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Abstract: Aqueous chemical solution deposition (CSD) of lead-free ferroelectric K0.5Na0.5NbO3

(KNN) thin films has a great potential for cost-effective and environmentally friendly components in
microelectronics. Phase purity of KNN is, however, a persistent challenge due to the volatility of
alkali metal oxides, usually countered by using excess alkali metals in the precursor solutions. Here,
we report on the development of two different aqueous precursor solutions for CSD of KNN films,
and we demonstrate that the decomposition process during thermal processing of the films is of
detrimental importance for promoting nucleation of KNN and suppressing the formation of secondary
phases. Based on thermal analysis, X-ray diffraction and IR spectroscopy of films as well as powders
prepared from the solutions, it was revealed that the decomposition temperature can be controlled by
chemistry resulting in phase pure KNN films. A columnar microstructure with out-of-plane texturing
was observed in the phase pure KNN films, demonstrating that the microstructure is directly coupled
to the thermal processing of the films.

Keywords: KNN; thin film; aqueous chemical solution deposition

1. Introduction

Piezoelectric K0.5Na0.5NbO3-based (KNN) ceramics have been extensively studied the last
decade to replace the state-of-the-art piezoelectric materials based on PbZrxTi1−xO3 (PZT) [1–3].
In addition to the environmental advantage of being lead-free, KNN-based ceramics benefit from
having relatively high piezoelectric coefficients [4] and high Curie temperatures [1]. Moreover, KNN has
shown promising results with respect to ion release and cytotoxicity tests [5,6], which make KNN a
potential candidate for biomedical applications. Investigations on bulk KNN have been dominated
by compositional engineering to enhance piezoelectric performance. Fabrication of KNN thin films
for incorporation in electronic devices has also been investigated [7–9]. Preparation of thin films of
KNN has successfully been performed by physical vapor deposition (PVD) [10,11] and chemical vapor
deposition (CVD) [12,13]. Fabrication of KNN thin films by chemical solution deposition (CSD) has
also been targeted, and 2-methoxyethanol based solutions with cation ethoxides and acetates are by
far the most used, giving KNN thin films with varying degree of texture [7,14–25]. Aqueous CSD
of KNN opens for more environmentally friendly precursors and chemistry [16,22,26]. A persistent
challenge in CSD synthesis of KNN thin films is the formation of alkali metal deficient secondary
phases, most notably K4Nb6O17. Measures to avoid formation of such parasitic phases are usually
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implemented by using an excess amount of alkali metal in the precursor solution and by optimization
of the synthesis temperature [14,20,21,23].

The ferroelectric performance of thin films is strongly correlated with the microstructure. Of special
interest is the ability to tailor the degree of texturing in ferroelectric thin films, since the ferroelectric
performance is coupled directly to the microstructural orientation [27]. Both polycrystalline and epitaxial
KNN thin films have been prepared by CSD by tailoring the thermal processing to favor either homogeneous
or heterogeneous nucleation, respectively [25]. The crystallization kinetics can also be controlled chemically
by altering the nucleation temperature through modification of the precursor chemistry [16,28,29].

An aqueous niobium(V) precursor solution has recently been applied in aqueous based synthesis
of KNN ceramics [30–32]. This precursor solution has further been used to prepare KNN thin films by
CSD [26]. Both polycrystalline and highly epitaxial KNN thin films were prepared on SrTiO3 (STO)
substrates. Two distinct regions of were observed in KNN thin films on (100) oriented STO, where the
majority of the films was polycrystalline with a thin epitaxial layer close to the substrate. A secondary
K2Nb4O11 phase was observed, particularly at the surface of the films. NaCl/KCl was included in the
precursor solution to form a salt flux, which suppressed the formation of K2Nb4O11 although it was
not completely eliminated in films deposited on (100) STO. The epitaxial layer was obtained through a
thermal treatment avoiding nucleation during pyrolysis (400 ◦C) and using a rapid heating rate up to
the annealing temperature (40 K s−1, 800 ◦C).

Here, we report on developments of the aqueous CSD route to phase pure KNN thin films. A new
solution based on malic acid [33] was developed, and it was demonstrated that phase purity and
microstructure can be controlled by modification of the sol-gel chemistry and the thermal processing,
which alter the decomposition and crystallization kinetics during pyrolysis of the films. Finally, the in-plane
ferroelectric properties of the films were characterized by using interdigitated Pt electrodes.

2. Materials and Methods

2.1. Materials Synthesis

The oxalic acid-complexed solution, referred to as KNN-Ox in the following, was prepared
based on the synthesis reported by Pham et al. [26]. NH4NbO(C2O4)2·xH2O (99.99%, Sigma-Aldrich,
St. Louis, MO, USA) was dissolved in distilled water, and dried NaNO3 (99%, Sigma-Aldrich) and
KNO3 (99%, Alfa Aesar, Haverhill, MA, USA) were added to the niobium solution in a molar ratio of
1:0.525:0.525 (Nb:Na:K), giving 5 mol% excess of alkali metals. The solution was stirred on a hotplate
at 70 ◦C for 2 h. The concentration of the final solution was 0.25 M with respect to Nb.

The malic acid-complexed solution, referred to as KNN-MA in the following, was prepared based
on the synthesis described by Madaro [32]. A niobic acid precipitate was dissolved in distilled water
with 0.33 M DL-malic acid (99%, Sigma-Aldrich) with a molar ratio of 1:2 (Nb:malic acid) during
vigorous stirring at 70 ◦C, and the pH of the solution was finally adjusted to 7–8 by addition of NH3

solution. Finally, dried NaNO3 (99%, Sigma-Aldrich) and KNO3 (99%, Alfa Aesar) were added to the
malic acid-complexed niobium solution in a ratio of 1:0.525:0.525 (Nb:Na:K), giving 5 mol% excess of
alkali metals. The final solution had a Nb concentration of 0.14 M.

KNN thin films were deposited on (100) oriented SrTiO3 single crystal (Crystal GmbH, Berlin,
Germany) substrates. Prior to deposition, the substrates were rinsed with ethanol (96%), heat-treated
at 550 ◦C for 5 min in a rapid thermal processing (RTP) oven (RTP-1, Jipelec Jetfirst 200 mm, Semco
Technologies, Montpellier, France) to remove any organic residues, before the substrate surface was
activated in an oxygen plasma cleaner (Femto, Diener Electronics, Ebhausen, Germany), improving the
wettability. The KNN precursor solutions were then deposited on the substrates, using a spin coater
(WS-400B-6NPP-LITE/AS, Laurell Technologies, Montgomery, PA, USA) at 3500 rpm for 40 s, followed
by drying on a hotplate at 200 ◦C for 3 min. The films were then pyrolyzed at 550 ◦C for 5 min in either
flowing O2 (RTP-1) or in air using a rapid heating plate (RTP-2) as described by Blichfeld et al. [34] at
a heating rate of 100 K min−1. Deposition was repeated until a desired film thickness was obtained
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(15 layers deposited if not otherwise specified). Finally, the thin films were annealed at 700 ◦C for
10 min in O2 (RTP-1) or air (RTP-2), at a heating rate of 100 K min−1.

Powders from the two precursor solutions were prepared by drying the KNN-Ox and KNN-MA
precursor solutions at 100 ◦C and 200 ◦C, respectively, for 24 h, followed by hand milling. The powders
were heat-treated at various temperatures for further characterization.

2.2. Characterization

The thermal decomposition of the gel powders was analyzed with thermogravimetric analysis
combined with mass spectroscopy (TGA-MS, TGA: STA 449C, Netzsch, MS: QMS 403C, Netzsch, Selb,
Germany) up to 725 ◦C in flowing synthetic air and O2, using a heating rate of 10 K min−1. Fourier-transform
infrared spectroscopy (FTIR, Vertex 80v, Bruker, Billerica, MA, USA), using an attenuated total reflection
(ATR) cell, was performed of the gel powders heat-treated in air at various temperatures. The phase
composition of the powders was determined using X-ray diffraction (XRD, D8 Advance, Bruker). The phase
composition of the prepared KNN films was studied using gracing incidence X-ray diffraction (GI-XRD,
D8 A25 Advance, Bruker) with an incidence angle of 2◦, and the average microstructure of the films was
analyzed using regular X-ray diffraction (θ–2θ XRD, D5005, Siemens, Karlsruhe, Germany) with scanning
geometry parallel to the (100) direction of the substrate. The film thickness and local microstructure were
studied using scanning electron microscopy (SEM, Ultra 55, Carl Zeiss AG, Oberkochen, Germany) and
transmission electron microscopy (TEM, JEM-2100 and JEM-2100F, Jeol, Tokyo, Japan, both operated at
200 kV). Cross-sectional SEM samples were prepared by scribing and breaking the films using a diamond
tip scriber (DX-III, Dynatex International, Santa Rosa, CA, USA). The SEM imaging was performed
using an in-lens detector and an acceleration voltage of 10 kV. The TEM samples were prepared using
focused ion beam (FIB, Helios Nanolab DualBeam, FEI Company, Hillsboro, OR, USA) using a standard
lift-out technique. TEM imaging was performed in both bright field imaging (BFI) and high resolution
(HR) mode. Fast Fourier transforms (FFTs) were applied to selected areas in the high resolution TEM
(HRTEM) images to obtain information on the local crystal structure of the substrate, the thin film and the
interface. Crystal orientation maps were obtained by performing scanning precession electron diffraction
(SPED). The recorded data was used to calculate misorientation in the film relative to the substrate.
Nanomegas ASTAR hardware and software were used for acquisition and template matching of the
precession electron diffraction (PED) patterns. The template used for KNN was based on a pseudo-cubic
crystal structure (data in Table A1, Appendix A). The in-plane ferroelectric response of the films was
analyzed by measuring polarization-electric field (P-E) hysteresis loops, using a piezoelectric evaluation
system (PES, aixPES, aixACCT, Aachen, Germany), and interdigitated Pt electrodes (electrode dimensions
described in Table A2, Appendix A) deposited on top of the films. The measurements were performed at
0.1 and 0.3 Hz, using an electric field bias of 4 kV cm−1.

3. Results

3.1. Deposition of KNN Thin Films

KNN thin films were successfully prepared by spin coating using both precursor solutions.
The solutions wetted the substrates well, resulting in dense films with uniform thickness as evident
from the SEM images shown in Figure 1. The final film thickness per deposition was ~23 and ~17 nm
for the KNN-Ox and KNN-MA films, respectively. The main shrinkage of the deposited films took
place during pyrolysis, while the thickness remained relatively constant during the final annealing
step. The grain size of the annealed films, determined from the surface images (Figure 1), varied from
30 to 170 nm, with average values of 110 and 105 nm for the KNN-Ox and KNN-MA films, respectively.
Good adhesion of the films to the substrate was observed as no delamination occurred during film
handling and characterization or sample preparation for TEM.

GI-XRD patterns of KNN-Ox and KNN-MA films are shown in Figure 2, demonstrating the
presence of Bragg reflections of KNN for films pyrolized at 550 ◦C and annealed at 700 ◦C. The diffraction
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lines of the films become sharper by annealing at 700 ◦C. It is important to note that secondary phases
(K4Nb6O17, K2Nb4O11) are present in the two KNN-Ox films and the KNN-MA film prepared in
O2 (RTP-1), while the KNN-MA film prepared in air (RTP-2) is phase pure according to GI-XRD.
The secondary phases were also present in KNN-Ox films prepared in air (RTP-2) and pyrolized at
450 ◦C (Figure A1, Appendix A).
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Figure 1. SEM micrographs of KNN films prepared by spin coating of the two precursor solutions
(a,b,e,f) KNN-Ox (15 depositions) and (c,d,g,h) KNN-MA (10 depositions). (a–d) are cross-sectional
images of the thin films. (e–h) are top-view images of the surface of the films.
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Figure 2. GI-XRD patterns of pyrolyzed (550 ◦C) and annealed (700 ◦C) 15-layer thick films from the
precursor solutions (a), (c) KNN-Ox and (b), (d) KNN-MA. (a,b) are films thermally processed in O2

(RTP-1) and (c,d) are films prepared in air (RTP-2). An incident angle of 2◦ was used. Reference patterns
for K0.5Na0.5NbO3 (blue, PDF card 00-061-0315), K4Nb6O17 (red, PDF card 04-009-6408) and K2Nb4O11

(green, from Madaro et al. [35]) are included in the figure.
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θ–2θ X-ray diffraction patterns of the KNN-MA film prepared in air is presented in Figure 3,
including the diffraction pattern of the STO substrate. The patterns confirm the phase purity of KNN
prepared from the KNN-Ma solution and thermal treatment in air. The insets in Figure 3 highlight the
(100) and (200) Bragg reflections of the KNN films. The pseudo-cubic (100), (110) and (200) reflections of
KNN are clearly present for the KNN-MA film, and the relative intensity of the pseudo-cubic (100) and
(110) reflections demonstrate substantial texturing. The (100):(110) intensity ratio of the KNN-MA film
annealed at 700 ◦C is approximately 5.2, compared to the theoretical ratio of 0.67 for KNN powders.
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Figure 3. θ–2θ XRD patterns of pyrolyzed (550 ◦C) and annealed (700 ◦C) 15 layer thick KNN films
prepared from the precursor solution KNN-MA and thermally processed in air (RTP-2). The insets
highlight the pseudo-cubic (100) and (200) KNN reflections close to the corresponding STO reflections.
The diffraction pattern of the (100) STO substrate is included. Reference pattern for K0.5Na0.5NbO3

(blue, PDF card 00-061-0315) is included.

The microstructure of the KNN-MA film annealed at 700 ◦C in air (RTP-2) is shown in Figure 4.
The phase purity of the films was confirmed by electron microscopy and electron diffraction.
The microstructure is dominated by continuous columnar KNN grains through the film. The average
thickness for each deposition was 17 ± 1 nm based on electron microscopy (SEM and TEM). A thin
interfacial layer of 1–3 nm was observed between the substrate and the KNN-MA film (Figure 4a).
An orientation map with reconstructed grains is presented in Figure 5a. The coloring gives the
misorientation relative to the substrate (blue-yellow, low-high), demonstrating a polycrystalline
microstructure. This is supported by the figures presented in Figure 5b, showing no in-plane texturing
in the calculated orientation distribution function (ODF) probability plot and only some clustering of
crystal coordinates originating from the substrate in the pole figures.
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Figure 4. TEM images of the KNN film from the KNN-MA precursor solution prepared in air (RTP-2).
(a) Bright field image (BFI) of the thin film cross section. Grain boundaries are highlighted with
yellow lines. (b) High resolution TEM image (HRTEM) from the cross section with electron diffraction
patterns from three selected areas (I–III). The electron diffraction pattern from Area II also contained
the diffraction spots from Areas I and III.

Materials 2019, 12, x FOR PEER REVIEW 6 of 16 

 

texturing in the calculated orientation distribution function (ODF) probability plot and only some 
clustering of crystal coordinates originating from the substrate in the pole figures. 

 
Figure 4. TEM images of the KNN film from the KNN-MA precursor solution prepared in air (RTP-2). 
(a) Bright field image (BFI) of the thin film cross section. Grain boundaries are highlighted with yellow 
lines. (b) High resolution TEM image (HRTEM) from the cross section with electron diffraction 
patterns from three selected areas (I–III). The electron diffraction pattern from Area II also contained 
the diffraction spots from Areas I and III. 

 
Figure 5. Misorientation mapping of 15-layer thick KNN film pyrolyzed at 550 °C and annealed 
at 700 °C in air (RTP-2), from the KNN-MA precursor solution; (a) Map of misorientation relative 
to the mean orientation of the substrate, with reconstructed grain boundaries. The substrate is 
located at the bottom; (b) Oriented pole figures of crystal coordinates (top), and calculated ODFs 
with colors indicating the probability density (bottom). 

Figure 5. Misorientation mapping of 15-layer thick KNN film pyrolyzed at 550 ◦C and annealed at
700 ◦C in air (RTP-2), from the KNN-MA precursor solution; (a) Map of misorientation relative to the
mean orientation of the substrate, with reconstructed grain boundaries. The substrate is located at
the bottom; (b) Oriented pole figures of crystal coordinates (top), and calculated ODFs with colors
indicating the probability density (bottom).
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P-E hysteresis loops of the KNN-MA film prepared in air (RTP-2) at 0.1 and 0.3 Hz are presented in
Figure 6a with the current flow for these measurements in Figure 6b. Ferroelectric polarization switching
is present at both frequencies, indicated by current spikes at the coercive field (~2.2–2.7 kV cm−1) in
Figure 6b. The ferroelectric switching is obscured by leakage current. At higher frequencies (<10 HZ)
ferroelectric switching was not observed, also when the applied field was increased to 120 kV cm−1

(Figure A2, Appendix A).
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3.2. Preparation of KNN Powders

Powders prepared from the precursor solutions were investigated to give additional information
concerning the decomposition/crystallization kinetics. XRD patterns of the two heat-treated powders
from the precursor solutions (KNN-Ox and KNN-MA) are given in Figure 7. Crystallization of the KNN
perovskite phase appeared at 450 ◦C in both powders, although the crystallinity is more prominent
in the KNN-Ox powder at this temperature. Phase pure KNN powders were obtained from 500 ◦C
and 550 ◦C for KNN-Ox and KNN-MA, respectively. Notably, K4Nb6O17 was formed at 450 ◦C in the
KNN-Ox powder, but this phase vanished after heat treatment at 500 ◦C.

The thermal decomposition of the powders from the precursor solutions was further studied by
TGA-MS in synthetic air and O2, and the data are shown in Figure 8. The KNN-Ox precursor (Figure 8a)
decomposes in the temperature interval 200 to 400 ◦C, compared to the two-step decomposition of
the KNN-MA precursor at 200 to 400 ◦C and 500 to 550 ◦C, Figure 8b. The mass loss in the KNN-Ox
precursor powder before 200 ◦C is mainly assigned to evaporation of water, followed by an endothermic
decomposition between 200 ◦C and 300 ◦C. The mass loss observed at 350–400 ◦C is mostly due to
combustion of carbon species and decomposition of nitrates, as evident from the MS-signatures and
the exothermic dip at this temperature interval. The thermogravimetric (TG) data for the KNN-Ox
powders in air and O2 are more or less identical from 400 ◦C and above. The overall mass loss in the
KNN-Ox precursor is ~55 wt.%. The first decomposition step (200 to 400 ◦C) of the KNN-MA precursor
powder is analogous to the decomposition of the KNN-Ox powder between 200 and 300 ◦C, although
the overall energy flux is exothermic in this step. The second decomposition step is an exothermic
combustion of carbon and decomposition of nitrates, shifted up in temperature to 500–550 ◦C compared
to the same decomposition in the KNN-Ox gel (350–400 ◦C). This decomposition step is notably steeper
for the KNN-MA powder in oxygen atmosphere (500–515 ◦C) than in synthetic air (500–550 ◦C).
The overall mass loss of the KNN-MA precursor is ~65 wt.%, where ~20 wt.% is lost in the second
decomposition step.
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Figure 8. Thermogravimetric analyses of powders from the precursor solutions (a) KNN-Ox and
(b) KNN-MA. The top panels contain mass loss curves (solid) from the TG and gas signatures (dotted)
from the MS. The gas signatures are from the measurements in synthetic air. The lower panels contain
the differential scanning calorimetry (DSC) signals from the measurements.

Fourier-transform infrared spectra of the powders heat-treated at different temperatures, presented
in Figure 9, suggest no precursor decomposition at 200 ◦C as the vibrational modes are mostly resembling
the modes of the complexing agents, i.e., oxalic and malic acid for KNN-Ox and KNN-MA, respectively.
The IR spectra show diminished and shifted vibrational modes of the initial bands for both powders
after heat treatment at 300 ◦C. At 400 ◦C, only bands corresponding to Nb-O (~525 cm−1) are observed in
the KNN-Ox powder in addition to C–O/O–C=O (~1300 cm−1) and C=O (~1600 cm−1), corresponding
to carbonates. A broad band at 1100–1700 cm−1 in the temperature range 400–500 ◦C is observed
in the KNN-MA powder, marked with horizontal arrows in Figure 9b. This band is confirming the
presence of residuals of organics in line with the second mass loss in the TGA data (Figure 8b) and an
amorphous phase at 450 ◦C in the powder XRD (Figure 7b). This is in coherence with the powder going
from a brown to white color between 500 and 550 ◦C. The characteristic perovskite band at ~525 cm−1
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show the formation of crystalline KNN after heat treatment at 500 and 550 ◦C for the KNN-Ox powder
and KNN-MA powder, respectively.
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4. Discussion

4.1. Phase Purity

Both precursor solutions yielded phase pure KNN by thermal treatment of powders from
the solutions (Figure 7), which is in accordance with previous work [30,32]. However, only the
KNN-MA solution heat-treated in air gave phase pure KNN thin films, as evident from the GI-XRD
patterns in Figure 2. Alkali metal deficient secondary phases (K4Nb6O17, K2Nb4O11) formed in
the films synthesized from the KNN-Ox and the KNN-MA solution in O2. Both these secondary
phases have been reported previously in relation to KNN synthesis [36], however, for KNN thin film
synthesis K4Nb6O17 is the most frequently reported due to the low nucleation temperature [20,37]
and the instability of K2Nb4O11 at lower temperatures [35,38]. Previous work using a similar oxalic
acid-complexed niobium precursor solution reported formation of the K2Nb4O11 secondary phase
in ceramics sintered at 1100 ◦C [31] and in thin films heat-treated at 800 ◦C [26]. K4Nb6O17 was also
observed in the 450 ◦C in heat-treated KNN-Ox powder (Figure 7a), but the phase was eliminated by
further heat treatment at 500 ◦C or higher. The presence of K4Nb6O17 in both the KNN-Ox powder
and KNN-Ox films, and the elimination of this phase in the powder and not in the films, can be
explained by two phenomena: (i) Nucleation kinetics of the crystalline phases and (ii) volatilization
of alkali metals. The results presented here demonstrate that both phenomena are dependent on the
precursor chemistry and atmosphere during thermal treatment. More specific, the nucleation kinetics
and evolution of secondary phases are dependent on the precursor decomposition temperature relative
to the nucleation temperature. In general, the precursor decomposition is observed to be completed
before the nucleation of KNN in the KNN-Ox system, whereas the decomposition is not yet completed
when nucleation of KNN takes place in the KNN-MA system.



Materials 2019, 12, 2042 10 of 16

4.1.1. Nucleation Kinetics

Nucleation of the targeted KNN phase occurred at around 450 ◦C in both the KNN-Ox and
KNN-MA powders (Figure 7), although the crystallinity was higher in the KNN-Ox powder. Phase
pure KNN was obtained at 500 ◦C and 550 ◦C in the KNN-Ox and KNN-MA powders, respectively.
However, K4Nb6O17 was also formed at 450 ◦C in the KNN-Ox powder. At the temperature when
KNN was first formed (450 ◦C), the KNN-Ox powder mostly consists of amorphous niobium oxide
and alkali metal carbonates in addition to KNN, whereas the thermal decomposition of the organic
residuals in the KNN-MA powder was not completed, as evident from the TGA and FTIR data (Figure 8;
Figure 9, respectively). In the KNN-MA powder, the nucleation of crystalline phases was affected by
the delayed decomposition process, thus shifting the nucleation temperature upwards and suppressing
the formation of the K4Nb6O17 secondary phase. In case of the KNN-Ox powder, the nucleation of the
K4Nb6O17 secondary phase was not suppressed in the same manner and nucleation of both KNN and
K4Nb6O17 occurred at 450 ◦C. These observations from the KNN powders are in line with the GI-XRD
patterns in Figure 3, as alkali metal poor secondary phases are formed in the films from the KNN-Ox
precursor solution. Reduction of the pyrolysis temperature during processing of the KNN-Ox films
was also attempted (Figure A1, Appendix A), but this did not affect the phase composition of the films
compared to the films pyrolyzed at 550 ◦C. Traces of a secondary phase are also observed in the films
from the KNN-MA precursor solution heat-treated in oxygen. This is expected due to a more efficient
decomposition of the residual mass in the system around 500 ◦C, as observed in the TGA measurement
(Figure 8), thus enabling nucleation of K4Nb6O17 during pyrolysis in oxygen. In short, elevation of
the nucleation temperature, e.g., by engineering of the decomposition mechanisms of the precursor
solution, is crucial to avoid nucleation of secondary phases during synthesis of KNN from solutions.

4.1.2. Alkali Metal Volatility

The absence of alkali metal poor phases in the KNN-MA powder at 450 ◦C was rationalized
by the presence of residuals of organics. The volatility of alkali metals oxides must also be taken
into consideration to explain the evolution of the secondary phases in the KNN-Ox powder and thin
films. As evident from the XRD in Figure 7a, the secondary phase formed at 450 ◦C in the KNN-Ox
powder could be removed by further heat treatment at 500 ◦C. The disappearance of this secondary
phase at higher temperatures in the powder suggests that K4Nb6O17 is metastable and will react with
residual alkali carbonates in the powder to form KNN when the reaction kinetics (temperature) is
increased. Alkali metal carbonates are present in the KNN-Ox powder at 450 ◦C, as seen in the KNN-Ox
IR-spectrum (Figure 9a) at 400 ◦C where C–O/O–C=O and C=O modes are observed. The reaction
involving the secondary phase can be formulated as

K4Nb6O17 (s) + K2CO3 (s)→ 6 KNbO3 (s) + CO2 (g) (1)

where the presence of Na is neglected for simplicity.
In the case of KNN films, the surface area is significantly higher than for the powder, and diffusion

of volatile species away from a flat surface with purging furnace atmosphere is higher compared to
evaporation from a porous powder compact. Alkali metal carbonates are volatile and pose a constant
challenge in KNN synthesis due to loss through evaporation [1–3]. Therefore, loss of alkali metal
carbonates due to evaporation during the heat treatment of the thin films will result in irreversible
changes in the cation stoichiometry, and K4Nb6O17 cannot react to form KNN according to Reaction (1).
This demonstrates that once K4Nb6O17 is formed during film pyrolysis, it cannot be removed by
Reaction (1) by further thermal treatment if irreversible changes in the alkali metal to niobium
stoichiometry has taken place due to evaporation of alkali metal carbonates. Similar observations
have been reported by Wang et al. [39], where the loss of alkali metals was suppressed by addition of
organic stabilizing agents (MEA, DEA and EDTA) to the precursor solution.



Materials 2019, 12, 2042 11 of 16

4.2. Texture and Microstructure

The TEM characterization of the KNN-MA film synthesized in air (Figures 4 and 5) revealed a
1–3 nm thick epitaxial interface layer between the substrate and the KNN film, followed by a columnar
microstructure throughout the film thickness. Fast Fourier transform of the interface area (Inset II
in Figure 4) give information from the combination of Areas I and III, but the TEM misorientation
mapping (Figure 5a) demonstrate that this layer is epitaxial KNN (thin blue area at the bottom). The thin
epitaxial layer corresponds to the inner part of the first deposited layer (17 nm). The θ–2θ diffractions
of the KNN-MA films demonstrated that the films have out-of-plane texturing (Figure 3. This is due to
preferential orientation of the columnar grains, despite that the PED pattern mapping indicate a local
in-plane polycrystalline microstructure. No symmetry pointing towards texturing can be observed
in the pole figures (Figure 5b). This is further supported by plotting misorientation of PED patterns
relative to the substrate (Figure A3, Appendix A), where the misorientation follows the Mackenzie
distribution of polycrystalline materials [40]. This suggests a mixed heteroepitaxial and somewhat
oriented homogeneous nucleation and growth in the first deposited layer [41]. The crystallization
mechanism of the subsequent layers is dominated by heterogeneous nucleation, forming a thin epitaxial
interface and columnar grains with out-of-plane preferential orientation. Using a thermal treatment
program with a low pyrolysis temperature (400 ◦C) and a high heating rate and annealing temperature
(40 K s−1, 800 ◦C), Pham et al. [26] obtained highly textured KNN films using an oxalic acid-complexed
niobium precursor (KNN-Ox) similar to the one presented in this work. Pyrolysis at 400 ◦C prevents
nucleation of KNN until the final annealing, and combined with the use of a salt flux, strongly textured
growth of the film was promoted. Therefore, the thermal processing during synthesis dictates the
degree of texturing/epitaxy of the final films, which is in line with Yu et al. [25]. This suggests that
phase pure epitaxial KNN films should be obtainable from the KNN-MA precursor solution by altering
the thermal processing during synthesis

4.3. In-Plane Ferroelectric Strain

A ferroelectric response in the polarization-electric field measurements (Figure 6) of the KNN-MA
film was only obtained at low frequencies (0.1 and 0.3 Hz) and field (4 kV cm−1). At higher frequencies,
the film exhibited a capacitive behavior (Figure A2, Appendix A). However, at the conditions presented
in Figure 6 (0.1 and 0.3 Hz, 4 kV cm−1), a leakage current is clearly present. The polarization observed in
these measurements are expected to be due to (i) strain-induced out-of-plane preferential polarization,
which is normal to the in-plane electric field used in this study and (ii) a parasitic contribution from the
leakage current.

(i) Strain-induced preferential polarization: Synthesis of a thin film on a dissimilar substrate will
cause misfit strain in the film due to different lattice parameters and thermal expansion coefficients
in the two materials. The lattice parameter of bulk STO is smaller than the pseudo-cubic lattice
parameter of KNN [42,43], and the thermal expansion coefficient of STO is higher than that of
KNN [44,45]. The KNN film will thus experience compressive in-plane strain promoting out-of-plane
polarization [46]. Consequently, only a minor polarization switching was observed (Figure 6). Growing
the KNN films on a substrate giving tensile in-plane strain (e.g., SrRuO3/Pt/MgO [47], Pt/SrTiO3 [48]) will
promote in-plane polarization and should therefore promote polarization saturation when conducting
in-plane measurements.

(ii) Leakage current: Current leakage is a persistent challenge in KNN thin films due to formation
of conductive electron holes (h•) in the films [49]. It is proposed that the electron holes form due to
oxidation of the KNN films, enabled by the presence of oxygen vacancies in the films that originate
from loss of alkali oxides (K2O or Na2O) at the film surface during synthesis. Mn-doping is usually
applied in KNN to reduce the leakage current [49,50]. Dopants manipulating phase boundaries in
KNN to enhance the ferroelectric properties has been thoroughly investigated by others [1] and might
also be necessary to observe a stronger ferroelectric behavior in KNN thin films.
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5. Conclusions

An environmentally friendly synthesis route to phase pure KNN films by aqueous chemical
solution deposition was successfully developed. The phase purity of KNN films from two different
precursor solutions, differentiated by the complexing agent for niobium, was demonstrated to be related
to the decomposition temperature of the precursors during synthesis. Phase pure, dense KNN films
were obtained from the solution with malic acid as complexing agent (KNN-MA) and when processed in
air due to suppressed nucleation of the secondary phase due incomplete thermal decomposition of the
deposited film. The decomposition of the precursors during thermal treatment of the KNN-MA films
was completed at 550 ◦C (air) and 515 ◦C (O2), and ~20 wt.% of undecomposed mass remained at the
nucleation temperature. The phase pure KNN-MA films were shown to have an out-of-plane textured
columnar microstructure and to have ferroelectric properties. Finally, KNN films containing secondary
phases (K4Nb6O17, K2Nb4O11) was obtained from the solution with oxalic acid as complexing agent
(KNN-Ox) due to limited suppression of nucleation of the secondary phase due to a lower thermal
decomposition temperature in this case. The work demonstrates the importance of chemistry for
nucleation and growth and phase purity of thin films prepared by chemical solution deposition.

Author Contributions: N.H.G., M.-A.E. and T.G. conceived and designed the experiments; N.H.G. and S.M.D.
synthesized the powders and thin films and performed SEM and XRD on the thin films; N.H.G. performed XRD,
TGA-MS and FTIR on the powders; A.T. and R.H. performed TEM; N.H.G. and T.M.R. performed the ferroelectric
measurements; N.H.G., A.T., R.H., J.G., M.-A.E. and T.G. analyzed the data; N.H.G. and T.G. wrote the paper with
inputs from all the authors. All authors gave final approval for publication.

Funding: Financial support from the Research Council of Norway through NANO2021 project PIEZOMED
project number 250184 is acknowledged. The Research Council of Norway is acknowledged for the support to the
Norwegian Micro-and Nano-Fabrication Facility, NorFab, project number 245963/F50.

Acknowledgments: Anders B. Blichfeld is acknowledged for the help and advice concerning the use of the
RTP-2 unit.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Details of the pseudo-cubic crystal structure for KNN used for template matching of PED patterns
are given in Table A1.

Table A1. Lattice position of atoms, lattice parameters and unit cell angles in pseudo-cubic KNN used
as template for precession electron diffraction (PED) pattern matching.

Element X Y Z Occ.

K 0.0 0.0 0.0 0.5
Na 0.0 0.0 0.0 0.5
Nb 0.5 0.5 0.5 1.0
O 0.0 0.5 0.5 1.0

Lattice parameters and angles a = b = c = 3.983 Å α = β = γ = 90◦

Details of the interdigitated Pt electrodes used for P-E measurements are given in Table A2.

Table A2. Dimensions of interdigitated Pt electrodes.

Dimension Size

Finger length 900 µm
Finger width 3.311 µm
Finger distance 6.689 µm
Number of fingers 100

Figure A1 shows GI-XRD patterns of pyrolyzed (450 ◦C) and annealed (700 ◦C) KNN-Ox films.
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P-E hysteresis loops of the KNN-MA film prepared in air (RTP-2) at different frequencies and
electric fields is shown in Figure A2.
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Figure A3 illustrates misorientation of PED patterns relative to the substrate, based on results
presented in Figure 5a.
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