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Abstract. This paper contributes to forecasting of renewable infeed for
use in dispatch scheduling and power systems analysis. Ensemble predic-
tions are commonly used to assess the uncertainty of a future weather
event, but they often are biased and have too small variance. Reliable
forecasts for future inflow are important for hydropower operation, and
the main purpose of this work is to develop methods to generate better
calibrated and sharper probabilistic forecasts for inflow. We propose to
extend Bayesian model averaging with a varying coefficient regression
model to better respect changing weather patterns. We report on results
from a case study from a catchment upstream of a Norwegian power
plant during the period from 24 June 2014 to 22 June 2015.
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1 Introduction

Hydrological forecasting plays an important role in a variety of applications,
ranging from flood prevention to water resource management and hydropower
production. Forecasting inflow to hydropower reservoirs for operation and schedul-
ing is the focus of this work. Future streamflows are uncertain, and forecasts
generated from hydrological models are subject to errors. In order to quantify
the uncertainty of future streamflows, it is common to generate an ensemble
of forecasts with perturbations made for both the initial state and the model
formulation for each member of the ensemble. The resulting ensemble can be
interpreted as a probabilistic forecast. However, the ensemble forecasts tend to
be underdispersive, meaning that the observed value too often lies outside the
ensemble range. Therefore, statistical postprocessing methods are essential in
order to obtain calibrated and sharp probabilistic forecasts.

A widely used postprocessing methodology for ensemble forecasts is Bayesian
model averaging (BMA) [1]. In the BMA methodology, a component probabil-
ity density function (pdf) is assigned to each ensemble member forecast, and
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the BMA probabilistic forecast is given by a weighted average of the individual
ensemble member pdfs. Another popular postprocessing method is Ensemble
model output statistics (EMOS) [2]. This method is based on multiple linear re-
gression. An advantage with the BMA methodology is that the method respects
the dynamics in the ensemble.

In the original BMA approach for postprocessing of forecast ensembles, a
Gaussian pdf is assigned to the ensemble members [1]. Extensions of the BMA
methodology have been developed for cases where the dependent variable devi-
ates from the Gaussian case. Sloughter et al. [3] modified the method to apply to
precipitation forecasts by introducing a discrete-continuous model which com-
bines a logistic regression model and gamma distributions. Moreover, BMA us-
ing gamma distributions as the component pdfs has been applied to wind speed
forecasting [4]. Furthermore, Duan et al. [5] used the BMA approach to generate
probabilistic hydrological forecasts after transforming streamflow values using
the Box-Cox transformation.

In this paper we aim to generate reliable probabilistic forecasts for inflow by
extending the original BMA methodology. Many stochastic optimization meth-
ods used for operational purposes often require a large number of inflow scenarios
as input, and inflow forecasts in the form of predictive distributions are useful
in the sense that one easily can generate many inflow scenarios from sampling.
Séguin et al. [6] propose a method for the natural next step of our analysis, which
is a transition from a probabilistic forecast to a scenario tree or a lattice, some-
thing that is useful for input in short-term hydropower operational optimization
methods. We propose to extend the BMA methodology for ensemble forecasts
with varying coefficient regression (VCR) [7]. We demonstrate the method in a
case study from a catchment upstream of a Norwegian power plant during the
period from 24 June 2014 to 22 June 2015.

2 Bayesian Model Averaging using Varying Coefficient
Regression

The use of BMA for statistical postprocessing of forecast ensembles was intro-
duced by Raftery et al. [1]. The BMA approach generates a probabilistic forecast
in the form of a predictive pdf by combining deterministic forecasts from differ-
ent models. We suggest to extend the BMA methodology by using a VCR model,
which we denote BMA-VCR. The models presented below can be applied to each
lead time individually, where lead time refers to the forecast horizon.

We assume that the ensemble members are exchangeable, meaning that they
are treated equally. Therefore, we present the BMA methodology for exchange-
able member forecast. First, we follow the approach of Raftery et al. [1] and
consider the normal distribution with mean α + βxm and standard deviation τ
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as the ensemble member pdfs. The BMA probabilistic forecast is then given by

f(y|x1, ..., xM ) =
1

M

M∑
m=1

g(y|xm)

Y |xm ∼ N (µm, τ
2)

µm = α+ βxm,

(1)

where xm is the deterministic forecast from ensemble member m, Y is the ran-
dom variable representing future inflow to be forecasted, and M is the size
of the ensemble. The bias-correction parameters, α and β, are equal for each
ensemble member and the weights for exchangeable member forecasts are 1

M .
However, such a simple linear bias-correction does in general not provide good
predictions for heteroskedastic and non-Gaussian model errors, which is likely
to occur in hydrological forecasting [8]. To easier incorporate local weather pat-
terns, we suggest to apply a nonlinear bias-correction in the form of a VCR
model. VCR models are a class of generalized linear regression models where the
coefficients are allowed to vary as functions of other variables. We let the BMA
bias-correction parameters vary throughout time t, and a VCR model can then
be described by

αt = αt−1 + at, at ∼ N(0, δ−1)

βt = βt−1 + bt, bt ∼ N(0, δ−1),
(2)

where we restrict the precision parameter δ to be equal for both processes. We
refer to δ as a precision parameter since the larger value, the less variance. In
the BMA-VCR model, we include both static bias-correction parameters α and
β and dynamic parameters αt and βt, which leads to the following form of the
BMA-VCR probabilistic forecast

f(y|x1, ..., xM ) =
1

M

M∑
m=1

g(y|xm)

Y |xm ∼ N (µm, τ
2)

µm = (α+ αt) + (β + βt)xm

αt = αt−1 + at, at ∼ N(0, δ−1)

βt = βt−1 + bt, bt ∼ N(0, δ−1).

(3)

The static parameters α and β represent the total bias between forecast and
observation pairs from a training period, and the dynamic parameters αt and βt
evolve from time t = 1. The parameter δ decides the flexibility of the dynamic
parameters. A small δ gives a good fit to training data, but generally not good
predictions, i.e. overfitting, while a large value of δ gives less flexibility for the
dynamic parameters. By letting δ−1 = 0 the BMA-VCR model formulation in (3)
coincide with the original BMA model defined in (1). The assumption that δ−1

is identical for αt and βt is reasonable as the dependency between the estimators
for αt and βt is high. If α + αt = 0, and β + βt = 1, the mean of an ensemble
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member forecast, µm, will be the deterministic forecast xm. If β + βt < 1, we
expect α+ αt > 0. Furthermore, if β + βt > 1, we expect α+ αt < 0.

3 Parameter Estimation

In the original BMA methodology for ensemble forecasts, a sliding window of
constant size, consisting of forecast and observation data from the most recent
history, is used to train the model. In the VCR models, there are dynamic
parameters that evolve from time t = 1. We use Bayesian inference for esti-
mation of bias-correction parameters α, β, αt, βt. The variance parameter τ is
then estimated from a sliding window training period in the same way as in
the work of Raftery et al. [1]. The last model parameter, the precision param-
eter δ, is estimated based on predictive performance. For inference, we apply
integrated nested Laplace approximations (INLA) [9,10]. INLA is a method for
performing approximate Bayesian inference. As an alternative to simulation-
based Monte Carlo integration, INLA uses the analytic approximation with
the Laplace method, which leads to computational benefits. Furthermore, R-
INLA [11], which is an open source software, is suitable for parameter estimation
in the BMA-VCR model.

4 Forecast Verification

Probabilistic forecasts take the form of predictive pdfs, and in order for the
forecast to be useful, it is important to assess the predictive performance. The
models are evaluated according to calibration and sharpness. Calibration is the
statistical consistency between the predictive pdfs and the corresponding ob-
served values. Sharpness is a measure of uncertainty of the predictive pdfs.

The verification rank histogram (VRH) is often used to assess calibration
of ensemble forecasts [1, 3, 12]. The VRH is computed by arranging the ensem-
ble forecasts and the corresponding observation in increasing order. To assess
calibration of probabilistic forecasts, the probability integral transform (PIT) is
common to apply [1, 3, 13]. The probabilistic forecast is calibrated if the PIT
values, which is the value of the predictive cdf at the corresponding observation,
are uniformly distributed. Uniformity can be assessed by making a histogram
of PIT values. The shape of the VRH and the PIT histogram, gives an indica-
tion whether the probabilistic forecast is calibrated. Hump-shaped histograms
indicate that the probabilistic forecast is overdispersed, which means that the
prediction intervals on average are too wide. U-shaped histograms indicates un-
derdispersion, meaning that the prediction intervals on average are too narrow.
Asymmetrical histograms occur when the probabilistic forecast is biased.

Proper scoring rules are often used to assess the predictive performance of a
probabilistic forecast. A scoring rule is proper if the expected score is minimized
when the issued forecast is the true distribution of the quantity to be forecasted
[14]. The continuous ranked probability score (CPRS) is a proper scoring rule
that measures both calibration and sharpness of a probabilistic forecast [15]. The
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CRPS measures the difference between the predicted and occurred cumulative
distributions. The value of the CRPS is non-negative and the smaller value the
better quality of the probabilistic forecast. For deterministic forecasts, the CRPS
reduces to the absolute error, hence it is possible to compare the performance
of probabilistic forecasts and deterministic forecasts.

5 Data and Study Area

The ensemble forecasts used in this study are generated from the Hydrologiska
Byr̊ans Vattenbalansavdelning (HBV) model [16]. The model has a number of
free hydrological parameters that are estimated from training data, and the start
state is estimated using observed precipitation and temperature from the history.
Ensembles of temperature and precipitation forecasts from the European Centre
for Medium-Range Weather Forecasts (ECMWF) are used as input in the HBV-
model. The ensemble size in this study is M = 51, and the ensemble forecasts
are treated equally, i.e. they are exchangeable.

In the case study, we consider the Osali catchment which is a part of the
Ulla-Førre hydropower complex south west in Norway [17, 18]. Daily inflow ob-
servations, in unit m3 s−1, are recorded and data are provided by Statkraft,
which is the largest hydropower producer in Norway. The method is evaluated
for lead time l = 1 day, where lead time refers to the forecast horizon.

6 Results and Discussion

We apply the BMA-VCR method to inflow forecasting from the Osali catchment.
The method is tested in the period from 24 June 2014 to 22 June 2015. We
analyze how the precision parameter δ influence the predictive performance by
considering mean CRPS, which is the average CRPS taken over all days in the
period under study. The lower mean CRPS, the better predictive performance.
Calibration is assessed through the PIT histogram.

Mean CRPS is given as a function of the inverse precision parameter δ−1 in
Fig. 1. The original BMA method is the purple horizontal line, and the mean
CRPS of the ensemble is given by the green line. The BMA-VCR method, which
corresponds to a non-linear bias-correction in the original BMA methodology is
shown in red. Where lines intersect means that the predictive performance is
equally good. We observe that a large value of δ−1 leads to large mean CRPS,
which in this case corresponds to overfitting and poor predictive performance.
We observe that an inverse precision parameter value close to 0.11 provides a
good forecasting performance for the BMA-VCR method. We get mean CRPS
values 0.57, 0.47, and 0.39 for the raw ensemble, BMA method, and BMA-VCR
method respectively.

We observe from Fig. 1 that the right choice for δ−1 is important. Values
between δ−1 = 0.07 and δ−1 = 0.13 leads to better predictive performance
compared to the original BMA method. Values outside this interval leads higher
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Fig. 1: Mean CRPS as a function of the inverse precision parameter δ−1. The
figure shows the potential of including a VCR model in the BMA methodology for
postprocessing of hydrological ensembles. We observe that mean CRPS is lower
for BMA-VCR compared to BMA with static parameters for certain values of
δ−1.

CRPS values. The computation time for estimating parameters in the BMA-
VCR method, using Bayesian inference, is longer compared to the BMA method,
which uses maximum likelihood estimation. The computation time increases with
increasing amount of data used for fitting the model. With small amount of
data available, the computation time of the BMA-VCR method is similar to the
original BMA method. As more data become available, the estimation procedure
takes longer time. For operational use, a sliding window with constant size can
be applied to reduce computation time.

The PIT histogram obtained for the probabilistic forecast from the BMA-
VCR method and the VRH for the ensemble forecasts are provided in Fig. 2. The
horizontal dotted line indicate the height of the bars for a perfectly calibrated
forecast. We observe that the VRH for lead time 1 is strongly u-shaped and
slightly biased. This means that the ensemble underestimate variance. The PIT
histogram obtained from the probabilistic forecast of the BMA-VCR method is
closer to uniform.

The method can be further extended and applied to a higher-dimensional
system, but this is not tested in this work. For multiple catchments, the depen-
dency between corresponding ensemble members will be handled by the current
method. However, further extensions to the proposed methodology are needed.

7 Conclusion

In this work we have presented a new postprocessing method for hydrological
ensembles. We have suggested to extend the original BMA approach for post-
processing of ensemble forecasts with a VCR model. The performance of the
postprocessing methods was demonstrated in a case study of the Osali catch-
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Fig. 2: he PIT histogram obtained from the probabilistic forecast of the BMA-
VCR method (left) and the VRH from the raw ensemble (right)

ment in the south-western part of Norway for lead time l = 1 day. The results
showed that applying a non-linear regression for the bias-correction parameters
in the original BMA methodology has great potential to improve the predictive
performance of hydrological ensembles for short lead times.
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