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Abstract: Batch processes are ubiquitous in the chemical industry and difficult to control, such that
nonlinear model predictive control is one of the few promising control techniques. Many chemical
process models however are affected by various uncertainties, which can lower the performance and lead
to constraint violations. In this paper we propose a framework for output feedback stochastic nonlinear
model predictive control (SNMPC) to consider the uncertainties explicitly, which are assumed to follow
known probability distributions. Polynomial chaos expansions are employed both for the formulation of
the SNMPC algorithm and a nonlinear filter for the estimation of the uncertain parameters online given
noisy measurements. The effectiveness of the proposed SNMPC scheme was verified on an extensive
case study involving the production of the polymer polypropylene glycol in a semi-batch reactor.
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1. INTRODUCTION

Batch processes play a vital role for the production of high
value products, which make-up an important portion of the
revenue in the chemical industry. Batch processes are used
due to their inherent flexibility to produce multiple products
and deal with variations in feedstock, product specifications,
and market demand (Nagy and Braatz, 2003). Most batch
process control methods have focused on tracking recipes with
empirical models as in iterative learning control (Lee and Lee,
2007). Due to the high competitiveness however, there is an
increasing acceptance for advanced control methods.

Model predictive control (MPC) was developed in the late
seventies and refers to a class of advanced control methods
that make explicit use of a dynamic model. Most applications
of MPC have been limited to linear MPC (LMPC), for which
plants are assumed to be weakly nonlinear. Batch processes are
often highly nonlinear and operated at unsteady state. In this
case nonlinear MPC (NMPC) is the method of choice (Nagy
et al., 2007). In addition, NMPC can be used directly to mini-
mize economic costs, which is becoming increasingly of inter-
est, known as economic MPC (EMPC) (Rawlings and Amrit,
2009). NMPC applications based on first principle models are
becoming more popular due to advent of improved optimization
algorithms (Biegler, 2010).

Most dynamic models involve significant uncertainties, which
need to be taken into account explicitly to avoid infeasibilities
and performance deterioration, including parametric uncertain-
ties, external disturbances and state estimation errors. In EMPC
the system is often driven close to the constraints, however
relatively little attention has been paid to handling uncertainty
in EMPC with few exceptions reported (Lucia et al., 2014).

Uncertainty in MPC can be either assumed to lie in a bounded
set or to be stochastic with known probability density functions

(pdf), which leads to robust or stochastic MPC formulations
respectively. Robust NMPC methods include min-max NMPC
and tube-based NMPC, which have been both extended to han-
dle economic objectives in Bayer et al. (2016) and in Bayer
et al. (2014) respectively. Alternatively, several algorithms for
stochastic NMPC (SNMPC) have been proposed. A simple
solution to SNMPC is given by the successive linearization
of the nonlinear system and the subsequent application of
stochastic LMPC approaches, such as stochastic tube-based
MPC (Cannon et al., 2009). Unscented transformations have
been used in Bradford and Imsland (2017b, 2018a) to propagate
uncertainties in a SNMPC application. Both linearization and
unscented transformation are computationally cheap, but are
only applicable to moderately nonlinear systems. A sampling
average approach was used in Bradford and Imsland (2017a)
with variance reduction to reduce the required number of sam-
ples, while in Maciejowski et al. (2007) Markov Chain Monte
Carlo is applied. Both procedures can approximate the SNMPC
problem arbitrarily well with increasing sample size but the
required number of samples quickly becomes intractable. If
it is assumed that the stochastic uncertainties can only take a
discrete set of realizations, then multi-stage NMPC formula-
tions have been proposed (Lucia et al., 2013; Patrinos et al.,
2014). In particular, this methodology has been extensively
applied to EMPC problems (Lucia et al., 2014; Sopasakis et al.,
2017). While nearly all SNMPC algorithms consider full state
feedback, there are several exceptions. The Unscented transfor-
mation SNMPC used in Bradford and Imsland (2017b, 2018a)
are based on feedback from the Unscented Kalman filter, in
Homer and Mhaskar (2018) a Lyapunov based algorithm using
FokkerPlanck equation for uncertainty propagation is combined
with a probabilist high-gain observer for output feedback and
lastly in Sehr and Bitmead (2017) the particle filter is used for
both state estimation and uncertainty propagation.
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1. INTRODUCTION

Batch processes play a vital role for the production of high
value products, which make-up an important portion of the
revenue in the chemical industry. Batch processes are used
due to their inherent flexibility to produce multiple products
and deal with variations in feedstock, product specifications,
and market demand (Nagy and Braatz, 2003). Most batch
process control methods have focused on tracking recipes with
empirical models as in iterative learning control (Lee and Lee,
2007). Due to the high competitiveness however, there is an
increasing acceptance for advanced control methods.

Model predictive control (MPC) was developed in the late
seventies and refers to a class of advanced control methods
that make explicit use of a dynamic model. Most applications
of MPC have been limited to linear MPC (LMPC), for which
plants are assumed to be weakly nonlinear. Batch processes are
often highly nonlinear and operated at unsteady state. In this
case nonlinear MPC (NMPC) is the method of choice (Nagy
et al., 2007). In addition, NMPC can be used directly to mini-
mize economic costs, which is becoming increasingly of inter-
est, known as economic MPC (EMPC) (Rawlings and Amrit,
2009). NMPC applications based on first principle models are
becoming more popular due to advent of improved optimization
algorithms (Biegler, 2010).

Most dynamic models involve significant uncertainties, which
need to be taken into account explicitly to avoid infeasibilities
and performance deterioration, including parametric uncertain-
ties, external disturbances and state estimation errors. In EMPC
the system is often driven close to the constraints, however
relatively little attention has been paid to handling uncertainty
in EMPC with few exceptions reported (Lucia et al., 2014).

Uncertainty in MPC can be either assumed to lie in a bounded
set or to be stochastic with known probability density functions

(pdf), which leads to robust or stochastic MPC formulations
respectively. Robust NMPC methods include min-max NMPC
and tube-based NMPC, which have been both extended to han-
dle economic objectives in Bayer et al. (2016) and in Bayer
et al. (2014) respectively. Alternatively, several algorithms for
stochastic NMPC (SNMPC) have been proposed. A simple
solution to SNMPC is given by the successive linearization
of the nonlinear system and the subsequent application of
stochastic LMPC approaches, such as stochastic tube-based
MPC (Cannon et al., 2009). Unscented transformations have
been used in Bradford and Imsland (2017b, 2018a) to propagate
uncertainties in a SNMPC application. Both linearization and
unscented transformation are computationally cheap, but are
only applicable to moderately nonlinear systems. A sampling
average approach was used in Bradford and Imsland (2017a)
with variance reduction to reduce the required number of sam-
ples, while in Maciejowski et al. (2007) Markov Chain Monte
Carlo is applied. Both procedures can approximate the SNMPC
problem arbitrarily well with increasing sample size but the
required number of samples quickly becomes intractable. If
it is assumed that the stochastic uncertainties can only take a
discrete set of realizations, then multi-stage NMPC formula-
tions have been proposed (Lucia et al., 2013; Patrinos et al.,
2014). In particular, this methodology has been extensively
applied to EMPC problems (Lucia et al., 2014; Sopasakis et al.,
2017). While nearly all SNMPC algorithms consider full state
feedback, there are several exceptions. The Unscented transfor-
mation SNMPC used in Bradford and Imsland (2017b, 2018a)
are based on feedback from the Unscented Kalman filter, in
Homer and Mhaskar (2018) a Lyapunov based algorithm using
FokkerPlanck equation for uncertainty propagation is combined
with a probabilist high-gain observer for output feedback and
lastly in Sehr and Bitmead (2017) the particle filter is used for
both state estimation and uncertainty propagation.
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Most work in SNMPC has been concerned with the applica-
tion of polynomial chaos expansions (PCE) first proposed in
Fagiano and Khammash (2012). PCE have been shown to be
significantly more efficient at propagating uncertainties than
Monte Carlo methods for moderate numbers of uncertain pa-
rameters. The method has been applied by Mesbah et al. (2014)
to an EMPC problem to obtain the required distribution of
crystals of a batch process, which use Chebyshev’s inequality
to formulate the chance constraints. Alternatively, Streif et al.
(2014) uses a sample based method instead on the PCE expan-
sion to approximate the chance constraint, which is less conser-
vative but also more expensive. PCE has further been applied in
stochastic LMPC to great success for which the coefficients are
found using the Galerkin method (Paulson et al., 2014; Lucia
et al., 2015). A major disadvantage of PCE is the inherent expo-
nential scaling with the number of uncertain parameters and the
difficulty of dealing with time-varying uncertainties. Similarly
to PCE it was suggested in Bradford and Imsland (2018b) to use
Gaussian processes instead of orthogonal polynomials, which
has the advantage that it considers the uncertainty from the
approximation itself.

In this paper the PCE NMPC methodology is extended to han-
dle the case of output feedback, i.e. where only noisy mea-
surements of a measured output are available instead of the
full state. To accomplish this, similarly as in the case of PCE
LMPC (Mühlpfordt et al., 2016), we combine PCE NMPC with
a recursive PCE filtering approach. The scheme is verified on
a complex case study of a semi-batch polymerization reaction
directly minimising the required batch time, while fulfilling
several safety and product quality constraints. The paper con-
sists of the following sections. In the next section the problem
to be solved is defined and the main algorithm is introduced.
In section 3 background on PCE is given, in section 4 a PCE
filter is outlined and in section 5 a PCE SNMPC formulation
is described. In section 6 a case study is introduced. Section 7
presents the results and discussion of this case study. Lastly, in
section 8 conclusions are given.

2. PROBLEM SETUP

In this section we outline the problem to be solved, for which
we propose a new framework. Consider a discrete-time nonlin-
ear equation system with stochastic uncertainties:

x(t+ 1) = f(x(t),u(t),θ), x(0) = x0(θ) (1)
y(t) = h(x(t),θ) + ν (2)

where t is the discrete time, x ∈ Rnx are the system states,
u ∈ Rnu denote the control inputs, θ ∈ Rnθ are time-invariant
uncertainties, f : Rnx × Rnu × Rnθ → Rnx represents the
nonlinear dynamic system, y ∈ Rny denote the measurements,
h : Rnx×Rnθ → Rny are the output equations and ν ∈ Rny ∼
N (0,Σν) is the measurement noise assumed to follow a zero
mean multivariate normal distribution with known covariance
matrix Σν. The initial condition x(0) is assumed to be a
function of the same uncertain parameters expressed as x0(θ).

To express the probability distribution of θ we use PCEs; for
background information on PCEs refer to section 3. Let θt(ξ)
correspond to the PCE of θ at time t. It is assumed that we
are initially given a PCE of θ denoted by θ0(ξ). In general
this initial probability distribution will be broad with a large
variance to represent the uncertainty in the value of θ. At
each sampling time t + 1 we measure a value of y(t + 1)
according to Eq.(2), which is then used to update θt(ξ) to

θt+1(ξ) recursively using the PCE filter outlined in section 4
by updating the coefficients of the PCE.

It should be noted that the uncertainty of the current state
estimate x(t) is a consequence of the uncertainty in θ and
can be expressed as a function of it, which we will denote as
x(t) = xt(θ). Often an explicit form of xt(θ) is not available
and instead xt(θ) needs to be understood as the simulation
forward from x(0) = x0(θ) to x(t) = xt(θ) using Eq.(1).

Given the PCE θt(ξ) and the function xt(θ) at each discrete
time t, we wish to control the dynamic system defined by
Eq.(1) subject to chance constraints and a stochastic objective.
To accomplish this we solve a probabilistic finite time-horizon
optimal control problem repeatedly in MPC fashion at time t:
minimize

uN

E(J(N,xt(·),uN ,θt(ξ)))

subject to
x(k + 1) = f(x(k),u(k),θt(ξ)) ∀k ∈ Nk

P(gj(x(k),u(k)) ≤ 0) ≤ 1− ε ∀(k, j) ∈ Nk+1 × Ng

P(gNj (x(N),u(N)) ≤ 0) ≤ 1− ε ∀j ∈ NN
g

u(k) ∈ Uk ∀k ∈ Nk

x(0) = xt(θt(ξ))
(3)

where Ng = {1, . . . , ng}, NN
g = {1, . . . , nN

g }, Nk =
{0, ..., N − 1}, Nk+1 = {1, ..., N}, the expectation of
J(N,xt,uN ,θ) is the objective, N is the time horizon, the
probability of the functions gj : Rnx × Rnu × Rnθ → R over
all times and gNj : Rnx × Rnu × Rnθ → R at the final time
exceeding 0 should be less than ε, the constraints on the inputs
are given by Uk ⊂ Rnu and lastly uN := {u(0), . . . ,u(N −
1)} represents the control inputs.

The problem in Eq.(3) is intractable due to the requirement to
propagate stochastic uncertainties through nonlinear transfor-
mations and in addition the multivariate integral definition of
the chance constraints. Instead, we solve a simplified problem
approximating Eq.(3) using PCEs outlined in section 5. Overall
the algorithm we propose uses PCE to express the uncertainty
θ described in section 3, exploits this uncertainty description
to control the dynamic system in Eq.(1) using PCE SNMPC
introduced in section 5 and lastly uses the measurements from
Eq.(2) to update the uncertainty description utilising a PCE
filter outlined in section 4. The algorithm is summarised below.

Algorithm 1: Output feedback PCE SNMPC
Input : f(x,u,θ), h(x,θ), Σν, θ0(ξ), x0(θ)
for each sampling time t = 0, 1, 2, . . . do

(1) Solve PCE SNMPC problem with θt(ξ) and
xt(θt(ξ)) and obtain optimal control actions

(2) Apply first part of the control actions to the plant
(3) Measure y(t+ 1)
(4) Apply the PCE filter to update θt(ξ) to θt+1(ξ)
(5) Determine xt+1(θt+1) using f(·, ·,θt+1) recursively

from an updated initial condition x(0) = x0(θt+1)
end

3. BACKGROUND: PCE

The generalized polynomial chaos expansion (gPCE) scheme
will be briefly outlined in this section, for more information
refer to Mesbah et al. (2014); Xiu and Karniadakis (2003);
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variance to represent the uncertainty in the value of θ. At
each sampling time t + 1 we measure a value of y(t + 1)
according to Eq.(2), which is then used to update θt(ξ) to

θt+1(ξ) recursively using the PCE filter outlined in section 4
by updating the coefficients of the PCE.

It should be noted that the uncertainty of the current state
estimate x(t) is a consequence of the uncertainty in θ and
can be expressed as a function of it, which we will denote as
x(t) = xt(θ). Often an explicit form of xt(θ) is not available
and instead xt(θ) needs to be understood as the simulation
forward from x(0) = x0(θ) to x(t) = xt(θ) using Eq.(1).

Given the PCE θt(ξ) and the function xt(θ) at each discrete
time t, we wish to control the dynamic system defined by
Eq.(1) subject to chance constraints and a stochastic objective.
To accomplish this we solve a probabilistic finite time-horizon
optimal control problem repeatedly in MPC fashion at time t:
minimize

uN

E(J(N,xt(·),uN ,θt(ξ)))

subject to
x(k + 1) = f(x(k),u(k),θt(ξ)) ∀k ∈ Nk

P(gj(x(k),u(k)) ≤ 0) ≤ 1− ε ∀(k, j) ∈ Nk+1 × Ng

P(gNj (x(N),u(N)) ≤ 0) ≤ 1− ε ∀j ∈ NN
g

u(k) ∈ Uk ∀k ∈ Nk

x(0) = xt(θt(ξ))
(3)

where Ng = {1, . . . , ng}, NN
g = {1, . . . , nN

g }, Nk =
{0, ..., N − 1}, Nk+1 = {1, ..., N}, the expectation of
J(N,xt,uN ,θ) is the objective, N is the time horizon, the
probability of the functions gj : Rnx × Rnu × Rnθ → R over
all times and gNj : Rnx × Rnu × Rnθ → R at the final time
exceeding 0 should be less than ε, the constraints on the inputs
are given by Uk ⊂ Rnu and lastly uN := {u(0), . . . ,u(N −
1)} represents the control inputs.

The problem in Eq.(3) is intractable due to the requirement to
propagate stochastic uncertainties through nonlinear transfor-
mations and in addition the multivariate integral definition of
the chance constraints. Instead, we solve a simplified problem
approximating Eq.(3) using PCEs outlined in section 5. Overall
the algorithm we propose uses PCE to express the uncertainty
θ described in section 3, exploits this uncertainty description
to control the dynamic system in Eq.(1) using PCE SNMPC
introduced in section 5 and lastly uses the measurements from
Eq.(2) to update the uncertainty description utilising a PCE
filter outlined in section 4. The algorithm is summarised below.

Algorithm 1: Output feedback PCE SNMPC
Input : f(x,u,θ), h(x,θ), Σν, θ0(ξ), x0(θ)
for each sampling time t = 0, 1, 2, . . . do

(1) Solve PCE SNMPC problem with θt(ξ) and
xt(θt(ξ)) and obtain optimal control actions

(2) Apply first part of the control actions to the plant
(3) Measure y(t+ 1)
(4) Apply the PCE filter to update θt(ξ) to θt+1(ξ)
(5) Determine xt+1(θt+1) using f(·, ·,θt+1) recursively

from an updated initial condition x(0) = x0(θt+1)
end

3. BACKGROUND: PCE

The generalized polynomial chaos expansion (gPCE) scheme
will be briefly outlined in this section, for more information
refer to Mesbah et al. (2014); Xiu and Karniadakis (2003);
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Eldred and Burkardt (2009). A second order process θ(ξ) can
be expressed as the following convergent expansion:

θ(ξ) =

∞∑
j=0

ajφαj
(ξ) (4)

where ξ ∈ Rnξ is a nξ-dimensional random variable with a
specified pdf, aj denotes expansion coefficients and φαj =∏nξ

i=1 φαji
(ξi) denotes multivariate polynomials with φαji

(ξi)
being univariate polynomials of ξi of degree αji.

The univariate polynomials are chosen according to the Askey
scheme based on the probability distribution of the correspond-
ing ξi to satisfy an orthogonality property, e.g. if ξi is a standard
Gaussian random variable with zero-mean and unit variance,
then φαji

(ξi) are chosen as Hermite polynomials. Univariate
Hermite polynomials He with degree j in terms of ξi are:

Hej(ξi) = (−1)j exp

(
1

2
ξ2i

)
dj

dξji
exp

(
−1

2
ξ2i

)
(5)

For these orthogonal polynomials we have the useful property:

〈φi,φj〉 =
∫

φi(ξ)φj(ξ)p(ξ)dξ = δij〈φ2
i 〉 (6)

where δij is the Kronecker delta and p(ξ) is the pdf of ξ.

To approximate θ(ξ) for practical reasons the PCE in Eq.(4)
needs to be truncated:

θ(ξ) =
∑

0≤|α|≤m

ajφαj
(ξ) = aTφ(ξ) (7)

where φ(·) = [φ1(·), . . . ,φL(·)]T contains the multivariate
polynomials of the expansion, m denotes the order of truncation
and |α| =

∑nξ

i=1 αi. The truncated series consists of L =
(nξ+m)!
nξ!m! terms and a ∈ RL represents a vector of coefficients

of these terms.

Next we need to evaluate the coefficients a, which we accom-
plish by using the non-intrusive spectral projection approach
based on the orthogonality property in Eq. (6):

aj =
〈θ(ξ),φj〉

〈φ2
j 〉

=
1

〈φ2
j 〉

∫
θ(ξ)φj(ξ)p(ξ)dξ (8)

The evaluation of the integral in Eq.(8) can be approximated
employing sample-based approaches. Quadrature methods are
the most popular due to their significantly improved conver-
gence rates compared to MC approaches for moderate dimen-
sional problems. Quadrature methods take the following form:

∫
θ(ξ)φj(ξ)p(ξ)dξ ≈ 1

〈φ2
j 〉

Nq∑
q=1

wqθ(ξ
(q))φj(ξ

(q)) (9)

leading to the following sample estimate of the coefficients:

â = w(Θ)TΦ(Ξ) ∗ 〈φ2〉−1 (10)
where ∗ denotes element-wise multiplication, Nq is the to-
tal number of quadrature points, Ξ = [ξ(1), . . . ,ξ(Nq)]T ∈
RNq×nξ represents the quadrature sample design, w(Ξ) =

[w1θ(ξ
(1)), . . . , wNqθ(ξ

(Nq))]T ∈ RNq , wq the quadrature
weights, 〈φ2〉−1 = [〈φ2

1〉, . . . , 〈φ2
L〉] ∈ RL, Φ(Ξ) =

[φ(ξ(1)), . . . ,φ(ξ(Nq))]T ∈ RN×L and the response vector
is given by Θ = [θ(ξ(1)), . . . , θ(ξ(Nq))] ∈ RNq .

The type of quadrature method is again chosen based on the
pdf of ξ. For standard Gaussian distributed ξi Gauss-Hermite

quadrature is chosen. The number of points required depends
on the order of accuracy required and the dimension of ξ. To
integrate polynomials correctly up to degree p, Nq = (p+1)nξ

points are required. This quickly becomes prohibitive, so we
instead use a sparse Gauss-Hermite (sGH) quadrature method
in this work proposed in Jia et al. (2012).

Using the coefficient approximation from Eq. (10) we have a
representation for the random variable θ(ξ) parametrized by ξ.
The polynomial chaos expansion may also be used to represent
multivariate random variables. Let a multivariate stochastic
variable be given by θ(ξ) = [θ1(ξ), . . . , θnθ

(ξ)]T ∈ Rnθ=nξ

with coefficients collected in A = [a1, . . . ,anθ
], which is

parametrized in terms of standard normal variables ξ with the
same dimension. The properties of θ(ξ) are dependent on the
coefficients A of the expansion.

Let each component of θ(ξ) be given by a truncated PCE with
the same order of truncation and the same number of terms L,
then the moments of θ(ξ) have a closed-form expression in
terms of the PCE coefficients. Moments can be defined as:

Mr(A) =

∫ nξ∏
i=1

θrii (ξ)p(ξ)dξ (11)

where r ∈ Rnξ is a vector defining the moments with k =∑nξ

i=1 ri order.

The moments of the PCE expansion with the definition in
Eq.(11) are (Dutta and Bhattacharya, 2010):

Mr(A) =

∫ nξ∏
i=1

(aTi φ(ξ))rip(ξ)dξ (12)

4. PCE FILTER

The state estimation step concerns the update of θt−1(ξ) to
θt(ξ) given the noisy measurements available, in which we
assume that ξ follows a standard normal distribution. The
following outline was taken from Madankan et al. (2013);
Mühlpfordt et al. (2016). Let Dt = {y(1) . . . ,y(t)} be the
measurements collected up to time t and y(t) the most recent
measurement. Bayes’s rule can be employed to update θ(ξ)
recursively as:

p(θ(ξ)|Dt) =
p(θ(ξ)|Dt−1)p(y(t)|θ(ξ), Dt−1)

p(y(t)|Dt−1)
(13)

where p(θ(ξ)|Dt−1) is the prior distribution of θ(ξ) at time t
given all observations up to time t − 1, p(y(t)|θ(ξ), Dt−1) is
the likelihood y(t) is observed given θ(ξ) at time t, which does
not depend on the observations Dt−1 and Dt−1 is therefore
dropped. We define p(y(t)|θ(ξ)) = N (y(t)|h(x(t),θ(ξ)),Σν)
as multivariate normal likelihood with mean h(x(t),θ(ξ)) and
covariance Σν evaluated at y(t). The pdf p(y(t)|Dt−1) is the
total probability of observation y(t) at time t given by:

p(y(t)|Dt−1) =

∫
p(y(t)|θ(ξ))p(θ(ξ)|Dt−1)dθ (14)

Calculating Eq. (14) analytically is difficult and we therefore
use sampling instead. We know the distribution p(θ(ξ)|Dt−1),
since it is assumed that ξ follows a standard normal distribu-
tion. The functions θt−1(ξ) and θt(ξ) are the PCEs corre-
sponding to the pdfs p(θ(ξ)|Dt−1) and p(θ(ξ)|Dt) respec-
tively. Latin hypercube sampling was applied together with the
inverse normal cumulative transformation (Stein, 1987):

α =
1

Ns

Ns∑
s=1

p(y(t)|θt−1(ξ
(s))) (15)
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where α is the sample estimate of p(y(t)|Dt−.1), Ns is the
sample size and ξ(s) ∼ N (0, I) are the sample points.

The prior distribution p(θ(ξ)|Dt−1) is given by the previous
posterior distribution of θ due to the assumed time-invariance.
If we take both sides of Eq.(13) times

∏nξ

j=1 θ
rj
j and integrate

over both sides we obtain the following:

M+
r =

∫ ∏nξ

j=1 θ
rj
j (ξ)p(y(t)|θ(ξ))p(θ(ξ)|Dt−1)dθ

p(y(t)|Dt−1)
(16)

where M+
r =

∫ ∏nξ

j=1 θ
rj
j (ξ)p(θ(ξ)|Dt)dθ and let k =∑nξ

j=1 rj . Now M+
r refers to the various k-th order moments

with respect to the updated distribution of θ, p(θ(ξ)|Dt).

Now using the sample estimate in Eq.(15) and applying a
further sample estimate to Eq.(16) we obtain:

M (s)+
r =

1

αNs

Ns∑
s=1

nξ∏
j=1

θ
rj
t−1,j(ξ

(s))p(y(t)|θt−1(ξ
(s))) (17)

where M
(s)+
r is an approximation of the RHS of Eq.(16).

To update θt−1(ξ) we match the moments found in Eq.(17)
with those of the PCE θt(ξ), which are a function of its
coefficients as shown in Eq.(12). The PCE is then fitted by
solving a nonlinear least-squares optimization problem:

Ât = argmin
At

∑
k≤m

||M+
r (At)−M (s)+

r ||22 (18)

where k =
∑nξ

j=1 rj was defined above as the order of the
moments and hence m defines the total order of moments we
want to match. M+

r (At) is parametrized by At as shown in
Eq.(12). The estimated coefficients Ât then define the updated
PCE θt(ξ) as required for Algorithm 1.

5. PCE SNMPC

In this section we formulate an approximate algorithm to solve
the OCP in Eq.(3) using PCEs. We assume the time is t and we
are given the PCE θt(ξ) accounting for all the data available
with the function xt(θ) describing the current state in terms
of θ. The aim is to control the dynamic system in Eq.(1) given
these uncertainty descriptions by reformulating Eq.(3). PCEs in
this regard can be used to obtain accurate mean and variance
predictions of nonlinear transformations, however estimating
the chance constraints remains a difficult problem.

The mean and variance of a PCE expansion in terms of ξ of
a 1-dimensional random variable γ with coefficients a ∈ RL

using the definition in Eq.(12) can be expressed as follows:
E(γ) ≈ a1 (19)

Var(γ) ≈
L∑

i=2

a2iE(Φ2
i (ξ)) (20)

We use Chebychev‘s inequality to robustly reformulate the
chance constraints in terms of only the mean and variance of
the constraint function. Let γ be a generic random variable with
a finite variance, then (Mesbah et al., 2014):

P (γ ≤ 0) ≥ 1− ε ⇒ κεσγ + γ̂ ≤ 0, κε =
√
(1− ε)/ε (21)

where ε ∈ (0, 1) ⊂ R is the probability that γ exceeds 0, γ̂ and
σ2
γ are the mean and variance of γ respectively.

Next we use results from section 3. In essence we evaluate the
coefficients of a PCE expansion online using a quadrature rule

as shown in Eq.(10). The quadrature sample design is given
by Ξ = [ξ(1), . . . ,ξ(Nq)]T ∈ RNq×nξ with Nq being the
number of sample points. Once these are defined the matrices
Φ(Ξ) = [φ(ξ(1)), . . . ,φ(ξ(Nq))]T and 〈φ2〉−1 can be calcu-
lated offline. Each sample in Ξ represents a separate dynamic
simulation according to Eq.(1), the data from which is then used
according to Eq.(10) to determine the PCE coefficients online.
These are then in turn used to estimate the mean and variance
from Eqs.(20) and (19) to estimate the objective and chance
constraints according to Chebychev‘s inequality in Eq.(3). It
is important to note that the SNMPC algorithm can have a
different order of PCE than θ(ξ). The SNMPC algorithm to
reformulate Eq. (3) can be stated as:

minimize
uN

âJ1

subject to

x(i)(k + 1) = f(x(i)(k),u(k),θt(ξ
(i))) ∀(k, i) ∈ Nk × Nq

κε

L∑
i=2

(
â
gjk
i

)2 E(Φ2
i (ξ)) + â

gjk
1 ≤ 0 ∀(k, j) ∈ Nk+1 × Ng

κε

L∑
i=2

(
â
gN
j

i

)2

E(Φ2
i (ξ)) + â

gN
j

1 ≤ 0 ∀j ∈ ×NN
g

âJ = w(ΘJ)TΦ(Ξ) ∗ 〈φ2〉−1

âgjk = w(Θgjk)TΦ(Ξ) ∗ 〈φ2〉−1 ∀(k, j) ∈ Nk+1 × Ng

âg
N
j = w(ΘgN

j )TΦ(Ξ) ∗ 〈φ2〉−1 ∀j ∈ NN
g

u(k) ∈ Uk ∀k ∈ Nk

x(i)(0) = xt(θt(ξ
(i))) ∀i ∈ Nq

(22)
where x(i) denotes the state for each scenario i,
w(Θ) = [w1Θ1, . . . , wNq

ΘNq
] with wi being the quadrature

weights and the data matrices ΘJ = [J(N,xt(θt(ξ
(1))

,uN ,θt(ξ
(1))), . . . , J(N,xt(θt(ξ

(Nq)),uN ,θt(ξ
(Nq)))],

Θgjk = [gj(x
(1)(k),u(k)), . . . , gj(x

(Nq)(k),u(k))],
ΘgN

j = [gNj (x(1)(N),u(N)), . . . , gNj (x(Nq)(N),u(N))]
Eq.(22) gives the required control inputs for Algorithm 1.

6. SEMI-BATCH REACTOR CASE STUDY

Algorithm 1 outlined in section 2 is applied to a semi-batch
polymerization reactor for the production of polyol from propy-
lene oxide (PO). An extensive model for this process has been
presented in Nie et al. (2013a), which has been used in Jung
et al. (2015) for NMPC and in Jang et al. (2016) for multi-stage
NMPC. A schematic of the process is shown in Fig. 1.

Fig. 1. F is the monomer feedrate, V and T are the volume and
temperature of the liquid in the reactor respectively, W is
water, M is the monomer, Dn and Gn are the dormant and
active product chains with length n respectively.
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where α is the sample estimate of p(y(t)|Dt−.1), Ns is the
sample size and ξ(s) ∼ N (0, I) are the sample points.

The prior distribution p(θ(ξ)|Dt−1) is given by the previous
posterior distribution of θ due to the assumed time-invariance.
If we take both sides of Eq.(13) times

∏nξ

j=1 θ
rj
j and integrate

over both sides we obtain the following:

M+
r =

∫ ∏nξ

j=1 θ
rj
j (ξ)p(y(t)|θ(ξ))p(θ(ξ)|Dt−1)dθ

p(y(t)|Dt−1)
(16)

where M+
r =

∫ ∏nξ

j=1 θ
rj
j (ξ)p(θ(ξ)|Dt)dθ and let k =∑nξ

j=1 rj . Now M+
r refers to the various k-th order moments

with respect to the updated distribution of θ, p(θ(ξ)|Dt).

Now using the sample estimate in Eq.(15) and applying a
further sample estimate to Eq.(16) we obtain:

M (s)+
r =

1

αNs

Ns∑
s=1

nξ∏
j=1

θ
rj
t−1,j(ξ

(s))p(y(t)|θt−1(ξ
(s))) (17)

where M
(s)+
r is an approximation of the RHS of Eq.(16).

To update θt−1(ξ) we match the moments found in Eq.(17)
with those of the PCE θt(ξ), which are a function of its
coefficients as shown in Eq.(12). The PCE is then fitted by
solving a nonlinear least-squares optimization problem:

Ât = argmin
At

∑
k≤m

||M+
r (At)−M (s)+

r ||22 (18)

where k =
∑nξ

j=1 rj was defined above as the order of the
moments and hence m defines the total order of moments we
want to match. M+

r (At) is parametrized by At as shown in
Eq.(12). The estimated coefficients Ât then define the updated
PCE θt(ξ) as required for Algorithm 1.

5. PCE SNMPC

In this section we formulate an approximate algorithm to solve
the OCP in Eq.(3) using PCEs. We assume the time is t and we
are given the PCE θt(ξ) accounting for all the data available
with the function xt(θ) describing the current state in terms
of θ. The aim is to control the dynamic system in Eq.(1) given
these uncertainty descriptions by reformulating Eq.(3). PCEs in
this regard can be used to obtain accurate mean and variance
predictions of nonlinear transformations, however estimating
the chance constraints remains a difficult problem.

The mean and variance of a PCE expansion in terms of ξ of
a 1-dimensional random variable γ with coefficients a ∈ RL

using the definition in Eq.(12) can be expressed as follows:
E(γ) ≈ a1 (19)

Var(γ) ≈
L∑

i=2

a2iE(Φ2
i (ξ)) (20)

We use Chebychev‘s inequality to robustly reformulate the
chance constraints in terms of only the mean and variance of
the constraint function. Let γ be a generic random variable with
a finite variance, then (Mesbah et al., 2014):

P (γ ≤ 0) ≥ 1− ε ⇒ κεσγ + γ̂ ≤ 0, κε =
√
(1− ε)/ε (21)

where ε ∈ (0, 1) ⊂ R is the probability that γ exceeds 0, γ̂ and
σ2
γ are the mean and variance of γ respectively.

Next we use results from section 3. In essence we evaluate the
coefficients of a PCE expansion online using a quadrature rule

as shown in Eq.(10). The quadrature sample design is given
by Ξ = [ξ(1), . . . ,ξ(Nq)]T ∈ RNq×nξ with Nq being the
number of sample points. Once these are defined the matrices
Φ(Ξ) = [φ(ξ(1)), . . . ,φ(ξ(Nq))]T and 〈φ2〉−1 can be calcu-
lated offline. Each sample in Ξ represents a separate dynamic
simulation according to Eq.(1), the data from which is then used
according to Eq.(10) to determine the PCE coefficients online.
These are then in turn used to estimate the mean and variance
from Eqs.(20) and (19) to estimate the objective and chance
constraints according to Chebychev‘s inequality in Eq.(3). It
is important to note that the SNMPC algorithm can have a
different order of PCE than θ(ξ). The SNMPC algorithm to
reformulate Eq. (3) can be stated as:

minimize
uN

âJ1

subject to

x(i)(k + 1) = f(x(i)(k),u(k),θt(ξ
(i))) ∀(k, i) ∈ Nk × Nq

κε

L∑
i=2

(
â
gjk
i

)2 E(Φ2
i (ξ)) + â

gjk
1 ≤ 0 ∀(k, j) ∈ Nk+1 × Ng

κε

L∑
i=2

(
â
gN
j

i

)2

E(Φ2
i (ξ)) + â

gN
j

1 ≤ 0 ∀j ∈ ×NN
g

âJ = w(ΘJ)TΦ(Ξ) ∗ 〈φ2〉−1

âgjk = w(Θgjk)TΦ(Ξ) ∗ 〈φ2〉−1 ∀(k, j) ∈ Nk+1 × Ng

âg
N
j = w(ΘgN

j )TΦ(Ξ) ∗ 〈φ2〉−1 ∀j ∈ NN
g

u(k) ∈ Uk ∀k ∈ Nk

x(i)(0) = xt(θt(ξ
(i))) ∀i ∈ Nq

(22)
where x(i) denotes the state for each scenario i,
w(Θ) = [w1Θ1, . . . , wNq

ΘNq
] with wi being the quadrature

weights and the data matrices ΘJ = [J(N,xt(θt(ξ
(1))

,uN ,θt(ξ
(1))), . . . , J(N,xt(θt(ξ

(Nq)),uN ,θt(ξ
(Nq)))],

Θgjk = [gj(x
(1)(k),u(k)), . . . , gj(x

(Nq)(k),u(k))],
ΘgN

j = [gNj (x(1)(N),u(N)), . . . , gNj (x(Nq)(N),u(N))]
Eq.(22) gives the required control inputs for Algorithm 1.

6. SEMI-BATCH REACTOR CASE STUDY

Algorithm 1 outlined in section 2 is applied to a semi-batch
polymerization reactor for the production of polyol from propy-
lene oxide (PO). An extensive model for this process has been
presented in Nie et al. (2013a), which has been used in Jung
et al. (2015) for NMPC and in Jang et al. (2016) for multi-stage
NMPC. A schematic of the process is shown in Fig. 1.

Fig. 1. F is the monomer feedrate, V and T are the volume and
temperature of the liquid in the reactor respectively, W is
water, M is the monomer, Dn and Gn are the dormant and
active product chains with length n respectively.
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To reduce the computational times we applied the method of
moments (Rivero, 2005; Nie et al., 2013b) to derive differential
equations for the average molecular weight. In addition, we dis-
regard the balance equations for the unsaturated proportion of
the polymer. Due the importance of temperature control a heat
balance was added, in which perfect temperature control was
previously assumed. This equation can nonetheless be found in
Nie et al. (2013a), where it is used as a constraint. The objective
was set to minimize batch time (tf [s]) by varying the monomer
feed rate F [mol/s] and the cooling water temperature TC [K]
to achieve a number average molecular weight (NAMW ) of
450g/mol and ensure that the amount of the monomer (PO)
contained in the reactor does not exceed 120ppm. During this
operation the reactor temperature T [K] is constrained to re-
main below 420K. The chance of constraint violation was set
to 0.1. We assume the amount of catalyst (nC [mol]) and the
pre-exponential coefficient of the propagation kinetic constant
(Ap[m3/mol/s]) to be uncertain and given by a PCE. Mea-
surements during the reaction are the pressure (P [bar]) and
temperature (T [K]) of the reactor. For discredization orthogonal
collocation was employed. The optimization problems for the
PCE SNMPC and PCE filter were solved using Casadi (An-
dersson et al., 2018) in conjunction with IPOPT (Wächter and
Biegler, 2006). The control problem to be solved is summarised
in Tab. 1. The missing parameter values and dynamic equation
system can be found in Nie et al. (2013a).

Table 1. Specifications of control problem
States (x) m[g], PO[mol],W [mol], T [K],

X0 [mol], γ0[mol], γ1[mol]
Outputs (y) P [bar], T [K]
Output noise Σν = diag(0.25, 0.01)
Inputs (u) F [mol], TC [K]
Uncertainties Ap[m3/mol/s], nC [mol]
Objective minimize tf [s]
Path constraints T [K]− 420 ≤ 0
End constraints NAMW[g/mol]− 450 ≤ 0, 120− PO[ppm] ≤ 0
Probability ε = 0.1
Input constraints 0 ≤ F [mol/s] ≤ 10, 298.15 ≤ TC [K]

PCE SNMPC PCE order = 3, sGH accuracy = 2, sGH manner = 1
PCE filter Samples = 800, Moments considered = 5, PCE order = 3
Discredization N = 12, Degree = 5
Initial PCE AP 9.05 + 0.25ξ1 + 0.13(ξ1 − 1)2 + 0.04(ξ31 − 3ξ1)
Initial PCE nC 6.91 + 0.25ξ2 + 0.13(ξ2 − 1)2 + 0.04(ξ32 − 3ξ2)

Reactor specs. V = 17m3, UA = 1.5× 104W/m2/K
Initial cond. m(0) = 1.6× 106g, PO(0) = 104mol,

W (0) = 103mol, X0(0) = 0mol,
T (0) = 378.15K, γ0(0) = γ0(1) = 104mol

7. RESULTS AND DISCUSSION

Algorithm 1 outlined in section 2 was verified on the case study
defined in the previous section firstly by running the NMPC
on a specific realization of θ for plant model, in our case
[Ap, nC ] = [7200m3/mol/s, 1700mol], significantly different
from the nominal values [8504m3/mol/s, 1000mol]. The re-
sults of this are shown in Fig. 2. Firstly, we can see from the first
two row of graphs that the parameters are significantly better
approximated at the final time than initially, which leads to a
large reduction in uncertainty shown by sharper distribution in
both cases. Nonetheless while little uncertainty remains of the
value for Ap, nC has still a high uncertainty with a clear bias
towards a lower value. This is due to the influence of the prior,
which assumed nC to be around 1000mol. The next three rows
of graphs show the control inputs and trajectories of constraints
and objective. We can see that generally the batch time becomes

less and less, which has two reasons. Firstly, the uncertainty
is reduced at every sampling time making the algorithm less
conservative and in addition the estimate of the amount catalyst
is corrected upwards, which leads to higher NAMW in less time
and higher consumption of monomer. First less monomer is fed,
since the reactor starts with high concentrations of monomer to
ensure the temperature constraint. Thereafter, the monomer is
fed in at a maximum rate to reach the required NAMW in min-
imum time. Lastly, the monomer feedrate is reduced to 0, since
at the final time the ppm needs to be less than 120. In this run
the NAMW reaches a value of 451g/mol, while the monomer
concentration becomes 36ppm. The relative conservativeness
particularly with regards to the amount of monomer is due to
the bias of the amount of catalyst to a lower value than the true
value. The cooling water temperature is lowest at the beginning
when the reaction rate is maximum, while at the end the cooling
water temperature is relatively high since the reaction rate is
close to zero due to the low monomer concentration.

Next the approach was applied to 100 MC samples of the plant
according to the initial PCE representations of the uncertainties
given in Tab. 1. We compare it to a NMPC approach, which
uses the PCE filter to update the parameters, but ignores the
distribution of the uncertain parameters and instead uses the
mean value as the current best estimate. The first graph shows
that the SNMPC variant is more conservative with on average
longer batch times, which is expected since it accounts for
the uncertainty. The next two graphs highlight the problem of
ignoring the uncertainty on the parameters. For the SNMPC
approach all of the scenarios obtain a NAMW larger than 450
and only 4% of the scenarios have a ppm larger than 120. This
can be seen by the flat pdfs with nearly all the area of the
curve in regions required by the chance constraints. For the
NMPC scheme however the distributions are peaked around the
required value with only 57% of scenarios reaching the required
NAMW and 51% of scenarios exceeding 120ppm. Lastly, tem-
perature control for both approaches is good showing that the
uncertainties have little effect on the heat balance.

8. CONCLUSIONS

In conclusion, a novel algorithm for output feedback SNMPC
has been proposed by employing PCE for both control and
filtering. The SNMPC problem involved both objective and
probability constraints based on general nonlinear functions.
A challenging semi-batch reactor case study showed that the
SNMPC framework is able to regulate the process with plant
parameters vastly different from the nominal values. It managed
to estimate more accurate parameter values, while still account-
ing for the remaining uncertainty adhering the constraints. In
addition, it was shown that taking into account the uncertainty
of the parameters is important even after the updates, since it
otherwise leads to more than 50% of constraint violations of
the end-point constraints.
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Fig. 2. Probability densities at initial and final time for both
uncertainties and state trajectories for a plant model with
[Ap, nC ] = [7200m3/mol/s, 1700mol]

Fig. 3. Probability densities of batch time, NAMW, ppm of
monomer at final time and temperature trajectories of
NMPC and SNMPC based on 100 MC simulations
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Wächter, A. and Biegler, L.T. (2006). On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical programming,
106(1), 25–57.

Xiu, D. and Karniadakis, G.E. (2003). Modeling uncertainty in flow simulations via
generalized polynomial chaos. Journal of computational physics, 187(1), 137–167.

2019 IFAC DYCOPS
Florianópolis - SC, Brazil, April 23-26, 2019

672


