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Abstract

This thesis contains modeling, observability analysis and state

estimator design of a tethered airfoil. A existing model is ex-

tended to include wind dynamics. The observability analysis

shows that the system is indeed observable. A comparison is

made between Extended and Unscented Kalman filter (UKF)

and the UKF is found to achieve best results during simula-

tions.
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Introduction

1.1 Motivation

The use of kites as a propulsion device is not a new idea. Even so it has since

the introduction of the combustion motor, been seen more as novelty item

than as a serious way of propulsion or power generation. This is changing

as kites used to aid propulsion of large vessel such as cargo ships [1], as well

as many serious concepts of power generation, has grown popular the recent

years. [5, 10, 8, 15, 16] The main advantages of using kite to generate power

as opposed to windmills is that the windmill power generation capabilities is

bounded by the size of its blades and the height of the construction. Kites

does not have that problem as they do not need a big ground structure

and are able to operate at greater heights where the wind speed is greater

[17]. This have lead to many concepts dealing with kites for use in power

generation. In these concepts it is often assumed that measurements of all

necessary states are readily available, and therefor involves measuring the

1



1. INTRODUCTION

kite position, speed and rotation using different measuring devices attached

to the kite itself. This impose challenges such as added weight and the

need for communication between the kite-based measuring device and the

controller.

This thesis explores the concept of estimating the state of the kite using

ground based measurements. These measurements are typically the angle

between the ground and the cable (θ), the rotational angle around the z-

axis (φ), the wind at ground level, and the the effect of the control lines as

depicted in Figure 1.1.
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1.1 Motivation

xe

ye

ze

power cable control lines

φ

Wind

θ

Figure 1.1: The kite and the ground based control and measurement unit
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1. INTRODUCTION

1.2 Outline

The outline of the thesis:

• Kite modeling

• Wind modeling

• Observability analysis

• State estimation

• Simulation

• Conclusion

• Discussion and further work
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2

Kite Modeling

The first part of this chapter (2.1) is a brief summary of the kite model

given in H̊avard Knappskog’s Master thesis “Nonlinear control of tethered

airfoils” [12]. The model is the discretized in 2.2.

2.1 Continuous model

The kinematics of the kite system is based on Euler Lagrange’s equation of

motion, with q = (θ, φ, r)T being the spherical coordinates:

d

dt

(
∂L

∂q̇i

)

−
∂L

∂qi
= τi (2.1)

and the Lagrangian L is given by:

L(q, q̇, t) =T (q, q̇, t)− U(q) (2.2)

Tkin =
1

2
m|ṗ|2 =

m

2

(

ṙ2 + r2 sin(θ)φ̇2 + r2θ̇2
)

(2.3)

5



2. KITE MODELING

m is the mass of the system assumed only to be the mass of the kite:

m = m. T is the kinetic energy and U is the potential energy given by:

U =mgh = mgr cos(θ) (2.4)

The following is derived from the above equations::

q̈ = S−1F
l

m
− a (2.5)

Which is the final continuous model. F l is the sum of forces given in the

local frame.S is a scaling matrix given by:

S =





r 0 0
0 r sin(θ) 0
0 0 0



 (2.6)

and a is the pseudo force:

a =






2 ṙ
r
θ̇ − sin(θ) cos(θ)φ̇2

2 ṙ
r
φ̇+ 2 cos(θ)

sin(θ) θ̇φ̇

−r sin(θ)φ̇2 − rθ̇2




 (2.7)

The sum of the forces given in the local system consists of:

F l = F l
g + F l

aer + F l
c (2.8)

where F l
g is the force caused by gravity:

F l
g =m





g sin(θ)
0

−g cos(θ)



 (2.9)

F l
aer is the aerodynamic forces and F l

c is the cable force:

F l
c = −

(

F l
g + F l

aer

)

3
(2.10)

6



2.1 Continuous model

xe

ye

ze

r

φ

θ

xl

yl

zl

Figure 2.1: The earth and local coordinate systems. The spherical coordi-

nates q = (θ, φ, r)T is indicated in the figure
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2. KITE MODELING

Such that the sum of the forces in er-direction is zero, F l
3 = 0. q̈ is then

given by:

θ̈ =
Fθ

mr
− aθ (2.11)

φ̈ =
Fφ

mr sin(θ)
− aφ (2.12)

r̈ =
Fr

m
− ar (2.13)

By assuming r to be constant and adding the yaw of the kite body around

the cable βb, and the flaps angle δl as states the kite model is given by:







θ̈

φ̈

β̈b
δ̇l







=









(

S−1 F l

m
− a

)

1(

S−1 F l

m
− a

)

2
Mk

Ik

buu









(2.14)

Mk is the yawing moment and is given by:

Mk =
1

2
ρair(qw)

2bACk − ckdβ̇b (2.15)

where qw is the relative wind to the kite and Ck is the sum of the natural

directional stability of the kite and the control input:

Ck = −cksβs + ck,+deltacδl (2.16)

2.1.1 Coordinate frames and transformation matrices

The following right-handed orthogonal reference frames with corresponding

unit vectors in the x-, y- and z-direction are defined as:

• Earth frame, unit vectors: ex, ey and ez, shown in Figure 2.2

8



2.1 Continuous model

• Local frame, unit vectors: eθ, eφ and er, shown in Figure 2.2

• Body frame, unit vectors: ei, ej and ek, shown in Figure 2.2

• Wind frame, unit vectors: ew, et and en, shown in Figure 2.3

The relationship between the coordinate frames are given by transfor-

mation matrices which makes it possible to relate information given in one

coordinate frame to another.

The transformation matrix from the local- to the earth-frame is given

by:

Rl
e =Ry(θ)Rz(φ)

=





cos(θ) cos(φ) cos(θ) sin(φ) − sin(θ)
− sin(φ) cos(φ) 0

sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)



 (2.17)

The transformation matrix from the body- to the local-frame is given

by:

Rb
l =Rz(βb)

=





cos(βb) sin(βb) 0
− sin(βb) cos(βb) 0

0 0 1



 (2.18)

The transformation matrix from the wind- to the body-frame is given

by:

Rw
b =Ry(αw)Rz(βw)

=





cos(αw) cos(βw) cos(αw) sin(βw) − sin(αw)
− sin(βw) cos(βw) 0

sin(αw) cos(βw) sin(αw) sin(βw) cos(αw)



 (2.19)
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2. KITE MODELING

xe

ye

ze

p
ow

er
ca
b
le

xl

yl

zl

βb xb

yb
zb = zl

Figure 2.2: The local frame and the body frame. The body frame orientation

around the local frame βb is indicated in the figure.
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2.1 Continuous model

xb

yb

zb

βw

−αw

xw

yw

zw

relative wind
w

leadi
ng edge

Figure 2.3: The body frame and the wind frame. The relative wind, the

yaw-angle βw and the pitch angle αw is indicated in the figure.
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2. KITE MODELING

The yaw-angle βw and the pitch angle αw (indicated in Figure 2.3) is the

product of the states and the wind vector, and is therefor unknown. How-

ever, by defining the relative wind vector υ given in the local frame, it is

possible to calculate αw and βw

υle =Rl
eυ

e − ṗl

=





c(θ)c(φ) c(θ)s(φ) −s(θ)
−s(φ) c(φ) 0
s(θ)c(φ) s(θ)s(φ) c(θ)









υx
υy
υz



−





rθ̇

rs(θ)φ̇
0



 (2.20)

=





c(θ)c(φ)υx + c(θ)s(φ)υy − s(θ)υz − rθ̇

−s(φ)υx + c(φ)υy − rs(θ)φ̇
s(θ)c(φ)υx + s(θ)s(φ)υy + c(θ)υz



 (2.21)

it is assumed that ṙ = 0 and the wind vector is dominated by wind along

the xe-axis. It is now possible to show that αw and βw are given by [12]:

αw =− arcsin




υxs(θ)c(φ)

√

(υxc(θ)c(φ)− rθ̇)2 + (υxs(φ) + rs(θ)φ̇)2 + (υxs(θ)c(φ))2





(2.22)

βs =− arcsin




c(βb)(υxs(φ) + rs(θ)φ̇) + s(βb)(υxc(θ)c(φ)− rθ̇)

√

(υxc(θ)c(φ))2 + (υxs(φ) + rs(θ)φ̇)2





(2.23)
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2.2 Discretization of the system

2.1.2 State space representation of the system

By using the results of the previous chapters the kite model is represented

by the following state space model:

ẋ =f(x, υ, t) + u(t) +w(t) (2.24)

y =h(x, t) + v(t) (2.25)

where:

x =














θ
φ
βb
θ̇

φ̇

β̇b
δl














(2.26)

The system is then given by:













ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7













=
















x4
x5
x6(

S−1 F l

m
− a

)

1(

S−1 F l

m
− a

)

2
Mk

Ik

0
















+













0
0
0
0
0
0
bu













u+













wx4

wx5

wx6

wẋ4

wẋ5

wẋ6

wẋ7













(2.27)

2.2 Discretization of the system

If the model is to be used to control and/or monitor hardware, it is necessary

to discretize the system. The discretization is achieved by using the Euler

13



2. KITE MODELING

first order method and the discrete system is given by:

xk =xk−1 + h · (f(xk−1, υ, t) + uk +w)












x1,k
x2,k
x3,k
x4,k
x5,k
x6,k
x7,k













=













x1,k−1

x2,k−1

x3,k−1

x4,k−1

x5,k−1

x6,k−1

x7,k−1













+ h ·

























x4,k−1

x5,k−1

x6,k−1

ẋ4,k−1

ẋ5,k−1

ẋ6,k−1

0













+













0
0
0
0
0
0
bu













uk +













wx4

wx5

wx6

wẋ4

wẋ5

wẋ6

wẋ7

























(2.28)

Where h is the step size given by the sampling frequency.
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3

Wind Modeling

When modeling the influence of wind on a kite there are two main factors

which needs to be considered, namely:

• Change in wind speed due to altitude and terrain (wind shear).

• Effect of wind turbulence.

In section 3.1 the effect of altitude and ground terrain on the wind speed is

introduced while a way of modeling the turbulence is introduced in section

3.2.

3.1 Wind Shear Modeling

One of the main advantages of using kites to generate power is their ability

operate at higher altitudes than conventional windmills as the wind velocity

15



3. WIND MODELING

υ ∈ R
3 increases with altitude h ∈ R with a factor given by: [17]

υ(h) =υe
(

h

h0

)αwind

(3.1)

where υe ∈ R
3 is the wind velocity at a given altitude h0 ∈ R and αwind ∈ R

is the power law exponent. The height of the kite h is given by the measured

angle θ:

h =r cos(θ) (3.2)

αwind varies with the terrain and is found empirically. Typically used values

of αwind is found in table 3.1 [17].

Terrain Description αwind

Smooth, hard ground, lake or ocean 0.10

Short grass on untilled ground 0.14

Level country with foot-high grass, occasional tree 0.16

Tall row crops, hedges, a few trees 0.20

Many trees and occasional buildings 0.22-0.24

Wooded country - small towns and suburbs 0.28-0.30

Urban areas with tall buildings 0.4

Table 3.1: Typical wind power law exponents for varying terrain

In this paper αwind is set to 1
7 ≈ 0.14 as the terrain is relative smooth in

the areas of interest for installation of the kite controller. Figure 3.1 shows

the the altitude dependent wind velocity with αwind = 1
7 .

16



3.1 Wind Shear Modeling

0 5 10 15 20 25 30
5

5.5
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6.5

7

7.5

8

8.5

9

u w
in

d [m
/s

]

h [m]

Figure 3.1: Wind shear - Wind velocity at different heights with υe =

[6, 0, 0] [m/s] and h0 = 2 [m]
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3. WIND MODELING

3.2 Wind Turbulence modeling

The total wind contribution is given by a vector consisting of contributions

from the stable wind υ ∈ R
3 and the turbulence δυ ∈ R

3.

υtotal =υ + δυ (3.3)

Turbulence is defined as irregular fluctuation of the speed, in this case

wind speed, at any point from instant to instant about a mean value. [6,

7] The turbulence is therefor assumed to be a random process with the

expectation value E{δυ} = 0. [10]

The autocorrelation function K : R × R → R
3×3 of the turbulence δυ

is given by

K(t, τ) =E{[δυ(t)][δυ(t)]T } (3.4)

K(t, τ) =K(τ, t)T (3.5)

∀t, τ ∈ R

The power spectral density S : R × R → R
nυtotal

×nυtotal of the turbulence

is defined to be the Fourier transform of the autocorrelation function;

S(t, ω) :=

∞∫

−∞

K(t, τ)e−iω(t−τ)dτ ∀t, ω ∈ R (3.6)

where t is the time and ω is the frequency.

A simplified version of Dryden’s wind turbulence model is given by

[10, 6]:

S(t, ω) =







2σ2
xδ

δ2+ω2 0 0

0 σ2
yδ

δ2+3ω2

(δ2+ω2)2
0

0 0 σ2
zδ

δ2+3ω2

(δ2+ω2)







∀t, ω ∈ R (3.7)

18



3.3 Kite model with wind added as process states

where σx, σy, σz ∈ R are the turbulence intensities and δ ∈ R is the corre-

lation rate.

The corresponding autocorrelation K is given by:

K(t, τ) =







σ2
x 0 0

0 σ2
y

(

1− |τ ′|
2

)

0

0 0 σ2
z

(

1− |τ ′|
2

)







e−|τ ′| (3.8)

τ ′ = (t− τ)δ ∀t, τ, τ ′ ∈ R

It is possible to simulate the wind turbulence with the above autocorrelation

function by passing white noise through a sequence of linear forming filters.

One way of simulating the turbulence is described in Appendix A

3.3 Kite model with wind added as process states

The wind vector υtotal found in 3.2 is given in Cartesian coordinates. Before

adding wind as process states a conversion from Cartesian to spherical

coordinates is carried out.

19



3. WIND MODELING

νtotal =
√

x2 + y2 + z2

=
√

(υ + δυ)2x + (υ + δυ)2y + (υ + δυ)2z (3.9)

γtotal =arccos
(z

r

)

=arccos

(
(υ + δυ)z
νtotal

)

(3.10)

µtotal =arctan
(y

x

)

=arctan

(
(υ + δυ)y
(υ + δυ)x

)

(3.11)

The new states added to the system µ, γ and ν as well as the contribu-

tion of the turbulence wν , wγ and wµ is given by:

ν=

√

(υ)2x + (υ)2y + (υ)2z (3.12)

wν =
√

(δυ)2x + (δυ)2y + (δυ)2z (3.13)

γ =arccos

(
(υ)z
ν

)

(3.14)

wγ =arccos




(υ)z

√

(δυ)2x + (δυ)2y + (δυ)2z



 (3.15)

µ =arctan

(
(υ)y
(υ)x

)

(3.16)

wµ =arctan

(
(δυ)y
(δυ)x

)

(3.17)

where ν is the strength of the wind, γ and µ is the direction of the wind as

shown in Figure 3.2 while wµ, wγ and wν is the influence of the turbulence

on strength and direction of the wind.

20



3.3 Kite model with wind added as process states

The effective wind on the local system is then given by:

qw =





ν
γ
µ





=qe
w

(
h

hr

)αwind

+ δqw (3.18)

=qe
w

(
h

hr

)αwind

︸ ︷︷ ︸

Wind shear

+ fw,t(h, vkite, θ, φ, βb)
︸ ︷︷ ︸

Wind turbulence

(3.19)

Where qe
w is the wind vector measured at height h0 and fw,t is the wind

turbulence function described in Appendix A.

It is reasonable to assume that kite will operate in a environment where

the wind vector is dominated by wind in one direction, and the contribu-

tion from the other elements of the vector is primarily due to turbulence.

Defining the wind along the ex axis as the primary contributer to the wind

vector gives the following approximation:

ν =

√

(υ)2x +�
��(υ)2y +�

��(υ)2z = υx (3.20)

γ =arccos

(
(δυ)z
υx

)

(3.21)

µ =wµ = arctan

(
(δυ)y
(δυ)x

)

(3.22)

Redefining γ as the angle between the xeye plane at height h0 and the wind

vector, results in:

γ =
π

2
− arccos

(
(δυ)z
υx

)

(3.23)
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3. WIND MODELING

ql
w =(qe

w)x

(
h

hr

)αwind

︸ ︷︷ ︸

Wind shear

+ fw,t(h, vkite, θ, φ, βb)
︸ ︷︷ ︸

Wind turbulence

(3.24)

x8 =ql
w (3.25)

The state space representation of the kite model with the new states then

is given by:
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ẋ8















=


















x4
x5
x6(

S−1 F l

m
− a

)

1(

S−1 F l

m
− a

)

2
Mk

Ik

0
ẋ8


















+















0
0
0
0
0
0
bu
0















u+















wx4

wx5

wx6

wẋ4
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(3.26)
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3.3 Kite model with wind added as process states

xe

ye

ze

νeh0

µe

γe

Figure 3.2: Wind direction is represented by µe and γe while the strength

of the wind is represented by νe. All coordinates are in earth frame.
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4

Observability analysis

The observability problem consists of investigating whether there exist rela-

tions binding the state-variables to inputs, outputs and their time derivative

thus locally defining them uniquely in terms of measurable quantities with-

out the need for knowing the initial conditions of the states. If no such

relation exist, the initial state of the system cannot be deduced strictly by

looking at the input-output behavior of the system. [3]

In this chapter the theory behind the observability analysis is first pre-

sented in Chapter 4.1 the applied to determine the observability properties

of the kite model in Chapter 4.2.

4.1 Nonlinear observability

There are several strategies to determine the observability of a nonlinear

system. In this paper the focus will be on the the differential geometric

approach as presented in [9, 18, 3].
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4. OBSERVABILITY ANALYSIS

A nonlinear system is defined as

Σ :
ẋ = f(x) + g(x)u
y = h(x)

(4.1)

It is assumed that x ∈ M where M is a open subset of Rm. And where

f ∈ R
m is the model function, h ∈ R

n is the measurements and g(x)u ∈ R
p

is the contribution of the inputs.

Suppose the trajectories of Σ are required to satisfy the initial condition

x(t0) =x0

then Σ defines a map from inputs to outputs as follows. Each input

(u(t), [t0, t1]) gives rise to a solution (x(t), [t0, t1]) of ẋ = f(x, u(t)) satisfying

the initial condition. The output (y(t), [t0, t1] is then given by y = h(x(t)).

This map is denoted by

Σx0 : (u(t), [t0, t1]) 7→ (y(t), [t0, t1])) (4.2)

and is referred to as the input-output map of Σ at x0.

A pair of points x0 and x1 are indistinguishable (denoted x0Ix1) if

(Σ,x0) and (Σ,x1) realize the same input-output map, that is if: [9]

Σx0 : (u(t), [t0, t1]) = Σx1 : (u(t), [t0, t1]) (4.3)

Σ is said to be observable at x0 if I(x0) = {x0} and observable if

I(x) = {x} for every x ∈ M .

In practice however it may not be necessary to distinguish x0 for every

point in M . Distinguishing it from its neighbors may suffice. If there exists

a an open neighborhood U of x0 such that I(x0)∩U = {x0}, Σ is said to be

weakly observable (or distinguishable) at x0 and locally weakly observable

if this the case for every x ∈ M [9].
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4.2 Observability of the kite model

4.2 Observability of the kite model

In this chapter the observability properties of the kite system with ground

based measurements is investigated. As mentioned in Chapter 1.1, the

measurements available from the ground is:

h =
[

θ φ θ̇ φ̇ δl qe
w

]T
(4.4)

The only input in the system is the angular velocity of the flaps controlled

by the power cables:

g =δ̇l (4.5)

Hence for the system to be observable, βb and β̇b needs to be uniquely

identified given only the mentioned inputs and outputs. Recalling from

Chapter 2.1:

Mk =
1

2
ρair(q

l
w)

2bA(−cksβs + ck,δcδl)− ckdβ̇b

β̇b =
1

ckd

(
1

2
ρair(q

l
w)

2bA(−cksβs + ck,δcδl)

)

−Mk (4.6)

As δl is a measured state and the rest of the parameters is assumed known,

it is only necessary to determine the effect of the side slip βs and the relative

wind ql
w to obtain the value of β̇b, recalling from Chapter 2.1:

βs =− arcsin




c(βb)((q

l
w)xs(φ) + rs(θ)φ̇) + s(βb)((q

l
w)xc(θ)c(φ)− rθ̇)

√

((ql
w)xc(θ)c(φ))

2 + ((ql
w)xs(φ) + rs(θ)φ̇)2





(4.7)
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4. OBSERVABILITY ANALYSIS

where (ql
w)x is the wind contribution in the ex direction given in the local

frame given by:

ql
w =Rl

e

(

(qe
w)y

(
h

hr

)αwind

+ fw,t(h, vkite, θ, φ, βb)

)

− ṗl (4.8)

The turbulence contribution fw,t is also dependent on the yaw of the kite.

It is clear that βb is needed to calculate β̇b. Recalling again from Chap-

ter 2.1,the relation between the earth frame and the wind frame is given

by:

Rw
e =Rl

eR
b
lR

w
b (4.9)

=Rx(θ)Rz(φ)Rz
︸ ︷︷ ︸

Known

(βb)Ry
︸ ︷︷ ︸

Unknown

(αw)Rz(βw)
︸ ︷︷ ︸

Known

(4.10)

It is possible to calculate βs by using the relation of the wind frame, local

frame and the body frame given by:

Rb
w =(Rw

b )
T = Rb

lR
l
w (4.11)

=





cos(αw) cos(βs) − sin(βs) sin(αw) cos(βs)
cos(αw) sin(βs) cos(βs) sin(αw) sin(βs)

− sin(αw) 0 cos(αw)



 (4.12)

Having calculated βs, and qlw it is possible to calculate βb. However since

αw and βs are given by the the relative wind which in turn is given by the

yaw of the kite, it is not possible to calculate βb,0 directly. But by making

the assumption that the wind vector is being dominated by the wind in

ex-direction and the contribution of the turbulence is negligible we are able
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4.2 Observability of the kite model

to give a approximate value β̂b,0 of βb,0 since:

ql
w =Rl

e

(

(qe
w)y

(
h

hr

)αwind

+
((((((((((
fw,t(h, vkite, θ, φ, βb)

)

− ṗl

=Rl
e(q

e
w)y

(
h

hr

)αwind

− ṗl (4.13)

As the relative wind is no longer dependent on the yaw, but purely on the

height of the kite it is now possible to find β̂b,0 by using the relations given

in 4.6, 4.7 and 4.12. This value of βb,0 will however include an error due to

the exclusion of the wind turbulence.
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5

State estimation

A state observer is a system that estimates the states of a process given

only access to the process inputs and outputs. This a trivial matter when

the process is linear. When the system is non linear however the task of

estimating the states becomes more complex. The optimal solution to the

non linear state estimation problem requires the propagation of the full

Probability Density Function (PDF). The PDF is defined as the derivative

of the cumulative distribution function [14]. Since the form of the PDF

is not restricted it cannot, in general,be described using a finite number

of parameters. The use of approximations is therefor necessary in the de-

sign of any practical state estimator. One of the most widely used state

estimator algorithms is the Kalman Filter (KF), it only utilizes the mean

and covariance of the state in its update rule which makes it computation-

ally manageable and require few special assumptions about the form of the

process.[11]

In 5.1 the idea behind the KF is demonstrated. In 5.2 and 5.3 two
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5. STATE ESTIMATION

different non linear KF’s is presented namely the Extended Kalman Filter

(EKF) and the Unscented Kalman Filter (UKF).

5.1 Discrete Kalman filter

A discrete model of a linear system is defined as [22]:

xk =Fkxk−1 +Bkuk + wk (5.1)

yk =Hkxk + vk (5.2)

Where Fk is the state transition model which relates the previous time

step state vector (xk−1) to the next time step (xk), Bk is the control-input

model, wk is the process noise which is assumed to be drawn from a zero

mean multivariate distribution with covariance Qk:

wk ∼ N(0, Qk) (5.3)

Hk is the observation model, and vk is the observation noise which is as-

sumed to be zero mean Gaussian white noise with covariance Rk:

vk ∼ N(0, Rk) (5.4)

A initial estimate of the state vector is assumed to be known and de-

clared as x̂−k , this is known as the a priori estimate of the state vector. The

error of this a priori estimate is given by:

e−k = xk − x̂−k (5.5)

The covariance matrix of the error is given by:

P−
k = E[e−k e

−T
k ] = E[(xk − x̂−k )(xk − x̂−k )

T ] (5.6)
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5.1 Discrete Kalman filter

The measurement vector (yk) is then used to update the state estimate

x̂k =x̂−k +Kk(yk −Hkx̂
−
k ) (5.7)

x̂k =x̂−k +Kk(Hkxk + vk −Hkx̂
−
k ) (5.8)

Kk is the Kalman gain and is yet to be found. By substituting (5.8) in to

(5.6) the updated (a posteriori) error covariance matrix estimate is found:

Pk =E[eke
T
k ] = E[(xk − x̂k)(xk − x̂k)

T ] (5.9)

Pk =E{[(xk − x̂−k )−Kk(Hkxk + vk −Hkx̂
−
k )]

[(xk − x̂−k )−Kk(Hkxk + vk −Hkx̂
−
k )]

T } (5.10)

Noting that the a priori state estimate is uncorrelated with the measure-

ment error vk, the updated error covariance may be written as:

Pk = (I −KkHk)P
−
k (I −KkHk)

T +KkRkK
T
k (5.11)

Finding the optimal blending factor is done by finding the Kk that min-

imizes the estimation error variances for the elements of the state vector

being estimated. These elements are found along the major diagonal of Pk.

By differentiating the trace of Pk w.r.t. Kk and setting the derivative to

zero the optimal blending factor, known as the Kalman gain, is given:

d(tracePk)

dKk
=− 2(HkP

−
k )T + 2Kk(HkP

−
k HT

k +Rk)

Kk =P−
k HT

k (HkP
−
k HT

k +Rk)
−1 (5.12)
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5.2 Extended Kalman filter

The kite is modeled by a non linear system and the transitions models is

therefor not available and needs to be approximated before a Kalman fil-

ter may be implemented. A Kalman filter that linearizes about the current

mean and covariance is referred to as an extended Kalman filter (EKF).[22]

However since the kite-model is somewhat complex the exact Jacobian is

not easily available and heavy computation is needed to obtain it. An ap-

proximated Jacobian of the state and measurement transformation matrices

is therefor computed using Newton’s difference quotient.

Ak ≈
f(xk +∆,u)− f(xk,u)

∆
(5.13)

Hk ≈
h(xk +∆,u)− h(xk,u)

∆
(5.14)

The approximated state vector along with the updated error covariance

matrix is computed as shown in Table 5.1.

In the EKF the state distribution is approximated by a Gaussian ran-

dom variable (GRV), which in turn is propagated analytically through the

first order linearization of the non linear system. This is equivalent to

applying the linear Kalman filter covariance update equations to the lin-

earized system. The EKF may therefor be seen as providing “first-order”

approximations to the optimal covariance matrix and Kalman gain. This

might result in large estimate errors and even divergence. [21]
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5.3 Unscented Kalman filter

Step Equations

Initialization step

Design matrices Q(k) = QT > 0 , R(k) = RT > 0

Initial conditions x̂0 = E[x0] , P0 = E[(x0 − x̂0)(x0 −

x̂0)
T ]

Time update For k ∈ {1, ...,∞}

Model update x̂−
k = f [x̂k−1,uk−1]

A priori covariance P−
k = AkPk−1A

T
k +Q

Measurement update:

Kalman gain Kk = P−
k H

T
k (HkP

−
k H

T
k +R)−1

A posteriori estimate x̂k = x̂−
k +Kk(yk − h[x̂−

k ])

Updated error covariance Pk = (I−KkHk)P
−
k

Table 5.1: Standard EKF algorithm

5.3 Unscented Kalman filter

To address the weaknesses of the EKF, a new strategy for computing the

posterior first and second order statistics (mean, standard deviation and

variation) of a random variable introduced into a non linear system is

needed. A way of avoiding the linearization of the non linear system is

to realize that it is easier to approximate a probability distribution than it

is to approximate an arbitrary non linear function or transformation [19].

A way of approximating the probability distribution is to use the Sigma-

point approach. In the Sigma-point approach the state distribution is rep-
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resented by GRV specified using a minimal set of deterministically chosen

weighted sample points called sigma-points. These points captures the true

mean and covariance of the prior random variable, and when propagated

through the true non linear system, captures the posterior mean and co-

variance to 2nd order (Taylor series expansion) for any non linearity. [11]

The sigma point approach is summarized in three steps:

1. The sigma points are calculated using the mean and square root de-

composition of the covariance matrix of the prior random variable.

2. The sigma points are the propagated through the true non linear

function.

3. The posterior statistics are calculated using weighted sample mean

and covariance of the posterior sigma points

The Unscented Kalman Filter (UKF) uses the sigma point approach as

shown in Table 5.2. Where the weights are given by:

W
(m)
0 =

λ

(L+ λ)
(5.15)

W
(c)
0 =

λ

(L+ λ)
+ (1− α2

UKF + βUKF ) (5.16)

W
(m)
i =W c

i =
1

2(L+ λ)
i = 1, · · · , 2L (5.17)

Here L is the number of states. λ = L(α2
UKF − 1), αUKF and βUKF are

scaling parameters. αUKF is used to determine the spread of the sigma

points around the mean and is typically set to 10−4 ≤ αUKF ≤ 1. βUKF

is used to incorporate prior knowledge of the distribution of the states (for

Gaussian distribution, βUKF = 2 is optimal). [20]
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5.3 Unscented Kalman filter

It has been shown that the EKF and the UKF have a similar computa-

tional complexity of O(L3). [20]
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Step Equations

Initialization step

Design matrices Q(k) = QT > 0 , R(k) = RT > 0

Initial conditions x̂0 = E[x0] , P0 = E[(x0−x̂0)(x0−x̂0)
T ]

Calculate sigma points For k ∈ {1, ...,∞}

χk−1 = [x̂k−1 x̂k−1 + η
√
Pk−1 x̂k−1 −

η
√
Pk−1]

Time update

Model update χk|k−1 = f [χk−1,uk−1]

Priori state x̂−
k =

2L∑

i=0

W
(m)
i χi,k|k−1

Priori covar. P−
k =

2L∑

i=0

W
(c)
i [χi,k|k−1 − x̂−

k ][χi,k|k−1 − x̂−
k ]

T+

Q

Sigma measurement Yk|k−1 = h[χi,k|k−1]

Priori measurement ŷ−
k =

2L∑

i=0

W
(m)
i Yk|k−1

Measurement update:

Posteriori covar. Pŷkŷk
=

2L∑

i=0

W
(c)
i [Yk|k−1 − ŷ−

k ][Yk|k−1 − ŷ−
k ]

T +R

Posteriori covar. Pxkyk
=

2L∑

i=0

W
(c)
i [χi,k|k−1 − x̂−

k ][Yk|k−1 − ŷ−
k ]

T

Kalman gain K = Pxkyk
P−1

ŷkŷk

Posteriori estimate x̂k = x̂−
k +K(yk − ŷ−

k )

Updated error covar. Pk = P−
k −KkPŷkŷk

KT
k

Table 5.2: Standard UKF algorithm
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6

Simulation

The simulations was conducted in MATLAB and Simulink. The parameters

used in all simulations is given in Appendix C unless other is noted. Three

cases where the yaw angle of the process is set to follow different paths are

chosen as they represent widely different dynamics of the process:

Case 1: The yaw angle of the kite is set to: βb = 0. The kite will in

this case drift to a equilibrium.

Case 2: The yaw angle of the kite is set to: βb =
40π
180 sin(0.75t) The

kite will in this case drift along the ye axis as βb never exceed
π
2 .

Case 2: The yaw angle of the kite is set to: βb =
100π
180 sin(1.5t) The

kite will in this case follow a trajectory resembling the infinity symbol.

This is a well known kite power trajectory and results in high kite

speeds.
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6. SIMULATION

The yaw angle βb and the trajectory of the kite in the three cases is

depicted in Figure 6.1.
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Figure 6.1: Process trajectory - βb and trajectory of the process for three

cases
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6. SIMULATION

6.1 UKF vs EKF

The purpose of this series of simulations is to test and compare the EKF

and UKF’s ability to approximate βb and β̇b during different dynamics of

operation. qew is set constant to [6, 0, 0]T and the effect of turbulence is

neglected.

Figure 6.2 shows the EKF and UKF approximated as well as the real

process yaw angle during the three cases mentioned above.

Figure 6.3 shows the approximated as well as the real process yaw an-

gular velocity.

The mean squared error (MSE) of the EKF and UKF approximated

θ, φ and βb from all of the simulations where the yaw angle sinus varies

according to Table C.1, are shown in Table 6.1.

Variable MSE (mean) EKF MSE (var) EKF

θ 0.0051 4.1562 · 10−4

φ 0.0064 3.2196 · 10−4

βb 0.7138 6.0507

MSE (mean) UKF MSE (var) UKF

θ 1.0888 · 10−6 2.0583 · 10−12

φ 2.7603 · 10−6 1.3493 · 10−11

βb 0.0106 1.8724 · 10−4

Table 6.1: MSE of EKF and UKF of system without wind turbulence
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Figure 6.2: UKF and EKF approximated βb - The UKF and EKF

approximated βb in the different cases
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Figure 6.3: UKF and EKF approximated β̇b - The UKF and EKF

approximated β̇b in the different simulations
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6.1 UKF vs EKF

Where the MSE is defined as:

MSE =
N∑

i=1

(x− x̂)2 (6.1)

where N is the number of sample points and. The MSE shown in Table 6.1

is then calculated by taking the mean of every time series MSE.

As seen by Table 6.1 and Figure 6.2 the UKF outperforms the EKF

quite clearly when it comes to estimating the yaw of the kite (βb). The EKF

fails when the process is experiencing low or dynamic operation. This was

expected due to the EKF use of the approximated Jacobian to calculate

the error covariance and Kalman gain. Because it uses a approximated

Jacobian of the process it does however perform better at estimating the

angular velocity of the yaw than the UKF. Because the EKF is “bounded”

by the approximated Jacobian it does a poor job of estimating dynamics

not described by the first derivative of the system which does not influence

the Jacobian much but may have a large influence on the overall system

over time.
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6. SIMULATION

6.2 Wind turbulence response

The purpose of this series of simulation is to test the UKF’s ability to esti-

mate βb under different dynamic of operation with different wind strengths.

The wind speed at h0 = 2m is varied between 5m
s
(gentle breeze),10m

s
(fresh

breeze) and 15m
s
(near gale).[2]

Figure 6.4 shows the estimated yaw angle during different wind speeds

for case 1.

Figure 6.5 shows the estimated yaw angle during different wind speeds

for case 2.

Figure 6.6 shows the estimated yaw angle during different wind speeds

for case 3.

The MSE of the UKF estimated θ, φ and βb are shown in Table 6.2,

while plots of the simulated and estimated wind is shown in Appendix B.

As witnessed by Table 6.2 and Figure 6.4- 6.6, the UKF is still able to

estimate the yaw with relative small errors.

It is however noticeable that the MSE mean is larger in Case 2 compared

to the other cases. This is due to the estimated kite body yaw angular

velocity β̇b, as previously mentioned, is dependent on three factors, the

relative wind qlw, the side slip βs and the flaps angle δl. As δl is the only

known of these factors it follows that the estimated β̇b error grows as the

known state contribution decreases in comparison to the estimated ones.

The estimated and simulated wind is shown in Appendix B.2, as ex-

pected it is shown that the UKF does a poor job of estimating the wind

turbulence. This is due to the turbulence models dependency of βb and
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Figure 6.4: UKF estimated βb for case 1 and turbulence - UKF

estimated βb with constant process yaw angle and various wind speeds
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6. SIMULATION
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Figure 6.5: UKF estimated βb for case 2 and turbulence - UKF

estimated βb with process yaw angle given by Case 2 and various wind speeds
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6.2 Wind turbulence response
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Figure 6.6: UKF estimated βb for case 3 and turbulence - UKF

estimated βb with process yaw angle given by Case 3 and various wind speeds
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6. SIMULATION

Case 1

Variable MSE (mean) MSE (var)

θ 9.6799 · 10−8 5.1550 · 10−14

φ 8.5377 · 10−8 3.2133 · 10−13

βb 0.0015 3.0897 · 10−6

Case 2

Variable MSE (mean) MSE (var)

θ 4.8240 · 10−5 3.3282 · 10−9

φ 3.9483 · 10−6 3.1599 · 10−11

βb 0.0125 2.2441 · 10−4

Case 3

Variable MSE (mean) MSE (var)

θ 6.7121 · 10−6 5.8655 · 10−11

φ 1.7563 · 10−5 1.7904 · 10−10

βb 0.0060 1.1255 · 10−4

Table 6.2: MSE of UKF estimated states with different dynamic of operation

and wind strengths

the kite speed. Errors in these states are propagated through the the tur-

bulence model and in combination with the use of random noise results in

deviations of the turbulence contribution.
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7

Conclusion

In the modeling part of this thesis (Chapter 2- 3) the wind dynamics on an

existing kite model was expanded to include the effect of wind shear and

turbulence. Although the wind model has not been compared to actual

data the simulation shows realistic dynamics compared to existing data [4].

In the observability analysis part (Chapter 4) the kite model is examined

using non linear observability theory and found to be observable with the

assumption of that the effect of the turbulence is negligible. This is however

not a reasonable assumption in some cases, as it was shown in the simulation

part of this thesis (Chapter 6) where the estimation error was larger when

the effect of side slip is large compared to the control input.

In the state estimation and simulation in Chapter 5 and 6 the EKF

and UKF was compared and the UKF was shown to achieve far better

estimations than the EKF. The effect of turbulence on the UKF estimate

was shown to increase the error somewhat but the UKF still managed to

achieve reasonable good kite yaw estimation results.
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7. CONCLUSION
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8

Discussion and further work

8.1 Discussion

Although the UKF was found to do a decent job of estimating the kite yaw

it is likely that the assumptions made in this thesis is too simplistic and

does not reflect the real dynamics of the kite. Especially the assumption

that the power cable always is fully stretched and adds nothing to the drag

may be shown to be unrealistic and needs to be addressed. By adding the

complex dynamic of the cable to the system, the direct measurement of

spherical coordinates are lost and position estimation of the kite becomes

difficult using only ground based measurement. The use of measuring de-

vices attached to the kite seems to fix these problems and seem like a more

desirable solution both in terms of added robustness and decreased estima-

tion errors.
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8. DISCUSSION AND FURTHER WORK

8.2 Further work

8.2.1 Cable modeling

The assumption that the cable may be disregarded when describing the

dynamics of the system is a naive one. As the cable grows in length it

adds substantial mass while creating drag. The cable will also sag at times

creating dynamics not included the model presented in this thesis.

8.2.2 Parameter estimation

The parameters used in this thesis are very roughly approximated and is

most likely not correct. To achieve smaller parameter errors a strategy for

estimating the parameters should be considered.

8.2.3 State estimation with IMU

Although it has been shown in this thesis to be possible to estimate the

yaw of the kite using ground based measurement, the use of measurements

in the kite system would add robustness and should be

54



Appendix A

Simulation of wind

The wind is simulated in Simulink as a vector consisting of the effect of wind

shear and wind turbulence on the measured wind. The wind shear is calcu-

lated as shown in Chapter 3.1, while the effect of wind turbulence is calcu-

lated using the Discrete Dryden Wind Turbulence given in the Aerospace

blockset in Simulink.

The Dryden wind turbulence model uses the Dryden spectral represen-

tation to add turbulence to the model by using band-limited white noise

filtered by digital filters finite difference equations. The parameters used in

the block is given Table A.1. [13]
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Parameters Comment

Units: Metric(MKS)

Specification: MIL-HDBK-1797 The most recent

Model type: Dicrete Dryden(+q -r)

Wind speed: qw,0 Simulation dependent

Wind direction at 6 m: 0 degrees clockwise from north

Probability of exceedance of

high-altitude intensity: 2 · 10−1

Scale length at

medium/high altitudes (m): 533.4 Default value

Wingspan (m) b Given by model

Band limited noise and

discrete filter sample time (sec) Ts

Noise seeds: Simulation dependent

Table A.1: Dryden wind turbulence parameters
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Figure A.1: Simulated wind - Simulink diagram of the wind model, the

memory block is to prevent self-reference and adds a time delay of one time

step
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A. SIMULATION OF WIND
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Appendix B

Plots

B.1 Kite speed

In this section the simulated and UKF estimated kite speed is shown.

59



B. PLOTS
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Figure B.1: Kite speed for case 1 - The speed of the kite [m/s] for case

1

60

11_appendix_b/figures/speed_case1.eps
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Figure B.2: Kite speed for case 2 - The speed of the kite [m/s] for case

2
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Figure B.3: Kite speed for case 3 - The speed of the kite [m/s] for case

3
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B.2 Wind speed

B.2 Wind speed

In this section the simulated and UKF estimated wind is shown. As seen

by Figure B.4- B.12 the approximated turbulence contribution is not a

accurate approximation by any means.
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Figure B.4: Wind for case 1, qe
w

= 5 - Simulated and UKF estimated

wind for case 1
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B.2 Wind speed
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Figure B.5: Wind for case 1, qe
w

= 10 - Simulated and UKF estimated

wind for case 1

65

11_appendix_b/figures/wind_case1_10.eps
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Figure B.6: Wind for case 1, qe
w

= 15 - Simulated and UKF estimated

wind for case 1
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B.2 Wind speed
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Figure B.7: Wind for case 2, qe
w

= 5 - Simulated and UKF estimated

wind for case 2
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Figure B.8: Wind for case 2, qe
w

= 10 - Simulated and UKF estimated

wind for case 2
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Figure B.9: Wind for case 2, qe
w

= 15 - Simulated and UKF estimated

wind for case 2
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Figure B.10: Wind for case 3, qe
w

= 5 - Simulated and UKF estimated

wind for case 3
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B.2 Wind speed
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Figure B.11: Wind for case 3, qe
w
= 10 - Simulated and UKF estimated

wind for case 3
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Figure B.12: Wind for case 3, qe
w
= 15 - Simulated and UKF estimated

wind for case 3
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Appendix C

Parameters

C.1 Kalman filter parameters

The state error covariance matrix used both by the EKF and the UKF is

given by:

Q =



















π
180 0 0 0 0 0 0 0 0 0
0 π

180 0 0 0 0 0 0 0 0
0 0 2π

180 0 0 0 0 0 0 0
0 0 0 π

180 0 0 0 0 0 0
0 0 0 0 π

180 0 0 0 0 0
0 0 0 0 0 2π

180 0 0 0 0
0 0 0 0 0 0 π

180 0 0 0
0 0 0 0 0 0 0 π

180 0 0
0 0 0 0 0 0 0 0 π

180 0
0 0 0 0 0 0 0 0 0 π

180



















(C.1)

The measurement error covariance matrix is used both by the EKF and
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C. PARAMETERS

the UKF is given by:

R =















0.01 0 0 0 0 0 0 0
0 0.01 0 0 0 0 0 0
0 0 0.01 0 0 0 0 0
0 0 0 0.01 0 0 0 0
0 0 0 0 0.01 0 0 0
0 0 0 0 0 0.01 0 0
0 0 0 0 0 0 0.01 0
0 0 0 0 0 0 0 0.01















(C.2)

The Sigma point tuning parameters used by the UKF is set to:

αUKF =10−4 (C.3)

βUKF =2 (C.4)

C.2 Model parameters

The model parameters used in the simulation of the kite is given in Ta-

ble C.1.
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C.2 Model parameters

Model parameters value

Air:

ρair Air density 1.2 kg
m3

Wind:

h0 Wind measurement height 2 m

αwind Wind shear power law exponent 1
7

Kite:

A Surface 10 m2

b Wingspan 7 m

r Cable length 100 m

m Kite mass 10 kg

Drag force:

Cdm: Minimum drag 0.15

kd: Drag constant 0.15

Lift force:

CL,max: Maximum lift 1.5

cls: Lift slope 1.5 π
CL,max

α0: De-power angle 5 π
180

Crosswind force:

ccs: Crosswind constant 1.1π

Yawing moment:

cks: Directional stability 0.5

ck,δ,c: Directional stability 0.5

Yaw angle control sinus:

Asin Amplitude of sinus 0 → 100π
180 [rad]

fsin Frequency of sinus 0 → 2[rad/sec]

Table C.1: Model parameters
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