
Master of Science in Engineering Cybernetics
June 2011
Tor Arne Johansen, ITK

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Waypoint-Following Guidance Based on
Feasibility Algorithms

Tor Marius Jensen

Problem Description

The main topic of the thesis is path planning for autonomous surface and
ground vehicles. It is assumed that waypoints are given, and the problem is
to find a suitable algorithm that provides a feasible path, given the vehicle
dynamics and constraints.

1. Investigate algorithms that can create smooth, parameterized curves
in R

2, based on a predefined waypoint setup.

2. Investigate algorithms that analyse feasibility of paths with respect to
vehicle dynamics.

3. Implement algorithms in MATLAB/Simulink and compare path track-
ing properties for different guidance algorithms.

4. Improve guidance strategy with feedforward from reference for waypoint-
following vehicles.

5. Run numerical simulations in MATLAB/Simulink on Nomoto model
and Viknes 830 boat model to examine path feasibility.

Assignment given: 25th of January 2011
Supervisor: Tor Arne Johansen, ITK

Abstract

Unmanned vehicles have become more applicable due to extended research
and more advanced technology through the last decades. The vehicles are
versatile, hence studying ocean floor and reconnaissance and surveillance are
popular areas of application. To perform unmanned operations, waypoint-
following based on guidance, navigation and control systems are used in
general. Unfortunately, not every waypoint setup guarantees a feasible tra-
jectory as regards to the vehicle dynamics. Thus, algorithms analyzing the
feasibility of the paths and suggesting solutions for infeasible paths have been
proposed in this master’s thesis.

Four different tangent vector calculation methods have been used to develop
smooth, parameterized C1-continuous curves as suitable paths between the
successive waypoints. The appurtenant path curvature has been calculated
and compared against the vehicle dynamics and constraints. Minimum ve-
hicle turning radius is mapped directly to maximum trajectory curvature.
When waypoint placement provides infeasible trajectories, three different al-
gorithms of moving, adding or removing waypoints have been suggested to
cope with the trajectory curvature.

For pure waypoint-following schemes without path generation, adapted ve-
locity and acceptance circle radius have been applied. The adapted reference
values are functions of the angle between the neighboring waypoints, and
turns out to yield more efficient operations with respect to time and over-
shooting errors than with constant values. Employing path generation proves
that the effect of preturns before approaching waypoints in addition to regu-
lating velocity according to path curvature is beneficial to minimize deviation
from waypoints. If, however, the trajectory is infeasible even after velocity
adaption, one of the three path altering algorithms may be applied to provide
a feasible path.

The simulations have been carried out in MATLAB/Simulink on two models;
a first order Nomoto autopilot model and a more complex mathematical
model of a Viknes 830 unmanned surface vehicle. Despite simulating on
boat models in R

2, the path planning ideas and trajectory feasibility check
can be employed on various types of unmanned vehicles, and -extended to
R

3.

Preface

The work presented in this thesis was carried out during spring 2011 at the
Department of Engineering Cybernetics, NTNU, Trondheim, Norway. Writ-
ing the master’s thesis concludes five years of higher education.

I would like to express my sincere gratitude to my supervisor Tor Arne Jo-
hansen for all his assistance and support throughout the work process. I
would also like to give a special thanks to Vegard Evjen Hovstein, Eirik
Evjen Hovstein and Arild Hepsø at Maritime Robotics; input on naviga-
tion systems and vehicle models from people that associate with guidance,
navigation and control systems on a daily basis have been highly appreciated.

My interest-, competitive spirit- and urge for solving technical problems are
credited to my parents; Åse and Trygve Jensen, and my siblings Inger Sofie
Heggland and Lars Christian Jensen in particular.

I would also like to give thanks to some of my fellow student; Martin Hanger,
Pål Skønberg Løvik, Andreas Jørgensen and Anders Freddy Johansen for in-
sightful input, assistance and motivation on my work with my master’s thesis.
Finally, a special thanks goes to my girlfriend Helle Henriksveen for motiva-
tion and kind words when the work load felt staggering.

“I must have a prodigious quantity of mind; it takes me as
much as a week sometimes to make it up.” -Mark Twain

iii

iv

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The Evolution of USVs . 2
1.3 Guidance, Navigation and Control 3
1.4 Path Planning . 5
1.5 Path-Following . 6
1.6 Contributions . 6
1.7 Thesis Outline . 7

2 Interpolation 9
2.1 Polynomial Interpolation . 9
2.2 Path Generation Based on Waypoints 10

2.2.1 Path Generation using Straight-Lines and Circles . . . 10
2.3 Spline . 10
2.4 Cubic Hermite Interpolation 13

3 Guidance 17
3.1 Pure Pursuit Guidance Algorithm 17
3.2 LOS Guidance Algorithms . 18

3.2.1 Enclosure-Based LOS Steering 19
3.2.2 Lookahead-Based LOS Steering 21

3.3 WP Switching Algorithm . 23
3.4 Speed Profile . 23

3.4.1 Speed Profile from Direct WP Layout 24
3.4.2 Acceptance Circle Radius Based on WP Layout 26
3.4.3 Curvature . 28
3.4.4 Speed Profile Based on Path Curvature 29

3.5 Feasible Path Selection . 31
3.6 Removing Waypoints Algorithm 32
3.7 Inserting Waypoints Algorithm 33
3.8 Relocating Waypoints Algorithm 36

v

4 Models 39
4.1 Choosing the Right Vehicle Model 39
4.2 2nd Order Nomoto Model . 40
4.3 1st Order Nomoto Model . 40
4.4 Viknes 830 . 41

4.4.1 Heading Actuators . 41
4.5 Mathematical Model . 42

4.5.1 Actuators . 43
4.5.2 Environmental Aspects 43

4.6 Heading Reference Model . 44

5 Control 49
5.1 PID-Control . 49

6 Implementation 51
6.1 Waypoint Generator . 51
6.2 Simulator Structure . 52

7 Results and Discussion 57
7.1 Removing Waypoints . 57
7.2 Inserting Waypoints . 66
7.3 Relocating Waypoints . 74
7.4 Case Study . 82

7.4.1 Comparison of PP- and LOS-Based Guidance 82
7.4.2 Validation of Nomoto Model 86
7.4.3 Adapted Acceptance Circle Radius 90
7.4.4 The Effect of Different Vehicle Velocity 92
7.4.5 Adapted Vehicle Velocity and Acceptance Circle Radius 94
7.4.6 Path Generation with Cubic Splines 96
7.4.7 Path-Following with Adapted Vehicle Velocity 98
7.4.8 Path-Following with Regenerated Path 101
7.4.9 Path-Following with Weather Disturbances 103

8 Conclusion and Future Work 105
8.1 Conclusion . 105
8.2 Future Work . 106

Bibliography 109

A Continuity 113

vi

B Digital Appendix 115

vii

viii

List of Figures

1.1 The USV Mariner. Courtesy of Maritime Robotics. 3
1.2 GNC block diagram. Adapted from [1]. 4
1.3 Comparison of feasible paths 5

2.1 Example of Cubic Spline based on four control points 12
2.2 Comparison of vector tangent calculation methods 16

3.1 Pure Pursuit guidance principle 18
3.2 Enclosure-based guidance principle. Adapted from [1] 20
3.3 Lookahead-based guidance principle. Adapted from [1] 22
3.4 Reference speed for α ∈ [−180◦, 180◦] 25
3.5 Waypoint layout resulting in three different α values 26
3.6 Acceptance circle radius based on α 27
3.7 Curvature for an arbitrary path 29
3.8 Reference velocity based on original curvature 30
3.9 Two ways of adding waypoints to decrease curvature 35
3.10 Curvature values before and after adding WPs 35
3.11 Principle of relocation of WPs 36
3.12 Comparison of curvature values for relocating WP algorithm . 37

4.1 Viknes 830. Courtesy of Viknes Båt og Service AS 42
4.2 Heading reference models. Adapted from [1] 47

6.1 Example of how waypoints can be set graphically 52
6.2 Overview of the simulator with the Nomoto model 54
6.3 Overview of the simulator with the 6 DOF Viknes boat model 55

7.1 Tangent method 1 and 2: Paths with removed WPs. κv = 1.0 60
7.2 Tangent method 3 and 4: Paths with removed WPs. κv = 1.0 61
7.3 Removing WPs: Path curvature values for κv = 1.0 62
7.4 Tangent method 1 and 2: Paths with removed WPs. κv = 0.4 63
7.5 Tangent method 3 and 4: Paths with removed WPs. κv = 0.4 64
7.6 Removing WPs: Path curvature values for κvehicle = 0.4 65

ix

7.7 Tangent method 1 and 2: Paths with inserted WPs. κv = 1.0 . 69
7.8 Tangent method 3 and 4: Paths with inserted WPs. κv = 1.0 . 70
7.9 Inserting WPs: Path curvature values for κv = 1.0 71
7.10 Tangent method 3 and 4: Paths with inserted WPs. κv = 0.4 . 72
7.11 Inserting WPs: Path curvature values for κv = 0.4 73
7.12 Tangent method 1 and 2: Paths with relocated WPs. κv = 1.0 76
7.13 Tangent method 3 and 4: Paths with relocated WPs. κv = 1.0 77
7.14 Relocating WPs: Path curvature values for κv = 1.0 78
7.15 Tangent method 1 and 2: Paths with relocated WPs. κv = 0.4 79
7.16 Tangent method 3 and 4: Paths with relocated WPs. κv = 0.4 80
7.17 Relocating WPs: Path curvature values for κv = 0.4 81
7.18 Comparison of different guidance strategies 84
7.19 Heading, heading reference and rudder values for PP guidance 85
7.20 Path comparison of Nomoto model and the Viknes 830 model 86
7.21 Comparison of minimum turning radius for boat models . . . 87
7.22 Comparison of velocity- and rudder values for boat models . . 88
7.23 Data from comparison of Nomoto and Viknes 89
7.24 Comparison of constant and adapted acceptance circle radius . 90
7.25 Trajectories for different vehicle velocities 92
7.26 Heading and velocity values for the trajectories in Figure 7.25 93
7.27 Comparison of trajectories with adapted radius and velocity . 94
7.28 Comparison of adapted and constant velocity/acceptance circle 95
7.29 Path-following vehicle trajectory with constant velocity 97
7.30 Path-following with constant velocity versus adapted velocity . 99
7.31 Comparison of constant and adapted velocity for path-following100
7.32 Distinction in deviation for original and modified path 101
7.33 Vehicle trajectory with environmental disturbance 103
7.34 Heading, velocity and rudder data for trajectory w/disturbance104

A.1 Orders of Continuity . 114

x

Abbreviations

DOF Degrees of Freedom

DP Dynamic Positioning

GNC Guidance, Navigation and Control

GPS Global Positioning System

HSE Health, Safety and Environment

LOS Line-of-Sight

NED North-East-Down

PID Proportional–Integral–Derivative

PP Pure Pursuit

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

USV Unmanned Surface Vehicle

UUV Unmanned Underwater Vehicle

UV Unmanned Vehicle

WP Waypoint

xi

xii

Chapter 1

Introduction

1.1 Motivation
Unmanned vehicles (UVs) have only been used for a limited number of appli-
cation until relatively recently. However, through the last couple of decades,
the technology and research on unmanned vehicles have put on speed. Un-
manned vehicles can be divided into several subcategories depending on the
area of application, that is; Unmanned Surface Vehicles (USVs), Unmanned
Aerial Vehicles (UAVs), Unmanned Ground Vehicles (UGVs) and Unmanned
Underwater Vehicles (UUVs).

Unmanned vehicles may be steered autonomously, semi-autonomously or
manually. For completely autonomous UVs, the vehicles operate on their
own. Semi-autonomous UVs have some intervention by humans, while man-
ually steered unmanned vehicles are typically remote controlled by a human
operator. Fully autonomous UVs are generally equipped with a Guidance,
Navigation and Control-system (GNC-system). A guidance algorithm cal-
culates the desired heading based on the current position captured by a
navigation system, often a GPS receiver. A control system deals with the
allocation of forces necessary to maintain heading and attitude. Unmanned
vehicles have several advantages over manned vehicles for many reasons, es-
pecially when there are health, safety and environment (HSE) issues involved.
In addition to potential hazards in inhospitable environment, there are also
economical and efficiency aspect when arguing for the use of unmanned ve-
hicles, thus the areas of application are many:

• Study ocean floor for mapping of the sea-bed.

• Reconnaissance and surveillance of areas.

1

2 Chapter 1: Introduction

• Reducing cost of employing drivers for public transportation.

• Logistic and transportation.

• Reduce lane width and safety margins for ground vehicles.

Although the range of applications are wide for unmanned vehicles, this the-
sis will principally deal with applications employing marine waypoint navi-
gation, hence focusing on USVs.

1.2 The Evolution of USVs
Research and development on Unmanned Surface Vehicles advanced rela-
tively unnoticed in the 1980s and early 1990s, while unmanned underwater
vehicles were in the spotlight through those decades. Notwithstanding, USVs
have been around since World War II when several radio controlled vehicles
functioned [2]. The motivation for the enhancement in the research area on
Unmanned Surface Vehicles is not only due to technological progress, but it
is also highly justified by the US Navy’s focus on anti-terrorism missions [3].
Because of the US Navy’s interests in unmanned vehicles for reconnaissance
and surveillance, USA has been one of the main contributors in the research
field of USVs and this has resulted in, among other things, an USV test-bed
designed by a group at the US Space and Naval Warfare Systems Center in
San Diego [4].

Despite increased focus on USVs from the US Navy after successful missions
in the second Gulf War, other countries expanded the research on Unmanned
Surface Vehicles as well. International Submarine Engineering is a Canadian
company that offers a kit transforming existing manned boats into USVs,
and have successfully developed the semi-submersible vehicle Dolphin MK
[5]. European researchers have also been highly involved in the research
of USVs; e.g. the autonomous catamaran CHARLIE developed for collec-
tion of sea surface microlayer, made by CNR-ISSIA in Genova, Italy [6].
The University of Rostock has developed two USVs; Measuring Dolphin [7]
and Delfim [8]. The latter is an ensemble with the UUV INFANTE. Mar-
itime Robotics, a company located in Trondheim, Norway, has developed a
high-speed USV called the Mariner. Its areas of application are intelligence,
surveillance and reconnaissance, due to its video/infrared sensor equipment
and maritime data gathering. For a thorough review of prototype USVs the

1.3 Guidance, Navigation and Control 3

Figure 1.1: The USV Mariner

reader is accommodated to read the papers of Massimo Caccia: [3], [9].

Today, research and development on USVs have come a long way. As opposed
to radio controlled unmanned vehicles from the 1940s, the technology now
support fully autonomous USVs, and is making use of them all over the world.
As an example; the US Navy operates numerous of USVs as target drones
nowadays. To control the movement of the unmanned vehicles, guidance,
navigation and control (GNC) systems applies.

1.3 Guidance, Navigation and Control
Guidance, Navigation and Control deals with designing systems for all kinds
of vehicles to improve control. The use of GNC systems occur in autopilots,
missiles, dynamic positioning (DP) among many other applications. In gen-
eral, motion control systems are constructed as three interacting systems [1].
These three systems are the guidance, navigation and control systems. The
guidance system provides a reference model with a calculated desired head-
ing, the navigation system acquire position and attitude of the vehicle, while

4 Chapter 1: Introduction

the control system allocates thrust to the actuators to ensure that desired
position and velocity is satisfied.

Path/Trajectory
Generator Autopilot

Control
Allocation Vehicle GPS + INS

Observer

Guidance System Control System Navigation System

Parameters

Figure 1.2: GNC block diagram

The guidance system keeps track of the desired heading angle that the ob-
ject shall follow. The desired reference is continuously computed based on
current position given by the navigation system and a target defined by the
guidance algorithm. The desired heading is fed to the control system, so that
the operator (human or autopilot) can follow the calculated result. Adding
parameters as input to the guidance system, a path1 or trajectory2 can be
generated by a computer. These parameters can describe craft dynamics,
weather conditions, such as slippery road conditions if the GNC system is
implemented in a land vehicle, or land curvature and obstacles that can have
influence on a desired trajectory. The computation of the desired heading
is in many cases an advanced optimization problem. However, depending
on the application, simpler methods as different line-of-sight (LOS) methods
may be applied [1].

The navigation system supplies the guidance and control systems with po-
sition and attitude of the vehicle. GPS data are the most common way of
determining position, although internal navigation systems (INS) often aid
the navigation in many applications.

The control system allocates force and torque to enforce the craft to satisfy
the given control objective, for instance trajectory tracking/path-following
and speed control. Flags from the guidance system and output from the

1Path: Pure geometric consideration. No temporal constraints, i.e. time-invariant.
2Trajectory: A path as a function of time; time-variant. Consider the dynamics.

1.4 Path Planning 5

navigation system are used for feedforward and feedback control respectively
[1].

With the help of GNC, vehicles are able to function autonomously. For the
sake of path-following schemes, the guidance systems have to put special
emphasis on path planning to prepare a feasible trajectory. It follows that
the vehicle dynamics and environments must be taken into consideration.

1.4 Path Planning
Planning is an important part of the guidance scheme. In this paper the
emphasis is on path planning. There may be difficulties in the form of vehi-
cle dynamics and attitude or obstacles that prevent the vehicle from moving
between waypoints. Hence, a path planning algorithm has to evaluate such
obstacles as parameters to create a feasible path.

The goal is usually a feasible path from A to B. An optimal solution with
respect to fuel consumption, time, traveling distance or vehicle dynamics is
frequently preferred. In such cases, one have to generate paths on the basis
of saturating elements in the dynamics and possibly minimize a cost function
subject to constraints.

A B A BA B

a) b) c)

Figure 1.3: a) Optimal path with respect to shortest distance b) Feasible
path ignoring vehicle dynamics c) Feasible path

Path generation is application dependent. Occasionally the goal is to have the
path intersecting all waypoints, while in other applications passing the way-
point (WP) within a given error distance is sufficient. Because of this, differ-
ent path generation algorithms appear and will become apparent throughout
the paper.

6 Chapter 1: Introduction

1.5 Path-Following
When vehicles are motivated to follow a predefined waypoint setup, there
are many ways to do so. A 3 DOF nonlinear controller for path-following
is suggested by Fossen et al. [10]. Skjetne et al. [11] have put forward the
path-following problem as a maneuvering problem separated into two tasks;
geometric- and speed assignment. Simulations proved good results for the
geometric task, provided a recursive design procedure. An update law was
constructed to satisfy the speed assignment, and indicated satisfactory con-
trol of the vehicle velocity. However, the desired speed was set directly by
the operator and not as a function of the path. Another way of accurate
path-following is suggested by Nelson et al. [12]: A vector field control law
is developed for various waypoint setups for air vehicles.

A review of guidance laws has been put forward by W. Naeem et al. [13]
stating that LOS guidance is the key element in all guidance systems. At the
MIT Autonomous Vehicles Laboratory, a waypoint-following fuzzy guidance
controller [14] for a small autonomous boat proved to perform well, even on
complex paths and with the presence of large disturbances. Desired heading
was specified in each waypoint, in addition to the geographical coordinates.

J. Osbourne and R. Rysdyk [15] have considered waypoint guidance for UAVs
in wind. Based on a lookup table, a proximity distance at each waypoint is
retrieved. Thus the UAV yields smooth convergence to each new course
without over- over or undershooting. Some of the same principles may be
used in waypoint guidance for unmanned surface vehicles.

1.6 Contributions
In this thesis, four different ways of creating splines have been employed to
recreate possible paths for path-following unmanned vehicles. The curva-
ture along the entire path is calculated and compared with the maneuvering
properties of the vehicle. Minimum vehicle turning radius is mapped directly
to maximum trajectory curvature, thus assigning a curvature threshold that
the path can not exceed.

A feasibility check of the path versus the vehicle trajectory is performed to
determine a possibly path change. Reducing the vehicle velocity increases
the turning properties, thus speed reduction as a function of path curva-
ture/waypoint layout is proposed to maintain a feasible trajectory. If the

1.7 Thesis Outline 7

path is yet defined infeasible, three algorithms for moving, adding or remov-
ing waypoints have been suggested to modify the original path to comply
with the vehicle dynamics.

Functions for calculating acceptance circle radius and velocities based on the
angle between the previous, current and next waypoint are also proposed.

In addition, a simple graphical interface has been developed in MATLAB to
simplify positioning of waypoints for simulations.

1.7 Thesis Outline
The thesis is structured as follows:

• Chapter 2 explains interpolation methods and how to create different
type of smooth paths.

• Chapter 3 presents waypoint-following guidance algorithms. In addi-
tion, functions for calculating speed and acceptance circle radius with
respect to waypoint layout and/or curvature are derived. A feasibil-
ity check and appurtenant algorithms coping with infeasible paths are
suggested at the end of the chapter.

• Chapter 4 discusses the Nomoto- and Viknes 830 models. A heading
reference model is discussed as well.

• Chapter 5 summarizes PID-control briefly.

• Chapter 6 demonstrates the implementation and the simulator struc-
ture.

• Chapter 7 presents the results of the algorithms analyzing a waypoint
setup. Simulation results for a case study are also presented.

• Chapter 8 concludes the thesis and suggests possible future work.

8 Chapter 1: Introduction

Chapter 2

Interpolation

Polynomial curve fitting is the technique of constructing and fitting a curve,
a polynomial, to data points. Useful applications of curve fitting are for
instance to visualize data trends or, as will become evident in this chapter;
to create smooth paths between control points.

2.1 Polynomial Interpolation
Interpolation is one kind of curve fitting technique, and it is in principle a
method of estimating the value of a function in between a discrete set of data
points. As opposed to other curve fitting methods, polynomial interpolation
requires an exact fit between the polynomial and the data points. This can
be guaranteed if the polynomial p(x) has n distinct x-values and the degree
of the polynomial is at least n − 1 [16]. However, it may be desirable to have
a polynomial order higher than n − 1 to adapt the derivative in the control
points. For paths developed by interpolation methods, this implies speci-
fying a heading in the waypoint which may be essential to guarantee path
feasibility with respect to the vehicle dynamics. Extrapolation is, in contrast
to interpolation, used to estimate the values outside the set of discrete data
points.

Linear interpolation is the simplest kind of interpolation. Using higher order
polynomials, consequently more data points to represent a function, does
not always ensure better fit between interpolated polynomial and original
function as Runge’s Phenomenon proves [17]. Even though interpolation that
ensures exact match exists, it is sometimes preferable to find an approximate
fit to ignore noisy data and outliers, or to ensure that the curvature is not
too large.

9

10 Chapter 2: Interpolation

2.2 Path Generation Based on Waypoints
Routes of marine crafts are often represented by waypoints. This is usually
a vector or a database of n waypoints that the craft consecutively follows.
The waypoints are given as coordinates in R

2 or R3, expressed as (xk, yk) and
(xk, yk, zk) respectively - where k ∈ {1, . . . , n}. However, each waypoint can
also hold other properties, such as speed and acceptance radius [1]. Hence,
a waypoint vector may be expressed as

WP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

WP1

WP2
...

WPn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1 y1 z1 · · · U1 R1

x2 y2 z2 · · · U2 R2
...

xn yn zn · · · Un Rn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.1)

where xk, yk, zk are the waypoint coordinates, Uk is the speed and Rk the
acceptance radius at waypoint k. It may also include other properties such
as attitude (heading), time, course and task related information.

2.2.1 Path Generation using Straight-Lines and Cir-
cles

Straight lines and circle arcs is one way to generate paths and connect way-
points [1]. Alternatively, different interpolation strategies can be used to
make a path. Using interpolation often results in a smoother path, but on
the other hand the computation of the path is often more complex. For the
interpolation approach, there will not occur a jump in yaw rate transition-
ing between the smooth line and the circle arcs, if the path has continuous
curvature. Despite the convenience and simplicity of using straight lines and
circle arcs to generate paths, the additional flexibility of an interpolating
polynomial arises some interesting properties that make it favorable to use
in path generation.

2.3 Spline
A spline curve is a function of piecewise polynomials. Usually a spline curve
is composed of lower order polynomials that are joined together in knots or
control points. Requesting equal value and slope of incoming and outgo-
ing curve in the control point enforces C0 and C1 continuity (see Appendix

2.3 Spline 11

A), respectively, which is requisite to obtain a smooth path intersecting ev-
ery control point in succession. This technique makes it possible to create
interpolating spline functions of low degree, without encountering Runge’s
Phenomenon [17]. Opposite to curve fitting with least square solutions where
the solution is approximating curves, splines ensure the curve to pass through
every control point.

Third order polynomials, on the form y(x) = a + bx + cx2 + dx3, are a
popular choice for creating splines. If you are to find a solution for a path
that passes through four control points with ascending x-values , this can be
done by solving the linear system Ma = y, where M is the Vandermonde
matrix with inserted x-values and y is the corresponding y-values. Hence, M
is given by an (n + 1) × (n + 1) matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x2
1 . . . xn

1

1 x2 x2
2 . . . xn

2

1 x3 x2
3 . . . xn

3
...
1 xn+1 x2

n+1 . . . xn
n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.2)

To have a spline curve running smoothly through all the control points, the
properties of C0, C1 and possibly C2 continuity have to be fulfilled. One way
to solve this is described in [18] and is also repeated here:

1. To begin with, let a curve segment between the control points pi and
pi+1 be denoted by the function fi(x). To enforce C0 continuity every
curve segment has to pass through its control points, thus fi(xi) = yi

and fi(xi+1) = yi+1.

ai + bixi + cix
2
i + cix

3
i = yi (2.3)

ai + bixi+1 + cix
2
i+1 + cix

3
i+1 = yi+1 (2.4)

2. C0 continuity does not imply C1 continuity, therefore equations for
the slope at the control points have to be obtained explicitly. The
derivative at these points have to be the same for both the incoming
and the outgoing curve segment, hence f ′

i(xi+1) = f ′
i+1(xi+1). The

derivatives yield the following results

bi + 2cixi+1 + 3dix
2
i+1 − bi+1 − 2ci+1xi+1 − 3di+1x

2
i+1 = 0 (2.5)

12 Chapter 2: Interpolation

3. The same principle is used to obtain that the curvature is continuous,
ergo C2 continuous. f ′′

i (xi+1) = f ′′
i+1(xi+1) This results in the fourth

equation for the linear system

2ci + 6dixi+1 − 2ci+1 − 6di+1xi+1 = 0 (2.6)

4. To complete the linear system, slopes at the start and end point must
be provided. These slopes, s0 and sn, may be given by the current
altitude so that f ′

0(x0) = s0 and f ′
n−1(xn) = sn:

b0 + c0x0 + 2d0 + x2
0 = s0 (2.7)

bn−1 + cn−1xn + 2dn−1 + x2
n = sn (2.8)

0 10 20 30 40 50 60 70 80
−80

−60

−40

−20

0

20

40

60

East [m]

N
or

th
 [m

]

Control point
1st polynomial
2nd polynomial
3rd polynomial

Figure 2.1: Example of Cubic Spline based on four control points

Following this approach for successive control points in ascending order solves
the linear system a = M−1y, so that the coefficients for the cubic curve seg-
ments can be found. However, the suggested solution above is only valid for
ascending or descending values of x.

To cope with the fact that the solution above only is valid for monotonic
increasing or decreasing x-values, each curve segment in 2.1 can be parame-
terized with a parameter t ∈ [0, 1], as described in detail in [18]. To create
spline curves for arbitrary control points, consequently for curves in two or
three dimensions, one have to parameterize the equations. It follows that the
x- and y-coordinates have to be functions of a new parameter t, thus

2.4 Cubic Hermite Interpolation 13

x = f(t) (2.9)
y = g(t) (2.10)

This results in curves created from two cubic curves that are function of
t. Employing the same principle thought of having equal values and slopes
in the control points for the arbitrary, parameterized space curves makes it
possible to create smooth splines in higher dimensions as well. Expanding
the linear system for the two-dimensional case results in solving two linear
systems instead of one. The procedure and setup are the same, apart from
solving for both parameters ax and ay. The linear equations become:

Mxax = x ⇔ ax = M−1
x x (2.11)

Myay = y ⇔ ay = M−1
y y (2.12)

2.4 Cubic Hermite Interpolation

There are several different kind of splines. A cubic hermite spline is one
type where the curve segments consists of cubic parameterized polynomials
in the interval t ∈ [0, 1]. Hermite interpolation differs from cubic splines in
how the end points are handled [1]. While many other cubic splines require
continuous curvature (C2 continuity) at the control points, Hermite splines
settles with C1 continuity. The matrices are obtained as explained by D.
House [18] for two control points pi and pi+1:

x(t) = ax + bxt + cxt2 + dxt3 (2.13)
y(t) = ay + byt + cyt2 + dyt3 (2.14)

To solve the linear system and force C0- and C1-continuity through the con-
trol points, the following equations are employed:

14 Chapter 2: Interpolation

x(0) = ax = pi,x (2.15)
y(0) = ay = pi,y (2.16)
x(1) = ax + bx + cx + dx = pi+1,x (2.17)
y(1) = ay + by + cy + dy = pi+1,y (2.18)
x′(0) = bx = p′

i,x (2.19)
y′(0) = by = p′

i,y (2.20)
x′(1) = bx + 2cx + 3dx = p′

i+1,x (2.21)
y′(1) = by + 2cy + 3dy = p′

i+1,y (2.22)

As matrices, this can be expressed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ax ay

bx by

cx cy

dx dy

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

pi,x pi,y

pi+1,x pi+1,y

p′
i,x p′

i,y

p′
i+1,x p′

i+1,y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.23)

The leftmost matrix is constant and will not change depending on user input.
The matrix on the right-hand side varies with the configuration and the dif-
ferent control points. The preferable slopes, mi = [p′

i,x, p′
i,y]� can be defined

in various ways and will be discussed in the next section. This denotes that
the only way the user can define the shape of the curves between the control
points is by defining the slopes.

There are a few different ways of determining the slopes at the control points.
If the waypoint vectors have information about the desirable attitude or
heading at each WP, this can be used as a basis for the slope. Another quite
intuitive way of determining a reasonable slope in a control point to obtain a
smooth spline, is to use the position of the previous- and subsequent point,
pi−1 and pi+1 respectively [19]. Using the local definition of the tangent mi

in the control point pi yields:

mi =
ui − ui−1

2
(2.24)

where uj is defined as

2.4 Cubic Hermite Interpolation 15

uj =
pj+1 − pj

‖pj+1 − pj‖
(2.25)

Consequently, mi is the tangent vector defined by the unit vectors uj−1 and
uj, parallel to the line segments in and out of the control point, respectively.
The unit vector of the first and last control point (u0 and (un) respectively)
have to be taken care of individually. The magnitude of the tangent vectors
mi should be chosen so that it increases according to the distance between
the control points [19]. There are several ways of choosing tangent vectors,
and a few of them are listed below:

Method 1

mi = pi+1 − pi−1
2

(2.26)

Method 2

mi = ‖pi+1 − pi‖(pi+1 − pi−1)
‖pi+1 − pi−1‖

(2.27)

Method 3

mi = ‖pi+1 − pi‖(‖pi+1 − pi‖ui−1 + ‖pi − pi−1‖ui)
‖pi+1 − pi−1‖

(2.28)

Method 4
mi = ‖pi+1 − pi‖ui−1 + ‖pi − pi−1‖ui (2.29)

In all cases above, the special case for the start and end point has to be
treated individually. Equation (2.26) is known as the Catmull-Rom tangent
and is a popular choice of tangent estimator in many applications [20]. How-
ever, other tangent estimators may yield different characteristic that is more
suitable to the current objective.

Although the four different paths in Figure 2.2 achieve different characteris-
tics in form of curvature and length, they all still fulfill the objective of the
Hermite cubic spline. Ergo, they pass through every control point and are
C1 continuous. In this example, m1 and mn are simply chosen as scaled unit
vectors pointing from p1 and pn to their neighboring control point.

After successfully generating a trajectory that intersects every waypoint, a
GNC system that complies with the path-following properties can be devel-
oped. Guidance algorithms for heading control, such as LOS guidance are
often a popular choice.

16 Chapter 2: Interpolation

−50 0 50 100 150
−100

−80

−60

−40

−20

0

20

40

60

80

100

East [m]

N
or

th
 [m

]

Method 1
Method 2
Method 3
Method 4
Control Points

Figure 2.2: Paths generated with different tangent vectors in the control
points

Chapter 3

Guidance

Guidance systems calculate the desired vehicle course based on waypoints
and/or a path/trajectory. Vehicle dynamics and constraints may be counted
for when deriving the course. In this chapter, a few different guidance algo-
rithms are discussed. Functions calculating speed and circle of acceptance
radius, path curvature calculation and algorithms for checking and possibly
alter infeasible paths are presented as well. These paths are generated with
the interpolation techniques described in the previous chapter.

3.1 Pure Pursuit Guidance Algorithm
Pure pursuit guidance only considers the target (waypoint) and the inter-
ceptor (vehicle) itself. The method is quite intuitive, whereas the heading
angle is calculated only based on the current position of the craft and the
next waypoint. This can be compared with the same approach a predator
use to chase a prey where the approach usually results in a tale chase. The
principle is explained in [1] and repeated here:

tan(χd(t)) =
yk − y(t)
xk − x(t)

(3.1)

where xk and yk are the positions of the next waypoint pk. The course angle
χd can easily be calculated as

χd(t) = atan2(yk − y(t), xk − x(t)) (3.2)

atan2 is the four quadrant arctangent, thus −π ≤ atan2(y, x) ≤ π. To ensure
that the course angle is continuous, mapping from [−π, π] → [−∞, ∞] is

17

18 Chapter 3: Guidance

performed [21]1. This discontinuity problem is solved by the current mapping
for all three guidance algorithms.

pk-1-1

pk

North

χ
d

East
[x(t), y(t)]T

Figure 3.1: Pure Pursuit guidance principle

3.2 LOS Guidance Algorithms
The basic idea behind line-of-sight (LOS) guidance algorithms is to define a
LOS setpoint on the straight line between two waypoints pk and pk+1. The
vector from the craft’s current position to the setpoint is known as the LOS
vector and its direction implicitly also becomes the course of the craft. The
setpoint can be chosen in many ways. One method to set the waypoint is
to introduce a radius, R, that encircles the craft. The setpoint is chosen in
one of the two intersection points between the circle and the straight line

1The mapping described in [21] contains a minor error when mapping from second to
fourth quadrant. This is however fixed in the latest version of MSS Toolbox.

3.2 LOS Guidance Algorithms 19

between waypoint pk and pk+1, depending on the waypoint orientation. An-
other method is to induct a lookahead distance Δ from from the vehicle’s
current position projected onto the line segment and a distance Δ ahead.
Both methods assumes waypoint navigation and that the vehicle has passed
the waypoint pk and are heading for the waypoint pk+1. These approaches
are explained in [1] and will be described in detail next:

Assuming the craft is at current position p(t) = [x(t), y(t)]� and the aux-
iliary setpoint is found at [xlos, ylos]�. The trigonometric relations yields
exactly as for pure pursuit guidance, although pk is exchanged with plos:

tan(χd(t)) = Δy(t)
Δx(t)

= ylos − y(t)
xlos − x(t)

(3.3)

hence, employing the four quadrant inverse atan2 finds the course angle χd

χd(t) = atan2(ylos − y(t), xlos − x(t)) (3.4)

Two different LOS guidance principles; enclosure-based steering and lookahead-
based steering are described in [1] and will be reiterated in the next sections.

3.2.1 Enclosure-Based LOS Steering
Given a circle with radius R > 0 enclosing the craft’s current position
[x(t), y(t)]�. This circle will intersect the line between pk and pk+1 at two
points when R is chosen sufficiently large (see Figure 3.2) [1]. The main goal
is to drive the cross-track error e(t) to zero by driving the velocity towards
the setpoint [xlos, ylos]�. The coordinates of the LOS setpoint is unknown
and have to be calculated based on the slope of the straight line and the circle
equation. This will in fact evaluate to two solutions, however, the desired
LOS point will be chosen based on the consecutive sequence of the waypoints.

(xlos − x(t))2 + (ylos − y(t))2 = R2 (3.5)
x2

los + x(t)2 − 2xlosx(t) + y2
los + y(t)2 − 2ylosy(t) = R2 (3.6)

tan(αk) =
yk+1 − yk

xk+1 − xk
=

Δy

Δx

=
ylos − yk

xlos − xk
= constant

(3.7)

20 Chapter 3: Guidance

pk+2k+2

k-1-1

LOS
vector

pk

pk+1

LOS
setpoint

p

North

χ
d

East

R

Figure 3.2: Enclosure-based guidance principle with radius R

Solving (3.7) with respect to ylos yields

ylos = Δy

Δx

(
xlos − xk

)
+ yk (3.8)

Inserting (3.8) into (3.6) gives

x2
los + x(t)2 − 2xlosx(t) +

(Δy

Δx

(
xlos − xk

)
+ yk

)
+ y(t)2

− 2
(Δy

Δx

(
xlos − xk

)
+ yk

)
y(t) = R2

(3.9)

This can be rewritten into a simple second order equation

ax2
los + bxlos + c = 0 (3.10)

where the coefficients a, b and c are expressed as

3.2 LOS Guidance Algorithms 21

a = 1 +
(Δy

Δx

)2
(3.11)

b = −2x(t) − 2xk

(Δy

Δx

)2
+ 2yk

(Δy

Δx

)
− 2y(t)

(Δy

Δx

)
(3.12)

c = x(t)2 + y(t)2 + x2
k

(Δy

Δx

)2
+ y2

k − 2ykxk

(Δy

Δx

)
+ 2y(t)xk

(Δy

Δx

)

− 2y(t)yk − R2
(3.13)

The solution xlos can easily be obtained as

xlos = −b ± √
b2 − 4ac

2a
(3.14)

The solution closest to the target waypoint should be chosen. As long as the
vehicle has not passed the waypoint outside the acceptance circle, xlos should
be picked accordingly:

xlos =
−b +

√
b2 − 4ac

2a
if Δx > 0 (3.15)

xlos = −b − √
b2 − 4ac

2a
if Δx < 0 (3.16)

Inserting this solution into (3.8), ylos is obtained. This solution is valid when
Δx 	= 0. For the special case of Δx = 0, the solution is

xlos = xk = xk+1 (3.17)

ylos = y(t) +
√

R2 − (xlos − x(t))2 if Δy > 0 (3.18)

ylos = y(t) −
√

R2 − (xlos − x(t))2 if Δy < 0 (3.19)

When the solutions for xlos and ylos are obtained, equation (3.4) gives the
desired heading, χd.

3.2.2 Lookahead-Based LOS Steering
For lookahead-based LOS, the desired course angle is separated into two
parts [1]:

22 Chapter 3: Guidance

χd(e) = χp + χr(e) (3.20)

where

χp = αk (3.21)

χr(e) = arctan
(−e(t)

Δ

)
(3.22)

where (3.21) is the path-tangential angle and (3.22) is the course towards
the LOS setpoint relative the lookahead-distance Δ and the cross-track error
e (see Figure 3.3). The lookahead-distance Δ can be chosen arbitrary and
affects the steering sensitivity when the saturating control law yields

χr(e) = arctan(−Kpe(t)) Kp = 1
Δ

(3.23)

A shorter lookahead distance Δ results in more aggressive steering. The

pk+2k+2

k-1-1

LOS
vector

e(t)

pk

pk+1

LOS
setpoint

p

North

χ
d

αk

East

Δ

Figure 3.3: Lookahead-based guidance principle with lookahead distance Δ

parameter Δ should be selected with respect to the craft dynamics, speed

3.3 WP Switching Algorithm 23

and application requirements.

Integral action could also be considered implemented to reduce potential
steady-state error. Hence, the expression for χr becomes

χr(e) = arctan(−Kpe(t) − Ki

∫ τ

0
ε(τ)dτ) (3.24)

where Ki > 0 is the integral gain. However, integral action should be treated
with carefulness to avoid wind-up and overshoots, therefore this should only
be implemented when experiencing a steady-state error which may occur for
crafts following a straight-line path in water with current or wind.

3.3 WP Switching Algorithm
For both pure pursuit guidance and LOS guidance algorithms, there have to
be a way to switch between the different WPs. The most intuitive method is
to assign a circle of acceptance to each of the waypoints. From a navigation
system on board on the vehicle, the current position p(t) = [x(t), y(t)]� can
at all time be obtained. Therefore, it is easy to check whether or not the
craft is within the acceptance radius set at the current WP by obtaining the
following formula [1]:

(
xk+1 − x(t))2 + (yk+1 − y(t)

)2 ≤ R2
k+1 (3.25)

where the target WP is at pk+1 = [xk+1, yk+1]� ∈ R
2 and p(t) = [x(t), y(t)]� ∈

R
2 denotes the position of the craft, at time t. The radius of acceptance can

be set to a fixed number or chosen accordingly to the angle between WP
pk−1, pk and pk+1, which will be explained in detail later in this chapter.
The WPs are ordered in a list, so that once you enter the acceptance circle
of pk+1, the following WP, pk+2, in the list will be set as as the next target.
Special consideration must be taken for the last WP, pn. Entering the ac-
ceptance circle of pn, it may be sensible to decelerate the vehicle and switch
to manual control.

3.4 Speed Profile
Speed adaption is embedded in the path planning to ensure feasibility of path.
To overcome sharp turns with high curvature the speed has to be accommo-
dated, so that a feasible turning radius can be obtained. In manned ships

24 Chapter 3: Guidance

and cars, a mate adjusts the velocity due to visual impression and system of
signs. For autonomous vehicles under a WP/path-following regime however,
this speed adaption can be computed based on the waypoint placement. This
means that the WPs or the entire path can be assigned a reference speed.
When adjusting the speed in time before course-changing maneuvers, it may
minimize cross-track error from the reference path and are therefore highly
desirable.

When assigning a reference speed to each WP, a speed controller should be
implemented in addition to a course controller to obtain desired speed along
the path.

3.4.1 Speed Profile from Direct WP Layout
When employing regular waypoint guidance, where no preturn is introduced,
either with pure pursuit guidance or line-of-sight guidance, it is preferable to
alter the speed according to the path. For a straight line with consecutive
WPs, it is not necessary to slow down when approaching a new WP. However,
if the target WP at (pk) is straight north of the vehicle and the consecutive
WP at (pk+1) is directly east of pk, it results in a sharp turn of 90◦. This
highly motivates that the speed should be reduced when approaching the
turn. As a result of this, the following formula for reference speed in each
WP is calculated. The desired speed is only a function of the angle between
the previous WP pk−1, the next WP pk and the consecutive waypoint pk+1.
This angle is expressed as [22]:

‖uk × uk+1‖ = ‖uk‖ ‖uk+1‖ sin(αk) (3.26)
uk · uk+1 = ‖uk‖ ‖uk+1‖ cos(αk) (3.27)

tan(αk) = ‖uk × uk+1‖
uk · uk+1

(3.28)

αk = atan2
(
‖uk × uk+1‖, uk · uk+1

)
(3.29)

where uk = [xk yk]� and uk+1 = [(xk+1 − xk), (yk+1 − yk)]�. atan2 is used
to ensure α ∈ [−π, π]. Thus, the reference velocity at waypoint k can be
chosen as

vref (αk) = vmin +
(
vmax − vmin

)
e− α2

k
σ2 (3.30)

3.4 Speed Profile 25

where vmin is the lower bound of the velocity and should be chosen as the
very slowest operating speed of the vehicle. vmax is the upper bound and
should be the nominal velocity. α is the input angle defined in (3.29). The
function guarantees symmetry about α = 0 which is attractive since course-
changing maneuvers should be independent of turning direction. The design
parameter σ alters the shape/slope of the curve. The relationship between
the vehicle speed and turning radius is not necessarily linear, therefore it is
favorable that the Gaussian function (3.30) introduces a safety margin: This
is achieved by decreasing the velocity further for sharper turning angles. The
parameter σ must be chosen to take the vehicle dynamics into consideration,
although σ = 0.5 can be seen as a rule of thumb. For σ = 0.5, the reference
velocity is approximately the same for |α| ∈ [90◦, 180◦]. Even lower σ-values
should be set if course-changing maneuvering quality decreases drastically
for increasing α.

−150 −100 −50 0 50 100 150

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

α [deg]

Sp
ee

d
[m

/s
]

σ=0.5

σ=1

σ=2
Upper bound

Lower bound

Figure 3.4: Reference speed vref(α) for α ∈ [−180◦, 180◦] for different σ-
values

As seen in Figure 3.4, varying the parameter σ yields different reference ve-
locity curves. The lower and upper velocity bounds are set to vmin = 1 m/s

26 Chapter 3: Guidance

and vmax = 5 m/s respectively.

In Figure 3.5, σ is set to 0.5. This results in significantly different velocity
outputs at waypoint p2 = [50, 0]� for the three waypoint configurations.
The desired WP speed is calculated to be va

ref = 5.00 m/s, vb
ref = 1.03 m/s

and vc
ref = 1.00 m/s, for the configurations from left to right, respectively.

Figure 3.5: Three different α-angles: α1 = 0◦, α2 = 90◦ and α3 = 135◦

The parameters vmin, vmax and σ are dependent of the vehicle dynamics and
the area of application. Assigning different velocities at each WP can be
an applicable solution when the WPs are equidistant distributed and have a
smooth setup. However, if a straight-line path is sampled with a lot of noise
and short waypoint intervals, the reference speed might become too low. A
solution to this is to obtain a speed profile based on the curvature from the
planned path intersecting the waypoints.

3.4.2 Acceptance Circle Radius Based on WP Layout
Every waypoint is encapsulated by a acceptance circle that can be consid-
ered as the border of the waypoint. When the vehicle is within this circle
of acceptance, waypoint switching takes place. A new waypoint denotes a
new heading. Thus, the acceptance circle effects the vehicle trajectory as re-
gards to the timing of course-changing maneuvers. To avoid large overshoots

3.4 Speed Profile 27

and passing far through the waypoint before turning because of slow vehicle
dynamic, larger acceptance circle can in some applications be implemented
based on the angle α (3.29) for the consecutive waypoints. For other ap-
plications, the radius is specified by the mission objective. An equation for
calculating a desirable radius is:

R(α) = Rmax −
(
Rmax − Rmin

)
e

− α2
σ2

R (3.31)

where Rmax is the desired maximum radius and Rmin is the minimum possible
radius. σR is a scaling factor that shapes the acceptance circle profile. The
function is symmetric about α = 0 and yields the same profitable properties
as equation (3.30).

−150 −100 −50 0 50 100 150

18

20

22

24

26

28

30

32

34

36

38

α [deg]

Ra
di

us
 [m

]

Lower Bound

Upper Bound

Figure 3.6: Acceptance circle radius based on α

As seen in Figure 3.6, the acceptance circle for a waypoint with α = 90◦, is
R ≈ 35 m = Rmax with the given minimum radius bound Rmin = 20 m and
σR = 0.5.

28 Chapter 3: Guidance

3.4.3 Curvature
As explained in Chapter 2, there are several ways to create splines be-
tween waypoints. These splines are C1 or C2 continuous, depending on the
interpolant method. Letting the spline represent the desired path opens
for inserting more WPs on the trajectory between the old, original way-
points. Hence, the new WPs are distributed along the curve segment from
pk to pk+1, and this segment is parameterized and given by the expressions
x(t) = ax + bxt + cxt2 + dxt3 and y(t) = ay + byt + cyt2 + dyt3. Since there
now is a 3rd order polynomial describing the curve, the curvature along this
curve can be calculated.

The curvature of a curve in two-dimensional Eucledian space needs to be de-
fined before proceeding with the speed profile generation. Intuitively, straight
lines do not have curvature, while a circle has constant curvature everywhere
on its path. A circle with large radius is less curved than one with a small
radius, thus the conception of curvature can be thought of as rate of change
of direction [22]. The curvature of circles becomes even more evident when
defining the curvature κ as a function of the radius ρ:

κ =
1
ρ

(3.32)

For two-dimensional smooth curves, there will always be an unique circle,
called an osculating circle with radius ρ, that approximates the curve near
a point p defined on the curve, as long as κ 	= 0; that is, the curve is not a
straight line. If on the other hand the line is straight, it is presumed that
the radius ρ of the osculating circle is infinite. For parameterized curves in
R

2, the derivatives of x(t) and y(t) will be investigated, so that a formula for
the curvature κ can be obtained [22]:

κ =
|x′y′′ − x′′y′|[
(x′)2 + (y′)2

] 3
2

(3.33)

Since the curve is smooth, there are no discontinuities when x′(t) = 0 because
y′(t) 	= 0 simultaneously. Looking closer at a cubic spline, the curvature for
the entire curve can be calculated. The curvature for the example path in
Figure 2.2 when method 3 for tangent calculation is employed, can be seen
in Figure 3.7.

3.4 Speed Profile 29

−60 −40 −20 0 20 40 60 80 100 120 140
−100

−80

−60

−40

−20

0

20

40

60

80

100

East [m]

N
or

th
 [m

]

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 3.7: Curvature for an arbitrary path; (blue = low curvature) (red =
high curvature)

The colorbar in Figure 3.7 spans from low curvature (dark blue) to high cur-
vature (red). Since the interpolation method does not ensure C2-continuity,
the curvature at the waypoints is not continuous.

3.4.4 Speed Profile Based on Path Curvature
Despite steps in the curvature at the control points, a speed profile pursuant
to the curvature can be calculated. Because of the C2-discontinuity at the
WPs, an averaging filter is implemented to smooth the curvature. The fil-
tered curvature still contains the important information of the curvature; see
Figure 3.8.

Discretization of the curvature values may be carried out to minimize wear on

30 Chapter 3: Guidance

Figure 3.8: The three steps from original curvature to corresponding reference
velocity

tear on the actuators, by limiting the number of velocity setpoints possible.
In the end, the mapping from curvature to reference velocity is applied:

vref = vmin + max(κ) − κj

max(κ)
· (vmax − vmin) (3.34)

where vmin is the minimum velocity applied at the point where maximum
curvature takes place. vmax is maximum velocity, typical at straight-lines
where the curvature is low. max(κ) is the maximum curvature value and κj

3.5 Feasible Path Selection 31

is the curvature at sample j.

Due to the time delay in most actuators, the reference velocity should be
time-shifted forward to cope with the transition time it takes to attain the
reference.

3.5 Feasible Path Selection
By introducing splines that intersects the WPs, the waypoint navigation
problem is now treated as a path-following task. Since the curvature calcu-
lation for the generated spline can be implemented, an additional advantage
arises. The curvature is a measure for how sharp the turns are. As a rule of
thumb, the curve should not be sharper than the minimum turning radius of
the vehicle, since that will cause an infeasible path. Proven that minimum
turning radius increases dependent on the vehicle speed, there should be a
speed reduction before approaching curves to meet the characteristics of a
sharp bend. Hence, execution of a feasible turn is possible. If there is yet
no feasible path after speed reduction, additional attention should be given.
Possible solutions to cope with the infeasible paths are:

• Ignoring WPs that causes the infeasibility if the application allows it.

• Add additional waypoints to approach the infeasible turn with a differ-
ent heading.

• Regenerate the path for the particular area by moving waypoints.

For all vehicles there is a minimum turning radius when applying maximum
deflection so that the heading actuators saturates. For marine crafts this
typically denotes maximum rudder deflection while it is represented by the
maximum wheel positioning for ground vehicles. Based on the maximum
deflection, every vehicle has a minimum turning radius that either can be
calculated theoretically or found by experiments. By applying this system
characteristic, a limit for maximum path curvature can be set, since the
turning radius should not exceed the radius of the osculating circles along the
path. The curvature of the circle path made by maximizing heading actuators
is found from equation (3.32). This curvature value can be compared with
the path curvature. Hence, the feasibility check yields:

κvehicle > κpath (3.35)

32 Chapter 3: Guidance

where κvehicle = 1
ρmin

and ρmin is the minimum circle radius the vehicle can
complete, constrained by its dynamics, and velocity in particular. κ is calcu-
lated from equation (3.33), and κpath is the maximum value of κ. It follows
that the radius of a turn has to be less than the radius of any osculating
circle along the path. Even though κvehicle can be found theoretically from
the specs of a vehicle, the effect of slip increases the turning radius. κvehicle

should therefore be chosen even smaller than 1
ρmin

in many cases. Slip is
discussed in [23].

3.6 Removing Waypoints Algorithm
Removing waypoints to achieve a feasible path requires that the application
allows this. For mapping of the sea-bed the WPs are set strategically to
cover a specific area, thus any removing of waypoints spoil the intention of
the assignment. However, in some special cases WP removal may suit the
application if it is done with prudence and consideration. A set of WPs can
represent a patrolling path for an USV or UAV. WPs may be eliminated if,
for instance, they result in an infeasible path because of the operator’s WP
placement, or that the waypoints are sampled by a vehicle with divergence
in the dynamics compared to the path-following unmanned vehicle.

The feasibility check (3.35) has to be carried out in order to investigate
whether or not the path is feasible with respect to the vehicle dynamics. If it
turns out that the path curvature κpath is greater than κvehicle, an attempt to
remove the WP previous to the infeasible section of the curve can be made.
A new WP array of length n − 1 holds the remaining WPs. A cubic spline
is calculated based on the new remaining WPs. Again, the curvature check
can be completed for this curve, thus resulting in an iterative algorithm;
removing a waypoint every time κvehicle > κpath is not satisfied. Pseudocode
for this is:

3.7 Inserting Waypoints Algorithm 33

Algorithm 1 WP Removal
n ← length(WP)

Require: n > 4
κvehicle ← constant
κpath ← 2 · κvehicle

while κpath > κvehicle and n > 4 do
κ ← generateSpline(WP)
κpath ← max(κ)
if κpath > κvehicle then

WP ← removeWPfromAarray(critical WP)
n ← length(WP)

end if
end while

generateSpline returns the curvature for the entire path in the vector κ.
The function removeWPfromAarray deletes the entry of critical WP from the
WP array. The critical waypoint is the last WP passed before approaching
the section of the curve where κpath > κvehicle.

3.7 Inserting Waypoints Algorithm
If the original planned path is infeasible due to the curvature values, the
critical areas where too high curvature occur should be emphasized and if
possible altered in some way. As described in the previous section, one way
is to remove waypoints. However, removing waypoints is not reasonable for
all applications. A solution to the curvature problem is to add waypoints
instead, to approach the consecutive WP with a different course. A prereq-
uisite for adding WPs is that there is a usable area outside the path for such
maneuvering. Generally, there is enough space for that kind of maneuvers
on the open sea, although this may not be the case in e.g. harbors or in
sheltered waters. Therefore, generated paths should be examined by the op-
erator before employment.

There are several different possibilities for the WP placement. The number of
inserted WPs yields different characteristics. In Figure 3.9, three WPs have
been added to create a feasible path. Originally, the curvature was too high
at the vertex. By inserting additional WPs, thus replanning the path, the
curvature κpath can be decreased to suit the vehicle dynamics and the min-
imum turning radius, ρmin = 1

κvehicle
. The sequence of the new WPs is also

important. In general, an inward curve should result in a crossing path when

34 Chapter 3: Guidance

adding WPs, while outward curves should not cross. A non crossing setup is
applicable for inward curves as seen in Figure 3.9. Given a fictitious straight
line between the two original WPs surrounding the critical curvature area;
notice that to achieve the desirable decreased curvature effect, the inserted
WPs must be placed on the same side of the line as the critical point (where
the curvature is too high) itself. Pseudocode for WP insertion is presented
next:

Algorithm 2 WP Insertion
n ← length(WP)
k ← 0
κvehicle ← constant
κpath ← 2 · κvehicle

while κpath > κvehicle and n > k do
κ ← generateSpline(WP)
κpath ← max(κ)
if κpath > κvehicle then

NEW_WP S ← generateNewWPs(WP, critical WP)
WP ← addWPsToArray(NEW_WP S)

end if
k ← k + 1

end while

generateNewWPs is the function that calculates the WP placement of the
new waypoints. Different parameters can be set to define the orientation
and layout of these WPs. The function addWPsToArray inserts the output of
generateNewWPs into the original WP array subsequent to the critical WP.

3.7 Inserting Waypoints Algorithm 35

−40 −20 0 20 40
30

40

50

60

70

80

90

100

110

120
Crossing Path

x [m]

y
[m

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

−40 −20 0 20 40
30

40

50

60

70

80

90

100

110

120
Non−Crossing Path

x [m]

y
[m

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Original Path New WPs Old WPs

Too high
Curvature

Too high
Curvature

Figure 3.9: Two different ways of adding additional waypoints to decrease
path curvature

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sample [n]

C
ur

va
tu

re
 [m

−
1]

Crossing Path

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sample [n]

C
ur

va
tu

re
 [m

−
1]

Non−Crossing Path

Curvature of New Path Curvature of Original Path Curvature Limit

Figure 3.10: Curvature values for non-crossing and crossing WP insertion
approach

36 Chapter 3: Guidance

3.8 Relocating Waypoints Algorithm
An algorithm that relocates waypoints does naturally lose the guarantee of
intersecting every original WP. The fundamental principle of an approach
that moves waypoints is to relocate an original waypoint that causes too
high curvature to a better location with respect to curvature. Thus, a sharp
turn can become less bendy and meet the requirements for maximum path
curvature.

−60 −40 −20 0 20 40
0

10

20

30

40

50

60

70

80

Relocating a WP

x [m]

y
[m

]

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Original Path New WPs Old WPs

1

2

3

4

5

6

Figure 3.11: Principle of relocation of WPs that causes too high path curva-
ture

Figure 3.11 visualizes the proposed idea of moving waypoints. Waypoint
number 4 is causing too high path curvature for a vehicle with minimum
turning radius ρmin = 4 , hence, κvehicle = 0.25 m−1. If it is required to inter-
sect WP 4, adding WPs (as described in the previous section) is a solution.
However, if it is sufficient to recreate a path with fairly similar design, the
WP can be moved towards the midpoint of the straight line between way-

3.8 Relocating Waypoints Algorithm 37

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Sample [n]

C
ur

va
tu

re
 [m

−
1]

Curvature values

Curvature Original Curvature Curvature Limit

Figure 3.12: Comparison of curvature values for relocating WP algorithm

point 3 and 5. The distance of relocation of the WP towards the straight-line
can be set by the operator, but in general it should not be more than half the
distance from the midpoint to the relevant WP. At the same time, a smaller
fraction may not yield sufficient curvature, but by re-iterating over the criti-
cal WP, it moves closer and closer to the line, thus decreasing the curvature.
Important to notice is that moving waypoint 4 still affects the curvature for
more than the range between waypoint 3 and 5; see Figure 3.12.

The following algorithm for relocating waypoints is proposed by the author:

38 Chapter 3: Guidance

Algorithm 3 Relocating WPs
n ← length(WP) · iter_constant
k ← 0
κvehicle ← constant
κpath ← 2 · κvehicle

while κpath > κvehicle and n > k do
κ ← generateSpline(WP)
κpath ← max(κ)
if κpath > κvehicle then

RELOCATED_WP ← relocateWP(critical WP)
WP ← updateRelocatedWP(RELOCATED_WP)

end if
k ← k + 1

end while

relocateWP alters the placement of the critical WP: (WPc). The distance
moved is a fraction of the length from the relevant WP to the midpoint of
the line between WPc−1 and WPc+1. This fraction is a parameter set in the
function relocateWP and may be decided by operator. A small fraction im-
plies a small change in the WP placement. A rule of thumb is to set this
parameter to 1

4 , thus moving the critical WP 1
4 closer to the midpoint of

the line. The number of maximum iterations made for the entire curve is
resolved by iter_constant. Generally, the less distance a WP is moved, the
more iteration should be carried out. Shorter relocating distance results in
marginal change in curvature values, while greater distance yields unneces-
sary large safety margin of the curvature compared with κvehicle. The number
of iterations is also a matter of computational power.

Chapter 4

Models

This chapter discusses different model types; both vehicle models and ref-
erence models. A short overview of Nomoto models and a more complex
mathematical model of Viknes 830 is carried out. A reference model consid-
ering limitation of the vehicle dynamics is discussed towards the end of the
chapter.

4.1 Choosing the Right Vehicle Model
A mathematical vehicle model is a description of the system with mathemat-
ical equations. This makes it possible to look at the response of the vehicle
excited by different input. Investigating the vehicle equations can also help
understanding the system itself.

The model requirements with respect to complexity of the model are appli-
cation dependent. Sometimes a model with considerable simplifications is
sufficient for the controlling task. In other applications an accurate model is
essential to capture the dynamic of the system. There is, however, a trade-
off between the complexity and accuracy of the model that has to be taken
into consideration. Nevertheless, a model of the system that describes its
dynamics is essential to control it.

A complex vehicle model based on physical laws requires extensive knowledge
of the phenomena involved and their mutual relations [24]. By neglecting
details and focus on capturing the important dynamics, simpler mathematical
models can be derived. Since simpler vehicle models may not perform as
accurately as more complex models in comparison with the actual system,
this leads to the design of more complex controllers to maintain performance.

39

40 Chapter 4: Models

A different approach is black box modeling based on input and output data.
System identification makes it possible to fit model input and output data
to measurements [23].

4.2 2nd Order Nomoto Model
Nomoto et al. [25] proposed a second order model for autopilot design from
a linear maneuvering model by eliminating the sway velocity. The model be-
came a simple transfer function from rudder angle δ to yaw rate r. Nomoto
models are often preferred when a qualitative prediction capability is re-
quired from the model. For path-following properties and heading control,
the Nomoto models are often sufficient when the feedback controller itself tol-
erates some modeling errors [26]. As stated in [1] the course transfer function
for the second order Nomoto model is:

r

δ
=

K(1 + T3s)
(1 + T1s)(1 + T2s)

(4.1)

Laplace transforming ψ̇ = r and considering the transfer function from δ to
ψ gives:

ψ

δ
=

K(1 + T3s)
s(1 + T1s)(1 + T2s)

(4.2)

where T1, T2 and T3 are the time constants and K is the gain. Given con-
stant speed V , the vehicle velocity and position are found from the purely
kinematic equations:

ẋ = V cos ψ (4.3)
ẏ = V sin ψ (4.4)

where the velocities ẋ and ẏ are defined in the NED coordinate system.

4.3 1st Order Nomoto Model
The second order Nomoto model can be simplified due to nearly cancellation
of pole and zero in (4.1). The simple first order model becomes

4.4 Viknes 830 41

r

δ
= K

1 + Ts
(4.5)

and still noting ψ̇ = r, this can be rearranged as

ψ

δ
= K

s(1 + Ts)
(4.6)

where T = T1 +T2 −T3. This model is popular in autopilot design because of
its combination of simplicity while still being reasonably accurate. However,
it is important to notice that the model assumes constant thrust and small
rudder angles. The model parameters change when altering the velocity. To
comprise varying thrust a more complex model have to be employed.

4.4 Viknes 830
A mathematical model of a 27 feet leisure vessel of the type Viknes 830 is
derived in the master’s thesis Weather-Optimal Positioning Control for Un-
deractuated USVs of Øivind Kåre Kjerstad [27]. The vessel considered is
owned by Maritime Robotics, and is equipped with an on-board computer
and an extended sensor package so that it may operate as a versatile USV ap-
plication development platform. Thus, full-scale experiments of for instance
waypoint guidance can be carried out. This motivates simulating GNC sys-
tems in MATLAB/Simulink for the particular model.

The vessel net weight is approximately 3.3 metric tons and the length is
nearly 8.5 meters. Due to a relatively large area of the vessel floating above
the water-line, the Viknes 830 can be subject to considerable drift caused by
wind forces.

4.4.1 Heading Actuators
The Viknes 830 heading actuators includes a rudder and a tunnel thruster.
The rudder is installed directly behind the propeller and is controlled by a
servo. Maximum rudder angle is constrained to ±27◦. An electrical bow tun-
nel thruster can be applied for heading control at low velocities. However,
this on-off thruster is superfluous for waypoint navigation when the velocity
exceeds approximately 1 m/s. Thus, the mathematical model and simulator
developed in [27] is adapted - the tunnel thruster is neglected.

42 Chapter 4: Models

Figure 4.1: Viknes 830

4.5 Mathematical Model
A full 6 DOF mathematical model of the Viknes 830 boat is derived in [27].
The important findings and equations are reproduced in this section to get
a better overall understanding of the model behavior in the simulation sce-
narios.

The position, orientation and velocity are given by the vectors η and ν in NED
(North-East-Down) and BODY reference frames, respectively. The equations
of motion (4.7) and (4.8) are derived from the seakeeping and maneuvering
model.

η̇ = J(η)ν + vc (4.7)
Mν̇ + CRB(ν)ν + CA(νr)νr + D(νr)νr + μ + Gη = τwaves + τwind + τ (4.8)

where the states are

4.5 Mathematical Model 43

η =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
y
z
φ
θ
ψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ν =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
v
w
p
q
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.9)

The states of η are the vehicle position in addition to roll, pitch and yaw,
respectively. For ν the states are defined as: Surge, sway, heave, roll rate,
pitch rate and yaw rate.

The coefficients of equation (4.7) and (4.8) are briefly explained next (for
thorough details see [27]). M is the mass matrix and includes both terms
for the rigid physical structure and hydrodynamically added mass. CRB and
CA are the Coriolis and centripetal matrices and contains nonlinear terms.
Damping effects are gathered in the linear matrix D and the matrix G > 0 is
a linear approximation of the restoring forces. μ deals with the fluid memory
effects generated by the waves due to the motion of the vessel. The remaining
terms on the right hand side of (4.8) are the driving forces of the system,
where τwind and τwaves are forces from the environment while τ are the control
forces.

4.5.1 Actuators
The propulsion is generated by a diesel engine and the force acts only in 1
DOF - along the heading of the vessel. Additional forces in the 4 DOFs of
surge, sway roll and yaw are generated by the rudder which consists of the
rudder servo and the rudder itself. To generate force from the rudder, relative
velocity must be present. Since the tunnel thruster is neglected for simulating
scenarios in this thesis due to its inefficiency and superfluity at speed greater
than 1 m/s, the vessel needs to have a minimum relative velocity to cope
with maneuvering.

4.5.2 Environmental Aspects
The main contributors of environmental disturbances are wind, waves and
water current. These phenomena generate forces that act on the vessel and
should preferably be comprised in the mathematical model of the ship. Wind,
waves and current can be modeled individually or as one combined environ-
mental force. Notwithstanding, the forces from the environment should be

44 Chapter 4: Models

implemented to represent an overall adequate model.

Sea current is a continuous movement of water and arises from the effects
of gravitational pull of the moon, temperature and salinity. Current has the
effect of adding not-propulsion-generated velocity to the vessel, thus the term
vc occurs in the velocity equation (4.7). A constant current velocity leads to
a heading dependent force that can be compensated for by integral action in
the contingency of a PID-controller.

While sea current can be modeled as a constant force, waves on the other
hand are considered to be irregular. Wave spectrum is commonly used to
describe the energy distribution in the frequency domain on the surface of
the ocean. This spectrum is location dependent due to disparities in the
wave frequency distribution and a chosen spectrum is used to excite a re-
sponse amplitude operator to generate either force or motion response [27].
The mean wave height of the one-third highest waves is called the significant
wave height, and is an important parameter in the environment model for
waves. The waves add randomness in time and space and are considered an
important environmental disturbance. Every boatman knows the importance
of the encountering angle of the waves, therefore the waves affect vessels dif-
ferently depending on the boat attitude relative the waves.

Wind is usually modeled as a mean wind with random gust, although it
consists of multiple components in general. The angle of attack and the
shape of the vessel are significant factors when modeling the wind forces
acting on the craft. The input to the wind model is the projected areas of
the boat, the relative wind speed, the angle of attack and the wind coefficients
that can be found experimentally. For a more thorough description see [27]
and [1].

4.6 Heading Reference Model
To avoid steps for the desired heading calculated from the guidance system
when switching between waypoints, a heading reference model should be
implemented. A smooth reference can be obtained with a simple third-order
filter [1] on the form:

ψd

ψr
(s) =

ω3
n

(s + ωn)(s2 + 2ζωns + ω2
n)

(4.10)

4.6 Heading Reference Model 45

where ωn is the natural frequency and ζ the relative damping ratio. ψr is
the reference heading, e.g. calculated from a guidance system, and ψd is the
desired state. With a third-order filter on that form, it should be noted that
the final value theorem yields

lim
t→∞ ψd(t) = ψr (4.11)

In addition, for steps in ψr the first and second order derivatives of ψd are
still smooth and bounded. Using a reference model for smoothing the tra-
jectory of the desired heading is advantageous so that the error between the
desired and actual heading is kept small. It is important that the closed-
loop bandwidth never get exceeded by the cut-off frequency of the reference
model to assure that the craft tracks the desired state. In other words, the
eigenvalues of the desired states should be chosen such that the dynamics of
the reference model is slower than the actual vehicle dynamics.

Because of dynamic restriction in the servo that actuates the rudder, or lim-
itation in the rudder dynamics itself, it is often advantageous to saturate the
yaw rate and yaw acceleration. Saturation can be obtained by implement-
ing a saturating element in the reference model, such that |rd| ≤ rmax and
|ad| ≤ amax [1] [28]. In general, it is important to create a reference model
that takes the physical limitations of the craft into account.

A third-order filter, as denoted in equation (4.10), can be transformed into
a state space realization by applying the transformation rules from transfer
functions to controllable canonical form [29]. With that, saturation on yaw
rate rd = ψ̇d and yaw acceleration ad = ψ̈d are induced so that the course-
changing maneuvering can be carried out as a three phase procedure; with
acceleration, steady turning and deceleration. These saturation elements
have several advantages: In addition to the smooth three-phase maneuver-
ing, the controller will more likely keep the error between desired and actual
heading small since the dynamics of the craft are faster than the reference
model when rmax is picked sufficiently small.

The state space model on controllable canonical form of the strictly proper
transfer function (4.10) with saturation elements on yaw rate and yaw accel-
eration yields:

ψ̈d = ṙd = ad, so the states is defined as: ψ = [ψ1 ψ2 ψ3]� = [ad rd ψd]�.

46 Chapter 4: Models

⎡
⎢⎢⎢⎢⎣

ψ̇1

ψ̇2

ψ̇3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−(2ζ + 1)ωn −(2ζ + 1)ω2

n −ω3
n

1 0 0
0 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ψ1

ψ2

ψ3

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
1
0
0

⎤
⎥⎥⎥⎥⎦ u(t) (4.12)

y =
[
0 0 ω3

n

]
ψ (4.13)

where the input u(t) = ψr. Proper saturation can now be placed on the
states rd and ad.

In Figure 4.2, saturation elements of rmax = 10 deg/s and amax = 10 deg/s2

are selected. ωn = 1 and ζ = 1. The model experience a step of 90◦ in the
heading reference at t = 3 s, and as a result of the rate saturation, the desired
heading ψd reaches the reference heading ψr later than without constraints
on yaw rate and yaw acceleration. Nevertheless, such a restriction is vital to
avoid too large errors between reference- and actual heading since there are
physical limitations in all steering mechanisms - e.g. rudders.

4.6 Heading Reference Model 47

Figure 4.2: Reference models with and without saturation in rd

48 Chapter 4: Models

Chapter 5

Control

In a GNC system the controller(s) task is to maintain or satisfy the control
objectives. In the case of path-following based on waypoints, the controller
is responsible for keeping up with the desired heading and speed. There
are plenty of suitable controllers for path-following, but there is always a
trade-off between complexity and performance. The controller of the USV
Viknes 830 by Maritime Robotics is a simple PID-controller, therefore a PID
is the controller discussed in this chapter. The PID-controller is the most
commonly used feedback controller and can by sensible tuning, described at
the end of this chapter, achieve good control.

5.1 PID-Control
Conventional crafts are often equipped with main propellers for controlling
surge and a rudder for controlling yaw. If no tunnel thrusters or actuators
controlling sway are available, the vehicles are underactuated for 3 DOF
tracking control. The output space of conventional waypoint guidance sys-
tems are usually reduced from 3 DOF to 2 DOF, only emphasizing surge and
yaw [30].

To minimize the cross-track error e, a plain PID-controller is derived. Desired
position is obtained by forcing the position p to converge to pd and χ to
reference course χd:

lim
t→∞[p − pd] = 0 lim

t→∞[χ − χd] = 0 (5.1)

The yaw moment output from the control system for the course control is
allocated to the actuators. For smaller crafts this is usually distributed to

49

50 Chapter 5: Control

the rudder while for larger ships actuators as azimuth thrusters and tunnel
thrusters are commonly used in addition to the rudder. However, for the
dimensions of leisure size boats like Viknes 830 operating at low/medium to
high cruising velocity PID-control of only the rudder is sufficient.

The PID-controller is defined as [1] :

u(t) = Kpε(t) + Ki

∫ τ

0
ε(τ)dτ + Kd

˙ε(t) (5.2)

where ε(t) is the error between the reference and the current state. K∗ are
the PID gains. The calculated controller outputs are the moments τrudder

and propulsion τpropulsion forcing the craft to converge to the LOS setpoint
by affecting the rudder and main propellers respectively.

One way to set adequate regulator gains Kp, Kd and Ki is to compute them
as function of the design parameters ωn and ζ and the parameters of the 1st
order Nomoto model: K and T . The relative damping ratio is dependent on
the amount of overshoot the system tolerates. Typical values are ζ ∈ [0.8, 1].
The natural frequency ωn is expressed as:

ωn = 1√
1 − 2ζ2 +

√
4ζ4 − 4ζ2 + 2

· ωb (5.3)

where ωb is the closed-loop-bandwidth of the regulated system. ωb should be
chosen between the bandwidth of the Nomoto model and the rudder band-
width [1].

• The proportional gain Kp is set to:

Kp = Tω2
n

K
(5.4)

• Computing the D-gain, Kd:

Kd =
2Tζωn − 1

K
(5.5)

• A rule of thumb is to set the integral gain 10 times slower than the
natural frequency ωn.

Ki =
ωnKp

10
(5.6)

it follows that the gains Kp, Kd, Ki > 0.

Chapter 6

Implementation

To examine the theory of path generation and guidance algorithms a sim-
ulator can be used. The MATLAB/Simulink framework is a good working
environment for simulations of control systems. In that context, the Marine
System Simulator (MSS) Toolbox with basic libraries for GNC is employed.
The boat model of Viknes 830 [27] developed by Kåre Øivind Kjerstad is
also developed in MATLAB/Simulink, thus it became an inevitable choice.
The simulator made by Kjerstad is adopted and modified to fulfill the goals
of waypoint path-following. In addition to the 6 DOF Viknes boat model, a
Nomoto model was implemented to decrease simulation time, yet retain suffi-
cient results compared to the more complex model. The simulator structures
and implementation will become apparent throughout this chapter.

6.1 Waypoint Generator
To avoid tedious work of manually typing the waypoints, a simple waypoint
generator making it possible to set the WPs graphically was developed. As-
suming initial vehicle position to be in the origin p0 = [x0, y0]�, consecutive
mouse click adds new waypoints to the WP vector. The WPs are ascendingly
numbered with straight lines between the consecutive WPs for operator’s leg-
ibility. This feature may become highly desirable when adding a scaled map
as a background image, thus improve visualization of path and trajectory
with respect to the topography. However, adding the feature of having a
map as background image is left out for future work.

For the case of direct WP following without path generation from cubic
splines, setting waypoints and calculating desired speed and acceptance ra-
dius at each WP are done simultaneously. These parameters are added to

51

52 Chapter 6: Implementation

−80 −60 −40 −20 0 20 40 60 80
−100

−80

−60

−40

−20

0

20

40

60

80

100

East [m]

N
or

th
 [m

]

Left−clik: Add WPs
Right−click: Add your end WP

1

2
3

4

5

6

7
8

9

10

11

12

13 14

15
16

17
18

Figure 6.1: Example of how waypoints can be set graphically

the WP vector. Predefined fixed WP paths, e.g. zig-zag, pulse or spirals
can be chosen manually for comparison of guidance algorithms or controller
parameters.

6.2 Simulator Structure
The simulator structure is divided into three main categories; the guidance
systems, controllers and models. The WP vector is input to the guidance
system. This vector can either be made in the graphical waypoint generator

6.2 Simulator Structure 53

interface, or be one of the predefined WP setups. If path-following is em-
ployed, the WP vector is input to the path generator that generates a path
according to the parameters set (tangent vector calculation method and ve-
hicle constraints). There is a distinction in the structures of the simulators,
depending on whether the Nomoto model or the Viknes boat model is ap-
plied. For the Nomoto model simulator, a preset constant vehicle speed is
selected. Therefore, only the heading is output from the guidance system. A
heading reference model saturates yaw rate and yaw acceleration to minimize
the controller error. The Nomoto model takes the rudder deflection allocated
by the controller as its input. Output from the Nomoto model is the vehicle
heading and position.

Basically, the same structure applies for the 6 DOF Viknes boat model sim-
ulator as well. However, machinery and the actuators are modeled in detail,
and environmental disturbances are added. For a thorough explanation on
this the reader is encouraged to see the master’s thesis of Kjerstad [27].

Waypoints can be set as a predefined setup or generated with the graphical
WP generator. The waypoints may be fed to the path generator if a path-
following task shall be performed. A few different guidance algorithms are
implemented in the guidance block. The WP switcher that handles the check
if the vehicle position is within the acceptance radius and switches waypoint
accordingly is also implemented there (see Figure 6.2 and 6.3).

The path plotter was originally developed for student assignments in the
course TTK 4190 Guidance and Control at the Norwegian University of Sci-
ence and Technology. The plotter is, however, modified and adopted to
appropriate dimensions pursuant to Viknes 830.

For future developers’ convenience, the MATLAB function boat_animation.m1

produces a movie of the vessel run. It aids the developer with a visual rep-
resentation of the vessel response, attitude and velocity along the trajectory,
and can be used as a coherent tool to the position- and attitude data for a
better overall understanding of the vessel motion.

1The m-file can be found in the digital appendix

54 Chapter 6: Implementation

H
eading Controller

H
eading Reference M

odel

N
om

oto M
odel

G
uidance System

Path G
enerator

W
aypoint G

enerator

Constant Speed

Figure 6.2: Overview of the simulator with the Nomoto model implemented

6.2 Simulator Structure 55

Sp
ee

d
Re

fe
re

nc
e

M
od

el
Sp

ee
d

Co
nt

ro
lle

r

H
ea

di
ng

 C
on

tr
ol

le
r

En
gi

ne
 M

ac
hi

ne
ry

D
yn

am
ic

s
Pr

op
el

le
r M

od
el

H
ea

di
ng

 R
ef

er
en

ce
 M

od
el

Ru
dd

er
 M

ac
hi

ne
ry

D
yn

am
ic

s
Ru

dd
er

 M
od

el

W
av

e
M

od
el

W
in

d
M

od
el

Cu
rr

en
t M

od
el

6
D

O
F

Ve
ss

el
 M

od
el

G
ui

da
nc

e
Sy

st
em

Pa
th

 G
en

er
at

or

W
ay

po
in

t G
en

er
at

or

Figure 6.3: Overview of the simulator with the 6 DOF Viknes boat model
implemented

56 Chapter 6: Implementation

Chapter 7

Results and Discussion

This chapter presents the results of the algorithms for removing, inserting
and relocating waypoints for infeasible paths. A case study with simulations
of direct waypoint-following and path-following, examining the theory put
forward in earlier chapters, is carried out.

Discussion of the results for the path modifying algorithms is done prior to
the respective plots.

7.1 Removing Waypoints
The maximum curvature of the spline created with method1 1 (Catmull-
Rom tangents) is in general higher than the three other tangent calculation
methods. This results in a relatively straight-on course from one waypoint
to another, and because of this the turns often become sharp. High path
curvature is unfavorable if the turning radius of the vehicle is high. On the
other hand, if the vehicle dynamics support challenging turns, paths from
Catmull-Rom tangents are shorter since the preturn aspect palls.

Given an arbitrarily produced path with 38 waypoints set by the graphi-
cal waypoint generator interface, experiments on waypoint removals based
on path curvature could be carried out. Splines were calculated with the
four different tangent methods described in chapter 2. A fictitious vehicle
with curvature limit κvehicle = 1.0 m−1 at lowest possible traveling speed
was proposed. Thus, decreasing the velocity to obtain lower κvehicle became
impracticable. The minimum turning radius yields: ρmin = 1

κvehicle
= 1.0 m.

1The vector tangent calculation methods (2.26)-(2.29) suggested in Chapter 2 are ex-
amined for all three algorithms and referred to as: Method 1-4.

57

58 Chapter 7: Results and Discussion

According to the WP removal algorithm, waypoints were eliminated if κpath >
κvehicle.

For tangent calculation method 1 and 2, a significant number of waypoints
have been removed; 32 and 26 respectively. This is apparently too many
to recreate a fairly good approximation of the original path. Despite the
removal of 26/38 waypoints, tangent method 2 recreates the first 2/3 of the
path quite well. The last 1/3 of the path however is nearly ignored because
of exceeding curvature values, κpath. The path created with Catmul-Rum
tangents is far from feasible with respect to restoration of the original path,
and should be rejected immediately. It can be seen that the paths calculated
from the mentioned methods are not satisfactory. Nevertheless, the remain-
ing new paths do not exceed the maximum value of κvehicle; see Figure 7.3.

Method 3 and 4 yield more satisfactorily results; removing 2 and none WPs,
respectively, while still complying with the requirement of κpath > κvehicle.
Method 3 removes two WPs at the bendy part towards the end of the path.
The selection of whether these WPs can be ignored or not is up to the opera-
tor to determine, but it is often defined by the area of application. Important
to notice is that after removing two waypoints for method 3, the maximum
curvature is lower than for method 4 which is unaltered; see Figure 7.2.

A more proper value of κvehicle with respect to small maritime vessels is
κvehicle = 0.4 m−1. Thus, ρmin = 1

κvehicle
= 2.5 m. The path of tangent

method 1 exceeds the minimum number of WPs. The WP remover algorithm
terminates at 4 remaining WPs and the remaining path is dissatisfactory in
several ways, including too high path curvature that results in an infeasible
path. Method 2 which indicated good results on the first 2/3 of the path in
the former case, is now excluding WPs halfway through the path. In spite of
meeting the requirements of κpath, the new path omit WPs that causes the
path to be infeasible with respect to recreate a tolerably similar path. The
path from method 2 has the lowest κpath of the 4 methods, but with that
many WPs removed the path should yet be rejected.

The WP remover algorithm leaves the path from method 3 unchanged, as
expected. Method 4 however now results in the removal of 4 waypoints. De-
spite this reduction in WPs, maximum curvature for method 4 is still higher
than method 3.

In the case of κvehicle = 0.4 m−1 a reasonable path would be the one calculated
from method 3, with only 2 eliminated waypoints. The overall trajectory is

7.1 Removing Waypoints 59

fairly recreated despite the removal of a few WPs. The path generation with
method 3 and method 4 yield generally better result (lower path curvature)
and is usually preferred for path generation. Notwithstanding, Catmull-Rom
tangents can be a good choice if the maneuverability is high and shortest
distance is emphasized.

It is worth noticing that method 4 avoided removing any waypoints for
κvehicle = 1 m−1 while the same method removed 4 waypoints for κvehicle =
0.4 m−1. Comparing this result with method 3 that removed 2 waypoints
for both curvature limits detects an interesting fact: Which tangent calcula-
tion methods that works the best is dependent of the waypoint layout and
the curvature limit. Thus, a combination of the different tangent calculation
methods should preferable be carried out to minimize overall path curvature.
This is however left out for future work.

60 Chapter 7: Results and Discussion

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #2
Waypoints removed:26

x [m]

y
[m

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #1
Waypoints removed:32

x [m]

y
[m

]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Original Path New WPs Old WPs

Figure 7.1: Paths with removed WPs and tangent calculation method 1 and
2. κvehicle = 1.0 m−1

7.1 Removing Waypoints 61

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #4
Waypoints removed:0

x [m]

y
[m

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #3
Waypoints removed:2

x [m]

y
[m

]

Original Path New WPs Old WPs

0.05

0.1

0.15

0.2

0.25

0.3

Figure 7.2: Paths with removed WPs and tangent calculation method 3 and
4. κvehicle = 1.0 m−1

62 Chapter 7: Results and Discussion

0 200 400 600
0

0.2

0.4

0.6

0.8

1

Sample [n]

C
ur

va
tu

re
 [m

−
1]

Tangent method #1

0 500 1000
0

0.2

0.4

0.6

0.8

1

Sample [n]

C
ur

va
tu

re
 [m

−
1]

Tangent method #2

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

Sample [n]

C
ur

va
tu

re
 [m

−
1]

Tangent method #3

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

Sample [n]

C
ur

va
tu

re
 [m

−
1]

Tangent method #4

Curvature Curvature Limit

Figure 7.3: Path curvature values for removing WP algorithm for the four
different vector tangent calculation methods for κvehicle = 1.0 m−1

7.1 Removing Waypoints 63

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #1
Waypoints removed:35

x [m]

y
[m

]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #2
Waypoints removed:29

x [m]

y
[m

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Original Path New WPs Old WPs

Figure 7.4: Paths with removed WPs and tangent calculation method 1 and
2. κvehicle = 0.4 m−1

64 Chapter 7: Results and Discussion

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #3
Waypoints removed:2

x [m]

y
[m

]

0.05

0.1

0.15

0.2

0.25

0.3

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #4
Waypoints removed:4

x [m]

y
[m

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Original Path New WPs Old WPs

Figure 7.5: Paths with removed WPs and tangent calculation method 3 and
4. κvehicle = 0.4 m−1

7.1 Removing Waypoints 65

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

Sample [n]

C
ur

va
tu

re
 [m

−
1]

Tangent method #1

0 200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

Sample [n]

C
ur

va
tu

re
 [m

−
1]

Tangent method #2

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

Sample [n]

C
ur

va
tu

re
 [m

−
1]

Tangent method #3

0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

Sample [n]

C
ur

va
tu

re
 [m

−
1]

Tangent method #4

Curvature Curvature Limit

Figure 7.6: Path curvature values for removing WP algorithm for the four
different vector tangent calculation methods for κvehicle = 0.4 m−1

66 Chapter 7: Results and Discussion

7.2 Inserting Waypoints
By removing waypoints, the guarantee of making a feasible path that inter-
sects every original waypoint disappear. On the other hand, inserting way-
points when the path curvature does not comply with the vehicle dynamics,
makes it possible to re-plan the path to meet the curvature requirement.
The algorithm of WP insertions is described in Chapter 3. This algorithm is
tested for the identical WP setup as for WP removal.

As in the experiment with removing waypoints, the vehicle curvature limit
κvehicle is set to 1 m−1. Three new WPs are inserted between two original
waypoints if the curvature of the path κpath is greater than κvehicle. The
added WPs form a non-crossing arc.

For tangent method 1 (Catmull-Rom), too large curvature values were en-
countered at the end of the original path, where there are two sharp turns.
The problem with Catmull-Rom tangents is that since their magnitude is
low, the preturn characteristic is not present in the same way as for the other
tangent calculation methods. Thus, only three inserted waypoints with the
orientation given in this test do not result in a new path with curvature lower
than the threshold of κvehicle = 1.0 m−1. As can be seen in Figure 7.9 for tan-
gent method 1, the curvature of the path created by the inserted waypoints
is at κpath ≈ 2.75 m−1. The placement of the inserted WPs are obviously of
importance, and for Catmull-Rom splines even more WPs should have been
added to create a smoother turning circle. A minimum requirement is that
the curvature of the new turning circle is lower than the threshold of the
vehicle; if not, this approach is useless since the algorithm will keep iterating
over the entire curvature and add new WPs that keeps resulting in a path
with κpath > κvehicle. After n − 1 iterations, where n is the length of the
original WP array, the algorithm terminates. Owing to the fact that insert-
ing WPs should decrease the curvature between two WPs where the original
path curvature exceeds the curvature limit, a worst-case scenario will be that
the original path curvature is too high between every two consecutive WPs,
therefore adding WPs n − 1 times means that the curvature between every
consecutive WPs has been investigated. Evidently, Catmull-Rom tangents
do not yield satisfactory results for the configuration of the inserted WPs.

In general, tangent method 2 results in a curvature of κvehicle ≈ 0.45 m−1

for the three newly added WPs, although, this curvature depends on the
position of the original waypoints. For the critical area at the end of the
path, the somewhat similar problem as for method 1 occurs. New waypoints

7.2 Inserting Waypoints 67

are inserted, although the new path becomes very bendy and inefficient. A
problem for method 2 is the tangent magnitude scaling when changing from
long to short distance between the WPs. As a result of this, the path obtains
unfortunate high curvature where e.g. method 3 and 4 yields satisfactorily
results. Method 2 indicates poor performance when inserting WPs.

Even though both method 1 and 2 fail in this attempt of inserting WPs,
they could benefit from a different WP configuration. In addition to adding
more WPs, the result is altered with different WP placement. Important to
notice is that a different placement of the inserted WPs would have yielded
a different results. This goes for both the number of WPs added and the
distance from the fictive straight-line between the added waypoints.

The modified path for method 3 and 4 achieves better results. Naturally,
method 4 does not imply any changes of the path since κvehicle = 1.0 m−1.
and κpath < κvehicle for the entire path. Method 3 however inserts WPs
according to the WP insertion algorithm with non-crossing arc. It is demon-
strated that the new path has decreased curvature and therefore comply with
the curvature path threshold.

Since method 1 and 2 failed for κvehicle = 1.0 m−1, there will be no amend-
ment in the results for κvehicle = 0.4 m−1. As for the removing WP algorithm
with the identical WP setup as in this experiment, there was no change in the
paths for method 3 when modifying the vehicle curvature limit from 1 m−1

to 0.4 m−1. This is given by the fact the path curvature values for method 3
is beneath the new κvehicle threshold (see Figure 7.9).

Method 4 adds 18 WPs to the original path to keep up with the vehicle cur-
vature requirement. Thus, 6 critical areas have been altered. A modification
of the path can easily be observed in Figure 7.10 at the 14’th WP (where
WP1 is at the origin). The path at this section, where κpath originally is too
high, is now altered to make a smoother turn with lower curvature. Even
though the curvature threshold is met, a shorter turn could have been carried
out, thus the placement of new WPs is not efficient with respect to e.g. fuel
efficiency. This specific section however demonstrates a good application of
WP insertion; resulting in a smooth directed turn with decreased curvature.

To achieve even better results, more emphasis should be put into the WP
placement when inserting new WPs. In that case, both the number of WPs,
the WP placement and the orientation (see Figure 3.9) should be taken into
account. For the case of removing WPs, method 3 performs most satisfac-

68 Chapter 7: Results and Discussion

tory. Despite the possibility of generating a feasible path by adding WPs,
an unfortunate effect of crossing back and forth over a relatively straight line
can occur, if the WP configuration is set poorly and wrong tangent calcula-
tion method is employed. If a zig-zag run takes place (as for method 2 in
Figure 7.7), the path should be optimized with respect to desired heading
when approaching a WP. Such optimization could result in e.g. a wider turn
to get back on the original path with the original desired heading, and is
accommodated in further work on this subject.

7.2 Inserting Waypoints 69

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #1
Waypoints added:111

x [m]

y
[m

]

0

0.5

1

1.5

2

2.5

3

3.5

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

Tangent method #2
Waypoints added:111

x [m]

y
[m

]

0

0.5

1

1.5

2

2.5

3

Original Path New WPs Old WPs

Figure 7.7: Paths with inserted WPs and tangent calculation method 1 and
2. κvehicle = 1.0 m−1

70 Chapter 7: Results and Discussion

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

80

Tangent method #3
Waypoints added:6

x [m]

y
[m

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #4
Waypoints added:0

x [m]

y
[m

]

Original Path New WPs Old WPs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 7.8: Paths with inserted WPs and tangent calculation method 3 and
4. κvehicle = 1.0 m−1

7.2 Inserting Waypoints 71

Figure 7.9: Path curvature values for WP insertion algorithm for the four
different vector tangent calculation methods for κvehicle = 1.0 m−1

72 Chapter 7: Results and Discussion

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

80

Tangent method #3
Waypoints added:6

x [m]

y
[m

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

80

Tangent method #4
Waypoints added:18

x [m]

y
[m

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Original Path New WPs Old WPs

Figure 7.10: Paths with inserted WPs and tangent calculation method 3 and
4. κvehicle = 0.4 m−1

7.2 Inserting Waypoints 73

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

Sample [n]

C
ur

va
tu

re
 [m

−
1]

Tangent method #3

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

Sample [n]

C
ur

va
tu

re
 [m

−
1]

Tangent method #4

Curvature Curvature Limit

Figure 7.11: Path curvature values for WP insertion algorithm for tangent
calculation method 3 and 4 for κvehicle = 0.4 m−1

74 Chapter 7: Results and Discussion

7.3 Relocating Waypoints
The results of algorithms that remove and insert waypoints have been demon-
strated in the previous section. A third method of developing a feasible path
is suggested by relocating the original waypoints. The algorithm is explained
in Chapter 3. The WP setup and curvature limits is identical to the pre-
ceding test cases. The relocating distance from the original WP towards the
straight-line between the surrounding WPs is 0.75.

For this WP setup, relocating waypoints and creating a path with tangent cal-
culation method 1 yield fairly good results compared to removing and adding
WPs. κpath does not exceed the curvature limit set to κvehicle = 1.0 m−1 (see
Figure 7.14). The sharp turns are cut to meet the curvature prerequisite,
thus the recreation of the entire path is hardly adequate. All the same, as
far as the algorithms can be compared, this approach yields good results for
Catmull-Rom tangents. Although, if intersection of all the original WPs is
requested, it is given that relocating WPs fails.

Tangent method 2 is sensitive as regards to tangent magnitude when the
distance between the consecutive waypoints is varying. The algorithm of re-
locating waypoints is therefore highly suited since the critical WP is pulled
towards the midpoint of its two neighboring WPs, thus leveling the distance
between the surrounding WPs. Even though nearly half of the WPs of the
original path have been moved, the recreation of the initial path is good.

Tangent method 4 meets the path curvature requirements without relocating
any WPs, while method 3 only results in a small perturbation of four of the
last WPs in the original path. It is worth mentioning that the recreation of
the initial path becomes somewhat more accurate for this case than for the
method of removing the WPs completely. Based on these results, relocating
the WPs is better suited for recreating the original path with satisfactorily
path curvature for the given waypoint setup.

Results for κvehicle = 0.4 m−1 are discussed below. The relocating WP al-
gorithm does not alter the path to comply with the path curvature for the
Catmull-Rom tangents with a lower curvature limit, and so the resulting
path is neither feasible, nor a good approximation of the original path.

As apposed to the cases of removing and inserting WPs, the method of re-
locating WP values yields adequate results for tangent method 2. The char-
acteristic turns halfway through the path are poorly imitated by the newly

7.3 Relocating Waypoints 75

generated path, but apart from that, the result of this tangent method is
good.

Method 3 stays unchanged. Method 4 however, experiences small to medium
perturbation in WP placement for the last and the central part of the path,
respectively. Once again, the advantage of moving the WP a short distance
becomes apparent; the characteristic bendy turns towards the end of the path
are still present, while they are eliminated in the removing WP approach (see
Figure 7.5).

76 Chapter 7: Results and Discussion

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #1
Relocated WPs: 2 10 13 15 16 17 18 20 21 22 23

24 25 27 28 29 30 31 32 33 34 35 36

x [m]

y
[m

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #2
Relocated WPs: 2 10 13 14 20 21 22 23 24 29 30 34 35 36 37

x [m]

y
[m

]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Original Path New WPs Old WPs

Figure 7.12: Paths with relocated WPs and tangent calculation method 1
and 2. κvehicle = 1.0 m−1

7.3 Relocating Waypoints 77

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #3
Relocated WPs: 32 33 35 36

x [m]

y
[m

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #4
Relocated WPs: none

x [m]

y
[m

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Original Path New WPs Old WPs

Figure 7.13: Paths with relocated WPs and tangent calculation method 3
and 4. κvehicle = 1.0 m−1

78 Chapter 7: Results and Discussion

Figure 7.14: Path curvature values for Relocating WP algorithm for the four
different vector tangent calculation methods for κvehicle = 1.0 m−1

7.3 Relocating Waypoints 79

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #1
Relocated WPs: 2 10 13 15 16 17 18 20 21 22 23

24 25 27 28 29 30 31 32 33 34 35 36

x [m]

y
[m

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #2
Relocated WPs: 2 6 8 10 11 12 13 14 17 20 21 22

23 24 25 27 28 29 30 32 33 34 35 36 37

x [m]

y
[m

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Original Path New WPs Old WPs

Figure 7.15: Paths with relocated WPs and tangent calculation method 1
and 2. κvehicle = 0.4 m−1

80 Chapter 7: Results and Discussion

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

80

Tangent method #3
Relocated WPs: 32 33 35 36 37

x [m]

y
[m

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

Tangent method #4
Relocated WPs: 13 15 32 33 35 36

x [m]

y
[m

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Original Path New WPs Old WPs

Figure 7.16: Paths with relocated WPs and tangent calculation method 3
and 4. κvehicle = 0.4 m−1

7.3 Relocating Waypoints 81

Figure 7.17: Path curvature values for Relocating WP algorithm for the four
different vector tangent calculation methods for κvehicle = 0.4 m−1

82 Chapter 7: Results and Discussion

7.4 Case Study
For every case study an identical WP setup have been employed. If not spec-
ified otherwise, the vehicle velocity is set to v = 2.1 m/s and the acceptance
circle of the waypoints is R = 20 m. The setup is created by the graphical
WP generator and the particular WP placement is made on the basis of cap-
turing several realistic cases, i.e. various distance between WPs, straight line
following, and course-changing maneuvers; left and right turning, spanning
from 0◦ to nearly 150◦ degrees. No weather disturbances are implemented
unless it is specified. The vehicle starts at the origin of the map and travels
the path according to the successive WPs. In total, there are 23 waypoints,
and the current target WP switches to the consecutive WP once the vehicle
enters the acceptance circle of the current target waypoint.

Path generation with vector tangent calculation method 3 is employed for
the cases where paths are generated.

In principle, these calculations are supposed to be carried out offline. How-
ever, with sufficient computing power there is no reason for not calculating
the paths online and optimize the trajectory as it goes.

7.4.1 Comparison of PP- and LOS-Based Guidance
The different guidance algorithms proposed in Chapter 3 are tested on a
first order Nomoto model. Thus, the vehicle velocity is constant; vnomoto =
2.1 m/s. The parameter identification of the Nomoto model was found ex-
perimentally by Arild Hepsø, Svein Peder Berge and Vegard Evjen Hovstein
(Maritime Robotics) during test-runs on Trondheimsfjorden in 2008. The
time constant turned out to be Tnomoto = 2.5 s and the gain was set to
Knomoto = 0.7328 s−1. Both the lookahead- and enclosure-based guidance
strategy use lookahead value and enclosure radius of 30 m in the following
example.

The controller gains were set to: Pk = 0.5 and Pi = 0.0001 and the pa-
rameters of the heading reference model were chosen to: ωn = 1, ζ = 0.85,
rmax = 15 · π/180 rad/s and amax = 5 · π/180 rad/s2.
When investigating Figure 7.18, it becomes obvious how the LOS algorithms
and PP guidance differ. While Line-of-Sight guidance aims for a target LOS
setpoint somewhere along the line between two WPs, pure pursuit guidance
takes the next WP directly in sight. A consequence of this characteristic is
that the path from a pure pursuit scheme often becomes shorter than for

7.4 Case Study 83

enclosure- and lookahead-based guidance. This is due to the fact that PP
guidance eludes to touch the straight-line that the LOS guidance techniques
converges to. However, since PP encounters the target WP with a slightly
different heading than for the LOS guidance techniques, it can be both ad-
vantageous and disadvantageous with respect to the path to the subsequent
waypoint.

The calculation of pure pursuit guidance is less complex than both the LOS-
based guidance schemes. The different techniques should be utilized regard-
ing the proper application. When it comes to choosing between lookahead-
and enclosure-based guidance which performed nearly identical in the previ-
ous example, lookahead-based- is both valid for all cross-track-errors and are
less computational intensive than enclosure-based guidance. It is important
to choose a suitable lookahead distance to avoid too aggressive steering while
at the same time not selecting a large distance so that the LOS setpoint is far
behind the target WP. Lookahead distance of 30 m gave good results with
the controller parameters and models given.

84 Chapter 7: Results and Discussion

100 150 200 250 300 350 400

−300

−250

−200

−150

−100

East [m]

N
or

th
 [m

]

Lookahead−based

Pure Pursuit−based

Enclosure−based

−400 −300 −200 −100 0 100 200 300 400 500

−300

−200

−100

0

100

200

300

East [m]

N
or

th
 [m

]

Figure 7.18: Comparison of pure pursuit-, lookahead- and enclosure-based
guidance algorithms

7.4 Case Study 85

Figure 7.19: Heading, heading reference and rudder values for pure pursuit
guidance

86 Chapter 7: Results and Discussion

7.4.2 Validation of Nomoto Model
The parameters of the Nomoto model employed in the previous section were
estimated by full-scale testing. The surge speed of the Nomoto model was
assumed constant, so that the verification of the model is done with thrust
equivalent to surge speed of 2.1 m/s. However, the validity of Nomoto mod-
els are limited to small rudder angles, therefore large rudder deflection will
prove dissimilar response for the complex mathematical model of Viknes 830
[27] and the first order Nomoto model. Identical controller gains as for the
comparison of pure pursuit and the LOS-guidance algorithms are used for
the two models. The heading reference model is also identical to the previous
case.

−400 −300 −200 −100 0 100 200 300 400 500

−300

−200

−100

0

100

200

300

East [m]

N
or

th
 [m

]

Figure 7.20: Path comparison of first order Nomoto model (blue/solid) and
the Viknes 830 model (red/dashed)

It becomes apparent that the heading response of the two models differs.
A faster response is achieved for the Nomoto model, thus the radius of the
acceptance circles can be set smaller while still avoiding overshoot onto the

7.4 Case Study 87

straight-line from the current WP to the next one, compared to the Viknes
830 model. There is a time constant Trmm = 0.5s in the rudder machinery
model that causes a heading response delay. However, the distinction of the
minimum turning radius ρ becomes the most noticeable factor when setting
the rudder angle to a maximum of 27◦ (see Figure 7.21).

−5 0 5 10 15 20 25 30 35 40

−10

−5

0

5

10

15

20

East [m]

N
or

th
 [m

]

Nomoto Radius

Viknes 830 Radius

Figure 7.21: Comparing minimum turning radius for first order Nomoto-
(blue/dashed) and Viknes 830 model (red/solid)

Examining Figure 7.21, the minimum radius for the Nomoto- and Viknes
830 model are found to be ρnomoto ≈ 6 m and ρviknes ≈ 14.5 m. This is a
significant difference, therefore it is not expected that the Viknes 830 model
manage the same maneuvering as the Nomoto model for sharp turns. It is
evident that the Nomoto model deviates from the mathematical model of
Viknes 830 when it comes to large rudder angles, which were assumed in
advance.

The first order Nomoto model is not adequate to make up for a complex
model when varying velocity and large rudder angles applies. By utilizing
gain scheduling, the Nomoto model could have been modified to take varying

88 Chapter 7: Results and Discussion

Figure 7.22: Velocity and rudder values for Nomoto- (blue) and Viknes 830
(red) model with maximum rudder deflection

velocities into consideration, although the maneuvering characteristic was
significantly different for v = 2.1 m/s. It is also possible that a second order
Nomoto model would have given better results for higher rudder deflection as
well [24]. Nevertheless, the first order Nomoto model is sufficient to simulate
different guidance schemes with low computational power, hence resulting in
fast simulation time while at the same time capturing the principles of the
different guidance techniques quite well.

7.4 Case Study 89

Figure 7.23: Heading, velocity and rudder data from the trajectories of the
validation of Nomoto (blue) and Viknes 830 (red)

90 Chapter 7: Results and Discussion

7.4.3 Adapted Acceptance Circle Radius
For every succeeding test case, the mathematical model of Viknes 830 is
utilized. The control parameters, reference model parameters and vehicle
velocity are identical to the former section when comparing the Nomoto-
and Viknes 830 model, if not specified otherwise.

To avoid overshooting when making a sharp turn of e.g. 90◦, a function
(3.31) that takes the angle between the previous, current and next WP as
an input and calculates a desired acceptance circle radius is employed. The
parameters for the following case are: Rmax = 45 m, Rmin = 20 m and
σR = 1.2. The constant acceptance circle radius is set to Rconstant = 20 m.

−400 −300 −200 −100 0 100 200 300 400 500

−300

−200

−100

0

100

200

300

East [m]

N
or

th
 [m

]

Figure 7.24: The vehicle trajectories for constant (blue/dashed) and varying
(red/solid) acceptance circle radius

By inspection of Figure 7.24, one can clearly see the advantage of having
adapted acceptance circle radius with respect to meet the straight-line to the
next WP as early as possible. However, larger radius can cause greater devi-
ation to the target WP since turning, and WP switching, occurs earlier than
for smaller circles. The circle size should be adapted to the vehicle dynamics

7.4 Case Study 91

and maneuvering ability. It is preferable to keep the deviation between the
trajectory and the original WP low. Thus, smaller acceptance circle radius
is chosen when course-changing maneuvers are minor. The radius should
be defined to minimize the overshoot, analogous to a critical damped step
response.

Adapting the circle of acceptance radius can be seen as a feed-forward effect,
since it takes the future path layout into consideration.

92 Chapter 7: Results and Discussion

7.4.4 The Effect of Different Vehicle Velocity
For the cases discussed so far, the vehicle velocity has been constant. When
the velocity increases, it is expected that the turning radius is increased.
Thus, a former feasible path can become infeasible due to the altered turn-
ing characteristic when increasing the vehicle velocity.

The velocities are set to v1 = 2.1 m/s and v2 = 4.0 m/s for the following
test.

−400 −300 −200 −100 0 100 200 300 400 500

−300

−200

−100

0

100

200

300

East [m]

N
or

th
 [m

]

Figure 7.25: Trajectories for vehicle velocities of v1 = 2.1 m/s (blue/sold)
and v2 = 4.0 m/s (red/dashed)

In Figure 7.25 it becomes clear how increased velocity results in wider turns.
With nearly doubled velocity, the running time is naturally halved, but with
the drawback of greater deviation between new trajectory and original path.
However, straight-line following is approximately the same. This motivates
decreasing the speed only in the waypoints. One way to cope with the over-
shoot is to increase the acceptance circle radius, but other actions can be
made to enhance performance as will become apparent in the next section.

7.4 Case Study 93

Figure 7.26: Heading and velocity values for the trajectories in Figure 7.25
with corresponding color code

94 Chapter 7: Results and Discussion

7.4.5 Adapted Vehicle Velocity and Acceptance Circle
Radius

It is now demonstrated how increased velocity shorten the running time
while still resulting in a fairly good trajectory. Enhanced circle of acceptance
radius proved it possible to avoid overshooting when entering a sharp turn.
By introducing both these techniques, it will become evident that a good,
feasible trajectory can be developed where the vehicle adapts velocity and
WP radius to the waypoint layout of the path.

−400 −300 −200 −100 0 100 200 300 400 500

−300

−200

−100

0

100

200

300

East [m]

N
or

th
 [m

]

Figure 7.27: Trajectory with adapted velocity and circle of acceptance radius
(red/soid) versus constant values (blue/dashed)

A PI speed controller is implemented with Kp,surge = 40 and Ki,surge = 4.
The desired speed at the WPs is calculated according to (3.30), where vmax =
3.1 m/s, vmin = 1.0 m/s and σv = 1. Outside the WPs (at the straight-lines),
the nominal velocity was set to vnominal = 2.5 m/s. The acceptance circle
radius is found from equation (3.31) with Rmax = 60 m, Rmin = 20 m and
σR = 1.2.

7.4 Case Study 95

Figure 7.28: Heading, velocity and rudder angle for trajectories with adapted
and constant velocity and acceptance circle

Setting both the WP radius and desired velocity in each waypoint is prefer-
able to obtain a smooth trajectory with a good running time. The advantages
can be seen in the straight-line following properties of Figure 7.27 and the
running time (see Figure 7.28). Despite good performance in the current

96 Chapter 7: Results and Discussion

test, this method does cause the path to deviate from the WP setpoints for
sharp turns. To create trajectories that comprehend preturn and better WP
intersection properties, a cubic spline can be derived in advance. This will
become evident in the next section.

7.4.6 Path Generation with Cubic Splines
Using an interpolation technique, additional waypoints can be inserted be-
tween the original 23 waypoints, so that the vehicle will encounter the original
target WP with a different heading. In other words, the spline is constructed
in such way that it prepares the vehicle for the successive waypoint. This
effect is called a preturn; where the vehicle prepares for the WP layout by
encountering the target WP with less angle with respect to the consecutive
waypoint.

The path generated in this example is calculated by tangent method 3 ; equa-
tion (2.28). The guidance algorithm is lookahead-based LOS with lookahead
distance Δ = 30 m and the velocity is constant, v = 2.1 m/s.

Figure 7.29 indicates low deviation between the generated path and the ve-
hicle trajectory. The generated path is colored with respect to its curvature,
where red means relative high curvature and blue indicates low curvature.
Generally, the error between the generated path and the vehicle trajectory
is small, but the error is, as expected, greatest where the curvature is high.

7.4 Case Study 97

−300 −200 −100 0 100 200 300 400

−300

−200

−100

0

100

200

300

East [m]

N
or

th
 [m

]

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 7.29: Path-following vehicle trajectory (black/solid) with constant
velocity

98 Chapter 7: Results and Discussion

7.4.7 Path-Following with Adapted Vehicle Velocity
Path-following can also be carried out with velocity adapted to the path lay-
out; see equations (3.34). In this case, vmax = 3 m/s and vmin = 0.5 m/s.
The curvature is rounded to the nearest multiple of 0.01.

The same results occur now as for the adaption of velocity (and circle of
acceptance radius) in section 7.4.5. Increasing the velocity where the cur-
vature is low (corresponding to straight-lines section for the non-generated
spline cases) and decreasing velocity where curvature is high (in turns), re-
sults in an efficient run with low deviation from the interpolated path. As
opposed to the the methods without creating paths with the aid of splines,
the trajectory now intersects every original WP within a small radius due to
its preturn property and velocity adaption.

Despite good path-following properties, undesirable rudder oscillations arise
(see Figure 7.31). There is a time delay from rudder input to course measure-
ments; therefore oscillations may occur when applying too high controller
proportional gain. Suggestion for solving this problem is to decrease con-
troller gain or introduce a controller that handles the time delay better. This
master’s thesis does not focus on the controller, thus better path-following
results may occur by re-tuning the PID-controller or introducing a different
controller scheme. Feedforward in the sense of increasing radius of acceptance
circle and decreasing velocity is not sufficient in this case.

7.4 Case Study 99

−400 −300 −200 −100 0 100 200 300 400 500

−300

−200

−100

0

100

200

300

East [m]

N
or

th
 [m

]

50 100 150 200 250 300 350

150

200

250

300

350

East [m]

N
or

th
 [m

]

Figure 7.30: Path-following with constant velocity (blue) versus adapted
velocity (red)

100 Chapter 7: Results and Discussion

Figure 7.31: Heading, velocity and rudder angle values for path-following
with constant and adapted velocity

7.4 Case Study 101

7.4.8 Path-Following with Regenerated Path
The minimum turning radius ρviknes was calculated to 14.5 m for a vehicle
velocity of v = 2.1 m/s. Thus, the corresponding maximum curvature is:
κvehicle = 1

ρviknes
≈ 0.069 m−1. Notice that the maximum path curvature

κpath barely exceeds this value. By regenerating the path to have maximum
curvature beneath the threshold set by the vehicle, a consequence will be
better path-following properties. Since the path curvature is close to the
threshold already, it is expected that the original path-following properties
are fairly good, which is also confirmed in the previous test case. However,
modification of the path can prove slightly better path-following results.

−50 0 50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

East [m]

N
or

th
 [m

]

Deviation 2

Deviation 1

Figure 7.32: Distinction in deviation for original (blue) and modified path
(red)

A modification of the path where the curvature was too high was carried out
by the principle of moving WPs (see Figure 3.8). The relocation parameter
was set to 2/5. The result yields some improvement with respect to devia-
tion of calculated path, although the decrease in deviation was small. It is

102 Chapter 7: Results and Discussion

worth noticing that with a path curvature so close to the curvature threshold
of the vehicle, it might be more sensible to refrain from path modifications
and cope with the minor error as can be seen as Deviation 1 in Figure 7.32.
Relocating a WP in this case does not improve the path-following property
significantly (Deviation 2), thus the original path may be satisfactory.

Relocating WPs should only be carried out when the path is infeasible, since
it alters the original WP setup; which has its layout for a reason. If, however,
the path obtained from the WP placement is far from feasible with respect to
the vehicle dynamics, action must be taken. Nevertheless, altering the path
must be done with care, depending on the area of application. Before altering
the path, minimum velocity in the critical areas should be tested, due to the
change in the maneuvering characteristic at lower velocities. It follows that
moving WPs uncritically before reducing the speed where the path curvature
is too high is less than optimal action. The path curvature κpath was close to
κvehicle for a vehicle velocity of v = 2.1 m/s. As seen in 7.25 and well-known
by empiricism, reducing the speed causes smaller turning radius. A good
solution is therefore to exam the path for low vehicle velocity, and determine
potential path altering based on the vehicle trajectories at low speed.

7.4 Case Study 103

7.4.9 Path-Following with Weather Disturbances
When examining the path-following in more realistic conditions, simulations
with wind-, water- and current disturbance were carried out. The environ-
mental disturbance parameters were set to vwind = 2 m/s with attack angle
of 45◦ (directly north-east), vcurrent = 0.05 m/s at 90◦ and significant wave
height was 0.8 m at 45◦.

−300 −200 −100 0 100 200 300 400

−300

−200

−100

0

100

200

300

East [m]

N
or

th
 [m

]

Wind Waves

Current

Figure 7.33: Vehicle trajectory including wind-, current- and wave distur-
bance

The vehicle proved good path-following properties in gentle breeze (1.3 −
2.1 m/s wind speed) with wave height according to the weather conditions.
However, it is worth noticing that a small steady-state error arises owing to
the wind and current disturbance. Tuning the controller, particularly increas-
ing the integrator gain will cope with this problem and yields less deviation
between vehicle trajectory and proposed path.

104 Chapter 7: Results and Discussion

Figure 7.34: Heading, velocity and rudder angle for trajectory when including
wind-, current- and wave disturbance

To avoid wear and tear, a wave filter should be implemented so that the
rudder does not flap all along during the run. Nevertheless, disregarding
this aspect, the vehicle proved good results even with varying weather dis-
turbances.

Chapter 8

Conclusion and Future Work

8.1 Conclusion

The main contribution to this thesis is algorithms for generating C1-continuous
paths based on a predefined waypoint setup and an appurtenant path feasi-
bility check with respect to the dynamics of a vehicle.

It is demonstrated how four different tangent vector calculation methods can
be used to create splines, with continuous first derivative through the in-
terpolating points. In general, one tangent calculation method was superior
the others, thus yield best results with respect to smooth curves for various
waypoint layouts, compared to the other three methods.

By calculating the curvature along the entire path and comparing it with
the vehicle dynamics, a path feasibility check was carried out. It is proven
that speed- and acceptance circle adaption at each waypoint, or altering the
original waypoint setup are suitable solutions to cope with the infeasibility
problem for vehicles with trajectory curvature exceeding the path curvature
limit. Since speed reduction enhances the turning property, it is preferable
to decrease the velocity to a minimum at the critical path sections before
possible modification of the waypoint setup have to be carried out.

Velocity- and acceptance circle radius functions based on the angle between
the succeeding waypoints have been suggested to optimize driving with re-
spect to path-following properties and time. A function for the vehicle ve-
locity, taking path curvature into consideration is also proposed. Results of
efficient path-following with small deviation between vehicle trajectory and
path are apparent.

105

106 Chapter 8: Conclusion and Future Work

For paths failing the feasibility check, algorithms that remove, insert and re-
locate waypoints, thus decreasing the path curvature, have been suggested.
These algorithms alter the original waypoint setup, and should not be used
heedlessly.

Simulations have been carried out both on a simple first order Nomoto model
and a more complex vehicle model of the Viknes 830. The limitation of
the Nomoto model for large rudder deflection is demonstrated. Different
guidance principles such as pure pursuit and line-of-sight guidance have been
tested on the models and both methods function well for waypoint-following
in any case.

8.2 Future Work
Although functional algorithms and good path-following properties were demon-
strated in this master’s thesis, there are several improvement areas that
should be emphasized and devoted more time and research:

• Let the vector tangent calculation methods interact to create splines
with reduced curvature, thus choosing the tangent method in each con-
trol point that yields minimized overall path curvature.

• Define the path generation problem as an optimization problem subject
to minimized curvature.

• Improve the algorithm for adding waypoints to take the current way-
point placement and arrival course into consideration, thus defining
whether crossing- or non-crossing added path should be generated. In
addition, determine the number of added waypoints and their place-
ment with respect to minimizing the curvature instead of inserting a
predefined fixed waypoint setup.

• Resolve automatically if waypoint removal or -relocating yields best
result with respect to curvature and original path restoration.

• Introduce filters to reduce wear and tear, especially for the rudder when
waves are present.

• Improve controller scheme, e.g. with model predictive control.

8.2 Future Work 107

In addition to the suggested improvements, full-scale testing on Trondheims-
fjorden with Maritime Robotics’ unmanned surface vehicle (Viknes 830)
should be carried out to verify the case study simulations. Unfortunately,
unanticipated problems with the power supply module in Viknes 830 oc-
curred which resulted in postponement of the full-scale testing until after
submission date of this thesis.

108 Chapter 8: Conclusion and Future Work

Bibliography

[1] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Con-
trol. John Wiley & Sons Ltd., 2011.

[2] S. Corfield and J. Young, “Unmanned surface vehicles-game changing
technology for naval operations,” Advances in unmanned marine vehi-
cles, 2009.

[3] V. Bertram, “Unmanned surface vehicles–a survey,” Skibsteknisk Sel-
skab, Copenhagen, Denmark, 2008.

[4] J. Ebken, M. Bruch, J. Lum, and Space and naval warfare systems
center San Diego CA., “Applying unmanned ground vehicle technologies
to unmanned surface vehicles,” in Proc. SPIE, vol. 5804, pp. 585–596,
Citeseer, 2005.

[5] International Submarine Engineering Ltd., “Dolphin mk i semi-
submersible auv.” http://www.ise.bc.ca/Dolphin/ISE Semi-Submersible
Dolphin.pdf (last visited 19th of June, 2011).

[6] M. Caccia, G. Bruzzone, and R. Bono, “Modelling and identification of
the charlie2005 asc,” in Control and Automation, 2006. MED’06. 14th
Mediterranean Conference on, pp. 1–6, IEEE, 2006.

[7] J. Majohr and T. Buch, “Modelling, simulation and control of an au-
tonomous surface marine vehicle for surveying applications measuring
dolphin messin,” Advances in unmanned marine vehicles, p. 329, 2006.

[8] A. Pascoal, P. Oliveira, C. Silvestre, L. Sebastião, M. Rufino, V. Barroso,
J. Gomes, G. Ayela, P. Coince, M. Cardew, et al., “Robotic ocean ve-
hicles for marine science applications: the european asimov project,” in
OCEANS 2000 MTS/IEEE Conference and Exhibition, vol. 1, pp. 409–
415, IEEE, 2000.

109

110 BIBLIOGRAPHY

[9] M. Caccia, “Autonomous surface craft: prototypes and basic research
issues,” in Control and Automation, 2006. MED’06. 14th Mediterranean
Conference on, pp. 1–6, IEEE, 2006.

[10] T. Fossen, M. Breivik, and R. Skjetne, “Line-of-sight path following of
underactuated marine craft,” in Proceedings 2003 IFAC Conference on
Maneuvering and Control of Marine Craft.

[11] R. Skjetne, T. Fossen, and P. Kokotovic, “Output maneuvering for a
class of nonlinear systems,” in Proc. 15th IFAC World Congress Auto-
matic Control, Barcelona, Spain, 2002.

[12] D. Nelson, D. Barber, T. McLain, and R. Beard, “Vector field path
following for miniature air vehicles,” Robotics, IEEE Transactions on,
vol. 23, no. 3, pp. 519–529, 2007.

[13] W. Naeem, R. Sutton, S. Ahmad, and R. Burns, “A review of guidance
laws applicable to unmanned underwater vehicles,” Journal of Naviga-
tion, vol. 56, no. 01, pp. 15–29, 2003.

[14] T. Vaneck, “Fuzzy guidance controller for an autonomous boat,” Control
Systems Magazine, IEEE, vol. 17, no. 2, pp. 43–51, 1997.

[15] J. Osborne and R. Rysdyk, “Waypoint guidance for small UAVs in
wind,” AIAA Infotech@ Aerospace, pp. 1–12, 2005.

[16] J. Arvo, “Polynomial Interpolation and
the Vandermonte Matrix,” May 2009.
http://www.ics.uci.edu/∼arvo/CS206/code/Vandermonde.pdf
(last visited 19th of June, 2011).

[17] C. Maes, “Runge’s phenomenon from the wolfram demonstrations
project.” http://demonstrations.wolfram.com/RungesPhenomenon/
(last visited 19th of June, 2011).

[18] D. H. House, “Spline curves,” June 2010.
http://www.cs.clemson.edu/∼dhouse/courses/405/notes/splines.pdf
(last visited 19th of June, 2011).

[19] G. Knott, Interpolating cubic splines. Birkhauser, 2000.

[20] Y. Wang, D. Shen, and E. Teoh, “Lane detection using catmull-
rom spline,” in IEEE International Conference on Intelligent Vehicles,
pp. 51–57, 1998.

BIBLIOGRAPHY 111

[21] M. Breivik, “Nonlinear maneuvering control of underactuated ships,”
Master’s thesis, NTNU, Trondheim, Norway, 2003.

[22] C. Edwards and D. Penney, Calculus. Prentice Hall, 2002.

[23] T. M. Jensen, “Modeling Approaches for an Articulated Dumper Truck,”
2010.

[24] J. Van Amerongen, “Adaptive steering of ships A model-reference ap-
proach to improved manoeuvring and economical course keeping,” 1982.

[25] K. Nomoto, T. Taguchi, K. Honda, and S. Hirano, “On the steering
qualities of ships,” International Shipbuilding Progress, vol. 4, no. 3,
pp. 354–370, 1957.

[26] C. Tzeng and J. Chen, “Fundamental properties of linear ship steering
dynamic models,” Journal of Marine Science and Technology, vol. 7,
no. 2, pp. 79–88, 1999.

[27] K. Kjerstad, Weather-Optimal Positioning Control for Underactuated
USVs. Tapir Uttrykk, 2010.

[28] J. Van Amerongen, “Adaptive steering of ships–A model reference ap-
proach,” Automatica, vol. 20, no. 1, pp. 3–14, 1984.

[29] C. Chen, Linear system theory and design. Oxford University Press,
Inc., 1998.

[30] A. Healey and D. Marco, “Slow speed flight control of autonomous un-
derwater vehicles: Experimental results with NPS AUV II,” in Proc. of
the 2nd Internat. Offshore and Polar Engineering Conf, pp. 523–532,
1992.

112 BIBLIOGRAPHY

Appendix A

Continuity

Continuity is a property that describes the smoothness of a path, curve or
surface. A function f(x) is continuous at a point a provided that limx→a f(x)
exists and that the limit in this point is f(a) [22]. A function f(x) is Cn

continuous if dnf
dtn is continuous. There are different orders of continuity:

• Discontinuous path

• C0: The path is joined - no discontinuities

• C1: The first derivative of the function is continuous

• C2: The first and second derivatives of the function is continuous

• Cn: The first to n’th derivatives of the function is continuous

The different levels of continuity can be visualized in Figure A.1:

113

114 Chapter A: Continuity

0 5 10 15 20 25 30 35 40

−20

0

20

Discontinious path

0 5 10 15 20 25 30 35 40

−20

0

20

C0−continuous

0 5 10 15 20 25 30 35 40

0

50

100

C1−continuous

0 5 10 15 20 25 30 35 40

−20

0

20

C2−continuous

Figure A.1: Orders of Continuity

Appendix B

Digital Appendix

The digital appendix contains the Simulink models and the necessary
MATLAB code to run simulations. Notice that the MSS Toolbox have to
be downloaded and installed to run the simulations.

INIT_NOMOTO.m and INIT_VIKNES.m initialize the Simulink models
nomoto_model.mdl and VIknes_830_USV_model.mdl. Controller-, ref-
erence model-, lookahead distance and other parameters are initialized in
these m-files.

The Misc folder contains MATLAB code for several of the figures in the
master’s thesis. boat_animation.m creates an animation of the vehicle tra-
jectory and is also located in the Misc folder.

115

	Title Page
	Introduction
	Motivation
	The Evolution of USVs
	Guidance, Navigation and Control
	Path Planning
	Path-Following
	Contributions
	Thesis Outline

	Interpolation
	Polynomial Interpolation
	Path Generation Based on Waypoints
	Path Generation using Straight-Lines and Circles

	Spline
	Cubic Hermite Interpolation

	Guidance
	Pure Pursuit Guidance Algorithm
	LOS Guidance Algorithms
	Enclosure-Based LOS Steering
	Lookahead-Based LOS Steering

	WP Switching Algorithm
	Speed Profile
	Speed Profile from Direct WP Layout
	Acceptance Circle Radius Based on WP Layout
	Curvature
	Speed Profile Based on Path Curvature

	Feasible Path Selection
	Removing Waypoints Algorithm
	Inserting Waypoints Algorithm
	Relocating Waypoints Algorithm

	Models
	Choosing the Right Vehicle Model
	2nd Order Nomoto Model
	1st Order Nomoto Model
	Viknes 830
	Heading Actuators

	Mathematical Model
	Actuators
	Environmental Aspects

	Heading Reference Model

	Control
	PID-Control

	Implementation
	Waypoint Generator
	Simulator Structure

	Results and Discussion
	Removing Waypoints
	Inserting Waypoints
	Relocating Waypoints
	Case Study
	Comparison of PP- and LOS-Based Guidance
	Validation of Nomoto Model
	Adapted Acceptance Circle Radius
	The Effect of Different Vehicle Velocity
	Adapted Vehicle Velocity and Acceptance Circle Radius
	Path Generation with Cubic Splines
	Path-Following with Adapted Vehicle Velocity
	Path-Following with Regenerated Path
	Path-Following with Weather Disturbances

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Continuity
	Digital Appendix

