
Master of Science in Engineering Cybernetics
June 2011
Sverre Hendseth, ITK

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Autonomous Drifting of a 1:5 Scale
Model Car

Jakob Lieng Jakobsen

Autonomous Drifting of a 1:5 Scale

Model Car

Jakob Lieng Jakobsen

June 2011

Master's Thesis for the Degree of
MSc in Engineering Cybernetics

Problem Description

LocalBug is a platform for development and testing of control systems and
guidance strategies. It is a radio-controlled car with on-board GPS and IMU
instrumentation. Available control actuators are the front wheel steering an-
gle and throttle/break, which is con�gurable to front or rear wheels, or both.
The LocalBug simulator is a vehicle simulator implemented in SIMULINK. The
purpose of the simulator is to aid in the design of control systems for LocalBug.

The main goal of this thesis is to use feedback linearization to design a control
system that uses the sideslip angle to stabilize LocalBug at a desired yaw rate.
The student shall study feedback linearization in preparation for the control
design. Testing the of the control system is to be performed in the LocalBug
Simulator.

The LocalBug simulator is to be improved by adding a motor model and allow-
ing for the selection of a front, rear or four wheel drive mode. In addition, it
is desired that realistic sensor noise can be simulated in the feedback loop. Un-
known vehicle parameters should be measured, and the �delity of the simulator
validated against logged test data from LocalBug.

Because this thesis is a part of an ongoing student project, other students should
be able to continue the work in this report.

Abstract

Current automotive safety systems restrict the vehicle to the linear region of
operation where the sideslip angle is small. Recent research in the �eld has
discovered that drifting possesses unstable equilibria in which the vehicle is
controllable even after the handling limits in the linear region have been ex-
ceeded.

This thesis presents the design and simulation of a feedback linearization con-
troller that, by using yaw rate as input to controlling the sideslip angle, is able to
�nd the equilibrium point corresponding to the initial velocity and the desired
yaw rate. Simulation results show that the controller is able to achieve a yaw
rate within 5 degrees of the desired yaw rate. It is demonstrated that utiliza-
tion of drifting techniques increases the maneuverability of the vehicle compared
to normal cornering. Based on the successful handling of coupling in actuator
authority at high angles of sideslip, feedback linearization as a control design
tool is recommended for further development of controllers in the LocalHawk
project.

The LocalBug simulator has been improved by the addition of a dc motor model
that includes selection of front, rear and four wheel drive. Measurement of the
moment of inertia of LocalBug and recording of true noise data, which is added
to the simulator output, has increased the �delity of the simulator. Validation
of the simulator shows that the simulation results largely is in agreement with
logged test data, except for the case of hard breaking where the simulation
model is inclined to experience a spin.

i

Preface

This master's thesis concludes my 5 years of higher educational studies, of which
the last two has been here at the Norwegian University of Science and Tech-
nology. It has been great fun, a lot of surprises, and moments of despair and
excitement exploring the world of cybernetics.

I would like to thank my supervisors, Associate Professor Sverre Hendseth (De-
partment of Engineering Cybernetics) and Jon Bernhard Høstmark (Kongsberg
Defence Systems), for guidance and constructive criticism while working on this
thesis, and for keeping up my motivation in times of slow progress. I would
also like to thank Professor Kristin Ytterstad Pettersen for assistance on the
controller design, and Professor Lars Imsland for good advice on car dynamics
literature.

Finally, thanks to my parents for always supporting me and to my dear Ida for
giving me inspiration and holding out with me even in my darkest moments.

iii

Contents

Abstract i

Preface iii

Contents v

List of Figures ix

1 Introduction 1

1.1 Motivation . 2

1.2 The LocalHawk Project . 3

1.2.1 The LocalBug System . 4

1.2.2 Previous Work . 5

1.3 Contribution of Thesis . 6

1.4 Consulted Literature . 6

1.5 Outline of Thesis . 7

2 Mathematical Preliminaries 9

2.1 Lie Derivatives . 9

2.2 Non-Holonomic Systems . 10

2.3 The Moore-Penrose Pseudoinverse 12

v

vi CONTENTS

3 Principles of Guidance, Navigation & Control 15

3.1 Control of Underactuated Vehicles 17

3.2 Feedback Linearization . 17

3.2.1 I/O Linearization For SISO Systems 19

3.2.2 I/O Linearization For MIMO Systems 21

4 Vehicle Models 23

4.1 Vehicle Coordinate Systems . 23

4.2 Nonlinear Two-Track Vehicle Model 25

4.3 Linearized Vehicle Model . 30

5 The LocalBug Simulator 33

5.1 Status of the LocalBug Simulator 33

5.2 Motor and Driveline Model . 34

5.3 Wheel Drive Con�guration . 35

5.4 Measurement Noise Model . 38

5.4.1 Data Recording . 40

5.5 Measurement of Wheel Moment of Inertia 41

5.5.1 Experimental Setup . 43

5.5.2 Test Result . 43

5.6 Measurement of Vehicle Moment of Inertia 46

5.6.1 Experimental Setup . 48

5.6.2 Calibration of testing apparatus 50

5.6.3 Test Result . 50

5.7 Using the LocalBug Simulator . 52

5.8 Validation of the Simulator . 52

5.8.1 Raw Data . 53

5.8.2 Case 1: Straight-line Acceleration and Breaking 54

5.8.3 Case 2: Slalom Steering with Constant Velocity 56

5.8.4 Case 3: Constant Steering with Increasing Velocity 59

5.9 Discussion of Results . 59

CONTENTS vii

6 Nonlinear Controller Design 63

6.1 The Control Objective . 64

6.2 The Control Design Model . 67

6.3 Feedback Linearizing Controller 68

6.4 Control Allocation . 70

6.5 Controllability During High Angle of Sideslip 74

6.6 SIMULINK Implementation . 75

7 Simulation Results 77

7.1 Case 1: Cornering on Wet Cobblestones 78

7.2 Case 2: Cornering on Snow . 80

7.3 Case 3: Robustness to Parametric Uncertainties 86

7.4 Case 4: Comparison With PID Controller 89

7.5 Discussion of Results . 92

8 Conclusions 95

8.1 Further work . 96

Bibliography 97

A Equations for the Linearized Vehicle Model 101

B Matlab-script for Importing Raw Data 105

C Feedback Linearization Controller Code 111

viii CONTENTS

List of Figures

1.1 De�nition of the sideslip angle. 2

1.2 The LocalBug system. 4

2.1 Example of a system with kinematic constraints. 10

3.1 Principle sketch of a Guidance, Navigation and Control system. . 16

3.2 Schematic of a feedback linearization control loop. 18

4.1 Illustration of the vehicle and its variables, reproduced with per-
mission from (Grip et al. 2009) 24

5.1 The e�ect of a step input in throttle on motor torque. 36

5.2 Simulation of driving in a curve with an open di�erential. 39

5.3 Simulation of driving in a curve with a locked di�erential. 39

5.4 Test setup for logging of IMU data. 41

5.5 Principle sketch of the compound pendulum. 42

5.6 Construction of the Tarmac Buster wheel. 44

5.7 Measurement of the wheel moment of inertia. 44

5.8 Principle sketch of the torsion pendulum. 46

5.9 Preparing LocalBug for measurement of the moment of inertia. . 48

5.10 Measurement of the moment of inertia around the vehicle z-axis. 49

5.11 Overview of the LocalBug simulator. 51

5.12 Velocity and actuator commands during straight-line acceleration. 55

ix

x LIST OF FIGURES

5.13 Sideslip angle and acceleration during straight-line acceleration. . 55
5.14 Heading and yaw rate during straight-line acceleration. 56
5.15 Velocity and actuator commands during slalom steering. 57
5.16 Sideslip angle and acceleration during slalom steering. 58
5.17 Heading and yaw rate during slalom steering. 58
5.18 Velocity and actuator commands during acceleration and steering. 60
5.19 Sideslip angle and acceleration during acceleration and steering. . 60
5.20 Heading and yaw rate during acceleration and steering. 61

6.1 Illustration of the vehicle at three equilibrium points. 65
6.2 Illustration of the control loop signal �ow. 68
6.3 Illustration of front wheel lateral force decomposed in the body

frame. 71
6.4 Friction coe�cients vs. wheel slip for di�erent road surfaces. . . . 73
6.5 Screenshot of the SIMULINK controller block. 76

7.1 Simulation result on wet cobblestones with ψ̇des = 40 deg/s 79
7.2 Simulation result on wet cobblestones with ψ̇des = 60 deg/s 79
7.3 Plot of the vehicle states while driving in circles on wet cobblestones. 81
7.4 Plot of the control inputs while driving in circles on wet cobble-

stones. 82
7.5 Simulation result on snow with ψ̇des = 40 deg/s 83
7.6 Simulation result on snow with ψ̇des = 60 deg/s 83
7.7 Plot of the vehicle states while driving in circles on snow. 84
7.8 Plot of the control inputs while driving in circles on snow. 85
7.9 Simulation result of di�erent values in the mass parameter. . . . 86
7.10 Vehicle states for di�erent values of the mass parameter. 87
7.11 Control inputs for di�erent values of the mass parameter. 88
7.12 Simulation result of comparison between trail-breaking and con-

ventional cornering. 90
7.13 Steering input during comparison of trail breaking and conven-

tional cornering. 90
7.14 Vehicle states during comparison of trail breaking and conven-

tional cornering. 91

Chapter 1

Introduction

Rally tracks usually consist of curvy, narrow roads with occasional hairpin turns.
In addition, the road surface is often a medium to low friction surface such as
gravel or snow. Driving as fast as possible through these challenging courses
requires a skilled driver and is only possible by maximizing the cornering forces.
Because regular front wheel steering, as the only actuator capable of altering
the direction of the vehicle, is not adequate to negotiate steep corners at high
speeds, rally drivers turns to special driving techniques to push their vehicles to
the limit.

Drifting occurs when a vehicles direction of travel at the center of gravity di�ers
from its orientation. This angle, illustrated in �gure 1.1, is called the vehicle
sideslip angle. It is mathematically de�ned as the arctangent of the lateral
velocity to the longitudinal velocity, given in the body frame:

β = arctan

(
Vy
Vx

)
(1.1)

Under normal driving conditions, the sideslip angle is typically within ±2◦ (Grip
et al. 2009). In the sense of vehicle controllability, however, it is not optimal
to keep this angle low. Expert rally drivers exploit the possibilities that arise
at high slip angles to maximize cornering speed and thereby reducing lap times
(Velenis et al. 2007). By doing so, they are utilizing the nonlinear coupling be-
tween throttle and steering at high sideslip angles to produce the forces required
to keep the vehicle on the road.

1

2 CHAPTER 1. INTRODUCTION

v

β

x

Figure 1.1: De�nition of the sideslip angle.

1.1 Motivation

Recent research in automotive control systems looks into the possibility of utiliz-
ing expert rally race driving skills in active safety systems. Current automotive
control systems aim at restricting the vehicle to the linear region of operation
(Velenis et al. 2010). This ensures that the vehicle is open-loop stable and
that the driver easily can predict the vehicle response to steering, throttle and
breaking inputs. Once the vehicle enters the nonlinear region characterized by
high sideslip angles it is in general open-loop unstable, but not necessarily un-
controllable (Hindiyeh and Gerdes 2010). While drifting, the rear wheels are
saturated, but direction control is still available through front wheel steering. In
fact, steady state equilibrium points have been found for di�erent combinations
of turning radius, speed, sideslip angle and control e�ort (Velenis et al. 2010).
By exploiting these equilibria, collision avoidance can be attempted even when
the handling limits of the vehicle have been exceeded.

The main goal of this thesis is to design a nonlinear controller that is able to
obtain and sustain a desired yaw rate by controlling the sideslip angle. The
principle idea is that the sideslip will contribute to rotate the force vector so it
points directly into the center of the turn. For a given turn on a road surface with
a certain friction, there exists a range of initial velocities that allows LocalBug
to complete the turn without running of the road. Inspired by rally driving, it
is desirable to extend this envelope of feasible initial conditions by establishing
a sideslip during cornering. Balancing the amount of sideslip with throttle and
steering will increase the magnitude of cornering force, and thus the yaw rate,
that it is possible to produce as compared to normal cornering. As a result,

1.2. THE LOCALHAWK PROJECT 3

LocalBug will be able to negotiate steeper turns at a speed where a regular
heading controller would not su�ce.

It is an ulterior motive that the principles and experienced gained from the
challenges met in this thesis can be applicable to later development of autopilots
in the LocalHawk project. An aircraft is a second order non-holonomic system
(Olfati-Saber 2002), where constraints are placed on accelerations in the lateral
and vertical directions. In comparison, a car under a no-slip assumption is a
�rst order non-holonomic system, because limitations on the sideways velocity
are present. Under high angles of sideslip, the no-slip constraint is temporarily
relaxed. In this regime, the vehicle dynamics resembles aerobatic maneuvers
where both attitude control and agile maneuvers are important (Abdulrahim
2006), albeit in a reduced con�guration space. Even though the degrees of
freedom for the vehicle are less, a challenge faced in both situations is the
coupling of actuator authority resulting from the nonlinear e�ects throughout
the service envelope.

In this thesis, only the case of rear wheel drive is considered. In addition,
LocalBug is assumed to be con�gured with a locked di�erential. It is further
presumed that the road surface is �at, that there are no pitch and roll motions
and that the road surface friction is uniform in the operating area. As a con-
sequence, di�erences in traction between the left and right track are considered
negligible. The thesis will restrict the geometry of the turns to circles and arcs.

1.2 The LocalHawk Project

The LocalHawk project is an interdisciplinary student project aiming at con-
structing an Autonomous Unmanned Aerial Vehicle (AUAV) from ground up.
It originated as a master's thesis at the Norwegian University of Science and
Technology in 2007 and is now supported by Kongsberg Defence Systems for
promotion and recruitment purposes. Students from several educational insti-
tutions contribute through projects, master's theses and summer internships.
The challenges undertaken in the project spans from design of on-board elec-
tronics, autopilot software for autonomous take-o�, �ight and landing, and a
ground station capable of receiving telemetry data from the aircraft and send-
ing commands. In addition to the �ight critical equipment, a radar range �nder
and image recognition software for smart guidance is also developed as payload.
This resulted in a need for a simpler test platform to evaluate separate system
modules without risking a fatal crash.

4 CHAPTER 1. INTRODUCTION

Figure 1.2: The LocalBug system.

1.2.1 The LocalBug System

LocalBug is a radio controlled, wheel-based test platform intended for testing of
equipment and exploring di�erent control strategies. The platform is equipped
with the PhoenixII hardware developed for LocalHawk for data processing and
an Xsens Inertial Measurement Unit (IMU) to provide sensor data. In addition,
a ground station communicating with LocalBug through a radio link provides
control of the on-board software and real-time telemetry monitoring. A radio
controller is used to manually steer LocalBug and switch between autonomous
and manual mode. Figure 1.2 illustrates the di�erent components that consti-
tutes the system.

PhoenixII is the on-board hardware designed to integrate all the electronics
required for autonomous control. It interfaces sensor modules and actuators,
and provides the autopilot software with processing power, sensor data, radio
communication and data storage. Two AVR XMEGA microcontrollers, denoted
�Node A� and �Node B�, handles critical control tasks and non-critical tasks such
as logging, respectively. The two nodes communicate through a Serial Peripheral
Interface (SPI)-bus. Logged data is stored on a microSD-card which can be read
on any computer, and a Radiocrafts RC1240 module is included to provide radio
communication with the ground station.

1.2. THE LOCALHAWK PROJECT 5

The Xsens MTi-G IMU consists of a three dimensional accelerometer and gyro-
scope, magnetometer, barometer and a GPS receiver. A built-in Kalman �lter
provides estimates of velocities, position and attitude.

A laptop with an external Radiocrafts radio transceiver constitutes the ground
station. Paths de�ned by GPS waypoints can be created on the ground station
and uploaded wirelessly to LocalBug.

1.2.2 Previous Work

This thesis is a continuation of the work already done in the LocalHawk project.
Major developments relevant to this thesis are presented in this section.

In the spring of 2010, the PhoenixII hardware and software drivers were com-
pleted by Veierland (2010). At the same time, the LocalBug platform was
developed as a master's thesis project in Wenstad (2010). It consisted of the
HPI Savage Flux HP R/C car and was equipped with the same instrumenta-
tion as the LocalHawk aircraft. A software framework to interface the autopilot
software with the drivers and provide logging of autopilot data was made. The
autopilot software is created using SIMULINK, and the source code is gener-
ated through Real-Time Workshop in Matlab. The autopilot source code is
then linked together with the LocalBug software framework and uploaded to
the two processor nodes on LocalBug. A kinematic simulator based on a no
sliding assumption was also created to design a guidance controller to test the
platform autonomously.

Students working at the summer internship program at Kongsberg the following
summer continued contributing to the project. Amongst other things, improve-
ments were made to the framework source code and the ground station, and
logged data was used to produce a black box model of LocalBug. However,
this simulator is only valid for driving conditions equal to those during the data
collection. A user manual describing the LocalBug system was also produced.
These developments are described in Wigestrand et al. (2010a;b).

In the fall of 2010, Jakobsen (2010) implemented a simulator based on a math-
ematical model of forces acting on the vehicle. The simulator demonstrated
realistic vehicle behavior during aggressive driving and produced results simi-
lar to the previous kinematic simulator during normal driving. However, the
simulator lacked a proper motor model and was not validated against logged
data.

6 CHAPTER 1. INTRODUCTION

1.3 Contribution of Thesis

This thesis improves and validates the LocalBug simulator. A dc motor model
has been implemented for better simulation of the longitudinal dynamics. Op-
tions to select front, rear or four wheel drive and di�erential lock have been
added. A data series containing noise has been recorded using the exact sensor
�tted on LocalBug. This increases the �delity of the simulator output, which
then resembles the sensor data available to the on-board controller. The moment
of inertia of LocalBug in yaw, as well as the moment of inertia of the wheels
around the rolling axis has been determined by measurements, and a user guide
describing how to initialize and run the LocalBug simulator is written. The
LocalBug simulator has been validated by comparing the logged response to
simulation results using identical actuator commands.

A feedback linearization controller that obtains and sustains the desired yaw rate
by the use of drifting techniques has been designed. The desired yaw rate is
achieved by �nding the sideslip angle that corresponds to the equilibrium point
determined by the initial conditions and the desired yaw rate. The controller
has been successfully tested on the LocalBug simulator.

During the course of the semester, guidance has been provided to a group of
students in the subject Eksperter i Team. The group designed and constructed
a water- and dustproof container to protect the on-board electronics from envi-
ronmental impact.

1.4 Consulted Literature

Consulted literature on nonlinear systems includes Khalil (2002) and Marino
and Tomei (1995), who deals with non-linear control theory and feedback lin-
earization for single-input-single-output systems, and Isidori (1995) and Slotine
and Li (1991) who in addition discusses feedback linearization for multi-input
multi-output systems. Fossen (2011) goes in depth on the theory of motion
control systems. Topics in modeling and simulation of dc motors are covered
in Egeland and Gravdahl (2002). Kiencke and Nielsen (2005), Rajamani (2006)
and Wong (2001) provides a complete description on vehicle dynamics. Methods
for measurement and estimation of the vehicle sideslip angle β are described in
Grip (2010) and Croft-White (2006). Ackerman (1997) presents ideas for de-
coupling of the yawing motion of the vehicle from the path following task of
the driver. In Hindiyeh and Gerdes (2010), a dynamic surface controller for

1.5. OUTLINE OF THESIS 7

autonomous drifting is designed, while open loop commands are used to achieve
drifting in Henry and Perrault (2010). Properties of high sideslip maneuvers
are investigated in Abdulrahim (2006) and Velenis et al. (2010), and stability
properties of high sideslip angle cornering equilibria are discussed in Voser et al.
(2010). In Velenis et al. (2007), a mathematical analysis of rally race driving
techniques is performed.

1.5 Outline of Thesis

In section 2, some mathematical tools and concepts used in the thesis are re-
viewed. Chapter 3 presents principles and tools for the design of autonomous
control systems. A mathematical vehicle model capable of describing the vehicle
dynamics at high angles of sideslip is presented in chapter 4. Improvements to
the simulation model and veri�cation of the �delity of the LocalBug simulator
is described in chapter 5, while presentation of the controller design is given in
chapter 6. The simulation results are discussed in chapter 7.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Mathematical Preliminaries

Some of the mathematical tools and expressions used in the subsequent chapters
are reviewed here.

2.1 Lie Derivatives

According to Slotine and Li (1991), the Lie derivative is the directional derivative
of a function along a vector �eld.

Consider the single input-single output n'th order system

ẋ = f(x) + g(x)u (2.1)

y = h(x) (2.2)

where f : Rn → Rn , g : Rn → Rn and h : Rn → R are su�ciently smooth.
Both f and g are vector �elds, and h is a function of x. The Lie derivatives
of the output function h(x) with respect to the trajectories of the system are
found by di�erentiating y with respect to time:

ẏ =
∂h

∂x
· ∂x
∂t

=
∂h

∂x
(f(x) + g(x)u)

def
= Lfh(x) + Lgh(x)u (2.3)

9

10 CHAPTER 2. MATHEMATICAL PRELIMINARIES

Initial
state

Final
state

Figure 2.1: Parallel parking is an example of a system with kinematic con-
straints.

where

Lfh(x) =
∂h

∂x
f(x) (2.4)

Lgh(x) =
∂h

∂x
g(x) (2.5)

are the Lie derivatives along f(x) and g(x), respectively. These are new scalar
functions, and the process of �nding the Lie derivatives can be repeated. For
instance, when taking the Lie derivative of Lfh(x) along f and g, the following
notation is common

L2
fh(x) =

∂Lfh(x)

∂x
· f(x) (2.6)

LgLfh(x) =
∂Lfh(x)

∂x
· g(x) (2.7)

2.2 Non-Holonomic Systems

A non-holonomic system is a system where constraints on the derivatives of the
con�guration of the system are present, that is kinematic constraints limiting
the directions in which the system can move. A non-holonomic constraint is
expressed as an equality condition or di�erential equation on the form (Newman
2003)

2.2. NON-HOLONOMIC SYSTEMS 11

f(q, q̇, q̈, . . .) = 0 (2.8)

where q is a vector of generalized positions. On the other hand, a holonomic
constraint is a constraint where the derivatives of the generalized position can
be integrated to be expressed as a function of the position. Such constraints are
not truly non-holonomic and is said to be integrable (Mason 2011). Otherwise
it is said to be non-integrable.

A popular example of a non-holonomic system is the rolling disc without slip-
ping. Imagine a coin rolling on a table. The con�guration of the coin can be
described by the position on the table, the heading of the coin, the rotation
angle, and the inclination of the coin from the vertical. There is no slip, which
means that the relative velocity at the contact point between the coin and the
table is zero at all times. This constraint leads to the fact that the state of the
system is not only dependent on the initial condition, but also on the path it
took to reach it. If the coin rolled in a circular path back to the starting point,
the rotation angle would, in general, not be the same as the starting angle for
any arbitrary path on the table.

Non-holonomicity arises in locomotion and robotic problems when the system
is underactuated. This happens when the degrees of freedom are higher than
the number of independent motions the vehicle can produce (Mason 2011). A
car is in general unable to travel sideways, and is therefore non-holonomic. In
addition, a car cannot turn unless it is moving. A train, on the other hand, is
a holonomic system even though it cannot travel sideways, because the velocity
constraint can be expressed as a function of the position (the track). The zero
velocity constraint at the contact point in the coin example is independent of
the position of the coin, and thus one cannot integrate the velocity constraint
into a constraint on the position in that example.

Non-holonomic systems are generally much harder to control because the non-
holonomic constraints have to be satis�ed at all times (Newman 2003). This
is easily experienced when parallel parking a car, since care has to be taken
to maneuver the vehicle in position, as illustrated in �gure 2.1. Depending on
the free space around the vehicle, an arbitrary number of movements have to
be executed to attain the desired position. However, as long as the system is
non-holonomic, no constraints are present on position and all con�gurations can
be attained by carefully selecting the control inputs (Mason 2011).

12 CHAPTER 2. MATHEMATICAL PRELIMINARIES

2.3 The Moore-Penrose Pseudoinverse

Consider the linear system

Ax = b (2.9)

where A ∈ Rm×n, x ∈ Rn and b ∈ Rm.
Assume that m > n. Since A is rectangular, the inverse of A does not exist.
However, it is possible to �nd a number of generalized inverse matrices that
exhibits some of the properties of the inverse matrix.

If A is of rank n, left multiplying (2.9) with AT gives an invertible n×n matrix
on the left side. It is now possible to obtain an expression for x:

ATAx = AT b (2.10)

x = (ATA)−1AT b (2.11)

where (ATA)−1AT = A† is the Moore-Penrose pseudoinverse. For the case
where m < n and rank(A) = m, the pseudoinverse is A† = AT (AAT)−1.

The pseudoinverse is de�ned and unique for all matrices with real and complex
entries. What is particular about the Moore-Penrose pseudoinverse is that it is
the solution of the minimization problem

min
x

1
2x

2 (2.12)

s.t Ax = b

If no solution to Ax = b exist, the pseudoinverse minimizes ‖Ax− b‖2 and is
therefore suitable to �nd a best �t solution to linear systems that lacks a unique
solution.

The Moore-Penrose pseudoinverse holds the following properties (Burdick n.d.):

AA†A = A (2.13)

A†AA† = A† (2.14)(
AA†

)T
= AA† (2.15)(

A†A
)
T = A†A (2.16)

2.3. THE MOORE-PENROSE PSEUDOINVERSE 13

• If m > n, there are more constraints than free variables and there exists
at most one solution to the system. The pseudoinverse gives the solution
that minimizes the least squares residuals of Ax − b. In other words, it
gives the solution closest to b in a least squares sense.

• If m < n, there are an in�nite number of solutions to the system. In this
case, A† gives the minimum norm solution of x.

• In the case where m = n and A is of full rank, the Moore-Penrose pseu-
doinverse reduces to the inverse of A.

14 CHAPTER 2. MATHEMATICAL PRELIMINARIES

Chapter 3

Principles of Guidance,

Navigation & Control

The science of designing control systems for automatic or remote motion control
of vehicles and crafts is called guidance, navigation and control (GNC)(Fossen
2011). The task is traditionally divided into three separate subsystems working
together, as illustrated in �gure 3.1. This separation simpli�es the design of
each task, as well as making the system easier to maintain. The three modules
are a path generator, a sensor system and a feedback control system.

Guidance system Whether the problem at hand is adaptive cruise control,
automatic parking of automobiles or autopilots for ships and aircrafts, the con-
trol system requires a reference to follow. The guidance system copes with the
challenge of deducing the desired paths or trajectories to be tracked by the ve-
hicle. In its simplest form, the guidance system is a set-point de�ned by the
operator, for instance a heading or speed command. More advanced guidance
systems calculates the position, velocity and acceleration required for the vehicle
to steer safely and comfortably to the target. These algorithms utilize weather
data, topological and obstacle information to calculate collision-free trajectories,
and optimization techniques to minimize for instance fuel consumption, travel
time or actuator wear.

A number of guidance schemes exists, some of which are described in Fossen
(2011), Isidori et al. (2003) and Vold (2010).

15

16CHAPTER 3. PRINCIPLES OF GUIDANCE, NAVIGATION & CONTROL

Guidance System Control System

Trajectory
Generator

Operator
Input

Autopilot
Control

Allocation
Vehicle

Navigation System

Observer /
Kalman Filter

Weather data

INS + GNSS

Environmental
Disturbances

Topological
information

Figure 3.1: Principle sketch of a Guidance, Navigation and Control system.

Navigation system The objective of the navigation subsystem is to deter-
mine the current position and attitude of the vehicle. Today, this is usually
accomplished by the use of Global Navigation Satellite Systems (GNSS) in
combination with an Inertial Navigation Systems (INS), which consists of ac-
celerometers and gyroscopes (Vik n.d.). In addition, the navigation system often
uses a Kalman �lter or an observer to remove noise and estimate states such as
velocities and accelerations of the vehicle.

Control system The task of the control system is to produce the actual
actuator commands that cause the vehicle to track the output from the guidance
system. Often the control system needs to be designed in conjunction with the
guidance system to ensure that the control objectives are met. Depending on the
guidance system, di�erent requirements are put on the controller. For instance,
a set-point regulation problem will only require stabilization of the vehicle, while
a tracking problem demands that the controller is able to follow a time-varying
reference signal.

For practical purposes it is common control the forces and moments acting on the
vehicle. This leads to the problem of control allocation, which is how to assign
the available actuators to produce the desired forces that solves the control
problem. This often results in an optimization problem, as several actuator
con�gurations can give the same forces and moments.

3.1. CONTROL OF UNDERACTUATED VEHICLES 17

3.1 Control of Underactuated Vehicles

A motion control problem is said to be underactuated if the vehicle does not
have independent control forces and moments in all its degrees of freedom. The
degrees of freedom (DoF) are the number of generalized coordinates (η) required
to completely describe the motion of the system. For a general rigid body
operating in a Euclidean space, the number of DoF is six: three translational
displacements in surge, sway and heave, and three rotations, roll, pitch and yaw.

η =

x
y
z
φ
θ
ψ

 (3.1)

The space spanned by all possible positions the vehicle can attain is called
the con�guration space (Fossen 2011). In other words, the dimension of the
con�guration space equals the number of degrees of freedom

dim(η) = n (3.2)

Solving an underactuated control problem is non-trivial, as there are no general
methods to accomplish this. It is possible, however, to reduce the con�guration
space so the control problem is fully actuated. This is done by considering the
control objective in a working space while leaving the other states uncontrolled.
The working space is a reduced space of dimension m < n in which the control
objective is de�ned. The uncontrolled equations of motion will then appear
as dynamic constraints in the state space (Fossen 2011), and the system to be
controlled is then, by de�nition, non-holonomic.

3.2 Feedback Linearization

The general idea of feedback linearization is to �nd a feedback control law that
exactly cancels the nonlinearities of the system. The system will then act as
a linear system, and the wide range of tools available for linear systems can
be utilized to design a linear controller that is superimposed on the nonlinear

18CHAPTER 3. PRINCIPLES OF GUIDANCE, NAVIGATION & CONTROL

-Ke u(x,v) f(x,u)

T(x)

∫dt
ref e v u dx/dt x

-

Linearizing feedback

Stabilization feedback z

Figure 3.2: Schematic of a feedback linearization control loop.

controller to solve the control problem at hand. Figure 3.2 gives an illustration
of a feedback linearization scheme.

There are a couple of problems associated with this approach. First, one can
in practice not expect to be able to model a system and implement a controller
where all parameters are exactly known and constant for all future time. If this
is the case then exact cancellation of the system is not possible because of the
uncertainties present. However, in many applications the feedback linearization
approach proves to be su�cient to describe the nonlinearities of the system. If
adequate robustness is not achieved, other techniques such as sliding mode con-
trol (SMC) can force the system onto a manifold for which stability is achieved,
even in the presence of disturbances. The reader is referred to Khalil (2002) or
Slotine and Li (1991) for further discussion on the topic.

Secondly, the structure of the system may not allow a feedback control law
to completely linearize the system equations. It is, however, well known that a
state space representation is not unique. Therefore, a coordinate transformation
to another set of state variables may give a structure where feedback lineariza-
tion is possible. It is shown in Khalil (2002) that for a system to be feedback
linearizable, there must exist a transform z = T (x) that transforms the system
equations into

ż = Az +Bγ(z) [u− α(z)] (3.3)

where the pair (A,B) is controllable and γ(x) is non-singular. To be able
transform the state equations back to the original state variables x, T should
be invertible such that

x = T−1(z) (3.4)

3.2. FEEDBACK LINEARIZATION 19

In addition, T and T−1 is required to be continuously di�erentiable. A function
T that ful�lls these requirements is called a di�omorphism. T is a global di�o-
morphism if and only if ∂T/∂x is non-singular for all x ∈ Rn and T is proper
(Khalil 2002). Even if such a transformation cannot be found, the system may
be partially linearizable. For instance, the system output is often the most in-
teresting variable, and if the output equation is linearizable one may not care if
the internal states are nonlinear in their response as long as they are stable.

This discussion gives rise to two techniques called input-output linearization,
in which the input-output map is linearized, and full-state linearization which
is achieved when the complete state vector is linearized (Khalil 2002). State
linearization does, however, not guarantee that the input-output map is linear.

In the following sections input-output linearization for single-input single-output
(SISO) systems is investigated, and then the methods are extended to multi-
input multi-output systems (MIMO).

3.2.1 I/O Linearization For SISO Systems

Consider the n'th order system

ẋ = f(x) + g(x)u (3.5)

y = h(x) (3.6)

where f , g and h are su�ciently smooth in a domain in Rn. Since the objective
is to �nd a linear relation between the input and the output, the starting point
is to �nd a relationship. It is clear from (3.6) that the output depends on the
system states, and from (3.5) that the input appears in the state equations.
Di�erentiating the output gives

ẏ =
∂h

∂x
· ∂x
∂t

= Lfh(x) + Lgh(x)u (3.7)

If Lgh(x) = 0, then the output is not yet directly in�uenced by the input.
However, one can continue the process of di�erentiating the output. As long as
the system is controllable, an equation where both the input and the output are
present will appear after at most n iterations (Slotine and Li 1991). This has
now produced a chain of integrators that connects the input u to the output y.
The output equation takes the following form

y(r) = Lrfh(x) + LgL
r−1
f h(x)u (3.8)

20CHAPTER 3. PRINCIPLES OF GUIDANCE, NAVIGATION & CONTROL

where r is known as the relative degree of the system. This integer corresponds
to the number of times one has to di�erentiate the output for the input to
appear. For linear systems, the relative degree equals the di�erence between
the numerator and denominator polynomial degree. It can now be seen that
choosing the input as

u =
1

LgL
r−1
f h(x)

[
v − Lrfh(x)

]
(3.9)

reduces the system to

y(r) = v (3.10)

where v can be designed as a linear controller, e.g. v = −kx. It is important to
notice, however, that the control law is not de�ned at LgLr−1f h(x) = 0.

In this procedure, one or more states can be rendered unobservable from the
output. It is therefore necessary to determine if these states are stable, referred
to as internal stability. This is accomplished by setting up the system on nor-
mal form and checking that the zero-dynamics are stable. According to Khalil
(2002), the normal form is obtained by the transformation

z = T (x) =

φ1(x)
...

φn−r(x)
h(x)
...

Lr−1f h(x)

(3.11)

where the last elements in the transformation are a chain of integrators and
φ1 to φn−r are chosen such that T (x) is a di�omorphism. These elements will
de�ne the internal states of the system which are unobservable from the output.
Therefore it follows that they have to satisfy

∂φi
∂x

g(x) = 0, for 1 ≤ i ≤ n− r (3.12)

If the relative degree is equal to the order of the system then there are no internal
states, as can be seen from (3.11) since all the φ's disappear. Otherwise there
exist n − r internal states. The complete system is now on the normal form
(Khalil 2002)

3.2. FEEDBACK LINEARIZATION 21

η̇ = f(η, ζ) (3.13)

ζ̇ = Aζ +Bγ(x) [u− α(x)] (3.14)

y = Cζ (3.15)

The zero-dynamics are found by letting y ≡ 0. It follows that

ζ = 0⇒ ζ̇ = 0⇒ η̇ = f(η, 0) (3.16)

If f(η, 0) is Hurwitz, then the internal dynamics are stable.

3.2.2 I/O Linearization For MIMO Systems

Feedback linearization for MIMO systems is for some classes of systems, where
the number of inputs is the same as the number of outputs, quite similar to the
SISO case. Consider a system of order n with m inputs and m outputs and a
well de�ned vector relative degree

ẋ = f(x) +
m∑
i=1

gi(x)ui (3.17)

y1 = h1(x) (3.18)
...

ym = hm(x) (3.19)

Since the system consists of more than one output, the concept of a relative
degree has to be extended. The vector relative degree, {r1, . . . , rm}, is the num-
ber of times the m'th output has to be di�erentiated before one of the inputs
appear (Isidori 1995). Calculating the Lie derivatives for each output

y
(r1)
1

y
(r2)
2
...

y
(rm)
m

 =

Lr1f h1(x)

Lr2f h2(x)
...

Lrmf hm(x)

+A(x)u (3.20)

where the matrix A(x) is

22CHAPTER 3. PRINCIPLES OF GUIDANCE, NAVIGATION & CONTROL

A(x) =

Lg1L

r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) · · · LgmL

r2−1
f h2(x)

...
. . .

...
Lg1L

rm−1
f hm(x) · · · LgmL

rm−1
f hm(x)

 (3.21)

and non-singular. The feedback linearizing control law

u = A(x)−1

v1 − Lr1f h1(x)

v2 − Lr2f h2(x)
...

vm − Lrmf hm(x)

 (3.22)

with v1 to vm designed as linear controllers will reduce the system to the linear
input-output relationship

y
(ri)
i = vi, for 1 ≤ i ≤ m (3.23)

If the total relative degree r = r1 + . . . + rm = n, then there are no internal
dynamics (Slotine and Li 1991). Otherwise, it is proved in Isidori (1995) that
there is always possible to �nd n− r more functions such that

φ(x) =
[
h1(x) . . . Lri−1f h1(x) . . . hm(x) . . . (3.24)

Lrm−1f hm(x) φr+1(x) . . . φn(x)
]T

(3.25)

has a Jacobian matrix which is non-singular at x0, and can be used as a local
coordinate transformation to achieve the multivariable equivalent of the normal
form.
If the MIMO-system in question does not have a well de�ned vector relative
degree, the control law (3.22) is not de�ned. A possible solution is then to use
the dynamic extension algorithm. This technique introduces a new system in
form of a set of state variables. The input to the original system is set to be the
output of the newly introduced system. This is called dynamic state feedback,
as opposed to static state feedback, since the input to the system in question
gains its own dynamics. The advantage of this scheme is that one can extend
the relative degree and hope that all inputs eventually appear in the output
equation. The dynamic extension algorithm will not be pursued further in this
thesis, but the reader is referred to Isidori (1995) for more discussion on the
topic.

Chapter 4

Vehicle Models

Several vehicle models exist, and the most famous is perhaps the bicycle model.
The reason for its popularity is mainly because of its linear nature and the
many mathematical tools available for linear systems. During normal driving,
the speed is often constant for longer periods of time and the slip angles are
small. Under these assumptions, the linear bicycle model gives accurate re-
sults. However, the dynamic motion of vehicles is highly non-linear. For driving
situations where the vehicle and driver is pushed to the limits, for instance in
rally driving where high sideslip angles are common, this model is not adequate.
Therefore a nonlinear vehicle model is needed to describe the vehicle dynamics
in these extreme situations.

In the following section, the vehicle coordinate system is de�ned. A non-linear
vehicle model is presented in section 4.2 and the linearized version of it is then
given in section 4.3.

4.1 Vehicle Coordinate Systems

The vehicle body frame is de�ned with the origin located at the center of mass of
the vehicle, and with the positive x-axis pointing in the longitudinal direction of
the vehicle, the positive z-axis up from the road surface and the y-axis orthogonal
to the previous axes according to the right hand rule. This coordinate frame,
denoted b, is rotated an angle ψ relative to the inertial frame, designated in.
The inertial reference frame is taken to be the local tangent plane on the surface

23

24 CHAPTER 4. VEHICLE MODELS

Figure 4.1: Illustration of the vehicle and its variables.

4.2. NONLINEAR TWO-TRACK VEHICLE MODEL 25

of the Earth.

A wheel frame is de�ned with positive x-axis along the longitudinal direction of
the tire and the other axes consistent with the vehicle body frame convention.
The rear wheel coordinate frame coincides with the body frame, while the front
wheel coordinate frames are rotated a steering angle δ relative to the body frame.
Variables belonging to the four wheels are denoted with subscript FL, FR, RL
and RR for front left, front right, rear right and rear left wheel, respectively.

Figure 4.1 illustrates the de�nition of the variables describing the vehicle. The
length lf is the distance from the center of gravity to the front of the vehicle,
while lr is the distance from the center of gravity to the rear. The width of
the vehicle is denoted lt. The vehicle sideslip angle β is the angle between the
vehicle x-axis and the velocity vector at the center of gravity. Each wheel has
a slip angle α from the wheel x-axis to the velocity vector, which is positive in
the clockwise direction.

The vehicle is considered as a rigid body moving on a �at surface. A pair of
longitudinal and sideways wheel forces, FL and FS , acts in the contact point
between the tire and ground in each corner of the rigid body. These forces
are de�ned in the wheel frame. The aerodynamic drag is de�ned along the
longitudinal axis of the vehicle. The origin and mathematical derivation of the
forces acting on the vehicle are further discussed in Jakobsen (2010).

4.2 Nonlinear Two-Track Vehicle Model

In contrast to e.g. the simulation model discussed and implemented in Jakobsen
(2010), this thesis is concerned with control design. While a simulation model
is designed to describe every aspect of the vehicle behavior, it is too complex to
be used in control design. It is therefore necessary to �nd a model that is only
concerned with the states necessary for feedback control. A common selection
of states in vehicle control is the vehicle speed, vcg, the sideslip angle, β, and
the yaw rate, ψ̇. The reduced nonlinear vehicle model described in Kiencke and
Nielsen (2005) is presented here.

Because Newtonian mechanics are de�ned in the inertial reference frame, the
basis for developing the model starts by considering a moving vehicle in the
inertial coordinate system. By accounting for the slip angle β, the velocities in
each direction is written as

26 CHAPTER 4. VEHICLE MODELS

[
ẋin
ẏin

]
= vcg

[
cos (β + ψ)
sin (β + ψ)

]
(4.1)

where vcg is the vehicle speed at the center of gravity and ψ is the vehicle
heading. Equation (4.1) is di�erentiated to obtain the inertial accelerations[

ẍin
ÿin

]
= vcg

(
β̇ + ψ̇

)[− sin (β + ψ)
cos (β + ψ)

]
+ v̇cg

[
cos (β + ψ)
sin (β + ψ)

]
(4.2)

and the resulting expression is transformed to the body frame

[
ẍcg
ÿcg

]
= Rbin (ψ) ·

[
ẍin
ÿin

]
(4.3)

= vcg

(
β̇ + ψ̇

)[− sinβ
cosβ

]
+ v̇cg

[
cosβ
sinβ

]
(4.4)

where Rbin(ψ), the rotation matrix from body to inertial frame, is written as

Rbin (ψ) = Rinb (ψ)−1 =

[
cosψ sinψ
− sinψ cosψ

]
(4.5)

According to Newton's second law, the equations for horizontal motion are writ-
ten as

vcg

(
β̇ + ψ̇

)[− sinβ
cosβ

]
+ v̇cg

[
cosβ
sinβ

]
=

1

mcg
·
[
FX
FY

]
(4.6)

where FX and FY is the sum of forces in the body frame, acting in the longitudi-
nal and lateral direction, respectively. The two equations in (4.6) is rearranged
to solve for the vehicle acceleration and side slip velocity

v̇cg =
1

mcg cosβ
· FX + vcg

(
β̇ + ψ̇

)
tanβ (4.7)

β̇ =
1

mcgvcg cosβ
(FY −mcg v̇cg sinβ)− ψ̇ (4.8)

and the coupling between them is eliminated by substitution of the other

4.2. NONLINEAR TWO-TRACK VEHICLE MODEL 27

v̇cg =
cosβ

mcg
FX +

sinβ

mcg
FY (4.9)

β̇ = − sinβ

mcgvcg
FX +

cosβ

mcgvcg
FY − ψ̇ (4.10)

As discussed in 4.1, the forces acting in the horizontal plane consists of

[
FX
FY

]
=

[
Fx,FL + Fx,FR + Fx,RL + Fx,RR + Fx,wind

Fy,FL + Fy,FR + Fy,RL + Fy,RR

]
(4.11)

where Fx,ij and Fy,ij are the wheel forces and Fx,wind is the aerodynamic drag

Fx,wind = −1

2
cair,xAfrontρairv

2
cg (4.12)

The wheel forces acts in the wheel frame. For the front wheels this frame is
rotated by the steering angle δ from the body frame. The expressions for the
transformed wheel forces acting in the longitudinal direction of the vehicle is
written as

Fx,FL = FL,FL cos δ − FS,FL sin δ (4.13)

Fx,FR = FL,FR cos δ − FS,FR sin δ (4.14)

Fx,RL = FL,RL (4.15)

Fx,RR = FL,RR (4.16)

and the wheel forces in the lateral direction

Fy,FL = FS,FL cos δ + FL,FL sin δ (4.17)

Fy,FR = FS,FR cos δ + FL,FR sin δ (4.18)

Fy,RL = FS,RL (4.19)

Fy,RR = FS,RR (4.20)

The longitudinal wheel forces can be controlled by the driving torque from the
engine and the breaks and therefore considered as the control input. Only the

28 CHAPTER 4. VEHICLE MODELS

lateral wheel forces are then undecided. These forces can be approximated by
assuming a linear relationship between the wheel slip angle α and the resulting
force. The wheel slip angle is found from the geometrical relationship between
the steering angle, vehicle sideslip and rotational velocity.

FS,FL = cFL · αFL = cFL ·

(
δ − β − lf ψ̇

vcg

)
(4.21)

FS,FR = cFR · αFR = cFR ·

(
δ − β − lf ψ̇

vcg

)
(4.22)

FS,RL = cRL · αRL = cRL ·

(
−β +

lrψ̇

vcg

)
(4.23)

FS,RR = cRR · αRR = cRR ·

(
−β +

lrψ̇

vcg

)
(4.24)

As described in Jakobsen (2010), the force coe�cient cij can be found as the
gradient of the friction curve evaluated at zero slip. This, however, requires
knowledge of the conditions at the road surface. To avoid this, Kececi and
Tao (2006) suggests that the force coe�cient can instead be described by a tire
constant and the friction parameter which then can be adapted by an online
parameter estimation scheme.

cij = cµij (4.25)

The yawing moment is described in Jakobsen (2010) as

Izψ̈ = (Fy,FR + Fy,FL) · lf − (Fy,RR + Fy,RL) · lr

+(Fx,RR − Fx,RL) · lt
2

+ (Fx,FR − Fx,FL) · lt
2

(4.26)

where lf is the distance from center of gravity to the front axle, lr is the distance
from center of gravity to the rear axle and lt is the wheel tread. Equations (4.9),
(4.10) and (4.26) forms the basis for the vehicle model. Inserting the expressions
for the wheel forces completes the nonlinear two-track vehicle model:

ẋ =

 v̇cg
β̇

ψ̈

 =

 f1(x,u)
f2(x,u)
f3(x,u)

 (4.27)

4.2. NONLINEAR TWO-TRACK VEHICLE MODEL 29

with the state and input vector

x =

 vcg
β

ψ̇

 , u =

FL,FL
FL,FR
FL,RL
FL,RR
δ

 (4.28)

where the full expressions for the nonlinear functions f1(x,u), f2(x,u) and
f3(x,u) are

f1(x,u) =
1

mcg
{(FL,FL + FL,FR) · cos (δ − β)

− (cFL + cFR) ·

(
δ − β − lf ψ̇

vcg

)
· sin (δ − β)

+

(
FL,RL + FL,RR −

1

2
cair,xAfrontρairv

2
cg

)
· cosβ

+ (cRL + cRR) ·

(
−β +

lrψ̇

vcg

)
· sinβ

}
(4.29)

f2(x,u) =
1

mcgvcg

{
(cFL + cFR) ·

(
δ − β − lf · ψ̇

vcg

)
· cos (δ − β)

+ (FL,FL + FL,FR) · sin (δ − β)

−
(
FL,RL + FL,RR −

1

2
cair,xAfrontρairv

2
cg

)
· sinβ

+ (cRL + cRR) ·

(
−β +

lr · ψ̇
vcg

)
cosβ

}
− ψ̇ (4.30)

30 CHAPTER 4. VEHICLE MODELS

f3(x,u) =
1

Iz
{lf · (FL,FL + FL,FR) · sin δ

+lf · (cFL + cFR) ·

(
δ − β − lf ψ̇

vcg

)
· cos δ

+
lt
2
· (FL,FR − FL,FL) · cos δ

− lt
2
· (cFR − cFL) ·

(
δ − β − lf ψ̇

vcg

)
· sin δ

−lr · (cRL + cRR) ·

(
−β +

lrψ̇

vcg

)

+
lt
2
· (FL,RR − FL,RL)

}
(4.31)

4.3 Linearized Vehicle Model

Because of the many mathematical tools available for linear systems, valuable
insight into the behavior of a non-linear system around an operating point can
often be investigated by the linear approximation in the point. The nonlinear
model (4.27) is linearized using �rst order Taylor series expansion

ẋ = f(x0,u0) +
∂f(x,u)

∂x
∆x+

∂f(x,u)

∂u
∆u (4.32)

De�ning the perturbation

x = x0 + ∆x (4.33)

the resulting linear system takes the form

∆ẋ = A∆x+B∆u (4.34)

where the matrices A and B are given as

4.3. LINEARIZED VEHICLE MODEL 31

A =

∂v̇cg
∂vcg

∂v̇cg
∂β

∂v̇cg
∂ψ̇

∂β̇
∂vcg

∂β̇
∂β

∂β̇

∂ψ̇
∂ψ̈
∂vcg

∂ψ̈
∂β

∂ψ̈

∂ψ̇

 (4.35)

B =

∂v̇cg

∂FL,FL

∂v̇cg
∂FL,FR

∂v̇cg
∂FL,RL

∂v̇cg
∂FL,RR

∂v̇cg
∂δ

∂β̇
∂FL,FL

∂β̇
∂FL,FR

∂β̇
∂FL,RL

∂β̇
∂FL,RR

∂β̇
∂δ

∂ψ̈
∂FL,FL

∂ψ̈
∂FL,FR

∂ψ̈
∂FL,RL

∂ψ̈
∂FL,RR

∂ψ̈
∂δ

 (4.36)

The equations for each element in these matrices are found in appendix A.

32 CHAPTER 4. VEHICLE MODELS

Chapter 5

The LocalBug Simulator

The LocalBug simulator implemented in Jakobsen (2010) is used to simulate
the controller developed in chapter 6. The simulator individually calculates the
forces at in the ground-tire interface for each wheel, and drag forces acting on
the vehicle chassis. Computation of the wheel forces is based on the friction
model presented in Kiencke and Nielsen (2005). The advantage of the friction
model is that it does not require tire speci�c data which may be hard to obtain.
While the simulator showed good results, some elements were not su�ciently
explored. The following chapter gives improvements to the simulation model
and provides veri�cation of the accuracy of the simulator against logged data.

5.1 Status of the LocalBug Simulator

Some possible shortcomings in the simulator were mentioned in Jakobsen (2010).
Among these were

• The motor model was only approximated by a transfer function. Since the
motor torque is not constant when the vehicle is subject to various loads,
the simulator should include a dc motor model.

• LocalBug can be con�gured as front, rear or four wheel drive, in addition to
enabling or disabling di�erential lock on each axle. The simulator should
be able to re�ect the various settings of LocalBug.

33

34 CHAPTER 5. THE LOCALBUG SIMULATOR

• The simulation outputs are the real vehicle states. Since noise will be
present in any practical implementation, the simulator should include
noise on the output variables.

• The simulator was not veri�ed against real-life data and no measure of
the �delity of the simulator has been performed.

These drawbacks are discussed and implemented in this chapter. In addition,
some of the vehicle parameters that previously were estimated, have been mea-
sured. This includes the vehicle moment of inertia in yaw and the wheel moment
of inertia around the rolling axis.

5.2 Motor and Driveline Model

The simpli�ed motor and driveline model has been replaced by a dc motor
model. The assumptions of a frictionless and rigid driveline from Jakobsen
(2010) are also taken here.

The di�erential equations for a dc motor are (Egeland and Gravdahl 2002)

La
dia
dt

= −Raia − kEωm + ua (5.1)

Imω̇m = ktia − TL (5.2)

An explanation of the notation is given in table 5.1.

Table 5.1: Notation used in the dc motor equations.
Symbol Description

ia Armature current [A]
ua Armature voltage [V]
La Armature inductance [H]
Ra Armature resistance [Ω]
kE Back EMF constant [kgm2/s]
ωm Rotational velocity of the motor shaft [rad/s]
Im Inertia of the motor armature [kgm2]
kt Torque constant [Nm/A]
TL Load torque [Nm]

5.3. WHEEL DRIVE CONFIGURATION 35

Table 5.2: Estimated values for the DC motor parameters.
Coe�cient Value

La 0.001
Ra 0.8
kt 0.17
ke 0.17

Equation (5.1) is modeled in the DC Motor model -block, with voltage ua as the
input and torque ktia as the output. The implementation of (5.2) is further
discussed in section 5.3.

Assuming the Flux Torque 2200kv motor installed in LocalBug has a voltage
constant kv = 2200 rpm/v as implied in the name, the torque and back EMF
constants, kt and kE , can be calculated. First, the value is converted to SI-units

kv =
2200 rpmv
60s · 2π

= 5.84
rad
s

v
(5.3)

The relationship between the torque and back EMF constant, and the voltage
constant is given as

kt = kE =
1

kv
= 0.17 (5.4)

The remaining coe�cients were estimated. Some tuning was performed to ad-
just the simulation to achieve a reasonable acceleration and a top speed of
approximately 100 km/t, according to the speci�cation from the manufacturer
(HPI-Racing n.d.). Because the real motor constants are unknown, only an
approximation that �ts the test data could be found. A thorough testing of the
motor itself could be conducted to more accurately determine these parameters.
Figure 5.1 shows the response of the dc motor model to a step in throttle. The
estimated values for the motor coe�cients are listed in table 5.2.

5.3 Wheel Drive Con�guration

The LocalBug simulator has been modi�ed to make it possible to select front
wheel drive, rear wheel drive or four wheel drive from the simulation settings
�le. In addition, di�erential locking can be enabled or disabled for all drive

36 CHAPTER 5. THE LOCALBUG SIMULATOR

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Time [s]

T
or

qu
e

[N
m

]

Motor Torque

 Motor Torque

0 2 4 6 8 10 12 14 16 18 20
2

3

4

5

V
el

oc
ity

 [m
/s

]

Time [s]

Throttle and Velocity

0 2 4 6 8 10 12 14 16 18 20
140

145

150

155

V
al

ue
 [0

−
25

4]

Vehicle speed
Throttle

Figure 5.1: Simulation results showing the produced motor torque resulting
from a step in throttle.

5.3. WHEEL DRIVE CONFIGURATION 37

con�gurations. The di�erential allows two wheels on the same axle to rotate
with di�erent speeds to avoid unnecessary wear and tear of the tires. This
occurs most commonly in curves when the wheels on the outer side has a longer
distance to travel, and instead of being dragged sideways are allowed to rotate
slightly faster than the inner wheel.

The following equations are based on the assumptions of a frictionless and
rigid driveline. Remembering the torque balance for each wheel is expressed
as (Kiencke and Nielsen 2005)

Iwω̇w = Tdrive − Tbreak − reffFfric,x (5.5)

where Tdrive is the torque from the motor and reffFfric,x is the torque resulting
from the friction forces acting between the road surface and the tires. Tbreak
is the breaking torque which is always zero, as there are no dedicated breaks
available on LocalBug.

Without losses in the driveline, the load on the motor is equal to the driving
torque in (5.5). Solving for the driving torque and substituting (5.5) into (5.2)
gives the torque balance for the combined system consisting of motor and wheel

Imω̇m + Iwω̇w = Tdrive − reffFfric,x (5.6)

Since the driveline is rigid it follows that ωm = ωw, which gives

(Im + Iw) ω̇w = Tdrive − reffFfric,x (5.7)

In the case of an open di�erential con�guration where the wheel speeds are
allowed to di�er, the motor speed is calculated as the average of the angular
velocity of the driving wheels. This is justi�ed since the construction of the
di�erential symmetrically distributes the rotational velocities to each wheel on
the same axle.

Open di�erential With an open di�erential, the driving torque is evenly
distributed to all driving wheels. Accounting for the moment of inertia of the
motor, as discussed in section 5.2, the torque balance for each driving wheel
becomes (

Iw +
Im
n

)
ω̇w =

Tdrive
n
− reffFfric,x (5.8)

38 CHAPTER 5. THE LOCALBUG SIMULATOR

where n is the number of driving wheels. For the free rolling tires, the only
torque present arises from the friction forces acting at the wheel-ground contact
point

Iwω̇w = −reffFfric,x (5.9)

A problem that often arises when driving on a slippery surface is that one
wheel is driven onto an ice patch and looses traction, while the other wheel is
still able to provide some driving force. Due to the mechanical construction
of the di�erential, the maximum driving torque is limited to the torque the
wheel with the least traction is able to transfer to the ground. This model does
not take into account the e�ects experienced when one wheel is spinning while
the other retains traction. Because the simulator is not capable of simulating
di�erent road conditions for each wheel, this simpli�ed model is still considered
su�cient.

Locked di�erential When the di�erential lock is enabled, the rotational
speeds for the wheels connected to the same axle are forced equal. In this
case, the torque balance for each axle is expressed as(

2Iw +
Im
m

)
ω̇w =

Tdrive
m

− reff (Ffric,x,left + Ffric,x,right) (5.10)

where m is the number of axles connected to the motor. The free rolling tires
are modeled as in (5.9) where the driving torque is set to zero.
Equations (5.8), (5.9) and (5.10) are implemented in theWheel angular velocity-
function block which calculates the wheel rotational velocities. A simulation
where LocalBug is accelerated and simultaneously is turning to the left has
been performed. The simulation is conducted with rear wheel drive, and one
can clearly see that the wheels on each side of the vehicle are rolling with
approximately the same speed. The driving wheels have a slightly larger velocity
than the free rolling front tires, which is to be expected as these tires provide
the driving force required to overcome air drag and rolling resistance. The
simulation result is seen in �gures 5.2 and 5.3.

5.4 Measurement Noise Model

The di�erence between the exact motion of LocalBug and the measured variables
is due to errors in the measurements and noise. Accurately modeling the noise in

5.4. MEASUREMENT NOISE MODEL 39

0 2 4 6 8 10 12 14 16 18 20
10

15

20

25

30

35

40

45

50

55

Time [s]

W
he

el
 a

ng
ul

ar
 v

el
oc

ity
 [r

ad
/s

]

Wheel angular veolcity

Front left
Front right
Rear left
Rear right

Figure 5.2: Simulation of driving in a curve with open di�erential. The wheels
on each side of the vehicle are rolling with approximately the same speed. The
rear wheels, which are connected to the motor, have a slightly larger angular
velocity than the free rolling front tires. This occurs because the rear wheels
are producing lateral force to oppose air drag and rolling resistance.

0 2 4 6 8 10 12 14 16 18 20
10

15

20

25

30

35

40

45

50

Time [s]

W
he

el
 a

ng
ul

ar
 v

el
oc

ity
 [r

ad
/s

]

Wheel angular veolcity

Front left
Front right
Rear left
Rear right

Figure 5.3: Simulation of driving in a curve with locked di�erential. Notice
that both the rear wheels are forced to drive with the same speed while the free
rolling front wheels have di�erent rotational velocities.

40 CHAPTER 5. THE LOCALBUG SIMULATOR

Table 5.3: Xsens MTi-G Performance Speci�cation. (Xsens 2010)
Roll Pitch Yaw Position

Static accuracy < 0.5 deg < 0.5 deg < 1 deg
2.5 m CEP

Dynamic accuracy 1 deg RMS 1 deg RMS 1 deg RMS

Table 5.4: Kalman �lter operating scenarios.
Setting Active sensors

General Purpose IMU, GPS, Barometer
Aerospace IMU, GPS, Magnetometer, Barometer
Automotive IMU, GPS, Barometer (incl. non-holonomic constraint)
Marine IMU, GPS, Magnetometer

SIMULINK was considered di�cult, since real world noise is not perfect white
noise. It was therefore decided to record a real data sample from the sensor
when at rest. The noise series will then be added to the perfect output from the
SIMULINK model to simulate realistic sensor output. A real data series will
also capture non-parametric uncertainties in the measurements.

The Xsens MTi-G sensor is an integrated GPS and Micro Electro-Mechanical
System (MEMS) IMU and consists of three accelerometers and gyroscopes for
three dimensional sensing, a magnetometer and a static pressure sensor. An
integrated Kalman �lter provides position, orientation and velocity estimates.
The performance of the Xsens MTi-G is stated in table 5.3.

The on-board Kalman �lter can be con�gured to one of the environments listed
in table 5.4. The scenarios decide which sensors are used as inputs to the
Kalman �lter. The MTi-G is accompanied by MT Manager, a software tool for
calibration, con�guration and logging of data.

5.4.1 Data Recording

The Xsens MTi-G unit was mounted inside an Audi A4 with the GPS antenna
�xed on top of the roof, as shown in �gure 5.4. To record as accurate data
as possible, the magnetometer was calibrated using the MT Manager software.
As the automotive scenario setting is based on a non-holonomic assumption,
the integrated Kalman �lter was con�gured to the aerospace setting instead.
According to the manual, the Kalman �lter requires minimum one minute to

5.5. MEASUREMENT OF WHEEL MOMENT OF INERTIA 41

Figure 5.4: Test setup for logging of IMU data.

initialize and the estimates continues to improve up to 15 minutes after power-
on (Xsens 2010). To proper initialize the �lter, a longer drive was conducted
before data were recorded.

After the Kalman �lter was initialized, a data series was logged while standing
still using the MT Manager software provided with the sensor. The data were
then exported to Matlab. Bias on the measurements were removed in Matlab
by subtracting the average o�set from zero to only capture the high frequency
noise, and the position were converted from longitude-latitude-altitude to the
local tangent plane coordinate system that is compatible with the simulator
output.

A Matlab �le containing noise data for each output variable was created and is
added to the SIMULINK signals during simulations.

5.5 Measurement of Wheel Moment of Inertia

The moment of inertia (MoI) of the wheel is considered important because
it a�ects the acceleration of the wheel, subject to a given motor torque. The

42 CHAPTER 5. THE LOCALBUG SIMULATOR

35,7°

Figure 5.5: Principle sketch of the compound pendulum.

acceleration is integrated to rotational velocity and then used to calculate wheel
slip, which, in turn, is the basis for calculation of the friction forces.

A description of the method used to measure the moment of inertia of the wheels
is presented below, followed by the experimental setup and test results.

The Compound Pendulum The compound pendulum is similar to a simple
pendulum, except that there are no restrictions on the mass distribution. In a
simple pendulum, the mass lies entirely in the bob and the string is massless,
while the compound pendulum can consist of any arbitrary object. Given a
small o�set, it will oscillate freely with a constant period as a simple harmonic
oscillator. By measuring the period of the system, the moment of inertia about
the pivot point can be found.

The well-known torque balance for the pendulum is

IM θ̈ +mgl sin θ = 0 (5.11)

where IM is the measured moment of inertia, m the object mass, g the gravi-
tational acceleration, l the distance between the pivot point and the center of
percussion, which is assumed to be close to the center of mass, and θ the angle
between the line connecting the pivot point and center of percussion and the
vertical. The parallel axis theorem can be used to calculate the moment of
inertia about the center of gravity, Iy:

IM = ICG +ml2 (5.12)

5.5. MEASUREMENT OF WHEEL MOMENT OF INERTIA 43

Table 5.5: Measured and estimated tire data.
Tire Mass Radius Length Expected MoI

Tarmac Buster 0.400 kg 0.085 m 0.06 m 0.0014− 0.0022 kgm2

Badlands Pro-line 0.495 kg 0.0875 m 0.06 m 0.0019− 0.0028 kgm2

Terrapin 0.250 kg 0.0875 m 0.04 m 0.0011− 0.0014 kgm2

Using small angle approximation sin θ = θ, the system takes the form

θ̈ + ω2
nθ = 0 (5.13)

The period of oscillation is

t =
2π

ωn
= 2π

√
IM
mgl

(5.14)

Solving for the moment of inertia and using the parallel axis theorem gives

ICG =

(
t

2π

)2

mgl −ml2 (5.15)

5.5.1 Experimental Setup

A screwdriver was fastened in between two shelf sections and the test object was
hung upon the screwdriver. The distance from the pivot point to the center of
the wheel was measured. The measured length of the pendulum, and the wheel
mass and radius, taken from Jakobsen (2010), is given in table 5.5.

Three sets of wheels are available for LocalBug, the Tarmac Buster, Badlands
Pro-line and Terrapin tires. The period of oscillation were measured, and the
moment of inertia calculated, for each set of tires.

5.5.2 Test Result

After giving the wheel an initial oscillation, thirty oscillations were timed and
the average period calculated. The experiment was repeated three times for
each tire. Equation (5.15) was used to calculate the moments of inertia:

44 CHAPTER 5. THE LOCALBUG SIMULATOR

Figure 5.6: Construction of the Tarmac Buster wheel.

Figure 5.7: Experimental setup for measurement of the wheel moment of inertia.

5.5. MEASUREMENT OF WHEEL MOMENT OF INERTIA 45

Table 5.6: Experimental results for the wheel's moment of inertia.
Tire Trial Oscillations Time Average time

Tarmac Buster 1 30 21.6 s 0.720 s
2 30 21.4 s 0.713 s
3 30 21.5 s 0.717 s

Average 0.717 s

Badlands Pro-line 1 30 21.6 s 0.720 s
2 30 21.7 s 0.723 s
3 30 21.7 s 0.723 s

Average 0.722 s

Terrapin 1 30 22.9 s 0.763 s
2 30 22.9 s 0.763 s
3 30 22.7 s 0.757 s

Average 0.761 s

Itarmac = 0.0016 kgm2 (5.16)

Ibadlands = 0.0021 kgm2 (5.17)

Iterrapin = 0.0012 kgm2 (5.18)

Considering the wheel as a cylinder, the moment of inertia can be calculated as
(Haugan 1992)

Icylinder =
mr2

2
(5.19)

where r is the radius of the cylinder. Observing the construction of the wheels
(see �gure 5.6), it is clear that most of the mass is located in the rim and the
tread. Thus, a hollow cylinder might be a more appropriate approximation:

Ihollow cylinder =
m(r2outer + r2inner)

2
(5.20)

where rinner and router is the inner and outer radius, respectively. However,
the weight of the wheel hub is uncertain, and can very well be signi�cant. It is
therefore expected that the wheel moment of inertia lies in between the minimum
and maximum value for the two approximations, given in table 5.5. Hence, the

46 CHAPTER 5. THE LOCALBUG SIMULATOR

Figure 5.8: Principle sketch of the torsion pendulum.

measured values seem very reasonable since the moment of inertia for all tires
are within the expected range.

5.6 Measurement of Vehicle Moment of Inertia

The moment of inertia around the vehicle z-axis is the basic physical quantity
determining the yawing motion from a set of friction forces. As seen in (4.10),
the yaw rate has a signi�cant in�uence on the sideslip dynamics and is therefore
vital for producing accurate simulations. The formula currently used for calcu-
lating the moment of inertia in yaw is that of a rectangular box which assumes
uniform mass distribution. Since the steering servo and engine is located at the
very front and rear of LocalBug, the moment of inertia is assumed to be slightly
larger than the current estimate1 of

Iz =
m× (l2 + b2)

12
=

7× (0.562 + 0.382)

12
= 0.2672 kgm2 (5.21)

Because pitch and roll dynamics is ignored in the simulator, the moment of
inertia around these axes were not measured. In the following sections the test
method is explained, followed by the experimental setup and test results.

1The values for mass, length and width of LocalBug is taken from Jakobsen (2010)

5.6. MEASUREMENT OF VEHICLE MOMENT OF INERTIA 47

The Torsion Pendulum This method for calculating the moment of inertia
is described by Kooijman (2006). The torsion pendulum is a vertical steel rod
suspended in the ceiling and connected in the lower end to the object to be
measured using a sti� coupling, see illustration in �gure 5.8. By inducing an
oscillatory motion about the longitudinal axis of the rod, the system will oscillate
with a speci�c frequency depending on the moment of inertia of the connected
object and the torsional rigidity of the rod. Timing the period of the system
makes it possible to calculate the unknown moment of inertia.
Assuming that the torque resulting from the rod being twisted is linear with
respect to the displaced angle, one can write

Trod =
GIP
L

θ (5.22)

where G is the shear modulus of elasticity , IP is polar moment of inertia and
L the length of the rod. The torque balance for the complete system is

IM θ̈ + Trod = 0 (5.23)

where IM is the moment of inertia to be measured. Substituting (5.22) into
(5.23) gives

θ̈ +
GIP
IML

θ = 0 (5.24)

θ̈ + ω2
nθ = 0 (5.25)

which is a simple harmonic oscillator with natural frequency

ωn =

√
GIP
IML

(5.26)

The period for one oscillation is then

t =
2π

ωn
= 2π

√
IML

GIP
(5.27)

Rearranging the last equation gives

IM =

(
t

2π

)2
GIP
L

(5.28)

48 CHAPTER 5. THE LOCALBUG SIMULATOR

Figure 5.9: Preparing LocalBug for measurement of the moment of inertia. The
steel bar is �tted in the LocalBug frame.

For steel, G ≈ 77.5× 109Pa (Haugan 1992), and the value for IP can be calcu-
lated as

IP =
πd4

32
(5.29)

where d is the diameter of the rod.

5.6.1 Experimental Setup

The measurement apparatus consisted of a 0.696 m long and 3 mm thick steel
rod clamped to a sheet in the upper end, and a bracket to fasten the object to
be measured in the lower end. The top end was fastened to the roof beams in
Forsøkshallen.

A steel bar was placed abeam the vehicle frame in the center of gravity in
the XY-plane to avoid bending the rod during the test, and a small piece of
Divinycell was cut to act as a stando� to stabilize the bar. The frame, stando�
and steel bar was taped together to prevent it from slip out of position (�gure
5.9). LocalBug was then bolted to the torsion rod as shown in �gure 5.10.
During the test, LocalBug was equipped with wheels and batteries, but without
the instrumentation as this came in con�ict with the mounting of the rod to the
steel bar.

5.6. MEASUREMENT OF VEHICLE MOMENT OF INERTIA 49

Figure 5.10: Experimental setup for measurement of the moment of inertia
around the vehicle z-axis.

50 CHAPTER 5. THE LOCALBUG SIMULATOR

5.6.2 Calibration of testing apparatus

Divinycell is a lightweight material, and close to the center of gravity it is
assumed to have negligible in�uence on the moment of inertia. The bracket,
however, is heavier, and the rod may have a di�erent shear modulus of elasticity
than the nominal value for steel. A calibration test was performed on the testing
apparatus by Ånnestad (2010) to eliminate these factors. Equation (5.28) can
be rearranged into

IM

(
2π

t

)2

=
GIP
L

= K (5.30)

which enables the calculation of the rod spring constant K. Using the nominal
values for steel, the spring constant was calculated to be Knominal = 0.8855.

A thin metal rod of mass m = 2.108 kg and length l = 0.9515 m was used for
calibration. The period of oscillation was found to be t = 2.695 s (Ånnestad
2010). Using the formula for moment of inertia for a rod, IM = 0.1590 kgm2.
The calibration resulted in

Kcalibrated = 0.8645 (5.31)

which was used for the test. The nominal and calibrated values only di�er with
2.5 percent, which indicates that the assumption of a linear relationship between
torque and displaced angle holds quite well.

5.6.3 Test Result

LocalBug was given an impulse to start oscillating in the vertical plane. The
time it took for a number of oscillations was recorded and the test repeated �ve
times to eliminate timing errors. The test results are found in table (5.7).

Using the data obtained, the mass moment of inertia in yaw was calculated as

Iz =

(
4.55

2π

)2

× 0.8648 = 0.4535 kgm2 (5.32)

The result shows that the moment of inertia is almost twice the estimate in
(5.21).

5.7. USING THE LOCALBUG SIMULATOR 51

Table 5.7: Experimental results for LocalBug's moment of inertia around the
z-axis.

Trial Number of Oscillations Time [s] Average time [s]

1 10 45.5 4.55
2 10 45.4 4.54
3 5 22.7 4.54
4 10 45.6 4.56
5 5 22.9 4.58

Average 4.55

Xsens MTi-G
(NWU)

Motion

Acc_xyz

Gyro_pqr (rad/s)

Angles (deg)

GPS

velocity_xyz

simout_time

LocalBug

Throttle command

Steering command

Motion

Guidance System

GPS

Angles

v_desired

r_ref

Control System

v_desired

r_ref

velocity_xyz

angles

gyro_pqr

Throttle command

Steering command

Clock

Figure 5.11: Overview of the LocalBug simulator with noise model, guidance
system and control system.

52 CHAPTER 5. THE LOCALBUG SIMULATOR

5.7 Using the LocalBug Simulator

The LocalBug simulator is located in the �le �carsim.mdl�. Figure 5.11 il-
lustrates the contents of the simulator model �le. The inputs are steering and
throttle commands in the range between 0-254, which corresponds to the autopi-
lot interface described in Wigestrand et al. (2010b). The outputs are position,
heading, yaw rate, inertial velocities and accelerations given according to the
right handed north-west-up convention.

All simulator settings are located in the �le �init_sim.m�. This includes simu-
lation settings such as road condition and noise, initial conditions and vehicle
and motor parameters. When noise is enabled, the noise data must be stored
in the same directory as the simulator. These �les are named �noise_acc.mat�,
�noise_ang.mat�, �noise_gyr.mat�, �noise_pos.mat� and �noise_vel.mat�.

The simulator stores many variables to the workspace during simulation. All
the variable names start with �simout_� followed by the name of the variable.

Two �les are created to plot the simulation results. The �rst �le, �show_movie.m�,
shows a movie-like motion of the vehicle during the simulation. The second �le,
�plot_�gures.m�, creates an overview of the simulation, which is similar to the
movie. In addition, plots of velocities, accelerations, wheel slip and actuator
inputs are created. It is possible to save the movie as an .mpg �le and the �g-
ures as .�g and .eps �les by executing the �save_movie.m� and �save_�gures.m�
�les.

5.8 Validation of the Simulator

To validate the simulator, a series of three simulations is compared to log data.
The simulator is initialized with the position, velocity and orientation from the
�rst measurement in each test case. Since the actuator commands were logged,
the exact same inputs are given to the simulator. The simulator parameters
were tuned to increase the correspondence between simulation and raw data.
Because the objective is to test the �delity of the simulator, noise is not added
to the simulator output to simplify the validation process.

In the �rst test the longitudinal dynamics of the simulator will be examined by
using the throttle as input. Secondly, the yaw dynamics is investigated using the
steering angle as input and holding the throttle constant. Finally, the coupled
longitudinal-lateral dynamics are veri�ed by simultaneous throttle and steering
input.

5.8. VALIDATION OF THE SIMULATOR 53

Table 5.8: Tuned values for the air drag and rolling resistance coe�cients.
Coe�cient Value

Cair 1.07
Crolling 0.02

To achieve the best possible match between the simulator and real data, it was
necessary to adjust the air drag and rolling resistance coe�cients. Initially,
the simulated velocity was too high and the coe�cient values were therefore
increased. The aerodynamic drag friction coe�cient was approximated by as-
suming LocalBug is a three dimensional cube and using the drag coe�cient
provided in White (2008). The rolling resistance coe�cient was then tuned
accordingly. The values for the tuned coe�cients are given in table 5.8.

5.8.1 Raw Data

The simulator is validated against data recorded in Kongsberg in the summer
of 2010 by the summer interns. At the time of the testing, LocalBug was
con�gured with real wheel drive with open di�erential. The tests were conducted
on asphalt, which is a high friction road surface.

Since the actuator inputs are pulse width modulated servo signals, the logged
data is an integer representing the length of the high level of the pulse. At
32Mhz clock frequency and a prescale value of 64, this results in a minimum
value between 500 for 1ms, and a maximum value of 1000 for 2ms pulse width.
This number is converted into an integer between 0 and 254 to be used as input
to the simulator.

The GPS output data is given in longitude, latitude and altitude coordinates.
Because the simulator is built around a north-west-up coordinate system, the
raw data were converted using the algorithm suggested by Wenstad (2010).

There are some uncertainties present regarding the alignment of the IMU com-
pared to the vehicle body frame during the test, and the state of the source
code used for logging. This uncertainty becomes visible through some inconsis-
tencies in the data. The IMU was supposedly facing the rear of LocalBug to
accommodate the cables interfacing the IMU. This should not pose any prob-
lems as the data can be rotated to the vehicle frame. However, the sign of the
inertial velocities are not consistent with the change of position measured by
the GPS. The sign of the velocity in the y-direction was changed to make sense

54 CHAPTER 5. THE LOCALBUG SIMULATOR

of the data. In addition, the velocities are by default given in centimeters per
second. The x and y velocity seems to be scaled to meters per second, while the
z velocity is not. Thus, this correction is made before utilizing the data.

The data were imported to Matlab using the script embedded in appendix B.

5.8.2 Case 1: Straight-line Acceleration and Breaking

The �rst case is a straight-line acceleration and breaking test to verify the lon-
gitudinal dynamics of the simulator. From zero velocity, full throttle is applied.
After reaching maximum velocity, the throttle is swapped to reverse to initiate
a rapid deceleration.

The logged data shows that the velocity is drifting, especially in the lateral
direction. However, �gure 5.12 suggests that the simulated velocity tracks the
logged longitudinal velocity well. The plot shows a large initial lateral velocity
which in the simulator is quickly damped. The logged longitudinal velocity
seems to lag behind the actuator command by up to 1.5 seconds. This indicates
that the timestamp of the control signals is not synchronized with the sensor
data. At time t = 4 when the breaking begins, this is especially evident. It is
unlikely that the speed will remain constant when the throttle is reversed, as
seen in �gure 5.12. During breaking it is observed that the small steering input
at t = 4.5 is enough to cause the simulation to skid 180 degrees. This spin
causes the discrepancies in sideslip and heading at the end of the test.

Figure 5.13 shows the calculated sideslip angle. The straight driving test should
not produce any signi�cant sideslip, but the drifting velocities causes this value
to be strongly erroneous. The sideslip is calculated from the longitudinal and
lateral velocity according to (1.1), and is therefore sensitive to errors in the
velocities.

As seen in �gure 5.14, the yaw rate seems to be correlated in the two data sets,
accounting for the indicated o�set in time between logged and simulated data.
When the simulation spins around, the yaw rate and heading no longer coincides
with the logged data.

5.8. VALIDATION OF THE SIMULATOR 55

0 1 2 3 4 5 6 7
−4

−2

0

2

4

6

Time [s]

V
el

oc
ity

 [m
/s

]

Velocities

Simulated V
x

Simulated V
y

Logged V
x

Logged V
y

0 1 2 3 4 5 6 7
0

50

100

150

200

250

Time [s]

In
pu

t v
al

ue
 [0

−
25

4]

Actuator Commands

 Throttle
Steering

Figure 5.12: Velocity and actuator commands during straight-line acceleration
and breaking. It is seen that the simulated velocity in the x-direction tracks the
logged longitudinal velocity well.

1 2 3 4 5 6
−80

−60

−40

−20

0

20

Time [s]

A
ng

le
 [d

eg
re

es
]

Sideslip Angle

Simulated β
Logged β

1 2 3 4 5 6
−15

−10

−5

0

5

10

Time [s]

A
cc

el
er

at
io

n
[m

/s
ec

2]

Acceleration

Logged a
x

Logged a
y

Simulated a
x

Simulated a
y

Figure 5.13: Sideslip angle and acceleration during straight line acceleration
and breaking. The drifting velocities are causing the logged sideslip angle to be
erroneous.

56 CHAPTER 5. THE LOCALBUG SIMULATOR

1 2 3 4 5 6

20

40

60

80

100

120

Time [s]

H
ea

di
ng

 [d
eg

re
es

]

Heading

Simulated ψ
Logged ψ

1 2 3 4 5 6

−150

−100

−50

0

Time [s]

Y
aw

 r
at

e
[d

eg
re

es
/s

ec
]

Yaw Rate

Simulated yaw rate
Logged yaw rate

Figure 5.14: Heading and yaw rate during straight line acceleration and break-
ing. The yaw rates appears coherent up t = 4.5, but with a time lag between
logged and simulated data that might originate from logging issues.

5.8.3 Case 2: Slalom Steering with Constant Velocity

In the second case, the lateral dynamics of the system are investigated. This is
clearly a challenging test because of the large and rapid control inputs. The test
consists of a slalom-like maneuvering with constant velocity. From the heading
plot in 5.17 it is seen that the test can be divided in two sub-tests. The �rst
test starts at approximately t = 6 seconds when the steering inputs begin. At
time t = 17 seconds, the driver stops, turns LocalBug around and drives back
to the starting point.

In the actuator commands plot in �gure 5.15, it seems like the driver was not
able to keep constant throttle while turning. This can attributed to di�culties
in accurately controlling the joystick on the controller. Even though the logged
velocities are oscillating, the trend shows that the simulated velocities are close,
especially in the �rst half of the test.

Figure 5.16 shows the calculated sideslip angles. The logged and simulated case
shows a better match than during the �rst test. Notice the sideslip peaks in the
logged data series. This occurs when LocalBug spins around, which seems to

5.8. VALIDATION OF THE SIMULATOR 57

0 5 10 15 20 25 30
−10

−5

0

5

10

Time [s]

V
el

oc
ity

 [m
/s

]

Velocities

Simulated V
x

Simulated V
y

Logged V
x

Logged V
y

0 5 10 15 20 25 30
0

50

100

150

200

Time [s]

In
pu

t v
al

ue
 [0

−
25

4]

Actuator Commands

Throttle
Steering

Figure 5.15: Velocity and actuator commands during slalom steering. It seems
di�cult for the driver to keep the throttle �xed.

be the case at the end of the test. One can see the driver turning and throttling
simultaneously, followed by a drop in longitudinal velocity and an increase in
lateral velocity. When the velocity in longitudinal direction is zero and the
lateral velocity peaks, LocalBug is sliding sideways, halfway through the spin.
The simulator does not capture this skid, although a spin is observed at the
end when breaking. This also happened in the �rst test case and might indicate
that the simulator is not accurately reproducing reality during hard breaking.
At time t = 18 to t = 20 the large sideslip angles in the logged data series is
contributed to uncertainties in the velocities. At this time, the logged velocities
are low and noise can easily corrupt the sideslip calculation.

The simulated yaw rate is smaller in magnitude, which may indicate that the
steering servo provides a higher steering angle than the simulator for the same
input value. In between the two sets, the simulated velocity is very low at time
t = 17, hence the small change in heading compared to what is observed in the
log data. Apart from that, the simulated heading and yaw rate seems to be in
agreement with logged data, as �gure 5.17 indicates.

58 CHAPTER 5. THE LOCALBUG SIMULATOR

5 10 15 20 25 30
−200

−100

0

100

200

Time [s]

A
ng

le
 [d

eg
re

es
]

Sideslip Angle

Simulated β
Logged β

5 10 15 20 25 30

−10

−5

0

5

10

Time [s]

A
cc

el
er

at
io

n
[m

/s
ec

2]

Acceleration

Logged a
x

Logged a
y

Simulated a
x

Simulated a
y

Figure 5.16: Sideslip angle and acceleration during slalom steering.

5 10 15 20 25 30
−200

−100

0

100

200

Time [s]

H
ea

di
ng

 [d
eg

re
es

]

Heading

Simulated ψ
Logged ψ

5 10 15 20 25 30

−100

−50

0

50

100

Time [s]

Y
aw

 r
at

e
[d

eg
re

es
/s

ec
]

Yaw Rate

Simulated yaw rate
Logged yaw rate

Figure 5.17: Heading and yaw rate during slalom steering.

5.9. DISCUSSION OF RESULTS 59

5.8.4 Case 3: Constant Steering with Increasing Velocity

The �nal test is a combined lateral and longitudinal stability test where Local-
Bug drives in a constant circle with increasing velocity.

Figure 5.18 shows good correspondence between the logged and simulated ve-
locities up to time t = 25 when a combination of breaking and steering causes
the simulation model to skid. An explanation may be that the wheel slip for
the rear wheels are not modeled accurately during hard breaking. If the longi-
tudinal wheel slip is calculated too large and the friction force saturates, a loss
of stabilizing lateral force occurs.

The steering input seems to be saturated at a value of 200, which strengthens
the observations in the second test case where it is indicated that the steering
servo might be providing a steeper turn angle at a given steering command.

The simulation shows a stable sideslip angle during this test, shown in �gure
5.19, while the sideslip angle calculated from the log data is varying as a result
of the oscillating velocities. It is seen that the mean value of the logged accel-
erations are very close to the simulated values. The yaw rate and heading in
�gure 5.20 is accurately reproduced in the simulator.

5.9 Discussion of Results

Looking at the data sets, the logged velocities are not satisfactory. Because the
velocities are oscillating, and in some tests constantly changes sign, it would be
di�cult to use these data in a feedback controller. Because the measurements
are so inaccurate, one might suspect that raw data is logged and not the �ltered
data. Based on the performance speci�cation, the MTi-G should be able to
provide more accurate data. In order to acquire better measurements in the
future, one should ensure that

• The sensor is located close to the center of gravity of LocalBug and that
the sensor axes are aligned with the vehicle axes.

• The magnetometer is calibrated. The MT Manager software is capable of
performing a magnetometer tuning. This should be done after the IMU
has been placed inside LocalBug for highest accuracy.

• The �lter has had time to initialize, this can take up to 15 minutes.

60 CHAPTER 5. THE LOCALBUG SIMULATOR

0 5 10 15 20 25 30
−4

−2

0

2

4

6

Time [s]

V
el

oc
ity

 [m
/s

]

Velocities

Simulated V
x

Simulated V
y

Logged V
x

Logged V
y

0 5 10 15 20 25 30
50

100

150

200

250

Time [s]

In
pu

t v
al

ue
 [0

−
25

4]

Actuator Commands

 Throttle
Steering

Figure 5.18: Velocity and actuator commands during acceleration and steering.
The simulated longitudinal velocity is in agreement with logged data.

5 10 15 20 25
−100

−50

0

50

Time [s]

A
ng

le
 [d

eg
re

es
]

Sideslip Angle

Simulated β
Logged β

5 10 15 20 25

−10

−5

0

5

10

Time [s]

A
cc

el
er

at
io

n
[m

/s
ec

2]

Acceleration

Logged a
x

Logged a
y

Simulated a
x

Simulated a
y

Figure 5.19: Sideslip angle and acceleration during acceleration and steering.
The oscillating sideslip angle is not well suited for control design.

5.9. DISCUSSION OF RESULTS 61

5 10 15 20 25
−200

−100

0

100

200

Time [s]

H
ea

di
ng

 [d
eg

re
es

]

Heading

Simulated ψ
Logged ψ

5 10 15 20 25

−50

0

50

100

Time [s]

Y
aw

 r
at

e
[d

eg
re

es
/s

ec
]

Yaw Rate

Simulated yaw rate
Logged yaw rate

Figure 5.20: Heading and yaw rate during acceleration and steering. There is a
good correspondence between logged and simulated data.

• The area has good GPS reception and that the GPS antenna lever arm is
con�gured.

• The �ltered data are extracted and that the �lter is set up to use the
appropriate scenario.

In addition, all data available from the sensors should be logged, such as mag-
netometer and barometer data, as this can provide a good reference data for
later use.

Throughout the tests there are evidence that the logging routine is not synchro-
nized, which should be �xed in later revisions of the software.

Considering the LocalBug simulator, the results are promising as the simulator
is in good agreement with the trend in the logged velocities. The comparison
of simulated and logged yaw rate shows that the yawing motion is accurately
described in the simulator, which is important for testing of a drifting controller.
However, log data from a drifting maneuver would have been informative re-
garding the �delity of the simulator in such a scenario.

62 CHAPTER 5. THE LOCALBUG SIMULATOR

It was discovered that the simulation results are not accurate during hard break-
ing, as this may destabilize the vehicle. Since no veri�cation of the motor model
itself has been performed, determination of the correct motor coe�cients could
improve the simulation model. In addition, it should be checked that the trans-
mitter and servo is con�gured such that the full range of actuator values are
used to describe steering angle de�ection.

Originally, it was unknown whether the friction model and parameters developed
for automobiles would scale to a model car, which does not necessarily have the
same size, weight and wheel proportions. However, the performed comparison
of logged and simulated test cases suggests that the simulation model largely is
in agreement with the test data.

Chapter 6

Nonlinear Controller Design

In rally and dirt track racing, drifting has proven its ability to negotiate cor-
ners at high speeds on low friction surfaces (Abdulrahim 2006). Optimization
of a sequence of control inputs have shown that the solutions to minimum time
cornering on low friction surfaces (Velenis et al. 2007) are indeed drift-like ma-
neuvers. These are situations in which conventional driving would normally
cause loss of traction and understeer. Enabling a control system to reproduce
the actions of a professional driver is an intriguing challenge which can help
to improve automotive safety systems beyond the capabilities of such systems
today. However, a skilled driver makes a series of rapid maneuvers that is not
straight forwardly implemented in a control loop.

Recent research have discovered that when the handling limits of the vehicle in
the linear region has been exceeded, the vehicle is still controllable (Hindiyeh
and Gerdes 2010). In Voser et al. (2010), unstable equilibria corresponding to
drifting maneuvers are identi�ed as saddle points. Since no trajectories converge
to these points, continuous control e�ort is required to keep the vehicle in such
a drifting condition.

Because of the nonlinear vehicle dynamics, linear theory is not able to describe
the e�ects resulting from high sideslip angles. One way to approach the prob-
lem is by gain scheduling. This approach includes the design of many linear
controllers linearized at di�erent operating points throughout the state space.
As the vehicle sideslip angle increases, the vehicle response to actuator com-
mands changes, and a scheduling of the controllers ensures that the system is
stabilized. This method was �rst used on �ghter aircrafts in the 1950s (Iaon-

63

64 CHAPTER 6. NONLINEAR CONTROLLER DESIGN

nou and Sun 1996). However, it introduces other problems, such as weighting
and interpolation of the di�erent controllers to avoid sudden steps in actuator
inputs.

Another alternative is to use feedback linearization to cancel the nonlinearities
of the system, which is the approach taken in this thesis. Because of the severe
nonlinearities inherent in the vehicle dynamics at high sideslip angles, a model
which describes the e�ect of control inputs according to the current state of the
system is required. The nonlinear vehicle model presented in chapter 4.2 will
be used as the basis for the control design.

6.1 The Control Objective

In current automotive control systems, which aim at stabilizing the vehicle in
its linear region, it is important to control the vehicle heading so it corresponds
to the drivers intention. This leads to predictable vehicle behavior, but does not
take full advantage of the available traction. The motivation behind the feedback
linearization controller is to increase the cornering ability of the vehicle by the
use of drifting techniques.

The main idea behind the controller design is to use the throttle and steering
input to adjust the sideslip angle such that the desired yaw rate is achieved.
Normally, the throttle controls velocity and steering regulates vehicle heading.
As the sideslip angle increases, the nonlinear behavior of the system becomes
apparent. An increase in throttle, and the subsequent increase in longitudinal
force, consumes the available traction at the rear wheels. When the wheel force
saturates, very little lateral force is produced. The result is skidding of the rear
end of the vehicle, which will cause a large yaw rate and sideslip angle. Hence,
throttle is very well suited to control the sideslip motion in this state. High
sideslip angles therefore introduce a di�erent dynamic response of the actuator
inputs which have to be re�ected in the control design.

Figure 6.1 illustrates three di�erent equilibrium points for the vehicle. The
vehicle approaches the corner in a straight line, as illustrated in situation a.
The forces acting on the vehicle in this con�guration is the aerodynamic drag
force and the rolling resistance. Since the vehicle is traveling at constant speed,
a small longitudinal force, shown with red arrows at the wheels, is required to
counteract the resistive forces.

In a steady state turn, which corresponds to situation b, the vehicle follows a
circular trajectory. This motion requires a force acting in the center of mass

6.1. THE CONTROL OBJECTIVE 65

β

x

y

F

v

β

x

y

F

v

x

y

F

v

A)

B)

C)

Figure 6.1: Illustration of the vehicle at three equilibrium points.

66 CHAPTER 6. NONLINEAR CONTROLLER DESIGN

of the vehicle to be directed towards the center of the turn. The lateral force
that accomplishes this is produced by the front wheels, which causes both a
lateral force and a yawing moment around the z-axis of the vehicle. The vehicle
velocity at the center of gravity is tangential to the circular path. Due to the
fact that the vehicle is not a mass point, but rather an object of some size,
and also rotating with respect to an inertial frame, the heading of the vehicle
is not coincidental with the direction of speed at the center of gravity. This is
the sideslip angle β, which is usually insigni�cant. When the vehicle turns, the
rear wheels experiences small slip angles and contribute to stabilize the yawing
moment.

It is in this stage it is possible to saturate the rear wheel longitudinal force
to destabilize the vehicle. Situation c refers to a drifting equilibrium where
coupling of the longitudinal and lateral forces keeps the vehicle in a turn with
a large sideslip angle. This cornering technique is also called trail-breaking. A
professional driver would break to shift the weight of the vehicle to the front
axle. As the driver steers the vehicle into the turn, the rear wheels looses grip.
Counter steer is applied as necessary to balance the front and rear wheel forces
to control the skid.

Inspired by rally driving, the control objective is to reach and stabilize the
vehicle at this equilibrium point. Contrary to the dynamic surface controller
in Hindiyeh and Gerdes (2010), which was designed to stabilize the vehicle
at a predetermined equilibrium point and track a certain sideslip angle, this
controller will search for the equilibrium point corresponding to the given initial
conditions and the desired yaw rate. With this in mind, it is a requirement that
there exists an equilibrium point the system is able to reach, meaning that the
initial conditions are feasible.

Ackerman (1997) claims that the path following task of the driver is primarily
concerned with producing the appropriate accelerations ax and ay to keep the
vehicle on the road. By using the control design model described in section 6.2,
it is seen that the forces required to produce these accelerations can obtained
by controlling the sideslip angle.

The vehicle dynamics in the horizontal plane have three degrees of freedom.
Only two actuators are available for control of LocalBug; the rear wheel throttle
and the front wheel steering angle. Hence, the control problem is underactuated.
To overcome this challenge, the control objective is de�ned only by the motion
in the longitudinal and lateral direction, meaning that the vehicle will not run
o� the road. The control problem is now fully actuated in the working space,
while the heading is left uncontrolled and appears as a dynamic constraint.

6.2. THE CONTROL DESIGN MODEL 67

Because of the limited processing power available on LocalBug, it has been a
design goal to keep the computational cost down.

6.2 The Control Design Model

It is important that the control design model captures the essential dynamics
of the system. The nonlinear two-track vehicle model presented in chapter 4.2
describes well the high level vehicle dynamics with coupling of longitudinal and
lateral forces (Kiencke and Nielsen 2005). Because of this complex relationship
it is di�cult to �nd a transform that linearizes the input-output map. The
model is therefore simpli�ed by ignoring the di�erences between the left and
right track, which is justi�ed from the assumption of a uniform friction on
the road surface and di�erential lock of the rear wheels. The rear wheel drive
con�guration of LocalBug makes it clear that the free rolling front wheels cannot
produce longitudinal forces. The following equations are substituted into the
vehicle model:

FL,FL = FL,FR = 0 (6.1)

FL,rear =
1

2
(FL,RL + FL,RR) (6.2)

cF =
1

2
(cFL + cFR) (6.3)

cR =
1

2
(cRL + cRR) (6.4)

Instead of substituting the expressions for the wheel forces as in Kiencke and
Nielsen (2005), a new vector of generalized control inputs consisting of the
combined forces and moments resulting from the wheel-ground interaction is
de�ned:

τ =

 Fx
Fy
Mz

 (6.5)

Using (4.9) and (4.10), the control design model is expressed as v̇cg
β̇

ψ̈

 =

 0

−ψ̇
0

+

cos β
m

sin β
m 0

− sin β
mvcg

cos β
mvcg

0

0 0 1
Iz

 Fx

Fy
Mz

 (6.6)

68 CHAPTER 6. NONLINEAR CONTROLLER DESIGN

Desired speed
and heading

Actuator commands

Position, attitude and velocity

Desired forces and
moments

Motion

Control
Allocation

Controller

Guidance
System

Sensors

Figure 6.2: Illustration of the control loop signal �ow.

which conveniently is on the form

ẋ = f(x) + g(x) · u (6.7)

Due to the small frontal cross sectional area of LocalBug, the resistive forces
are dominated by the rolling resistance almost in the entire operating envelope
of LocalBug. A rolling resistance term could be used to eliminate steady state
errors for speed control, but high angles of sideslip makes it di�cult to control
the speed independently. To avoid interference with the sideslip dynamics, the
term has been ignored.

6.3 Feedback Linearizing Controller

The control design model has the following structure

ẋ = f(x) + g1(x)u1 + g2(x)u2 + g3(x)u3 (6.8)

where the number of inputs is equal to the number of outputs m = n = 3. First,
the output is selected to be the �rst state, y1 = vcg. Di�erentiating the output
gives

ẏ =
∂vcg
∂x

∂x

∂t
= Lfh1(x) + Lg1h1(x) + Lg2h1(x) + Lg3h1(x) (6.9)

and the belonging Lie derivatives are computed as

6.3. FEEDBACK LINEARIZING CONTROLLER 69

Lfh1(x) = 0 (6.10)

Lg1h1(x) =
1

m
cosβ (6.11)

Lg2h1(x) =
1

m
sinβ (6.12)

Lg3h1(x) = 0 (6.13)

Seeing that the Lie derivatives corresponding to the two �rst inputs are not
zero, it is clear that they are connected to the output in some sense. The third
input, however, does not in�uence the output. Because the relative degree is
de�ned when any of the inputs appear in the output equation, the relative degree
associated with this output is one. Continuing with the second output, y2 = β,
the Lie derivatives are

Lfh2(x) = −ψ̇ (6.14)

Lg1h2(x) = − 1

mvcg
sinβ (6.15)

Lg2h2(x) =
1

mvcg
cosβ (6.16)

Lg3h2(x) = 0 (6.17)

The relative degree of the third input is again not de�ned, but as long as at least
one of the inputs are connected to the output, the relative degree associated with
this output channel is also one. Finally, letting the output be y = ψ̇, we have

Lfh3(x) = 0 (6.18)

Lg1h3(x) = 0 (6.19)

Lg2h3(x) = 0 (6.20)

Lg3h3(x) =
1

Iz
(6.21)

which also has relative degree one. The total relative degree of the system is
r = r1 + r2 + r3 = 1 + 1 + 1 = 3. The matrix (3.21) is then de�ned and becomes

A(x) =

 1
m cosβ 1

m sinβ 0
− 1
mvcg

sinβ 1
mvcg

cosβ 0

0 0 1
Iz

 (6.22)

70 CHAPTER 6. NONLINEAR CONTROLLER DESIGN

From chapter 3 it is shown that the feedback linearizing controller

u = A(x)−1

v +

 0

ψ̇
0

 (6.23)

reduces the system to the linear equivalent

ẋ = v (6.24)

Since the total relative degree is three, there are no internal dynamics. It is
important to notice that the control law is not de�ned for vcg = 0, and that a
di�erent controller or a manual input is required to initially set o� the vehicle.
It is now desirable to design a linear controller that makes the yaw rate converge
to the desired yaw rate.

The linear control law is chosen as a simple P-controller:

v =

 −kv (vcg − vcg,ref)
−kr (r − rref)

0

 (6.25)

where the weighting between kv and kr decides the importance of speed or yaw
rate stabilization, respectively.

6.4 Control Allocation

The desired forces calculated in the controller have to be converted into actuator
inputs. The output value from the autopilot is an integer ranging from 0− 254.
On LocalBug, this value is used to create a pulse width modulated (PWM)
signal that is fed to the servo motors. This period of the signal lies between 1
ms and 2 ms, which corresponds to the maximum and minimum steering angle
or throttle. In the simulator, the integer value is used as input to the vehicle
model to imitate the autopilot interface.

A mapping of real control inputs into actuator forces can be taken as Fossen
(2011)

f = Ku (6.26)

where f is the force produced by the actuators,K is the force coe�cient matrix
and u the real control inputs. As discussed in chapter 4.2 and illustrated in

6.4. CONTROL ALLOCATION 71

x

y

FS

δ

Figure 6.3: Illustration of front wheel lateral force decomposed in the body
frame.

�gure 6.3, the forces produced by the wheel is directed in the direction of the
tire and at right angles to it. At a certain steering angle, the front wheel forces
will be rotated an angle δ compared to the desired forces which is calculated
in the vehicle body frame. The virtual control inputs is then related to the
actuator commands by the following equation:

τ = T (δ)f = T (δ)Ku (6.27)

where T (δ) is

T (δ) =

 1 − sin δ
0 cos δ
0 lfront · cos δ

 (6.28)

An expression for the actuator inputs in terms of dc motor voltage and steering
angle is found by solving (6.27) equation for u

u = K−1T (δ)†τ (6.29)

where T (δ)† is the Moore-Penrose pseudo inverse.

T (δ)† = (T T · T)−1 · T T (6.30)

Steering Servo The steering servo converts the PWM signal into a voltage
corresponding to desired position. The output position of the servo is measured

72 CHAPTER 6. NONLINEAR CONTROLLER DESIGN

by a potentiometer, and the two voltages are compared. If the positions do not
coincide, the servo will provide the necessary corrections.

In the nonlinear vehicle model described in chapter 4.2, a linear relationship
between the wheel slip angle and the cornering force is assumed. However, this
is only valid for small angles of wheel slip. In the control scenario discussed in
this thesis, the front wheels will counter steer into the turn and saturation of
the friction forces will not occur. Thus, the front wheel slip is assumed to lie in
the linear region and this validates the use of a linear relationship between slip
angle and lateral force. The relationship between lateral force and slip angle is
given in section 4.2 as

FS = Cαα = Cα

(
δ − β − lfrontψ̇

vcg

)
(6.31)

After the desired wheel slip angle is found, the steering angle is resolved from
the mapping

δ = α+ β +
lfrontψ̇

vcg
(6.32)

The maximum steering angle on LocalBug is 30◦ (Wigestrand et al. 2010b),
and the output is converted to an integer between 0-254 with the value 127
corresponding to neutral steering.

The cornering coe�cient Cα can be found as the gradient of the friction slip
curve evaluated at zero slip (Wong 2001). Figure 6.4 illustrates the friction-slip
curves for di�erent road surfaces implemented in the LocalBug Simulator. It
can be seen that for asphalt and concrete, Cα ≈ 25, for snow and cobblestones,
Cα ≈ 12 and for ice, Cα ≈ 5.

Throttle Servo The brushless dc motor �tted in LocalBug is controlled by an
Electronic Speed Controller (ESC). The ESC takes the servo signal and converts
it into a three phase signal which is used to toggle electromagnets that drives
the motor. The current induced by the magnets in the motor is measured to
decide the timing of the switching of the magnets.

The force from the tires acting on the road surface, provided the tire forces are
not saturated, is given by the motor torque and the radius of the wheel

FL = rwheel · Tmotor (6.33)

6.4. CONTROL ALLOCATION 73

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Wheel slip σ

F
ric

tio
n

co
ef

fic
ie

nt
 µ

Friction Coefficient vs. Wheel Slip

Dry asphalt
Wet asphalt
Dry concrete
Dry cobblestones
Wet cobblestones
Packed snow
Ice

Figure 6.4: Friction coe�cients vs. wheel slip for di�erent road surfaces.

Equations (5.2) and (5.1) describes the dc motor dynamics. The motor torque
is proportional to the motor current, which is related to the input voltage. How-
ever, when the motor starts turning, the back electromechanical force (EMF)
reduces the voltage across the terminals and thus the current �owing through
the armature is reduced as the engine accelerates. In addition, a part of the
engine torque is consumed accelerating the wheel itself. Because of this, the
force coe�cient is assumed to be varying with the motor speed and a static
force coe�cient would only be accurate at the start when the back EMF is zero.

Another way to approach the problem of determining the force coe�cient is
to evaluate the amount of force that can be transferred to the ground and
assuming this occurs when maximum throttle is applied. The maximum force is
proportional to the normal load on the tire and the friction coe�cient (Kiencke
and Nielsen 2005). The latter can either be adapted on-line or set to a �xed
value. While the normal load can be calculated from the vehicle accelerations,
it is taken as a constant to avoid a time-varying friction coe�cient matrix. A
linear relationship between the produced force and the throttle input can thus

74 CHAPTER 6. NONLINEAR CONTROLLER DESIGN

be found as

FL =
µFz
Vmax

V (6.34)

where µ is the friction coe�cient, Fz the normal force on the driving wheels,
and V the motor voltage. The motor voltage that can be applied to LocalBug
depends on the number of battery cells connected to the motor. LocalBug
can �t two 3-cell Li-Po batteries, each cell with a nominal voltage of 4.2 volts
(HPI-Racing n.d.). The maximum voltage input is therefore approximately 25
volts.

The resulting force coe�cient matrix is given as

K =

[
µFz

Vmax
0

0 Cα

]
(6.35)

where the front wheels produces lateral forces and the rear wheels are assumed
to only provide longitudinal forces.

6.5 Controllability During High Angle of Sideslip

To check whether the vehicle is controllable at high angles of sideslip, the vehicle
is linearized around a drifting condition. The linearized vehicle model presented
in section 4.3 is used to check controllability. Because LocalBug does not have
individual torque control on each wheel, and thus only has two inputs, the input
matrix B is modi�ed to re�ect this. The same considerations as discussed in
section 6.2 is taken. The matrices A and B to the linear system are then given
as

A =

∂v̇cg
∂vcg

∂v̇cg
∂β

∂v̇cg
∂ψ̇

∂β̇
∂vcg

∂β̇
∂β

∂β̇

∂ψ̇
∂ψ̈
∂vcg

∂ψ̈
∂β

∂ψ̈

∂ψ̇

 , B =

∂v̇cg
∂FL

∂v̇cg
∂δ

∂β̇
∂FL

∂β̇
∂δ

∂ψ̈
∂FL

∂ψ̈
∂δ

 (6.36)

The system is linearized around an equilibrium point determined by a simula-
tion where drifting was achieved. The road surface condition was set to wet
cobblestones, and LocalBug were con�gured to rear wheel drive with locked dif-
ferential. After an initial settling period, the steady state values for the vehicle
states were

6.6. SIMULINK IMPLEMENTATION 75

 vcg
β

ψ̇

 =

 1.93 m/s
−0.74 rad
1.175 rad/s

 (6.37)

with the control inputs [
FL
δ

]
=

[
11.71N
−0.514 rad

]
(6.38)

Using a cornering sti�ness value of Cα = 12, as determined for wet cobblestones
in section 6.4, the controllability matrix C(A,B) =

[
B AB A2B

]
is

computed to

C(A,B) =

 0.1055 −0.4554 0.2005 3.3096 −0.5645 −4.8829
0.0499 0.8572 −0.1438 −1.3156 −0.0217 1.1556

0 0.1992 0.1270 −0.9804 −0.0053 6.0361

It is seen that the controllability matrix is of full rank. Because the linearized
system equations only contain information about the point which the system
is linearized about, nothing can be said about the controllability in general.
However, the system is controllable for the selected operating point, and this
indicates that the vehicle is controllable at high angles of sideslip.

6.6 SIMULINK Implementation

The feedback linearizing controller and control allocation algorithms developed
in section 6.3 and 6.4 is implemented in SIMULINK as shown in �gure 6.5.
Data required from the IMU are gyro data and estimated velocities and orien-
tation. The velocities from the IMU are given in a north-east-up coordinate
frame, and thus have to be converted to the body frame for calculation of the
sideslip angle. The last two inputs are the desired speed and yaw rate.
The controller and control allocation is implemented using embedded functions
in Matlab. The controller code is given in appendix C.
A saturation block limits the output of the control allocation block to the spec-
i�ed limits of LocalBug. For throttle, the allowed input is 0-25 volts, while
the steering angle saturates at ±30 degrees. The last step is a conversion from
voltage to an input command from 0− 254, with 127 being neutral position for
both actuators.

76 CHAPTER 6. NONLINEAR CONTROLLER DESIGN

Steering command
2

Throttle command
1

volt2command

-K-

throttle voltage

steering angle

max 30deg

max 25v

deg2rad2

-K-

deg2rad1

-K-

deg2rad

-K- angle2command

-K-

Rotation to body frame

v_inertial

psi

speed

beta

fcn

Neutral

127

Feedback linearizing
controller

speed

beta

r

speed_ref

r_ref

taufcn

Control allocation

v

beta

r

tau

delta

th

st

fcn

gyro_pqr
5

angles
4

velocity_xyz
3

r_ref
2

v_desired
1

Figure 6.5: Screenshot of the SIMULINK controller block.

Chapter 7

Simulation Results

Several test cases that requires the use of drifting techniques to achieve the
desired yaw rate has been designed. The following test cases will test the per-
formance of the controller:

• The �rst test case investigates the performance of the controller for two
yaw rate setpoints on wet cobblestones, which is a medium friction surface.

• The second test case investigates the performance of the controller for two
yaw rate setpoints on snow, which is a low friction surface.

• The third test case examines the importance of uncertainties in the mass
parameter used in the controller.

• The �nal test case compares the cornering abilities of the feedback lin-
earization controller designed in chapter 6 to a conventional PID con-
troller.

To obtain a su�ciently realistic simulation, the noise data described in section
5.4 were added to the feedback loop to ensure the controller is robust enough to
be implemented on LocalBug. However, the vehicle states are plotted without
noise to simplify discussion of the results.

From the derivation of the force coe�cient matrix K in section 6.4 it is seen
that the values for K can be calculated as

77

78 CHAPTER 7. SIMULATION RESULTS

K =

[0.4·m·g
Vmax

0

0 Cα

]
=

[
1.1 0
0 12

]
(7.1)

for wet cobblestones, where the µ = 0.4 is the peak friction coe�cient seen in
�gure 6.4 and m = 7 is the weight of LocalBug (Jakobsen 2010). Similarly for
snow, the coe�cients are

K =

[0.2·m·g
Vmax

0

0 Cα

]
=

[
0.55 0

0 5

]
(7.2)

During testing of the controller, it was discovered that tuning of the force co-
e�cient matrix was necessary to achieve a satisfactory result. The following
matrix is used throughout the simulations

K =

[
3 0
0 6

]
(7.3)

The values for the feedback linearization controller gains were set to

kv = 4 (7.4)

kr = 100 (7.5)

and is used for all simulations.

7.1 Case 1: Cornering on Wet Cobblestones

For this test, the initial and commanded velocity is set to 4 m/s. The controller
is given two di�erent yaw rate setpoints of −40 deg/s and −60 deg/s. Halfway
in the simulation, the sign of the yaw rate is changed so the transient behavior
between two opposite turns can be observed.

With a reference yaw rate of 40 deg/s the controller is able to complete the turn
without engaging in a drifting maneuver. Figure 7.3 indicates that a sideslip
of 2 degrees results from the maneuver. A steering angle of only 10 degrees is
su�cient to provide the lateral force required to obtain the desired yaw rate.
The drop in velocity with approximately 20 percent in velocity is signi�cant,
but results from the controller being tuned to prioritize the yaw rate. During

7.1. CASE 1: CORNERING ON WET COBBLESTONES 79

−5 0 5 10 15
−6

−4

−2

0

2

4

6

8

10

12

East

N
or

th
Simulation Result

 rdes
 = 40°/s

Figure 7.1: Simulation result on wet cobblestones with ψ̇des = 40 deg/s. It is
seen that no signi�cant sideslip occurs in this case. The front wheels are shown
in red.

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

5

6

7

East

N
or

th

Simulation Result

 rdes
 = 60°/s

Figure 7.2: Simulation result on wet cobblestones with ψ̇des = 60 deg/s. The
controller initiates a drift to reach the yaw rate reference. The front wheels are
shown in red.

80 CHAPTER 7. SIMULATION RESULTS

the transition from the left hand turn to the right hand turn, the controller is
aggressive on both steering and throttle input to quickly stabilize LocalBug at
the new setpoint.

At 60 deg/s, �gure 7.4 shows that the controller initially uses a lot of control
e�ort to stabilize the vehicle. Once the sideslip angle starts to build up, the
controller responds with counter steering and by releasing the throttle to avoid
a spin. Up to time t = 20, the yaw rate is stabilized at 60 degrees, but the
vehicle is not resting at the equilibrium point. During this time, the throttle
setting remains fairly constant. The steering angle is gradually relaxed as the
sideslip angle decreases. The equilibrium point is quickly found in the second
turn, since the initial velocity was lower.

Both yaw rates are achieved very fast, in about 0.5 seconds.

7.2 Case 2: Cornering on Snow

The second test case takes place on snow, which is a low friction surface. The
initial and commanded velocity is 2.5m/s. Two test runs are performed, the
�rst with an initial desired yaw rate of −40 deg/s and the second test run with
−60 deg/s. At time t = 20 the setpoints are changed to 40 deg/s and 60 deg/s,
respectively.

From �gure 7.7 it is seen that with the lowest yaw rate reference, the controller
is able to maintain a higher speed throughout the turn. The desired yaw rate
can in this case only be achieved by establishing a sideslip angle. The sideslip
angle is increasing up to 35 degrees at which the dynamics are stabilized.

In the second test run with a desired yaw rate of 60 rad/s, there is not enough
traction to negotiate the turn at 2.5 m/s. Figure 7.8 shows that the controller
tries to control the skid by counter steering and setting the throttle to idle,
but the steering angle saturates and a spin is inevitable. The spin is caused by
a too large initial velocity, as the same response is not seen after the velocity
has dropped. In the second turn, an equilibrium point is quickly found with
a sideslip angle of 46 degrees. Due to the high slip angle and relatively low
velocity, the circular path is very tight, as seen in �gure 7.6.

Both test runs stabilizes at a yaw rate which is approximately 5 degrees higher
than the commanded yaw rate. It is seen from �gure 7.8 that the control inputs
are not saturated and tuning of the controller could provide a better result.

7.2. CASE 2: CORNERING ON SNOW 81

0 5 10 15 20 25 30 35 40
2

3

4

5

Time [s]

V
el

oc
ity

 [m
/s

]

Vehicle Speed

r
des

 = 40°/s

r
des

 = 60°/s

0 5 10 15 20 25 30 35 40
−10

0

10

20

30

Time [s]

A
ng

le
 [d

eg
]

Sideslip Angle

r
des

 = 40°/s

r
des

 = 60°/s

0 5 10 15 20 25 30 35 40
−100

−50

0

50

100

Time [s]

A
ng

. V
el

. [
de

g/
s]

Yaw Rate

r
des

 = 40°/s

r
des

 = 60°/s

Figure 7.3: Plot of the vehicle states while driving in circles on wet cobblestones.
The desired yaw rate is achieved in both cases.

82 CHAPTER 7. SIMULATION RESULTS

0 5 10 15 20 25 30 35 40
−40

−20

0

20

40

D
eg

re
es

Time [s]

Steering Angle

 r
des

 = 40°/s

r
des

 = 60°/s

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

V
ol

t

Time [s]

Throttle

 r
des

 = 40°/s

r
des

 = 60°/s

Figure 7.4: Plot of the control inputs while driving in circles on wet cobblestones.

7.2. CASE 2: CORNERING ON SNOW 83

0 1 2 3 4 5 6 7 8 9 10

−3

−2

−1

0

1

2

3

4

East

N
or

th
Simulation Result

 rdes
 = 40°/s

Figure 7.5: Simulation result on snow with ψ̇des = 40deg/s. The spiraling motion
results from the velocity decreasing. The front wheels are shown in red.

−2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

East

N
or

th

Simulation Result

 rdes
 = 60°/s

Figure 7.6: Simulation result on snow with ψ̇des = 60 deg/s. The initial spin due
to too low traction is clearly seen in this �gure. The front wheels are shown in
red.

84 CHAPTER 7. SIMULATION RESULTS

0 5 10 15 20 25 30 35 40
0

1

2

3

Time [s]

V
el

oc
ity

 [m
/s

]

Vehicle Speed

r
des

 = 40°/s

r
des

 = 60°/s

0 5 10 15 20 25 30 35 40
−200

−100

0

100

200

Time [s]

A
ng

le
 [d

eg
]

Sideslip Angle

r
des

 = 40°/s

r
des

 = 60°/s

0 5 10 15 20 25 30 35 40
−100

−50

0

50

100

Time [s]

A
ng

. V
el

. [
de

g/
s]

Yaw Rate

r
des

 = 40°/s

r
des

 = 60°/s

Figure 7.7: Plot of the vehicle states while driving in circles on snow.

7.2. CASE 2: CORNERING ON SNOW 85

0 5 10 15 20 25 30 35 40
−40

−20

0

20

40

D
eg

re
es

Time [s]

Steering Angle

 r
des

 = 40°/s

r
des

 = 60°/s

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

V
ol

t

Time [s]

Throttle

 r
des

 = 40°/s

r
des

 = 60°/s

Figure 7.8: Plot of the control inputs while driving in circles on snow. Saturation
of the control inputs occur for the desired yaw rate of 60 degrees.

86 CHAPTER 7. SIMULATION RESULTS

−4 −3 −2 −1 0 1

0

0.5

1

1.5

2

2.5

3

3.5

4

East

N
or

th

Simulation Result

m − 30%
m + 30%
m

Figure 7.9: Simulation result of di�erent values in the mass parameter. The
vehicle outlines have been removed for clarity.

7.3 Case 3: Robustness to Parametric Uncertain-

ties

In this case the in�uence of the mass parameter in the feedback linearization
controller is investigated. The simulation is performed on wet cobblestones
with an initial speed of 2.5 m/s, a desired speed of 4 m/s, and a desired yaw
rate of 70 deg/s. The simulation is carried out without noise to easier spot the
di�erences. The simulation was performed three times; with a decrease in the
mass parameter of 30 percent, with an increase in the mass parameter by 30
percent, and a reference simulation with the exact mass of the vehicle.

From �gure 7.9 it is clearly seen that the change in mass parameter in�uences the
path driven by LocalBug. A further investigation reveals that the tracked yaw
rate is not very di�erent in the three cases. The main di�erence in vehicle path
is attributed di�erent velocities that results from di�erent sideslip angles. This
coincides with intuition, since the mass parameter in the feedback linearization
controller acts like a gain on the control forces. An increase of 30 percent in
this parameter causes LocalBug to use more control e�ort, which is also seen in
�gure 7.11.

7.3. CASE 3: ROBUSTNESS TO PARAMETRIC UNCERTAINTIES 87

0 2 4 6 8 10 12 14 16 18 20
1.5

2

2.5

3

Time [s]

V
el

oc
ity

 [m
/s

]

Vehicle Speed

m − 30%
m + 30%
m

0 2 4 6 8 10 12 14 16 18 20
−60

−40

−20

0

20

Time [s]

A
ng

le
 [d

eg
]

Sideslip Angle

m − 30%
m + 30%
m

0 2 4 6 8 10 12 14 16 18
65

70

75

80

Time [s]

A
ng

. V
el

. [
de

g/
s]

Yaw Rate

m − 30%
m + 30%
m

Figure 7.10: Vehicle states for di�erent values of the mass parameter. The yaw
rates do not di�er as much as the speed and sideslip angles.

88 CHAPTER 7. SIMULATION RESULTS

0 2 4 6 8 10 12 14 16 18 20
−40

−20

0

20

40

D
eg

re
es

Time [s]

Steering Angle

 m − 30%
m + 30%
m

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

V
ol

t

Time [s]

Throttle

 m − 30%
m + 30%
m

Figure 7.11: Control inputs for di�erent values of the mass parameter.

Table 7.1: Values for the reference PID controllers.
P I D

Throttle controller 10 0 0
Steering controller 35 20 0

7.4. CASE 4: COMPARISON WITH PID CONTROLLER 89

7.4 Case 4: Comparison With PID Controller

The �nal test case highlights the advantage of drifting through a corner versus
using a conventional cornering technique. The initial and command speed dur-
ing the test is 4.5 m/s, and the road surface consists of wet cobblestones. At
the �rst waypoint, the yaw rate setpoint for the controllers changes to 60 deg/s.
After completing a 210 degree hairpin turn, which happens when LocalBug is
within two meters of the second waypoint, a yaw rate command is given to aim
for the next waypoint located out of the picture, a distance along the green line
shown in �gure 7.12. The initial speed is too large to complete the turn without
running of the road. For comparison, at a yaw rate of 60 deg/s, the speed cannot
be greater than 3.6 m/s to successfully complete the turn.

The PID throttle controller was tuned to provide the same straight-line velocity
as the feedback linearization controller. Integral action was added to the PID
steering controller to prevent a reduction in steering angle when the yaw rate
error diminishes. In addition, this mimics the average driver, which is prone
to increase steering when the vehicle does not respond as much to steering
commands as expected. The values for the PID controllers are given in table
7.1.

Looking at the simulation result in �gure 7.12, it is evident that by using trail-
breaking, LocalBug manages to stay on the road. Since the speed drops to
3 m/s, the path is not completely circular and the vehicle completes the turn
within the path described by the waypoints. The conventional driving technique
overshoots the waypoint by two meters and is not able to keep the desired yaw
rate or the vehicle on the road. In other words, the maneuverability of the
vehicle has increased by not restricting the vehicle to operate within the linear
region characterized by low sideslip angles.

Inspection of the yaw rate in �gure 7.14, which is very close the setpoint, reveals
that the feedback linearization controller has completed the turn at time t = 12
seconds, while the vehicle controlled by the PID controller is through at t = 14
seconds. Even though the exit velocity is lower for the feedback linearizing
controller, the simulation showed that the vehicle commanded by this controller
was the �rst to reach the �nal waypoint.

Figure 7.13 shows that the steering angle saturates for the PID controller. Non-
linearities in the lateral friction force are also visible in this case, seeing that
the maximum yaw rate is achieved at 11 degrees steering angle.

90 CHAPTER 7. SIMULATION RESULTS

−4 −2 0 2 4 6 8 10

24

26

28

30

32

34

East

N
or

th

Simulation Result

PID Conroller
F.L. Controller

Figure 7.12: Simulation result of the trail-breaking turn. LocalBug is able to
complete the turn only by employing drifting techniques. The front wheels are
shown in red.

0 2 4 6 8 10 12 14 16 18 20
−30

−20

−10

0

10

20

30

D
eg

re
es

Time [s]

Steering Angle

 PID Controller
F.L. Controller

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

V
ol

t

Time [s]

Throttle

 PID Controller
F.L. Controller

Figure 7.13: Comparison of steering input during trail breaking and conven-
tional cornering. Notice the more aggressive driving behavior during trail break-
ing.

7.4. CASE 4: COMPARISON WITH PID CONTROLLER 91

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

Time [s]

V
el

oc
ity

 [m
/s

]

Vehicle Speed

PID Controller
F.L. Controller

0 2 4 6 8 10 12 14 16 18 20
−40

−20

0

20

Time [s]

A
ng

le
 [d

eg
]

Sideslip Angle

PID Controller
F.L. Controller

0 2 4 6 8 10 12 14 16 18 20
−50

0

50

100

Time [s]

A
ng

. V
el

. [
de

g/
s]

Yaw Rate

PID Controller
F.L. Controller

Figure 7.14: Comparison of vehicle states during trail breaking and conventional
cornering. It is seen that the trail-breaking turn is completed faster, although
the exit velocity is lower.

92 CHAPTER 7. SIMULATION RESULTS

7.5 Discussion of Results

The simulation results show that the controller is able to obtain and sustain
the desired yaw rate on the medium friction road surface. On the low friction
surface, the obtained yaw rate is within 5 degrees of the desired yaw rate. It is
seen that the amount of sideslip is a result of the initial velocity, the desired yaw
rate and the road surface friction. If possible, the desired yaw rate is achieved
without sideslip. This corresponds to the controller searching for the equilibrium
satisfying the initial conditions and the desired yaw rate.
In the second test case it is observed that LocalBug may become uncontrollable
if the available traction is not su�cient to obtain the yaw rate setpoint. Throttle
is applied to increase the sideslip angle and thereby the yaw rate, and counter
steer is used to control the yawing moment. When the steering angle saturates,
there are not enough steering forces to prevent an uncontrolled spin.
Because the speed controller only includes a proportional term, the desired
speed is not attained in any of the simulations. This was expected considering
that the design goal of the controller did not prioritize speed. When the sideslip
angle becomes large, the speed controller is completely dominated by the sideslip
controller because of the di�erences in controller gains. This is desirable, since
it is more pertinent to sustain correct yaw rate rather than speed in this setting.
The high gain on the yaw rate controller is also required to obtain a fast response
and excite the vehicle into a drifting con�guration.
Considering the large variations in calculated sideslip angle from logged data set
in chapter 5, it seems appropriate not to use this value directly in the control
objective. The yaw rate, which is easier to measure, is better suited for the
purpose.
The decision to only include P-controllers for speed and yaw rate was taken to
avoid phase lag that could destabilize the sideslip dynamics. Although integral
action could improve the steady state error seen in the second test case, the
extra phase lag was not desirable considering the sensitivity of the dynamics
with respect to the sideslip angle. Phase lag or wind-up could quickly cause the
sideslip angle to grow beyond salvation. Derivative action would help to reduce
the phase lag, but may be susceptible to noise and was therefore discarded.
Integral and derivative action can perhaps be included in future revisions of the
control system.
It is interesting to notice that the same controller parameters were successfully
tested on di�erent road surface conditions. This corresponds well to the �ndings
in Voser et al. (2010) which suggests that drifting possesses some predictable

7.5. DISCUSSION OF RESULTS 93

handling characteristics over varying friction. In the article, ±10 percent varia-
tion in friction only causes a 1.2 degrees variation of β at the equilibrium point.

The experience that tuning of the force coe�cient matrix was necessary to
achieve a su�cient result indicates that the control allocation block should in-
clude lateral forces produced by the rear wheels, as well as nonlinear e�ects
in the tire-friction response. Especially the linear approximation between the
lateral slip and lateral force is inaccurate even at modest wheel slip angles. The
use of accelerometer data to calculate the normal load on the rear wheels could
provide a better value for the longitudinal force coe�cient, as long as the maxi-
mum friction is known. Because there are no wheel speed sensors on LocalBug,
it is di�cult to estimate the surface friction and the wheel slip, and therefore
also the forces acting on each tire.

In all tests, the added noise in the feedback loop causes chattering of various
strength on the control inputs. This is especially noticeable in �gure 7.4. While
such chattering can originate from high gains, this can also be part of a solver
issue. The simulator uses a �xed time step solver with 1 ms step time, which
may not be su�cient to model fast dynamics. In an implementation aspect it
should be veri�ed that severe chattering which may cause damage to LocalBug
does not occur.

The choice to use feedback linearization as a method of obtaining a desired
yaw rate through establishing a sideslip has proven to be e�ective. When the
desired yaw rate is set too high to be feasible for normal driving techniques, a
tail-breaking con�guration with a high sideslip angle and counter steering for
stability is established. In the last test case, it is evident that the feedback
linearization controller is able to complete the turn while staying on the road,
while the PID controller is not.

Although the simulation of test case four showed that the feedback linearization
controller succeeded in completing the turn, there is room for improvement. A
skilled driver would execute a series of maneuvers to properly position the car
in front of the turn and to establish the sideslip. None of these maneuvers are
considered by the designed controller. Other techniques, for instance open loop
commands as suggested in Henry and Perrault (2010) and Voser et al. (2010),
is therefore required for more gentle excitation of the sideslip dynamics.

94 CHAPTER 7. SIMULATION RESULTS

Chapter 8

Conclusions

In this thesis, feedback linearization has been used to design a state feedback
controller that, by the use of drifting techniques, stabilizes LocalBug at the
desired yaw rate. At high angles of sideslip, the forces acting between the tire
and the ground are highly nonlinear and the dynamic response of steering and
throttle actuators changes.
The controller has proven to be capable of achieving the desired yaw rate with an
accuracy of within 5 degrees, and also shown to perform better than conventional
PID control. This supports the idea of a new generation active safety systems
which does not restrict the vehicle to operate within its linear region. Modern
cars are equipped with a variety of sensor systems. Position data from global
satellite navigation systems combined with map data, radar and optical sensors
could be used to design a yaw rate reference that would keep the vehicle on the
road or evade obstacles in front of the car.
The LocalBug simulator has been improved in several areas. Physical values
for the moment of inertia of LocalBug and the wheels have been obtained by
measurements. The addition of a dc motor model and sensor noise data has sig-
ni�cantly increased the realism of the simulator. A veri�cation of the LocalBug
simulator was performed by comparing simulation data against logged test data.
The results show that the simulator is largely able to accurately reproduce the
motions of LocalBug. However, the simulation results diverge from logged data
during hard breaking.
Feedback linearization as a control design technique has been successful in de-
scribing the coupling of forces and actuator authority that arises from large

95

96 CHAPTER 8. CONCLUSIONS

variations in sideslip angle. The method is recommended for further use in the
derivation of controllers for LocalHawk, which is prone to experience similar
e�ects due to coupling of aileron, elevator and rudder action in di�erent �ight
conditions.

8.1 Further work

The controller developed in chapter 6 should be implemented on LocalBug and
tested. As shown in the simulation results, the controller works satisfactorily
in presence of the recorded noise. However, feedback linearization does not
guarantee robustness of the system. Should stability issues arise during testing,
an extension to sliding mode control could be an appropriate line of action.

Some concerns regarding data logging were found. To ensure data integrity
during logging, it should be made sure that each measurement is accurately
timestamped. In addition, the logging function should arrange for logging of all
sensor data, as this can be of importance for future review of the data. Future
controllers may also require more sensor data, especially considering the goal of
interchanging hardware and software between LocalHawk and LocalBug.

Due to the lack of knowledge of the wheel speeds on LocalBug, accurately
determining the forces acting at the wheel-ground interface is di�cult. It should
be considered if wheel speed encoders could be added to the vehicle. This would
enable calculation of wheel slip, which is the basis for calculating wheel forces
and estimating the road surface friction.

Bibliography

Ånnestad, D. C. (2010). Autonomous Bicycle. MSc thesis.

Abdulrahim, M. (2006). On the Dynamics of Automobile Drifting, SAE 2006
World Congress & Exhibition.

Ackerman, J. (1997). Robust Control Prevents Car Skidding, Control Systems,
IEEE 17(3): 23�31.

Burdick, J. (n.d.). The Moore-Penrose Pseudo Inverse. Accessed 19.05.2011.
URL: http://robotics.caltech.edu/ jwb/courses/ME115/handouts/pseudo.pdf

Croft-White, M. (2006). Measurement and Analysis of Rally Car Dynamics at
High Attitude Angles, PhD thesis, Cran�eld University.

Egeland, O. and Gravdahl, J. T. (2002). Modeling and Simulation for Automatic
Control, Marine Cybernetics.

Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion
Control, John Wiley & Sons.

Grip, H. F. (2010). Topics in State and Parameter Estimation for Nonlinear
and Uncertain Systems, PhD thesis, Norwegian University of Science and
Technology.

Grip, H. F., Imsland, L., Johansen, T. A., Kalkkuhl, J. C. and Suissa, A. (2009).
Vehicle Sideslip Estimation - Design, implementation and experimental vali-
dation, IEEE Control Systems Magazine 29(5): 36�52.

Haugan, J. (1992). Formler og tabeller, NKI.

97

98 BIBLIOGRAPHY

Henry, S. and Perrault, A. (2010). Autonomous RC Car Drifting, Technical
report, Cornell University.

Hindiyeh, R. Y. and Gerdes, J. C. (2010). Design of a Dynamic Surface Con-
troller for Vehicle Sideslip Angle During Autonomous Drifting, Advances in
Automotive Control.

HPI-Racing (n.d.). Savage �ux hp. Accessed 09.06.2011.
URL: http://www.hpieurope.com/kit-info.php?lang=en&partNo=104242

Iaonnou, P. A. and Sun, J. (1996). Robust Adaptive Control, Prentice Hall.

Isidori, A. (1995). Nonlinear Control Systems, third edn, Springer-Verlag Lon-
don.

Isidori, A., Marconi, L. and Serrani, A. (2003). Robust Autonomous Guidance,
Springer-Verlag London.

Jakobsen, J. (2010). LocalBug: Vehicle Simulator with Skidding and Slipping,
Technical report, Norwegian University of Science and Technology.

Kececi, E. F. and Tao, G. (2006). Adaptive Vehicle Skid Control, Mechatronics
16(5): 291�301.

Khalil, H. K. (2002). Nonlinear Systems, third edn, Prentice Hall.

Kiencke, U. and Nielsen, L. (2005). Automotive Control Systems: For Engine,
Driveline and Vehicle, Springer-Verlag Berlin Heidelberg.

Kooijman, J. D. G. (2006). Experimental Validation of a Model for the Motion
of an Uncontrolled Bicycle, Master's thesis, Delft University of Technology.

Marino, R. and Tomei, P. (1995). Nonlinear Control Design, Prentice Hall
International.

Mason, M. T. (2011). Nonholonomic Constraint. Accessed 24.05.2011.
URL: http://www.cs.cmu.edu/afs/cs/academic/class/16741-
s07/www/lecture5.pdf

Newman, P. M. (2003). C4B - Mobile Robotics. Accessed 02.06.2011.
URL: http://www.scribd.com/doc/50320116/1/Holonomicity

BIBLIOGRAPHY 99

Olfati-Saber, R. (2002). Exponential e-Tracking and e-Stabilization of Second-
Order Nonholonomic SE(2) Vehicles Using Dynamic State Feedback, Proceed-
ings of the American Control Conference.

Rajamani, R. (2006). Vehicle Dynamics and Control, Springer.

Slotine, J. E. and Li, W. (1991). Applied Nonlinear Control, Prentice Hall.

Veierland, P. M. (2010). LocalHawk PhoenixII, Master's thesis, Aberystwyth
University.

Velenis, E., Frazzoli, E. and Tsiotras, P. (2010). Stedy-State Cornering Equi-
libria and Stabilization for a Vehicle During Extreme Operating Conditions,
International Journal of Vehicle Autonomous Systems 8(2/3/4): 217�241.

Velenis, E., Tsiotras, P. and Lu, J. (2007). Modeling Aggressive Maneuvers on
Loose Surfaces: The Cases of Trail-Breaking and Pendulum-Turn, Proceedings
of the 2007 European Control Conference. Kos, Greece, July 2-5 2007.

Vik, B. (n.d.). Integrated Satellite and Inertial Navigation Systems.

Vold, J. O. (2010). Guidance System of an AUAV - Local Hawk, Technical
report, Norwegian University of Science and Technology.

Voser, C., Hindiyeh, R. Y. and Gerdes, C. (2010). Analysis and Control of High
Sideslip Manoeuvres, Vehicle System Dynamics 48(Supplement 1): 317�336.

Wenstad, P. (2010). GPS Guided R/C Car, Master's thesis, Norwegian Univer-
sity of Science and Technology.

White, F. M. (2008). Fluid Mechanics, sixth edn, McGraw-Hill.

Wigestrand, B. J., Breivik, H., Dykesteen, P. A., Melby, H., Norendal, P. S.,
Veierland, P. M., Samuelsen, E., Evju, O., Jenssen, E., Lilleborge, M.,
Fuglstad, G. A. and Bhandari, A. (2010a). LocalBug Brukermanual, Technical
report, Kongsberg Defence Systems.

Wigestrand, B. J., Breivik, H., Dykesteen, P. A., Melby, H., Norendal, P. S.,
Veierland, P. M., Samuelsen, E., Evju, O., Jenssen, E., Lilleborge, M.,
Fuglstad, G. A. and Bhandari, A. (2010b). LocalHawk/LocalBug Teknisk
Rapport Sommer 2010, Technical report, Kongsberg Defence Systems.

Wong, J. Y. (2001). Theory of Ground Vehicles, John Wiley & Sons.

100 BIBLIOGRAPHY

Xsens (2010). MTi-G User Manual and Technical Documentation. Document
MT0137P, Revision H.

Appendix A

Equations for the Linearized

Vehicle Model

Equations for the linearized vehicle model (Kiencke and Nielsen 2005)

∂v̇cg
∂vcg

=
1

mcg
{−cairAfrontρairvcg · cosβ

− lfrontψ̇
v2cg

(cFL + cFR) · sin (δ − β)

− (cRL + cRR)
lrearψ̇

v2cg
· sinβ

}
(A.1)

∂v̇cg
∂β

=
1

mcg
{(FL,FL + FL,FR + cFL + cFR) · sin (δ − β)

−
(
cRL + cRR + FL,RL + FL,RR −

1

2
cairAfrontρairv

2
cg

)
· sinβ

+ (cFL + cFR)

(
δ − β − lrearψ̇

vcg

)
· cos (δ − β)

+ (cRL + cRR)

(
−β +

lrearψ̇

vcg

)
· cosβ

}
(A.2)

101

102APPENDIX A. EQUATIONS FOR THE LINEARIZED VEHICLEMODEL

∂v̇cg

∂ψ̇
=

1

mcgvcg
{lfront · sin (δ − β) (cFL + cFR)

+lrear · sinβ (cRL + cRR)} (A.3)

∂β̇

∂vcg
= − 1

mcgv2cg

{
(cFL + cFR)

(
δ − β − 2

lfrontψ̇

vcg

)
· cos (δ − β)

+ (FL,FL + FL,FR) · sin (δ − β)

−
(
FL,RL + FL,RR +

1

2
cairAfrontρairv

2
cg

)
· sinβ

+ (cRL + cRR)

(
−β + 2

lrearψ̇

vcg

)
· cosβ

}
(A.4)

∂β̇

∂β
=

1

mcgvcg

{
(cFL + cFR)

(
δ − β − lfrontψ̇

vcg

)
· sin (δ − β)

− (cFL + cFR + FL,FL + FL,FR) · cos (δ − β)

− (cRL + cRR)

(
−β +

lrearψ̇

vcg

)
· sinβ

− (cRL + cRR + FL,RL + FL,RR

−1

2
cairAfrontρairv

2
cg

)
· cosβ

}
(A.5)

∂β̇

∂ψ̇
=

1

mcgv2cg
{lrear (cRL + cRR) · cosβ

−lfront (cFL + cFR) · cos (δ − β)} − 1 (A.6)

∂ψ̈

∂vcg
=

1

Izv2cg

{
l2frontψ̇ (cFL + cFR) · cos δ

+
1

2
lfrontψ̇ltread (cFL − cFR) · sin δ

+l2rearψ̇ (cRL + cRR)
}

(A.7)

103

∂ψ̈

∂β
=

1

Iz
{−lfront (cFL + cFR) · cos δ

−1

2
ltread (cFL − cFR) · sin δ + lrear (cRL + cRR)

}
(A.8)

∂ψ̈

∂ψ̇
=

1

Izvcg

{
−l2front (cFL + cFR) · cos δ

−1

2
lfrontltread (cFL − cFR) · sin δ − l2rear (cRL + cRR)

}
(A.9)

∂v̇cg
∂FL,FL

=
cos (δ − β)

mcg
(A.10)

∂v̇cg
∂FL,FR

=
cos (δ − β)

mcg
(A.11)

∂v̇cg
∂FL,RL

=
cosβ

mcg
(A.12)

∂v̇cg
∂FL,RR

=
cosβ

mcg
(A.13)

∂v̇cg
∂δ

= − 1

mcg
{(FL,FL + FL,FR + cFL + cFR) · sin (δ − β)

+ (cFL + cFR)

(
δ − β − lfrontψ̇

vcg

)
· cos (δ − β)

}
(A.14)

∂β̇

∂FL,FL
=

sin (δ − β)

mcgvcg
(A.15)

∂β̇

∂FL,FR
=

sin (δ − β)

mcgvcg
(A.16)

104APPENDIX A. EQUATIONS FOR THE LINEARIZED VEHICLEMODEL

∂β̇

∂FL,RL
=
− sinβ

mcgvcg
(A.17)

∂β̇

∂FL,RR
=
− sinβ

mcgvcg
(A.18)

∂β̇

∂δ
=

1

mcgvcg
{(cFL + cFR + FL,FL + FL,FR) · cos (δ − β)

− (cFL + cFR)

(
δ − β − lfrontψ̇

vcg

)
· sin (δ − β)

}
(A.19)

∂ψ̈

∂FL,FL
=

1

Iz

{
lfront · sin δ −

ltread
2
· cos δ

}
(A.20)

∂ψ̈

∂FL,FR
=

1

Iz

{
lfront · sin δ +

ltread
2
· cos δ

}
(A.21)

∂ψ̈

∂FL,RL
= − ltread

2Iz
(A.22)

∂ψ̈

∂FL,RR
=
ltread
2Iz

(A.23)

∂ψ̈

∂δ
=

1

Iz
{lfront (cFL + cFR) · cos δ

−

[
lfront (cFL + cFR)

(
δ − β − lfrontψ̇

vcg

)

+
ltread

2
(FL,FR − FL,FL)

]
· sin δ

+
ltread

2
(cFL − cFR) · sin δ

+

[
ltread

2
(cFL − cFR)

(
δ − β − lfrontψ̇

vcg

)
+lfront (FL,FR + FL,FL)] · cos δ

−lrear (cRL + cRR)} (A.24)

Appendix B

Matlab-script for Importing

Raw Data

1

2 %% clean up
3 close all
4 clear all
5 clc
6

7 %% load data
8 'Loading data ...'
9 newData1 = importdata('logg_test_bil_aktiv_06_07_2010.txt');
10

11 % Create new variables in the base workspace from those fields.
12 for i = 1:size(newData1.colheaders , 2)
13 assignin('base', genvarname(newData1.colheaders{i}), newData1.data(:,i

));
14 end
15

16 %% fix data
17 'Fixing data orientation ...'
18

19 % length of data
20 range = 1: length(seconds);
21

22 % find timestamp
23 time = zeros(length(range) ,1);
24 for i = 1: length(range)
25

26 time(i) = ...
27 hour(i)*60*60*1000+ minute(i)*60*1000+ seconds(i)*1000+ nano(i)

*10^ -6;
28

29 end

105

106 APPENDIX B. MATLAB-SCRIPT FOR IMPORTING RAW DATA

30

31 % convert time to seconds
32 log.time = (time -min(time))/1000;
33

34 % rotation matrix from sensor frame to vehicle body frame
35 R = [1 0 0;
36 0 1 0;
37 0 0 1];
38

39 % create measurement vectors
40 acc = [acc_x acc_y acc_z]';
41 gyr = [gyr_x gyr_y gyr_z]';
42 vel = [vel_x vel_y vel_z /100] ';
43 ori = [euler_roll euler_pitch euler_yaw]';
44

45 % allocate logdata vector size
46 log.acc = zeros(length(range) ,3);
47 log.gyr = zeros(length(range) ,3);
48 log.vel = zeros(length(range) ,3);
49 log.ori = zeros(length(range) ,3);
50

51 for i = 1: length(range)
52

53 % store inertial velocities
54 log.vel_in(i,:) = (vel(:,i)) ';
55

56 % store roll , pitch and yaw
57 log.ori(i,:) = ori(:,i) ';
58 log.orgheading(i) = ori(3,i);
59

60 % find velocities in sensor frame
61 R_x = [1 0 0;
62 0 cosd(log.ori(i,1)) -sind(log.ori(i,1));
63 0 sind(log.ori(i,1)) cosd(log.ori(i,1))];
64

65 R_y = [cosd(log.ori(i,2)) 0 sind(log.ori(i,2));
66 0 1 0;
67 -sind(log.ori(i,2)) 0 cosd(log.ori(i,2))];
68

69 R_z = [cosd(log.ori(i,3)) -sind(log.ori(i,3)) 0;
70 sind(log.ori(i,3)) cosd(log.ori(i,3)) 0;
71 0 0 1];
72

73 log.vel_s(i,:) = ((R_z*R_y*R_x)' * log.vel_in(i,:) ') ';
74

75 % rotate velocity and mesaurements from sensor frame to vehicle body
76 % frame
77 log.vel_b(i,:) = (R * log.vel_s(i,:)')';
78 log.acc(i,:) = (R * acc(:,i)) ';
79 log.gyr(i,:) = (R * gyr(:,i)) ';
80

81 % rotate yaw 180 degrees
82 log.ori(i,3) = ori(3,i) + 180;
83 if abs(log.ori(i,3) > 180)
84 log.ori(i,3) = log.ori(i,3) - 360* sign(log.ori(i,3));
85 end
86 end
87

107

88 % correct servo signal neutral point and convert to simulator
89 % actuator input (integer between 0-254)
90 log.steering = (servo1 /500 - 1.54) *254 + 127;
91 log.throttle = (servo2 /500 - 1.46) *254 + 127;
92

93 % transform longitud , latitude , altitude to NED frame
94 'Transform position to NED coordinates ...'
95

96 % preallocate vectors
97 x_ned = zeros(length(range), 1);
98 y_ned = zeros(length(range), 1);
99

100 llh0 = [lon (1) lat (1) alt(1)];
101 for i=1: length(range)
102 llh = [lon(i) lat(i) alt(i)];
103

104 dned = dllh2dned(llh , llh0);
105

106 x_ned(i) = dned (1);
107 y_ned(i) = dned (2);
108

109 end
110

111 log.pos = [x_ned y_ned];
112

113 %% locate test data
114 'Locating tests in log data ...'
115 numTests = 2;
116

117 for test = 1: numTests
118

119 % look up test time range
120 switch test
121 case 1
122 startsAtTime = 323;
123 stopsAtTime = 330;
124 case 2
125 startsAtTime = 480;
126 stopsAtTime = 515;
127 case 3
128 startsAtTime = 520;
129 stopsAtTime = 550;
130 end
131

132 % find start and stop index
133 StartIndex = 0;
134 EndIndex = 0;
135 i = 1;
136

137 while ~StartIndex
138 if log.time(i) > startsAtTime
139 StartIndex = i;
140 end
141 i = i + 1;
142 end
143

144 while ~EndIndex
145 if log.time(i) > stopsAtTime

108 APPENDIX B. MATLAB-SCRIPT FOR IMPORTING RAW DATA

146 EndIndex = i;
147 end
148 i = i + 1;
149 end
150

151 testData(test).Time = log.time(StartIndex:EndIndex);
152 testData(test).Acc = log.acc(StartIndex:EndIndex , :);
153 testData(test).Gyr = log.gyr(StartIndex:EndIndex , :);
154 testData(test).Vel_b = log.vel_b(StartIndex:EndIndex , :);
155 testData(test).Vel_s = log.vel_s(StartIndex:EndIndex , :);
156 testData(test).Vel_in = log.vel_in(StartIndex:EndIndex , :);
157 testData(test).Ori = log.ori(StartIndex:EndIndex , :);
158 testData(test).orgheading = log.orgheading(StartIndex:EndIndex);
159 testData(test).Pos = log.pos(StartIndex:EndIndex , :);
160 testData(test).Throttle = log.throttle(StartIndex:EndIndex);
161 testData(test).Steering = log.steering(StartIndex:EndIndex);
162

163 end
164

165 %% plot log data
166 'Creating plots ...'
167 close all
168

169 % which test to plot
170 test = 2;
171

172 % plot map
173 figure ()
174 plot(testData(test).Pos(:,2), testData(test).Pos(:,1))
175 grid on
176 axis tight
177 axis equal
178 xlabel 'East [m]'
179 ylabel 'North [m]'
180 title ('Map of Testdrive ', 'Interpreter ','Latex ','Fontsize ', 14)
181

182 % add timestamps
183 for i = 1:100: length(testData(test).Pos(:,2))
184 text(testData(test).Pos(i,2), testData(test).Pos(i,1), ...
185 strcat('\leftarrow t=', int2str(testData(test).Time(i)), 's'))
186 end
187 set(gcf ,'Position ', [600 400 800 600])
188

189 % plot data
190 figure ()
191

192 % plot velocity body
193 handle (1) = subplot (411);
194 hold on
195 plot(testData(test).Time , testData(test).Vel_b (:,1))
196 plot(testData(test).Time , testData(test).Vel_b (:,2) ,'r')
197 title ('Velocity ', 'Interpreter ','Latex','Fontsize ', 14)
198 grid minor
199 ylabel 'Velocity [m/s]'
200 xlabel 'Time [s]'
201 legend ('V_x','V_y')
202 axis tight
203

109

204 % plot accelerations
205 handle (2) = subplot (412);
206 hold on
207 plot(testData(test).Time , testData(test).Acc(:,1))
208 plot(testData(test).Time , testData(test).Acc(:,2) ,'r')
209 title ('Acceleration ', 'Interpreter ','Latex','Fontsize ', 14)
210 ylabel 'Acceleration [m/s^2]'
211 xlabel 'Time [s]'
212 grid minor
213 legend ('Acc X','Acc Y')
214 axis tight
215

216 % plot actuator commands
217 handle (3) = subplot (413);
218 hold on
219 plot([testData(test).Time (1) testData(test).Time(end)], ...
220 [127 127], 'g' ,'HandleVisibility ','off')
221 plot(testData(test).Time , testData(test).Throttle (:,1))
222 plot(testData(test).Time , testData(test).Steering (:,1) ,'r')
223 title ('Control Inputs ', 'Interpreter ','Latex','Fontsize ', 14)
224 ylabel 'Input Value [0 -254]'
225 xlabel 'Time [s]'
226 grid minor
227 legend ('Throttle ', 'Steering ')
228 axis tight
229

230 % plot heading
231 handle (4) = subplot (414);
232 plot(testData(test).Time , testData(test).Ori(:,3) ,'b')
233 title ('Heading ', 'Interpreter ','Latex','Fontsize ', 14)
234 ylabel 'Heading [degrees]'
235 xlabel 'Time [s]'
236 grid minor
237 legend 'Heading '
238 axis ([testData(test).Time (1) testData(test).Time(end) -180 180])
239

240 linkaxes(handle , 'x');
241 set(gcf ,'Position ', [800 100 707 900])

110 APPENDIX B. MATLAB-SCRIPT FOR IMPORTING RAW DATA

Appendix C

Feedback Linearization

Controller Code

Below is the code implemented in the feedback linearization controller in SIMULINK:

1 function tau = fcn(speed , beta , psi_dot , speed_ref , psi_dot_ref , m_car ,
I_z)

2

3 m = m_car;
4 mv = m_car*speed;
5

6 % nonlinear system
7 g = [cos(beta)/m sin(beta)/m 0;
8 -sin(beta)/mv cos(beta)/mv 0;
9 0 0 1/I_z];
10 f = [0 -psi_dot 0]';
11

12 % linear P-controller
13 kp_v = 4;
14 kp_b = 100;
15

16 v = [-kp_v*(speed - speed_ref);
17 -kp_b*(psi_dot - psi_dot_ref);
18 0];
19

20 tau = inv(g)*(-f + v);

111

112 APPENDIX C. FEEDBACK LINEARIZATION CONTROLLER CODE

The control allocation block is implemented as:

1 function [th , st]= fcn(tau , delta , beta , psi_dot , v, l_front)
2

3 K = [3 0;
4 0 6];
5

6 T = [1 -sin(delta);
7 0 cos(delta);
8 0 l_front*cos(delta)];
9

10 u = K\(((T'*T)\T')*tau);
11

12 th = u(1);
13

14 alpha = u(2);
15 st = (alpha + beta + l_front*psi_dot/v);

	Title Page
	Abstract
	Preface
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 The LocalHawk Project
	1.2.1 The LocalBug System
	1.2.2 Previous Work

	1.3 Contribution of Thesis
	1.4 Consulted Literature
	1.5 Outline of Thesis

	2 Mathematical Preliminaries
	2.1 Lie Derivatives
	2.2 Non-Holonomic Systems
	2.3 The Moore-Penrose Pseudoinverse

	3 Principles of Guidance, Navigation & Control
	3.1 Control of Underactuated Vehicles
	3.2 Feedback Linearization
	3.2.1 I/O Linearization For SISO Systems
	3.2.2 I/O Linearization For MIMO Systems

	4 Vehicle Models
	4.1 Vehicle Coordinate Systems
	4.2 Nonlinear Two-Track Vehicle Model
	4.3 Linearized Vehicle Model

	5 The LocalBug Simulator
	5.1 Status of the LocalBug Simulator
	5.2 Motor and Driveline Model
	5.3 Wheel Drive Configuration
	5.4 Measurement Noise Model
	5.4.1 Data Recording

	5.5 Measurement of Wheel Moment of Inertia
	5.5.1 Experimental Setup
	5.5.2 Test Result

	5.6 Measurement of Vehicle Moment of Inertia
	5.6.1 Experimental Setup
	5.6.2 Calibration of testing apparatus
	5.6.3 Test Result

	5.7 Using the LocalBug Simulator
	5.8 Validation of the Simulator
	5.8.1 Raw Data
	5.8.2 Case 1: Straight-line Acceleration and Breaking
	5.8.3 Case 2: Slalom Steering with Constant Velocity
	5.8.4 Case 3: Constant Steering with Increasing Velocity

	5.9 Discussion of Results

	6 Nonlinear Controller Design
	6.1 The Control Objective
	6.2 The Control Design Model
	6.3 Feedback Linearizing Controller
	6.4 Control Allocation
	6.5 Controllability During High Angle of Sideslip
	6.6 SIMULINK Implementation

	7 Simulation Results
	7.1 Case 1: Cornering on Wet Cobblestones
	7.2 Case 2: Cornering on Snow
	7.3 Case 3: Robustness to Parametric Uncertainties
	7.4 Case 4: Comparison With PID Controller
	7.5 Discussion of Results

	8 Conclusions
	8.1 Further work

	Bibliography
	A Equations for the Linearized Vehicle Model
	B Matlab-script for Importing Raw Data
	C Feedback Linearization Controller Code

