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Problem description
Motion planning for industrial manipulators is a challenging task when
obstacles are present in the workspace so that collision-free paths must
be found. However, not all paths are suitable for optimal task per-
formance in terms of execution time or energetic cost. Trajectory
generation schemes must therefore consider the system dynamics in
order to find admissible solutions along a desired path subject to a
cost function.

A variation of the collision-free path for trajectory optimization shall
be investigated within a computational framework. Path adjustments
and trajectory optimization are extremely beneficial for today’s task
automation in industry. Moreover, an analysis of the system dynamics
around a desired trajectory can reveal the complexity behind a motion
control problem. A standard trajectory tracking control law might not
always give the expected performance for the closed loop system due
to unmodeled dynamics or actuation constraints. This gives rise for
geometric control methods that enforce convergence to the desired
orbit in state space rather than tracking a time reference.

The procedure of analytically computing a transverse linearization and
subsequent system analysis and control shall be studied. Based on so-
called virtual holonomic constraints one can synchronize the actual
movement of the individual links so that the positioning accuracy is
at best and a possibility of scaling the speed along a chosen path is
provided.

Assignment given: 10. January 2011

Supervisor: Professor Anton Shiriaev
Co-supervisor: Dr. Uwe Mettin



ii

Acknowledgements

First I would like to thank my supervisor Professor Anton Shiriaev for
giving me this opportunity to work on topics which I find so interest-
ing. I have met many challenges and my learning outcome has been
immense.

Second I would like to thank my co-supervisor Dr. Uwe Mettin for
his comments, and patience, which have been invalueable over the last
year.

Third I would like to thank my fellow student Øystein Sakspapir
Henriksen for his help with proofreading and for good companion-
ship.

Finally I would like to thank my friends and family that have made
the last five years a wonderful time.

Torstein Anderssen Myhre, June 6, 2011



iii

Abstract

Many unsolved problems exists in the field of robot control. This text
investigates state of the art methods for path finding, trajectory gener-
ation and control in order to identify their properties, which problems
they are applicable to, and their weaknesses. This is done by applying
them to problems with actual real-world relevance.
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Chapter 1

Introduction

1.1 Scope of this Text

Robot manipulators takes on ever more important roles on the factory
floors around the world. They have been useful for relieving humans
of simple repetitive and hazardous work. One of the problems with
existing robot installations are limited flexibility. The robots must be
reprogrammed by a human operator when the environment changes.
The goal of this text is to investigate methods available for control and
automatic motion planning. The calculations are based on the IRB
140 robot manipulator from ABB. The available data that describes
this manipulator can be found in Appendix A.2.

The introductory Chapter 1 contains definitions and descriptions of
the basic concepts that the rest of this text are based on. The concern
of Chapter 2 and 3 are to investigate methods that are available for
path and trajectory planning. Some example problems are given in

1
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each section in order to understand how the methods work. The goal
is to understand what kind of problems they can solve, what their
properties are and what the limitations are.

The topic of Chapter 2 is path planning for robot manipulators. The
Rapidly Exploring Random Trees method is thoroughly described be-
fore it is applied to test problems which demonstrates its behavior.
Related methods for optimization of paths are also discussed, along
with some prerequisites like collision detection.

The initial part of Chapter 3 discusses a method for calculating optimal
trajectories for manipulators. The latter part of Chapter 3 describes
an attempt to utilize this method in order to optimize paths, like those
found in Chapter 2.

Chapter 4 describes an attempt to use a recently developed method
of analytically transverse linearization to control a robot manipula-
tor. This method is compared with a standard inverse dynamics con-
troller.

The above mentioned methods for path planning, trajectory genera-
tion, and motion control are implemented and further developed in
Matlab, for which supplementary files are attached to this text. A
virtual demonstrator using OpenGL is used to visualize some manip-
ulation tasks.

1.2 Basic Concepts and Terminology

In literature different spaces are introduced in order to describe the
positions, velocities and physical structure of robots. Which space that
is used depends on whether it it is the most convenient for the purpose.
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Therefore transformations are required that allows you to go between
the different spaces. This is considered in the section concerning robot
kinematics.

The world space, denoted by W , is a 3 dimensional Euclidean space.
This is the space where descriptions of physical objects are given. It
has a metric which allows fast and reasonable calculation of distances
between the objects. The physical objects are represented in W by
closed and bounded sets of points. The set of all these physical objects
constitutes the obstacle space O.

A robot consists of physical links which also are represented in W by
closed and bounded sets of points. The links considered in this project
are rigid. This means that each link can be completely described
by specifying its position and orientation. A robot is a collection
of such links, where pairs of links are connected by joints. A joint
has one degree of freedom, which is a value in R. This makes it
possible to calculate the position and orientation of a link relative to a
neighbouring link. If all these joint values are stored in a specific order,
they can be represented as a vector of real numbers in a configuration
space C. So a point in the configuration space perfectly describes the
robot in the world space if the position and orientation of one of the
links are known. W-space and C-space are both smooth manifolds.
This allows one to associate a tangent space to each point on the
manifold in which velocities can be represented.

The structure of the configuration space depends on the type of robot.
A rotational joint adds a dimension to the robot which is homeomor-
phic to a circle S1, while a prismatic joint corresponds to a dimension
which is homemorphic to an interval in the real numbers, [a, b] ∈ R.
The robot manipulator used in this project consists of six rotational
joints. Its configuration space is therefore the product of six circles,
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which is the six dimensional torus S × · · · × S︸ ︷︷ ︸
6

.

1.2.1 Path

The mathematical definition of a path is for the purposes of this text
a continuous function from R or C. The continuous function can for
instance be represented by a spline. A spline is a function from an
interval on the real line to the real line, that is defined piecewise by
polynomials. The interval is divided into subintervals at points called
knots. For each subinterval there is a polynominal on the form

ain(x− xi)n + ain−1(x− xi)n−1 + · · ·+ ai1(x− xi) + ai0 (1.1)

that maps x to the range. Here n is said to be the order of the spline
and xi is the current knot, or the break in Matlab terminology.

A spline is represented in Matlab by a pp struct. The knotvector is
placed in the field pp.breaks, and the matrix of polynomial coefficients
is stored in the field pp.coefs like this


a0
n a0

n−1 . . . a0
1 a0

0
a1
n a1

n−1 . . . a1
1 a1

0
...

...
...

...
...

amn amn−1 . . . am1 am0

 (1.2)

It is easy to take derivatives of splines in the form of a pp struct. This
is done by moving each column of the pp.coefs matrix to the right
while multiplying by appropiate constants
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a0
n a0

n−1 . . . a0
1 a0

0
a1
n a1

n−1 . . . a1
1 a1

0
...

...
...

...
...

amn amn−1 . . . am1 am0

 d

dx
7−→


0 na0

n (n− 1)a0
n−1 . . . a0

1
0 na1

n (n− 1)a1
n−1 . . . a1

1
...

...
...

...
...

0 namn (n− 1)amn−1 . . . am1


(1.3)

By using the cubic Hermite basis polynomials each polynomial piece
can be uniquely specified by the values and the tangents of the under-
lying function at knot xi−1 and xi.

(2t3−3t2 +1)p0 +(t3−2t2 + t)m0 +(−2t3 +3t2)p1 +(t3− t2)m1 (1.4)

By inspecting (1.4) it can be shown that it has the value p0 for t =
0 and p1 for t = 1. The same with its derivative and the m0,m1
values.

Three different functions are used to construct cubic Hermite splines.
Matlab provides the function pwch which takes as input function val-
ues and tangents and returns the corresponding pp struct for this
cubic Hermite spline. Matlabs pchip function is also used. It con-
structs a spline with minimal overshoot that interpolates between a
list of points.

For a cubic spline the polynomial are cubic in the path variable. This
makes it possible to create a spline which has a continuous second
order derivative. This can be done in Matlab with the function spline
or the function interp1 with the ’spline’ option.
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1.2.2 Homotopy between curves

Two paths are said to be homotopic if they can be continuously de-
formed to the other[11]. Randomized path planning methods are of-
ten able to find paths in spaces with complicated configuration spaces.
These paths are generally not optimal with respect to time or energy
consumption given the dynamics of a robot. It would be useful to take
the solution found by the randomized method and continuously deform
it to a path that has better performance. By continuously strech and
deform the original path a better path within the homotopy class can
be found.

Figure 1.1: Homotopy between curves

1.3 Modelling

1.3.1 Kinematic Model

The forward kinematics is a mapping from coordinates in the configu-
ration space to the position and orientation of each link in world space.
A robot is best described by using multiple reference frames. Rigid
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parts of the robot, points that never moves relative to each other, are
described by using the same frame. A kinematic model is made by
finding the rules that governs the tranformations between the refer-
ence frames.

d

a

Θ

α

yi−1
xi−1

zi−1

yi

xi

zi

Figure 1.2: Transformation by Denavith-Hartenberg convention

A serial structure, such as a robot manipulator, can be described
with less than six parameters for each link if the coordinate systems
are choosen cleverly. A common way of doing this is the Denavit-
Hartenberg convention. Only four parameters are required because
the axis xi+1 are restricted to be perpendicular and to intersect axis
zi. The parameters are denoted θ, α, a and d and represents two
rotations and two translations, as illustrated in Figure 1.2.

These parameters have an intuitive interpretation that are easy to
visualize. First there is a rotation and translation about axis zi, given
by θ and d. Then α and a specifices the rotation and translation about
the temporary x-axis resulting from the two first transformations. The
structure of the robot can be written down in a tabular format, as
illustrated in Table 1.1, with one row of parameters per frame.
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Table 1.1: Table with DH-parameters
θ d α a
θ1 d1 α1 a1
...

...
...

...
θn dn αn an

The four coordinate transformations given by a row in the DH-table
can be multiplied together. The result, illustrated in (1.5), is a matrix
that represents an affine tranformation. The 3 × 3 upper left sub-
matrix represents the rotation and the 3 × 1 upper right sub-matrix
represents the translation vector.

T i−1
i = Rotz,θTransz,dTransx,aRotx,α

=


cθi
−sθi

cαi
sθi
sαi

aicθi

sθi
cθi
cαi

−cθi
sαi

aisθi

0 sαi
cαi

di
0 0 0 1

 (1.5)

The geometry of the robotic links is described relative to their associ-
ated reference frames.

The forward-kinematic mapping C → W is unique, but the inverse is
often not. A point given in configuration space corresponds to a unique
end-effector pose in world space, R3 × SO(3), but for a given end-
effector pose there can be more than one point in configuration space
that would give this pose. The Jacobian of the inverse transformation
will be singular at these points. This may cause problems when trying
to find the inverse of the forward kinematics. It can be difficult to
determine which point in C-space that is appropiate.

The forward kinematics also gives a mapping between the tangent
space of C-space to the tangent space of W-space. This differential



1.3. MODELLING 9

map is represented by a Jacobian matrix. There will be singularities
in the Jacobian when there are singularities in the mapW → C.

1.3.2 Dynamic Model

A dynamic model gives the relation between the forces acting on a
robot and its velocities and positions. The differential equations de-
scribing these relations can be found by applying the Euler-Lagrange
equation to the Lagrangian associated with the robot.

The solutions to the Euler-Lagrange equation is the minimizer of the
action integral over a path between the initial and final point, which
is the path that the mechanical system will follow[8]. The differen-
tial equations given by the Euler-Lagrange equation only considers
the forces and velocities associated with the generalized coordinates.
This makes this method easier than the Newtonian approach, where
opposing forces must be identified and cancelled.

The Lagrangian of a system is a function defined as the difference
between the systems kinetic and potential energy. The kinetic energy
term is the sum of rotational and translational energy of each link,
while the potential energy term is the sum of potentional energy of
each joint.

L = K − P (1.6)

The rotational energy of link i is computed as ωTi Iiωi. Here ωi is the
rotational velocity of its associated reference frame and Ii is its inertia
matrix. The rotation of reference frame i is just the vector sum of the
rotation vectors of each joint leading up to this link.

The translational energy of link i is given by 1
2miv

T
i vi where vi is the

linear velocity of its mass center and mi is its mass. As explained in
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Section 1.3.1 velocities in reference frame i are related to velocities in
C through a linear map, which is a Jacobian matrix.

The total kinetic energy of the system can be represented as

K = 1
2 q̇

TM(q)q̇ =
∑
i,j

mij(q)q̇iq̇j (1.7)

whereM(q) is a positive definite matrix. This matrix is always positive
definite because the kinetic energy always must be positive.

1
2 q̇

TM(q)q̇ ≥ 0

The inertia, the mass of each link and the mass-centers must be found
in order to make a good dynamic model of the robot manipulator.
This can be difficult for a robot manipulator where the links have
arbitrary shape and mass distributions. Often system identification
methods are used to estimate what those parameters might be. This
is a complex and timeconsuming task which is outside the scope of
this project. Therefore the parameters used in this project are not the
actual values of the manipulator.

The Euler-Lagrange equation is given by (1.8), where the right-hand
side can be replaced by a vector of generalized forces accounting for
the non-conservative forces of actuators and friction.

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0 (1.8)

The resulting equations can be very complicated for a robot with six
degrees of freedom. It is most practical to derive the equations in a
symbolic mathematics tool like Maple. Maple can export the equations
to Matlab where the numerical values can be calculated.
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In [18, pp. 255-256] it is explained how the resulting differential equa-
tions can be put in the following form

n∑
j=1

mij(q)q̈j +
n∑
j=1

n∑
k=1

cijk(q)q̇j q̇k + gi(q) = τi (1.9)

The terms cijk in (1.9) are known as the Christoffel symbols. They are
computed from the mij terms as in (1.10).

cijk = 1
2

{
∂dkj
∂qi

+ ∂dki
∂qj
− ∂dij
∂qk

}
(1.10)

It is also possible to represent this equation in matrix form

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (1.11)

where M(q) is called the inertia matrix, C(q, q̇) the Coriolis-centrifugal
matrix and G(q) is the gravity vector. The form in (1.9) is especially
useful for trajectory generation because it is linear in the q̇j q̇k com-
ponents. This will be exploited for trajectory generation in Chapter
3. The matrix form in (1.11) is useful for control because M(q) is
invertible which allows q̈ to be easily manipulated.

Another concept, that will be used in Section 4.2, is the notion of
holonomic constraint [14]. A relation between the C-space variables
q and its time-derivatives q̇ is said to be a holonomic constraint if it
is integrable. This means that it can be written as a function of the
positions q alone.

h(q) = 0
The holonomic constraint defines a sub-manifold of the original C-
space which q is forced to lie on.

An example of a non-holonomic constraint is that of a car which is
forced to move in the direction of its front wheels [18, p.365]. By
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executing a clever sequence of manouvers it is in theory possible to
make the car move sideways. An example of a holonomic constraint
is the cylinders of a car-engine. They confine the pistons to move
along a one-dimensional line, which is a sub-manifold of the ambient
three-dimensional space.

1.3.3 Constraints

A model of the environment is required as well. During path planning
lots of checks are made to ensure that the robot does not collide. This
model must provide information about which parts of W belongs to
Wfree.

The information can be encoded in different ways, like for instance
point clouds, parametric surfaces or polygonal meshes. In this project
polygonal meshes are used because they are simple to understand and
simple to use with a collision detection library. Distances between
objects and intersection checking can be computed readily.

In the future, this model will be based on a-priori information about
physical objects combined with inputs from sensors like lasers, stereo
cameras, point clouds generated by the Kinect sensor from Microsoft
etc. Object recognition and computer vision are huge research fields.
Lots of methods exists, but they are not yet mature enough to be easy
to use for specific applications like this.

3d-modelling tools like Blender1 og 3ds Max2 can be used to build
models that represents the environment. Blender was used because it
is free software, and it has more than enough features to easily build

1http://www.blender.org/
2http://usa.autodesk.com/3ds-max/
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simple environments.

Figure 1.3: A polygonal mesh representation of a circle

The visual renderings of robots are made with OpenGL. OpenGL is
an API which renders polygons and polygonal meshes. It can take a
list of polygons, like triangles, and apply tranformations, like rotation,
translation and scaling, before presenting it on on the screen.

This makes it easy to make a visual representation of a robot. The links
are rendered by taking the transformation generated by its associated
forward kinematics and applying it to all the vertices comprising the
model.

The detailed polygonal model of the robot is provided by ABB on
their webpage 3. It is very detailed and consists of hundreds of thou-
sands of vertices. A much simpler bounding boxes model that consists
of a rectangular box for each link was also used here. It was made
by adjusting their dimensions to approximately enclose the detailed
model.

3http://www.abb.no/product/seitp327/7c4717912301eb02c1256efc00278a26.aspx
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Chapter 2

Path Generation

2.1 Path-Planning Methods

The goal of path planning is to find a path for a robot from an ini-
tial position to a goal position. Path planning is in general a very
difficult problem. A specific problem type is defined by the type of
robot and the representation of obstacles. The complexity of the prob-
lem increases with the dimensionality of the C-space. A complicated
C-space structure can also make the problem more difficult. The com-
plexity also depends on the shape of obstacles and how they define the
obstacle-free space.

Algorithms that are good for solving specific types of problems have
been developed over the years, but they may be infeasible when applied
to other problem types. For instance the exact combinatorial methods
[10, p. 249] which are guaranteed to find a solution, or report that
no solution exists, quickly becomes infeasible for other than a special

15
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class of planning problems.

An algorithm that can be used for the robot manipulator problem is
minimization of a potential function by numerical optimziation[18, p.
168]. The potential function is composed of attractive and repulsive
fields. The attractive fields are mathematical “wells” that are placed
around goal positions in order to attract the solution in that direc-
tion, while repulsive fields are placed on obstacles that pushes the
solution away from them. This algorithm can be run online by mov-
ing the robot manipulator as the solution is calculated. A big problem
with this method is that the search can be trapped in local minimas,
especially when there are many complicated obstacles that must be
avoided.

In recent years there has been much research in the field of sampling-
based path-finding. These methods attempt to build a graph that
represents the connectivity of Cfree. The graphs are built by sampling
points from C. If the points are collision-free an attempt is made to
connect it with the rest of the graph. The points can be sampled at
random or in a deterministic fashion. The most important property
of the sampling algorithm is that the samples should be dense in Cfree
as the number of samples increases.

Probabilistic Roadmaps [6] is a well known sampling-based method. In
its preprocessing phase it constructs a roadmap which can be used for
multiple queries. It is applicable to situations where the environment is
static, and multiple path-finding queries are likely to be made without
Cfree changing.

The RRT method [9] developed by Steven LaValle is a single query
method. It builds a graph G in the form of a tree with the initial
position as the root node and expands the graph until it is connected to
the goal position. As it is close to impossible to represent real physical
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structures in C-space it lets collision checking libraries perform collision
checking in W-space, instead of trying to map the information back
into C-space. It has shown good performance on problems with high
dimensionality and with complicated obstacles.

As computers have limited memory and cpu-time it would be prefer-
able to build trees with as few nodes as possible. RRT has some
properties that makes it well-suited in this regard.
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Figure 2.1: A planar RRT with 30 nodes and their Voronoi regions

The blue lines in Figure 2.1 represents the Voronoi regions of the graph
nodes. The green lines represents the edges of the tree between the
nodes in red. The Voronoi region around a point p ∈ G is the set
of points closer to p than to all the other points in G. Because the
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largest Voronoi regions are most likely to be sampled it means that
the tree will most likely be grown in a direction where there are few
other points.

Variations of this algorithm that are better at solving some problem
types has been published since the first paper in 1998. For instance
RRTDual, which grows a tree from the initial state and another tree
from the goal state. When the closest pair of nodes from the two
trees are close enough the two trees are merged, and a path can be
found.

Basic algorithm

The RRT algorithms builds a tree data structure that becomes a dis-
crete approximation of Cfree. The nodes represent collision-free points
in the configuration space and the edges represents possible trajecto-
ries between the points.

This is the basic RRT generating algorithm as described in [9]. G is
the tree data structure, xinit is the initial position.

Random sampling in the configuration space is used to expand the
tree. The function NEAREST NEIGHBOR finds the node closest to
the random point, and the tree is expanded from there. As demon-
strated in [9] this causes the largest Voronoi regions of the treenodes to
be explored first, because they have the greatest probability of being
sampled. This ensures that the tree rapidly explores the uncharted
configuration space.

By modifying SELECT INPUT an implementation can even take
account of the dynamics of the system. SELECT INPUT will find
an input that brings the system from Xnear towards Xrand. This closer
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Algorithm 2.1 RRT generating algorithm

G.init(xinit)
for k = 1→ K do
i← i+ 1
xrand ← RANDOM STATE()
xnear ← NEAREST NEIGHBOR(xrand,G)
u← SELECT INPUT (xrand, xnear)
xnew ← NEW STATE(xnear, u, δt)
G.add vertex(xnew)
G.add edge(xnear, xnew, u)

end for

point, Xnew, is added to the graph as a new node.

Simple planar RRTs without obstacles are demonstrated in Figure 2.2.
The trees rapidly extends throughout the available C-space. The tree
to the left consists of 100 nodes. When new nodes are added it will
extend outwards and its convex hull will be enlarged. The convex hull
of the right tree almost fully covers the entire C-space, and the new
nodes that are added are mostly filling out the blanks between the
branches.

A sample application of RRTs is illustrated in Figure 2.3. A small
mobile robot in the shape of a dot is supposed to navigate through a
maze, from an initial position to a goal position. The red polygons
represent obstacles that must be avoided. The tree expands from the
initial point until it reaches the vicinity of the goal. The graph is a
tree structure which makes it possible to use backtracking to find the
correct path between the initial and goal node. It should be noted that
this particular simple example also can be solved by for instance com-
binatorial methods. The goal of the rest of this chapter is to demon-
strate how this concept can be extended to the more complicated robot
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Figure 2.2: Planar RRT with 100 and 500 nodes

manipulator problem, where other methods may be infeasible.

The RRT method generates a continuous path that avoids collisions.
It finds a solution within a homotopy class, but there may also exists
other solutions within other homotopy classes. The solution it finds is
with high probability not optimal with respect to path length. Other
methods must be used to improve the solutions, but the RRT method
finds a feasbile starting point. An attempt to optimize the paths found
for the robot manipulator is described in Section 2.5. The Matlab code
that generated the illustrations used in this section can be found in
the folder RRTMatlab in the attached files.
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Number of nodes: 516

Figure 2.3: A planar maze solved by the RRT algorithm
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2.2 Collision Detection

The path finding algorithms finds a path through C-space. These paths
must be checked before they are accepted as valid. Both for collisions
with the environment and among the links themselves. Point collision
detection is the basic form of collision detection in C-space.

A line consists of infinitely many points and it is infeasible to check
every one of them. Collision detection along lines can be done because
it is possible to find a bound on the distance from a point in C-space to
an obstacle. This bound is used to ensure that samples are taken from
the lines densely enough to guarantee that it is collision free.

2.2.1 Point collision detection

A point in the configuration space can be tested for collisions in W-
space, where the robot is represented by polygonal meshes. Methods
from computational geometry can be used for polygon-polygon inter-
section testing. In this project all the polygons are triangles. It is a
simple shape with fast methods available for distance computations.
Methods for finding the distance between points and triangles, lines
and triangles and between pairs of triangles can be found in for in-
stance [3].

In addition, the complexity of the collision checking is reduced by
enclosing the robots geometry in bounding boxes. The boxes have
simpler geometry than the detailed robot model and it is therefore
cheaper to check it for collisions.
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Figure 2.4: Bounding box model colliding with environment. The
environment was modelled in Blender, the bounding box model was
created with the robot visualization software attached to this report.

2.2.2 Line collision detection

In addition to collision checking of points it is also possible to check
whether a line between two points in C-space is collision free. The goal
is to move a manipulator, like the one in Figure 2.5, along the straight
line from configuration q to q′.

The total motion of link i will have contributions from the rotation
around the axes z0 to zi−1. It is possible to find a bound on the largest
distance any point on link i is free to move from a given configuration.
The total displacement will be less than the sum of some Lipschitz
constants multiplied by the displacement of each joint [10, p. 214].
For the manipulator in Figure 2.5 the array of Lipschitz constants will
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Figure 2.5: 2-dof manipulator

look like  Link1 Link2
z0 c10 c20
z1 0 c21


Let Pi(q) be the set of all points that constitutes link i when the
configuration is given by q. Then the following bound holds for all
pi(q) ∈ Pi(q) for small enough displacements q′.

‖pi(q)− pi(q′)‖ ≤
∑
j

cij|qj − q′j|

The link will not collide if the distance ‖pi(q)− pi(q′)‖ for all points on
the link is less than the distance to the closest obstacle in configuration
q. If the bound is larger than the distance to the closest obstacle we can
divide the line in two pieces and check each piece individually.

The Lipschitz constant cij can be found as the largest distance of any
point on link i from axis zj.
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zj

oj

cij pi(q)

Figure 2.6: Geometry of a point pi(q) on a link. The box represents
the joint, which is the origin of reference frame j.

The distance between a point pi(q) and the axis zj is found by the
following formula

cij = max
pi(q)∈Pi(q)

‖pi − oj‖ · sin(∠(zj, pi − oj)) (2.1)

For the manipulator used in this project the array of Lipschitz con-
stants will typically look something like Table 2.1.

Table 2.1: Typical Lipschitz constants for the manipulator
Link 1 Link 2 Link 3 Link 4 Link 5 Link 6

z0 384.543 138.653 328.779 269.565 255.395 301.137
z1 0 138.653 245.047 339.105 327.391 392.526
z2 0 0 245.035 339.232 327.584 392.796
z3 0 0 0 157.582 34.4761 112.747
z4 0 0 0 0 34.4713 112.792
z5 0 0 0 0 0 69.202
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2.3 Program Description

The four boxes in Figure 2.7 represents modules that implements the
path generation functionality described in this chapter. The boxes
inside the blue hatched rectangle are the modules implemented during
this project, while the two boxes outside are external libraries made
by third parties.

MSL is an abbreviation for the Motion Strategy Library which is a
library made by the creators of RRT. It implements several path-
finding algorithms in a generic manner, which makes it easy to test
the different methods. MSL requires the use of PQP, the Proximity
Query Package, which is a collision detection library. This library
is used because it is well-integrated with MSL, but other collision
detection libraries could also easily be used.

MSL PQP

ModelIRBSingle PathOptimization

Figure 2.7: Path generation program. The boxes represent the mod-
ules that implements the main functionality. MSL - Motion Strategy
Library. PQP - collision detection. ModelIRBSingle - Robot kinemat-
ics.

ModelIRBSingle represents the class that contains code to calculate
forward kinematics, the tilt angle of the end-effector and the Lipschitz
constants used for line collision detection. It is always the corners of
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the bounding boxes that moves the farthest as the joints rotates. The
corners are loaded into an array and the Lipschitz constants are calcu-
lated for a given configuration by the procedure described in Section
2.2.2. This means that the constants must be calculated for the eight
corners of the bounding box for each of the six links.

PathOptimization is the class which does line collision detection and
heuristic path optimization. This requires the Lipschitz constants cal-
culated by ModelIRBSingle and the collision detection functionality of
PQP.

The program described here can be found in the folder RRTCpp in
the attached files.

2.4 Path Generation Simulation

In the experiment of this section the goal is to find a path that moves
the manipulator from a start position to a goal position. The envi-
ronment is a cabinet with two rooms. This simulation demonstrates
several problems. The manipulator must find a path in an environ-
ment that is represented as polygons in world space. It must also find
the path while avoiding hitting obstacles.

It is also possible to include additional constraints. If for instance
the robot is carrying a glass of water it should not tilt the glass more
than a few degrees from the vertical. As shown in Figure 2.8 this is
equivalent to the constraint that the angle between the y-axis and the
vertical should be below a certain value.

Different constraints generates paths that looks qualitatively different.
Without any constraints a path is found that may look strange to a
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Figure 2.8: End-effector reference frame.

human robot programmer. By including constraints the paths looks
more like something which a human programmer might generate.

Figure 2.9 and 2.10 illustrates the routes that the end-effector follows
for paths through C-space found by the RRT algorithm. As visualized
in the left figure lots of nodes are generated where the end-effector is
tilted sideways. The end-effector also rolls around its z-axis, which is
not something a human programmer would do, but it is a result of the
random nature of the path-finding algorithm. Compare this with the
right figure where the end-effector angles are restricted.

Figure 2.9: Without angle
constraint

Figure 2.10: With angle
constraint
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Table 2.2: Results of five runs with angle constraint
Tree nodes Path nodes Time

1 303 85 0.95s
2 361 83 1.16s
3 342 61 0.93s
4 242 40 0.68s
5 217 60 0.59s

Average 293 65.8 0.863s

The simulation with angle constraint is repeated five times in order
to see how the random nature of the path-finding algorithms affects
the running times and number of nodes required to find a path. The
results are given in Table 2.2.

The results shows that the algorithm easily finds a path between the
two rooms. The paths that the algorithm finds looks qualitatively
similiar to the path in Figure 2.10.

Even though the RRT algorithm finds paths with approximately the
same number of nodes in a few seconds in all the five experiments, there
is no guarantee that it always will demonstrate this good behavior
because it is based on random sampling. It is possible that it may not
even find a path before the computer runs out of memory.

The path that it finds is obviously much longer than necessary. It is
especially long when the path is generated without angle constraints.
Some post-processing is necessary to reduce path-length in order to
achieve good performance.
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2.5 Path Optimization

The path-finding algorithms find a path by making random moves
through the configuration space. It often finds paths that are much
longer than necessary. Sometimes the path may take detours or go in
circles. There is clearly a big potential for improvement. The methods
used to optimize such paths are heuristic, but works very well.

Two methods are often used. The simplest method is path pruning
which removes redundant nodes. A node is redundant if it is possible
to go directly from the node before with the node that comes after.

Algorithm 2.2 Path pruning

for k = 1→ length(P) do
if collision free(P(k),P(k + 2)) then
remove node(P(k + 1))

end if
end for

Another method called Shortcut works by repeatedly sampling two
points from the path and try to connect them by a straight line. Both
methods are described in for instance [4].

These methods requires collision checking along a line in configuration
space as described in Section 2.2.2. An observation is that both meth-
ods work on local parts of the path. This means that it is possible to
parallize the optimization and run it on several processors simultane-
ously, if desired.

The result of applying both methods to the planar maze example is
illustrated in Figure 2.11.
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Algorithm 2.3 Shortcut

P := rrt solution
for k = 1→ number of shortcuts do
t1← rand() ∈ (0, 1)
t2← rand() ∈ (0, 1)
if collision free(P(t1),P(t2)) then
P .insert node at(t1)
P .insert node at(t2)
P .remove nodes between(t1, t2)

end if
end for

In the following section both methods are tested on the paths found
by the RRT algorithm in Section 2.4.

The initial path is illustrated in Figure 2.12. It consist of 27 points
and is clearly not optimal with respect to path length. The result of
applying path pruning is shown in Figure 2.13. The algorithm iterated
until no nodes longer were redundant. This process removed 20 nodes.
The path is much better, but still not optimal. It should be possible
to reduce the path length further.

The result of running 400 shortcut iterations on the original path is
illustrated in Figure 2.14. This path is clearly shorter than the one
found by the other method, but still contains some redundant nodes.
The result after running path pruning on this path is illustrated in
Figure 2.15. The final path consists of eight nodes. As the figure
illustrates it is clearly a big improvement with respect to path length
and to the number of nodes required to describe the path.

The path is still jagged after optimization. Those sharp turns are
detrimental to path tracking performance. The dynamics of the robot
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Figure 2.11: Left: After path pruning . Right: After shortcut

would force it to a complete halt in order to exactly follow the path.
So it would be desired to further improve the paths in order to make
them dynamically feasible.

A way to do this could be to somehow combine the distance to obsta-
cles information along the path with an algorithm the optimizes paths
with respect to dynamics.
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Figure 2.12: Path through environment before optimization

Figure 2.13: After path pruning
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Figure 2.14: After 400 iterations of Shortcut

Figure 2.15: After 400 iterations of Shortcut and path pruning



Chapter 3

Trajectory Generation

3.1 Path-Constrained Dynamics

The problem of finding the fastest trajectory possible for a robot ma-
nipulator with six degrees of freedom is in general very complex. Ar-
bitrarily shaped objects placed in the workspace makes the robots
configuration space very complicated. There can be infinitely many
paths between two points in configuration space.

Even if it is possible to optimize motion along a path, perhaps by
perturbing the path until it is locally optimal, there may be solutions
within other homotopy classes that are better. And a search over the
full parameter space describing a path is a non-convex optimization
problem which is known to be very difficult.

A common approach is to divide the problem into two sub-problems.
First generate the desired path and secondly assign velocities along the
path. By decoupling the problem in this way the dimensionality of the

35
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trajectory optimization problem is reduced to the path coordinate and
its derivative. This approach has been investigated in papers published
from the 1980s until the present. See for instance [10, p. 846] for a
discussion.

The path coordinate is typically denoted s or θ. The configuration

space path is then parameterized as q(s) =
[
q1(s) q2(s) . . . qn(s)

]T
with velocities q̇(s) = q′(s)ṡ =

[
q′1(s) q′2(s) . . . q′n(s)

]T
ṡ and accel-

erations q̈(s) = q′′(s)ṡ2 + q′(s)s̈.

As mentioned already in Chapter 1 (1.9) is linear in the variable q̇j q̇k.
By substituting the path parameterization into this equation the robot
dynamics along the path is reduced to

n∑
j=1

mij(q(s))q′j(s)s̈+ gi(q(s))

+
 n∑
j=1

mij(q(s))q′′j (s) +
n∑
j=1

n∑
k1

cijk(q(s))q′j(s)q′k(s)
 ṡ2 = τi

(3.1)

where the equations now have the form

αi(s)s̈+ βi(s)ṡ2 + γi(s) = τi (3.2)

The dynamics of the robot along the path is now described by αi(s),
βi(s) and γi(s) for the two variables s and ṡ.

3.2 Time and Energy Optimal Trajecto-

ries

Given a velocity assignment ṡ(s) along the trajectory it is possible
to calculate the time it would take to execute the motion. By the
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following observation, dt = dt
ds
ds = 1

ṡ
ds, we can formulate integrals

that calculates the time the motion takes.

T =
∫ T

0
dt =

∫ 1

0

1
ṡ
ds (3.3)

It is also possible to calculate the amount of energy a certain motion
requires.

Ei =
∫ 1

0

τ 2
i (s)
ṡ

ds (3.4)

These two integrals can be combined into a functional that measures
a combination of time and energy. γ is a parameter that weights the
importance of the two terms.

J = T + γ
n∑
i=1

Ei (3.5)

The velocity of the system can be specified explicitly, by representing
ṡ as a function of s. Often conservative bounds on the speed of each
joint are given in datasheets, see [1, p.34] for the manipulator used in
this project. The speed of each joint can then be bounded by

‖q̇i(s)‖ ≤ ‖q′i(s)ṡ‖ ≤ ¯̇qi (3.6)

where ¯̇qi is meant to be the maximum speed of joint i. The maximum
allowed value of ṡ along the path can now be found.

max ‖ṡ‖ = min
i

¯̇qi
‖q′i(s)‖

(3.7)

It is also possible to assign the velocity of the reduced system implic-
itly, through the reduced dynamics in (3.2). In Appendix I of [17] the
following relation is found

s̈ = 1
2
dṡ2

ds
(3.8)
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When substituted into (3.2) the constraint becomes

1
2αi(s)

dṡ2

ds
+ βi(s)ṡ2 + γi(s) = τi (3.9)

which, as mentioned earlier, is linear in the ṡ variable. The maximum
allowed torque τ̄i can now be taken as the factor that sets limits on
the maximum value of ṡ instead.

It is possible to achieve a more optimial value of (3.5) by considering
the dynamics of the system directly, instead of using the more con-
servative, but simpler, velocity bounds. It is of course still possible to
include additional velocity bounds if desired. A method for perform-
ing this optimization by dynamic programming is presented in [15].
Another method that uses a second-order cone program formulation
of the problem is given in [19]. This method is described in detail in
the following sections.

3.2.1 Second-order Cone Programming

As described in [12] a second-order cone program is a numerical opti-
mization problem on the following form

minimize fTx
subject to ‖Aix+ bi‖ ≤ cTi + di, i = 1, . . . , N,

Fx = g
(3.10)

By constraining the decision variables to lie within cones more efficient
solvers can be used than for more general optimization problems. A
second-order cone constraint has the following form

‖Ax+ b‖2 ≤ cTx+ d (3.11)
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As illustrated in Figure 3.1 the affine transformation Ax+b transforms
a point x in the cone to the cone with its top in the origin. The point
x is projected onto the stapled ray given by cTx+ d which determines
the width of the cone.

Rn−1

R

x

Figure 3.1: Visualizing a cone constraint

A useful fact is that a hyperbolic constraint can be represented as a
second-order cone constraint[12, p. 199].

w2 ≤ xy, x ≥ 0, y ≥ 0⇔
∥∥∥∥∥
[

2w
x− y

]∥∥∥∥∥ ≤ x+ y (3.12)

These second-order cone programs can be efficiently solved by interior
point solvers like SeDuMi1.

3.2.2 Numerical Optimization

The following procedure is used in [19] in order to optimize trajectories.
First a discretization of q̈(s) and ṡ2 along the path is found. Secondly

1http://sedumi.ie.lehigh.edu/
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discrete approximations of the functional (3.5) and the constraint (3.9)
are presented. Third and last, the discrete optimization problem is
restated as a second-order cone program.

The parameterization of the squared velocity is defined to be piece-
wise linear

ṡ(s)2 = b(s) = bk +
(
bk+1 − bk

sk+1 − sk

)
(s− sk) (3.13)

where bk is the value of b(s) at sk.

The next step is to find discrete versions of the objective function and
constraints presented earlier. The restricted dynamics of (3.9) can be
put directly into the linear constraint Fx = g. The objective function
of (3.5) is non-linear, with its discrete approximation

J =
∫ 1

0

1 + γ
∑n
i=1 τi(s)2

ṡ
ds ≈

K−1∑
k=0

[
1 + γ

n∑
i=1

(τ ki )2
] ∫ sk+1

sk

1√
b(s)

ds

(3.14)
where K is the number of discretization points. The last integral can
be calculated from (3.13).

J =
K−1∑
k=0

2∆sk(1 + γ
∑n
i=1(τ ki )2)√

bk+1 +
√
bk

(3.15)

This form can be converted into a linear objective function and a hy-
perbolic constraint by making two clever substitutions. By introducing
new variables ck and dk the objective function is now linear

K−1∑
k=0

2∆skdk (3.16)
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with the two hyperbolic constraints

1 + γ
∑n
i=1(τ ki )2

ck+1 + ck
≤ dk (3.17)

ck ≤
√
bk (3.18)

As described in Section 3.2.1 the hyperbolic constraint can readily be
converted into a second-order cone constraint, which gives the final
form of the optimization problem.

3.2.3 Using SeDuMi

The SeDuMi package provides a solver for second-order cone programs.
It can be called from Matlab with the function sedumi(A, b, c,K).

It attempts to solve the optimization problem

min
x
cTx

s.t Ax = b

with cone constraints defined in the struct K. K contains three fields
that are useful here. The field f specifies which components of x that
are unconstrained, they must come first in the x vector. l specifies
which components of x which should be nonnegative, they must fol-
low directly after the unconstrained components. q specifies which
components that form the cone constraints, and they must follow di-
rectly after the nonnegative components.

To describe a second-order cone constraint like

‖Ax+ b‖2 ≤ cTx+ d, A ∈ Rn×n, {b, c, x} ∈ Rn×1, d ∈ R (3.19)
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the equality constraints must be defined such that the values of cTx+d
and Ax+b are contained in two subsequent elements of x, for instance
x(k) and x(k+1 : k+n). Then by setting the fields ofK to their correct
values the following is achieved ‖x(k)‖ ≥ ‖x(k + 1 : k + n)‖.

3.2.4 Trajectory generation for 3dof robot

The trajectory optimization program works by first evaluating q(s),
q′(s) and q′′(s) at discrete points along the path. Second the dynamics
is evaluated along the path in order to generate αi(s), βi(s) and γi(s)
as in (3.1). Thirdly it builds the matrices for the SOCP problem which
is finally optimized by SeDuMi. SeDuMi returns a vector from which
the approximations to ṡ can be extracted.

This algorithm was tested on the circular trajectory described in Sec-
tion 4.7.1. The results are plotted in the following figures with time
along the abscissa.

It is interesting to observe from Figure 3.5 that one of the actuators
always is at its maximum value. If there was a interval where none
of the torques attained its maximum value more torque could be ap-
plied to make the trajectory faster, and the trajectory would not be
optimal.

The acceleration variables in Figure 3.4 behaves quite similar to the
torque variables.
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Figure 3.2: Evolution of path variables
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Figure 3.3: Velocity variables
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Figure 3.4: Acceleration variables
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Figure 3.5: Torques
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3.3 Path Optimization with Dynamic In-

formation

The path finding algorithms of Chapter 2 generates a path consisting
of straight lines between points in configuration space. The trajectory
optimization algorithms of this Chapter finds the best motion possible
along this path. The goal of this section is to improve a path, such as
those found in Section 2.5, in order to make them better with respect to
the robot dynamics. It is likely that a better trajectory can be found
by perturbing the path a little. This requires the use of distance
information from the collision detection libraries to ensure that the
new path is collision free. This is represented by a tube that the path
is allowed to vary within.

When the optimization algorithm that searches for a better path inside
the tube is about to converge, the result can be taken as a more
dynamically optimal path. It is also possible to generate a new tube by
recalculating distances to obstacles along the new path. The process
can then be repeated in order to find an even better result.

Another situation where path optimization can be useful is in an indus-
trial process where a robot is programmed to follow a path by a human
operator. The robots typically performs the same motion thousands
of times. It is hard for a human to understand exactly what the path
should look like to be optimal with respect to either time or energy
use. The goal would be to either make the path as fast as possible,
or minimize the energy use, while at the same time keeping the time
spent less than a certain value.

The input to the optimization algorithm suggested here is a list of
points that describes the path, and a tube around the path which it is
allowed to vary within. A Matlab cubic spline is used to interpolate the
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path between the points because it has a simple representation. The
objective function to optimize is taken to be the result of the trajectory
optimization in Section 3.2.4. Some constraints are required to keep
the path within the tube.

~p ~v

~pv

Figure 3.6: Largest deviation of the spline from a straight line.

The points p on the spline must not deviate from the original straight
line by more than the radius R of the tube. This corresponds to the
constraint

‖~p− ~pv‖2
2 ≤ R2 , pv = ~p · ~v/‖~p‖2 · ~v (3.20)

where ~p is the vector from the origin to a point p and ~v is the unit
direction vector of the straight line. As the spline is defined piecewise
by cubic polynomials the left side of the inequality is a sixth order
polynomial. The maximum values are found by evaluating the left
side of the inequality at the roots of its derivative.

The points are also restricted to move on a plane. The plane is defined
to be normal to the direction vector between the two neighbouring
points. A plane is uniquely determined by its normal ~n and a point
P on it. All points p on the plane must satisfy the linear relation
(P − p) · ~n = 0. By splitting the point p into two components ∆p and
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P the relation can be written as

∆p · ~n = 0

These constraints can be collected in a matrix inequality

Aeqx = 0, Aeq =


n1 0̄ 0̄ . . .
0̄ n2 0̄ . . .
0̄ 0̄ n3 . . .
...

...
...

. . .

 , x =
[
∆p1 ∆p2 ∆p3 . . .

]T

where x becomes the vector of decision variables. The following non-
linear constraint keeps ∆p within the radius of the circle

‖∆p‖2 ≤ r

3.3.1 Path optimization experiment

Because the path generation example of Section 2.4 suggests that a
useful path can be represented by less than ten points, the following
example uses a path with eight points. The code can be found in
the PathTracking folder in the attached files. The algorithm initially
creates a path consisting of eight points in a random fashion which it
tries to optimize.

The path is first parameterized by Matlabs spline tool and second
with Matlabs pchip tool. With the spline parameterization it was
calculated that it will take 1.12 seconds to follow the trajectory before
optimization. After optimizing the path it will take 0.66 seconds.
With the pchip parameterization the trajectory will take 1.05 seconds
before optimization and 0.64 seconds after optimization.
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The performance seems to be independent of parameterization type.
The noticable difference between using spline and pchip is the time
it took to run the path optimization. With spline it took 1664 sec-
onds and with pchip it took 783 seconds. A reason for this is that
Matlabs pchip executes faster than spline. This is mentioned in the
documentation of pchip.

The paths are illustrated in Figure 3.7 for the spline parameterization
and in Figure 3.8 for pchip parameterization. The thin black lines
represents the straight line returned by a path finding algorithm. The
blue line represents the spline before optimization and the thick red
line represents the final path after optimization. It is interesting to
note that the final path appears to be shorter and straighter than the
initial path.

The velocities in Figure 3.9 corresponds to the spline parameterized
path, and the velocities in Figure 3.10 corresponds to the pchip pa-
rameterization. The velocities for the pchip parameterization is greater
than zero over the whole trajectory, in contrast to the velocities of the
spline parameterization which dips below the x-axis at intervals. This
reflects the fact that pchip constructs a path with minimal overshoot,
while spline generates a C2 smooth path.

The results indicates that it is possible to achieve a real improvement
in the time it takes to execute a trajectory by performing this opti-
mization. This can be especially useful in situations where the same
path must be executed over and over again. It will not be useful in
its current form in situations when the path is discarded after it is
executed once because of the time it takes to perform the optimiza-
tion.

It would be really valuable if it was possible to calculate the gradient
analytically, as that is where fmincon spends most of its execution
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Figure 3.7: Parameterization by Matlabs spline. The blue line rep-
resents the path before optimization, red line is the final path. The
interpolation points are restricted to move inside the circles.
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Figure 3.8: Parameterization by Matlabs pchip. The blue line rep-
resents the path before optimization, red line is the final path. The
interpolation points are restricted to move inside the circles.
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Chapter 4

Controller Analysis

In Chapter 3 it was demonstrated how the robot dynamics is reduced
when it is restricted to follow a certain trajectory. The reduced dynam-
ics (3.2) is a function of the path coordinate1 θ and its time derivative
θ̇. These two coordinates describe the state of the system along the
desired trajectory.

A new set of coordinates that describes the deviation from the desired
trajectory is introduced in the following section. Together with the
path coordinates they allow an alternate description of the full system
dynamics in the vicinity of the given trajectory. Thorough explantions
of the procedure can be found in [16],[17] and [13] A recapitulation of
the main results are given the next section.

1The path coordinate that was denoted by the symbol s is now changed to θ,
in order to be consistent with the literature.

53
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4.1 Transverse Linearization

The restriction of the system dynamics to a certain trajectory is equiv-
alent to imposing a virtual holonomic constraint on the system. A
holonomic constraint restricts the system dynamics to evolve on a sub-
manifold of the original state-space, which is formed by the configura-
tion variables and their time derivatives. The holonomic constraints
are said to be virtual because they are imposed by the actuators in-
stead of being a physical restriction.

The virtual holonomic constraint is represented by the C2 smooth
functions φi(θ) that synchronizes the C-space variables to the path
coordinate θ.

q1 = φ1(θ)
q2 = φ2(θ)

... = ...

qn = φn(θ)

(4.1)

When the system is not perfectly following the trajectory a difference
between the real evolution of the C-space variables and the desired
evolution appears

y1 = q1 − φ1(θ)
y2 = q2 − φ2(θ)

... = ...

yn = qn − φn(θ)

(4.2)

These error terms can be taken as alternative coordinates needed to
describe the full system dynamics in a vicinity of the desired trajec-
tory.
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The new set of coordinates contains n+ 1 elements, which is one more
than the degrees of freedom of the system. This means that one of
them can be expressed as a function of the others. By letting yn be
this excessive coordinate the system can be locally expressed as

q1 = y1 − φ1(θ)
q2 = y2 − φ2(θ)

... = ...

qn = ρ(θ, y1, . . . , yn−1)− φn(θ)

(4.3)

where ρ(θ, y1, . . . , yn−1) is differentiable.

The relation between the velocities in new and old coordinates is given
by

q̇ = L(θ, y)
[
θ̇
ẏ

]
(4.4)

where y =
[
y1 y2 . . . yn−1

]T
and L(θ, y) is the following matrix

L(θ, y) =
[

∂ρ
∂θ

∂ρ
∂y

0(n−1)×1 In−1

]
+


φ′1(θ)

...
φ′n(θ)

0n×(n−1)

 (4.5)

The relation between the acceleration variables is given by

q̈ = L̇(θ, y)
[
θ̇
ẏ

]
+ L(θ, y)

[
θ̈
ÿ

]
(4.6)

The goal is to find a representation of the system dynamics in the new
coordinates. The robot system dynamics (1.11) is repeated here for
convenience.

M(q)q̈ + C(q, q̇)q̇ +G(q) = u (4.7)
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It contains q, q̇ and q̈ which must be represented in the new coordi-
nates. By utilizing the coordinate transformation (4.6) the dynamics
of the deviation variables can be written as

ÿ = R(θ, θ̇, y, ẏ) +N(θ, y)u (4.8)

N(θ, y) =
[
I(n−1)×n,0(n−1)×1

]
L−1(θ, y)M−1(q)

R(θ, θ̇, y, ẏ) =
[
I(n−1)×n,0(n−1)×1

]
L−1(θ, y)([

M−1(q)(−C(q, q̇)q̇ −G(q))
]
− L̇(θ, y)

[
θ̇
ẏ

]) (4.9)

One can introduce a feedback transformation to a new input variable
v, which is zero on the desired trajectory.

u = U(θ, θ̇, y, ẏ) + v (4.10)

The nominal input can be found as

U(θ, θ̇, y, ẏ) =
[
M(q)q̈ + C(q, q̇)q̇ +G(q)

]∣∣∣
q = Φ(θ)
q̇ = Φ′(θ)θ̇
q̈ = Φ′′(θ)(θ̇)2 + Φ′(θ)θ̈

(4.11)
This results in the system

ÿ = R(θ, θ̇, y, ẏ) +N(θ, y)U(θ, θ̇, y, ẏ) +N(θ, y)v (4.12)

= H(θ, θ̇, y, ẏ) +N(θ, y)v (4.13)

The new variables θ and y1, . . . , yn−1 are an equally good set of coor-
dinates for describing a robot configuration, provided that θ is mono-
tonic or periodic and φi(θ) are C2 smooth functions. A set of velocity
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variables are required in order to make a complete state-space descrip-
tion of the system. In addition to the time-derivatives ẏ1, . . . , ẏn−1 a
variable that describes the deviation from the desired velocity along
the path are also required.

By assuming that the velocity variable θ̇ does not cross zero, which is
true when θ is monotonic, no information is lost by introducing a new
variable

I = θ̇2 − θ̇2
? (4.14)

to describe the deviation from the desired velocity along the path.
A full-actuated system can be made to follow any trajectory that is
within the limits set by the bounds on the generalized torques. The
constraints on an admissible velocity profile is determined by the rows
of the reduced dynamics

αi(θ)θ̈ + βi(θ)θ̇2 + γi(θ)− Ui(θ) = 0 (4.15)

This equation can be analytically solved

θ̇2 = exp
{
−2

∫ θ

θ0

βi(τ)
αi(τ)dτ

}
θ̇2

0

−
∫ θ

θ0
exp

{
−2

∫ θ

s

βi(τ)
αi(τ)dτ

}
2(γi(s)− Ui(s))

αi(s)
ds

(4.16)

and can be taken as the desired velocity profile θ̇?(θ0?, θ̇0?, θ) to describe
the deviation in (4.14) with initial conditions θ0? = θ?(0) and θ̇0? =
θ̇?(0). The dynamics of (4.8) is equivalent with the original system in
(4.7). The goal is to rewrite the first row of (4.8) so that the system
can be described in the deviation variables only.

Equation 4.15 can be written as

αi(θ)θ̈ + βi(θ)θ̇2 + γi(θ)− Ui(θ) = gi(θ, θ̇, θ̈, y, ẏ, v) (4.17)
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which is zero on the desired trajectory. In order to get rid of θ̇ one
can employ Hadamards lemma to rewrite the dynamics in the locally
equivalent form

g(θ, θ̇, θ̈, y, ẏ, v) = gI(θ, θ̇, θ̈, y, ẏ, v)I + gy(θ, θ̇, θ̈, y, ẏ, v)y
+ gẏ(θ, θ̇, θ̈, y, ẏ, v)ẏ + gv(θ, θ̇, θ̈, y, ẏ, u)u

(4.18)

The last step required to find a state-space description in the new co-
ordinates is to find the time derivative of I. It can be shown that

d

dt
I = 2θ̇

α(θ)(g(θ, θ̇, θ̈, y, ẏ, v)− β(θ)I) (4.19)

A complete state-space model of the system in new coordinates is now
given by

d

dt
I = 2θ̇

α(θ)(g(θ, θ̇, θ̈, y, ẏ, v)− β(θ)I)

d2

dt2
y = H(θ, θ̇, y, ẏ) +N(θ, y)v

(4.20)

which consists of a first-order scalar differential equation and 2n −
2 second-order differential equations. The system in (4.20) can be
linearized with respect to the new state variables I, y and ẏ. The
2n − 1 new state variables are coordinates for sections in the state
space orthogonal to the vector field of the system dynamics. When
the linearization is evaluated on a point the result is a linear system
that describes the dynamics of the deviation variables in the near
vicinity of the point.

A given point on the desired trajectory can be parameterized by a
variable τ as θ(τ) = θd(τ), θ̇(τ) = θ̇d(τ) and θ̈(τ) = θ̈d(τ) with y(τ) = 0
and ẏ(τ) = 0. This gives rise to a linear time-varying system

d

dτ
z = A(τ)z +B(τ)δv (4.21)
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with the pseudo time-variable τ and z =
[
δI δy δẏ

]T
.

The coefficients of A(τ) and B(τ) are dependent on both the robot
parameters and the particular trajectory. This is illustrated for a
simple trajectory in Figure 4.1. The coefficients appear to reflect the
variations of the joint angles φ2(τ) and φ3(τ).

These variations clearly illustrate that a controller with time-varying
coefficients is desireable to control this system.
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Figure 4.1: The coefficients of A(τ) and B(τ) evolves with the joint
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4.2 Implementation in Matlab

After the transverse linearization is computed as described in the pre-
vious section, a suitable trajectory must be found. The trajectory is
described by a monotonically increasing path variable θ, and a set of
virtual holonomic constraints that synchronizes the joints to θ. For
some trajectories it may be possible to define θ by for instance pro-
jecting a point on the robot onto a line.

x0

y0

z0

θ

Figure 4.2: Trajectory for throwing

The position of the end-effectory projected onto x0 may be taken as
path coordinate for the planar throwing trajectory in Figure 4.2. Arc
length can be used instead for more general trajectories where it is
difficult to find path coordinates by simple projection. The result
should be a set of virtual holonomic constraints that synchronizes the
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joints to the path coordinate

q1 = φ1(θ)
q2 = φ2(θ)

... = ...

qn = φn(θ)

As mentioned earlier the dynamics of the time-varying system is de-
pendent on the choice of trajectory. Therefore a new controller must
be computed when the trajectory changes. A constant gain feedback
controller can possibly be used for some trajectory, but it its perfor-
mance will may vary. The method used to compute a time-varying
controller is presented in the next section.

Variants of the Matlab code in Figure 4.3 are used to control the
system considered in this chapter. The Matlab code in Figure 4.4
computes the non-linear dynamics of the robot.

The code that generates the matrices for the robot dynamics are gen-
erated by the Maple code in Appendix A.3. That Maple code also
generates the matrices A(τ) and B(τ) for the transverse lineariza-
tion.
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f unc t i on [ t , x ] = integrate_system ( duration , x_initial )
options = odeset ( 'Events ' , @events ) ;

[ t , x ] = ode45 ( @fct_cl_system1 , [ 0 , duration ] , . . .
x_initial , options ) ;

end

func t i on dx = fct_cl_system (t , x )
theta = project_theta ( x ) ;
y = change_variables (x , theta ) ;

v = fct_tl_control ( theta , y ) ;
u = feedbacktransformation (x , v , theta ) ;

dx = fct_without_load_sys (x , u ) ;
end

Figure 4.3: Matlab code for integrating system dynamics with con-
troller based on transverse linearization

f unc t i on Dx = fct_without_load_sys (x , u )
q = x ( 1 : 3 ) ; Dq = x ( 4 : 6 ) ;

M = Mass_without_load ( q ) ;
C = Coriolis_without_load (q , Dq ) ;
G = Gravity_without_load ( q ) ;

DDq = −M\C∗Dq − M\G + M\u ;

Dx = [ Dq ; DDq ] ;
end

Figure 4.4: Maple code for computing non-linear robot dynamics
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4.3 Riccati Equation

The result after making a transverse linearization is a linear time-
varying system

d

dτ
z = A(τ)z +B(τ)δv (4.22)

where z is the vector of transverse coordinates. When z is zero the
system is exactly following the prescribed trajectory. Thus a control
action δv that drives z to zero is desired.

If the system is controllable it is possible to drive z to zero by choosing
a suitable control action δv. The following method is documented in
[7] and [2]. By formulating a cost function

J = z(T )TFz(T ) +
∫ T

0
z(τ)TQz(τ) + u(τ)TRu(τ)dτ (4.23)

δv can be choosen as a linear-quadratic regulator. The diagonal matrix
Q weights the importance of driving the states to zero, while R weights
the cost of using the control inputs. The solution to this problem is
given by

δv(τ) = −L(τ)z(τ) (4.24)

where L(τ) is a time-varying matrix. The matrix L(τ) is calculated
as

L(τ) = R−1B(τ)TS(τ) (4.25)

where S(τ) is the solution to the matrix Riccati differential equation
generated by this problem.

d

dτ
S(τ) = −A(τ)TS(τ)− S(τ)A(τ)+

S(τ)B(τ)R−1B(τ)TS(τ)−Q
S(T ) = F

(4.26)
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The solution of the differential equation in (4.26) must be calculated
numerically. It is readily found by integrating backwards from time T
to time 0, with the final value given by F . This can be accomplished in
Matlab by the code in Figure 4.5. Here the solution is approximated
by a spline in order to easily calculate the desired values between the
samples calculated by ode45.

[ t , S ] = ode45 ( @Riccati , endTime : −0 .001 :0 , F ) ;

pp = inte rp1 (t , S , ' pchip ' , 'pp ' ) ;

f unc t i on dS = Riccati (t , S )
g l oba l Q R

S = reshape (S , 5 , 5 ) ;
dS = reshape ((−S∗A ( t )−A ( t ) '∗S−Q+S∗B ( t ) ∗ inv ( R ) ∗B ( t ) '∗ S ) , 5∗5 ,1 ) ;
end

Figure 4.5: Matlab code for solving the differential Riccati equation

The desired control can now be computed by the code in Figure 4.6.
The time-varying control law (4.24) for the linear system can be locally
applied to the nonlinear system by computating which τ a point in the
original state-space [q, q̇] corresponds to. This is done by projecting
the point down on the curve θ?(t) from which τ is readily computed.
Consequently, the control law for the nonlinear system is a static one
that does not depend on time anymore.
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v = fct_tl_control ( theta , y )
g l oba l S R

B = Baux ( theta ) ;
desired_S = reshape ( ppval (S , theta ) , 5 , 5 ) ;
L = R\B ' ∗ desired_S ;
v = L∗y ;

end

Figure 4.6: Matlab code for feedback controller
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4.4 Model Verification

In this section the behaviour of the transverse linearization is com-
pared with the original non-linear system. This is to ensure that it
is a valid model for the robot dynamics in the vicinity of the desired
trajectory.

Both systems are controlled with the same feedback gains, found from
solving the Riccati equation, and are integrated starting from the same
initial point. The transverse coordinates are computed for both sys-
tems and plotted in Figure 4.7.
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The velocity deviation variables ẏ1 and ẏ2 behaves qualitatively sim-
ilar on the interval [0, 0.2]. The position variables also show similar
behaviour, but the deviation variable I does not. I goes zero when
integrating the linear system, but not when integrating the non-linear
model. The reason for this discrepancy is not clear, but the author
belives that the linear model is still a sufficiently good approxima-
tion.

4.5 Inverse Dynamics Control

There are many ways to make controllers for a robot. A common
approach is to cancel the non-linearities. As described in [18, p. 295]
control by the method of inverse dynamics is a specialization of the
feedback linearization concept.

The robot dynamics is given by (4.7). The torque supplied to through
the generalized torque vector u is designed to cancel the non-linearities
of the robot dynamics. This results in a linear system which can be
controlled by methods from the field of linear control systems.

The inverse dynamics controller

u = M(q)aq + C(q, q̇)q̇ + g(q) (4.27)

cancels the non-linear terms in (4.7). The system is reduced to

q̈ = aq (4.28)

where aq can be choosen such that q̈ exhibits the desired behavior. By
choosing aq as

aq = q̈d −Kpq̃ −Kd
˙̃q (4.29)

the system dynamics is determined by a PD-controller with gain ma-
trix Kp and damping matrix Kd.
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4.6 Comparison

The goal of this section is to demonstrate the difference between con-
trollers based on inverse dynamics and controllers based on transverse
linearization. An example trajectory is constructed which the con-
trollers are designed to follow. The trajectory is defined by the de-
sired evolution of the joint variables, illustrated in Figure 4.9, over a
period of five seconds. As illustrated in the figure, q1 should perform
two revolutions (4π rad) while q2 and q3 oscillates. Perfect trajectory
following will result in the end-effector following the desired track il-
lustrated by the blue line in Figure 4.8.
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Figure 4.8: Robot following
desired end-effector path in
the robot workspace (blue).
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Figure 4.9: Desired evolu-
tion of joint space variables.

All three controllers considered here are initialized at the same position
with the same initial velocity. They are initialized to a small deviation
from the desired position at time zero, to see how they behave when
trying to catch up with the desired trajectory. The initial deviation is
a small value, −0.2, added to q2(0).
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Figure 4.10: Desired velocity and acceleration profile for the path
coordinate.

The first controller is based on cancelling the inverse dynamics as
described in Section 4.5. The PD-controller gains are set to

Kp =

10 0 0
0 10 0
0 0 10

 , Kd =

2 0 0
0 2 0
0 0 2

 (4.30)

where the proportion 10
2 reflects the quality of the position measure-

ment to the quality of the velocity measurement typically available in
a real-life implementation. The end-effector track for this controller
is shown in Figure 4.11. Its behaviour clearly demonstrate that it is
a time-tracking controller. The end-effector is driven towards a point
on the desired orbit that moves with time. It performs one revolution
before it catches up with the desired track.

The second and third controllers are based on transverse lineariza-



4.6. COMPARISON 71

−500

0

500

−500

0

500

−200

0

200

400

600

800

1000

Figure 4.11: End-effector path in robot workspace for inverse dynamics
controller.

tion. The feedback controllers are constructed as described in Section
4.3.

For the first of these controller the Q and R matrices are choosen
as

Q = 8 · 104 · I5×5, R = I3×3 (4.31)

where In×n is the n×n identity matrix. This means that all deviation
variables are weighted equally. The behaviour is somewhat similar to
the previous controller. Deviations in velocity are deemed as impor-
tant as deviations in position. It does not converge to the desired
position variables before one revolution has passed.

The second transverse linearization based controller is constructed
with more emphasis on deviations in position.

Q = 8 · 104 · diag
([

0.1 100 100 0.1 0.1
])
, R = I3×3 (4.32)
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Figure 4.12: End-effector
path in robot workspace for
controller based on trans-
verse linearization.
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Figure 4.13: End-effector
path in robot workspace for
controller based on trans-
verse linearization.

Here diag(~v) constructs a diagonal matrix with the elements of ~v on
the diagonal. Deviations in position are now weighted 1000 times
more than deviation in velocity. As seen in Figure 4.13 this causes the
end-effector to be pushed down to the desired track before it starts
to move tangentially. This behaviour is also reflected in Figure 4.14
which displays the norm of the two sets of deviation variables that
corresponds to position and velocity. The deviation in position (blue
curve) is quickly driven to zero in the second system, compared to the
first system where the position deviation does not reach zero before
θ ≈ 8.5.

It is interesting to observe that the last controller finishes two revolu-
tions in 5.13 seconds, while the other two controllers use 5.00 seconds.
This demonstrates a difference between time-tracking controllers and
controllers based on transverse linearization, which tracks a geometric
curve in state-space.
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Figure 4.14: Deviation variables for the two controllers based on trans-
verse linearization. Red curve is the norm of [I,Dy1, Dy2]. Blue curve
is the norm of [y1, y2].
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4.7 Using Multiple Controllers

It is more difficult to implement a controller based on transverse lin-
earization for the trajectory illustrated in Figure 4.15 than for the
one used in the previous section. The reason for this is that none of
the joint variables can be used as the monotonic path variable over
a complete period. A remedy is to use arc length as monotonic vari-
able.

The next question that must be considered is then how to project
points in the configuration space onto the circle to determine which
value of θ they correspond to. Two different methods are described
here.

x0

y0

z0

d1

a1

a2

a3

Figure 4.15: Robot performing a circular motion.

The first method, illustrated in Figure 4.7, utilize the forward kine-
matics to represent the problem in world space. The θ-value associated
to a point (x, y, z) in world space is found as

θ = arctan(z − zc, y − yc) (4.33)
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where (xc, yc, zc) is the coordinates for the circle center.

As stated in (4.5) the excessive coordinate, which replaced by a func-
tion ρ(θ, y1, . . . , yn−1), must be differentiated. The ρ(θ, y1, . . . , yn−1)
that results from this projection method is not trivial, and does not
exists for all values of θ. This means that one of the other yi variables
must be used as excessive coordinate instead.

That led to the decision to use the other projection method illustrated
in Figure 4.7. The interval [0, 2π) is split into four pieces where q1 is
used to compute θ by inverting q1 = φ1(θ) when θ ∈ [π4 ,

3π
4 ) ∪ [5π

4 ,
7π
4 ).

Similarly q3 is used to compute θ by inverting q3 = φ3(θ) when θ ∈
[0, π4 )∪ [3π

4 ,
5π
4 )∪ [7π

4 , 2π). This results in four simple controllers which
are applied where appropiate.

θ

Figure 4.16: Difficult pro-
jection of θ coordinate

π
4

3π
4

5π
4

7π
4

Figure 4.17: Simple projec-
tion of θ coordinate
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4.7.1 A Circular Motion

The goal of this section is to find virtual holonomic constraints that
makes the end-effector perform a circular motion. The circle should
lie in the plane spanned by the y0 and z0 vectors, with its center in
(xc, yc, zc) and radius R. For simplicity yc = 0. In the following θ
is a variable that parameterizes the circle in world space coordinates
as xy

z

 =

xcyc
zc

+

 0
R cos(θ)
R sin(θ)

 (4.34)

xc

q1

R cos(θ)

Figure 4.18: Geometric considerations for inverse kinematics

By considering the geometry in Figure 4.18 the angle of joint 1 is found
from the right triangle.

q1 = arctan (R cos(θ), xc) (4.35)

When q1 is determined the two last joints can be considered indepen-
dently from it. Let l+ a1 be the end-effectors distance from the origin
when projected onto the plane spanned by x0 and y0, and let h + d1
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be its distance from the origin when projected onto the axis z0. The
following relations must hold on the circle.

h+ d1 = R sin (θ) + zc (4.36)

l + a1 =
√
x2
c +R2 cos2 (θ) (4.37)

l

h
θ2

θm
a2

a3

Figure 4.19: Geometric considerations for inverse kinematics

As seen in Figure 4.19 the links form two sides of a triangle. By the
law of cosines θm can be found.

θm = arccos
(
l2 + h2 − a2

2 − a3
3

2a2a3

)
(4.38)

The joint angles are now readily found.

q2 = −
(

arcsin
(
a3 sin(θm)√
l2 + h2

)
+ arctan(h, l)

)
(4.39)

q3 = π − θm (4.40)

Derivatives of these virtual holonomic constraints are also required.
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Figure 4.20: Following circle by using four different controllers

The virtual constraints, their derivatives and the inverse of φ1(θ) and
φ2(θ) are calculated in the Maple file trajectory.mw which can be found
in the folder ControllerAnalysis/Trajectory/Circle.

Figure 4.20 displays the result of the simulation. The different colours
on the segments signifies which controller is used. It may seem a little
simplistic to use the method described in this section for tracking com-
plicated trajectories. There exists more rigorous methods which con-
structs controllers by solving a periodic Riccati equation with jumps[5],
but this investigation is outside the scope of this text. This example
points out one of the challenges when using transverse linearization
for control, which is how to select a parameterization.



Chapter 5

Discussion and Further
Work

The method of Rapidly-exploring Random Trees was investigated in
Chapter 2 for finding paths consisting of straight lines through compli-
cated environments. The standard algorithm quickly solves the path
planning problem demonstrated with an example. It was demon-
strated that it was able to quickly solve the example that was pre-
sented. Two heuristic methods that can be used to optimize the paths
were also tested. The paths they returned consisted of what seemed to
be a minimum of nodes required to describe collision-free paths.

This method for generating paths has a few shortcomings. As the
RRT method is based on taking random samples it is not guaranteed
to find a solution before the computer runs out of memory. To be
confident that it will work for a problem, it should be tested on some
similar problems first if possible. This will be sufficient for situations
where it is likely to be able to find paths most of the time, which is

79
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the case for many industrial processes.

The computed paths is not optimal with respect to time or energy use.
It is in general infeasible for a computer to exhaustivly search through
the configuration space to find optimal solutions.

In Chapter 3 it was explained how path planning and trajectory plan-
ning can be decoupled. A specific trajectory optimization algorithm
was tested, and it was shown how it is able to find optimal velocities
along a path by numerical optimization.

At the end of the chapter it was demonstrated that it is possible to
optimize paths, such as those returned by path finding algorithms,
by taking manipulator dynamics into account. The main issue with
this method is speed of computation. Much time is spent numerically
calculating the gradient for optimization. It could possibly be made
much faster by calculating the gradient analytically, or by using mul-
tiple processors in parallell as gradient calculation is a parallizeable
operation.

Chapter 4 introduced a method for computing a feedback-controller
based on transverse linearization. This controller was compared with
an inverse dynamics based controller. The conceptually difference is
that the inverse dynamics controller is time-tracking, wheras the trans-
verse linearization based controller tracks a geometric curve in state
space. Therefore a special set of transverse coordinates are analyti-
cally introduced that describe the behavior of the system on sections
orthogonal to the flow of the system dynamics.

The next step after successful numerical study of these methods is to
test them on a real robot. Especially the methods from the trajectory
generation and control chapters would benefit from real-world experi-
ments. It would be very interesting to know how accurate the dynamic
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model of the robot must be to implement the suggested controller. It
would also be interesting to look at how model accuracy affects the
quality of the trajectories found by the method in Chapter 3.

As the time of writing it is said that new robot equipment should
arrive shortly at Institute of Engineering Cybernetics, NTNU which
would make it possible to perform such experiments.
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Appendix A

A.1 Attached files

A compressed archive with source code is delivered along with this
text. It contains the following directories

• RRTCpp Tests path finding algorithms for robot manipula-
tors. It requires MSL and PQP which are open-source and
can be downloaded from http://msl.cs.uiuc.edu/msl/ and
http://gamma.cs.unc.edu/SSV/. This program also requires
CAD models of the robots. They are available for download
from ABBs webpage, but they are not included here to avoid a
case of copyright infringement.

• RRTMatlab Contains Matlab code that implements RRT for
planar environments.

• PathTracking Matlab code which implements the methods from
Chapter 3. The code is based on the Matlab code used in [19],
which are provided by the authors as open-source software. They
licensed their code under the GPL, which means that the code
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I have written for this particular part of the project is licensed
under the GPL as well.

• ControllerAnalysis Implements the methods described in Chap-
ter 4.
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A.2 Robot kinematic model

d1

a1

a2
d4 d6

Figure A.1: Kinematic structure of IRB 140

Table A.1: DH parameters for IRB 140
d θ a α

352 θ?1 70 90◦
0 θ?2 360 0
0 θ?3 0 −90◦

380 θ?4 0 90◦
0 θ?5 0 −90◦
65 θ?6 0 0
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A.3 Maple code



Kinematics

DH convention

Center of mass

Center of mass of links

Joint axes



Origin of coordinate frames

Center of mass in inertial frame

Rotation of coordinate frames

Dynamics

Manipulator Jacobians



Inertia matrices

Mass matrix

Christoffel symbols

Gravity vector



Write to file

Feedback transformation

Rewrite system in y and theta coordinates



Transverse Linearization



alpha beta gamma



Rewrite g by Hadamards lemma

Linearize dynamics of I

Debug

Linear time-varying system



Write to file
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