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Abstract

The theory of mathematical optimization is useful within a wide
range of disciplines such as science, engineering, economics and indus-
try. Application areas have been growing steadily, driving forward the
development of new effective methods. Inspired by the need for fast
computational schemes in wireless sensor networks, a new optimiza-
tion theory, called Fast Lipschitz, has emerged to provide effective
algorithms both for distributed and centralized computations. An im-
portant property of these algorithms is that a globally optimal solution
is always guaranteed. In this master thesis project, a new MATLAB
toolbox is developed to check wether an optimization problem is F-
Lipschitz and to solve it efficiently. The difficulty is posed in verifying
that a given problem is in fact F-Lipschitz. However, it is shown that
under certain circumstances, this operation has a computational com-
plexity of O(n2) for a problem with n decision variables. The toolbox
provides both a graphical interface as well as inline functions. A user
guide is presented, explaining the functionalities by discussions and il-
lustrations of example problems. Among others, a convex optimization
problem of distributed detection is considered, as well as a non-convex
radio power allocation problem. The novel toolbox presented in this
thesis may be of considerable utility in solving optimization problems
and studying their characteristics.
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1 Introduction

The continuous development of intelligent sensors steadily opens up new
areas in which wireless sensor networks (WSNs) can be applied. For exam-
ple, we may want to keep track of temperature and humidity in order to
monitor the environment, or maybe we would like to monitor a patient to
collect data for medical diagnostics. These are just a few possible applica-
tions, see [1] for more examples. There are many different aspects to WSNs,
see e.g. [2], [3], [4], but the focus of this thesis is on optimization. It is a
widely applied mathematical tool used for decision-making, improving effi-
ciency and reducing development costs. Particularly, the different aspects
of distributed optimization is researched. In the discussions which follows, it
will become clear that this area of optimization has a particular importance
within WSNs.

Wireless sensors have their own processing unit and data storage, but
the computational capacity is limited, as is also the memory. Hence, in or-
der to take advantage of the combined processing power in a sensor network,
nodes have to collaborate with each other through message passing. In some
situations the best option may be to apply a central coordination unit which
receives information from all the sensors nodes in the network. This in turn
enables it to solve some global optimization problem before returning the
solution to the nodes. To limit the amount of information which is trans-
mitted, each node may do simple computations and hence send data which
is already partially processed.

However, in many situations it is difficult or even impossible to apply
such a central coordination. In these cases it is necessary to apply distributed
algorithms, i.e., each node runs local computations based on its own data
and the information it receives from its neighboring nodes in order to solve
an optimization problem which is global for the network. Consequently,
the nodes will cooperate in parallel and, in effect, one might say that the
network in itself becomes the coordination unit. We know for certain that,
compared to a corresponding centralized setup, the distributed optimization
algorithm will inevitably be slower. Safe to say then, the motives behind
decentralizing will always be of a different nature. As mentioned, it may
very well be the one alternative which is possible.

1.1 Motivation

Either distributed or centralized, convex optimization has over all been the
most widely applied optimization strategy. Most problems are not convex,
but many can be approximated convex in order to use Lagrangian meth-
ods which is a well established theory. The area of these methods which
concerns distributed optimization is referred to as Lagrangian decomposi-
tion methods. Not surprising, there are however plenty of situations where
convex approximation is not possible. For solving nonlinear optimization
problems, which may be either convex or non-convex, a method referred to
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as iterative contraction mappings has been developed within the interference
function optimization theory. This may be applied in both centralized and
in distributed settings, though we are most interested in the latter case here.
The theory is not particularly general however, hence the range of problems
it may be applied to is limited.

The decomposition methods are so far the ruling strategy for general dis-
tributed optimization. However, convergence is not particularly fast, which
is of course always desirable. For the application of WSN, one might go
so far as to say that fast algorithms are even a crucial requirement. As
the wireless network easily picks up noise, the communication channels may
have fast changing dynamics, and so the optimal solution must be calcu-
lated and applied quickly before it is already outdated. What is worse, the
decomposition methods require a lot of message exchanging between nodes,
which of course consumes power. Since these sensors are wireless, they have
a limited power source, and hence it must be used efficiently. Yet another
good reason as to why the optimization algorithm needs to converge fast; to
minimize the amount of message passing.

1.2 Problem definition

Motivated by the issues discussed above, a new method for solving a class
of nonlinear optimization problems has recently been developed by C. Fis-
chione, see [5]. It has been named Fast Lipschitz (F-Lipschitz) optimization,
which indicates that the method is particularly fast and that it is based on
Lipschitz contractive constraints. The theory is general and may be applied
to both centralized and distributed optimization. Considering the last ap-
plication, it has been found that the method is faster and simpler than what
has previously been available, not to mention that it is completely asyn-
chronous, which is highly appealing for WSNs. At the same time it limits
the amount of messages which are sent between nodes.

It has been shown that a feasible F-Lipschitz problem has a unique opti-
mal solution which is given by the constraints at the equality. This opens up
for a very efficient centralized algorithm in which the objective is to find the
solution to a system of equations. The key to the fast distributed algorithm
lies in the constraints being contractive. Basically, this means that the con-
straint function may be used to map the iterate into itself, which eventually
will result in the iterate converging to the solution. Like always, there is a
drawback to this wonderful new theory. To verify that a problem is in fact
a feasible F-Lipschitz problem is potentially difficult. However, one might
remark that this is nothing new, as the same can be said for problems which
are convex.

The focus of this master thesis is to investigate F-Lipschitz optimization
theory and compare its performance to other possible methods within dis-
tributed optimization. A literature survey on this subject is a natural part of
the task. MATLAB R© (developed by MathWorks) already includes an Op-
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timization ToolboxTM, which provides methods for the traditional convex
optimization problems. This thesis includes an implementation of a new
MATLAB toolbox for F-Lipschitz problems. It is designed to be able to
verify if a problem is F-Lipschitz, as well as solving it in both a distributed
and centralized setting. A natural part of this is to thoroughly investigate
the properties implying that a problem is F-Lipschitz.

1.3 Outline of this work

The subsequent chapters are organized as follows. Chapter 2 summarizes a
literature study that is focused on distributed optimization. In Chapter 3,
the necessary background theory of F-Lipschitz optimization is presented,
as well as a general comparison to the methods and techniques of Chapter
2. Chapter 4 revolves around all the different aspect related to the design of
the toolbox. Among other things, it contains an extensive discussion on the
computational complexity of verifying that a problem is F-Lipschitz. Also,
we consider how the computations may be simplified by assuming certain
problem structures or certain properties. A user guide of the toolbox is
presented in Chapter 5, which includes examples of typical optimization
problems within WSNs.
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2 Previous Work

We initiate this section by a short introduction to the basics of optimization
theory. Consider a real-valued function f(x), where x ∈ Rn, defined on a
set F , that is, f(x) : F → R. The goal of optimization is to determine a
x̂ ∈ F that minimizes f(x), specifically, f(x̂) ≤ f(x), ∀x ∈ F . Formally, the
optimization problem is defined as

minimize
x

f(x)

subject to x ∈ F

where the function f is referred to as the objective function and F as the
feasible set, which is usually defined by a set of constraints.

2.1 Parallelization of iterative methods

For more extensive reading on the theory that is summarized in this section
and the next, refer to [6] by Bertsekas and Tsitsiklis. The way of solving
optimization problems, in general, is through applying iterative methods on
the form

x(k + 1) = f (x(k)) , k = 0, 1, . . . , (2.1.1)

where each x(k) is an n-dimensional vector, and f is some function mapping
Rn into itself, i.e. f : Rn → Rn. We denote the sequence generated by Eq.
(2.1.1) as {x(k)}. If this sequence converges towards a limit x∗, and the
function f is continuous, then we say that x∗ is a fixed point of f and it
satisfies x∗ = f(x∗).

It is quite straightforward to parallelize the execution of such an algo-
rithm. If we denote the ith component of x(k), xi(k), and let fi denote the
ith component of f , then Eq. (2.1.1) can be rewritten as

xi(k + 1) = fi (x1(k), . . . , xn(k)) , i = 1, . . . , n (2.1.2)

Parallelization is then accomplished by letting each agent in a network of n
nodes update one component of x(k). For each iteration, the ith agent must
know the values of all the components for which fi is dependent on. Hence,
when the iterate is updated, each agent must communicate its value to the
nodes that need it.

Naturally, it is not necessary and not always the most efficient to par-
allelize the execution completely. Instead of decomposing x(k) into scalar
components, we may partition into larger pieces, namely vectors. These par-
titions will be called block-components. Formally, the vector space Rn will be
decomposed into a Cartesian product of lower dimensional subspaces Rnj ,
where j = 1, . . . , p and

∑p
j=1 nj = n. Correspondingly, the vector x ∈ Rn
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becomes x = (x1, . . . , xj , . . . , xp), where each xj is an nj-dimensional vector.
Now we can write Eq. (2.1.1) as

xj(k + 1) = fj (x(k)) , j = 1, . . . , p (2.1.3)

where each fj : Rn → Rnj . Instead of a network of n nodes, we now only
need p agents, each of which is assigned the updating of a block-component
of x. The resulting algorithm is then said to be block-parallelized.

This type of parallelization creates more flexibility in the system. For
example, there may be a limited amount of agents and so it might be nec-
essary to assign more than just one component to each of them. Also, it is
not unlikely that some functions fi involve common computations, hence it
would be more efficient to group them together. Naturally, this also reduces
the amount of communication which is necessary between nodes.

In addition to parallelizing the iterations, i.e. computing all the com-
ponents of x simultaneously, there is yet another way of distributing an
iterative algorithm. Namely, by letting the components of x be updated
one at a time. This type of iteration is called Gauss-Seidel, while the for-
merly explained parallelized type, Eq. (2.1.2), is sometimes called Jacobi.
Assuming that the components are updated in the order of its index i, a
Gauss-Seidel iteration has the following form

xi(k + 1) = fi (x1(k + 1), . . . , xi−1(k + 1), xi(k), . . . , xn(k)) (2.1.4)

where i = 1, . . . , n as before. Notice that the update is done using the most
recently computed values of each component of x, i.e. the algorithm always
uses the most updated information. This has been known to sometimes have
a positive effect on the convergence. For this reason, Gauss-Seidel algorithms
are often preferred before the Jacobi-type algorithms, see [6] (Section 1.2).

It may not come as a surprise that it is also sometimes possible to par-
allelize a Gauss-Seidel iteration, in effect applying a combination of the two
types. How much can be parallelized is dependent on the problem formula-
tion. If for example every function fi depends on all the components of x,
then parallelization is not possible at all. Also, the chosen order of which
the components are updated might be such that it limits the level of par-
allelization compared to a different ordering. It is often natural to choose
the ordering which maximizes the parallelization. However, one must keep
in mind that a different order in fact corresponds to a different algorithm,
hence the result will in general be different.

In the following section we explore different types of formulations of the
function f in Eq. (2.1.1). Several general algorithms will be given as well as
a discussion on how they are to be distributed and potentially parallelized.
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2.2 Convex optimization algorithms

The amount of optimization algorithms which have been developed over the
years are immense. No attempt will be made to summarize all of these, but
the most standard algorithms for general convex optimization will be shortly
explained in the following. We now consider the optimization problem

minimize
x

F (x)

subject to x ∈ X
(2.2.1)

where F : Rn → R is convex and the set X ⊆ Rn is convex and closed. Note
that the following algorithms are general and can be applied for non-convex
problems as well. The difference is that in such cases there is no guarantee
that the optimal point is actually the global optimal point, it is merely a
local solution. While for convex cases it is guaranteed that the solution is
globally optimal.

2.2.1 Gradient and subgradient methods

As we are to find the minimum of a function, we need to know in which
direction the function decreases, i.e. we must consider the function’s gradi-
ent, ∇F (x). This is of course dependent upon F being differentiable. To
show that an iterative algorithm actually ends up at a minimizing point, it
is desirable that the cost function decreases for each step. This is otherwise
known as iterating in a descent direction. Formally, a direction s is descent
if it fulfills

sT∇F (x) < 0 (2.2.2)

where T denotes the transpose operator. If a step size, γ, is sufficiently small
and positive, this strategy yields F (x+ γs) < F (x), which obviously trans-
lates into a decrease for each step. An algorithm that applies this principal
is called a descent algorithm.

One of the most usual types of descent algorithms is the gradient algo-
rithm. The idea is to try to decrease the cost function as much as possible
for each iteration, this is done by iterating in the opposite (negative) direc-
tion of the gradient of F . Because of this, the gradient algorithm is often
called the steepest descent algorithm. For the unconstrained case, i.e. for
X = Rn, it is defined as follows

x(k + 1) = x(k)− γ∇F (x(k)) (2.2.3)

where γ is the step size as was previously mentioned. A quite straightforward
algorithm, but not so much if the problem happens to be constrained. As
long as the iterate keeps inside of the set X, then it’s just as easy as before.
However, if we were to take a step which takes the iterate outside of the
feasible region, then we have to project the iterate back onto the set. Letting
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PX [·] denote the orthogonal projection on the convex and closed set X, we
define the projected gradient algorithm as follows

x(k + 1) = PX [x(k)− γ∇F (x(k))] (2.2.4)

Projecting basically means that we must find the point in X which is
closest to the iterate. Note that, as previously indicated, if the iterate is
inside the set, then the closest point is the iterate itself. The orthogonal
projection of a point x0 ∈ Rn on X can be formally stated as

PX [x0] = arg min
z∈X

||z − x0||2 (2.2.5)

where || · ||2 is the Euclidian norm. Notice now that the projection may be
interpreted as an optimization problem in itself. We want to minimize the
distance between z and x0, which is the objective, subject to z being inside
X. For the algorithm (2.2.4), to be well defined, there must be a unique
z ∈ X which minimizes ||z−x0||2. Since both the Euclidian norm and X are
convex, uniqueness can be proven, see e.g. [6] (Proposition 3.2, Projection
Theorem).

Now consider the case where the cost function, F , is not differentiable.
Then, the corresponding alternative is to use a subgradient instead of the
gradient. We use the following definition from [7] (Definition 2.1.4):

Definition 2.1. A vector a ∈ Rn is a subgradient of a convex function
F : Rn → R at a point x ∈ Rn if

F (y) ≥ F (x) + aT (y − x), ∀y ∈ Rn (2.2.6)

The set of all subgradients of a convex function F at x ∈ Rn is called the
subdifferential of F at x, and is denoted by ∂F (x):

∂F (x) = {a ∈ Rn|F (y) ≥ F (x) + aT (y − x), ∀y ∈ Rn} (2.2.7)

Note that if the subdifferential at x only contains one element, then F is
differential at x with ∇F (x) = ∂F (x). The subgradient algorithm is iden-
tical to the projected gradient algorithm given by Eq. (2.2.4), except that
the gradient is replaced by a subgradient. However, contrary to the gradient
algorithm, the cost function will not necessarily decrease for every iteration.
Here, the arguments for convergence are in stead based on the decrease of
the distance between the iterate and the optimal solution.

Comments on convergence
If we apply a fixed step size γ to the subgradient algorithm, then the best-
case scenario is convergence to an area around the optimal point. Formally,
if the subgradients are bounded by some constant ϕ, then the algorithm
converges to a ball around the optimal point, x∗, given by

lim inf
k→∞

F (x(k)) ≤ F (x∗) +
γϕ2

2
(2.2.8)
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See e.g. [8] (Proposition 8.2.2) for proof. To make sure that the algorithm
actually converges, it will be necessary to apply a time-varying step size
γ(k) which diminishes over time. If the step size is chosen to fulfill

γ(k) ≥ 0,

∞∑
k=1

γ(k) =∞,
∞∑
k=1

γ(k)2 <∞, (2.2.9)

and the subgradients are bounded, then the algorithm will converge to the
optimal point. See e.g. [8] (Proposition 8.2.6) for proof.

Luckily, the analysis for the gradient algorithm gives a slightly more
satisfying result. If ∇F (x) is Lipschitz continuous with Lipschitz constant,
L, i.e.

||∇F (x)−∇F (y)|| ≤ L||x− y||, ∀x, y ∈ X (2.2.10)

then the algorithm will converge to an optimal point using a constant step
size, γ ∈ (0, L2 ). See e.g. [6] (Proposition 3.4) for proof. If the Lipschitz
property does not hold, another alternative is to, for each step, find the
step size which results in the largest possible reduction of the cost function.
That is, we always choose the γ which minimizes F (x − γ∇F (x)). This
operation will however require global coordination, hence it is not a suitable
alternative in the realm of distributed optimization.

2.2.2 Scaled gradient methods

Sometimes it may be possible to achieve an improved direction of iteration
by scaling the gradient algorithm. We then get the following update

x(k + 1) = PX
[
x(k)− γD(k)−1∇F (x(k))

]
(2.2.11)

where D(k) is the scaling matrix, which naturally must be invertible. This
task is very easy if the matrix is chosen to be diagonal. A special case of
this algorithm is the projected Jacobi method, where D(k) is chosen to be
diagonal with its elements the same as the diagonal of the Hessian matrix
∇2F (x(k)).

Another important method emerges if we set D(k) equal to the Hessian,
namely Newton’s algorithm. For quadratic problems, i.e. problems on the
form F (x) = 1

2x
TAx − xT b, it can be shown that the algorithm converges

in one step. Not to mention, it has been established (see e.g. [6]) that the
algorithm in general converges much faster than other similar algorithms
like the ones previously introduced.

The drawback is the potentially heavy computations required to invert
the Hessian, especially since it must be done for each iteration. Also, we
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must consider that the Hessian might not even be invertible. It won’t even
exist unless we require that F is twice differentiable at x. So the trick is
typically to let D(k) be an easy to invert approximation of the Hessian,
which is the case for the mentioned Jacobi algorithm.

For the unconstrained case, i.e. we can leave out the projection PX [·],
Eq. (2.2.11) in general converges to the optimal point. However, for the con-
strained case the algorithm in general fails to converge. This is because the
sequence {x(k)} generated by the algorithm does not have the minimizing
point x∗ as a fixed point. In order to obtain convergence it is necessary to
define a different kind of projection, namely we must replace the Euclidian
norm with a norm which is determined by D(k). We define the norm

||x||D(k) =
(
xTD(k)x

)1/2
(2.2.12)

and apply this to obtain the new projection

PX [x0]D(k) = arg min
z∈X

||z − x0||D(k) (2.2.13)

Under certain conditions of the matrix D(k), it can be shown that the
minimum of Eq. (2.2.13) is attained at a unique element of X, see e.g. [6]
(Proposition 3.6).

2.2.3 Distribution and parallelization

The algorithms which have been presented in this section can all be dis-
tributed in a network as it was made clear in Section 2.1. The ith agent
updates the ith component of x according to the algorithm of choice, and
the update is communicated to the agents which require it. Dependency is
determined by the objective function F . Agent i must receive the current
xj if ∇iF depends on it or, as in the case of e.g. the Jacobi algorithm, if
∇2
iiF depends on it.

Each of the algorithms, as they are stated without the projection, can
then be parallelized according to the Jacobi algorithm (2.1.2). However,
as was previously explained, the projection poses an optimization problem
in itself which involves all the components of x. In other words, a projec-
tion algorithm is not amenable to be parallelized as such. There is how-
ever an important special case which allows for parallelization. Namely, if
X = [x1,min, x1,max]×[x2,min, x2,max] . . . [xn,min, xn,max], otherwise known as a
box, the projection can be done independently for each component. The ith
component of x is simply projected onto the interval given by [xi,min, xi,max].

Alternatively, we state the more general case in which the set X is a
Cartesian product of lower dimensional subsets Xi and we decompose x
into block-components. Each Xi is a closed convex subset of Rni and n1 +
n2 + · · · + np = n. Then the projection of x on X is equal to the vector
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[
PX1 [x1], . . . , PXp [xp]

]
, where PXi [xi] is the projection of xi onto Xi. This

also opens up for a Gauss-Seidel type iteration of the projected algorithm.
See [6] (Proposition 3.8) for proof of convergence of the Gauss-Seidel gradient
projection algorithm.

2.3 Decomposition methods

We now somewhat switch our focus. In this section we will be discussing
how the actual problem structure creates possibilities for distributed compu-
tations, as compared to the method structure which was previously discussed.
The techniques presented here are based on strong duality, i.e. the optimal
values of the dual problem are the same as for the primal problem. This can
often be shown to apply for problems that are convex. It can however also
be proven for non-convex problems, though it is more difficult. Refer to [9]
for the theory which is summarized here.

The idea behind decomposition methods is that we can split the original
optimization problem into several subproblems. We can often achieve totally
independent subproblems, but they need to be coordinated in order to find a
solution to the original problem. For this reason, we define a master problem
which is equivalent to the original problem. See Figure 1 for an illustration
of the decomposition.

Original

Problem

Master

Problem

Sub-

Problem

Sub-

Problem

Sub-

Problem

-� ``````̀
       

Figure 1: The original problem is decomposed into a master problem and
several subproblems.

The methods will be explained through simple examples before we con-
clude with a more general summary. Though the results might be obvious,
we start with the most basic form of decomposition. This is known as the
separable problem, which may e.g. have the following structure

minimize f1(x1) + f2(x2)

subject to x1 ∈ C1, x2 ∈ C2
(2.3.1)

where x1 ∈ Rn1 and x2 ∈ Rn2 . The objective is so called block separable in
x1 and x2. This means that f1 and f2 can be solved separately, either in
parallel or sequentially. Though the example is quite trivial, it illustrates
quite simply what we strive to achieve. In the subsequent sections we will
introduce two types of changes to the structure of the problem which will
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inevitably complicate the decomposition. In other words, it will be necessary
to apply some techniques in order to transform the initially non-separable
problem into a structure which is separable.

2.3.1 Complicating variable

We introduce a variable which complicates the problem in the sense that, if
we fix it, the problem becomes separable. It can also be referred to as the
coupling variable. For simplicity, let us consider the unconstrained problem

minimize f(x) = f1(x1, y) + f2(x2, y) (2.3.2)

where x = (x1, x2, y), x1 ∈ Rn1 , x2 ∈ Rn2 and y ∈ Rny . Here, y is a vector
of complicating variables. We can think of x1 and x2 as private or local vari-
ables, while y can be considered as public or interface variables between the
two subproblems f1 and f2. There are generally two ways of decomposing
problem (2.3.2), namely through primal or dual decomposition.

Primal decomposition
The discussion which follows also applies when the problem is extended with
separable constraints, i.e. constraints on the form x1 ∈ C1, x2 ∈ C2. We fix
y and define

subproblem 1: minimize
x1

f1(x1, y)

subproblem 2: minimize
x2

f2(x2, y)
(2.3.3)

with the respective optimal values φ1(y) and φ2(y). Further, we define the
master problem such that it is equivalent to the original problem, as follows

minimize
y

φ(y) = φ1(y) + φ2(y). (2.3.4)

This problem may also be referred to as the primal problem. Notice that it
is defined by the complicating variables of the original problem. If φ(y) is
differentiable, the master problem can be solved using e.g. the gradient or
Newton method, if not then a subgradient algorithm must be applied. See
Algorithm 1 for a subgradient version.

Algorithm 1 Primal

loop
1. Solve the subproblems.

Find x1 that minimize f1(x1, y) and a subgradient g1 ∈ ∂φ1(y)
Find x2 that minimize f2(x2, y) and a subgradient g2 ∈ ∂φ2(y)

2. Update complicating variable
yk+1 := yk − γ(k)(g1 + g2)

end loop
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For each iteration of the master problem, we fix y and solve the two
subproblems independently. We find the subgradients g1 and g2 of f1 and
f2 which, quite naturally, also corresponds to subgradients of φ1 and φ2 at
y. A subgradient of φ at y is then given by g1 + g2. If φ1(y) and φ2(y) are
differentiable, then the subgradients are simply given by the gradient of the
optimal value of the subproblems with respect to y.

Dual decomposition
We introduce two auxiliary variables y1 and y2 and reformulate the problem
(2.3.2) as follows

minimize
y

f1(x1, y1) + f2(x2, y2)

subject to y1 = y2

(2.3.5)

The idea is to apply local versions y1 and y2 of the complicating variable y
and at the same time ensure consistency through the additional constraint.
Now, clearly this problem is still not separable, but the dual problem is.
The Lagrangian is defined as

L(x1, y1, x2, y2, λ) = f1(x1, y1) + f2(x2, y2) + λT (y1 − y2) (2.3.6)

where λ is the Lagrange multipliers. Then, the dual problem is given by
the maximization of the Lagrangian with respect to λ. As we can see, the
problem is now separable, i.e. we can minimize over (x1, y1) and (x2, y2)
separately. We define

subproblem 1: infimum
x1,y1

{
f1(x1, y1) + λT y1

}
subproblem 2: infimum

x2,y2

{
f2(x2, y2)− λT y2

} (2.3.7)

with optimal values g1(λ) and g2(λ). The master problem then becomes

maximize
λ

g(λ) = g1(λ) + g2(λ) (2.3.8)

which is equivalent to the dual problem and g(λ) is called the dual function.
As before, the choice of algorithm depends on the differentiability of g(λ).

Some useful results will now be stated, see e.g. [8] (Section 8.1), which
will accompany us in deriving a subgradient algorithm for solving the mas-
ter problem. If we find x̄1 and ȳ1 minimizing g1(λ), then a subgradient of
g1(λ) at λ is given by ȳ1. Correspondingly, a subgradient of g2(λ) at λ is
given by −ȳ2. Thus, for minimization of the negative dual function −g(λ)
(which naturally is the same as maximizing the positive dual function) we
can use the subgradient ȳ2 − ȳ1. See Algorithm 2 for the resulting dual
decomposition algorithm.
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Algorithm 2 Dual

loop
1. Solve the subproblems.

Find x1, y1 that minimize f1(x1, y1) + λT y1

Find x2, y2 that minimize f2(x2, y2)− λT y2

2. Update dual variable
λk+1 := λk − γ(k)(y2 − y1)

end loop

Of course, the iterates y1 and y2 will in general not be feasible for the
original problem (2.3.5), i.e. y1 6= y2. Observing the algorithm, we see that
feasibility will occur only at the maximum of g(λ). A reasonable guess of
a feasible point (x1, x2, ȳ) can be found by letting ȳ = (y1 + y2)/2, i.e. the
average. This can be interpreted as the projection of y1 and y2 onto the set
y1 = y2. An even better point can be found by taking this averaged value
and calculate the two primal subproblems (2.3.3), thus finding the x1 and
x2 which corresponds to ȳ.

2.3.2 Complicating constraints

We now consider the case where the two subproblems are coupled via con-
straints, known as complicating constraints. Consider the following problem

minimize
x1,x2

f1(x1) + f2(x2)

subject to x1 ∈ C1, x2 ∈ C2

h1(x1) + h2(x2) � 0

(2.3.9)

where C1 and C2 are the feasible sets of the subproblems. Let h1 and h2

have dimension p, then we have a set of p complicating constraints, i.e. con-
straints which involve both x1 and x2. Again, we consider both primal and
dual decomposition as means for distributing the problem.

Primal decomposition
We can decompose the complicating constraints by defining a variable t ∈ Rp
and the two subproblems as

subproblem 1: minimize
x1

f1(x1)

subject to x1 ∈ C1, h1(x1) � t

subproblem 2: minimize
x2

f2(x2)

subject to x2 ∈ C2, h2(x2) � −t

(2.3.10)

We can interpret t as the amount of resources which is allocated to the first
subproblem. Then, to be consistent with the original problem, the amount
of resources allocated to the second subproblem must be −t. If we fix t, then
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these two subproblems can be solved independently. We denote the optimal
values φ1(t) and φ2(t) and the master problem, which is the equivalent of
problem (2.3.9), is defined as

minimize
t

φ(t) = φ1(t) + φ2(t) (2.3.11)

As before, to apply a subgradient master algorithm, we must first find a
subgradient for each of the two subproblems. See e.g. [8] (Section 6.5.3) for
proof of the following results. Consider the convex optimization problem

minimize
x

f(x)

subject to x ∈ X, h(x) � z
(2.3.12)

and let p(z) denote the optimal value of the problem. If λ is an optimal
dual variable for the constraint h(x) � z, then a subgradient of p(z) at z is
given by −λ.

Hence, to find a subgradient for φ(t), we solve the two subproblems find-
ing the optimal x1 and x2, as well as the optimal dual variables λ1 and λ2

associated with each of the constraints; h1(x1) � t and h2(x2) � −t. Then,
not suprising, a subgradient of φ(t) at t is given by λ2 − λ1. See Algorithm
3 for the resulting master algorithm.

Algorithm 3 Primal

loop
1. Solve the subproblems.

Solve subproblem 1, finding x1 and λ1

Solve subproblem 2, finding x2 and λ2

2. Update dual variable
tk+1 := tk − γ(k)(λ2 − λ1)

end loop

Dual decomposition
As for the problem with the complicating variable, it is quite easy to separate
problem (2.3.9) through the Langrian, which is given as

L(x1, x2, λ) = f1(x1) + f2(x2) + λT (h1(x1) + h2(x2)) (2.3.13)

For a fixed λ we can define the following subproblems
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subproblem 1: minimize
x1

f1(x1) + λTh1(x1)

subject to x1 ∈ C1

subproblem 2: minimize
x2

f2(x2) + λTh2(x2)

subject to x2 ∈ C2

(2.3.14)

and given the respective optimal values g1(λ) and g2(λ) of the two subprob-
lems, the master problem once again becomes

maximize
λ

g(λ) = g1(λ) + g2(λ) (2.3.15)

We use the same results as before to derive a subgradient algorithm for
the master problem. Let x̄1 and x̄2 minimize g1(λ) and g2(λ), respectively.
Then a subgradient for g1(λ) at λ is given by h1(x̄1) and the corresponding
for g2(λ) is given by h2(x̄2). Thus, the minimization of −g(λ) can be done
using the subgradient −h1(x̄1) − h2(x̄2). See Algorithm 4 for the resulting
algorithm.

Algorithm 4 Dual

loop
1. Solve the subproblems.

Find x̄1 which minimizes subproblem 1
Find x̄2 which minimizes subproblem 2

2. Update dual variable
λk+1 := PA[λk + γ(k)(h1(x̄1) + h2(x̄2))]

end loop

Note that we must apply a projected subgradient algorithm in this case
since a Lagrangian multiplier associated with an inequality constraint must
be positive. In other words, we must project onto the set A = {λ : λ ≥ 0}.
Similar to the previous example, the optimal x1 and x2 of the subproblems
are not necessarily feasible according to the original problem, i.e. we may
have h1(x1) + h2(x2) � 0. If this is the case, we can find a feasible set of
variables by letting t = (h1(x1)−h2(x2))/2 and solve the primal subproblems
(2.3.10) in order to find the corresponding x1 and x2.

2.3.3 Decomposition in general

Considering primal and dual decomposition for problems with coupling vari-
ables and for problems with coupling constraints, it is clear that the tech-
niques are actually quite similar. The main differences comes down to details
on how to compute the necessary subgradients. This similarity is no coin-
cidence, in fact there is a standard way of representing the coupling which
applies for both cases, namely through the consistency constraint. Take e.g.
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the problem (2.3.9) with complicating constraints. If we introduce two new
variables y1 and y2 we can reformulate the problem as

minimize
x1,x2

f1(x1) + f2(x2)

subject to x1 ∈ C1, h1(x1) � y1

x2 ∈ C2, h2(x2) � −y2

y1 = y2

(2.3.16)

Now we have a problem which can be divided into two subproblems, only
connected through the consistency constraint. This sort of reformulation
can be done with any two subproblems which are coupled together through
variables or constraints.

The standard form provides us with a general way of describing more
complicated decomposition structures than what we have considered so far.
We may represent a problem through a hypergraph, where each node repre-
sents a subproblem involving the local variables, objectives and constraints.
Each hyperedge is then associated with a consistency constraint. Note that
a hyperedge may connect more than just two nodes, in which case the as-
sociated consistency constraint enforces equality between more than two
variables. Like the examples we have been discussing, the simplest decom-
position structure consist of only two subsystems, as shown in Figure 2. A
more complex structure is shown in Figure 3 which consists of 5 subprob-
lems and 4 consistency constraints.

1 2s s

Figure 2: The simplest decomposition structure.
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Figure 3: A hypergraph with 5 subsystems and 4 consistency constraints.

Considering the hypegraphs, we can now shortly explain how primal
and dual decomposition works in general. For the first case, we let each
hyperedge be associated with one public variable. Every subsystem solves
its optimization problem independently using the associated public variable
values. Then, each system must produce a subgradient for each hyperedge
it is connected to. Combining these subgradients, the public variables can
be updated, hopefully in such a fashion which will result in convergence.

For the dual decomposition, each subsystem has its own copy of the
public variable associated with a hyperedge, as well as a price vector. Ob-
serving the examples discussed above, we see that this vector is represented
by the Lagrangian multipliers, λ. Each subsystem optimizes its problem
with respect to local variables, including the public variable copies. Then,
the copies associated with a hyperedge can be compared with each other,
followed by an updating of the prices in order to drive the copies towards
equality, i.e. towards optimality.

An example where dual decomposition is applied to decentralize a spe-
cific type of problem, namely a geometric program, will be presented in the
following section.

2.4 Geometric programs

We dedicate a section to geometric programs, GPs, as this type of opti-
mization problem has received some attention lately. Efficient and reliable
solution methods have been developed during the recent years and numerous
applications, particularly in WSNs and circuit design, have been found to
be equivalent to this type of problem. A GP is characterized by the special
form of its objective function and constraints. Initially, the problem is not
convex, but we will see that it can be mechanically converted into a convex
problem. Refer to [10] for an extensive tutorial on geometric programming.
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2.4.1 Problem formulation

To formulate a GP we must first introduce monomial and posynomial func-
tions. Given a vector x = (x1, . . . , xn), a monomial function f : Rn → R is
defined as

f(x) = cxa11 x
a2
2 · · ·x

an
n (2.4.1)

where c > 0 and ai ∈ R, i = 1, . . . , n. Note that, by the definition, any
positive constant as well as any variable is a monomial. The division or
multiplication of two monomials is also a monomial, additionally we may
raise a monomial to any power. The sum of one or more monomials is called
a posynomial and we define it as

f(x) =
K∑
k=1

ck x
a1k
1 x

a2k
2 · · ·xankn (2.4.2)

where ck > 0 and aik ∈ R, k = 1, . . . ,K. Because we can have K = 1,
a monomial is also a posynomial by definition. Two posynomials may be
added together or multipied with the result being a posynomial. We may
also divide a posynomial with a monomial.

Now, for the actual formulation of a geometric program. We define the
following as a GP in standard form

minimize
x

f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m

hl(x) = 1, l = 1, . . . , p

(2.4.3)

where fi, i = 0, 1, . . . ,m, are posynomials and hl, l = 1, . . . , p, are monomi-
als. The standard form is not convex, but the trick is that we can convert
problem (2.4.3) into a nonlinear convex problem by a logarithmic transfor-
mation of the objective and constraint functions. Let us define the variables
yi = log xi and minimize the logarithm of the objective, log f0, subject to
the logarithm of the constraints

minimize
y

log f0(ey)

subject to log fi(e
y) ≤ 0, i = 1, . . . ,m

log hl(e
y) = 0, l = 1, . . . , p

(2.4.4)

where y = (y1, . . . , yn) and the notation ey means componentwise exponen-
tiation. This is a GP in convex form. For a problem to be convex, the
equality constraints must be linear. Just to make a point of how simple and
smart this formulation is, we will prove that this applies for problem (2.4.4).
We have that h(x) is monomial

h(x) = cxa11 x
a2
2 · · ·x

an
n (2.4.5)
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and so the transformation above results in

log h(ey) = log c+ a1 log x1 + · · ·+ an log xn

= log c+ a1 y1 + · · ·+ an yn
(2.4.6)

which is an affine function, i.e. a linear function plus a constant. Now, since
we have that log h(ey) = 0, we get the following linear equality constraint

a1 y1 + · · ·+ an yn = −log c (2.4.7)

2.4.2 Distributed algorithms

As the problem becomes convex, we know that there exists efficient and
robust algorithms which can be applied in a central coordinated system.
However, there has also been attempts on developing distributed algorithms
for applications such as power control in wireless networks [11]. Basically,
the goal is to minimize the radio power each node use to transmit their sig-
nals. The obvious reason for this is to save energy and to reduce interference
on the transmissions of other nodes. At the same time, the signals must be
strong enough to be successfully received at their destination. This problem
will be discussed in the following.

We consider a network with n transmitter-receiver pairs and denote the
transmit powers as Pi, i = 1, . . . , n. An important term within power control
is the Signal-to-Interference Ratio, SIR, which can be defined somewhat
differently depending on the network dynamics. In [11] the SIR for receiver
i is modeled as

SIRi =
PiGiiFii∑N

j 6=i PjGijFij + ni
(2.4.8)

where Gij is the channel gain from transmitter j to receiver i, Fij models
Rayleigh fading and ni is the noise power for receiver i. As can be seen,
the denominator is a posynomial and the numerator is a monomial, hence
we know that 1/SIR is a posynomial. Considering this, there is in fact a
large variety of different problems involving e.g. data rates, delays or outage
probabilities which can be formed as GPs.

We are presented with a strategy for distributed implementation which
is based on the decomposition methods formerly explained. Namely, dual
decomposition is applied in order to partition the GP into smaller subprob-
lems. Note that this is only made possible by transforming the GP into a
convex problem. We consider the following standard form GP

min
∑
i

fi(xi, {xj}j∈I(i)) (2.4.9)

where I(i) is the set of nodes which is coupled with node i, xi and xj
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denotes the local variables and fi is either a monomial or a posynomial. Note
that, although the problem is unconstrained, the analysis will be similar for
problems with constraints which are local to each node, something which
we can expect in wireless networks. As before, we do a variable change,
yi = log xi, ∀i, to transform the problem to convex form

min
∑
i

fi(e
yi , {eyj}j∈I(i)) (2.4.10)

The problem can now be decomposed by introducing auxiliary variables
yij and consistency constraints

min
∑
i

fi(e
yi , {eyij}j∈I(i))

s.t. yij = yj , ∀j ∈ I(i), ∀i
(2.4.11)

and defining the Langrangian as

L({yi}, {yij}; {γij})

=
∑
i

fi(e
yi , {eyij}j∈I(i)) +

∑
i

∑
j∈I(i)

γij(yj − yij)

=
∑
i

Li(yi, {yij}; {γij})

(2.4.12)

where

Li(yi, {yij}; {γij})

=
∑
i

fi(e
yi , {eyij}j∈I(i)) +

( ∑
j:i∈I(j)

γji

)
yi −

∑
j∈I(i)

γijyij
(2.4.13)

Note that the second term of (2.4.13) is just the sum of all terms yi in
(2.4.12). This is exactly the same procedure as was applied for the simple
example with the complicating variable in Section 2.3. Obviously, the min-
imization of each Li can now be computed distributively by each node in
parallel. The problem only contains local variables, except the dual vari-
ables {γji, j : i ∈ I(j)} which must be received through message passing.
Last but not least; in order to obtain the optimal dual variables {γij} the
master dual problem is defined as

max
{γij}

g({γij}) (2.4.14)

where

g({γij}) =
∑
i

min
yi,{yij}

Li(yi, {yij}; {γij}) (2.4.15)
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The following subgradient algorithm is suggested for solving the maximiza-
tion given by (2.4.14)

γij(t+ 1) = γij(t) + δ(t)(yj(t)− yij(t)) (2.4.16)

where δ(t) is the step size. As was explained in Section 2.2, the step size
must diminish over time in order to obtain convergence. An appropriate
choice could be δ(t) = δ0/t for some constant δ0 > 0.

Let us now shortly summarize the overall algorithm. Node i receives the
dual variables {γji, j : i ∈ I(j)} and minimizes Li to find yi and {yij}. The
value of yi must then be passed to the nodes which need it, i.e. the nodes
j where i ∈ I(j). Receiving {yj , j ∈ I(i)}, node i can update the local dual
variables {γij , j ∈ I(j)} using (2.4.16). Finally, the newly updated dual
variables are passed to the nodes which are coupled with node i.

Considering this procedure, it becomes very clear why decomposition
methods in general demands a lot of message passing. Both the dual vari-
ables as well as the local variable yi must be broadcasted to other nodes.
If this method is to be applied directly for a power control problem, which
will include SIRs given by Eq. (2.4.8), then it is not enough to receive
information about the interfering transmit powers Pj . Each node must even
gain knowledge about the interfering channels, such as the channel gain Gij .
Consequently, this method would require a truly unreasonably large amount
of message passing. The authors of [11] do however argue that it is possible
to reduce the amount of messages quite substantially by taking advantage
of the problem structure. Specifically, they weave the parameters together
into one variable; PRij = GijPj , which they refer to as the effective received
power. A simulation of this problem with three transmitter-receiver pairs
resulted in convergence after 100 - 200 iterations.

2.5 Interference function theory

The methods which will be described here have a quite specific application
area, namely power control in wireless networks, which was shortly discussed
in the previous section. It will however become clear that this theory has
a close relation to the more general theory of F-Lipschitz optimization. We
refer to [12] for an excellent and thorough description of the interference
function theory.

2.5.1 Problem formulation

The objective is to make sure that each node in the network has an accept-
able connection. This can be ensured by regulating the transmitted powers
such that the interference caused by other nodes is limited. In other words,
we have to make sure that the Signal-to-Interference ratio (SIR), is accept-
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able. In a broad class of power controlled systems this can be described with
constraints on the following form

p ≥ I(p) (2.5.1)

where p = [p1, . . . , pn], pi denotes the transmitter power of node i, I(p) =
[I1(p), . . . , In(p)] and Ii(p) denotes the effective interference of other nodes
which node i must overcome. In the following, Eq. (2.5.1) will be referred
to as interference constraints.

The interference function Ii(p) will have different forms according to how
a receiver is assigned to each node. There may be a fixed assignment, in
which a node always transmits to the same base station, or there may be a
new assignment for each iteration. Either way, the interference will always
depend on the SIR of node i at base station k which is here defined as

pi µki(p) = pi
hki∑

j 6=i hkjpj + σk
(2.5.2)

where hki denotes the gain from node i to base k and σk denotes the receiver
noise power at base station k. Let us derive the interference function for a
fixed assignment. If we let ai be the assigned base of node i, then the SIR
of node i at base ai must fulfill piµaii(p) ≥ γi for some minimum required
ratio γi > 0. Then, we can define the following interference constraint

pi ≥ IFAi (p) =
γi

µaii(p)
(2.5.3)

For more examples of different kinds of interference functions, see [12].

2.5.2 Standard power control algoritm

The author of [12] presents us with the following iterative algorithm, which
is referred to as the power control algorithm

p(t+ 1) = I(p(t)) (2.5.4)

It is proven that the algorithm (2.5.4) converges both synchronously and
totally asynchronously given that I(p) satisfies certain properties. We here
state the definition of a standard interference function [12]:

Definition 2.2. Interference function I(p) is standard if for all p ≥ 0 the
following properties are satisfied

• Positivity I(p) > 0

• Monotonicity If p ≥ p′, then I(p) ≥ I(p′)

• Scalability For all α > 1, αI(p) > I(αp)
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When I(p) is a standard interference function, Eq. (2.5.4) is referred to
as the standard power control algorithm. It is shown that, for any initial
power vector p, the sequence generated by this algorithm converges to a
fixed point p∗ which is unique. Also, we have that p∗ ≤ p for any feasible
vector p, i.e. the point p∗ is the solution of the interference constraints
(2.5.1) which corresponds to the minimum total transmitted power. This is
particularly desirable in wireless networks since the nodes are very likely to
run on battery power.

The obvious way of distributing the power control algorithm is to let
each node i update its transmit power according to

pi(t+ 1) = Ii(p(t)). (2.5.5)

Considering the definition of the SIR given by Eq. (2.5.2), it seems that
each node needs knowledge about all the channel gains and transmit powers
of the other nodes. However, this can be simplified by letting

µki(p) =
hki

Rk(p)− hkipi
(2.5.6)

where Rk(p) =
∑

i hkipi + σk denotes the total received power at base k. In
other words, each node only needs knowledge of its own channel gain and
the total received power at the base station.

As mentioned, we are presented with a result which proves asynchronous
convergence, something which gives a good indication on the robustness of
the algorithm. There are substantial benefits in using an asynchronous
algorithm for this particular application. It allows for more flexibility in
that some nodes can execute more iterations than others and hence per-
form power adjustments more frequently. Not to mention that it allows the
nodes to perform their updates using outdated information. Wireless com-
munication is not particularly reliable and delays or loss of information is
likely to occur. See [13] for further analysis of this asynchronous distributed
algorithm.
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3 F-Lipschitz Optimization

Regarding the methods which were discussed in the previous chapter, it is
clear that to accomplish distributed optimization is most often not a trivial
matter. None of the methods are satisfactory for the general application of
wireless networks, particularly when we consider the amount of information
which must be transmitted between nodes. Until now, alternative methods
for problems which are non-convex have also been lacking.

F-Lipschitz optimization can be performed distributively with only lo-
cal computations and a limited amount of message passing. The realm of
problem formulations which can be found to be of type F-Lipschitz includes
both non-convex and convex problems. Not to mention that this type of
problem seems to be particularly pervasive in wireless sensor networks. The
distributed algorithm is based on contractive constraints, which makes it
very simple and efficient. We will see that the difficult part is actually to
verify that the problem is F-Lipschitz.

3.1 Notation

The notation R+ denotes the set of strictly positive valued real numbers. By
| · | we denote the absolute value of a real number. For a matrix A ∈ Rn×n
we define the 1-norm || · ||1 and the ∞-norm || · ||∞ as

||A||1 =
n

max
i=1

n∑
j=1

|aij | and ||A||∞ =
n

max
j=1

n∑
i=1

|aij |

Note that we take the sum of all the elements on each row when calculating
the 1-norm, while for the ∞-norm we sum each column. By a � b or a � b
we denote the element-wise inequalities between the vectors a and b. The
notation 1 is used to denote the vector (1, . . . , 1)T whose dimension is clear
from the context.

We will denote D as a set defining the bound constraints of the vector
x ∈ Rn, i.e. D = [x1,min, x1,max] × [x2,min, x2,max] . . . [xn,min, xn,max] ∈ Rn,
where −∞ < xi,min < xi,max < ∞, for i = 1, . . . , n. The notation [xi]

D is
used to denote the orthogonal projection with respect to the Euclidian norm
of the i-th component of the vector x onto the i-th component of the closed
set D . Specifically,

[xi]
D =


xi if xi ∈ [xi,min, xi,max]

xi,min if xi < xi,min

xi,max if xi > xi,max.

As is custom, ∇ denotes the gradient operator. Given a vector func-
tion F(x): Rn → Rn, we use the gradient matrix definition, ∇F(x) =
[∇F1(x) . . .∇Fn(x)], which is the transpose of the Jacobian matrix.
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3.2 Background theory

It is important to note that the properties given here is a generalization
in that we are only considering the 1-norm and ∞-norm. In other words,
there are F-Lipschitz problems which will not be verified by these properties
because the constraints are contractive according to some other norm. See
[14] for more general properties.

3.2.1 Problem formulation

We here state Definition 3.1 [5] of an F-Lipschitz problem:

Definition 3.1 (F-Lipschitz optimization). An F-Lipschitz optimization
problem is defined as

max
x

f0(x) (3.1a)

s.t. xi ≤ fi(x), i = 1, . . . , l (3.1b)

xi = hi(x), i = l + 1, . . . , n (3.1c)

x ∈ D ,

where D ⊂ Rn is a non-empty, convex and compact set, l ≤ n, with objective
and constraints being continuous differentiable functions such that

f0(x) : D → Rm, m ≥ 1

fi(x) : D → R, i = 1, . . . , l

hi(x) : D → R, i = l + 1, . . . , n

Let f(x) = [f1(x), f2(x), . . . , fl(x)]T , h(x) = [hl+1(x), hl+2(x), . . . , hn(x)]T ,
and F(x) = [Fi(x)] = [f(x)T h(x)T ]T . The following properties must be
verified:

1.a ∇f0(x) � 0, i.e. f0(x) is strictly increasing, (3.2a)

1.b |∇F(x)|∞ < 1, (3.2b)

and either

2.a ∇jFi(x) ≥ 0 ∀i, j, (3.2c)

or

3.a f0(x) = c1Tx, c ∈ R+, (3.2d)

3.b ∇jFi(x) ≤ 0 ∀i, j, (3.2e)

3.c |∇F(x)|1 < 1, (3.2f)

or

4.a f0(x) ∈ R, (3.2g)
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4.b |∇F(x)|1 <
δ

δ + ∆
, (3.2h)

δ = min
i,x∈D

∇if0(x), (3.2i)

∆ = max
i,x∈D

∇if0(x). (3.2j)

The properties (3.2a) - (3.2h) will in the following be referred to as the
qualifying properties of an F-Lipschitz optimization problem. Note that it
is only required that these properties apply for all x ∈ D , in other words we
need only consider a specific interval of values for x. Also note that ∇F (x)
is here the transpose of the Jacobian, i.e. the summation of each column
for the ∞-norm translates into the summation over all partial derivatives of
Fi(x).

Problem (3.1) can be applied in both centralized and distributed settings,
the latter of course being the main focus here. As is common in wireless
sensor networks, each node i is associated with its own decision variable xi.
Correspondingly, constraint i belongs to node i. In other words, there has
to be just as many constraints as there are decision variables. Note that it
is quite possible to have only inequality constraints, in which case l = n, or
only equality constraints, which means that l = 0.

F-Lipschitz optimization allows for a multi-objective, which means that
the objective function is allowed to be a vector in Rm. Of course we can
also have m = 1 which results in scalar optimization. Examples of objective
functions are

f0(x) = x ∈ Rn

f0(x) = cTx, c ∈ Rn, c � 0.

Note however that in order to verify property (3.2a) it is often necessary to
do a scalarization of the objective function. This is the case for the examples
given here where the corresponding scalarized functions are

f0(x) =

n∑
i=1

xi, x ∈ Rn

f0(x) =

n∑
i=1

cixi, c ∈ Rn, c � 0.

3.2.2 Distributed algorithm

If we can verify the qualifying properties for a given problem, then we know
for certain that a unique solution exists and that it satisfies the constraints
at the equality, see Theorem 3.3 [5]. The beauty of this is that we get the
distributed algorithm directly. Since each node is associated with one local
constraint, it is a natural choice of algorithm for updating the local variable.
Convergence is certified as the constraint i is Lipschitz contractive with x∗i
as a fixed point. We here state Proposition 3.9 [5] defining the algorithm:

31



Proposition 3.2. Let x(0) ∈ Rn be an initial guess of the optimal solution
to a feasible F-Lipschitz problem (3.1). Let xi(k) = [x1(τ i1(k)), x2(τ i2(k)), . . . ,
xn(τ in(k))] be the vector of decision variables available at node i at time
k ∈ N+, where τ ij(k) is the delay with which the decision variable of node
j reaches node i. Then the following iterative algorithm converges to the
optimal solution:

xi(k + 1) = [fi(x
i(k))]D i = 1, . . . , l

xi(k + 1) = [hi(x
i(k))]D i = l + 1, . . . , n

(3.3)

where k ∈ N+ is an integer associated to the iterations.

Since the optimization problem is to be solved in a wireless sensor net-
work, we can expect the communication to be somewhat unreliable and
delays and losses will most certainly occur. Observe that Proposition 3.2
accounts for this fact and the resulting algorithm is asynchronous. Com-
pared to the Lagrangian decomposition methods, the amount of messages
exchanged between nodes are substantially reduced. Here, each node only
has to broadcast its own decision variable to the other nodes. Also, if fi(x)
or hi(x) only depends on decision variables of the neighboring nodes, a not
unlikely scenario, then the transmission of these variables will be fast and
practical.

3.2.3 Problems in canonical form

We have defined an F-Lipschitz problem by the special form (3.1), which will
in the following be referred to as the standard form. In general optimization
literature it is common to define a problem on the canonical form, as follows

min
x

g0(x) (3.4a)

s.t. gi(x) ≤ 0, i = 1, . . . , l (3.4b)

pi(x) = 0, i = l + 1, . . . , n (3.4c)

x ∈ D ,

where

g0(x) : D → Rm, m ≤ n
gi(x) : D → R, i = 1, . . . , l

pi(x) : D → R, i = l + 1, . . . , n

Problem (3.4) can be converted into the standard form by the following
transformations
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max
x

f0(x) (3.5a)

s.t. xi ≤ fi(x), i = 1, . . . , l (3.5b)

xi = hi(x), i = l + 1, . . . , n (3.5c)

x ∈ D ,

where

f0(x) = −g0(x), (3.6)

fi(x) = xi − γigi(x), i = 1, . . . , l, (3.7)

hi(x) = xi − µipi(x), i = l + 1, . . . , n (3.8)

with γi > 0, i = 1, . . . , l, and µi ∈ R, i = l + 1, . . . , n. Problem (3.5)
has the same optimal solution as problem (3.4) since, given that γi > 0
and µi 6= 0, the constraints hold only if the constraints of (3.4) hold.
It has been established what is required of the canonical form problem
to be of type F-Lipschitz, namely when the problem (3.5) satisfies the
qualifying properties (3.2a) - (3.2h). Similar as before, we let G(x) =
[g1(x), . . . , gl(x), pl+1(x), . . . ,
pn(x)]T and here state Theorem 3.7 [5] defining the qualifying properties
for the canonical form problem:

Theorem 3.3. Consider the optimization problems (3.4) and (3.5). Sup-
pose that ∀ x ∈ D

1.a ∇g0(x) ≺ 0, (3.9a)

1.b ∇iGi(x) < 0 ∀i, (3.9b)

and either

2.a ∇jGi(x) ≤ 0 ∀j 6= i, (3.9c)

2.b ∇iGi(x) >
∑
j 6=i
|∇jGi(x)| ∀i, (3.9d)

or

3.a g0(x) = −c1Tx, c ∈ R+, (3.9e)

3.b ∇jGi(x) ≥ 0 ∀j 6= i, (3.9f)

3.c ∇iGi(x) >
∑
j 6=i
|∇iGj(x)| ∀i, (3.9g)

or

4.a g0(x) ∈ R, (3.9h)
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4.b
δ

δ + ∆
∇iGi(x) >

∑
j 6=i
|∇iGj(x)| ∀i, (3.9i)

where δ and ∆ are defined in Eqs. (3.2i) and (3.2j). Then, problem (3.5) is
F-Lipschitz.

The proof of Theorem 3.3 states how to choose γi and µi such that
the properties (3.9a) - (3.9i) implies contractive constraints. Namely, the
following inequality must be fulfilled for x ∈ D

1− γi∇igi(x) ≥ 0 (3.10)

and correspondingly for µi.

3.3 Relation to previous work

Comparing the F-Lipschitz theory to the interference function theory dis-
cussed in Section 2.5, there are obvious similarities. Both theories presents
distributed asynchronous algorithms which are based on contractive con-
straints. In fact, it can be shown that the standard form problem (3.1)
along with the qualifying properties (3.2) is a much more general case of the
standard interference function as it is defined in Definition 2.2. Refer to [14]
for the proof of this.

As opposed to interference function theory, geometric programs are not
specifically designed to be optimized in a distributed fashion. However,
it has been shown that this may be accomplished using the Lagrangian
decomposition methods of Section 2.3. That said, the problem might turn
out to be optimized more efficiently using F-Lipschitz theory. Particularly,
there is a class of GPs that can be shown to fulfill the conditions of an F-
Lipschitz problem, hence the fast distributed algorithm may be applied in
stead. Because of the special structure of the GP, there are some particular
conditions which can be checked to more easily verify if the problem is
feasible or not, see [14] for details. A nice illustration of how F-Lipschitz
optimization relates to other areas of optimization theory can be seen in
Figure 4.
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Figure 4: The relation of F-Lipschitz optimization theory compared to other
areas of optimization.

We have yet to make a comparison with the Lagrangian decomposi-
tion methods, even though indications have been made that these methods
require extensive message passing and is therefore a less efficient and less de-
sirable alternative when F-Lipschitz optimization may be applied in stead.
This argument has been more thoroughly backed up in [5]. It is shown
that strong duality always applies to the F-lipschitz problem, hence both
Lagrangian iterative methods for centralized optimization as well as decom-
position methods may be applied. The conclusion is that the F-Lipschitz
problem is always less computationally expensive to solve, be it in a cen-
tralized or in a distributed setup. However, the superiority is greater for the
distributed case precisely because the F-Lipschitz algorithm requires such a
small amount of information exchange.
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4 Implementation Design

The work done here includes the implementation of a toolbox for MATLAB R©,
which focuses on F-Lipschitz optimization problems. Like the classical Op-
timization ToolboxTM, it was desirable to provide both a graphical interface
as well as inline functions. Also, inspiration was taken from Disciplined
convex programming [15], developed by Grant, Boyd and Ye. This theory
involves a framework which provides function libraries and rulesets such that
the user can easily define problems which are known for certain to be convex.

That said, it was a goal to provide flexibility in how the optimization
problem could be defined. The user should be able to investigate a problem
with an arbitrary structure, as long as the requirements set by the problem
definition (3.1) are fulfilled. At the same time, the toolbox should provide
for special cases of the problem structure, like e.g. linear or quadratic con-
straints. Not to mention support for both the standard and the canonical
problem definition. Much focus will be laid on the computation of the qual-
ifying properties for different kinds of problem structures, as this is an issue
which is yet to be thoroughly investigated.

4.1 Qualifying properties - computational complexity

It has been shown that the problem (3.1) can be solved with an effective
and robust algorithm in a distributed setup. However, we must first deter-
mine that the problem is in fact F-Lipschitz by investigating the qualifying
properties. Thus, it is interesting to determine how computationally heavy
this operation actually is. We will consider the qualifying properties for
both the standard form and the canonical form, as well as discuss possible
simplifications when problem (3.1) or problem (3.4) has a certain structure.
The discussion which follows is mainly based on a theoretical aspect. There
will however be some occasional comments on how the theory translates into
the programming environment, i.e. MATLAB.

4.1.1 Newton’s method applied to unconstrained optimization

Considering the qualifying properties (3.2a) - (3.2h), we observe that most
of them can be confirmed or rejected by finding the minimum or maximum
of a function. E.g. property (3.2a), stating that f0(x) should be strictly
increasing, can be verified by finding

si = min
x∈D
∇if0(x), ∀i, (4.1)

for each of the m objectives and checking that si > 0, ∀i. Observe that
the problem is in fact constrained as we require that x ∈ D . However, as
these constitutes simple bound constraints, we can assume that problem
(4.1) can be solved with the same computational complexity as an uncon-
strained optimization problem. The same conclusion can be drawn for the
other properties where a minimum or maximum must be found.
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MATLAB’s Optimization ToolboxTM provides us with a minimization
function, fmincon, which will be applied in order to solve such problems as
the one described above. Specifically, fmincon may be used with several
algorithms, but the method called active set will be the one applied here.
This is simply because it is one of the fastest algorithms and at the same
time it is quite reliable. If it fails, the interior point algorithm is the back-up
plan. fmincon supports both linear and nonlinear constraints, but we will
only make use of the possibility to set bound constraints. It is the only
minimization function which supports this.

Being the most effective first order algorithm, we consider the compu-
tational complexity of Newton’s method for unconstrained optimization to
help us on the way of finding the total complexity of the qualifying prop-
erties. Of course, this is not the algorithm which is actually used, but it
is generally a difficult task to find an overall computational complexity for
an optimization method. A nice convergence analysis has however been in-
troduced for the well established Newton’s method, [16] (Section 9.5), and
the argument is that fmincon with only bound constraints should have a
similar overall complexity. Newton’s method using backtracking line search
to choose the step size t is here analyzed. The following assumptions are
made

• f is twice continuously differentiable.

• f is strongly convex with constant m, i.e. ∇2f(x) � mI.1

• The Hessian of f is Lipschitz continuous with constant L, i.e.

||∇2f(x)−∇2f(y)||2 ≤ L||x− y||2, ∀x, y (4.2)

where f(x) is the function we wish to minimize. Given these assumptions,
it is proven that there exists an η and a γ, where 0 < η ≤ m2/L and γ > 0,
such that the following hold

• If ||∇f(x(k))||2 ≥ η, then

f(x(k+1))− f(x(k)) ≤ −γ (4.3)

• If ||∇f(x(k))||2 < η, then the backtracking line search selects t(k) = 1
and

L

2m2
||∇f(x(k+1))||2 ≤

(
L

2m2
||∇f(x(k))||2

)2

(4.4)

We show here that if the second condition is satisfied at iteration k, i.e.
||∇f(x(k))||2 < η, then it is also satisfied for all future iterates l ≥ k. Using
the inequality (4.4) and the fact that η ≤ m2/L we derive the following
result for iteration k + 1:

1Note that � here implies positive definiteness and not element-wise inequality as was
the notation in Chapter 3.
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||∇f(x(k+1))||2 ≤
L

2m2
||∇f(x(k))||22 <

L

2m2
η2 ≤ L

2m2

m2

L
η < η

The same result can be found for k + 2, k + 3, . . . , hence the second con-
dition is satisfied for all iterations l ≥ k. This means that the iterations of
Newton’s method can be divided into two stages; the first for when the in-
equality, ||∇f(x)||2 ≥ η, holds and the second when we have ||∇f(x)||2 < η.
The first stage is referred to as the damped Newton phase as the step size t
can be chosen to be smaller than one, while the second stage is called the
pure Newton phase since t = 1 and the entire length of the Newton step is
applied.

We can now estimate the total complexity by deriving an upper bound on
the number of iterations for each of the two stages. Adopting the notation of
[16], we let p∗ denote the optimal value f(x∗), where x∗ is the optimal point.
Considering the inequality (4.3), which is valid for the damped Newton
phase, we observe that f decreases with at least γ for each step. An upper
bound on the number of damped Newton steps is therefore given by

f(x(0))− p∗

γ

This is evident because a single step exceeding this bound would reduce f
below the value of p∗, which is impossible.

To find an upper bound for the pure Newton phase is a bit more tricky.
We consider the inequality (4.4) and apply it recursively for l ≥ k

L

2m2
||∇f(x(l))||2 ≤

(
L

2m2
||∇f(x(l−1))||2

)2

≤
(

L

2m2
||∇f(x(l−2))||2

)4

...

≤
(

L

2m2
||∇f(x(k))||2

)2l−k

≤
(

1

2

)2l−k

where we again used that η ≤ m2/L for the last inequality. Now, strong
convexity implies that f(x(l))− p∗ ≤ 1

2m ||∇f(x(l))||22. See [16] (Section 9.1)
for proof of this inequality. Finally, we can derive the following result
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f(x(l))− p∗ ≤ 1

2m
||∇f(x(l))||22

≤ 2m3

L2

(
L

2m2
||∇f(x(k))||2

)2l−k+1

≤ 2m3

L2

(
1

2

)2l−k+1

which indicates that convergence is very fast once the algorithm has entered
this stage. Obviously, the exponentiated term will become very small just
after a few iterations. This is called quadratic convergence. Letting ε denote
the accuracy of the solution and ε0 = 2m3/L2, the number of pure Newton
steps can be found as

ε = ε0

(
1

2

)2l−k+1

log2

(
ε

ε0

)
= log2

(
1

2

)
2l−k+1

−log2

(
ε

ε0

)
= 2l−k+1

l − k + 1 = log2log2

(
ε0
ε

)

Conclusively, the total number of iterations until f(x)−p∗ ≤ ε is bounded
above by

f(x(0))− p∗

γ
+ log2log2(ε0/ε).

The last term grows extremely slowly with the required accuracy ε, hence it
can be considered as a constant for practical purposes. Letting log2log2(ε0/ε) =
6 translates into an accuracy of about ε ≈ 5 ·10−20ε0. Now for the final con-
clusion; the number of iterations of Newton’s method required to minimize
f is bounded above by

f(x(0))− p∗

γ
+ 6. (4.5)

Clearly, it is in order to discuss how we can find this γ and what it de-
pends on. We introduce the variable M , which is implied by the assumption
that f is strongly convex. It is shown that, if ∇2f(x) � mI, there also
exists an M > 0 such that ∇2f(x) � MI, see [16] (Section 9.1). The proof
of inequality (4.3) derives the following expression

γ = αβη2 m

M2
.
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The two constants α and β are parameters chosen for the backtracking line
search, where 0 < α < 0.5 and 0 < β < 1. It is also shown that η depends
only on α, m and L. In other words; knowing the structure of f , we can
find these parameters and calculate the estimate (4.5).

Naturally, we can’t presume that our estimate is a particularly tight up-
per bound. First, we base the approximation on an extremely small error
and secondly, since we can’t know beforehand what p∗ is, we must assume
some range in which the solution lies. Though not particularly accurate
and based on certain assumptions, these results gives an impression of what
we can expect of Newton’s method. The most important issue for our con-
tinuous discussion is that the number of iterations does not appear to be
dependent on the problem size, i.e. the number of decision variables. In fact,
it has been shown that the method has similar performance for problems in
R10000 as for problems in R10.

4.1.2 Standard form

In this section we will discuss the complexity of verifying the qualifying
properties (3.2a) - (3.2h) assuming that we have no knowledge about the
problem structure. Of course, this seems quite unlikely for a practical ap-
plication, but it is an interesting case for the toolbox if the user is to be
allowed to define an arbitrarily structured problem. Also, it is useful for
comparison when we later investigate the complexity for known structures.

We have learned that solving an unconstrained optimization problem
using Newton’s method will require a number of iterations which is not
dependent on the problem size. For simplicity, we will therefore denote
the amount of iterations required for an unconstrained minimization as a
constant number s. Table 1 shows the complexity in O-notation for each of
the properties. Here follows a short explanation on how these results were
derived:

i) As previously explained, see problem (4.1); to check property (3.2a)
(1.a), we must find the minimum of ∇if0(x), ∀i, for each of the m
objectives. In other words, it will take O(mns) iterations.

ii) To check condition 1.b, we have to investigate if the sum of each column
of ∇F(x) is always less than one. To do this we define a help function

hj(x) =
n∑
i=1

|∇iFj(x)| (4.6)

and solve the maximization problem

max
x∈D

hj(x) (4.7)

for all j = 1, . . . , n. The maximum values must then all be less than
one. As the summation in (4.6) takes n iterations and solving the prob-
lem (4.7) takes s iterations, the total complexity becomes O(n2s), i.e.,
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assuming that hj(x) is evaluated for each iteration of the maximization.
These same arguments can also be used for deriving the complexity of
properties 3.c and 4.b.

iii) To check condition 2.a, ∇jFi(x) ≥ 0, ∀i, j, we have no choice but to
minimize∇jFi(x) for each i = 1, . . . , n, for each j = 1, . . . , n, investigat-
ing if the minimum is positive. This translates into O(n2s) iterations.
The same argument can be used for property 3.b.

iv) Obviously, to check condition 3.a would be trivial if we knew how the
objective function looked like. Regardless, we will shortly discuss the
complexity in the case that we don’t know, for the sake of consistency.
In order to determine that the objective function is linear, we can eval-
uate ∇f0(x) at several different values of x, checking that the resulting
vector is always the same. Finally, we just need to investigate if all the
elements of the vector are the same. As both the operations requires
iterating through a vector with length n, the complexity is O(n).

Property Complexity

1.a ∇f0 ≺ 0 O(mns)

1.b |∇F(x)|∞ < 1 O(n2s)

2.a ∇jFi(x) ≥ 0 ∀i, j O(n2s)

3.a f0(x) = c1Tx, c ∈ R+ O(n)

3.b ∇jFi(x) ≤ 0 ∀i, j O(n2s)

3.c |∇F(x)|1 < 1 O(n2s)

4.a f0(x) ∈ R O(1)

4.b |∇F(x)|1 < δ
δ+∆ O(n2s)

Table 1: Computational complexities of the qualifying properties.

The attentive reader perhaps noticed that the computation of δ and
∆, Eq. (3.2i) and (3.2j) respectively, which are required for condition 4.b,
has yet to be considered. Actually, δ can easily be found in the process of
checking condition 1.a. Since we are already minimizing ∇if0(x) for each
i, all that remains is to find the smallest of these minimums, which is then
of course equal to δ. Correspondingly, ∆ is found by maximizing ∇if0(x)
for each i, which translates into a computational complexity of O(ns) since
m = 1. This means that, since O(ns) is obviously less than O(n2s), the
complexity of condition 4.b remains the same.

Since we have m ≤ n, the overall dominant term is O(n2s). We may also
consider the matter of best- and worst-case scenarios in terms of amount of
iterations before we can determine the one or the other. If the problem is
F-Lipschitz, the best-case would obviously be that the problem fulfills con-
dition 2.a, because this is the first alternative we check. In the worst-case,
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the problem fulfills conditions 3.a, 3b and 3.c. One would think that the
most amount of iterations would be required if the third and last alterna-
tive applied. This is however not the case since the failing of condition 3.c
automatically implies that 4.b cannot be fulfilled. Thus, if it is the last
alternative which applies, then at worst condition 3.b will fail, which means
less or equal amounts of iterations as compared to the mentioned worst-case.

When applied in a practical implementation, we can consider additional
means of time optimizing the algorithms. As an example, let us consider the
discussion under ii). Defining the help function (4.6) in MATLAB, we can
perform the summation using vector multiplication since∇F is provided as a
matrix. In other words, hj(x) is calculated as 1T ×|∇Fj(x)|, 1 ∈ Rn, which
is a lot more efficient operation than summation through a simple loop.
This becomes particularly important when the function is to be minimized,
as fmincon will most likely evaluate it not only once, but several times per
iteration.

4.1.3 Canonical form

For comparison, let us shortly summarize the computational complexity of
verifying the qualifying properties (3.9a) - (3.9i) for the canonical form,
which is shown in Table 2. Evidently, the overall complexity is the same
for the canonical form as for the standard form, namely O(n2s). An expla-
nation for how the complexity was derived for some of the properties has
already been given in the previous section.

The reasoning behind conditions 2.b, 3.c and 4.b is similar as for the
corresponding conditions above. We create a help function

hi(x) = ∇iGi(x)−
∑
j 6=i
|∇jGi(x)| (4.8)

and find the minimum of hi(x) for all i = 1, . . . , n, which should be larger
than zero. Since the sum in (4.8) does not include i, we get O(n(n− 1)s) =
O(n2s−ns) iterations. However, it is logical to simplify this to O(n2s) since
the quadratic term is dominant as n gets large.
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Property Complexity

1.a ∇g0 � 0 O(mns)

1.b ∇iGi(x) > 0 ∀i O(ns)

2.a ∇jGi(x) ≤ 0 ∀j 6= i O(n2s)

2.b ∇iGi(x) >
∑

j 6=i |∇jGi(x)| ∀i O(n2s)

3.a g0(x) = −c1Tx, c ∈ R+ O(n)

3.b ∇jGi(x) ≥ 0 ∀j 6= i O(n2s)

3.c ∇iGi(x) >
∑

j 6=i |∇iGj(x)| ∀i O(n2s)

4.a g0(x) ∈ R O(1)

4.b δ
δ+∆∇iGi(x) >

∑
j 6=i |∇iGj(x)| ∀i O(n2s)

Table 2: Computational complexities of the qualifying properties for the
canonical form.

4.1.4 Linear or quadratic constraints

Now that we have derived the complexity for a problem which is entirely
unknown, let us investigate the consequences if we make certain assump-
tions. Obviously, we stand the most to gain if we can avoid running n2

optimization problems for nearly every property we investigate. We will see
that this is made possible if the problem happens to have linear or quadratic
constraints. Here, both the standard and the canonical form will be consid-
ered simultaneously as the consequences are roughly the same. See Table 3
for a summary of the computational complexity for both the standard and
canonical form properties when the constraints are either linear or quadratic.

In the case of linear constraints, we can write F(x) compactly as

F(x) = Ax + b (4.9)

where A ∈ Rn×n, b ∈ Rn and ∇F(x) = A. Since the constraint gradi-
ent does not depend on x, we can just ignore the bound constraints and it
becomes extremely easy to check most of the properties. For example, to
determine if |∇F(x)|∞ < 1, we only need to find the absolute sum of each
column of A and check if it is less than one. Correspondingly, to check that
∇iGi(x) >

∑
j 6=i |∇jGi(x)|, ∀i, we only have to determine if each diagonal

element of A is larger than the absolute sum of the other elements on the
same column. This still requires O(n2) iterations, but we also have to keep
in mind that the computations which are necessary per iteration are in this
case minimal.

Now, for the quadratical constraints. We define each constraint Fi(x) as

Fi(x) = xTQix + rTi x + ci (4.10)
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where Qi ∈ Rn×n, ri ∈ Rn and ci ∈ R. This time we obviously have to
account for the bound constraints as the gradient depends on x. However,
we do not have to consider the whole range of values. It is sufficient to
investigate the properties at the extremes, namely at xmin and xmax. The
question is: for each term of xi, which of xi,min and xi,max gives the minimum
value and which gives the maximum value? Let us consider the partial
derivative of Eq. (4.10)

∇jFi(x) =
n∑
h=1

(Qi,j,h +Qi,h,j)xh + ri,j (4.11)

Clearly, we will find the minimum value if we use xh,min whenever (Qi,j,h +
Qi,h,j) is positive and xh,max when it is negative. Vice versa, of course, for
the maximum value. So for example, if we are to determine if ∇jFi(x) ≥ 0,
∀i, j, we have to iterate through each partial derivative of each Fi(x) inves-
tigating each coefficient and evaluating, resulting in a total of n3 iterations.
It is, after all, quite logical since we have n constraints, each consisting of
an n× n matrix.

On the other hand, if we want to determine if |∇F(x)|∞ < 1, we cannot
use different inputs of x for each partial derivative, it must be the same for
all of them. Since the∞-norm involves the sum of all the partial derivatives
of Fi(x), the solution is to sum all the coefficients of a given xh as

sh =
n∑
j=1

(Qi,j,h +Qi,h,j) (4.12)

Then, the polarity of sh will determine which of xh,min and xh,max will con-
tribute to the minimum value and which to the maximum value. sh can
otherwise be found as the sum of all the elements of the h-th column of
(Qi + QT

i ). By investigating (4.12) for h = 1, . . . , n we put together two
vectors representing each of the extremes and denote them as xlower and
xupper. Finally, all we have to do is calculate

vi,min = |(Qi + QT
i )xlower + ri|

vi,max = |(Qi + QT
i )xupper + ri|

(4.13)

for all i = 1, . . . , n, where the j-th element of either vi,min or of vi,max will
represent the largest absolute value of ∇jFi(x). Then the sum of all the
elements of each of the two vectors should separately be less than one. This
entire operation has complexity O(n2), i.e. the same as for the linear con-
straints.

So, is there any way that we can simplify this? Yes, if we know that the
matrix Qi is either positive or negative, then we can simply replace xlower

and xupper in (4.13) with xmin and xmax respectively, or vice versa for the
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latter case. What is even better, though, is problems where x is bounded to
only negative or only positive values, which is in fact quite common. Then
Qi can contain whatever and we can still use xmin and xmax as the extreme
vectors. Consequently, the complexity of determining ∇jFi(x) ≥ 0 is re-
duced to O(n2) since we do not need to iterate through every element of
each Qi. The same conclusions can be drawn for problems with any kind of
Qi and any kind of bounds as long as the minimizing and maximizing input
vectors for each partial derivate are known. It is, after all, not unlikely as
the problem itself is known to the one who defines it.

Finally, it is worth mentioning that if we in the worst case need to do
the n3 iterations for condition 2.a, then at least it will not be necessary for
condition 3.b as the resulting vectors may be stored. All of these conclusions
can also be made for the canonical form properties. Note that determining
if ∇iGi(x) > 0, ∀i, must take O(n2) by the same logic.

Standard Canonical

1.a O(mns) O(mns)

1.b O(n2) O(n), O(n2)

2.a O(n2), O(n3) O(n2), O(n3)

2.b - O(n2)

3.a O(n) O(n)

3.b O(n2) O(n2)

3.c O(n2) O(n2)

4.a O(1) O(1)

4.b O(n2) O(n2)

Table 3: Computational complexities of the qualifying properties for both
the standard and canonical form when the constraints are either linear or
quadratic. Where there are two options, only the first applies to linear
constraints, while for quadratic constraints the first is best-case and the
second is worst-case.

The reasoning behind the n3 iterations comes down to how the con-
straints are defined. Obviously, it might be that many of the elements of Qi

are actually equal to zero and so we could have spared us a lot of iterations.
We can now draw an important conclusion. The key as to why it is sim-
ple to investigate the properties for quadratic constraints is the knowledge
that the gradient is monotonic. In other words, if we know that the con-
straint gradient, ∇F or ∇G, is increasing or decreasing over x ∈ D , then
we also know that its maximum and minimum values are at the extremes,
xlower and xupper, which may be different for each partial derivative of Fi(x).

46



Then, it is just a matter of determining if the appropriate inequality
holds at these values and we automatically know that it holds for all x ∈ D .
Most often, one of these extreme vectors can be set equal to xmin and the
other to xmax. Otherwise they are known as combinations of the elements of
xmin and xmax which are evident from the problem structure. To summarize,
the claim is that a problem which has monotonic constraint gradients may
be verified F-Lipschitz with the same computational complexity as problems
with linear constrains, see Table 3. Obviously, there are more than just
quadratic constraints which falls in this category. Other examples may be
cubic or exponential constraints.

4.1.5 Further improvements

As mentioned at the beginning of this discussion in Section 4.1.2, it seems
unlikely that the objective function is completely unknown in the case of
practical applications. So, let us discuss how we can simplify the com-
putational complexity if we assume some knowledge about the objective.
Perhaps we already know that the objective is strictly increasing, or strictly
decreasing in the case of the canonical form. Then condition 1.a is verified
in constant time. However, if it becomes necessary to check condition 4.b,
then we are back to square one as we have to run the same calculations
anyway in order to find δ. If we on the other hand know that the gradient
of the objective is increasing or decreasing, we can determine condition 1.a
(and find δ and ∆) in O(mn).

Considering the constraints, we have already discussed the benefits of
knowing that the gradient is increasing or decreasing. Also, it is useful to
know if the constraints themselves are all increasing or all decreasing as
conditions 2.a and 3.b can be determined in constant time. Not to mention
that the vectors xlower and xupper can then be found very easily. For the
canonical case it really only makes sense to have increasing constraints as
condition 1.b demands that all diagonal elements ∇G(x) have to be larger
than zero.

4.2 Library of objective functions

In the spirit of Disciplined convex programming [15], it was desirable to
provide the user with some possible objective functions for an F-Lipschitz
problem. The idea is that if a problem is defined using this library, we should
only be able to enter an objective function which is valid, i.e. strictly increas-
ing for the standard form and strictly decreasing for the canonical form. An
obvious reasoning here is that the objective function will be clearly defined,
as compared to an arbitrary function input. Then we can avoid the possibly
expensive fmincon by using our knowledge of the function’s structure.

Some of these functions will be presented in the following. We will state
the requirements for a function to be valid as well as comment on how δ and
∆ can be found. For simplicity, the discussion will mostly revolve around
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strictly increasing functions, which will be referred to as valid standard func-
tions. Also note that the library will only allow for scalar functions, i.e. we
always have m = 1.

Though it is trivial, the linear function f0(x) = aTx, a ∈ Rn, is not
uncommon as an objective. Clearly, this is a valid standard function only
if a � 0 and correspondingly a ≺ 0 for the canonical form. We may find δ
and ∆ simply as

δ = min
i
{ai} and ∆ = max

i
{ai} .

The simple linear function can easily be expanded to something perhaps
more interesting as

f0(x) = (aTx)k, (4.14)

where k ∈ R. If k is positive, the function is valid standard only if a � 0
and x � 0, ∀x ∈ D . Correspondingly, if k is negative, then we must have
a ≺ 0 and x ≺ 0. Notice that the base (ax) is always positive.

Now the question is, how do we find δ and ∆? Or more specifically, when
is ∇if0(x) = aik(ax)k−1 at its maximum and minimum over all i? Like for
the linear function, δ involves the smallest absolute coefficient, amin, of a
and ∆ the largest, amax. Then, the answer to the question is

δ =

amink(aTxmax)k−1 if 0 < k < 1,

amink(aTxmin)k−1 if k > 1 or k < 0,
(4.15)

and

∆ =

amaxk(aTxmin)k−1 if 0 < k < 1,

amaxk(aTxmax)k−1 if k > 1 or k < 0.
(4.16)

We consider only δ and justify the results as follows. When k < 0, x is
bounded to only negative numbers. Since the exponent is negative, we ac-
tually need the base to be as large as possible, which we acquire for xmin as
this will be the largest absolute value. The reasoning behind k > 1 should be
obvious. When 0 < k < 1, x is bounded to only positive numbers. However,
the gradient will have a negative exponent. Thus, we again need the base
to be as large as possible which we now acquire for xmax. When k = 1 we
are of course back to the linear function.

The third type of objective is referred to as a simple quadratic function.
This because it can only contain quadratic terms on the form x2

i and not
xixj . It is defined as follows

f0(x) = a1x
b1
1 + a2x

b2
2 . . .+ anx

bn
n (4.17)
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where bi = {1, 2}, i = 1, . . . , n. In order to have a valid standard func-
tion, all coefficients ai associated with a linear term must be positive. The
coefficients associated with a quadratic term can be both negative and posi-
tive. However, the corresponding xi must then be bounded to only negative
numbers and only positive numbers respectively. Naturally, all elements of
a must also be non-zero. δ and ∆ can be found as follows

δ = min
i


ai if bi = 1

2aixi,min if bi = 2 and ai > 0

2aixi,max if bi = 2 and ai < 0

(4.18)

and

∆ = max
i


ai if bi = 1

2aixi,max if bi = 2 and ai > 0

2aixi,min if bi = 2 and ai < 0

(4.19)

The last type of function we will discuss is found from yet an exponent
expansion. Namely, we define the following objective function

f0(x) = (a1x
b1
1 + a2x

b2
2 . . .+ anx

bn
n )k (4.20)

which is clearly based on Eq. (4.17). Now, it becomes a bit more tricky.
Let us consider the gradient

∇if0(x) =

aik(a1x
b1
1 + a2x

b2
2 . . .+ anx

bn
n )k−1 if bi = 1

2aixik(a1x
b1
1 + a2x

b2
2 . . .+ anx

bn
n )k−1 if bi = 2

(4.21)

where we now assume that k 6= 1 to avoid repeating any results. To be
certain that we always have ∇f0(x) � 0, we must restrict the coefficients
and the values of x in such a way that the base is always positive. In
other words; all the coefficients ai associated with a quadratic term must
be positive, while the linear term coefficients must have the same polarity
as the associated decision variable. If k < 0, then clearly the linear term
ai must be negative and the corresponding xi must be bounded negative.
The quadratic xi must be bounded to only negative values as well. Not
surprising, the opposite applies for k > 0.

For calculating δ and ∆, we first need to find the smallest and the largest
possible coefficient of Eq. (4.21), which are denoted ac,min and ac,max. These
can be found from the following equations
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ac,min = min
i


aik if bi = 1

2aixi,mink if bi = 2 and k > 0

2aixi,maxk if bi = 2 and k < 0

(4.22)

and

ac,max = max
i


aik if bi = 1

2aixi,maxk if bi = 2 and k > 0

2aixi,mink if bi = 2 and k < 0

(4.23)

Secondly, we have to find the smallest and the largest possible value of the
base and exponent of Eq. (4.21). Namely, we define fg,min and fg,max as

fg,min =
∑
i



aixi,max if bi = 1 and 0 < k < 1

aixi,min if bi = 1 and k > 1 or k < 0

aix
2
i,max if bi = 2 and 0 < k < 1

aix
2
i,min if bi = 2 and k > 1 or k < 0

(4.24)

and

fg,max =
∑
i



aixi,min if bi = 1 and 0 < k < 1

aixi,max if bi = 1 and k > 1 or k < 0

aix
2
i,min if bi = 2 and 0 < k < 1

aix
2
i,max if bi = 2 and k > 1 or k < 0

(4.25)

which can be justified using similar arguments as those given for Eq. (4.15)
and (4.16). Finally, δ and ∆ is simply found as

δ = ac,min(fg,min)k−1 and ∆ = ac,max(fg,max)k−1.

Clearly, all of these functions has gradients which are monotonic, since
the maximum and minimum of a gradient can be found using the extreme
values, xmin and xmax. As was also concluded in Section 4.1.4, it seems that
monotonicity is the key behind avoiding fmincon. In making this connec-
tion, notice that by introducing these types of possible objective functions,
we have at the same time introduced new classes of possible constraints ad-
ditional to the linear and quadratic which was previously discussed. After
all, finding δ or ∆ involves similar operations compared to what is required
for verifying the qualifying properties of the constraints. That said, the def-
inition of these new types of constraints may in general be more relaxed,
as there is no requirement on them being strictly increasing, or strictly de-
creasing for that matter.
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4.3 Solvers

Naturally, support for testing the distributed algorithm (3.3) must be im-
plemented in the toolbox. It is very straightforward, particularly when the
problem is on standard form. The canonical form algorithm is however more
interesting, namely because it is possible to increase its efficiency. As pre-
viously stated, it is necessary to choose values for γi and µi such that the
inequality (3.10) is fulfilled. For simplicity, the assembled vector of these
values will be referred to as γ in the following. In stead of calculating a
constant vector γ which ensures the inequality for all x ∈ D , it is possible
to calculate new values for each iteration of the algorithm. This way, the
vector γ becomes adaptive, ensuring that the inequality holds for the current
iterate without being unnecessarily small. The result is increased efficiency
as smaller values of γ implies smaller steps and hence a slower convergence.
See Algorithm 5 for the pseudocode of this distributed algorithm.

Algorithm 5 Distributed algorithm with adaptive γ

Require: x0 ∈ D
loop

1. Evaluate γi,k = 1/∇igi(xk).
2. Update variable

xi,k+1 := [xi,k − γi,kgi(xk)]D
3. Broadcast xi,k+1 to other nodes.
4. Receive xj,k+1, ∀j 6= i.

end loop

Of course, the the actual algorithm will not really be distributed and
there will be no message passing, just variable assignment. Hence, no in-
formation will get lost and the algorithm will be executed synchronously as
all of the the decision variables will be updated for each iteration. Con-
sequently, the results generated by this algorithm should be considered as
best-case. Unfortunately, there are no other readily available distributed
algorithms which can be used for comparison. It would have been very use-
ful to have a solver which applies the Lagrangian decomposition methods
discussed in Section 2.3, but these are solemnly dependent on the problem
structure, hence it is a challenging task to implement a general solution. At
least, there are a few more options when it comes to computing the problem
in a centralized fashion.

The centralized F-Lipschitz algorithm exploits that the solution lies at
the equality of the constraints. In other words, it shall solve a system of
equations which can be both linear and nonlinear. MATLAB provides this
type of solver through the method fsolve. It needs a function F(x), which
takes a vector x and returns a vector, as well as a starting point. So, the
constraint function is used as input and fsolve will return a solution which
satisfies F(x) = 0. The method actually has three types of algorithms to
choose from, but here the default (trust region dogleg) will consequently
be used, as this is the only algorithm which is specially designed to solve
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nonlinear equations. Unfortunately, fsolve does not take bound constraints,
hence it is not able to do the projection on D and the returned solution
might very well be outside of bounds. Despite this, the algorithm will give
a good indication on the performance of a centralized algorithm.

Finally, a third solver is introduced whose performance can be compared
to that of the centralized F-Lipschitz solver. The previously mentioned func-
tion, fmincon, implements the well explored theory of Lagrangian methods,
which one might say is the centralized counterpart to the decomposition
methods. Linear equalities and inequalities may be defined through matrix
inputs, while nonlinear constraints are defined through a function. As has
already been mentioned, fmincon also takes upper and lower bounds on the
decision variables. The method provides four algorithms, but the trust re-
gion reflective is here excluded for practical reasons as it requires specific
combinations of inputs. MATLAB recommends trying the interior point al-
gorithm first. Then, to potentially obtain more speed, one may try the SQP
next and the active set last.

Both fmincon and fsolve returns information on the algorithm’s per-
formance. There is of course the amount of steps of the algorithm before
convergence was reached, but also the total number of function evaluations.
Very often, an algorithm will need to do certain computations before it is
able to take a step, i.e. iterations within the iterate sort of speak. This
is reflected by the number of function evaluations, which is the sum of all
the internal iterations. In that sense, this number may be considered as the
actual number of iterations which was necessary to achieve convergence.
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5 F-Lipschitz Optimization Toolbox

Now that the ground work has been laid and the theoretical aspects have
been considered, it is time to investigate how it all works in practice. Here
follows a user guide of the F-Lipschitz Optimization Toolbox including ex-
amples ranging from the simple to the more advanced. Figure 5 shows an
image of the toolbox. We will look at one panel at a time and explain the
functionality2 step-by-step by using examples. This chapter is only focused
on the graphical interface of the toolbox, for the documentation of the inline
functions, see Appendix A.

Figure 5: The F-Lipschitz Optimization Toolbox.

5.1 Simple example in R2

Consider the following example

min
x

(x2
1 + x2

2)−1

s.t. x1 − 0.5x2 − 1 ≤ 0

− x1 + 2x2 ≤ 0

0 < x1, x2 ≤ 10

(5.1)

which is obviously on canonical form. In general, we will need to declare
our objective and constraints in separate m-file functions. So we define the
following four files:

2For simplicity, the discussions are devoid of the SQP algorithm as it failed for every
problem.
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function g = g_0(x)

g = 1/(x(1)^2 + x(2)^2);

end

function g = nabla_g_0(x)

g_ = zeros(1,2);

g_(1,1) = -2*x(1)/(x(1)^2 + x(2)^2)^2;

g_(1,2) = -2*x(2)/(x(1)^2 + x(2)^2)^2;

g = g_;

end

function g = G(x)

g_ = zeros(2,1);

g_(1,1) = x(1) - 0.5*x(2) - 1;

g_(2,1) = -x(1) + 2*x(2);

g = g_;

end

function g = nabla_G(~)

g_ = zeros(2,2);

g_(1,1) = 1;

g_(1,2) = -0.5;

g_(2,1) = -1;

g_(2,2) = 2;

g = g_;

end

These should be named g 0.m, nabla g 0.m, G.m and nabla G.m respec-
tively. Notice that the objective has dimension m× 1, where m = 1 in this
case, while the gradient, ∇g0(x), has dimension m × n. Correspondingly,
the constraint function should return an n × 1 vector and the gradient the
n × n Jacobian matrix. Now we can enter the problem into the toolbox as
shown in Figure 6. In stead of writing the bound vectors directly, which
obviously is less practical when the amount of decision variables is large, it
is possible to save them in the workspace and load them from there. E.g. if
we have a variable ub = [10, 10] in the workspace, then we just enter ub in
the upper bound field of the toolbox.

Notice that the radio button for Customized function should be selected
and not Library objective function. The latter option involves what was
discussed in Section 4.2, which will be regarded later for this same problem.
Now, if we wish, we can move on to checking the qualifying properties in
order to determine if this is a feasible F-Lipschitz problem or not. See Figure
7 for the F-Lipschitz property panel. Before pressing the Check feasibility
button, make sure that the checkbox named Canonical form located at the
bottom of the window is checked. Not surprising, this is to let the toolbox
know that we have defined our problem on the canonical form and not on
the standard F-Lipschitz form.
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Figure 6: Problem definition of simple example.

Figure 7: Verification of the qualifying properties of an F-Lipschitz problem.

If there is something wrong with the problem definition, like the dimen-
sions of the constraints does not match or the m-file functions are not on
the workspace path, there will be an error message in the status window. If
everything is correctly defined, the status window will contain the following
message:

-The objective function is strictly decreasing.

-The diagonal of the constraint gradient is strictly positive.

Alternatives:

1. -The off-diagonal elements of the constraint gradient are all

negative.

-The diagonal of the constraint gradient is dominant.

The problem is F-Lipschitz.

Unconstrained fmincon used 10 iterations and 30 function
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evaluations in total.

Total amount of iterations: 10

Observe that the number of iterations is quite small, but the amount of
function evaluations is substantial. This is because, as previously stated,
we don’t apply our knowledge of the problem structure, thus fmincon must
investigate the problem for us. Later on we will see that it is possible to
reduce the amount of iterations substantially. Since the problem is feasible,
the Compute button shown in Figure 8 is now enabled and the lower bound
vector is automatically copied over to the start point field. Note that, also
here, a workspace variable can be used in stead of writing the vector di-
rectly. If we want to skip the calculations of the qualifying properties and
go straight to computing the solution, it is simply a matter of pressing the
Skip verification button in Figure 7. Then, the toolbox will check all the
inputs to see if the problem is correctly defined before enabling the Compute
button.

Figure 8: Computation of the optimal solution for the simple example.

The distributed algorithm is the default choice of solver. As can be seen,
the Algorithm popup menu, the Function tolerance field and the Constraint
tolerance field are disabled. All of these are enabled for the Lagrangian
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solver, i.e. fmincon, while the function tolerance is enabled for the central-
ized algorithm, i.e. fsolve. Keep in mind, though, that ”function” means the
constraint function in the latter case and not the objective function. Finally,
the distributed algorithm is executed by pressing the Compute button and
the following message appears in the result window:

The algorithm stopped after 21 iterations.

There were 21 function evaluations.

The solution values are

x(1) = 1.333

x(2) = 0.667

The Plot and Save to workspace buttons now also becomes enabled. Press-
ing the first button, a new window pops up plotting the iterations versus
the decision variables. In other words, the figure illustrates the algorithm’s
progression. The resulting plot is shown in Figure 9. Note however that
the lowermost line was changed to dashed and the addition of the legend
was done manually using the figure tools. We see that the decision vari-
ables change fast in the beginning, but then it takes a long time to reach
the specified accuracy. The bright side is that we can reduce the amount
of iterations quite substantially by reducing the required accuracy. For this
example, reducing the accuracy to 1 · 10−3 almost halves the amount of
iterations to 11. The printed solution is changed in x2 = 0.666, while x1

remains the same.

Let us also try the centralized algorithm, i.e. fsolve. The same solution
is returned after only 3 iterations and 9 function evaluations. Clearly, F-
Lipschitz optimization is an important new theory not only for distributed
settings, but for centralized optimization as well. Trying the last solver, the
Lagrangian, we may choose between several algorithms, the interior point
being the default. Pressing the Compute button, a popup window appears
asking for the indexes of the constraint function which are to be equalities.
This has not yet been defined as the information is actually unimportant for
the F-Lipschitz theory. Since all the other constraints will be inequalities
by default, we simply press OK without entering anything as we only have
inequalities in this case. The interior point algorithm needs 11 iterations
and 33 function evaluations to find the same solution as before. Clearly,
fsolve is a lot more efficient algorithm, but if we also include the function
evaluations from the verifying operation, we get a total of 39 evaluations
versus the interior point method’s 33. The active set algorithm is however
the most efficient, using only 2 iterations and 6 function evaluations.
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Figure 9: Iterations versus x for the distributed algorithm.

Finally, it is also possible to save the solution vector to the workspace by
pressing the Save to workspace button. A new window will pop up asking
for a variable name. Take care however, if a variable with the same name
already exists in the workspace, it will simply be overwritten.

5.2 Simple example - revisited

As was mentioned, we will regard the problem (5.1) once again using one
of the library objective functions. Also, we will have a look at what the
Advanced button can offer. For a fresh start, press the Reset button and
the toolbox will delete all data and go back to the default settings. Now,
in stead of selecting the Customized function radio button, select Library
objective function and choose the alternative called Simple quadratic, expo-
nent from the function type menu. It is very important now to make sure
that the Canonical form checkbox is checked, or else the toolbox will have
you defining a strictly increasing function in stead of strictly decreasing.
Pressing the Define parameters button, a window pops up where we can
define our objective function. Figure 10 shows the window with the correct
inputs.
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Figure 10: Defining the objective function for simple example.

If any of the input fields has an erroneous format or the given parameters
are such that the function cannot be strictly decreasing, error messages will
appear in the status window when pressing OK. In other words, the window
will only close if the inputs are valid. Note, however, that the coefficients
must be entered in order to register an objective function, while it is strictly
speaking not necessary to fill in any indexes. If everything is correct, the
window will close and the main window status field will in this case state:

Confirmation: The chosen objective function is strictly

decreasing as long as x is bounded positive.

which we of course already know is true from the bound constraints of the
problem definition (5.1).

Now for the constraints. Pressing the Advanced button, a new window
pops up which is shown in Figure 11. The purpose of the upper panel is
the means for providing information about the objective function when we
have to use a customized objective, i.e. the function type does not exist
in the library. This will be reviewed for later examples. The lower panel
contains the functionality for defining either linear or quadratic constraint.
Select Linear from the function type menu and press the Define button. A
new window pops up where we can input both linear inequality and equality
constraints on matrix form. Figure 12 shows this window with the correct
inputs for our problem. Note that, also here, the inputs can be given by
variables in the workspace.
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Figure 11: Advanced options.

Figure 12: Defining the linear constraints of simple example.

Pressing OK twice, we are back to the main window and observe that
the input fields for the constraint function and gradient have been disabled.
All that remains now is to fill in the bounds and investigate if our problem is
F-Lipschitz. This time, the status window contains the following message:

The combination of Ain and Aeq is referred to as the matrix A.

-The objective function is strictly decreasing.

-The diagonal of A is positive.

Alternatives:

1. -The off-diagonal elements of A are all negative.

-Each element on the diagonal of A is larger than the sum of

the absolute values of the other elements on the same row.

The problem is F-Lipschitz.

Unconstrained fmincon used 0 iterations and 0 function

evaluations in total.

Total amount of iterations: 6

Clearly, we have managed to completely avoid fmincon and in doing
so reducing the number of iterations from 10 to 6. Most importantly, the
30 function evaluations from before are now eliminated. This means that,
with the total amount of 15 iterations/evaluations, the centralized algo-
rithm outperforms the interior point method with good margin. Even more
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astounding, the distributed algorithm is also superior, spending a total of
27 iterations versus the interior point method’s 33 evaluations. The active
set method is however still in the lead with its 6 evaluations. This simple
problem may also be transformed to the standard form by finding

γ1 =
1

∇1g1(x)
= 1 and γ2 =

1

∇2g2(x)
= 0.5,

which are applied in redefining the problem according to (3.5). Using the
objective function library, it is then important to remember that

min
x

(x2
1 + x2

2)−1 and max
x

x2
1 + x2

2

are in fact the same. While the first objective function is strictly decreasing
for positive x, the second is obviously strictly increasing for the same range
of values. The qualifying properties will be verified for the standard form
problem as well, but we will see that this is not always the case.

5.3 Example in R2 with quadratic constraint

Consider the following optimization problem

min
x

− x1 − x2

s.t. 4x2
1 + x2

2 + x1 − 2 ≤ 0

x2
1 + 3x2

2 + x1x2 − 3.5 ≤ 0

0.1 ≤ x1, x2 ≤ 1.5

(5.2)

which is on canonical form. The reason why we need the decision variables to
be larger than zero, or actually just one of them, is because of the condition
1.b which demands ∇2g2(x) = x1 +6x2 > 0. Each constraint can be written
on the form

Gi(x) = xTQix + rTi x + ci

where

Q1 =

[
4 0

0 1

]
, r1 =

[
1 0

]T
, c1 = −2,

and

Q2 =

[
1 0.5

0.5 3

]
, r2 =

[
0 0

]T
, c2 = −3.5.
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Let us define the problem in the toolbox using a library objective func-
tion and the advanced settings. First, we store the constraint parameters
given above as variables in the workspace. Here, we use the obvious naming
q1, r1, c1, q2, r2 and c2. Choose the Linear alternative in the function
type menu and press the Define parameters button. A window pops up in
which there is only one input field. Here, we enter the vector, [−1,−1], and
press OK. The constraints are defined by entering the advanced settings
and choosing Quadratic from the function type menu. Pressing the Define
button, the window shown in Figure 13 pops up, where the parameters of
the first constraint have been entered. Notice the possibility of choosing if
the constraint should be an inequality or an equality. Press Next and enter
the corresponding inputs for the second constraint.

Figure 13: Defining the quadratic constraints.

Finally, the upper and lower bounds are set to [0.1, 0.1] and [1.5, 1.5],
respectively. Pressing the Check feasibility button, the following message
appears in the status window:

-The objective function is strictly decreasing.

-The diagonal of the constraint gradient is strictly positive.

Alternatives:

1. -The off-diagonal elements of the constraint gradient are not

all negative.

2. -The gradients of the objective are equal.

-The off-diagonal elements of the constraint gradient are all

positive.

-The diagonal elements are all larger than the absolute sum

of the same column.

The problem is F-Lipschitz.

Unconstrained fmincon used 0 iterations and 0 function

evaluations in total.

Total amount of iterations: 18

Thinking back to the discussion in Section 4.1.4, one might realize that it
should be possible to reduce the number of iterations further. In fact, not
only are Q1 and Q2 both positive matrices, but x is also bounded to only
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positive numbers. By that note, we may open the advanced settings and
check both the Gradients are monotonic and the Constraints are monotonic
checkbox. In this case of quadratic constraints, the latter actually implies
the first, but of course it does not harm to check both boxes. When checking
feasibility once again, we now find that the toolbox only use 6 iterations, i.e.
a third of what was previously found. If the problem is defined with m-file
functions and we have to use fmincon, the verification takes 12 iterations
and 36 function evaluations in total. Thus, either way we are a lot better
off when the problem is defined through the utilities of the toolbox.

Running the distributed algorithm, we get the results shown below and
the plot illustrating the progress of the algorithm can be seen in Figure 14.

The algorithm stopped after 15 iterations.

There were 15 function evaluations.

The solution values are

x(1) = 0.394

x(2) = 0.992

Once again we observe that the iterates changes quite fast in the beginning,
followed by a slow convergence to the required accuracy. The centralized
algorithm converges in 7 iterations and 21 function evaluations, which is
faster than the interior point algorithm, using 9 iterations and 27 function
evaluations. Notice that if the 6 iterations from the verification operation
are included, these methods are equally good. Still, the distributed algo-
rithm is more efficient than both of them, not to mention that it is almost
just as good as the active set algorithm with its 6 iterations and 20 function
evaluations.
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Figure 14: Iterations versus x for the distributed algorithm.
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The problem shall now be transformed into the standard form. In order
to do that, we need to find γ1 and γ2 such that the inequality (3.10) is
fulfilled for all xi,min ≤ xi ≤ xi,max, ∀i, i.e. for all x ∈ D . The best, or in
other words the largest, γi can then be found by solving the optimization
problem

γi = min
x∈D

1

∇igi(x)

which results in γ1 = 0.0769 and γ2 = 0.0952. As stated in Section 3.2.3,
we let

f0(x) = −g0(x) = x1 + x2

and using fi(x) = xi − γigi(x), we get the following constraint parameters

Q1 =

[
−0.3077 0

0 −0.0769

]
, r1 =

[
0.9231 0

]
, c1 = 0.1538,

Q2 =

[
−0.0952 −0.0476

−0.0476 −0.2857

]
, r2 =

[
0 1

]
, c2 = 0.3333.

The problem may be defined as before, using the library objective function
and the advanced settings. Remember that the Canonical form checkbox
at the bottom of the main window should not be checked this time. In-
vestigating the qualifying properties, the toolbox now returns the following
message:

-The objective function is strictly increasing.

-The infinity norm is less than one.

Alternatives:

1. -The elements of the constraint gradient are not all positive.

2. -The gradients of the objective are equal.

-The elements of the constraint gradient are not all negative.

3. -The objective function is scalar.

-The one norm of the constraint gradient is not smaller than

the coefficient 0.500.

The problem is not F-Lipschitz.

Unconstrained fmincon used 0 iterations and 0 function

evaluations in total.

Total amount of iterations: 17

Clearly, it would have made sense if the problem should fulfill the condi-
tions of the second alternative, since this was the case for the canonical form
problem. As can be observed, the gradient of the constraints are however
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not negative over all values of x. This is because of the fairly large posi-
tive value of r1. The elements of Q1 are simply not ”negative enough” to
compensate for this. That said, by choosing the values of γ small enough,
there will eventually be some limit where the conditions are verified. This
will however result in the distributed algorithm being slower.

If we now press the Skip verification button and move on to the compu-
tation regardless, we will see that the distributed algorithm returns exactly
the same result as before. In other words, the problem is in fact F-Lipschitz
and it is proven that the qualifying properties (3.2a) - (3.2h) are only suf-
ficient and not necessary. However, the distributed algorithm spend more
than twice as many iterations as the canonical algorithm. This is because
we had to choose constant values for γ when transforming the problem, thus
excluding the opportunity of choosing the best values for each iteration.

5.4 Radio power allocation

Since power control has previously been discussed both regarding the in-
terference function theory as well as for geometric programs with applied
decomposition methods, we here present a similar example to which we apply
the F-Lipschitz optimization theory. This application is also discussed in [5].

We consider a network of n transmitter nodes, where node i transmits
using a radio power pi, i = 1, . . . , n. There are n receiver nodes, where
node i receives the power Giipi from transmitter i, i.e. Gii is the channel
gain. The interference at receiver i is then given by

∑
k 6=iGikpk. To make

things a bit more interesting, we also introduce a nonlinear term, Mijp
2
i p

2
j ,

which represents the intermodulation between the signals from transmitter
i and j. This typically occurs when the amplifier of the receiver consists
of somewhat unreliable components. The signal to interference plus noise
ratio, SINR, of the i-th transmitter-receiver pair is then given by

SINRi =
Giipi

σi +
∑

k 6=iGikpk +
∑

k 6=iMikp
2
i p

2
k

(5.3)

where σi is the thermal noise. Note that the values Mik, k 6= i, are smaller
than Gik and can be both positive and negative.

The problem can be written on the following form

min
p

p

s.t. SINRi ≥ Smin, i = 1, . . . , n,

pmin1 < p ≤ pmax1,

(5.4)

where Smin is the minimum required SINR to guarantee that the signal
is successfully received. The upper and lower bounds on p are quite nat-
urally the smallest and the largest power level which are available to the
transmitter. We let xi = −pi and rewrite the problem on canonical form as
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min
x

− x

s.t. Giixi + Smin

(
σi −

∑
k 6=i

Gikxk +
∑
k 6=i

Mikx
2
ix

2
k

)
≤ 0,

i = 1, . . . , n,

− pmax1 < p ≤ −pmin1.

(5.5)

As is the usual notation, we denote the constraint function above as gi(x).
Let us also consider the gradient of the function, which is given as

∇jgi(x) =

Gii + 2Smin
∑

k 6=iMikxix
2
k if j = i,

−SminGij + 2SminMijx
2
ixj otherwise.

(5.6)

Now that we have defined the problem, we may test it with the toolbox.
The parameter values are shown in Table 4 and the MATLAB code defining
the constraints and their gradients can be found in Appendix B. At a glance
we see that the scalarized version of the objective function in problem (5.5)
is clearly strictly decreasing. Thus, if the objective is defined using an m-file
function, we may check the Objective is strictly increasing/decreasing check-
box in the advance settings, consequently saving these iterations. Otherwise,
a library objective function may of course also be used with the appropri-
ate coefficient input. More importantly, observing the constraint gradient
(5.6), keeping in mind that the decision variables are bounded to only neg-
ative numbers, we conclude that it is monotonic for both of the cases. In
other words, we can also check the Gradients are monotonic checkbox in
the constraints panel of the advanced settings. Thus, we can completely
avoid fmincon when investigating the qualifying properties. Note that this
checkbox can only be used when the extreme vectors are equal to xmin and
xmax, see the discussion under Section 4.1.4.

Parameter Value

n 10

Smin 1 ∀i
Gij -90 dBm ∀i, j 6= i

Gii -70 dBm ∀i
Mij -120 dBm ∀i, j 6= i

σi -130 dBm ∀i
pmin -25 dBm

pmax 0 dBm

Table 4: Parameter values which were found in [5].
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Investigating the qualifying properties, the toolbox returns the following
status message:

-The objective function is strictly decreasing.

-The diagonal of the constraint gradient is strictly positive.

Alternatives:

1. -The off-diagonal elements of the constraint gradient are all

negative.

-The diagonal of the constraint gradient is dominant.

The problem is F-Lipschitz.

Unconstrained fmincon used 0 iterations and 0 function

evaluations in total.

Total amount of iterations: 110

So, the problem is verified to be F-Lipschitz and we can safely move
on to try the distributed algorithm. Observe that the number of iterations
indicates that the toolbox did in fact use O(n2) iterations to determine
that the problem was feasible. Had the checkboxes remained unchecked,
fmincon would have used 120 iterations and 1320 function evaluations, which
is clearly a large increase. Since the parameters has to be converted from
dBm to watts, namely through

P = 10(d−30)/10

where d is the power ratio in dBm, the numbers becomes very small. There-
fore, we must take care to set the required accuracy sufficiently small. In
stead of using the default, 1 · 10−6, all of the tolerances should be set to
1 · 10−24.

The distributed algorithm converges after only 4 iterations, returning
the solution xi = −3.162 · 10−6, ∀i, which is actually equal to the upper
bound of x, i.e. we get pi = −25 dBm. The progress of the algorithm
can be viewed in Figure 15. Testing the centralized algorithm, a solution is
found after 2 iterations and 22 function evaluations. Unfortunately, it is the
wrong solution, namely xi = −1.099 · 10−6, which is clearly outside of the
bounds. This is because, as previously mentioned, fsolve has no support for
bound constraints. On the other hand, it can be interesting to know where
the ”actual” fixed point was located. Observe that for this problem with
quite a large amount of decision variables, the distributed algorithm is a lot
more efficient than the centralized.
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Figure 15: Iterations versus x for the distributed algorithm. Each of the
lines for the n decision variables are on top of each other.

For comparison, let us also investigate how well the Lagrangian solver
performs. The interior point algorithm uses as much as 17 iterations and
195 function evaluations, see Figure 16. On the other hand, the active set
algorithm is much faster, using only 3 iterations and 33 function evaluations.
They both find the globally best solution, i.e. the same as was found using
the distributed algorithm. Even though fsolve went outside of the bounds,
the F-Lipschitz theory was without a doubt superior in this case. Counting
the iterations spent for the verifying operations, both the distributed and
the centralized algorithm still outperforms the interior point method.
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Figure 16: Iterations versus x for the interior point algorithm. Each of the
lines for the n decision variables are on top of each other.
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It is interesting to consider what other strategies we might have used
for distributing the optimization of this problem. The fact is, because the
intermodulation coefficient, Mij , can be negative, it is not possible to use
either geometric programming or the interference function theory. For the
latter case, it is simply because the interference function, I(p), will not fulfill
the required conditions to be standard, see Definition 2.2 in Section 2.5. This
leaves us with decomposition methods, which has already been confirmed to
be a less satisfactory alternative. In other words, the distributed F-Lipschitz
algorithm is without a doubt the best option in this case.

5.5 Computation of a norm

In wireless sensor networks, there are several cases where it is necessary to
compute a stable matrix K with respect to some norm. This is common in
e.g. distributed consensus where the goal is for all the nodes to ”come to
consensus” on a measurement value of some environmental parameter. Each
row ki, i = 1, . . . , n of the matrix K belongs to a node. For calculating a
suitable threshold on the norm of ki, we use the following proposition as it
is stated in [14] (Proposition 2.1):

Proposition 5.1. Let K = [ki] ∈ Rn×n, where ki ∈ R1×n. Let 0 < γmax <
1. Suppose there exists a vector x = (x1, x2, . . . , xn)T � 0, such that

xi +
√
xi
∑
j∈Θi

√
xj ≤ γmax, (5.7)

for all i = 1, . . . , n, where the set Θi is the collection of communicating
nodes located at two-hops distance from the node i, plus the neighbors of i.
If ||ki||2 ≤ xi, i = 1, . . . , n, then ||K||2 ≤ γmax.

In other words, if we find a vector x which satisfies the inequality (5.7),
we find a threshold for each of the norms of the rows ki. As long as the
norms are below these thresholds, the matrix K will be stable. Naturally,
we would like to maximize x in order to have as much freedom as possible
in choosing the elements of each ki. The optimization problem can then be
stated as

min
x

− 1Tx

s.t. xi +
√
xi
∑
j∈Θi

√
xj ≤ γmax, i = 1, . . . , n,

x ∈ Rn+

(5.8)

which is on canonical form. Clearly, it is necessary to find better bounds on
x if the problem is to be tested with the toolbox. This can easily be derived
by exploiting the formulation of the problem. Because we have 0 < γmax < 1,
the constraints implies that 0 ≺ x ≺ 1. It is safe to use the vector 1T as
the upper bound since the constraints always ensures that x is less than this.
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A better alternative must however be found for the lower bound. Con-
sider the constraint function of problem (5.8) when it is at the equality and
let xj ≈ 1, ∀j ∈ Θi. Then, xi must be at its minimum, i.e. the following
must apply

xi,min +
√
xi,min · |Θi| = γmax.

A variable change, xi,min = y2, leaves us with a regular quadratic equation,
which results in the following solution for xi,min

xi,min =

(
−|Θi|+

√
|Θi|2 + 4γmax

2

)2

.

The network we will be considering is shown in Figure 17 and the prob-
lem shall be tested using γmax = 0.75. Like before, the constraint function
is denoted gi(x). The gradient is given as

∇jgi(x) =


1 + 1

2
√
xi

∑
j∈Θi

√
xj if j = i,

√
xi · 1

2
√
xj

if j ∈ Θi,

0 otherwise.

(5.9)

See Appendix B for the MATLAB code defining the constraints and their
gradients. Like in the previous example, we immediately observe that the
objective function is valid F-Lipschitz and we can use the corresponding
checkbox of the advanced settings. This time, however, we cannot use the
checkbox for monotonic constraint gradients, even though they actually are
monotonic and x is also bounded to only positive numbers.
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Figure 17: The network of nodes which should distributively optimize prob-
lem (5.8).
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Observe that if Eq. (5.9) is not zero, there is always one decision vari-
able with a negative exponent and one or more which has positive exponents.
This means that the minimum value of each partial derivative must occur
when the variable with the negative exponent is at the upper bound and the
rest are at the lower bound. In other words, we can unfortunately not use
xmin and xmax as the extreme vectors. Because of this, the toolbox requires
quite a large amount of iterations to verify that the problem is F-Lipschitz,
specifically it takes 180 iterations and 1870 function evaluations in total.
Otherwise, it would have taken something in the range of a 100 iterations
like for the previous esample. The problem was shown to fulfill the second
alternative of the qualifying properties, namely (3.9e) - (3.9g).

With an accuracy of 1 · 10−6, the distributed algorithm converges in 35
iterations. The solution values are shown in Table 5 and the plot of the
algorithm’s progress is shown in Figure 18. With a somewhat similar per-
formance, the centralized algorithm converges in 4 iterations and 44 function
evaluations, of course returning the same solution as the distributed algo-
rithm. A plot of the iterations is shown in Figure 19.

i 1 2 3 4 5 6 7 8 9 10

xi 0.131 0.171 0.069 0.131 0.171 0.253 0.117 0.066 0.196 0.151

Table 5: Solution found by the distributed algorithm.
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Figure 18: Iterations versus x for the distributed algorithm. Clearly, some
of the lines are lying on top of each other, which is not surprising since there
are solution values in Table 5 which are equal.
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Figure 19: Iterations versus x for the centralized algorithm.

The Lagrangian solver seems to be doing particularly bad for this prob-
lem. Not only does the interior point algorithm use as much as 43 iterations
and 473 function evaluations, but the returned solution is not the globally
best point, which is shown in Table 5, it is merely a local solution. See
Figure 20 for a plot of the iterations. Same goes for the active set algo-
rithm. It is a lot faster with its 6 iterations and 66 function evaluations,
but the solution is local. Had we been able to verify the problem as easily
as for the power control example, then both the distributed and centralized
F-Lipschitz algorithms would have been a lot more efficient than the interior
point method. The active set is faster either way, but it is a major drawback
that it cannot find the globally best solution.
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Figure 20: Iterations versus x for the interior point method.

73



5.6 Distributed detection

We consider yet another problem, also discussed in [5], which is typical
within wireless sensor networks, namely event detection, also referred to as
binary hypothesis testing. The idea is that each sensor node in a network
should be able to detect if one out of two events has occurred. Denoting
the first event H0 and the second H1, the detection of each event can be
modeled by a Gaussian random variable wi(s) as follows

Γi(s) =

wi(s) if H0,

E + wi(s) if H1,

where Γi(s) then denotes the outcome of the random variable at sample s
and E is a signal level which separates H1 from H0. The mean of wi(s) is
zero and its variance, σ2, models the uncertainty of detection.

A logical solution is to let each node i take several samples, s = 1, . . . , S
and average Γi(s) over all the samples. This is classically known as the
Likelihood ratio test and it is here defined as

Ti =
1

S

S∑
s=1

Γi(s) T xi

where xi is a detection threshold. This basically means that if Ti ≤ xi, node i
will decide that H0 was the occurring event and H1 otherwise. Based on this
test, we may also derive the probability of false alarm and of misdetection.
The first implies the chances of H1 being erroneously detected, while the
second corresponds to the detection of H0 when H1 actually happened.
These probabilities are defined as follows

P
(i)
fa (xi) = Pr[Ti > xi[H0]] = Q

 xi√
σ2

S

 ,

P
(i)
md(xi) = Pr[Ti ≤ xi[H1]] = Q

E − xi√
σ2

S

 ,

where Q(x) is the complementary standard Gaussian distribution given by

Q(x) =
1√
2π

∫ ∞
x

e−
t2

2 dt. (5.10)

Finally, we may derive the problem. The goal is to optimize the thresh-
olds, xi, so as to minimize the probability of false alarm. In order to avoid
the probability of misdetection becoming unreasonably large, it must be
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constrained with a maximum threshold, here denoted ci. By taking advan-
tage of the information held by other nodes, the overall performance may
be improved. In other words, each node receives misdetection probabilities
from neighboring nodes, accounting for their opinions by applying weighting
factors. A global optimization problem corresponding to these descriptions
may be defined as follows

min
x

n∑
i=1

P
(i)
fa (xi)

s.t.
n∑
j=i

bi,jP
(j)
md(xj) ≤ ci, i = 1, . . . , n,

0 � x � E1,

(5.11)

where the weighting factors, bi,j ≤ 0, ∀i, j, bi,i 6= 0,
∑n

j=i bi,j = 1, and
bi,j = 0 when node j does not transmit its probability to node i. See Ap-
pendix B for the MATLAB code defining the objective and constraints, as
well as their gradients.

We test the problem for a network of n = 5 nodes. Let E = 2, σ = 1,
S = 1 and ci = 1/15. Moreover, the weighting factors bi,j , ∀i, j, are initially
drawn randomly from the standard uniform distribution on the interval [0, 1],
then normalized. Additionally, one must ensure that the values bi,i, ∀i, are
sufficiently large compared to the other factors in order to have a feasible
F-Lipschitz problem. This is also logically justified in that the node should
weigh in its own opinion more than of the other nodes. The derivative of

P
(i)
fa (xi) is given by

Q′

 xi√
σ2

S

 = − 1√
2π σ

2

S

e
− x2i

2σ2/S (5.12)

which is clearly always negative, hence we know that the objective function
must be strictly decreasing. Since the derivative of the constraint function
is given by Q′(·) with a negative argument, we may correspondingly con-
clude that the constraint gradient is strictly positive. Additionally, since
both the constraint function and the objective function consists of positive
combinations of exponential functions, it is also clear that all of the gra-
dients are monotonic. Conclusively, both the checkboxes in the objective
function panel of the advanced settings may be checked, as well as both the
checkboxes for the constraints. This allows us to verify the feasibility of the
problem, on the third alternative, in only 15 iterations compared to the 21
iterations and 126 function evaluations which would have otherwise been
necessary.

The distributed algorithm converges in 10 iterations and finds the solu-
tion xi = 0.499, ∀i, see Figure 21 for the algorithm’s progression. One might
think it strange that all the decision variables should have the same value
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since the weighting factors, bi,j , are all different. Keep in mind though, that
the sum of the weights for each constraint are always equal to one, hence
in this sense the constraints are the same. Logically, it is also reasonable
that the threshold should be equal for each node since they all have the
same uncertainty of detection. The centralized algorithm returns the same
solution after 4 iterations and 24 function evaluations, see Figure 22.
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Figure 21: Iterations versus x for the distributed algorithm.
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Figure 22: Iterations versus x for the centralized algorithm.

Testing the Lagrangian methods, we find that the interior point algo-
rithm converges in 10 iterations and 61 function evaluations, see Figure 23,
while the active set method converges in 5 iterations and 31 function eval-
uations, see Figure 24. Notice that the distributed method is this time the
very best performer. With its total of 25 iterations for both the verifying
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process and the algorithm itself, it beats the 31 evaluations of the active set
method. Once again, both of the F-Lipschitz algorithms are faster than the
interior point method.
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Figure 23: Iterations versus x for the interior point method.
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Figure 24: Iterations versus x for the active set method.
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6 Discussion and Further Work

Table 6 summarizes the results of the previous chapter. Clearly, the active
set method has quite often proven to be effective, hence it is interesting
to consider what might be the cause of this. The strategy applied by this
method is to iteratively solve the optimization problem defined by an active
set of the constraints. In other words, the method will start looking for a
solution where the constraints are at the equality. Since it is known that an
F-Lipschitz problem has its optimal point when all of the constraints are ac-
tive, this might be an explanation to the method’s good performance. This
theory is also supported by observing that its progression is quite alike that
of fsolve, see Figures 22 and 24. Still, it is somewhat peculiar that the active
set method should be faster than the centralized algorithm for the problems
with linear and quadratic constraints. After all, fsolve do not even take the
objective function into consideration, while the active set method do.

Analyzing the results, one may conclude that both the distributed and
the centralized algorithms in themselves are superior when the decision vari-
ables increase. For the two problems with n = 10 it is clear that, if the veri-
fication process has a complexity of O(n2), both the F-Lipschitz algorithms
are still better than the interior point method. As can be seen, the active
set method remains the most efficient. Overall, the power control problem
was solved faster than the norm computation problem. This may be jus-
tified by remembering that all of the constraints of the first problem were
equal, while this was not the case for the norm computation. Even though
the active set method was faster, it did not find the globally optimal point
for the norm computation example, neither did the interior point method.
Obviously, it is a major drawback that these methods cannot guarantee a
global solution unless the problem is convex.

Example
Linear Quadratic Power control Norm Distributed

constraints constraints allocation computation detection

n 2 2 10 10 5

Verify 6 6 110 180, 1870 15

Algorithms

Distributed 21 15 4 35 10

Centralized 3, 9 7, 21 2, 22 4, 44 4, 24

Interior p. 11, 33 9, 27 17, 195 43, 473 10, 61

Active set 2, 6 6, 20 3, 33 6, 66 5, 31

Table 6: Summary of the performance of the different algorithms for each
of the examples discussed in Chapter 5. Where there are two numbers, the
first is the amount of iterations and the second is the number of function
evaluations.
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The effectiveness of the active set method throughout all of the exam-
ples is evident. It is however shown that the distributed algorithm is in fact
faster for the distributed detection problem, even when including the itera-
tions from the verifying process. This is perhaps explained by the somewhat
more complicated objective function, consisting of a sum of exponential func-
tions, as compared to the exceedingly simple objective of the two previous
examples, namely −1Tx. It is interesting to note that the active set method
is about twice as fast as the interior point method for this example. The
fact is that the latter method should actually perform exceptionally well for
problems which are convex, which is the case for this problem. It might
be that the active set method is simply that much superior because of the
favorable properties of the F-Lipschitz problem which was discussed above.

There are numerous of additions and changes which may be applied to
improve the toolbox. Naturally, more function types can be added to the
objective function library, like for example the monomial function

f(x) = cxa11 x
a2
2 · · ·x

an
n ,

which is important for the definition of a geometric program. Given x ∈ D ,
the minimum and maximum of this function’s gradient may be found by
systematically checking the value of each exponent, ai. Correspondingly,
this function as well as others may also be added to the class of constraints
in addition to the already defined linear and quadratic constraints.

It would have been beneficial to extend the verification of the qualifying
properties in such a way that one could choose which of the three alterna-
tives the toolbox should check. Quite often, one has some indication as to
which alternative might apply, hence there is no need in wasting time check-
ing the other properties. Of course, this would require that the potential
user has some more knowledge of the theory. Either way, it is always bet-
ter to have more options and increased flexibility. To avoid using fmincon
for the verification, one could possibly implement Newton’s method for this
purpose. This would however mean that the user must also provide the Hes-
sian of the objective and constraints, or else one would have to find a way of
approximating it as is the case for fmincon. In order to support monotonic
constraint and objective gradients which need customized extreme vectors,
additional functionality can be implemented for the advanced settings. This
should allow the user to input the combinations of xi,min and xi,max, ∀i,
which constitutes the extreme vectors for each of the partial derivatives. In
this case, the toolbox would have been able to verify the F-Lipschitz prop-
erty of the norm computation problem in approximately the same amount
of iterations as for the power control problem.

Finally, it is always nice to extend the selection of solvers so as to have
more to compare with, especially distributed computation schemes. As have
been mentioned, it is challenging, if not impossible, to make a general solver
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based on the Lagrangian decomposition methods. However, a solver could
have been implemented for some specific problems, like e.g. the application
examples of Chapter 5, which are typical for wireless sensor networks. Also,
it would be very interesting to see how a second-order algorithm might
perform solving an F-Lipschitz problem. An example of this is the heavy
ball method which is applied in a distributed setup in [17].

7 Conclusion

This work presented a novel toolbox in which the characteristics of both
convex and non-convex problems may be investigated. It was argued that
problems with certain properties may be verified F-Lipschitz with a compu-
tational complexity of O(n2). This claim was supported by the simulation
of several different examples and it was shown that these properties are not
unusual for typical problems within wireless sensor networks. Moreover, the
results indicated that this reduction of computational complexity is essential
if the F-Lipschitz algorithms are to compete with the centralized Lagrangian
methods.

It has however become clear that the F-Lipschitz distributed algorithm
is far superior than the Lagrangian decomposition methods. A comparison
can be made to the example referred to in Section 2.4 for which convergence
was reached in 100 - 200 iterations for a problem with only 3 decision vari-
ables. In some situations, the structure and parameters of a problem may
be of such nature that the F-Lipschitz property is always maintained. The
verification process is in other words not necessary, thus in these cases both
the F-Lipschitz algorithms are almost exclusively the better choice in terms
of iterations. Remember that, in terms of time, the distributed algorithm is
inevitably slower for each iteration since it is dependent on message passing
between nodes.

It is evident that both of the algorithms scales quite well with problem
size, particularly compared to the interior point method. One may conclude
that the F-Lipschitz optimization has an advantage in avoiding the poten-
tially complicated objective function in its algorithms. Though in that case
it is often more of a challenge to show that the objective is valid, i.e., strictly
increasing or decreasing. Evidently, the active set method has proven to be
an exceedingly good solver for F-Lipschitz problems in centralized settings.
However, we have seen that things can go very wrong when it is applied
to more complicated non-convex problems, like for the norm computation
example. Also, if it is faster only when the problem is F-Lipschitz, then we
might argue that the verification process should be the precursor to this al-
gorithm as well, which ultimately makes fsolve the superior algorithm. Con-
clusively, more testing is called for, both on problems which are F-Lipschitz
as well as similar problems which are not.
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A F-Lipschitz Optimization Toolbox

This appendix contains the documentation of all the inline functions pro-
vided by the F-Lipschitz Optimization Toolbox.

Functions for verifying the F-Lipschitz property of a standard form problem:

[f_lip, msg, tot_itr, func_count] =

isflip(handle_nabla_f_0, handle_nabla_F, m, n, lb, ub, data_adv)

[f_lip, msg, tot_itr, func_count] =

isfliplincon(handle_nabla_f_0, m, n, A, lb, ub, data_adv)

[f_lip, msg, tot_itr, func_count] =

isflipquadcon(handle_nabla_f_0, m, n, Q, r, lb, ub, data_adv)

The first function is for problems with a somewhat arbitrary structure,
while the second and third are for problems with linear and quadratic con-
straints respectively. The first input is the function handle to the gradient
of the objective. If your gradient function is called ’myfun’, it is passed as
’@myfun’. The first function also needs the function handle of the constraint
gradient, handle nabla F, while the second function only needs the n×n ma-
trix A which in itself represent the gradient of the linear constraints. For
the last function, the constraint gradient is defined by the n× n× n matrix
Q and the n × n matrix r. The matrix Qi belonging to the constraint i is
given by the following indexing, Q(:, :, i), while the vector ri is correspond-
ingly given as i-th row of r.

The structure data adv can be used to provide information about the
problem, but it is not a necessary input. If used, it should have the following
fields which should be equal to 1 if the statement is true and 0 otherwise

• data adv.obj strict - The objective is strictly increasing/decreasing.

• data adv.obj grad - The objective gradient is monotonic.

• data adv.constr grad - The constraint gradients are monotonic.

• data adv.constr - The constraints are monotonic.

The remaining inputs n, m, lb and ub should be self-explanatory. Finally,
the output f lip is either 1 or 0 depending if the problem was found to be
F-Lipschitz or not. msg is a report of the verification process, potentially
an error message if something went wrong. The last two outputs is the total
amount of iterations and function evaluations performed during the process.
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Functions for verifying the F-Lipschitz property of a canonical form problem:

isflip_canonical

(handle_nabla_g_0, handle_nabla_G, m, n, lb, ub, data_adv)

isfliplincon_canonical(handle_nabla_g_0, m, n, A, lb, ub, data_adv)

isflipquadcon_canonical

(handle_nabla_g_0, m, n, Q, r, lb, ub, data_adv)

where the outputs have been omitted since they are the same as for the
standard form functions. The inputs are the same as before, hence no fur-
ther explanation is needed.

Functions for running the distributed algorithm:

[sol, itrs, x, done] = flipdistr(handle_F, x_0, lb, ub, ac)

[sol, itrs, x, done] = flipdistrlin(A, b, x_0, lb, ub, ac)

[sol, itrs, x, done] = flipdistrquad(Q, r, c, x_0, lb, ub, ac)

[sol, itrs, x, done] =

flipdistr_canonical(handle_G, handle_nabla_G, x_0, lb, ub, ac)

[sol, itrs, x, done] =

flipdistrlin_canonical(A, b, x_0, lb, ub, ac)

[sol, itrs, x, done] =

flipdistrquad_canonical(Q, r, c, x_0, lb, ub, ac)

Not surprising, the first three functions are algorithms for standard form
problems, while the last three are for problems on canonical form. Also
here, there are separate functions for problems with arbitrary structured
constraints, as well as linear and quadratic constraints. The input x 0 is
the n-dimensional starting point, while ac is the desired accuracy which is
not a necessary input since there is always a default accuracy of 1 · 10−6.
The remaining inputs all have the same meaning as above. Obviously, the
output sol represents the solution values, itrs is a vector, [1, 2, . . . , t], where
t is the amount of iterations, while x is an n × t matrix containing all the
values of each xi for each iterate of the algorithm. In other words, the last
column of x also gives the solution values, i.e., if a solution was found. This
is determined by the output done, which is 1 if the algorithm converged and
0 if not.
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B MATLAB Code

Here follows the m-file functions used for the radio power allocation example
discussed in Section 5.4:

function g = G(x)

n = 10;

G_ii = 10^((-70-30)/10);

G_ij = 10^((-90-30)/10);

M = 10^((-120-30)/10);

S_min = 1;

sigma = 10^((-130-30)/10);

g_ = zeros(n,1);

intf = G_ij.*x;

intmod = M.*x.^2;

for i = 1:n,

sum1 = intf*ones(n,1) - G_ij*x(i);

sum2 = x(i)^2*(intmod*ones(n,1)) - M*x(i)^4;

g_(i,1) = G_ii*x(i) + S_min*(sigma - sum1 + sum2);

end

g = g_;

end

function g = nabla_G(x)

n = 10;

G_ii = 10^((-70-30)/10);

G_ij = 10^((-90-30)/10);

M = 10^((-120-30)/10);

S_min = 1;

g_ = zeros(n,n);

intmod = M.*x.^2;

for i = 1:n,

for j = 1:n,

if j == i

sum = x(i)*(intmod*ones(n,1)) - M*x(i)^3;

g_(i,i) = G_ii + 2*S_min*sum;

else

g_(i,j) = -S_min*G_ij + 2*S_min*M*x(i)^2*x(j);

end

end

end

g = g_;

end
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Here follows the m-file functions used for the norm computation example
discussed in Section 5.5:

function g = G(x)

global THETA

n = 10;

gamma_max = 0.75;

g_ = zeros(n,1);

x_sqrt = sqrt(x);

for i = 1:n

g_(i,1) = x(i) + x_sqrt(i)*(THETA(i,:)*x_sqrt’) - gamma_max;

end

g = g_;

end

function g = nabla_G(x)

global THETA

n = 10;

g_ = zeros(n,n);

x_sqrt = sqrt(x);

for i = 1:n,

for j = 1:n,

if j == i

g_(i,i) = 1 + (1/(2*x_sqrt(i)))*(THETA(i,:)*x_sqrt’);

else

if THETA(i,j)

g_(i,j) = (1/(2*x_sqrt(j)))*x_sqrt(i);

end

end

end

end

g = g_;

end

THETA =

0 1 1 1 1 0 0 1 0 0

1 0 1 1 1 0 0 0 0 0

1 1 0 1 1 0 1 1 1 0

1 1 1 0 1 0 0 1 0 0

1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 1

0 0 1 0 0 1 0 1 1 1

1 0 1 1 0 1 1 0 1 1

0 0 1 0 0 0 1 1 0 1

0 0 0 0 0 1 1 1 1 0
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Here follows the m-file functions used for the distributed detection ex-
ample discussed in Section 5.6:

function g = g_0(x)

n = 5;

mu = 0;

sigma = 1;

S = 1;

q = ones(1,n) - normcdf(x,mu,sigma/S);

g = q*ones(n,1);

end

function g = nabla_g_0(x)

sigma = 1;

S = 1;

v = (x.^2)./(2*sigma^2/S);

exps = exp(-v);

g = exps./-sqrt(2*pi*sigma^2/S);

end

function g = G(x)

global WEIGHT

n = 5;

mu = 0;

sigma = 1;

S = 1;

E = 2;

c_i = 1/15;

q = ones(1,n) - normcdf(ones(1,n).*E - x,mu,sigma/S);

g = WEIGHT*q’ - c_i*ones(n,1);

end
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function g = nabla_G(x)

global WEIGHT

n = 5;

sigma = 1;

S = 1;

E = 2;

v = (ones(1,n).*E - (x.^2))./(2*sigma^2/S);

exps = exp(-v);

p_md = exps./sqrt(2*pi*sigma^2/S);

g_ = zeros(n,n);

for i = 1:n,

g_(i,:) = WEIGHT(i,:).*p_md;

end

g = g_;

end

WEIGHT =

0.9071 0.0228 0.0175 0.0526 0

0.0543 0.8719 0.0354 0 0.0383

0 0.0489 0.9078 0.0327 0.0106

0.0032 0 0.0538 0.9282 0.0148

0.0360 0.0130 0 0.0147 0.9363
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