’s current configuration. These data gloves
consist of a glove covered with sensors, typically at the joints of each finger.
Some of these systems also provide information about the placement and
orientation of the hand, and some rely on a supporting system for this
kind of information.

As finger joints’ angles are measured directly, extraction of measurements
requires low software complexity and calculation imposes small overhead.
In addition the measurements are generally of high quality and the mea-
surement frequency is high.

6

2.1. Gesture Recognition Equipment

Data gloves, however, are generally quite expensive with the P5 glove as
a notable exception [22]. Furthermore, as these sort of devices typically
are connected to a computer by cables they might be cumbersome to put
on and, more importantly, may hinder natural movement [21].

If full body gestures are necessary, a data suit [11] could be used. This
is an extension of data gloves, which provides measurements of multiple
limbs at once. As a result, information about the whole body configuration
is measured and, as Goto and Yamasaki [11] state:

A performer wears this suit, but doesn’t hold a controller [. . .]
in his hands. Therefore, [. . .] his gesture could be liberated to
become a larger gesture, like a mime.

Figure 2.1.: The P5 data glove is a low-cost data glove with a 3D-
positioning sensor. Image from [22].

7

2. State of the Art

Accelerometers

In comparison to the data gloves, accelerometers provide a different prin-
ciple of gathering information for gesture recognition. Instead of measur-
ing angles, accelerometers measure acceleration caused by a user’s move-
ment and Earth’s gravity. A common way of using accelerometers for
gesture recognition is to “train” a system to recognize how a gesture is
performed by repeating it multiple times and storing the information pro-
duced. When the gesture is to be recognized, the action performed is
matched with the database of measurements and the best match is cho-
sen.

A specific example of this is Huang and Fu [13] who present a method
which uses the “Wii Remote” produced by Nintendo. This device is less
intrusive than most data gloves as it is wireless and does not take time
to prepare for usage. In addition it is lightweight and will therefore not
interfere with how one would perform the gesture without the device. Mea-
surements are performed inside time windows which are intervals defined
by a starting point and an ending point. The starting point and ending
point of these windows depend on two parameters, the magnitude of the
accelerometer’s output and the sign of the acceleration’s time derivative.
Measurements inside each time slice are normalized, and each time slice
is assumed to contain a single gesture.

Accelerometers are frequently used as a supplement to other sensors. This
is because they are a very useful tool to find orientation in space as they
can measure Earth’s gravitational pull. This is especially useful when
recognizing static gestures, as for example pointing upwards and pointing
downwards may have very different meaning.

2.1.2. Vision Sensors

When systems can not rely on attached or held sensors, information about
the user must necessarily be obtained from a sensor at some distance from
the user. This approach gives users freedom to move naturally, as they are
not bound by cables or inhibited by potentially heavy equipment.

8

2.1. Gesture Recognition Equipment

Passive Monocular Cameras

A common vision sensor which often is used in gesture recognition is the
passive monocular camera. A passive camera is, in contrast to an active
camera, a camera which does not emit any light, but only responds the
light which is provided by the environment. This sensor is often used as
it is both inexpensive and highly available.

Passive cameras are often of very high resolution, typical consumer class
cameras have a maximal resolution from 640x480 pixels to 1920x 1080
pixels, with an update rate of 30 frames per second (fps) [18, 19].

The main problem when using passive cameras, as with most vision sen-
sors, is to recognize the pose of the user. As Huang and Pavlovic [14]
state:

The human hand as a geometric shape is a highly non-convex
volume. Trying to detect the hand configuration from camera
images is therefore a difficult, if not an impossible, task.

Due to this problem, many systems that are based on passive vision use
some sort of markers. A marker is a device which is easily recognizable
with simple imaging techniques. Davis and Shah [8] suggest using a glove
with marked fingertips, and then performing a simple histogram analysis
to remove all data which is not of interest. This approach is shown in
Figure 2.2.

Other common approaches involve direct color segmentation without the
use of markers. For example is the use of skin color in HSV or YUV color
space rather common [44]. However, as stated by Zabulis et al. [44]:

The perceived color of human skin varies greatly across human
races or even between individuals of the same race. Additional
variability may be introduced due to changing illumination
conditions and/or camera characteristics.

Oka et al. [24] solve this problem in an interesting way. Instead of using
a camera which detects information in the electromagnetic spectrum’s
visible region, it detects information in the infrared region. As warm

9

2. State of the Art

Figure 2.2.: A simple glove with clearly marked at the end of each finger
helps detection of finger tips. Image from [8].

objects emit infrared radiation, this is used to detect human parts directly
and the camera is calibrated to detect objects with temperatures between
30◦C and 34◦C. With this information, a human hand can be observed
directly without further processing, and segmentation of fingers impose
much less processing than with traditional color images.

The segmentation is done by matching a cylinder with a hemispherical cap
with each finger, and then filtering the possible candidates to minimize the
number of false positives. Furthermore, the center of the palm of the hand
is detected by applying a morphological erosion to a rough estimate of the
palm, which again is obtained by cutting off the hand at the estimated
wrist. The newly detected fingertips are matched with fingertips from the
previous frame in addition to estimates of the new fingertips’ position.
This approach enables recognition of both static and dynamic gestures,
and the article concludes that:

Our system offers reliable, near-perfect recognition of single
finger gesture and high accuracy for double finger gestures.

10

2.1. Gesture Recognition Equipment

Figure 2.3.: Fingertip detection using an infra-red camera. Image from
[24].

However, Oka et al. [24] state that the infrared camera did not work well
on cold hands and that this system is not able to detect 3D hand and
finger motions, which may be necessary for other gestures.

In addition to these approaches, shape recognition using for example edge
detectors or morphology, learning detectors using for instance machine
learning techniques called boosting, 3D model-based detection which at-
tempts to match a projected model to the image, and motion detectors
which assume that the background constant and only detect moving ob-
jects have been implemented. For a more detailed discussion, see Zabulis
et al. [44].

Passive Stereo Cameras

In addition to monocular cameras, stereo camera setups are sometimes
used. With this setup, the sensor is able to provide 3D information about
the environment, which enables new types of gestures. Moreover, this is
the sensor which most resembles the method humans use for recognizing
gestures, namely human vision. However, this kind of sensor imposes a
computational burden when it comes to matching objects in an image from
the left camera with the corresponding object in an image from the right
camera. This process is called finding the stereo correspondence, and is
necessary to know the distance to objects. The stereo correspondence can
be calculated in a variety of ways, all with their strengths and weaknesses.

11

2. State of the Art

A good comparison of different approaches can be found in Scharstein and
Szeliski [35].

Structured Light

A problem with finding stereo correspondence using a passive stereo cam-
era is that texture is needed to be able to pair objects. Texture is not
necessarily present on every surface under normal circumstances, so pair-
ing would prove difficult. To overcome this problem, one could use a
projector to project texture onto the object which is observed and then
complete stereo correspondence.

In fact, if structured light is used, a stereo camera is not necessary as
the pattern emitted from the projector is known. The camera then ob-
serves how this emitted pattern is displaced by the environment, and an
algorithm calculates a 3D grid with points which could have produced the
observed data. Chen et al. [5] describe a detailed approach on a structured
light system.

A notable solution which uses structured light is PrimeSense’s Prime-
SensorTM. The sensor works by projecting infrared light onto a scene, and
then using a passive camera to record the light [31]. With this approach,
the scene is not illuminated with visible light, so measurement of 3D data
is possible without disturbing the user. This is the approach used in the
Kinect sensor discussed in Chapter 3.

2.2. Gesture Analysis

To recognize a gesture, more than raw data or detected fingers is needed.
This section describes several approaches of converting measured informa-
tion, such as an image of a hand or finger joints’ angles, into recognized
gestures.

The process of recognizing static and dynamic gestures is based on very
different approaches. Often, a dynamic gesture is made of a moving static

12

2.2. Gesture Analysis

gesture, thus it needs to first recognize the static configuration and then
the path. Furthermore, there is a notable difference in complexity when
recognizing continuous gestures compared to isolated gestures, as it is
necessary to detect the start and end of each gesture [20].

2.2.1. Static Gestures

Recognizing static gestures is a less complicated task compared to recog-
nizing dynamic gestures. However, some static gesture approaches differ
both in what equipment is used and how analysis is performed. Further-
more, static gesture recognition is typically more robust than dynamic
gesture recognition.

Angle Analysis

Direct angle analysis is perhaps the most natural choice when using a
data glove. Takahashi and Kishino [38] provide an example of this, where
information from the data glove is sampled and ten samples are aver-
aged to reduce both noise and minor movement caused by the user. This
measurement is then coded so that twelve variables describe the hand’s
configuration, where ten variables correspond to how the fingers are bent
and two variables correspond to orientation. The variables associated
with fingers are coded so that an angle of less than 45◦assumes a straight
joint and an angle greater than 45◦assumes a bent joint. However, if the
standard deviation of the measurement is greater than 20◦the variable is
marked as “uncertain”. Similarly, the first of the two variables that de-
scribe orientation is marked as either “hand pointing upwards” or “hand
pointing downwards”. The second variable describes if the back, palm or
side of the hand is shown.

With this information a data structure which is based on a binary tree is
generated so that each leaf node in the tree is a successful gesture. This
structure provides an efficient lookup table to find what gesture is the
most probable for a given configuration. According to the paper, gesture

13

2. State of the Art

recognition is performed rather successfully. In five trials, most of the 46
hand configurations were recognized.

Model-to-Image Matching

If information about fingers’ angles can not be directly read from a data
glove, but a camera is used instead, the model-to-image matching ap-
proach would be a replacement [14]. The idea behind this approach is to
create a 3D model of the object that is performing the gesture. The model
could for instance be a hand with fingers and all the fingers’ joints. Rea-
sonable constraints are applied to the model, for example that the index
finger must extend from the palm of the hand and not the tip of the ring
finger.

For a camera recognize the model, Kuch and Huang [17] suggest to make
an initial guess of the current pose. A 2D representation of the model in
the current estimated position is projected onto the plane of the image,
and this projection is compared to the image from the camera. Based on
this comparison, an error variable is calculated and the model is moved or
rotated slightly. An error variable corresponding to the new configuration
is calculated. It is compared with the old variable, and the configuration
with the best match is chosen. With this approach the error is minimized,
and a best guess of the configuration is made.

2.2.2. Dynamic Gestures

Dynamic gestures are gestures that require more than a single frame to
be recognized. Dynamic gestures have a higher complexity than static
gestures, as they can be seen upon as static gestures in motion. Hence,
to recognize a dynamic gesture, most approaches consist of recognizing a
sequence of static gestures, and how this sequence moves.

14

2.2. Gesture Analysis

Finite State Machines

A Finite State Machine (FSM) is, as the name suggests, a state machine
with a finite number of states. A state is a collection of variables which
uniquely defines the configuration which a system might be in. A state
could for example be a specific gesture, such as “looking to the left”. An
FSM is based on the principle that a system can only be in one state at
any given time, and in this state a defined number of transitions can hap-
pen. For example could the action “look right” change the state “looking
straight forward” to “looking to the right”. The state machine can only
be in a single state at a given time, that is one can not look to the right
and the left at the same time.

This approach can be seen in Hasanuzzaman et al. [12] where an FSM
is implemented using a simple FIFO (First In First Out) queue. The
queue is used to hold information about which parts of a gesture have
been performed. For every frame, the current pose is detected, and if it is
different from the previous frame, the new pose is added to the queue (a
transition). If the queue contains the images “up, straight forward, down”
or “down, straight forward, up”, the a nodding (Yes) gesture is registered,
and similarly for a shaking head (No) gesture.

Another example of an FSM implementation is Davis and Shah [8]. In
this paper a specific hand configuration is marked as the starting position.
When one of the defined hand gestures is made, the system performs a
corresponding action. As this action can be continuous, the gesture may be
held for an arbitrary length of time until the starting position is resumed.
An example of such a gesture could be that a user points to the left, and
while the user points to the left, a robot turns left. When the user stops
pointing left and returns to the starting position, the robot stops.

Hidden Markov Models

The Hidden Markov Models (HMM) approach is currently one of the most
used techniques for recognizing dynamic gestures. The approach uses a
statistical analysis of how the gesture should be treated, and is built on

15

2. State of the Art

the principle that gestures fulfil the Markov assumption – that is that
the Markov property hold for the system. Mitra and Acharya [21] state
that:

A time-domain process demonstrates a Markov property if the
conditional probability density of the current event, given all
present and past events, depends only on the nth most recent
event.

The HMM framework further assumes that there are N states, where each
state S, has an output probability distribution function. This function
gives the probability that if the system is in state Si, the system observes
that it is, in fact, in the state Si [42]. In addition to this function, a
transition probability function which gives the likelihood of a given action
in state Si results in a transition to state Sj [21].

There are three key problems when using an HMM:

1. Finding the probability functions

2. Evaluating the current state

3. Recovering the state sequence

The first problem is often solved by training [42, 21, 24]. Numerous se-
quences are recorded as training sets, and the correct gesture is associated
with the recorded action. This is used as input to the Baum-Welch algo-
rithm [41] to calculate the probability distribution functions. The second
step is often solved using the forward-backward algorithm, which “com-
putes posterior probabilities of a sequence of states given a sequence of
observations” [34, p. 446]. Lastly, the third problem can be solved using
the Viterbi algorithm [9].

Optical Flow

Optical Flow is another approach which is used, for example by Cutler
and Turk [6]. The approach is based on detecting optical flow in a set
of images, and then running blob detection on the detected flow. These

16

2.2. Gesture Analysis

blobs are compared to a generated database of how other gestures should
be made, and parameters such as the number of blobs, the direction of
motion, the relative motion of two detected blobs and the size of the
blobs are compared. For example is “clapping” detected as two blobs with
horizontal motion where the blobs have opposing relative motion and a
rather small size, while “flapping” is detected as two blobs with rotational
movement with the same relative motion and a rather large size. These
gestures are shown in figures 2.4 and 2.5.

(a) Flapping action

(b) Flow and detected blob

Figure 2.4.: Flapping action. Im-
ages from [6].

(a) Clapping action

(b) Flow and detected
blob

Figure 2.5.: Clapping action. Im-
ages from [6].

17

3. The Kinect as a Sensor

The Kinect, also known as “Kinect for Xbox 360” or “Project Natal”, is
a device which originally was meant as a controller-free way of operating
the Xbox 360 game console. The sensor has been very popular from the
release date November 4th 2010 and sold 133,333 units per day in the
first 60 days on sale according to Guinness World Records [33]. From
the launch date the sensor’s potential was recognized to perform other
tasks than controlling computer games, hence development of drivers for
PC was initiated. A notable example of this was Adafruit’s “Hack the
Kinect for Xbox 360” prize, where USD 2,000 (later increased to USD
3,000) was awarded to anyone who would provide open drivers for the
Kinect [1]. The winner of this contest was announced November 10th [2],
and several open source framework followed and as of spring 2011 the two
dominating frameworks are OpenKinect’s libfreenect [27] and OpenNI [28]
(Open Source Natural Interaction).

OpenKinect is an open source project which is based on results acquired
by reverse engineering communication with the Kinect by observing USB
communication. The project aims to support a variety of features such
as hand and skeleton tracking, 3D reconstruction and audio cancellation,
but these features are not finished as of June 13th 2011 and the project’s
“Roadmap” page [27] states:

Clearly this is a large effort and requires cross-discipline coor-
dination with academic experts, developers, testers, and users.
It will also take many months or years to complete this effort.

OpenKinect’s current project is libfreenect which allows communication
with the Kinect hardware. There are bindings and wrappers to several
languages such as C, C++, C# and python.

19

3. The Kinect as a Sensor

Figure 3.1.: The Kinect sensor including the external power adapter (in
the background) which is provided to support older Xbox
360s’ USB interface. Image from [15]

OpenNI is an open source framework which utilizes closed source mid-
dleware from PrimeSense called NITE. PrimeSense is the company which
provides the user recognition software which is used on the Xbox 360 and
is further developed than OpenKinect’s software. NITE provides several
of the features which OpenKinect aims to implement. User recognition,
skeleton tracking and limited gesture recognition are all implemented and
seem to work robustly within certain assumptions. A short presentation
of how this tracking algorithm works is presented in Section 3.2.

3.1. Hardware Specifications

The Kinect is equipped with two sensors - a near infra-red camera used for
depth detection, and a color camera. Unofficial sources [3, 10], state that
the maximum resolution for these cameras is 640x480px with 11-bit resolu-
tion and 640x480px with 32-bit resolution for the depth and color camera

20

3.2. Detection Algorithm

respectively. The frame rate is specified as 30 frames per second (fps) for
both cameras. The color camera supports higher resolution (1280x1024
px) if the frame rate is decreased to 15fps. In addition the Kinect has
an audio interface and a USB controller. As peak power consumption
slightly exceeds that which USB can provide according to its specifica-
tion, an external power supply is necessary. Microsoft has published little
information about the hardware, but some information is obtained though
analysis of the components which can be found in [26].

According to the retailer Play.com [29], the field of view is as follows:

Horizontal field of view 57◦

Vertical field of view 43◦

Physical tilt range ±27◦

Depth sensor range 1.2m - 3.5m

The detection algorithm uses structured light which is described in Section
2.1.2 and the depth resolution is, according to Shotton et al. [37], a few
centimeters.

3.2. Detection Algorithm

When data from the Kinect is acquired the depth image, that is image
with depth information, is analyzed to extract information about users’
position and pose. According to Shotton et al. [37], the software used with
the Kinect sensor is the first “robust interactive human body tracking”
which runs at “interactive rates on consumer hardware while handling
a full range of human body shapes and sizes undergoing general body
motions”. The algorithm works by dividing a user’s body into 31 labels
which are recognized as 3D approximations of the user’s body joints. An
example of this segmentation is shown in Figure 3.2. The algorithm is
optimized using a GPU and uses less than 5ms per frame. The following
paragraphs describe Shotton et al. [37]’s approach.

Analysing depth images has several advantages compared with analysis of
color images; depth images provide high quality data in low light settings,

21

3. The Kinect as a Sensor

Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio
Richard Moore Alex Kipman Andrew Blake

Microsoft Research Cambridge & Xbox Incubation

Abstract
We propose a new method to quickly and accurately pre-

dict 3D positions of body joints from a single depth image,
using no temporal information. We take an object recog-
nition approach, designing an intermediate body parts rep-
resentation that maps the difficult pose estimation problem
into a simpler per-pixel classification problem. Our large
and highly varied training dataset allows the classifier to
estimate body parts invariant to pose, body shape, clothing,
etc. Finally we generate confidence-scored 3D proposals of
several body joints by reprojecting the classification result
and finding local modes.

The system runs at 200 frames per second on consumer
hardware. Our evaluation shows high accuracy on both
synthetic and real test sets, and investigates the effect of sev-
eral training parameters. We achieve state of the art accu-
racy in our comparison with related work and demonstrate
improved generalization over exact whole-skeleton nearest
neighbor matching.

1. Introduction
Robust interactive human body tracking has applica-

tions including gaming, human-computer interaction, secu-
rity, telepresence, and even health-care. The task has re-
cently been greatly simplified by the introduction of real-
time depth cameras [16, 19, 44, 37, 28, 13]. However, even
the best existing systems still exhibit limitations. In partic-
ular, until the launch of Kinect [21], none ran at interactive
rates on consumer hardware while handling a full range of
human body shapes and sizes undergoing general body mo-
tions. Some systems achieve high speeds by tracking from
frame to frame but struggle to re-initialize quickly and so
are not robust. In this paper, we focus on pose recognition
in parts: detecting from a single depth image a small set of
3D position candidates for each skeletal joint. Our focus on
per-frame initialization and recovery is designed to comple-
ment any appropriate tracking algorithm [7, 39, 16, 42, 13]
that might further incorporate temporal and kinematic co-
herence. The algorithm presented here forms a core com-
ponent of the Kinect gaming platform [21].

Illustrated in Fig. 1 and inspired by recent object recog-
nition work that divides objects into parts (e.g. [12, 43]),
our approach is driven by two key design goals: computa-
tional efficiency and robustness. A single input depth image
is segmented into a dense probabilistic body part labeling,
with the parts defined to be spatially localized near skeletal

CVPR Teaser
seq 1: frame 15

seq 2: frame 236
seq 5: take 1, 72

depth image body parts 3D joint proposals

Figure 1. Overview. From an single input depth image, a per-pixel
body part distribution is inferred. (Colors indicate the most likely
part labels at each pixel, and correspond in the joint proposals).
Local modes of this signal are estimated to give high-quality pro-
posals for the 3D locations of body joints, even for multiple users.

joints of interest. Reprojecting the inferred parts into world
space, we localize spatial modes of each part distribution
and thus generate (possibly several) confidence-weighted
proposals for the 3D locations of each skeletal joint.

We treat the segmentation into body parts as a per-pixel
classification task (no pairwise terms or CRF have proved
necessary). Evaluating each pixel separately avoids a com-
binatorial search over the different body joints, although
within a single part there are of course still dramatic dif-
ferences in the contextual appearance. For training data,
we generate realistic synthetic depth images of humans of
many shapes and sizes in highly varied poses sampled from
a large motion capture database. We train a deep ran-
domized decision forest classifier which avoids overfitting
by using hundreds of thousands of training images. Sim-
ple, discriminative depth comparison image features yield
3D translation invariance while maintaining high computa-
tional efficiency. For further speed, the classifier can be run
in parallel on each pixel on a GPU [34]. Finally, spatial
modes of the inferred per-pixel distributions are computed
using mean shift [10] resulting in the 3D joint proposals.

An optimized implementation of our algorithm runs in
under 5ms per frame (200 frames per second) on the Xbox
360 GPU, at least one order of magnitude faster than exist-
ing approaches. It works frame-by-frame across dramati-
cally differing body shapes and sizes, and the learned dis-
criminative approach naturally handles self-occlusions and

1

Figure 3.2.: Recognition of users’ body joints from depth images via seg-
mented body parts [37].

22

3.2. Detection Algorithm

they are color and texture invariant, the scale is calibrated and background
extraction is simplified. In addition, synthetic training sets are more easily
generated with depth images than with color images, hence populating
training databases is simplified. To create this kind of training database
is, however, a formidable task and the paper reports using a database of
approximately half-a-million frames in a few hundred sequences.

To segment a body into different parts an image classifier is used. The
image classifier used in this approach is based on randomized decision
forests. It is trained using a subset of the database mentioned above,
due to very similar neighbouring poses in a moving gesture, with approx-
imately 100 000 static poses. The CMU mocap database [40] was used in
early experiments and provided acceptable results for the limited set of
poses.

The input to the randomized decision forests is a set of features fθ(I,x).
A feature is defined as a function which is defined for any image I at any
position x, and takes the parameter θ = (u,v). θ describes offset in a
fixed world space frame and is scaled inside fθ(I,x) so that the features
become 3D translation invariant. According to the article, the features
only give a weak response to which part of the body a given pixel belongs
to, but when using decision forests it is sufficient.

To train the decision trees, a random subset of 2000 pixels is selected from
each image and an algorithm, which is based on partitioning and Shannon
entropy calculated from the normalized histogram of the body part labels,
is used. Training 3 trees to depth 20 from 1 million images takes about a
day on a distributed implementation with 1000 cores. Further details are
found in the paper.

To extract body joints an algorithm which consists of three main steps is
used:

• A density estimator per body part with a weight based on the body
part probability and the world surface area of the pixel.

• A mean shift technique to find modes in the density efficiently.

• A “push back” algorithm which translates the approximated joint

23

3. The Kinect as a Sensor

location, which is placed on the user’s observed surface, to the most
likely 3D placement inside the point cloud.

The paper reports that this joint detector is very precise, with 91.4% of
the joints correctly detected with less than 10cm to the ground truth. In
addition, when only evaluating the head, shoulders, elbows and hands,
98.4% of all joints are properly detected within 10cm.

3.3. Limitations

Although Shotton et al. [37]’s approach seems very favourable, both hard-
ware and software impose certain limitations. Although the limitations
might be insignificant when the sensor is used as a game controller, they
might be vital when for example using the sensor in robotics. The major
limitations are as follows:

• Does not work in sunlight (hardware)

• Reflective and transparent surfaces not properly detected (hardware)

• The resolution limits fine-grained gestures such as finger gestures
from a distance (hardware)

• Certain objects are simplified or undetected (hardware or firmware)

• The Kinect is assumed stationary (software)

• User initialization takes time (software)

• User labels may switch when the Kinect is moved (software)

3.3.1. Sunlight

According to OpenKinect [26] the light projected by the Kinect is from
a 60mW 830nm laser diode. As sunlight has a wide spectre of infrared
light, the grid projected by the Kinect is blinded by bright sunlight and

24

3.3. Limitations

the IR-camera is unable to detect the grid. This yields very poor depth
recognition in areas exposed to much sunlight.

3.3.2. Reflective and Transparent Surfaces

Detection of reflective or transparent surfaces is always difficult when us-
ing optical sensors, and this is also the case with the Kinect. This difficulty
is due to the fact that most optical sensors observe light reflected from an
object, and if this reflection is either lower or higher than expected, obser-
vation tends to be difficult, as little information reaches the sensor.

3.3.3. Limited Resolution

Due to the somewhat limited resolution of the Kinect, at 640x480px with
a few centimeters depth resolution, all types of gestures can not be regis-
tered. Typical gestures could be waving, holding up an arm, or bending
one arm to a ’stop’ position if the whole body is visible. However, if a
smaller area of the body is observed, such as an arm or the upper body,
more detailed gestures such as one-hand gestures representing letters from
the American Sign Language can be recognized.

3.3.4. Certain Objects Simplified or Undetected

According to Øystein Skotheim [43], the Kinect has problems when de-
tecting certain objects. This can be seen when observing a step object
which consists of 10 steps that are 10mm high and 10mm deep. As Figure
3.3 shows, some objects become smoothed when observed by the Kinect -
even at. In addition to this, objects such as hair are often too fine-grained
for the Kinect to discover.

25

3. The Kinect as a Sensor

(a) Steps object (b) 84cm (c) 120cm

Figure 3.3.: Certain objects become smoothed when observed by the
Kinect, even from a rather short distance. Reprinted with
permission from [43].

3.3.5. The Kinect is Assumed Stationary

To simplify background extraction the Kinect is assumed to be stationary,
and thus that everything that moves is very likely to be a human. Hence,
when the Kinect is mounted on a moving platform and this assumption
no longer holds, many false positives are detected. This is a major prob-
lem when using the Kinect on a mobile platform, and must be handled
explicitly if the sensor is to be used this way.

Figure 3.4 shows multiple “users” which are false positives when the Kinect
is placed on a mobile platform. Note that the silhouette of the correct
positive, the green user, is very accurate.

3.3.6. User Initialization Takes Time

When a user is detected, he or she must stand in a special stance - arms
straight out from the shoulders with forearms and hands pointing upwards
- for several seconds before the algorithm calibrates a virtual skeleton
and adjusts it to the user. This is also a major problem on a mobile
platform if the platform travel with a somewhat decent speed. It would

26

3.3. Limitations

Figure 3.4.: Several false users are detected, marked with color, by the
standard NITE middleware when the Kinect moves. The cor-
rect response would have been only the green silhouette.

be very unfortunate if the platform passed the user before calibration was
finished.

3.3.7. Inconsistent User Labels

Another major problem is that user labels may switch between frames.
The problem arises when the labeling of a user is lost for one or more
frames and when the user is rediscovered, it is marked as another user.
The problem is illustrated in Figure 3.5.

This inconsistent labeling causes problems when tracking a user along
multiple frames, and when comparing one frame with the next. If this
user switch is made during a gesture, a gesture recognizer may interpret
the input as two different users and not relate the gesture performed by
the “first” user to that of the “second” user. Hence, this must be improved
to enable observation from a moving platform.

27

3. The Kinect as a Sensor

(a) Frame 1 (b) Frame 2 (c) Frame 3

Figure 3.5.: The figure shows three consecutive frames where the user is
first marked by one label (shown as red in Frame 1), then
the user labels are lost in Frame 2, and when user labels are
available in Frame 3, the user has been marked with the wrong
label (shown as blue).

28

4. System Design

To conquer some of the limitations mentioned in Section 3.3, a system
for data handling, analysis and visualization was created for this thesis.
As hardware limitations are difficult to improve without modifying the
hardware itself, the focus of this thesis has been on improving the software
limitations. The problems arise from operating in environments where the
assumption that the Kinect is stationary no longer holds.

The system is composed of four major components. These are: the Kinect
data handler, the user detector filter, the gesture recognizer and a visu-
alization and control component. Communication between nodes is event
driven to reduce polling, as polling spends time on unnecessary checking
of variables. An overview of the system is shown in Figure 4.1.

User Interface
Visualization
and Control

Kinect Publishers
Reading data from

OpenNI and converting
to OpenCV

User Detector Filter
Filters false positives from

OpenNI

Gesture Recognizer
Recognizes gestures from user

silhouettes.

Figure 4.1.: System overview of the four main components.

4.1. Kinect Publisher

To read data from the Kinect sensor, the OpenNI interface is used. This
interface was chosen because it is further developed than the libfreenect

29

4. System Design

interface. In addition, OpenNI is implemented as the standard Kinect
package in ROS (Robot Operating System), which can be used for con-
trolling the robot at a later time. To ease communication and and the
ability to interchange parts of the system, a package called “Kinect Pub-
lishers” was created for this thesis. This package abstracts data extraction
from the Kinect and converts the data format to the OpenCV format used
by the rest of the system.

At project start-up the current unstable version of the OpenNI interface
was 1.0.0.25 (published Jan 10th 2011), and the current unstable version
of the NITE middleware was 1.3.0.18. These are the versions used in
this project. The OpenCV version used is 2.2 with Emgu CV version
2.2.1.1150.

The package consists of two main components - the DepthReader and
the UserReader which read and buffer depth images and user silhouettes
respectively. The package runs in its own thread to utilize cores on multi-
core architectures. The idea behind this package is that the rest of the
system should not need to wait for the external device when data is needed.
The buffer is, however, rather small because if the system can not process
the information fast enough, it is desirable to process as new information
as possible.

4.2. User Detector Filter

Because of the problems when using the Kinect on a moving platform,
presented in Section 3.3.5, the false positives have to be removed from the
data set. This is done by the improved user detector step. The system
is designed so that multiple classifiers can be run in parallel, and two
classifiers are implemented: one based on optical flow and one based on
a simple feature matcher. The output from the improved user detector
is a silhouette of a user which is more probable to be a human than
the estimates from OpenNI. This implementation is further discussed in
Chapter 5.

30

4.3. Gesture Recognition

4.3. Gesture Recognition

When reliable user silhouettes are available, gesture recognition can begin.
The algorithm performs three steps in recognizing a gesture. Firstly, a user
silhouette is segmented and labeled. This is a simplified approach based
those discussed in Section 3.2 and Oka et al. [24]’s approach mentioned
in Section 2.1.2. Secondly, the position of the hand, the position of the
elbow and the position of the shoulder are detected. Then these joints are
used as parameters to a finite state machine which recognizes the gestures.
This implementation is further discussed in Chapter 6.

4.4. Visualization and Control

In addition to these core components, a visualization and control package
is created. This package handles the execution and connection between
the different components in addition to parameter adjustment and visual-
ization of the output. To be able to fine-tune parameters and test different
approaches several configuration options are available, in addition to the
ability to play recorded data steams. A class which extends .Net’s native
PictureBox was created to allow zooming to better show details of the
algorithm.

31

5. User Detector Filter

As the algorithms that run on the Kinect assume that the Kinect is sta-
tionary, many false positive users are detected. Although neither Microsoft
nor PrimeSense have released detailed documentation on how the device
works, the reason for the false positives is most likely an assumption that
objects which move relative to the Kinect, have a high probability of be-
ing human. However, when the Kinect moves, most of the surrounding
objects move from the Kinect’s point of view, thus they are marked as
users.

The user detector filter improves the accuracy of OpenNI’s results by fil-
tering out these false positives, thus only allowing correct users to be
further processed by the gesture detector. To classify a human user from
the background, several criteria could be set to verify or falsify if a given
user should be counted as a user or the background. The two criteria
used in the system developed for this paper is that a verified user should
move differently from the Kinect and that such a user must have some-
what the same features as a human. Both of these criteria are needed
as calculation of optical flow is somewhat noise-intolerant, and as there
are objects which can not be filtered out by the feature filter because of
human resemblance.

To be able to efficiently apply various criteria, each criterion is imple-
mented as its own filter. This approach was chosen to allow multiple cri-
teria to be applied in parallel, and to allow extendability and the ability
to select specific filters optimized for specific environments.

The result from each filter consists of three lists: verified users, falsified
users and uncertain users. These lists contain each user visible at that
given time instance, once in one of the three lists. When all filters have

33

5. User Detector Filter

finished execution, the lists are combined in a voter. The voter is a simple
process that decides how the results from the different filters should be
interpreted, and it is implemented in the following way:

• If one or more filters have marked the user as false, the user is marked
as false.

• If one or more filters have marked the user as valid, but no filters
has marked that user as false, the user is marked as valid.

• If all filters marks a user as uncertain, the user is marked as valid.

As only two filters are implemented in this thesis, the given voter works
sufficiently. For example, if three filters marked a user as valid, while one
marked the user as false, it will still be marked as false. However, a more
complex voter might be useful if more filters are implemented.

Currently, there are only implemented two criteria which can verify or
falsify users. These are: the criterion that movement of a user should
be different from that of the surroundings, and that a user silhouette
should have some similarities to a human silhouette. These criteria are
implemented in the OpticalF lowUserF ilter and TemplateUserF ilter re-
spectively. However, before the user data is handled by the filters, users
are relabeled in case of the inconsistent user label problem.

5.1. Inconsistent User Labels

Although the OpenNI library usually gives good results, with good track-
ing of each user and consistent user labels, there are some instances where
this tracking is lost. Although as a missing frame usually is no problem at
a rather high frame rate, a more serious problem occurs when the track-
ing is re-initiated. This is the problem described in Section 3.3.7, where
a user with a specific label, for example “red”, is marked with a different
label, for example “blue”, after one or several frames where that specific
user is not detected. This is problematic because if relabeling happens
in the middle of a gesture, it will seem like the gesture is started by one

34

5.1. Inconsistent User Labels

user and finished by another, hence the gesture will not be recognized
correctly.

The idea behind the relabeling algorithm is to map the currently observed
labels to previously observed labels using the centroid of each silhouette.
The centroids are calculated and stored for each user for each step, and the
centroids from the previous step that are the closest to the ones from the
current step are matched with each other. An illustration of the approach
is given in Figure 5.1.

Figure 5.1.: The distance betweenRp (Red previous) and C (Current), and
the distance between Bp (Blue previous) and C are calculated,
and the shortest distance to each “current point” is selected.
In the image above, the C had the shortest distance to the
red label and therefore it was marked as red.

To keep the computational burden low, the current implementation only

35

5. User Detector Filter

selects the single best match for each label. This simplification might yield
suboptimal relabeling, because selecting the locally best result might not
give the globally optimal result. Although the current implementation
seems sufficient, as is shown in Section 7.1, a suggested solution to this
suboptimality is presented in Appendix B.

When the locally best matches are found, the algorithm stores the la-
bels in an array called labelsRemap. The array contains a mapping so
that at a given index, which corresponds to a label provided by OpenNI,
labelsRemap contains the optimized label. If an optimized label does not
exist for a given label, the algorithm selects OpenNI’s suggestion. How-
ever, if this label also is chosen as an optimized result for another user, the
two labels are swapped. With this approach every user is ensured to have
a different label. When labelsRemap is processed, the algorithm iterates
through the image and copies the image, but instead of copying the value
d, the value labelsRemap[d] is copied. In addition, the list of visible users
is converted in the same way.

Because the labeling is done after the images are read by the Kinect, but
before the images are sent to the filtering process, they are transparent
to the filters. Hence, the labeling can be turned on and off or changed
without changing the interface or data handling of the filters. When the
labeling is done, the data is sent to the different filters.

5.2. Optical Flow User Filter

The OpticalF lowUserF ilter is, as the name suggests, based on opti-
cal flow in the image. Optical flow is calculated per user silhouette
and an average of the detected movement is registered and compared
to the Kinect’s movement. To calculate optical flow, OpenCV’s algo-
rithm calcOpticalF lowPyrLK which uses an iterative implementation of
Lucas-Kanade optical flow in pyramids is used [25, 4]. To find points in
one frame which have a high probability of being detected in the next
frame, cvGoodFeaturesToTrack - a corner detector based on Shi and
Tomasi [36]’s approach, is used. The function calcOpticalF lowPyrLK

36

5.2. Optical Flow User Filter

finds out where the provided points have moved in the given frame, and
the difference between the provided and the calculated points is used to
approximate the velocity of the suggested user. See Figure 5.2 for an
illustration of the differences registered between two images.

(a) Frame 164

(b) Frame 165

(c) Optical flow from Frame 164 to
Frame 165

Figure 5.2.: Shows the optical flow calculated at the different points. In
c) one can see the transition from the points in Frame 164,
marked with a circle, to the points in Frame 165, marked with
the end of the line.

When this is calculated, the suggested user with the highest difference
in velocity relative to the Kinect is selected as the verified user, if the
difference is higher than a specified threshold. If the difference is lower
than the threshold, the previously selected best user is selected as the
verified user. The algorithm also keeps track of the two latest verified
users, and these are put in the “uncertain” list.

37

5. User Detector Filter

5.3. Feature User Filter

The other implemented filter, the FeatureUserF ilter, tries to efficiently
filter out suggested users by calculating several features which are asso-
ciated with human silhouettes. These features are compared to those of
the suggested users and if the difference between the expected values and
the calculated values is higher than a certain threshold, the users are fal-
sified.

At this time there are three features that are calculated, a simple area mea-
surement, a feature called the AverageWidestHorizontalF illPercentage
and a feature called the AverageHighestV erticalF illPercentage. The
area is used as it is very easy to calculate and is a good indicator on if
the user could resemble a human. The average horizontal fill percentage
and the average highest vertical fill percentage are measures on how dense
the user is. To calculate the horizontal fill percentage, the suggested user
silhouette is scanned horizontally and the widest continuous part of each
line. To find the widest horizontal fill percentage, the widest line is di-
vided by the total width of the row (the number of pixels between the first
observed and the last observed pixel), and these percentages are averaged
over the whole body. To calculate the highest vertical fill percentage the
process is repeated vertically. The intent of these features is to exclude ob-
jects such as tables, where the table legs will have very low fill percentage
compared to a human.

5.4. Implementation Details

To allow the system to have multiple criteria for verifying and falsifying
a user silhouette, a system for loading and handling different filters has
been implemented. The system initializes the different filters and handles
events that are sent from the Kinect Publisher package. These events are
analyzed in each filter before the resulting events are sent to the voter.
The voter combines the outputs from the different filters, before the final,
filtered result is sent to the Gesture Detector package.

38

5.4. Implementation Details

An abstract class (UserF ilterWorker) which all the different filters ex-
tend was also created. This class handles thread creation, each filter is
executed in its own thread, in addition to control and data handling.
These threads are event-driven and safe communication between threads
is also handled, to some extent, by the abstract class.

Communication between threads are as shown in Figure 5.3. Due to the
event-driven implementation, each filter can run in its own thread and
all the filters are executed in parallel. As calculation of the movement
of users is independent of the calculation of the shape resemblance, and
vice versa, the filters do not need to communicate with each other to
complete each task. Because the number of filters is low (only two), the
gain of concurrency is not as noticeable as one might hope, but if several
filters are added, multi-core utilization is increasingly important, hence a
concurrent approach is prefered.

With this somewhat complex model regarding data management and pro-
tection, the abstract class greatly reduces the implementation time and
effort needed to create new filters. This is because most of the complex
data flow handling is inherited from the abstract class and this results
in increased development time available to make the filter do what it is
supposed to.

39

5. User Detector Filter

UserDetectorFilter

New Image Event

Filtered Users Event

for each filter

AbstractFilter ImplementedFilter

Request Detection

DetectUser

Pulse Detection Lock

Detection Results

User Filtration Completed

Pulse Received

Voter

Figure 5.3.: The figure shows communication from the external “New Im-
age Event” is received by the UserDetectorF ilter, to the data
is handled by the voter and the “Filtered Users Event” is
raised. Although the implemented filters extend the abstract
filter, the class is split into the part inherited and the part
extended. This is done to show that the implemented filter
only needs to override the DetectUser method call.

40

6. Gesture Detection

When the user detector filter has removed the false positives that the
OpenNI interface produced, gesture detection can initiate. The original
idea in this thesis was to send the filtered data back to the OpenNI in-
terface, but due to the initialization time of the Kinect’s algorithm and
lack of access to the source code of the NITE middleware, this proved
both suboptimal and problematic. Because of this, a new joint detection
algorithm and gesture detector is implemented for this thesis.

The gesture detector module assumes that a high quality silhouette of a
user is provided from the improved user detector module, and analyzes
this to detect simple gestures. Gesture detection is then executed in a
three-step process:

1. Segmentation and labeling

2. Joint detection

3. Pose state machine

In this chapter, all references to the left or right side is the user’s left
or right side when looking at the Kinect, and hence the opposite when
observed from the camera of the Kinect.

6.1. Segmentation and Labeling

The segmentation and labeling step divides the user into several different
regions. The segmentation algorithm is based on some assumptions: the
person must be standing rather straight and be turned somewhat towards

41

6. Gesture Detection

the Kinect. In addition, the current implementation does not work suffi-
ciently if one or both of the arms are in front of a user’s head. All in all,
there are four main regions that are detected: legs (if they are visible),
torso, head and arms. An example of a segmented user is shown in Figure
6.1.

Figure 6.1.: The image shows a segmented image of a user. The left and
right legs, from the user’s perspective, are segmented and la-
beled as orange and light purple respectively. The torso is
labeled with a blue color. The head is labeled with a light
green color, and the left and right shoulders are labeled with
a red and yellow color. The right arm is marked as pink and
the left arm is undetected (gray), as it is outside the valid
area which is defined later.

To provide data for the segmentation, the silhouette of the image is
scanned from top to bottom and every horizontal line is stored in an
array. A row is divided into multiple lines at any point where the silhou-
ette is empty, and the widest line at each image-row is stored in a separate
array. An explanation of some of the terms used with respect to the lines
is given in Figure 6.2.

6.1.1. Leg Detection

The first body parts to be segmented are the legs, as the process of detect-
ing these is the simplest. To detect the legs, the array of lines mentioned

42

6.1. Segmentation and Labeling

Figure 6.2.: Some of the terms describing the lines used for segmentation.

above is scanned from the bottom and up. As long as two lines are de-
tected at the currently most bottom row, they are marked as legs. If more
than two lines are detected, a test is performed to see whether one or more
of them are below a given threshold, so that they should be detected as
noise (which may occur at the circumference). If there are exactly two
lines that are not marked as noise, the algorithm proceeds until there are
no such two lines. The first leg detected is marked as (the user’s) right
leg, and the second the left leg.

6.1.2. Torso Detection

When the legs have been properly handled, the torso is detected. There
are four criteria for a line to be accepted as the torso:

• The line must be the widest at any row

• The line must not be shorter than the average widest line multiplied
with a threshold (MinBodyWidth)

43

6. Gesture Detection

• The line must not be wider than the average widest line multiplied
with a threshold (MaxBodyWidth)

• The line must not already be labeled

The thresholds can be configured in the GUI, but the default values have
given good results on several users. The average line is calculated from
the lines which are not already labeled as legs and is either a simple mean
of the values (default), or the median line of the set (configurable in the
GUI). If the lines are too short to be the body, they are marked as such,
and if they are too wide they are split into two or three new lines (the
lines are split as they are likely to be one of the arms).

To split the lines that are too wide, the algorithm iterates through the
widest lines that have not already been labeled. If the current line is
marked as too wide, the line’s width is set to the width of the previous
line. However, the line can not exceed the original width of the current
line, and the line can not be set so short that it would be detected as “too
short”. If the line is sufficiently cut on either side, new lines are added to
be detected at a later stage, as they are likely to be the user’s arms.

6.1.3. Head Detection

To detect the head, the lines are iterated once more from the bottom and
up. The criteria this time is that there should not be any line that was too
wide to be the torso above the place where the head started, as the head
should be made of lines that are too short to be the torso. In addition, the
center of each line which builds up the head should not be too far from
the average. This is because these lines probably are one of the hands
which is raised so that it is to the side of the head. The detection of the
head is rather important as it is used as a relative measurement for both
the arms and joint detection described later in this chapter. This is used
to provide a user independent algorithm which allows users of different
height and body shape to be detected.

If head detection was unsuccessful, that is if the size of the detected head
is smaller than threshold (default is 20x20 pixels), further processing is

44

6.1. Segmentation and Labeling

stopped. This option is included to gain a more robust behaviour towards
non-human silhouettes that are not filtered out by the User Detector Fil-
ter.

6.1.4. Arm Detection

The only remaining segmentation step is the segmentation of the arms.
This approach is somewhat simplified to optimize computation time du
to the limited information needed for gesture recognition. In this project,
only gestures where one or both arms are raised approximately straight out
to each side and moved in a semi-circle around the elbow are considered
(see Figure 6.3).

Figure 6.3.: The ranges where arm movement is detected are marked by
the dotted lines. Gestures may include of one or both arms.

As a user’s shoulder is located somewhat below that user’s head, this
is used to detect the shoulders. As the algorithm aims to be distance
independent, the height of the user’s head is used to provide an estimate
of how far down on the user’s body the algorithm should look for the
shoulders. This is based on the assumption that a person’s body parts are
proportional to each other, as described by Leonardo da Vinci in the text
accompanying the famous Vitruvian Man shown in Figure 6.4.

The current implementation uses the user’s head’s height multiplied with
a configurable ratio, HeadShoulderRatio, to mark the shoulders. The al-
gorithm labels every line which is marked as “Undefined” between the last
line of the head, and the head height multiplied with the HeadShoulder-
Ratio, as: Noise, LeftShoulder or RightShoulder. The line is marked

45

6. Gesture Detection

as noise if the width is less than a configurable threshold, and marked as
either the left or right shoulder depending on its placement relative to the
center of the average line.

Figure 6.4.: Leonardo da Vinci’s Vitruvian Man describes the proportions
of a “well shaped man”. The information in the accompa-
nied text correlates with that of the Roman architect Marcus
Vitruvius Pollio in his work De Architectura [30].

When the shoulders are detected, the algorithm uses these as a basis to
segment the arms. To initiate the segmentation, the algorithm labels all
lines from the bottom of the area marked as shoulders, to the bottom of
the head as the left or right arm. Then, as long as there has been no line
where no arms were detected, the unlabeled lines above the bottom of the
head are marked as either the left or the right arm. If one of the arms
does not have an associated line at any given height, the lines above are
not marked for that arm.

46

6.2. Joint Detection

After this step a test similar to the one done after head segmentation is
performed. The test checks that at least one of the arms contain more
than a specified number of lines (default 10) to be processed by the joint
detector. If this is not the case, the probability of the detected user being
human is low and detection of body joints is skipped.

With this, all the information needed for body joint detection is ready, and
this detection can begin. Before this, the segmented image is visualized
by the program as shown in Figure 6.1.

6.2. Joint Detection

When segmentation is finished, six of the user’s body joints are recognized
if they are within the detectable range. These joints are as follows:

• Left and right shoulder

• Left and right elbow

• Left and right hand

To simplify body joint detection, the algorithms for detection of the left
and right joints are mirrored. This mirroring brings trivial changes, such
as where the leftmost point is chosen for the left shoulder, the rightmost
point is chosen for the right shoulder.

6.2.1. Shoulder Detection

The first joint to be detected is the left shoulder joint. This is calculated
by simply averaging the lines that are labeled as LeftShoulder, and the
height position (y-value) of this average is used to mark the shoulder joint.
The x-value is selected as the leftmost point of the leftmost line that is
marked as LeftShoulder and is at the same height as the shoulder joint.
To find the right shoulder joint, the process is repeated with the trivial
changes mentioned in the previous section.

47

6. Gesture Detection

6.2.2. Hand Detection

When an estimate of the shoulder is found, the point furthest away from
this, but still inside the silhouette of the arm (marked as either shoulder
or arm) is detected. The distancing method used is the sum of squared
differences between the observed pixel’s x and y values and the x and y
values of the shoulder point. The depth is not taken into account as it adds
another dimension of complexity and complicates the calculation, thus
increasing execution time. The detected point is in most cases the hand,
but it can also be the elbow if the arm is bent towards the head.

In case the detected point corresponds to the elbow instead of the hand,
the algorithm detects vertical lines in the image of each arm. With this
approach, wherever there are two or more lines, the probability of these
lines representing the forearm and overarm is high. There are, however,
some cases where the torso segmentation creates double lines. Because
of this, a flood-fill is executed until every region is filled, and the two
largest regions are selected as the forearm and overarm. If the forearm is
sufficiently large (it must be larger than the distance between the shoulder
to the previously detected hand candidate multiplied with a configurable
ratio) a new hand candidate is calculated by finding the point in the
forearm which is the furthest away from the previously detected point
(the assumed elbow).

6.2.3. Elbow Detection

The last step of the body joint detection algorithm is to detect the elbow.
The approach for this is to select the point which is furthest away from
the shoulder and the hand, but still connected to the arm. This is done
by solving a simple optimization problem, where for each pixel in the arm
image, the distance to both the hand and the shoulder is calculated. Then
the minimum value of these two distances is found and compared to the
maximum distance found so far. This maximized point, that is the point
where the minimum distance is maximal, is stored as the elbow.

48

6.3. Pose State Machine

(a) Right arm straight (b) Right arm raised (c) Arms toward head

Figure 6.5.: Three different scenarios where the user silhouette is detected
and body joints are displayed. Detected joints are shown by
a green circle. Detected joints which are rejected are shown
as red circles.

6.2.4. Joint Rejection

To know if the joints represent valid points, the set of joints must fulfill
two criteria:

• the distance between the shoulder joint and the detected furthest
point away from the shoulder must be larger than the height of the
head multiplied with a ratio (HeadArmRatio)

• the hand point can not lie more than a certain distance below the
shoulder point.

This is done to ensure that the joints that are sent to the pose recognizer
are valid, to reduce the risk of a false positive gesture recognition. This
also makes the algorithm more robust if the estimates from the user filter
is wrong, or that the user has a posture the gesture detector does not
recognize.

6.3. Pose State Machine

Reliable gesture recognition can be implemented using the relative position
of joints detected by the method described above. The pose state machine

49

6. Gesture Detection

is implemented using a finite state machine with four states per arm.
Which state is detected at a given time step is dependent on two factors:
the current position of the joints and the previous state.

To increase the robustness of the detector, gestures are required to have
at least one of the arms either raised or towards the head. This is done
because the state machine changes to the “down” state if it is in the
“straight” state and tracking is lost for a single or a few frames.

PPPPPPPPPLeft
Right Down Straight Raised Towards head

Down X X
Straight X X
Raised X X X X
Towards Head X X X X

Table 6.1.: There are 12 arm configurations which result in an allowed
gesture. Legal gestures are marked with an X.

50

7. Results

This chapter shows the results of each component of the program and sub-
components with interesting results are presented in their own sections.
A discussion of these data is provided in the next chapter.

The results in this report are collected by running the developed sys-
tem with different configurations to show the effects of each component.
Source data consists of recorded video files, captured using OpenNI’s sam-
ple program NiV iewer, which are replayed using the developed system.
In addition to recorded video files, the system accepts real-time data from
the Kinect, but this is not used in this report as certain features can not
be shown using different configurations.

7.1. User Relabeling

Snapshots showing the user relabeling process is shown below. Figures 7.1
and 7.2, and figures 7.3 and 7.4 contain snapshots from the first data set
while figures 7.5 and 7.6 are snapshots from the second data set. As the
relabeling happens rather infrequently, there are not many results where
this effect is shown, hence the number of figures is limited.

51

7. Results

(a) Frame 172 (b) Frame 173 (c) Frame 174

Figure 7.1.: Snapshots when using the original OpenNI code

(a) Frame 172 (b) Frame 173 (c) Frame 174

Figure 7.2.: Snapshots when enabling user labeling

(a) Frame 194 (b) Frame 195 (c) Frame 196 (d) Frame 197

Figure 7.3.: Snapshots when using the original OpenNI code

(a) Frame 194 (b) Frame 195 (c) Frame 196 (d) Frame 197

Figure 7.4.: Snapshots when enabling user relabeling

52

7.1. User Relabeling

(a) Frame 608 (b) Frame 609 (c) Frame 610

Figure 7.5.: Snapshots when using the original OpenNI code (from the
second data set)

(a) Frame 608 (b) Frame 608 (c) Frame 610

Figure 7.6.: Snapshots when enabling user relabeling (from the second
data set)

53

7. Results

7.2. User Detector Filter

Results for the user detector filter is split into three parts. First some
results from the Optical Flow Filter are shown, then some results from
the Feature Filter and at last some results of the final filter. The results
are selected to show the general behaviour of the filters in addition to
show some corner cases.

The results are visualized in the following way:

• Verified labels (labels which probably correspond to human users)
are marked with solid colors.

• Falsified labels (labels which probably do not correspond to human
users) are marked with horizontal colored lines.

• The background is a normalized version of the depth map image
from OpenNI.

Minor differences in colors between users in images without depth back-
ground and the corresponding users in images with depth background are
expected. This is because the label colors are adjusted to the depth of
the image, so that parts of the label that are farther away are darker and
closer parts are lighter.

Note that in this section it will be made a distinction between “users”,
which are any silhouettes detected by the Kinect’s algorithms, and “human
users” which are the silhouettes which represent humans.

7.2.1. Optical Flow Filter

As described in Section 5.2 the Optical Flow Filter calculates movement
of an object in two succeeding images. This section presents four images
per snapshot. The leftmost images are the users in each of the frames
(frame n − 1 and frame n), and the upper right image is an illustration
of the optical flow which is calculated between the two frames. The last

54

7.2. User Detector Filter

image of each set of image, is the resulting image when filtering is finished
in the format described above.

In this section, the circles with connected lines are referred to as arrows.
These represent a change from the circle, to the end of the line.

(a) Frame 161

(b) Frame 162

(c) Optical flow

(d) Filtered Image

Figure 7.7.: Optical flow from certain points in Frame 161 is estimated by
observing the differences in Frame 161 and Frame 162. The
arrows in c) represent the velocity of each point. The larger
circle with a thick line at the center of each suggested user
represents the average velocity of that user. In d) one can
see that the blue label is removed as it is filtered out by the
algorithm.

55

7. Results

(a) Frame 200

(b) Frame 201

(c) Optical flow

(d) Filtered Image

Figure 7.8.: Shows c) optical flow between the users in frames 200 and
201. In d) one can see that the blue label is removed as it is
filtered out by the algorithm.

56

7.2. User Detector Filter

(a) Frame 329

(b) Frame 330

(c) Optical flow

(d) Filtered Image

Figure 7.9.: Shows c) optical flow between the users in frames 328 and 329.
In d) one can see that the green and blue labels are removed
as they are filtered out by the algorithm.

57

7. Results

(a) Frame 322

(b) Frame 323

(c) Optical flow

(d) Filtered Image

Figure 7.10.: Figure c) shows optical flow between the users in frames 322
and 323. However, notice that the blue area to the right
of the green line in Frame 322 is marked as green in Frame
323. Because of this, some of the orange lines (which are
associated with the blue figure) are very long. This is also
the case for some of the red lines (which are associated with
the green figure). Also notice that the blue figure is marked
as a human user in d).

58

7.2. User Detector Filter

(a) Frame 286

(b) Frame 287

(c) Optical flow

(d) Filtered Image

Figure 7.11.: Shows c) optical flow between the users in frames 286 and
287. In d) one can see that the blue label is correctly filtered
out, but the green label is still visible.

59

7. Results

(a) Frame 336

(b) Frame 337

(c) Optical flow

(d) Filtered Image

Figure 7.12.: Shows c) optical flow between the users in frames 336 and
337. In d) one can see that the orange and yellow labels are
correctly hidden, but the blue label (at the bottom center)
is still visible.

60

7.2. User Detector Filter

(a) Frame 339

(b) Frame 340

(c) Optical flow

(d) Filtered Image

Figure 7.13.: Shows c) optical flow between the users in frames 339 and
340. In d) one can see that the orange and yellow label are
correctly hidden, but the purple label (in the upper right
corner) is still visible.

61

7. Results

7.2.2. Feature Filter

As the feature filter only operates on a single frame for each time step, only
the filtered image is shown for each snapshot. For all frames the tuning
variables are held constant, even between different data sets. Table 7.1
lists these values.

Property Value

Vertical fill percentage 0.70
Horizontal fill percentage 0.65
Area 10000

Table 7.1.: Property values used by Feature Filter. The first two proper-
ties are dimensionless and the third property is measured in
pixels.

All labels that have at least one feature which is below these constraints
are marked as “false” users. These numbers are found by analysing the
features of each label, using the average value and the standard deviation.
For the main data set used in this project, the values are represented in
Table 7.2: The values are somewhat less restrictive than what would seem
optimal from this analysis only, because of analyzes performed on other
data sets.

Label Avg. Width % Std.dev. Height % Std.dev.

1 0.94 0.05 0.86 0.04
2 0.81 0.12 0.54 0.21
3 0.80 0.12 0.42 0.14
4 N/A N/A N/A N/A
5 0.81 0.17 0.78 0.11
6 0.94 0.01 0.45 0.03

Table 7.2.: Label 1 represents a human user, the other labels are various
non-human objects. Label 4 did not appear in the data set,
but is added for continuity.

62

7.2. User Detector Filter

(a) Frame 139 (b) Frame 161

(c) Frame 217 (d) Frame 267

Figure 7.14.: Shows the results when the feature filter is executed on
frames 139, 161, 217 and 267 from the primary data set.
The non-human labels are removed in all the frames.

63

7. Results

(a) Frame 268 (b) Frame 287

(c) Frame 301 (d) Frame 330

Figure 7.15.: Shows the results when the feature filter is executed on
frames 268, 287, 301 and 330 from the primary data set.
The non-human labels are removed correctly in frames 287
and 301, but in 268 and 330 the orange label and blue labels
respectively are incorrectly verified.

64

7.2. User Detector Filter

(a) Frame 336 (b) Frame 339

(c) Frame 396 (2) (d) Frame 467 (2)

Figure 7.16.: Shows the results when the feature filter is executed on
frames 336 and 339 from the primary data set in addition
to frames 396 and 467 from the second data set. The non-
human labels are removed in all the frames.

65

7. Results

7.2.3. Combined Filters

This section shows some examples on how the filters work when combined.
The two images on the left are the results from each of the filters and the
image on the right is the combined result. As expected, all labels that are
verified in both frames, but only those labels, are verified after the voting
phase.

(a) Optical Flow

(b) Feature Filter

(c) Frame 198

Figure 7.17.: Frame 198: The blue label, incorrectly marked by the feature
filter, is removed by the voter.

66

7.2. User Detector Filter

(a) Optical Flow

(b) Feature Filter

(c) Frame 242

Figure 7.18.: Frame 242: The blue label, incorrectly marked by the optical
flow filter, is removed by the voter.

67

7. Results

(a) Optical Flow

(b) Feature Filter

(c) Frame 287

Figure 7.19.: Frame 287: The green label, incorrectly marked by the op-
tical flow filter, is removed by the voter.

68

7.2. User Detector Filter

(a) Optical Flow

(b) Feature Filter

(c) Frame 301

Figure 7.20.: Frame 301: The green label, incorrectly marked by the op-
tical flow filter, is removed by the voter.

69

7. Results

(a) Optical Flow

(b) Feature Filter

(c) Frame 340

Figure 7.21.: Frame 340: The purple label, incorrectly marked as valid by
the optical flow filter, is removed by the voter.

70

7.3. Segmentation and Joint Recognition

7.3. Segmentation and Joint Recognition

As the segmentation and labeling step assumes only a single human user
and segmentation does not incorporate information about movement, a
single frame is used in each example. Each image is the resulting image
when segmentation is finished and joint detection has been executed. The
result of the joint detection is visualized as circles which are green if the
joints were accepted, and red if the joints were rejected. If no joints are
shown, the algorithm did not execute the joint detection step because the
segmentation was not sufficient.

(a) armsDownSide (b) armSlash

(c) armsTowardHead (d) armsTowardHead2

Figure 7.22.: Segmentation and joint detection on different poses. The
pink and purple areas seen on c) and d) are where the arm
is marked as double.

71

7. Results

(a) armsUp (b) handForward

(c) hallForward (d) box

Figure 7.23.: Segmentation and joint detection is performed successfully
in a). As the users in b) and c) do not have valid poses the
joints are rejected (marked with red circles) and in d) the
segmentation is not valid, as it is not a human, hence joint
detection is not executed.

72

7.3. Segmentation and Joint Recognition

(a) user2ArmsOut (b) user2Wave

(c) waveSweater (d) waveSweater2

Figure 7.24.: Images a) and b) show the segmentation algorithm run on
a user with different body structure, and c) and d) show
segmentation of a user with a loose sweater. As with all the
other images, no alteration of parameters was made to get
these results.

73

7. Results

(a) stopMotion1 (b) stopMotion2 (c) stopMotion3

Figure 7.25.: These images show the execution of a “stop-motion” which
is to be recognized by the gesture detector.

74

7.4. Gesture Detection

7.4. Gesture Detection

Results from the gesture detector are gathered in the following way: For
each step where the state of the gesture detector changes, a snapshot at
that point of time is taken, and the state which the detector was in before
the change and the resulting state is recorded. Each figure represents a
recognized gesture.

State transitions are encoded using a two-letter code. The first letter
represents the user’s left (L) or right (R) arm and the second the pose
of the hand. The second letter of each code represents the state (U:
Undefined, S: Straight, R: Raised, T: Towards head). For example does
LU → LS represent a transition from the left arm being in an undefined
state to the left arm being in a straight out state.

75

7. Results

(a) Frame 0: LU (b) Frame 27: LU → LS (c) Frame 31: LS → LU

(d) Frame 42: LU → LS (e) Frame 50: LS → LR (f) Frame 55: LR → LT

(g) Frame 69: LT → LR (h) Frame 80: LR → LS (i) Frame 94: LS → LU

Figure 7.26.: These images show the state changes of the pose state ma-
chine when a movie of a person is used as input. The person
raises the left arm to a straight out position, then lowers the
arm, then raises the arm so it points towards the head.

76

7.4. Gesture Detection

(a) Frame 253: RU, LU (b) Frame 253: RU → RS (c) Frame 255: RS

(d) Frame 257: RS → RR (e) Frame 266: RR (f) Frame 275: RR → RS

(g) Frame 276: RS (h) Frame 278: RS → RU (i) Frame 287: RU

Figure 7.27.: These images show the state changes of the pose state ma-
chine when a movie of a person is used as input. The person
raises the left arm to a straight out position, then lowers the
arm, then raises the arm so it points towards the head.

77

7. Results

(a) 156: RU, LU (b) 181: RU → RS (c) 184: LU → LS (d) 185: LS → LU

(e) 187: LU → LS (f) 210: RS → RR (g) 213: RS → LR (h) 216: RR → RT

(i) 218: LR → LT (j) 231: LT → LR (k) 233: RT → RR (l) 258: RR → RS

(m) 270: LR → LS (n) 272: LS → LU (o) 273: RS → RU (p) 287: LU, RU

Figure 7.28.: A gesture is made by raising both arms, then holding them
towards the head. At frames 185 (d) and 187 (e) a part of
the surroundings was detected and incorrectly labeled by the
OpenNI code. This resulted in a state change from the left
arm being straight to it being undefined.

78

8. Discussion

In this chapter a discussion of the results produced in this project will be
made. The layout is similar to that of Chapter 7, as each set of results
will be discussed in its own section. In this chapter, some approaches that
were attempted, but for various reasons dropped from the project, are also
presented.

8.1. User Detector Filter

The user detector filter is a three-step process consisting of:

1. Processing an external event

2. Filtering

3. Voting and sending the resulting event

The first of these steps is to copy data from an external event, and storing
a valid copy of these in buffer arrays. The data is then protected using
C#’s Monitor-system, so that it is not overwritten while it is in use, even
if new data is available. In addition to storing the data, the inconsistent
user label problem is fixed by user relabeling.

When the data is ready and properly protected, filtering is initiated. The
two filters are run in parallel, and this is properly handled when using the
event-driven approach. The gain of running the filters in parallel is not
very prominent, as the optical flow filter is much more time consuming
than the feature filter. However, as more filters are added, the optical
flow filter might still be the limiting factor with respect to time, hence

79

8. Discussion

the total execution time of the filters might be the same on a multi-core
processor.

The voting process is also overly complicated with only two filters imple-
mented. However, to support extendability and further work, the frame-
work for selecting how the system should behave with other implemented
filters has been developed.

8.1.1. User Relabeling

As can be seen in the differences between figures 7.1 and 7.2, 7.3 and 7.4,
and 7.5 and 7.6 user relabeling was very successful. There are, however,
some situations where this may not be the case as mentioned in Section
5.1. If the relabeling process is incorrect, the optical flow filter might
calculate incorrect values as the calculation is done per label. Hence, if the
image corresponding to one user, say to the left of an image, is exchanged
with another user, say to the right of the consecutive image, the flow in the
image might be observed as across the whole image. Because of this, more
time could be spent calculating a perfect optimization if this is necessary,
even though the solution used in this project works well on the input data
collected. Such an approach is described in Appendix B.

8.1.2. Optical Flow Filter

Optical flow filtering worked well in most cases, as shown in figures 7.7, 7.8
and 7.9. However there are some examples where the results are somewhat
unstable. The reason for this is that noise in the depth measurement
and/or incorrect labeling results, as seen in Figure 7.10, have great impact
on the results. In this example, a part of the blue label has been marked
as green in the succeeding frame. This makes the algorithm believe that
a part of the object moved from one side of the image to the other. Hence
the algorithm detects that movement is much greater than it moves in the
real world.

Another potential problem is the obstruction of a stationary object (S)

80

8.1. User Detector Filter

by a moving object (M). As M moves in front of S, S’s silhouette de-
forms because of the obstruction. Because of this, the optical flow at S’s
perimeter is equal to M ’s obstruction, hence it seems that S is moving.
However, as the rest of S is stationary, the average flow should be smaller
than that of M . This effect is shown in Figure 7.12.

As the optical flow filter compares movement of the Kinect to that of the
detected users, the movement of the Kinect must be known. An attempt
to find this was made by using optical flow of the whole image, excluding
detected users, and calculating the average movement at this point. This
works rather well if the depth map of the background is complex, and the
distance to the different objects changes as the Kinect moves. However, if
the Kinect is placed in a corridor, and the ending wall is too far away to
be observed, the distance to the walls of the corridor will move according
to the Kinect. Because of this, the Kinect seems more or less stationary
according to the depth map. Therefore the movement of the Kinect is
simulated in this project, but if the Kinect is placed on a robot, movement
can be found using odometry from the wheels or similar.

Another problem origins from the assumption that the user which moves
the most has a high probability of being a human. This is true for the most
part, but when no users are visible, another label tends to be validated,
as can be seen in Figure 7.11. If more accurate data about the Kinect’s
movement is acquired, this problem might be improved.

With the test data collected for this project, the optical flow filter performs
rather well, except for a considerable amount of false positives, mostly
because of deformation of labels. However, optical flow might be the only
way to distinguish objects with a shape similar to a human from other
objects.

8.1.3. Feature Filter

When looking at the results from the feature filter, one can see that the
difference in behavior of the two filters yields different weaknesses. As
movement is ignored, and only a single frame is processed per time step,

81

8. Discussion

the amount of data needed to calculate the necessary information is lower.
In addition, calculation of features is much faster than the optical flow
calculation.

The reason for choosing the AverageWidestHorizontalF illPercentage
and the AverageHighestV erticalF illPercentage is that these give a good
indication of the density of the observed object. In addition, both features
are easily calculated with low computational cost.

The feature filter performs very well on the data sets collected for this
thesis. Although the features are very basic, they are calculated with low
overhead and each feature is calculated with a single pass of the image.
Most of the images only yield a single label, which is the correct one. There
are some cases where this is not true, such as when a large piece of the wall
is marked. The performance of the feature filter was surprisingly high, in
terms of both calculation speed and quality of the results. However, there
are certain limitations which are described in Section 8.3.1.

8.2. Gesture Detector

As mentioned earlier, the gesture detector is split into three parts: seg-
mentation, joint detection and a pose state machine. These three parts
must be run consecutively in the specified order as the second part uses the
results from the first part and the third part the results from the second
part. To simplify calculations, certain assumptions have been imposed;
the silhouette must be of a human, the silhouette must be of high quality
(low noise etc.), the user must be facing the Kinect to some extent and
the user must not have a hand in front of the body - especially not the
head.

In addition, the area where movement is allowed is somewhat restricted.
Detection of arms held downwards is not implemented, but it should not
be very difficult to extend the segmentation if future appliances require
this.

82

8.2. Gesture Detector

8.2.1. Segmentation

To perfectly segment the human body is a difficult and time consuming
task. As this is not needed for the joint recognition, effort has been put
to only segment the parts of a body that are needed to recognize the arm
poses. This is of course the arms, but to detect the arms other parts such
as the legs if they exist, head, torso are also segmented.

When these assumptions have been fulfilled, the segmentation has worked
fairly well on the data recorded in this project. Although there are some
cases, such as when depth detection has failed at a small area on a user’s
chest, or that other objects have been detected as a part of the body,
where segmentation has not worked properly, a very high percentage of
the images with a user have been sufficiently segmented to detect a user’s
joints.

As the aim of segmentation has been joint detection and not perfect seg-
mentation, some mislabeling, such as marking the whole right arm as the
right shoulder, has been accepted as a “correct” answer. In addition, not
labeling the arms when they point downwards or the sides of the torso
has been treated as correct. The only problems with the segmentation
process comes if noise at the very top of the head is present, or if the
silhouette from OpenNI is not as good as assumed. If noise is present,
the segmentation step tends to mark this as one of the arms which may
resolve in a wrongly detected hand or elbow. If the silhouette is of poor
quality, such as in Figure 7.28 e), the figure might label a part of an area
that is not the user’s arm with one of the arm-labels. This might cause
problems in the joint detection step.

8.2.2. Joint Detector

To recognize a pose, the pose state machine only needs four variables
per arm: the shoulder’s y-coordinates , the elbow’s x-coordinate and the
hand’s x and y coordinates. In the results presented in Section 7.3, one can
see that where the arm configurations are within the valid limits, recog-
nition of all three joints are fairly precise. Where the arm configuration

83

8. Discussion

is invalid, the joints are marked as rejected in every case.

The only observed problem with the joint detector is when the segmen-
tation process results in a part of the head marked as the arms described
above. In an early version of the segmentation algorithm the torso could
be marked as very thin, which marked most of the body as arms. This lead
to problems when detecting the elbow which uses the point the most dis-
tant to the hand and shoulder. To improve this problem, the lines which
are labeled as too wide can no longer be split so that the line representing
the torso is shorter than a certain length.

8.2.3. Pose State Machine

The pose state machine also yields near-perfect results on the data sets.
However, there is a problem when detecting a gesture where the arm is
held straight out to the side. If the straight out gesture is the current state
and joint detection fails for a single frame, for example if OpenNI loses
track of the user, the state will be changed to Undefined. As this might
lead to a straight arm gesture being detected multiple times, gestures using
only the straight arm pose should not be used. However, if a straight arm
pose is used in combination with a raised arm pose or a towards head
pose, the event could be set to trigger when the raised/towards pose is
recognized. If this is done, one could ensure that the raised arm is correctly
recognized.

8.3. Limitations

Although the current implementation works well, additional testing and
optimization should be made before the system is ready to be used in a
real world scenario. In addition, the choice of sensor imposes limitations
on which environments the system is suitable for and on which conditions
that must apply for gestures to be successfully recognized.

84

8.3. Limitations

8.3.1. Limited Testing Database

The main limitation of the developed system is the limited size of the
testing database. Due to lack of time and resources, only a few users
in a limited set of environments were used to calibrate and identify the
filters.

This leads to a problem with the feature filter, as it depends on detecting
features which can separate a human from other objects, and features
that yield the best results for one data set do not necessarily work for
other data sets. In addition, the segmentation step is also dependent on
certain features, such as the width of the head compared to the width
of the body. Although the current configuration worked well amongst
all users, segmenting users with very different physique might not work
properly.

To conquer these limitations, a large database of users with a wide span
of body builds, in various environments must be collected and the config-
uration must be optimized.

8.3.2. Execution Speed

Another aspect that must be optimized is the execution speed of the al-
gorithm, especially the optical flow filter. This filter is the one that has
the highest execution time per frame, and when it is turned off, a sudden
increase in the processed frames per second is detected. On a 2.4 GHz
Intel Core 2 Quad processor, the increase is from about 13fps to about
28fps when turning off the optical flow filter.

Although some optimization has been made, described in Appendix A,
there are several approaches which could improve execution speed, such
as scaling the depth images to a smaller size, thus reducing execution
time, but also the quality of the results. Another approach is to store
the points detected by cvGoodFeaturesToTrack, update these points using
OpticalFlow.PyrLK and use the updated points in the next frame instead
of running cvGoodFeaturesToTrack for each frame. With this approach,

85

8. Discussion

new points are only detected if there is less than a certain number of valid
points left. The number of points decreases as OpticalFlow.PyrLK can
not find the optical flow for every point.

8.3.3. Hardware Limitations

As none of the hardware limitations are improved by this system, the hard-
ware limitations from Section 3.3 apply for the improved system as well.
This means that the system might perform poorly in sunlight, when ob-
serving reflective or transparent surfaces, and that gestures which use fin-
ger configurations can not be detected if the whole body is observed.

8.3.4. Pose State Machine Transitions

The last limitation is that the pose state machine can not change states
in any other sequence than described in Section 6.3. This may be a prob-
lem if the user is not detected when the gesture is started. Even though
the person has an arm raised, the gesture is not recognized as the state
machine is in the Undefined state. This is implemented to improve ro-
bustness, as the probability of a non-human silhouette being detected as
first having an arm straight out and then an arm raised, is significantly
lower than just detecting a single frame which could be a person with a
raised arm.

Another problem due to forced state change sequence, is that if the raised
arm gesture or the towards head gesture is made and the user either moves
out of the Kinect’s view or OpenNI’s tracking is lost, the system will stay
in this state until the program is terminated. This can be solved by
adding a timeout - if a gesture is undetected for n frames, the gesture is
reset.

86

9. Conclusion

The thesis addresses the problems that arise when using the Kinect on a
non-stationary platform, in addition to the problem of long initialization
time when a new user is detected.

The results from Chapter 7 clearly show that the developed system im-
proves the results from the closed source middleware. The improvement of
the relabeling algorithm yields optimal results regarding correct tracking
of the human users, even though this is not guaranteed by the algorithm.
The implemented approach is very effective and the stated problems no
longer occur in the captured data sets.

The false-positive users problem has also been minimized. Although there
are certain parts of the captured data where this problem still can be
observed, it is typically only in one or two frames in succession. Except
for this, the only detected users are the human users, hence the true
positives.

Furthermore, the gesture recognizer, which segments a user, detects his or
her joints and recognizes gestures using these, is an efficient approach to
the gesture detection problem. Due to the precautions taken, the gesture
recognizer has a very low frequency of false-positives, even if the data from
the earlier stages have some errors. This makes it very robust, which is
vital when operating alongside humans.

This thesis presents an original approach for introducing the Kinect sensor
to the world of social robotics, through gesture recognition. As gestures
now can be recognized, even when the Kinect moves, and without the
initialization delay in the Kinect’s algorithms, users can give orders to a
robot without having to access a computer or operation panel.

87

9. Conclusion

9.1. Further Work

Although this thesis presents a promising approach to social robotics, some
further development is needed before the system can be used in a real-
life setting. The main focus of future development should be to acquire
a larger database with different environments and users, as suggested in
Section 8.3.1.

A node should also be created to register movement, for example using
ROS interface. Such a node was partly implemented using the “rosnode”
interface and C#’s ability to load libraries, but due to limited time it was
not prioritized for this thesis.

Optimization of the relabeling process could also be improved, and a de-
tailed description of two ideas for such implementations is presented in
Appendix B.

In addition, one could imagine a more direct approach for the feature fil-
ters. Instead of just comparing certain features of a user with expected
results, one could match a user to a template. However, due to the flex-
ibility of the human body and the vast complexity of different poses, it
might become very difficult and time-consuming to create templates that
would work in every possible scenario.

88

References

[1] Adafruit. The Open Kinect project – THE OK PRIZE. Website,
2010. http://adafruit.com/blog/2010/11/04/the-open-kinect-
project-the-ok-prize-get-1000-bounty-for-kinect-for-xbox-
360-open-source-drivers/ Aquired: 13:49 08.04.2011.

[2] Adafruit. Open Kinect driver(s) released. Website, 2010.
http://adafruit.com/blog/2010/11/10/we-have-a-winner-
open-kinect-drivers-released-winner-will-use-3k-for-more-
hacking-plus-an-additional-2k-goes-to-the-eff/ Aquired: 15:21
08.04.2011.

[3] amazon.com. Kinect Sensor with Kinect Adventures! http://www.
amazon.com/Kinect-Sensor-Adventures-Xbox-360/dp/B002BSA298/,
2010. Aquired: 19:55 05.04.2011.

[4] Jean-Yves Bouguet. Pyramidal implementation of the lucas kanade
feature tracker description of the algorithm, 2000. URL http:
//robots.stanford.edu/cs223b04/algo_tracking.pdf.

[5] S.Y. Chen, Y.F. Li, and Jianwei Zhang. Vision Processing for Real-
time 3-D Data Acquisition Based on Coded Structured Light. Image
Processing, IEEE Transactions on, 17(2):167 –176, February 2008.

[6] R. Cutler and M. Turk. View-based interpretation of real-time optical
flow for gesture recognition. In Automatic Face and Gesture Recog-
nition, 1998. Proceedings. Third IEEE International Conference on,
pages 416 –421, April 1998.

[7] Emgu CV. Emgu CV: OpenCV in .NET (C#, VB, C++ and more).
Website, 2011. http://emgu.com Aquired: 16:00 06.05.2011.

89

References

[8] J. Davis and M. Shah. Visual gesture recognition. Vision, Image and
Signal Processing, IEE Proceedings -, 141(2):101 –106, April 1994.

[9] Jr. Forney, G.D. The viterbi algorithm. Proceedings of the IEEE, 61
(3):268 – 278, march 1973. ISSN 0018-9219.

[10] GameStop. Kinect for Xbox 360. http://www.gamestop.com/xbox-
360/accessories/kinect-for-xbox-360-with-kinect-adventures/
90774, 2010. Aquired: 09:49 11.04.2011.

[11] S. Goto and F. Yamasaki. Integration of percussion robots ”robot-
music” with the data-suit ”bodysuit”: Technological aspects and con-
cepts. In Robot and Human interactive Communication, 2007. RO-
MAN 2007. The 16th IEEE International Symposium on, pages 775
–779, August 2007.

[12] M. Hasanuzzaman, V. Ampornaramveth, Tao Zhang, M.A. Bhuiyan,
Y. Shirai, and H. Ueno. Real-time vision-based gesture recognition
for human robot interaction. In Robotics and Biomimetics, 2004.
ROBIO 2004. IEEE International Conference on, pages 413 –418,
August 2004.

[13] En Wei Huang and Li Chen Fu. Gesture stroke recognition using
computer vision and linear accelerometer. In Automatic Face Gesture
Recognition, 2008. FG ’08. 8th IEEE International Conference on,
pages 1 –6, September 2008.

[14] Thomas S. Huang and Vladimir I. Pavlovic. Hand gesture modeling,
analysis, and synthesis. In In Proc. of IEEE International Workshop
on Automatic Face and Gesture Recognition, pages 73–79, 1995.

[15] IFixIt. http://www.ifixit.com/Guide/Image/meta/
dcGosZx6dEwevBXt, 2010. Aquired: 22:50 05.04.2011.

[16] Sacha Krakowiak. What is Middleware. Website, 2003. http://
middleware.objectweb.org/ Aquired: 13:50 06.05.2011.

[17] J.J. Kuch and T.S. Huang. Vision based hand modeling and track-
ing for virtual teleconferencing and telecollaboration. In Computer

90

References

Vision, 1995. Proceedings., Fifth International Conference on, pages
666 –671, June 1995.

[18] Logitech. Logitech webcam c200. http://www.logitech.com/en-
us/webcam-communications/webcams/devices/5865, February 2011.
Aquired: 12:50 08.02.2011.

[19] Logitech. Logitech hd pro webcam c910. http://www.logitech.com/
en-us/webcam-communications/webcams/devices/6816, February
2011. Aquired: 12:49 08.02.2011.

[20] Jani Mäntyjärvi, Juha Kela, Panu Korpipää, and Sanna Kallio. En-
abling fast and effortless customisation in accelerometer based gesture
interaction. In Proceedings of the 3rd international conference on Mo-
bile and ubiquitous multimedia, MUM ’04, pages 25–31, New York,
NY, USA, 2004. ACM.

[21] S. Mitra and T. Acharya. Gesture recognition: A survey. Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 37(3):311 –324, May 2007.

[22] K. Morrow, C. Docan, G. Burdea, and A. Merians. Low-cost vir-
tual rehabilitation of the hand for patients post-stroke. In Virtual
Rehabilitation, 2006 International Workshop on, pages 6 –10, April
2006.

[23] National Association of the Deaf. What is american sign lan-
guage? http://www.nad.org/issues/american-sign-language/
what-is-asl, February 2011. Aquired: 22:52 08.02.2011.

[24] Kenji Oka, Yoichi Sato, and Hideki Koike. Real-time fingertip track-
ing and gesture recognition. IEEE Computer Graphics and Applica-
tions, 22:64–71, 2002. ISSN 0272-1716.

[25] ”OpenCv”. Motion analysis and object tracking. Web-
site, 2010. http://opencv.willowgarage.com/documentation/
cpp/motion_analysis_and_object_tracking.html Aquired: 19:54
06.06.2011.

91

References

[26] OpenKinect. Hardware Information. Website, 2011. http://
openkinect.org/wiki/Hardware_info Aquired: 19:15 13.04.2011.

[27] OpenKinect. the OpenKinect project. Website, 2011. http://www.
openkinect.org Aquired: 11:32 13.06.2011.

[28] OpenNI. Introducing OpenNI. Website, 2011. http://www.openni.
org Aquired: 15:24 13.04.2011.

[29] Play.com. ”kinect including kinect: Adventures!”. Web-
site, 2011. http://www.play.com/Games/Xbox360/4-
/10296372/Kinect-Including-Kinect-Adventures-/Product.html#
TechnicalDetailsTab Aquired: 12:55 19.05.2011.

[30] Vitruvius Pollio. The Ten Books on Architecture - Book III, chapter 1.
Project Gutenberg, 2006.

[31] PrimeSense. Primesensor reference design. http://www.primesense.
com/?p=514, February 2011. Aquired: 22:00 08.02.2011.

[32] D.L. Quam. Gesture recognition with a dataglove. In Aerospace and
Electronics Conference, 1990. NAECON 1990., Proceedings of the
IEEE 1990 National, pages 755 –760 vol.2, May 1990.

[33] Guinness World Records. Fastest-selling consumer electron-
ics device. Website, 2011. http://www.guinnessworldrecords.
com/Search/Details/Fastest-selling-consumer-electronics-
device/74941.htm Aquired: 13:37 08.04.2011.

[34] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, second edition edition, 2003.

[35] Daniel Scharstein and Richard Szeliski. A Taxonomy and Evaluation
of Dense Two-Frame Stereo Correspondence Algorithms. Interna-
tional Journal of Computer Vision, 47:7–42, 2002. ISSN 0920-5691.

[36] Jianbo Shi and C. Tomasi. Good features to track. In Computer
Vision and Pattern Recognition, 1994. Proceedings CVPR ’94., 1994
IEEE Computer Society Conference on, pages 593 –600, June 1994.

92

References

[37] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark
Finocchio, Richard Moore, Alex Kipman, and Andrew Blake. Real-
Time Human pose Recognition in Parts from Single Depth Images. In
Computer Vision and Pattern Recognition. Microsoft Research Cam-
bridge & Xbox Incubation, IEEE, June (to appear) 2011.

[38] Tomoichi Takahashi and Fumio Kishino. Hand gesture coding based
on experiments using a hand gesture interface device. SIGCHI Bull.,
23:67–74, March 1991.

[39] K.N. Tarchanidis and J.N. Lygouras. Data glove with a force sensor.
Instrumentation and Measurement, IEEE Transactions on, 52(3):984
– 989, June 2003.

[40] Carnegie Mellon University. ”cmu graphics lab motion capture
database”. Website, 2002. http://mocap.cs.cmu.edu/ Aquired: 13:19
19.05.2011.

[41] Lloyd R. Welch. Hidden markov models and the baum-welch algo-
rithm. IEEE Information Theory Society Newsletter, 53(4), Decem-
ber 2003.

[42] Ying Wu and Thomas Huang. Vision-Based Gesture Recognition: A
Review. In Annelies Braffort, Rachid Gherbi, Sylvie Gibet, Daniel
Teil, and James Richardson, editors, Gesture-Based Communication
in Human-Computer Interaction, volume 1739 of Lecture Notes in
Computer Science, pages 103–115. Springer Berlin / Heidelberg, 1999.

[43] Øystein Skotheim. Kinect sensor - preliminary study, May 2011.

[44] X. Zabulis, H. Baltzakis, and A. Argyros. Vision-based Hand Gesture
Recognition for Human-Computer Interaction, 2009.

93

Appendices

95

A. Optimizations

A few measures have been taken to improve the performance of the system,
some of these are mentioned below:

• Using ROI in images

• Moving conditions outside loops and duplicating code

• Extracting limits outside loops

By using the ROI in images, only certain parts of the image are processed
by both OpenCV algorithms and the implemented algorithms for this
thesis. This is done by registering the leftmost, rightmost, topmost and
bottommost points of the object of interest at the first iteration of the
image, and results in improved execution time.

Some conditions have a high cost of calculating, and some places in the
code the test for the condition is moved outside the loop. In terms of
pseudo-code this would result in:

for each row:
for each column
if Test():
//Do something
else:
//Do something else

being changed to:

if Test():
for each row:

for each column

97

A. Optimizations

//Do something
else:

for each row:
for each column

//Do something else

This results in Test() being executed once instead of number of rows
times number of column times.

When profiling the algorithm, using the open source SlimTune profiler,
it was shown that an alarming amount of time was used on a call to the
OpenNI wrapper. A very high percentage of the total execution time was
spent on getting the height of the depth image. Because of this, the limits
in loops were moved outside the loop in the following way:

for (x=0; x < image.getWidth(); x++)
for (y=0; y < image.getHeight(); y++)

//Do something

was changed to:

imageHeight=image.getHeight()
imageWidth=image.getWidth()
for (x=0; x < imageWidth; x++)

for (y=0; y < imageHeight; y++)
//Do something

The reason for the inefficiency is most likely that the calls to the wrapper
(such as image.Height), demands exclusive access to the wrapper. Due to
this, the image must acquire a lock width times height for the getHeight()
call, and width times for the getWidth() call. With the optimized code,
each call is made once per loop.

98

B. Relabeling Improvement

To improve the relabeling algorithm the following two measures can be
taken:

• Using for example maximum flow to map optimally

• Using other features than the centroid, such as shape or area.

Figure B.1.: The circles marked as 1 and 2 are centroids of the current
users, and the blue and red circles are the previously detected
red and blue labels.

Consider the scenario in Figure B.1. With the current implementation, the
figure marked as 1 will be labeled as blue, as it is closest to the blue circle,
while the figure marked as 2 will be labeled as a random color (chosen by
OpenNI). An example of this scenario would be if the Kinect was turned
quickly to the the left. The optimal result could then be found using a
max-flow algorithm, by adding a source super-node with edges to each of
the current (numbered) centroids, and a sink super-node with edges to all
of the previous (colored) centroids.

However, if instead this scenario was the result of the Kinect turning
slightly to the right and a new object was detected, the correct mapping
would be to map the blue label to object 1 and a new label to 2. To be

99

B. Relabeling Improvement

able to distinguish between these cases, one could implement features to
recognize if the object is previously detected. Features could for example
consist of area, density and circumference, and certain criteria could be
set for a match to be accepted.

When considering such a complex approach, one should keep in mind
that the algorithm is executed in every frame, and that all information
about users passes through the relabeling process. Because all later steps
depend on the results from the relabeling, the process can easily become a
bottleneck that slows down the total execution speed of the system.

100

	Title Page
	masteroppgave.pdf

