
Master of Science in Engineering Cybernetics
June 2011
Thor Inge Fossen, ITK

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Simulation, Control and Visualization of
UAS

Kristoffer Dønnestad

NTNU Faculty of Information Technology,
Norwegian University of Mathematics and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MSC THESIS DESCRIPTION SHEET

Name: 	 	 	 Kristoffer	 Dønnestad	
Department: Engineering	 Cybernetics	
Thesis Title (English): Simulation,	 Control	 and	 Visualization	 of	 UAS
Thesis Title (Norwegian): Simulering,	 regulering	 og	 visualisering	 av	 UAS	

Thesis Description: The purpose of the thesis is to develop and implement a mathematical model of
the Recce D6 unmanned aerial vehicle (UAV) system for simulation and hardware-in-the-loop
testing. The model should include the aerodynamic forces and comprise feasible actuator dynamics.

The following items must be considered:

1. Derive and implement the relevant dynamics of the Recce D6 UAV system. Model
parameters should be based on data from Odin Aero.

2. The model should be excited using standard aircraft maneuvers such as take-off, landing,
steady flight, turning and climbing/diving. Hence, a simple motion control system must also
be considered and implemented.

3. Create a visualization environment in Matlab to substantiate the UAV simulator model
response.

4. Present your results in a report.

Start date: 2011-‐01-‐17	
Due date: 2011-‐06-‐20

Thesis performed at: Department	 of	 Engineering	 Cybernetics,	 NTNU
Supervisor: Professor	 Thor	 I.	 Fossen,	 Dept.	 of	 Eng.	 Cybernetics,	 NTNU	
 	 	

Abstract

The Unmanned Vehicle Laboratory at the Department of Engineering Cybernetics
at the Norwegian University of Science and Technology has the overall goal of
developing an unmanned aerial system (UAS). The unmanned aerial vehicle (UAV)
to be considered is the Recce D6 delta-wing produced by Odin Aero AS.

A UAS is clearly quite a complex system, and the consequences of system failure
during flight are obviously potentially vital. The need for a comprehensive test
setup for extensive ground testing is clearly important, and a flight simulator of
the UAV is a key component of such a test setup.

A mathematical model of Recce D6 is suggested from a first-principle approach and
together with appurtenant actuators implemented in Matlab /Simulink. A simple
motion control system with reference models and simple PID controllers are also
discussed and implemented. Last, a Matlab-native graphical interface is developed
to substantiate the UAV handling.

The simulation model, motion control system and visualization is put together in a
nearly 7 minutes long demonstration video of a fully automated flight. The video
illustrates a set of aircraft maneuvers and handling issues related to take off, touch
and go landings, climbing, descent, banked turn, stall and landings under gusty
wind and no wind.

The resulting video reveals a promising basis of a simulator environment for hardware-
in-the-loop testing, but further tuning of the model parameters is required to ac-
quire an accurate artificial representation of the aircraft.

i

ii

Preface

The hand-in of this thesis finalizes a master’s degree in engineering cybernetics from
Department of Engineering Cybernetics at the Norwegian University of Science and
Technology in Trondheim, Norway. It has been five exacting, but highly profitable
years.

With no background from aviation from before, work on this thesis has been a great
challenge. The really time consuming parts has turned out to be the somewhat less
expected ones. This is not necessarily reflected in the text, as there is really not
that much to say when the final result is eventually finalized. Topics like the landing
gear dynamics and the heading reference model and the graphical environment are
examples of such unexpected, but major time consuming challenges. The graphical
environment in particular holds the unfortunate property of being and endless task
always subject to further tweaking and development.

Thanks goes out to everyone that have been working at the unmanned vehicle
laboratory over the last year for contributing to a good working environment. I
wish all of my fellow students the best for the future.

Thanks to my supervisor professor Thor Inge Fossen at the Department of Engi-
neering Cybernetics for establishing the project and the laboratory, and for useful
feedback. Also thanks to Helle Slupphaug for help with the English language.

The overall unmanned aerial system project at the university is very interesting.
The establishment of a blog or website of some sort for the project progress is
encouraged. With a hope that the contributions in this thesis is found useful for
further usage, I wish the project and all contributors the best of luck for the future.

Kristoffer Dønnestad

iii

iv

v

Abbreviations

AC Aerodynamic Center
AoA Angle of Attack
CG Center of Gravity (Center of mass)
CO Center of Origin
CP Center of Pressure
DOF Degree Of Freedom
EKF Extended Kalman Filter
GNC Guidance, Navigation and Control
GNSS Global Navigation Satellite System
HIL Hardware-in-the-loop
INS Inertial Navigation System
MTOW Maximum Take-Off Weight
NED North East Down
SA Stability Axes
NTNU Norwegian University of Science and Technology
UAS Unmanned Aerial System
UAV Unmanned Aerial Vehicle

vi

Contents

Abstract i

Preface iii

Abbreviations v

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Theory Basis and Advised Literature 3

1.3 Thesis Outline and Contributions . 4

1.4 Recce D6 Overview . 4

1.5 Current Overall Project Status . 5

2 Background 7

2.1 Kinematics . 7

2.1.1 Vectors . 7

2.1.2 Coordinate Systems . 9

2.1.3 Rotations . 11

2.1.4 Angular Velocity Transformation 13

2.2 Kinetics . 14

2.2.1 Forces and Moments on a Rigid Body 14

2.2.2 Rigid Body Dynamics . 14

2.3 Aerodynamics . 15

vii

viii CONTENTS

3 Recce D6 Simulation Model 19

3.1 Equations of Motion . 20

3.1.1 Aerodynamics, τa . 24

3.1.2 Thrust, τt . 31

3.1.3 Landing gear, τLG . 32

3.1.4 Tuning the Aerodynamics . 34

3.2 Propulsion System . 37

3.3 Flap Dynamics . 39

4 Recce D6 Control Design Model 41

4.1 Surge Velocity Control . 44

4.2 Altitude Control . 44

4.3 Heading Control . 45

5 Motion Control System, Flight Mode 49

5.1 Guidance System . 50

5.1.1 Reference Models . 51

5.1.2 Heading Reference Model . 51

5.2 Control system . 53

6 Implementation 55

6.1 Graphic Interface . 55

6.1.1 3D Visualization . 55

6.1.2 Artificial Horizon . 56

6.1.3 Compass . 58

6.2 Crash Handling . 59

7 Simulated Flight 61

7.1 Case Study I: Landing Gear Dynamics 63

7.2 Case Study II: Take-Off . 65

7.3 Case Study III: Climbing . 66

7.4 Case Study IV: Horizontal Steady Flight 66

7.5 Case Study V: Dutch Roll . 67

CONTENTS ix

7.6 Case Study VI: Banked Turn . 68

7.7 Case Study VII: Descent . 68

7.8 Case Study VIII: Wind . 68

7.9 Case Study IX: Touch-and-go, Crosswind 70

7.10 Case Study X: Stall . 71

7.11 Case Study XI: Propulsion System 72

7.12 Case Study XII: Touch-and-go, Upwind 72

7.13 Case Study XIII: Landing at Low Airspeed 73

8 Conclusions 75

8.1 Further Work . 75

Bibliography . 77

A Case Study video 79

B Matlab code 83

B.1 RecceD6_init.m (Matlab script) . 83

B.2 MakeVideo.m (Matlab script) . 89

B.3 Plot3d.m (Matlab function) . 98

B.4 aHorizon.m (Matlab function) . 103

B.5 RecceCompass.m (Matlab function) 104

C Digital attachment 107

D Recce D6 documentation from Odin Aero 109

E Servo motor specifications 111

x CONTENTS

List of Figures

1.1 An imagined UAS constellation . 2
1.2 Photo of RECCE D6 . 5
1.3 Flap deflection angle definitions . 6

2.1 Illustration of the relevant coordinate systems in question. 10
2.2 Airfoil definitions . 15

3.1 Illustration of inertial frame, body frame and center of gravity. . . . 23
3.2 Simulator model structure . 24
3.3 The five aerodynamic centers of the simulator implementation. . . . 26
3.4 The nonlinear lift coefficient . 30
3.5 The nonlinear pitching moment coefficient. 31
3.6 Li-pol battery voltage characteristics 39

5.1 GNC structure . 50
5.2 Motion control principle . 53

6.1 Simulink snapshot of the motion control system 56
6.2 An example plot of the Matlab 3D interface 57
6.3 The color-map used in the graphical environment. 57
6.4 An example plot of the Matlab Artificial horizon plot 58
6.5 An example plot of the Matlab compass 59

7.1 An example snapshot of the simulated flight video window 64
7.2 Average wind strength in simulated flight video. 69

xi

xii LIST OF FIGURES

Chapter 1

Introduction

The Unmanned Vehicle Laboratory at the Department of Engineering Cybernetics
at the Norwegian University of Science and Technology (NTNU) has the overall
goal of developing an unmanned aerial system (UAS). A UAS is a complete sys-
tem consisting of all elements needed to support and utilize an Unmanned Aerial
Vehicle (UAV). Such elements may be one or more UAV’s, on board hardware
and software, ground stations, data-links, launching and landing systems and so
forth. Today, such systems have wide ranges of military applications including in-
telligence, surveillance, target acquisition, reconnaissance and target elimination.
Civilian applications are currently not as many, but it is easy to imagine such sys-
tems assisting in border patrol, search and rescue missions, data acquisition for
numerous research disciplines and sea surveillance. Figure 1.1 illustrates an imag-
ined situation where a small fleet of unmanned air vehicles equipped with video
camera and infrared cameras assists in a search for missing people after a hazardous
storm in an avalanche exposed area.

1.1 Motivation

A UAS is clearly quite a complex system, built up by a lot of components created
by numerous distinct developers. The consequences of system failure during flight
are obviously potentially vital, especially if flying near urban territories. Thus,
demands regarding safety, quality and robustness of controllers, data links, hard-
ware, software and human-machine interaction has to be very strict, yet still fault
tolerant. In addition to the technical challenges, a project like this faces significant
restrictions from aviation authorities. It becomes clear that developing a compre-
hensive test setup for extensive ground testing is a fundamental requirement for
any involved system. A flight simulator that comprises the dynamics of the UAV
and its actuators immediately stands out as a key component of such a test setup.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: An imagined UAS constellation of a search for missing people in a
hazardous environment.

1.2. THEORY BASIS AND ADVISED LITERATURE 3

Mathematical equations of motion that captures the dynamics of the vehicle in
question is the very cornerstone to any flight simulation environment. (Allerton,
2009)

1.2 Theory Basis and Advised Literature

Creating an aerial simulator system requires some insight to a wide range of en-
gineering disciplines including classical mechanics, fluid mechanics, programming,
mathematics and control engineering. In addition, some insight to aviation termi-
nology, flight visualization and instrumentation should be established.

Classical mechanics (physics) forms the foundation for mathematically describing
the dynamic motion (kinetics) and location /orientation (kinematics) of any rigid
body. Being one of the first branches within physics, the field has become very rich
in results. Useful references in this topic is Egeland and Gravdahl (2003), Fossen
(2011b) and Yuan (1988).

Being submerged into viscous air, the aircraft is subject to pressure-induced forces
and moments as it moves through it. This is a big and very complicated subject
from the field of aerodynamics, a subfield of fluid mechanics. Useful references
addressing aerodynamics for aircraft are Katz and Plotkin (2001), and Houghton
and Carpenter (2003). More general publications regarding fluid-induced lift and
drag are Hoerner and Borst (1985) and Hoerner (1958) respectively. For fluid
mechanics in general, White (2008) and Graebel (2007) provide a good supplement
to the above mentioned texts in the sense that they summarize many complex
subjects in an easily readable manner.

The derivation of automatic flight controllers (autopilots) involves the study of
the dynamics of the system, in the agenda of feeding forward and/or feeding back
states of a system to a controlled input in order to alter the system dynamics as
desired. Clearly a subject with numerous different approaches, all of which have
different properties. Basic control engineering literature is Balchen, Andersen and
Foss (2003). Often, dynamic systems can be linearized about a certain equilibrium
giving a linear time invariant (LTI) system. For such systems, Chen (1999) provides
a wealth of results from linear algebra with applications to control engineering.
Where linearization is not feasible or desired, Khalil (2002) represents the nonlinear
counterpart. Finally Fossen (2011b) provides a summary of all disciplines desired in
a motion control system, including state-of-the-art schemes for guidance systems,
navigation systems and both linear and nonlinear control systems.

There also exists texts addressing flight simulation, flight control and flight me-
chanics directly. One should keep in mind that these books usually addresses
conventional aircraft and fighters, and comprise much more advanced propulsion,
actuation and instrumentation systems compared to a small UAV. Examples are
Allerton (2009), McLean 1990), Pratt (2000) and Yechout et al. (2003).

4 CHAPTER 1. INTRODUCTION

Finally, less advanced books, meant for instance for pilot training in a non-engineering
context, is very handy get into airplane, flight and aviation terminology. Such eas-
ily read books include Harnard and Philpott (2004) and Nordian Aviation Training
Systems (2005)

In general, it has not been achieved to obtain any good texts addressing small
delta-wings directly.

1.3 Thesis Outline and Contributions

Chapter 2 lists a set of fundamental results related to kinematics, dynamics and
aerodynamics of rigid bodies, that is essential to the subsequent chapters and
implementations.

Chapter 3 suggests a mathematical module-based simulation model of the UAV, de-
rived from a first-principle approach using basic laws of dynamics and aerodynam-
ics. The model includes actuation models (including power plant) and nonlinear
aerodynamic coefficients.

Chapter 4 suggests a set of simplifications to the aerodynamic model from the
simulator-model to obtain a model better suitable for control design.

Chapter 6 presents a set of Matlab functions developed to effectively visualize the
UAV, and discusses some implementation aspects of the simulator model.

Chapter 7 discusses a six minute flight simulation video, produced in Matlab, using
the simulator model derived in chapter 3 and a set of simple controllers. The video
comprise a set of 13 distinct case-studies, all of which are meant to illustrate model
properties, different aircraft maneuvers and stability considerations.

1.4 Recce D6 Overview

The aircraft to be considered is the Recce D6, produced by Odin Aero AS. This
is the actual UAV that will be used by the Unmanned Vehicle Laboratory for the
overall UAS project. The UAV has not been available for inspection or testing
during the work on this particular thesis. A photo of the aircraft is provided
courtesy of Odin Aero AS in figure 1.2. All the available documentation of the air
vehicle is listed in appendix D.

The main purposes of the aircraft body parts, shown in figure 1.2, can be summa-
rized to

• Wing: Produce lift

• Elevon: (Elevator and Aileron merged) Control roll and pitch

• Elevon servo: Provides the elevon deflection

1.5. CURRENT OVERALL PROJECT STATUS 5

Right Elevon
Left Elevon

Right Wing

Left Wing

Right Rudder

Left Rudder

Engine

Right Elevon Servo Left Elevon Servo

Rudder Servo

Nose wheel
(Landing gear)

Right Stabilizer
Left Stabilizer

Fuselage

Figure 1.2: Photo of RECCE D6. (Photo: Carl Eric Stephansen, Odin Aero AS)

• Stabilizer and rudder: Control yaw

• Rudder servo: Provide the rudder’s deflections. This single servo control both
the rudders at the left and right stabilizer.

• Engine: Produce thrust

• Fuselage: Hold things together, carry payloads

• Landing gear: Provide smooth landing and take-off characteristics

The four actuator deflection angles (δel, δer, δrlδrr) are defined in figure 1.3.

1.5 Current Overall Project Status

The overall project was started autumn 2010, with six students carrying out project
work for the course TTK4550 at NTNU. The projects includes

• Inertial Navigation Systems (INS), Observer design and Extended Kalman
Filter (EKF)

• Framework for Operating System and Peripheral Interfacing related to UAS

6 CHAPTER 1. INTRODUCTION

el

er

rl

rr

Figure 1.3: Flap deflection angle definitions

• Flight simulator framework, and aircraft modeling

In parallel with work on this thesis, three other students are contributing to the
overall UAS project through their master’s-thesis at the unmanned vehicle labora-
tory. The projects includes

• Modeling of Global Navigational Satellite Systems (GNSS) for Hardware-in-
the loop (HIL) testing.

• Development and evaluation of Inertial Navigation Systems schemes.

• Hardware and software integration for the UAV.

No outline of timetable for future work or actual flights are known.

Chapter 2

Background

Essential to the study of dynamics are rigid body kinetics and kinematics. For air-
craft, whose motion heavily depend on fluid-induced forces and moments from the
surrounding air, aerodynamics is also vital. This chapter states the most fundamen-
tal aspects of rigid body kinetics, kinematics and aerodynamics used throughout
the thesis.

2.1 Kinematics

Kinematics is the study of the geometrical aspects of motion, without considering
the forces and moments that actually caused the motion. Notations and results
are mainly taken from Egeland and Gravdahl (2003), Fossen (2011b) and SNAME
(1950).

2.1.1 Vectors

Vectors are heavily used to describe entities such as forces, velocities, positions,
torques and so forth. A vector is defined as to have a direction and a magnitude.
It will mainly be described in terms of a coordinate-free vector, or as components
of a predefined Cartesian coordinate system (a coordinate vector). The following
vector notations are used:

7

8 CHAPTER 2. BACKGROUND

~u = u1~a1 + u1~a1 + ...+ un~an
A coordinate free vector of order n, described in terms of a linear
combination of the orthogonal unit vectors ~ai, i ∈ {1, 2, ..., n}

uc = [u1 u2 ... un]T
A coordinate vector of order n, described in terms of components of the
Cartesian coordinate system c = {~a1,~a2, ...,~an}. The superscript may be
omitted if it is evident from the context which coordinate system is referred,
or if it is evident that a specific coordinate system reference is superfluous.

|~u|
The magnitude of ~u. ~u is said to be a unit vector if |~u| = 1

u× or S(u)
The skew-symmetric form of the 3-dimensional coordinate vector u.
u× ∈ R3×3

i~x
A coordinate free unit vector specifying the direction of the x-axis of the
coordinate system {i~x,i ~y,i ~z} ∈ i.

Vector representations of forces, moments and velocities used are defined by the
following examples:
~vb/n ∈ R3 [m/s] Linear velocity of BODY with respect to NED
~ωb/n ∈ R3 [rad/s] Angular velocity of BODY with respect to NED
~rb/n ∈ R3 [m] Vector defining the position of ob with respect to on
~qb/n ∈ R4 [rad] A unit quaternion defining the orientation of {b} with

respect to {n}
~fb ∈ R3 [N] Force with line of action through ob
~mb ∈ R3 [Nm] Moment about ob

In the following, only vectors in the three-dimensional Euclidean space is consid-
ered. That is; vectors of order 3; u ∈ R3. The scalar product of two vectors are
defined as:

~u · ~v = |~u||~v| cos θ = uTv (2.1)

where θ is the angle between the two vectors. The cross product of two vectors are
defined as:

~u× ~v =

∣∣∣∣∣∣
~a1 ~a2 ~a3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ =

 u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 (2.2)

The skew-symmetric form of a coordinate vector u is defined as:

u× = S(u) =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 (2.3)

2.1. KINEMATICS 9

The cross product may then be written:

u× v = u×v = S(u)v (2.4)

2.1.2 Coordinate Systems

Defining reference coordinate systems:
NED {n} North East Down coordinate system

A coordinate system whose origin is fixed at a certain point on
the Earth’s surface, and whose ~x-axis points northwards, the
~y-axis points eastwards and the ~z-axis points downwards. Thus,
the ~x and the ~y axes are parallel to a tangent plane at the
Earth’s surface at this point. (This coordinate system may also
be referred to as Flat Earth (FE) coordinate system.) This
coordinate frame is chosen to be the inertial reference frame
throughout this text.

BODY {b} Body coordinate system
A coordinate system whose origin is fixed in the vehicle, and
whose~x-axis points in the longitudinal direction (positive in the
natural forward direction), the ~yb-axis points in the lateral
direction (positive in the natural right-direction), and the ~z-axis
is a normal axis to the ~x~y plane, chosen to have positive direction
to complete the right hand rule (natural downwards.)

SA {s} Stability coordinate system
An intermediate coordinate system rotated an angle α (Angle of
Attack, α - AoA) about b~y.

WIND {w} Wind coordinate system
A coordinate system whose ~x-axis points in the direction of the
vehicle velocity vector relative to the air. It is rotated an angle
−β (β is sideslip angle) about s~z.

The coordinate systems are illustrated in figure 2.1.

Defining the characteristic points on an aircraft body:
CG Center of mass (Also called Center of gravity)

The point where the gravitational force acts on the body.
CO Center of origin.

The point where the BODY coordinates has its origin.
CP Center of pressure.

The point where the the pressure induced forces acts on
the body.

AC Aerodynamic center
The point where the aerodynamic forces and moments
are given about.

Defining positions, velocities and moments along the axis of BODY, NED and
WIND:

10 CHAPTER 2. BACKGROUND

 {n}

{b}

(north)

(east)

(down)

x

y

z

y
x

z

b

b

b

n

n
n

z

s

y

w

x

w

{s}
{w}

z

w

y

s

x

s

BODY
SA

WIND

NED

Angle of Attack

α

α

α

β

β

β

Sideslip angle

Airspeed

Vw

Figure 2.1: Illustration of the relevant coordinate systems in question. It is evident
that the airstream velocity vector vwb/w =

[
Vw 0 0

]
relative to body easily can

be defined using Vw, α, β.

Linear Angular
Axis Position Velocity Force Position Velocity Moment

[m] [m/s] [N] [rad] [rad/s] [Nm]
b~x x u X p K
b~y y v Y q M
b~z z, h w Z r N
n~x N nu φ
n~y E nv θ
n~z D nw W ψ
w~x L β
w~y D α
w~z Mp

Table 2.1: Nomenclature of positions, orientations, velocities, forces and moments
along and about some coordinate frame axis

Note that N and D are used two times to denote two different entities respectively.
Although it might seem confusing from this table, the context in which it is referred
to, usually gains no confusion in which it is used. To keep consistency with other
literature it is kept like this. The following nomenclature is often used

2.1. KINEMATICS 11

X Axial force x Surge
Y Side force y Sway
Z Normal force z Heave
K Rolling moment φ Roll
M Pitching moment θ Pitch
N Yawing moment ψ Yaw

N North L Aerodynamic lift
E East D Aerodynamic drag
D Down Mp Aerodynamic

pitching moment

α Angle of attack W Weight
β Sideslip angle h Altitude (h = −z)

2.1.3 Rotations

The orientation of one coordinate system with respect to an other are usually
defined in terms of Euler angles, angle axis parametrization, Euler parameters
(unit quaternions) or by a rotation matrix. The material is taken from Egeland
and Gravdahl (2003).

Euler angles are the most commonly used terminology to describe rotations, possi-
bly due to its intuitive nature. Rotations in terms of Euler angles are three simple
rotations about the three principal axes of a coordinate system:

• Roll (φ) - rotation about the ~x-axis

• Pitch (θ) - rotation about the ~y-axis

• Yaw (ψ) - rotation about the ~z-axis

Define

Θ :=
[
φ θ ψ

]T (2.5)

The rotation matrix Rb
n ∈ R3×3, changing the coordinates of ub to un in terms

of Euler angles, Rn
b (φ, θ, ψ) = Rn

b , can be written as the product of the above
mentioned simple rotations; Rx,φ, Ry,θ and Rz,ψ:

12 CHAPTER 2. BACKGROUND

Rn
b = Rz,ψ ·Ry,θ ·Rx,φ (2.6)

=
[

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
︸ ︷︷ ︸

Rz,ψ

·
[

cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

]
︸ ︷︷ ︸

Ry,θ

·
[

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

]
︸ ︷︷ ︸

Rx,φ

(2.7)

=

 cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ
sψcθ cψcφ+ sψsθsψ −cψsφ+ sψsθcφ
−sθ cθsφ cθcφ

 (2.8)

This approach is attractive, but further investigation on the resulting rotation ma-
trix reveals loss of rank (singularities) for some Euler-angle combinations. Also,
for computer realizations, the computation of a rotation is clearly quite CPU de-
manding due to the trigonometric terms.
Any rotation in three dimensional space may also be described in terms of a vector
~k ∈ R3and a simple rotation angle θ about this vector. This introduces a four
parameter scheme called angle-axis parametrization to define rotations in three
dimensional space.
The rotation matrix Rb

a = Rk,θ ∈ R3×3 changing the coordinates of ua to ub in
terms of the angle axis parameters is found to be:

Rk,θ = I + k× sin θ + k×k×(1− cos θ) (2.9)

This approach is also somewhat intuitive, and attractive in the sense that it does
not encounter any singularities. The downside, however, is that this approach is
still quite CPU demanding.
The concept of the angle axis parametrization can be further extended to Euler
parameters; defined in terms of η ∈ R and ~ε ∈ R3 such that

η = cos θ2 (2.10)

ε = k sin θ2 (2.11)

The rotation matrix Rk,θ = Re(η, ε) ∈ R3×3 changing the coordinates of ua to ub
in terms of the Euler parameters is found to be:

Re(η, ε) = I + 2ηε× + 2ε×ε× (2.12)

=
[
η2 + ε2

1 − ε2
2 − ε2

3 2 (ε1ε2 − ηε3) 2 (ε1ε3 + ηε2)
2 (ε1ε2 + ηε3) η2 − ε2

1 + ε2
2 − ε2

3 2 (ε2ε3 − ηε1)
2 (ε1ε3 − ηε2) 2 (ε2ε3 + ηε1) η2 − ε2

1 − ε2
2 + ε2

3

]
(2.13)

This approach is attractive in the sense that it never encounter singularities, and
no trigonometric terms in terms of the Euler parameters, making it quite CPU
friendly. Further, defining the vector

q = [η εT]T ∈ R4 (2.14)

2.1. KINEMATICS 13

and notes that
|q| = 1 (2.15)

introduces the ability to treat the vector of Euler parameters (2.14) as a unit
quaternion vector. Conveniently, it is now possible to apply results from the theory
of quaternions, and in particular the theory of unit quaternions.
The quaternion product is denoted ⊗, and the product of two unit quaternions is
defined as

q := q1 ⊗ q2 =
[

η1η2 − εT1 ε2
η1ε2 + η2ε1 + ε×1 ε2

]
(2.16)

Rotating the vector u can now be carried out by calculating the unit quaternion
product [

0
Re(η, ε)u

]
=
[
η
ε

]
⊗
[

0
u

]
⊗
[

η
−ε

]
︸ ︷︷ ︸

q̄

(2.17)

where q̄ denotes the quaternion conjugate, or quaternion inverse.
Consider two frames whose orientation is defined in terms of Θ1 and Θ2. The
orientation error

Θ̃ = Θ1 −Θ2 (2.18)
may also be represented in terms of the rotation matrices as

R̃ = (R1)T R2 (2.19)

or in terms of quaternion error as

q̃ = q̄1 ⊗ q2 (2.20)

2.1.4 Angular Velocity Transformation

Integrating (2.34) to obtain the body’s orientation does not make any physical
sense. To relate the rotation velocities of the body (ωbb/n) to a rate of change in
orientation (q̇b/n) an angular velocity transformation is applied: (Fossen, 2011b;
Yuan, 1988)

q̇b/n = T(qb/n)ωbb/n (2.21)

= U
(
ωbb/n

)
qb/n (2.22)

where

T(q) = 1
2

−ε1 −ε2 −ε3
η −ε3 ε1
ε3 η −ε1
−ε2 ε1 η

 2.23 (2.23)

U (ω) = 1
2

[
0 −ωT
ω −ω×

]
(2.24)

14 CHAPTER 2. BACKGROUND

The same transform can also be carried out using Euler angles (Vik, 2000)

Θ̇b/n = T
(
Θb/n

)
ωbb/n (2.25)

where

T
(
Θb/n

)
= 1

cos θ

 cos θ sinφ sin θ cosψ sin θ
0 cosφ cos θ − sinφ cos θ
0 sinφ cosφ

 (2.26)

for θ 6= (2n− 1)π and n is some integer.

2.2 Kinetics

Kinetics is the study of the resulting motion caused by forces and moments. Nota-
tions and results are mainly taken from Fossen (2011b) and Egeland and Gravdahl
(2003).

2.2.1 Forces and Moments on a Rigid Body

Consider a force ~fa with line of action through the point a, and a moment ~ma

about the point a. Then about some other point b (Egeland and Gravdahl 2003)

~fb = ~fa (2.27)
~mb = ~ma + ~rb/a × ~fa (2.28)

2.2.2 Rigid Body Dynamics

The Newton-Euler rigid body equations of motions are given with respect to an
inertial reference frame (here: the NED frame) (Egeland and Gravdahl, 2003;
Fossen, 2011b):

~fg =
nd

dt
~pg =

nd

dt
m~vb/n (2.29)

~mg =
nd

dt
~hg =

nd

dt
Ig~ωb/n (2.30)

where the inertia matrix Ig (not to be confused with the identity matrix I) is
defined as

Ig =
ˆ
rb

[(
rb
)2 I− rb

(
rb
)T]

dm (2.31)

=
ˆ
rb

 y2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 dm (2.32)

2.3. AERODYNAMICS 15

v

Mean chord line

y

x

z

Lift

Drag

Airstream direction

Pitching AC

CO

δ

}{ ia

}{b

x

y

z

b
b

b

ia

ia

ia

moment

Figure 2.2: Airfoil definitions

Here, rb denotes the rigid body in question and dm = ρdV denotes an infinitesimal
mass.

Time differentiation of a vector ~a in a moving coordinate frame {b} with respect
to {n} satisfies (Egeland and Gravdahl, 2003)

nd

dt
~a =

bd

dt
~a+ ~ωb/n × ~a (2.33)

Inserting (2.33) into the equations (2.29) and (2.30), the rigid body dynamics can
conveniently be written (Fossen, 2011b)[

mI 0
0 Ig

]
︸ ︷︷ ︸

MRB

[
v̇bc/n
ω̇bn/b

]
︸ ︷︷ ︸

ν̇

+
[
m(ωbn/b)× 0

0 (ωbn/b)×Ig

]
︸ ︷︷ ︸

CRB(ω)

[
vbc/n
ωbn/b

]
︸ ︷︷ ︸

ν

=
[

f bc
mb
c

]
︸ ︷︷ ︸

τ

(2.34)

where the following vectors are defined for convenience:
ν = [(vbb/n)T (ωbb/n)T]T = [u v w p q r]T
η = [(rnb/n)T (qb/n)T]T = [x y z η ε1 ε2 ε3]T
τ = [(f bb)T (mb

b)T]T = [X Y Z K M N]T

2.3 Aerodynamics

The material in this chapter is mainly taken from Nordian Aviation Training Sys-
tems (2005), Hughton and Carpenter (2003) and Barnard and Philpott (2004) The
airfoil in figure 2.2 is a typical cross section of an asymmetric wing along its mean
chord line. Note that the orientation of the {ai} and the {b}-frame does not nec-
essarily coincide. The origin of {ai} is referred to the Aerodynamic Center (AC).

The two aerodynamic forces lift and drag have lines of action through the airfoil’s
center of pressure. This point moves at different flight conditions, so it is more
convenient to represent the forces in the aerodynamic center. To include the effect

16 CHAPTER 2. BACKGROUND

of CP not necessarily coinciding with AC, an aerodynamic pitching moment is
introduced to act about AC. The aerodynamic center is a fixed point along the
chord where the pitching moment coefficient vary little despite of changes in the
lift coefficient. It it usually found a 25% chord length from the leading edge of the
airfoil. (Hoerner and Borst, 1985)

Defining the aerodynamic forces and moments about AC (Houghton and Carpenter
2003)

D [N] R1 Drag force parallel to airstream w~x
L [N] R1 Lift force perpendicular to airstream; parallel to w~y
Mp [Nm] R1 Pitching moment about w~z

which is usually defined as

L := 1
2ρV

2ALCL (2.35)

D := 1
2ρV

2ADCD (2.36)

Mp := 1
2ρV

2c̄AMpCMp (2.37)

where
Ci [·] R1 Aerodynamic coefficient.
Ai

[
m2] R1 Reference area

ρ
[
kg/m3] R1 Density of air

V [m/s] R1 Airspeed
c̄ [m] R1 Mean chord length

i ∈ {L,D,Mp}. The aerodynamic coefficients are usually obtained by trial flights
or performing empiric wind tunnel tests for a specific aircraft or airfoil design about
the AC.

Lift
Lift is defined as the resulting force perpendicular to the airstream direction. As the
wing moves relative to the surrounding air, the airspeed along the different parts
of the wing is altered. Consequently, the pressure distribution is also altered.1Any
pressure induced by fluid motion on a body generates a perpendicular force on the
surface. By designing a wing such that the relative airspeed on the upper side of
the wing is higher than the lower side, the difference in forces due to the pressure
distribution generates lift. This is the key phenomena that makes it possible to lift
a body with higher density than air.

Drag
Drag is defined as the resulting force parallel to, but with opposite direction than,

1The balance between fluid velocity, dynamic pressure and elevation in incompressible and
frictionless fluids along a streamline is described by Bernoulli’s equation, which is a widely known
equation in fluid dynamics. In-depth description of the theorem can for instance be found in
White (2008, pp. 183-192).

2.3. AERODYNAMICS 17

the relative airstream direction. Drag can be considered to consist of the sum of
parasite drag, and induced drag. The former is the drag component generated by
the actual motion of a body in a viscous fluid. It can be further broken down into
form drag, skin friction drag and interference drag. The latter is a by-product of
the creation of lift. The following short description of the different drag components
are taken from Nordian Aviation Training Systems, London metropolitan university
(2005):

• Form drag (pressure drag) is the result of changed pressure distribution,
and thus altering the forces acting on the wing, due to viscous boundary
layer flow separation. As the name suggests, this is due to the shape of the
immersed body.

• Skin friction drag is the drag component induced by fluid displacement
along a surface because of its roughness.

• Interference drag is generated in the junction between different bodies,
for instance in the junction between the fuselage and a wing. The combined
drag of two joined bodies turns out to be somewhat higher than the sum of
the independent drag of the bodies. An example: To generate lift, the air
velocity at the upper side of the wing needs to be higher than the general
air velocity of the aircraft. This difference in airspeed results in vortices in
the transition between body parts. The continuous acceleration of the fluid
particles in the vortices results in a drag force acting on the body.

• Induced drag is a bi-product of the generation of lift. Lift is the result
of difference in pressure over and under a wing. Considering the tip of a
wing in flight; The difference in pressure makes the higher-density air under
the wing expand into the lower-density air around the wingtip. This results
in an airstream forming a twisting vortex core behind each wing tip. This
airstream generates a complicated flow pattern that results in a so-called
downwash airstream angle. The lift generated is actually perpendicular to
this airstream direction, rather than the relative wind direction. With the
lift defined as perpendicular to the relative airstream, the components of the
induced lift vector from the downwash airstream needs to be decomposed
into a lift component relative to the relative airstream, and the resulting
component is considered as induced drag.

18 CHAPTER 2. BACKGROUND

Chapter 3

Recce D6 Simulation Model

The choice of a mathematical model highly depends on the purpose of it. Creat-
ing a model can in it self be a great way of gaining understanding of a system.
Furthermore, the models may be used to simulate systems to foresee potential
problems, and in the derivation of controllers. One might think that the “best”
mathematical model is the mostly advanced - the one that propagates the states
“perfectly” according to reality for a global workspace. In reality, a compromise
between demand of accuracy for the target application and resources available for
deriving and solving the model has to be made.

Many models of conventional aircraft are available in a variety of textbooks. For
delta wings, like the Recce D6, out-of-the-box models are considerably harder to dig
up. This chapter addresses the derivation of a model used for simulating purposes
from rigid body kinetics and basic aerodynamics in 6 DOF. The resulting model in-
cludes actuator dynamics (including motor, battery and servo motors) and landing
gear dynamics. This is mainly done so that as many unforeseen problems as possi-
ble can arise during ground testing on the simulator, but also in order to be able to
simulate very specific error-scenarios. The model is build up by defining five body-
parts and one motor, and parametrize the aerodynamic properties of the bodyparts
independently. This modular approach facilitates the ability of rapidly changing
existing, or putting together new aircraft designs by reusing existing bodyparts.

For model-based controller-derivation within a restricted flight-envelope (that is,
the set of nominal flight conditions), a lot of simplifications should be made. This
is done in the next chapter.

19

20 CHAPTER 3. RECCE D6 SIMULATION MODEL

3.1 Equations of Motion

The NED frame is chosen as the inertial frame. The total mathematical model
used to simulate Recce D6 about its CG is

η̇ =
[

Rn
b 0

0 T(q)

]
ν (3.1)

Mν̇ + C(ω)ν = τ g + τ a + τ t + τ lg (3.2)

where the system inertia matrix M, and the Coriolis-Centripetal matrix might
include aerodynamic mass and inertia (also called aerodynamic added mass) in
addition to the rigid body mass and inertia (Fossen, 2011a). The added mass term
represents an “additional mass” due to fluid displacement and will be treated as
a constant in this thesis. For further reading about this topic consult for instance
Katz and Plotkin (2001), Graebel (2007), White (2008) and Fossen (2011b).

A short explanation on the forces applied to the equations of motion:
τ g Force and moment due to gravity
τ a Forces and moments due to aerodynamic effects
τ t Force and moment due to thrust
τ lg Forces and moments due to wheel displacement

Aircraft is usually designed to be symmetrical about the b~xb~z-plane (McLean,
1990), which implies Ixy = Iyz = 0 giving the rigid body inertia matrix about
a point on the b~x-axis:

IRB =

 Ixx 0 −Ixz
0 Iyy 0
−Ixz 0 Izz

 (3.3)

Note that about the center of mass, the rigid body product of inertia Ixz = 0 as
well. For simplicity, also assume that this holds for the corresponding aerodynamic
added inertia. About CG, the system inertia matrix M becomes diagonal:

M = MRB + MF (3.4)

=

 m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx 0 0
0 0 0 0 Iyy 0
0 0 0 0 0 Izz

−
 Xu̇ 0 0 0 0 0

0 Yv̇ 0 0 0 0
0 0 Zẇ 0 0 0
0 0 0 Lṗ 0 0
0 0 0 0 Mq̇ 0
0 0 0 0 0 Nṙ

 (3.5)

=

 m −Xu̇ 0 0 0 0 0
0 m − Yv̇ 0 0 0 0
0 0 m − Zẇ 0 0 0
0 0 0 Ixx − Lṗ 0 0
0 0 0 0 Iyy −Mq̇ 0
0 0 0 0 0 Izz − Nṙ

 (3.6)

:=
[

M1 0
0 I1

]
(3.7)

3.1. EQUATIONS OF MOTION 21

The Coriolis-Centripetal matrix C (ω) is then

C (ω) =
[

M1(ωbn/b)× 0
0 (ωbn/b)×I1

]
(3.8)

=

0 − (m−Xu̇) r (m−Xu̇) q

(m− Yv̇) r 0 − (m− Yv̇) p
− (m− Zẇ) q (m− Zẇ) p 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 − (Iyy −Mq̇) r (Izz −Nṙ) q

(Ixx − Lṗ) r 0 − (Izz −Nṙ) p
− (Ixx − Lṗ) q (Iyy −Mq̇) p 0

 (3.9)

Very useful results for vectorial analysis of the 6 DOF equations of motion (3.1)-
(3.2) are that C(ω) can always be parametrized such that it is skew-symmetric;
C (ω) = −C (ω)T . Furthermore, the system inertia matrix is symmetric and pos-
itive definite; M = MT > 0. These properties are discussed in detail in Fossen
(2011b).

The force due to gravity is assumed always to be parallel to n~z such that

fng =

 0
0
W

 (3.10)

⇒ f bg = Rb
n

 0
0
mg

 (3.11)

⇒ τ g =
[(

f bg
)T 0T

]T
(3.12)

where f bg in component form (using Euler angles) yields

f bg = (Rn
b)T

 0
0
mg

 (3.13)

=

 cψcθ sψcθ −sθ
−sψcφ+ cψsθsφ cψcφ+ sψsθsψ cθsφ
sψsφ+ cψsθcφ −cψsφ+ sψsθcφ cθcφ

 0
0
mg

 (3.14)

= mg

 − sin θ
cos θ sinφ
cos θ cosφ

 (3.15)

22 CHAPTER 3. RECCE D6 SIMULATION MODEL

In component form, the kinetics of the system can now be stated as

∑
i∈F

τ i = Mν̇ + C(ω)ν − τ g (3.16)

=

m−Xu̇ 0 0

0 m− Yv̇ 0
0 0 m− Zẇ
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

Ixx − Lṗ 0 0
0 Iyy −Mq̇ 0
0 0 Izz −Nṙ

u̇
v̇
ẇ
ṗ
q̇
ṙ

+

 0 − (m −Xu̇) r (m −Xu̇) q
(m − Yv̇) r 0 − (m − Yv̇) p
− (m − Zẇ) q (m − Zẇ) p 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 −
(
Iyy −Mq̇

)
r (Izz − Nṙ) q(

Ixx − Lṗ
)
r 0 − (Izz − Nṙ) p

−
(
Ixx − Lṗ

)
q

(
Iyy −Mq̇

)
p 0

 u

v
w
p
q
r

−

−mg sin θ

mg cos θ sinφ
mg cos θ cosφ

0
0
0

 (3.17)

⇒
∑
i∈F

Xi

Yi
Zi
Li
Mi

Ni

 =

(m−Xu̇) (u̇− rv + qw) +mg sin θ

(m− Yv̇) (v̇ + ru− pw)−mg cos θ sinφ
(m− Zẇ) (ẇ − qu+ pv)−mg cos θ cosφ
(Ixx − Lṗ) ṗ+ (Izz −Nṙ − Iyy +Mq̇) rq
(Iyy −Mq̇) q̇ + (Ixx − Lṗ − Izz +Nṙ) rp
(Izz −Nṙ) ṙ + (Iyy −Mq̇ − Ixx + Lṗ) pq

 (3.18)

F = {a, t, lg}

For kinematics, the quaternion representation for attitude is chosen to avoid prob-
lems with singularities during simulation. The kinematics is then (3.1), with (2.13)
and (2.23). Writing out the components of this equation is omitted, since the
resulting equation would be quite unintuitive anyway.

3.1. EQUATIONS OF MOTION 23

{i} = {n}

{b}

(north)

(east)

(down)

CG

x

y

z

y
x

z

CO

b

b

b

n

n
n

Figure 3.1: Illustration of the inertial frame {n}, body frame {b} and the center
of gravity CG (also referred to as the center of mass) and the center of origin CO.
b~x is pointing in the longitudinal direction of the air vehicle,b~y points in the lateral
direction, and b~z is pointing directly downwards -completing the right hand rule.

In this thesis, the mass matrix is selected as

M1 =

 2.8 0 0
0 2.8 0
0 0 2.8

 kg (3.19)

and the inertia matrix

I1 =

 0.15 0 0
0 0.14 0
0 0 0.29

 kg·m2 (3.20)

giving the system inertia matrix

M =

2.8 0 0
0 2.8 0
0 0 2.8

03×3

03×3

0.15 0 0
0 0.14 0
0 0 0.29

 (3.21)

Further, the center of mass is set to

rbg/b =
[

0.5 0 0
]T m (3.22)

The overall model structure of the Recce D6 simulator model is shown in figure 3.2

24 CHAPTER 3. RECCE D6 SIMULATION MODEL

Aerodynamics Thrust Landing gearGravity

Aircraft Kinetics
about CG

Aircraft Kinematics
about CG

Propulsion system
dynamics

Flap dynamics

Desired
motor
voltage

Desired
actuator

deflections

Equations
of
motion

CONTROL
INPUTS

Figure 3.2: Simulator model structure

3.1.1 Aerodynamics, τa

The aircraft is divided into five bodyparts that induce aerodynamic effects on the
motion. To achieve modularity, each body part is modeled with one aerodynamic
center of which the induced forces and moments act about. The wings are expected
to have their respective aerodynamic centers along the average chord, and at 25%
of chord length from the leading edge. The fuselage is simply guesstimated. One
coordinate system is defined in each aerodynamic center. The respective position
and orientations of the aerodynamic center coordinate systems are guesstimated
from the drawings and photo of Recce D6 in appendix D, and are set to

Fuselage {af} rbaf/b =
[

0.5 0 0.03
]T

Θaf/b =
[

0◦ 0◦ 0◦
]

⇒ qaf/b =
[

1 0 0 0
]T

Left wing {awl} rbawl/b =
[

0.35 −0.42 0
]T

Θawl/b =
[

0◦ 0◦ 0◦
]

⇒ qawl/b =
[

1 0 0 0
]T

3.1. EQUATIONS OF MOTION 25

Right wing {awr} rbawr/b =
[

0.35 0.42 0
]T

Θawr/b =
[

0◦ 0◦ 0◦
]

⇒ qawr/b =
[

1 0 0 0
]T

Left stabilizer {asl} rbasl/b =
[

0.07 0.09 0
]T

Θasl/b =
[
−60◦ 0◦ 0◦

]
⇒ qasl/b =

[√
3

2 − 1
2 0 0

]T
Right stabilizer {asr} rbasr/b =

[
0.07 −0.09 0

]T
Θasl/b =

[
60◦ 0◦ 0◦

]
⇒ qasr/b =

[√
3

2
1
2 0 0

]T
The orientation and position of the aerodynamic centers are shown in figure 3.3.

Before proceeding, some assumptions are to be made. First, the model will neglect
forces due to buoyancy. The aircraft density is large compared to the density of air.
Further, low airspeed and low altitudes are assumed. Low airspeed means airspeed
far below supersonic flight, which in turn leads to the assumption of constant air
density regardless of airspeed. The low altitudes leads to the assumption of constant
air density regardless of altitude. In total, this suggests air incompressibility, and
thus constant air density for all feasible flight conditions of Recce D6.

Relative air velocity
The lift and drag components are given as relative to the airstream about the
aerodynamic centers; vaiai/w. It is easy to see that the air velocity of CG can be
written as the sum ~vg/n = ~vg/w+~vw/n. Expecting the wind velocity to be specified
in NED coordinates, the air velocity in BODY coordinates is found to be

vbg/w = vbg/n −Rb
nvnw/n (3.23)

The actual air velocity in the aerodynamic centers are then found to be

vaiai/w = Rai
b vbai/w (3.24)

= Rai
b

(
vbg/w + ωbg/w × rbai/g

)
(3.25)

By assuming ωbg/w ≈ ωbb/n we get the air velocity about the aerodynamic centers

vaiai/w = Rai
b

(
vbg/w + ωbb/n × rbai/g

)
(3.26)

26 CHAPTER 3. RECCE D6 SIMULATION MODEL

{ }fa

{ }wla { }wra

{ }sla { }sra

{ }fa{ }wla { }wra

{ }sla

{ }sra

z

z

z

z

z

y

y

y

y
y

{ }fa
{ }wla

{ }sla

{ }fa

{ }wla

{ }sra

{ }sla

x

x

x

x
 x

x

x

x

x

x

x
 x

z

z

z

y

y
y

y

y

y
 z

z

Figure 3.3: The aerodynamics is modeled as five distinct aerodynamic centers.

3.1. EQUATIONS OF MOTION 27

For aerodynamics, it is useful to decompose this velocity vector into angle of attack
α, sideslip angle β and the total airspeed Vw according to (Fossen, 2011a)

vaiai/w :=
[
ũ ṽ w̃

]T (3.27)

Vw =
√
ũ2 + ṽ2 + w̃2 (3.28)

α = atan2 (w̃, ũ) (3.29)

β = asin
(
ṽ

Vw

)
(3.30)

Aerodynamic forces and moments
Lift and pitching moment is modeled as scalar entities restricted to produce force
and moment in the longitudinal direction of the respective aerodynamic center
frame. This is done because the aircraft is expected to have very high velocity in
the longitudinal direction compared to the lateral direction, so the aircraft designer
has optimized lift and minimized drag under the same assumption. The result is
neglectable lift and moment contributions due to lateral airstream - for instance
from wind gusts. Drag, on the other hand, gives significantly more contribution
to the motion under transverse motion, so drag force can not be neglected in any
directions. However, for simplicity, the drag components are completely decoupled
along the three principal axes of the aerodynamic center frames.

In each aerodynamic center, the aerodynamic forces and moments are found ac-
cording to (Using (2.35),(2.36) and (2.37))

Lai = Ry,−α

 0
0

− 1
2ρV

2
wALCL (α, δ)

 (3.31)

=

 cosα 0 − sinα
0 1 0

sinα 0 cosα

 0
0

− 1
2ρV

2
wALCL (α, δ)

 (3.32)

= 1
2ρ

 V 2
wALCL (α, δ) sinα

0
−V 2

wALCL (α, δ) cosα

 (3.33)

= 1
2ρ

 |w̃| w̃ALCL (α, δ)
0

− |ũ| ũALCL (α, δ)

 (3.34)

Dai = −1
2ρ

 |ũ| ũAxCDx (δ, CL)
|ṽ| ṽAyCDy (δ, CL)
|w̃| w̃AzCDz (δ, CL)

 (3.35)

Mai
p =

 0
1
2ρV

2
wAMpc̄CMp (α, δ)

0

 (3.36)

28 CHAPTER 3. RECCE D6 SIMULATION MODEL

such that

faiai = Lai + Dai (3.37)
mai
ai = Mai

p (3.38)

or in component form

faiai = 1
2ρ

 V 2
wALCL (α, δ) sinα− |ũ| ũAxCDx (δ, CL)

− |ṽ| ṽAyCDy (δ, CL)
−V 2

wALCL (α, δ) cosα− |w̃| w̃AzCDz (δ, CL)

 (3.39)

mai
ai =

 0
1
2ρV

2
wAMpc̄CMp (α)

0

 (3.40)

About CG, the aerodynamic forces and moments become

f bg = Rb
aif

ai
ai (3.41)

mb
g = Rb

ai

(
mai
ai + rbai/g × faiai

)
(3.42)

where

rbai/g = rbai/co − rbg/co (3.43)

=

 xai − xg
yai − yg
zai − zg

 (3.44)

such that the total forces and moments vector applied in (3.2) from all aerodynamic
centers become

τ a =
∑
i∈A

τ ai (3.45)

=
∑
i∈A

[
Rb
aif

ai
ai

Rb
ai

(
mai
ai + rbai/g × faiai

)] (3.46)

A = {f, wl, wr, sl, sr} (3.47)

The aircraft has not been available for wind tunnel testing or trial flights. Until
reasonable aerodynamic coefficients can be obtained by empiric tests, some inter-
mediate assumptions has to be made for simple simulating-purposes:

3.1. EQUATIONS OF MOTION 29

Lift coefficient
The lift coefficient is modeled as

CL(α, δ) =
{
CL (αeff) if α1 ≤ αeff ≤ α2

0 otherwise
(3.48)

CL (αeff) := CLmax sin
(

π

2 (αs − α0) (αeff − α0)
)

(3.49)

α1 := α0 − 2 (αs − α0) (3.50)
αeff := α− kδδ (3.51)
α2 := α0 + 2 (αs − α0) (3.52)

kδ :=
∂
∂δCL (α,Re, δ)
∂
∂αCL (α,Re, δ)

∣∣∣∣∣ α = α0
δ = 0

(3.53)

where
α Zero angle of attack [rad]
δ Flap deflection [rad]
CLmax Max coefficient of lift [.]
αs Stall angle [rad]
α0 Zero lift angle [rad]
kδ Flap/AoA ratio [.]
αeff “Effective” angle of attack [rad]

The lift coefficient estimator (3.48)-3.53 has been implemented into the project
directory as the Matlab function

1 CL = CLift (AoA ,delta ,CLmax ,as ,a0 , kdelta)

and a plot of the the lift coefficient estimator is shown in figure (3.4). This illus-
tration may also be opened in Matlab by running the CLiftDemo.m script from the
project folder.

Drag coefficient
The drag coefficient

CD = CDi

[
C2
L 0 0

0 0 0
0 0 0

]
+ CDf +

[
kδx sin (|δ|) 0 0

0 0 0
0 0 kδz cos (|δ|)

]
(3.54)

=

 CDiC
2
L + CDx + kδx sin (|δ|) 0 0

0 CDy 0
0 0 CDz + kδz cos (|δ|)

(3.55)

30 CHAPTER 3. RECCE D6 SIMULATION MODEL

−50 −40 −30 −20 −10 0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Angle of attack [deg]

Li
ft

co
ef

fic
ie

nt
 [.

]

−150 −100 −50 0 50 100 150
−10

0

10

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Angle of attack [deg]

Flap deflection [deg]

Li
ft

co
ef

fic
ie

nt
 [.

]

Figure 3.4: Lift coefficient estimator (3.48)-(3.51). The leftmost illustration shows
the lift coefficient using the color map in figure 6.3 to color the flap deflection angle.
The rightmost illustration shows full picture. The bed is colored according to color
of the wing (angle of attack), and the lift coefficient landscape is colored according
to color of the flap (the flap deflection angle.)

where
CDi Induced drag coefficient (Hoerner, 1958) [.]
CL Lift coefficient [.]
CDf = diag (CDx, CDy, CDz) Form drag coefficients [.]
δ Flap deflection [rad]
kδx Flap/AoA ratio [.]
kδz Flap/AoA ratio [.]

Pitching moment coefficient
Pitching moment coefficient is modeled as

CMp := −CMmax sin (αeff − αM0) (3.56)
αeff := α− kδδ (3.57)

kδ :=
∂
∂δCMp (α,Re, δ)
∂
∂αCMp (α,Re, δ)

∣∣∣∣∣ α = α0
δ = 0

(3.58)

where
CMp Pitching moment coefficient [.]
CMmax Max pitching moment coefficient [.]
αeff “Effective” angle of attack [rad]
αM0 Angle of zero pitching moment [rad]
α Zero angle of attack [rad]
kδ Flap/AoA ratio [.]
δ Flap deflection [rad]
α0 Zero lift angle [rad]

The lift pitching moment coefficient estimator (3.56)-3.58 has been implemented
into the project directory as the Matlab function

3.1. EQUATIONS OF MOTION 31

−150 −100 −50 0 50 100 150
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Angle of attack [deg]

P
itc

hi
ng

 m
om

en
t c

oe
ffi

ci
en

t [
.]

−150 −100 −50 0 50 100 150
−20

0

20

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Angle of attack [deg]

Flap deflection [deg]

P
itc

hi
ng

 m
om

en
t c

oe
ffi

ci
en

t [
.]

Figure 3.5: Pitching moment coefficient estimator (3.56). The leftmost illustration
shows the aerodynamic pitching moment coefficient using the color map in figure
6.3 to color the flap deflection angle. The bed is colored according to color of the
wing (angle of attack), and the lift coefficient landscape is colored according to
color of the flap (the flap deflection angle.)

1 Cm = Cpmoment (AoA ,delta ,Cmmax ,cm0 , kdelta)

and a plot of the the pitching moment coefficient estimator is shown in figure 3.5.
This illustration may also be opened in Matlab by running the CMomentDemo.m
script from the project folder.

3.1.2 Thrust, τt

Thrust force is modeled as (Allerton, 2009)

fT = 1
2CT ρ |n|nD

4 (3.59)

where
ft Thrust force [N]
n Propeller revolutions per minute [rpm]
Ct Coefficient of thrust [.]
ρ Density of air [kg/m3]
D Propeller diameter [m]

The thrust force direction is expected to be fixed in the longitudinal direction
of the aircraft, or in other words in parallel with b~x. Hence, no rotations needs
to be applied to the thrust force and moment. The thrust force is then f bt =[
ft 0 0

]T With respect to CG, the thrust force is at

rbt/g = rbt/b − rbg/b (3.60)

=

 xt − xg
yt − yg
zt − zg

 (3.61)

32 CHAPTER 3. RECCE D6 SIMULATION MODEL

It is expected that the moment induced by an accelerating propeller rotation can
be neglected. The applied force and moments to the equation of motion is then

τ t =
[

f bt
mb
t + rbt/g × f bt

]
(3.62)

or in component form

τ t =

1
2CT ρ |n|nD

4

0
0
mp

−ft (zt − zg)
0

 (3.63)

where mb
p =

[
mp 0 0

]T is the moment induced to the aircraft from the pro-
peller angular velocity, see section 3.2.

For recce D6, the location of the thrust frame is guesstimated to be located at

Thrust {t} rbt/b =
[
xt yt zt

]T =
[

0.06 0 −0.075
]T

with orientation coincident with {b}.

3.1.3 Landing gear, τLG

Recce D6 is assumed to have three landing gear wheels; One nose wheel, one left
wheel and one right wheel. Forces induced to the aircraft by the landing gear is of
obvious importance during landing and take off. The landing gear of Recce D6 is
not retractable, so the drag it produces in air is considered to be part of the drag
induced by the fuselage. Hence, the landing gear only induces forces to the aircraft
when the wheels are displaced, i.e. there is no effect on the aircraft dynamics while
in air.

The wheel-frame locations in body are set to

Nose wheel {wn} rbwn/b =
[
−1 0 0.1

]T
Left wheel {wl} rbwn/b =

[
0 −0.5 0.1

]T
Right wheel {wr} rbwr/b =

[
0 0.5 0.1

]T
The position of the wheel with respect to the center of gravity is

rbwi/g = rbwi/b − rbg/b (3.64)

To calculate the displacement, the position of the wheels in NED is found:

rnwi/n = rnb/n + Rn
b rbwi/b (3.65)

rnwi/n :=
[
xwi ywi zwi

]T (3.66)

3.1. EQUATIONS OF MOTION 33

Hence, zwi defines the wheel displacement ∆zwi , if zwi > 0 such that

∆zwi :=
{
zwi if zwi > 0
0 else

(3.67)

The wheels are simply assumed to apply a normal force to the aircraft due to
displacement according to

f b∆z = −Ks

[
0 0 ∆zwi

]T (3.68)

where Ks is a matrix of spring coefficients of the form Ks = diag
[

0 0 ksz
]
.

The landing gear also produce damping during landing and take-off. The velocity
of each wheel in NED are found in BODY coordinates to be

vbwi/n = vbb/n + rbwi/g × ω
b
b/n (3.69)

vbwi/n :=
[
uwi vwi wwi

]T (3.70)

In the n~z direction, energy dissipation (damping) is only applied if the wheel is
being increasingly displaced. This is because it does not make physical sense that
the landing gear produce a damping force that “holds the aircraft down” during
take off. The damping is simply modeled as

f bwf = −

Kdvbwi/n if ∆zwi > 0 and wwi > 0
Ǩdvbwi/n else if ∆zwi > 0

03×1 else

(3.71)

where Kd is a matrix of damping coefficients of the form Kd = diag
[
kdx kdy kdz

]
,

and Ǩd = diag
[
kdx kdy 0

]
.

In CG, the landing gear forces and moments become

f bwi = f bwf + f b∆z (3.72)
mb
g = rbwi/g × f bwi (3.73)

where

rbwi/g = rbwi/b − rbg/b (3.74)

=

 xwi − xg
ywi − yg
zwi − zg

 (3.75)

such that the total applied forces and moments vector applied to (3.2) from the
landing gear become

τ lg =
∑
i∈G

τwi (3.76)

=
∑
i∈G

[
f bwi

rbwi/g × f bwi

]
(3.77)

G = {nw, lw, rw} (3.78)

34 CHAPTER 3. RECCE D6 SIMULATION MODEL

3.1.4 Tuning the Aerodynamics

Model validation and tuning is a rather big part of the simulator development. It
might in fact reasonably amount to 80% of the overall project. (Allerton, 2009)
It usually comprises verification by experienced aircraft pilots and comparison of
simulation data from actual measurements. Subsequently, both the dynamics and
steady state response of the aircraft is validated. Until actual flight measurements,
and experienced pilots are available, the only material available for model tuning
is the Recce D6-spec provided by Odin Aero AS, listed in appendix D.

Characteristic areas
The characteristic areas AL,AD =

[
ADx ADy ADz

]
, AMp and average chord

length c̄ for the distinct body parts are guesstimated from the drawings and photo
of Recce D6 as

Fuselage AL = AMp = 79 · 10−3 [
m2] R1

AD =
[

12.6 95.8 79
]
· 10−3 [

m2] R3

c̄ = 1.06 [m] R1

Wings AL = AMp = 381.5 · 10−3 [
m2] R1

AD =
[

18.3 52 381.5
]
· 10−3 [

m2] R3

c̄ = 0.62 [m] R1

Stabilizers AL = AMp = 38.15 · 10−3 [
m2] R1

AD =
[

1.8 5.2 38.15
]
· 10−3 [

m2] R3

c̄ = 0.062 [m] R1

where ADx is the area of Recce projected into the b~yb~z-plane, and similar for ADy
and ADz.

Lift coefficient, wing
Cruising speed is typically 65 km/t. It is assumed that the aircraft design is done in
a way so that the main wings produces the lift needed to be able to fly horizontally
(α = 0◦) at this airspeed and with no elevon deflection (δ = 0◦).

Selecting CLmax = 0.6, α0 = −2.5◦, αs = 13◦ and kδ = 0.15. With no actuator
deflection (δ = 0◦) the lift coefficient becomes

CL (α = 0, δ = 0) = 0.1504 (3.79)

The airspeed needed for the two wings to balance the weight of the airplane is

L = W (3.80)
1
2ρV

2 (2 ·AL)CL = mg (3.81)

⇒ V =
√

mg

ρALCL
(3.82)

3.1. EQUATIONS OF MOTION 35

where g = 9.81m/s2, ρ = 1.29kg/m3. Recce D6 has maximum take-off weight
(MTOW) 2.8 kg, where 0.5 kg is payload. Hence, the net weight is 2.3 kg. Using
(3.82), the following table defines the absolute minimum airspeed desired for take-
off (angle of attack equal to stall-angle) and the airspeed desired for horizontal flight

Takeoff weight Horizontal flight
α = 0◦

Min. take-off speed
α = αs = 13◦

2.3kg (net. weight) 62.9km/h 31.5km/h
2.55kg 66.2km/h 33.1km/h

2.8kg (max weight) 69.4km/h 34.7km/h

Table 3.1: Airspeeds necessary to maintain horizontal flight, and minimum take-off
airspeeds for minimum, typical and maximum take-off weights.

Without further discussion, the airspeeds in table 3.1 to balance the weight is
simply considered to be “fair”, and hence this concludes the choice of lift coefficient
parameters for the main wings.

Drag coefficient, wing
The induced drag coefficient CDi is estimated from the drag polar of the NACA-
2408 airfoil, and set to CDi = 0.16. Simply expecting a lift/drag ratio of 15 for the
wings at α, δ = 0 gives the balance

L = 15 ·D (3.83)
1
2ρV

2ALCL = 15 · 1
2ρV

2ADx
(
CDx + CDiC

2
L

)
(3.84)

⇒ CDx = ALCL − 7.5 ·ADxCDiC2
L

15 ·ADx
(3.85)

= 381.5 · 10−3 · 0.1504− 7.5 · 18.3 · 10−30.16 · 0.15042

15 · 18.3 · 10−3 (3.86)

= 0.207 (3.87)

CDy is chosen to be somewhat higher, CDx < CDy = 0.3. CDz is chosen to have
drag coefficient like a disk CDz = 1.17. (White, 2008)

This concludes the choice of drag coefficient for the main wings. The stabilizers
are chosen to have the same coefficients, but with a slightly lower CDx since this
airfoil is expected to be symmetrical. CDδi, i ∈ {x, z} is chosen from pure guessing.

Pitching moment coefficient, wing
No information in the Recce D6 spec can be used to extract information about the
rotational dynamics of the aircraft. The only parameter available for tuning is then
an expectation of zero resultant pitching moment about CG at V = 65 km/h, α =

36 CHAPTER 3. RECCE D6 SIMULATION MODEL

0◦, δ = 0◦, rbg/b =
[

0.5 0 0
]
. Then, for i ∈ {lw, rw}, the aerodynamic forces

lift and drag produces the moment about the center of mass

M = rbai/g × f bai (3.88)

If rbai/g =
[
x y z

]T =
[
−0.15 y 0

]T , and f bai =
[
−D 0 L

]T =[
−D 0 −W

]T , extracting the pitching moment in this situation yields

Mp = −Wx (3.89)
1
2ρV

2c̄AMpCMp = −mgx (3.90)

⇒ CMp = −2mgx
ρV 2c̄AMp

(3.91)

= −2 · 2.8 · 9.81 · (−0.15)
1.29 ·

(65
3.6
)2 · 0.62 · 381.5 · 10−3

(3.92)

= 0.083 (3.93)

so it follows that

0.083 = −CMmax sin (0◦ − αM0) (3.94)

and after some calculations, choosing CMmax = 2 and αMO = 2.38◦is found to
fulfill this.

Stabilizers
The stabilizer coefficients are mainly chosen to have the same properties as the main
wings, but with some adjustment because the airfoil is expected to be symmetrical
and the rudders are proportionally bigger than the elevon is with respect to the
main wings.

Fuselage
Fuselage coefficients of drag are simply chosen by considering the table of vari-
ous drag coefficients for three-dimensional bodies in White (2008 p. 483), and
guesstimating based on the shape of the fuselage.

Summary
The characteristic areas and aerodynamic coefficients and parameters for the air-
craft is set to

3.2. PROPULSION SYSTEM 37

Fuselage Wings Stabilizers
Lift AL

[
m2 · 10−3] 79 381.5 38.15

CLmax [·] 0.1 0.6 0.6
αs [deg] 13◦ 13◦ 15◦
α0 [deg] −2◦ −4◦ 0◦
kδ [·] 0 0.15 0.3

Drag ADx
[
m2 · 10−3] 12.6 18.3 1.83

ADy
[
m2 · 10−3] 95.8 52 5.2

ADz
[
m2 · 10−3] 79 381.5 38.15

CDi [·] 0.16 0.16 0.16
CDx [·] 0.5 0.209 0.18
CDy [·] 1 0.3 0.3
CDz [·] 1 1.17 1.17
kδx [·] 0 0.23 0.4
kδz [·] 0 0.05 0.1

Pitch moment AMp

[
m2 · 10−3] 79 381.5 38.15

c̄ [m] 1.06 0.62 0.062
CMmax [·] 1 2 2
αM0 [deg] 2.3◦ 2.3◦ 0◦
kδ [·] 0 0.15 0.25

3.2 Propulsion System

The propulsion of the aircraft is provided by a DC motor in conjunction with a
voltage regulator and a Li-polymer battery.

Ignoring the dynamics due to armature inductance, the model for thrust is selected
as (Partly from Egeland and Gravdahl (2003))

τ t =
[
ft 0 0 −mp 0 0

]T (3.95)

ft = 1
2Ctρ |n|nD

4 (3.96)

ω̇p = 1
Jm

(ms −mp) (3.97)

mp = 1
2Cpρ |ωp|ωp (3.98)

ms = imke (3.99)

im = um
Rm

(3.100)

where

38 CHAPTER 3. RECCE D6 SIMULATION MODEL

τt Applied thrust and torques in BODY
ft Thrust force [N]
ms Shaft moment [Nm]
CT Coefficient of thrust [·]
ρ Density of air

[
kg/m3]

n Propeller rotation velocity [rpm]
D Propeller diameter [m]
Jm Inertia of shaft and propeller

[
kg·m2]

ms Shaft moment [Nm]
mp Propeller moment [Nm]
Cp Coefficient of propeller moment [·]
im Armature voltage [A]
ke Motor torque constant [·]
um Applied motor voltage [V]
Rm Resistance of armature [Ω]

The model for voltage regulator is selected as

um = max
{
ud ub

}
(3.101)

where

ud Desired voltage [V]
ub Battery voltage [V]

The model for power plant voltage is selected as

ub = uems − ui (3.102)
ui = imRi (3.103)

uems = uN

(
1− e

E2
b

bEN

)
(a (Eb − EN) + 1) (3.104)

Ėb = −10
36 im (3.105)

where
uems Electromotive battery voltage [V]
ui Battery inner voltage [V]
Ri Battery inner resistance [Ω]
uN Nominal battery voltage [V]
Eb Energy left in battery [mAh]
EN Nominal battery energy [mAh]
a Design constant of voltage loss [·]
b Design constant of voltage loss [·]

Tuning the propulsion system
The Recce D6 spec lists EN = 8000 mAh and uN = 11.1 V for the battery. Further,

3.3. FLAP DYNAMICS 39

setting a = 1.2·10−5 and b = 20 the battery voltage as function of remaining battery
capacity (3.104) becomes

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2

4

6

8

10

12

Remaining battery capacity [mAh]

B
at

te
ry

 v
ol

ta
ge

 [V
]

u
N

u
ems

Figure 3.6: Li-pol battery voltage characteristics

which is simply considered to be “fair.”

3.3 Flap Dynamics

The geometry of the mechanical connection from servo deflections to flap deflec-
tions are unknown. Therefore, the servo motor deflection is modeled to apply flap
deflection directly. Assuming saturated first order-like dynamics, the flap dynamics
is modeled as

δ̇ = ωs (3.106)

ωs =
{

(δd − δ) kf if |(δd − δ) kf | < ωmax
ωmaxsign (δd − δ) else

(3.107)

where
ωs Rotation velocity of servo motor [rad/s]
δd Desired flap deflection angle [rad]
δ Actual flap deflection [rad]
kf Rotation velocity proportional gain, kf > 0 [·]
ωmax Maximum angular velocity of servo [rad/s]

The servos are expected to have the same maximum velocity in both directions.
From the data sheets of the servo motors, the maximum angular velocities of the
flaps are

40 CHAPTER 3. RECCE D6 SIMULATION MODEL

Right and left wing Graupner servo C271.
Transit speed: 0,12 Sec/40◦
⇒ ωmax = 40◦

0.12 = 45◦·π
0.1·180◦ = 7.85[rad/s]

Stabilizers servo Robbe Servo FS 500 Mg Micro
Transit speed: 0,1 Sec/45◦
⇒ ωmax = 45◦

0.1 = 40◦·π
0.12·180◦ = 5.82[rad/s]

The gain kf is set by trial and failure, and set to kf = 10 for all servos.

Chapter 4

Recce D6 Control Design
Model

The suggested simulation model from chapter 3 incorporates actuator dynamics,
landing gear dynamics, and makes little assumptions on the current flight condition.
During normal flight within a restricted flight-envelope, the landing gear forces
can be ignored and the aerodynamic coefficients are often treated as constants.
For aircraft expected to encounter significantly varying flight conditions, model
inaccuracies due to linearization of the coefficients are often compensated for by
incorporating gain-scheduling or adaptive control-techniques into the controller.
(McLean, 1990) Recce D6 is restricted to quite small speed variations, and in
addition low altitudes. Until experience from actual flight prove the opposite,
linearization of the coefficients for Recce D6 are expected to be a good assumption
for controller deviation.

Re-encountering the Newton-Euler equations of motion for a rigid body (3.2), but
without the landing gear forces and moments yields

Mν̇ + C(ω)ν = τ g + τ a + τ t (4.1)

where the gravitational force and moment vector is (from (3.12), (3.15))

τ g = mg

− sin θ

cos θ sinφ
cos θ cosφ

0
0
0

 (4.2)

41

42 CHAPTER 4. RECCE D6 CONTROL DESIGN MODEL

and the thrust force and moment vector is (from (3.63) and (3.98))

τ t =

1
2CT ρ |n|n

0
0

1
2Cpρ |ωp|ωp

− 1
2CT ρ |n|nD

4 (zt − zg)
0

 (4.3)

Collecting all constants (and noticing that ω ∝ n) gives the thrust force and mo-
ment

τ t =

X|n|n |n|n

0
0

L|n|n |n|n
M|n|n |n|n

0

 (4.4)

For aerodynamics, some assumptions should be made. A controller should only
be expected to be valid for a certain limited set of flight conditions; a restricted
flight envelope. For control design, consider the following assumptions of the flight
condition:

• All aerodynamics forces and moments can be represented in CG

• Angle of attack and sideslip is zero; WIND and BODY coordinate frames are
coincident.

• Linearization of the aerodynamic coefficients is fair for a limited flight enve-
lope.

• The UAV has high velocity compared to the wind velocity. ⇒ ũ ≈ u, w̃ ≈ w.

• The left and right rudder deflections are equal in magnitude; δrl = −δrr, and
the pair of wings and stabilizers with appurtenant actuators are “identical.”

The constant air density assumption from chapter 3 is also retained. Under these
assumptions, the aerodynamics can be written

τ a = A(ν)ν + B (ν) δ (4.5)

=

X|u|u |u| 0 0 0 0 0

0 Y|v|v |v| 0 0 0 0
Z|u|u |u| 0 Z|w|w |w| 0 0 0

0 0 0 L|p|p |p| 0 L|r|r |r|
M|u|u |u| 0 0 0 M|q|q |q| 0

0 0 0 0 0 N|r|r |r|

 u

v
w
p
q
r

+ |u|u

Xδe Xδe Xδr

0 0 Yδr
Zδe Zδe Zδr
Lδe −Lδe Lδr
Mδe Mδe Mδr

0 0 Nδr

 δel
δer
δrl

 (4.6)

43

where the diagonal elements of A(ν) are coefficients representing drag terms,
Z|u|u |u|u is a coefficient for lift, M|u|u |u|u is a coefficient for pitching moment,
and L|r|r |r| r is a coefficient for roll moment due to yaw rate. In theory, there are
couplings between all degrees of freedom, but this model is by engineering judg-
ment expected to retain the most significant properties of the flight dynamics that
a controller should capture.

The final nonlinear 6 DOF model is then

Mν̇ + C(ω)ν − τ g = A(ν)ν + B (ν) δ + τ t (4.7)

or in components

(m−Xu̇) (u̇− rv + qw) +mg sin θ = X|u|u |u|u
+Xδe (δel + δer) |u|u
+Xδrδrl |u|u
+X|n|n |n|n (4.8)

(m− Yv̇) (v̇ + ru− pw)−mg cos θ sinφ = Y|v|v |v| v
+Yδrδrl |u|u (4.9)

(m− Zẇ) (ẇ − qu+ pv)−mg cos θ cosφ = Z|u|u |u|u+ Z|w|w |w|w
+Zδe (δel + δer) |u|u
+Zδrδrl |u|u (4.10)

(Ixx − Lṗ) ṗ+ (Izz −Nṙ − Iyy +Mq̇) rq = L|p|p |p| p+ L|r|r |r| r
+Lδe (δel − δer) |u|u
+Lδrδrl |u|u
+L|n|n |n|n (4.11)

(Iyy −Mq̇) q̇ + (Ixx − Lṗ − Izz +Nṙ) rp = M|u|u |u|u+M|q|q |q| q
+Mδe (δel + δer) |u|u
+Mδrδrl |u|u
+M|n|n |n|n (4.12)

(Izz −Nṙ) ṙ + (Iyy −Mq̇ − Ixx + Lṗ) pq = N|r|r |r| r
+Nδrδrl |u|u (4.13)

Writing out the components of the kinematics (3.1) of the system using the Euler
angles representation for attitude, (2.8) and (2.26) yield (Fossen, 2011b)

Ṅ
Ė
Ḋ

φ̇

θ̇

ψ̇

 =

ucψcθ + v (cψsθsφ− sψcφ) + w (sψsφ+ cψsθcφ)
usψcθ + v (cψcφ+ sψsθsψ) + w (sψsθcφ− cψsφ)

−usθ + vcθsφ+ wcθcφ
p+ qsφtθ + rcφtθ

qcφ− rsφ
q sφ
cθ + r cφ

cθ

 (4.14)

44 CHAPTER 4. RECCE D6 CONTROL DESIGN MODEL

4.1 Surge Velocity Control

For surge velocity control, consider equation 4.8, and make the following assump-
tions

• Only the motor is used for surge control. ⇒ δel, δer, δrl ≈ 0

• Heave, sway and angular velocities is small compared to surge, so that second
order terms are neglectable. rv, qw ≈ 0

The surge velocity kinetics become

(m−Xu̇) u̇+mg sin θ −X|u|u |u|u = X|n|n |n|n (4.15)

Ignoring the dynamics of the propulsion system, assume that the applied voltage
to the motor armature gives a certain motor rpm directly; um ∝ ωp ∝ n and the
propeller is only used for forward thrust; um > 0

(m−Xu̇) u̇+mg sin θ −X|u|u |u|u = Xu2
m
u2
m (4.16)

It is thus seen that the surge velocity control may be achieved by inputting a certain
desired armature voltage to the motor. Notice that the um > 0 condition implies
that the motor can not be used as airbrakes by reversing the propeller rotation
direction.

4.2 Altitude Control

For altitude control, assume that the surge velocity controller maintains a certain
velocity. Next, assume that the aircraft is flying close to horizontally (φ, p = 0)
and with constant heading (r = 0). From (4.14), the kinematics for altitude (h)
becomes

ḣ = −Ḋ = u sin θ − w cos θ (4.17)

which reveals couplings to surge velocity u, heave velocity w, and pitch angle θ.
Under the same assumption, the pitch kinematics is

θ̇ = q (4.18)

Hence, the kinetics of surge velocity u, heave velocity w and the pitching moment
q is determining the dynamics of altitude. The relevant kinetics are then given by

4.3. HEADING CONTROL 45

(4.8), (4.10) and (4.12), reduced to

(m−Xu̇) (u̇+ qw) +mg sin θ = X|u|u |u|u
+Xδe (δel + δer) |u|u+Xδrδrl |u|u
+X|n|n |n|n (4.19)

(m− Zẇ) (ẇ − qu)−mg cos θ cosφ = Z|u|u |u|u+ Z|w|w |w|w
+Zδe (δel + δer) |u|u+ Zδrδrl (4.20)

(Iyy −Mq̇) q̇ = M|u|u |u|u+M|q|q |q| q
+Mδe (δel + δer) |u|u+Mδrδrl |u|u
+M|n|n |n|n (4.21)

Consider the following assumptions

• The rudders gives little contribution to pitching moment, and are much more
coupled to a yawing motion. Thus, they are not reasonably used for pitch
/altitude control. ⇒ δrl ≈ 0

• Elevon deflections give little contribution to lift and drag compared to the
pitching moment. ⇒ Xδe, Zδe ≈ 0

• To avoid rolling, the pitch/altitude controller should apply the same deflection
to both elevons. δe := δel + δer, δel = δer.

• The thrust-induced pitching moment is canceled by the aerodynamic pitching
moment, M|u|u |u|u+M|q|q |q| q = 0

• Second order cross product terms are neglectable, qw, qu ≈ 0

The resulting kinetics become

(m−Xu̇) u̇+mg sin θ −X|u|u |u|u−X|n|n |n|n = 0 (4.22)
(m− Zẇ) ẇ −mg cos θ − Z|u|u |u|u− Z|w|w |w|w = 0 (4.23)

(Iyy −Mq̇) q̇ = Mδe |u|uδe (4.24)

and the corresponding kinematics

θ̇ = q (4.25)
ḣ = −Ḋ = u sin θ − w cos θ (4.26)

Where it is seen that an altitude controller only needs to maintain a desired pitch
angle θd by applying δe in order to achieve climb or descent (ḣ 6= 0).

4.3 Heading Control

The following derivation of banked roll maneuver is inspired by the approaches in
McLean (1990), Fossen (2011a) and Nordian Aviation training systems (2005). For

46 CHAPTER 4. RECCE D6 CONTROL DESIGN MODEL

heading control, assume that the pitch /altitude controller ensures constant pitch;
θ, q = 0, and constant altitude ḣ, Ḋ, w = 0. The kinematics for altitude (4.14) is
reduced to

Ḋ = v sinφ = 0 (4.27)
It is easily seen that to assure constant altitude, either v or φ must be zero. A
common turning maneuver is the banked turn, where φ 6= 0, where ailerons (here;
elevons) are used to generate rolling rate p. This suggest a turning maneuver where
the rudders are kept at zero deflection; δrl = 0, and an assumption that the altitude
controller ensures zero sway velocity (v = 0; no sideslip) is established. Equation
4.9 now reads

(m− Yv̇) ru−mg sinφ = 0 (4.28)

⇒ r = mg sinφ
u (m− Yv̇)

(4.29)

From (4.14), the kinematics for heading (ψ) become

ψ̇ = r cosφ (4.30)

= mg sinφ
u (m− Yv̇)

cosφ (4.31)

which can be linearized to (φ∗ = 0)

ψ̇ = mg

u (m− Yv̇)
φ (4.32)

which reveals a linear relationship between perturbations in roll and yaw rate.
Thus, heading control can be ensured by rolling towards the desired heading. Con-
sider the kinetics for roll 4.11 and assume that

• Rudders are not used for roll/heading control; δrl = 0

• The moment from the propeller rotation is small, L|n|n ≈ 0

• To avoid pitching, the roll/heading controller should apply the opposite de-
flection to the elevons. ∆δe := δel − δer, δel = δer.

• The roll moment from yaw rate r is small compared to the roll moment from
the elevons. L|r|r ≈ 0

The kinetics for roll is then

(Ixx − Lṗ) ṗ −L|p|p |p| p = Lδe |u|u∆δe (4.33)

and the corresponding kinematics

ψ̇ = mg

u (m− Yv̇)
φ (4.34)

φ̇ = p (4.35)

4.3. HEADING CONTROL 47

Where it is seen that an heading controller only needs to maintain a desired roll
φd by applying ∆δe in order to achieve turning (ψ̇ 6= 0).

48 CHAPTER 4. RECCE D6 CONTROL DESIGN MODEL

Chapter 5

Motion Control System,
Flight Mode

A motion control system can usually be decomposed three different topics, denoted
guidance, navigation and control (GNC). The motion control system may comprise
these elements both in a tightly coupled way, or as entirely decoupled, independent
blocks. Both approaches have advantages and disadvantages. Since this overall
project will involve several contributors over a long period of time, in order to
facilitate software upgrades and decoupling workloads, a relatively decoupled ap-
proach is likely to be the most rational. The following short description of the
three blocks are short summaries taken from Fossen (2011b), and adapted to an
UAV setting:

• The guidance system computes the reference signal to the control system.
This reference is often based on a mission specific control objective, such as
set-point regulation, path following or trajectory tracking. It will also often
comprise controller modes, such as ground, landing, take-off, emergency or
flight mode. It may further be subject to advanced calculations based on for
instance obstacle avoidance, weather-optimal routing and energy-optimization.
Finally the desired controller reference is subject to reference models so that
infeasible requirements to the controller is avoided. Clearly, creating a guid-
ance system can be very easily achieved by simply by defining a set of way-
points or set-points without any optimization, or it can be a very compre-
hensive task of almost unlimited complexity.

• Navigation is the system that reads sensor measurements and produces es-
timates of relevant aircraft states such as attitude, positions and velocities.
The estimates are commonly produced by a Kalman filter or a nonlinear
observer.

49

50 CHAPTER 5. MOTION CONTROL SYSTEM, FLIGHT MODE

Path following

Take-off

Landing
Ref. Mod

Heading, ψ

Magnetometer

Filter
/Observer

GPS

Accelerometer

Gyro

PID - u

PID - θ

PID - ψ

Guidance system Control system, Flight mode

Control
allocation

Estimates of attitude, positions and velocities

Navigation system Recce D6

PID -φ

el

er

rr

Trajectory
reference

PID - h
Ref. Mod
Pitch, θ

Ref. Mod
Roll, φ

mu

Optimization

Setpoints

Ground

Flight

Emergency

Ref. Mod
Altitude, h

Ref. Mod
Surge speed, u

Figure 5.1: The proposed guidance, navigation and control system for Recce D6.
The dashed boxes are not considered in this thesis.

• The control system is the system that transforms the reference input from
the guidance system to actual commanded actuator deflections based on the
control objective, defined by the current controller mode.

A suggestion for a GNC structure for Recce D6 in flight mode is illustrated in figure
5.1. It will be assumed that the control objective is to maintain a certain heading,
altitude and surge speed.

The navigation system in figure 5.1 is a rather big and complex topic in it self. In
a simulator setting, estimates of positions and velocities are superfluous since all
states of the simulated aircraft can be accessed at any time directly. In the remain-
der of this thesis, the problem of filtering hardware measurements into estimates
of positions and velocities are omitted, and all the relevant states are assumed to
be perfectly known.

5.1 Guidance System

One might imagine a human operated ground station for the UAV where set-points
are defined for the UAV during flight. To improve the system response that may
arise from controller integrator windup due to infeasible steps in heading and pitch,
reference models comprising feasible state propagation is one approach. Combining
the human-provided set-points with corresponding reference models completes a
suggestion of a simple, easily implementable guidance system.

5.1. GUIDANCE SYSTEM 51

5.1.1 Reference Models

Consider the third-order reference model (Fossen, 2011b) for pitch

θr = ω3
0

(s− ω0)3 θd (5.1)

= ω3
0

s3 + 3ω0s2 + 3ω2
0s+ ω3

0
θd (5.2)

This may be realized as the linear time-invariant (LTI) system in canonical form ẋ1
ẋ2
ẋ3

 =

 −3ω0 −3ω2
0 −ω3

0
1 0 0
0 1 0

 x1
x2
x3

+

 ω3
0

0
0

 θd (5.3)

θr = x3 (5.4)

Note that this approach gives no infeasible discontinuities for the acceleration term
x1. Further, the acceleration (x1) and velocity terms (x2) may easily be saturated
using

xi =
{
|xi| sign (xi) if xi > ximax

xi else
(5.5)

The same approach may be used for surge velocity, altitude and roll.

The suggested values for the surge speed, altitude, pitch and roll reference models
are listed in table 5.1.

5.1.2 Heading Reference Model

For all reasonable purposes, pitch (for instance) is restricted to be limited such
that

−π
2 � θd �

π

2 (5.6)

which is a handy assumption, because the optimal pitch rate direction is always
the “obvious” one;

signθ̇r = sign (θd − θr) (5.7)
Heading on the other hand, may take the values

− π < ψ ≤ π (5.8)

where a problem of routing the desired heading in the optimal direction arises.
This is best illustrated with the example

ψd = π (5.9)
ψr = −π + dψr (5.10)

∆ψ = ψd − ψr (5.11)
≈ 2π (5.12)

52 CHAPTER 5. MOTION CONTROL SYSTEM, FLIGHT MODE

Variable ω0 x1max x3max

Surge speed 3.1 15 15
Altitude 1.3 8 5
Pitch 31.4 6.3 6.3
Roll 12.6 3.1 3.1

Heading 0.6 0.3 0.6

Table 5.1: The reference model constants suggested for Recce D6. Found by trial
and failure. Heading is set to be somewhat slow for demo purposes.

which clearly reveals that using ∆x as input to a reference model yields a very
inefficient error representation for heading control, since rotating the opposite di-
rection yields −∆ψ = ψr − ψd ≈ 0. Instead, consider the nonlinear measure of
heading error (derived from a simple rotation about ~z using quaternions) in the
optimal heading direction:

ψ̃ := sin
(
ψd
2 −

ψr
2

)
sign

(
cos
(
ψd
2 −

ψr
2

))
(5.13)

and the LTI system used to propagate the states of the reference model

 ẋ1
ẋ2
ẋ3

 =

 −3ω0 −3ω2
0 0

1 0 0
0 1 0

 x1
x2
x3

+

 ω3
0

0
0

 ψ̃ (5.14)

x3 =
{

x3 if x3 ∈ (−π, π]
x3 − 2πsign (x3) else

(5.15)

ψr = x3 (5.16)

By limiting x3 to the interval (−π, π], the reference model is never in danger of
producing arithmetic overflow in the target processing device. Further, limiting x3
does not affect the calculation of ψ̃, since both sine and cosine are periodic in 2π.
Saturating x2 and x1 is done as in (5.5). The suggested values for the heading
reference model is listed in table 5.1.

The reference models are implemented into Matlab/Simulink, and an animated
example using pitch and heading reference models may be run from the project
folder by running the refModelEx.m script. The same script may also be used to
tune the reference models by altering the desired pitch and yaw angles, and trying
out different values for the models. In the example animation, the red aircraft
illustrates the desired orientation, the green illustrates the reference orientation.
Note that by running the script from Matlab, the animation does not run real-
time. Therefore, the same example script is also attached in the project folder as
the video refModelEx.avi.

5.2. CONTROL SYSTEM 53

Altitude
PI

Heading
P

Surge v.
PID

Pitch
Ref. mod

Pitch
PI

Roll
Ref. mod

Roll
P

+
+

+
-

el

er

aurefu

refh

ref

d

d ref

ref
e

e

Figure 5.2: The implemented motion controller principle.

5.2 Control system

In the simulation environment, all coefficients and states are perfectly known, and
advanced controller derivation schemes could fairly be applied to generate superior
system responses. This approach has little relevance for the first attempts of au-
tomatic flights, as the increased complexity also introduces new sources of errors.
It is thus reasonable for the first autopilot-flights to be carried out using as simple
controllers as possible.
The following conclusions where drawn in chapter 4:

• Surge velocity control is ensured by applying motor voltage.

• Altitude control is ensured by applying pitch, further by applying elevon
deflections.

• Heading control is ensured by applying roll, further by applying differences
in elevon deflections.

Thus, the rudders are not used in the this particular controller implementation.
A modular PID controller approach is implemented as shown in figure 5.2. The
controllers are simple PID controllers with saturated outputs (sat PID) and inte-
grators (sat I). The implemented controller gains are simply set by trial and failure,
and listed in table 5.2.

Variable P I D sat I sat PID
Surge velocity 20 1 -0.02 ±10 (0, 10)

Altitude 0.1 0.05 - ±5◦ ±30◦
Pitch 3 0.05 - ±5◦ ±45◦
Roll 2 - - - ±45◦

Heading 2 - - - ±40◦

Table 5.2: The PID constants used in the controller.

54 CHAPTER 5. MOTION CONTROL SYSTEM, FLIGHT MODE

Chapter 6

Implementation

The simulator model from chapter 3 is implemented in Matlab/Simulink in the
Simulink model file RecceD6.mdl. All initialization variables are listed in RecceD6_init.m,
and may easily be changed here. The outermost Simulink diagram is shown in fig-
ure 6.1. Obviously, the Simulink model consist of several subsystems representing
actuator dynamics, kinetics, kinematics, gravity, landing gear, thrust and aerody-
namics to mention the most prominent ones. The implementation of the Recce D6
block is done according to figure 3.2.

6.1 Graphic Interface

A lot of effort has been put into generating graphical interfaces of relevant flight
simulation variables to quickly and intuitively grasp and substantiate the resulting
effect of actuator deflections, and to easily verify autopilot and guidance systems
and so on. Since the simulation is done in Matlab, focus has been on creating
Matlab-native interfaces.

6.1.1 3D Visualization

A Matlab function is created to visualize relevant flight states in 3D as
1 plot3D (fignr ,splot3d ,p,q,aoa ,a_fl ,a_fr ,a_el ,a_er ,r_og ,ax)

and the example script plot3Dex.m in the project folder produces the output in
figure 6.2. This 3D model is geometrically quite alike the Recce D6, and this plot
easily shows the UAV’s position and attitude in NED. It also shows the rudder
and elevon actuator deflections, and colors them correspondingly to the color-
map shown in figure 6.3. The wings are colored according to angle of attack.

55

56 CHAPTER 6. IMPLEMENTATION

Rudder feed forward
for enforced dutch roll maneuver

rudders

Reference models

heading_d

altitude_d

surge_d

heading_r

altitude_r

surge velocity

RECCE D6

Des. Motor Voltage

Des. Left Elevon

Des. Right Elevon

Des. Left rudder

UAV bus

Guidance system

heading desired

altitude desired

surge desired

Control system - surge

bus

desired surge
motor voltage

Control system - heading and altitude

bus

heading_r

altitude_r

flap right wing

flap left wing

Figure 6.1: The outermost Simulink model of the implemented Recce D6 Motion
control system

A demo video showing the UAV coloring may be run by executing the example
script coloringEx.m . The example output is also stored in the attached project
folder as coloringEx.avi . For angle of attack illustration in the demo video,
imagine an horizontal airstream always hitting the aircraft from the front.

6.1.2 Artificial Horizon

A standard flight instrument is an artificial horizon, and in its simplest form shows
the current aircraft orientation in NED. To explicitly visualize the UAV’s actual,
reference and desired orientation an artificial horizon-like plot is implemented into
the Matlab function

1 aHorizon (fignr ,splotHor ,O,Od ,Or)

and the example script aHorizonEx.m in the project folder produces the output
in figure 6.4. The inputs to the function are triplets of Euler angles in radians
respectively, and the figure output the angles in degrees. The orientation input
(O) to the function is a vector of roll, pitch and yaw angles where the last element
represents the current. This way, the pitch and yaw angles history can conveniently
be shown in the plot.

6.1. GRAPHIC INTERFACE 57

100

150

−200

E − East (y)N − Norh (x)

D
 −

 D
ow

n
 (

z)

Figure 6.2: An example plot of the 3D interface in Matlab. In addition to coloring,
the actuator deflections are actually rotated correctly, although it is not easy to
see on this snapshot.

−15 −10 −5 0 5 10 15
Angle deflection [Deg]

Figure 6.3: The color-map used in the graphical environment. Angles greater than
15◦ are colored as 15◦, and lesser than -15◦are colored as -15◦.

58 CHAPTER 6. IMPLEMENTATION

South West North East South

−80

−60

−40

−20

0

20

40

60

80

"Artificial horizon"

P
itc

h
[d

eg
]

Figure 6.4: An example plot of the artificial horizon interface in Matlab. The
red aircraft illustrates the desired orientation, the green illustrates the reference
orientation, and the blue illustrates the actual orientation.

6.1.3 Compass

Another standard flight instrument is the compass which basically shows heading
angle. This information is intuitively embedded into the artificial horizon plot
previously discussed, but for aircraft, the wind direction relative to the aircraft
heading is also important, and it is hard to imagine a good way of embedding
this into the artificial horizon plot. One might imagine that the UAS ground
station having a weather station measuring wind direction and speed. A compass
plot showing a silhouette of the UAV, wind direction and strength, desired and
reference heading is implemented into the Matlab function

1 RecceCompass (cheading , desheading , refheading ,wind)

and the example script RecceCompassEx.m in the project folder produces the out-
put in figure 6.5. The center arrow represents wind, where length is proportional
to wind strength, and the compass circle equals 7 m/s. The aircraft heading, wind
strength and direction is also displayed as text, in addition to current wind strength
classification according to the Beaufort scale.

6.2. CRASH HANDLING 59

Compass

North

EastWest

South

WIND:

117°

4.47 m/s

Gentle breeze

AIRCRAFT:

15°

Figure 6.5: Example plot of the compass plot showing actual, reference and desired
heading, and wind direction and strength.

6.2 Crash Handling

Even if the simulator model from chapter 3 is meant to comprise a widest possible
range of relevant flight dynamics, certain extreme situations such as a high speed
crash should not be expected to be properly modeled. This is superfluous anyway,
there is simply no need to simulate a useless and damaged aircraft. However, the
simulation environment should not crash from extreme numerical values.

Recall that the landing gear has a high spring constant. Imagine the situation where
the UAV is heading towards the ground at a very high down-velocity. Consider a
fixed-step solver (without zero-crossing detection). The last sample before impact,
everything is normal and in the next sample the UAV is way “under ground.”
This will give an extreme force due to the big wheel displacement, and hence the
solver will compute an extreme acceleration upwards throwing the UAV in the air.
The simulator-solution to this is to simply ignore these situations by saturating
the landing gear-induced forces. Thus, a crash will not destroy the aircraft in
the simulation environment, nor throw it in the air, but rather yield a controlled
restoring force.

Another outcome is landings upside-down. The landing gear will produce a restor-
ing force, but the fuselage will appear as buried with the landing gear “floating”
on the surface. No fix for this is currently implemented. In general, no deviations
from a first principle approach is used to influence the behavior of the UAV model
implementation.

60 CHAPTER 6. IMPLEMENTATION

Chapter 7

Simulated Flight

Attached to this thesis, there is a simulated flight video named CaseStudys.avi.
Embedded into this single flight is a set of scenarios meant illustrate all the dynam-
ics of the simulation model, and the necessary flight maneuvers needed to maintain
a certain heading, altitude and surge speed for a fully functional Recce D6 - both
subject to no wind, and gusty winds. All case studies discussed in this chapter have
an adjacent video-sequence in the same order of appearance. Hence, the reader of
this chapter should open the video and follow the simulated flight in parallel with
reading the case studies. The video frame comprises a lot of information, and it is
very hard to digest it all at real-time playback. A suggestion is to run the video in
a video playback software able to play the video in slow motion as necessary1.

All details regarding the creation of this video is listed in appendix A. Most com-
ments regarding the handling of the aircraft are based on Nordian Aviation Training
Systems (2005) and Barnard and Philpott (2003)

The video is organized as follows:

• Case I: Landing gear dynamics (Time: 0:00)

• Case II: Take-off (Time: 0:10)

• Case III: Climbing (Time: 0:35)

• Case IV: Horizontal steady flight (Time: 0:45)

• Case V: Enforced Dutch roll (Time: 1:00)

• Case VI: Banked turn (Time: 1:20)

• Case VII: Descent (Time: 1:45)
1An example is the (free) open-source VLC media player available from

http://www.videolan.org/vlc.

61

62 CHAPTER 7. SIMULATED FLIGHT

• Case VIII: Wind (Time: 2:05)

• Case IX: Touch-and-go, crosswind (Time: 3:00)

• Case X: Loss of power - stall (Time: 3:50)

• Case XI: Propulsion system (Time: 4:30)

• Case XII: Touch-and-go, upwind (Time: 5:20)

• Case XIII: Landing at low airspeed (Time: 6:10)

• (Video end at 06:40)

A video frame snapshot with shorts comments is shown in figure 7.1. Details
regarding the creation of this video is given in appendix A. The layout is organized
such that the four inputs to the UAV is included in the three displays under the
3D plot:

• The leftmost graph shows actuator deflections for the left wing and stabilizer,
and the rightmost graph shows a corresponding graph for the right side.

• The middle graph shows the powerplant status. The battery voltage and
charge is displayed as text, while the total powerplant power consumption
is displayed as the graph. Obviously, the motor represent nearly all energy
consumption from the powerplant. In reality, the input to the motor is the
motor voltage, but total power consumption is proportional to this. The
powerplant status is therefore chosen to represent the in input to save precious
space in the video frame and to keep it clearly set out.

The column of three displays on the right hand side of the 3D plot includes the
control objectives:

• The upper plot shows the compass plot discussed in section 6.1.3.

• The middle plot shows altitude. The green arrow represent reference altitude.

• The lower plot shows the velocity components of BODY, and the current
speed. The blue plot, surge speed, is recognized as one of the three primary
control objectives. The blue arrow is the reference surge speed. The black
arrow is the actual surge air velocity.

The column of three displays to the right contains other relevant flight data:

• The upper plot shows the orientation as Euler angles, where the cyan color
(yaw) is recognized as the heading angle. Note that this plot really comprises
the same orientation information as the blue airplane in the artificial horizon
plot.

7.1. CASE STUDY I: LANDING GEAR DYNAMICS 63

• The middle plot shows the N and E positions over the last 20 seconds.

• One might imagine the aircraft being equipped with sensors so measure an-
gle of attack and sideslip angle. The upper plot therefore shows the angle
of attack and the sideslip angle of the fuselage where such a sensor might
be installed. Keep in mind that these angles are coincident with the corre-
sponding angles for both the main wings. (Unless the craft have a significant
rolling rate or yawing rate at high angle of attack.)

A few additional comments comments to the figure:

• The 3D plot discussed in section 6.1.1 is augmented with a 3D arrow showing
the current wind direction and strength. If the wind strength is ≈ 0 m/s the
arrow is not displayed.

• The current time and corresponding case study are included as text in the
upper left corner. The simulation starts at time 00:00, displayed in the format
minutes:seconds.

• The artificial horizon plot also displays the last 20 seconds actual pitch and
heading angle history as the magenta graph.

The case composition is meant to illustrate model properties, and verify some
well known flight related issues and maneuvers from real life in the simulator.
The first few case studies are mainly meant to illustrate that ordinary flight under
perfect conditions is “easy.” The main idea of a simulation environment is to foresee
potential problems, and detect problems that otherwise may have been overlooked.
So to justify the main purpose of the simulator, the UAV is exposed to gusty wind
from case 7.8, and a motor failure in case 7.10.

7.1 Case Study I: Landing Gear Dynamics

Purpose of case: Illustrate landing gear dynamics.

Video time Surge speed Altitude Heading
Start: 0:00 [m/s] [m] [deg]

Previous - - -
New set-point 0:00 0 0 0
Case end 0:10
Duration 10s

The simulation is started with the UAV dropped from an altitude of 0.5 meters,
slightly rotated with 6 degrees of roll and -3 degrees of pitch initially. Since the
landing gear dynamics is highly damped, it quickly converges to an equilibrium

64 CHAPTER 7. SIMULATED FLIGHT

Current case
study, and
current time.

The current
wind
direction.

3D plot showing
position and
attitude

Desired,
reference and
actual orientation

Inputs to the UAV; Left
and right actuator
deflections, and power
consumption.

Primary control
objectives; Heading,
altitude and surge
speed.

Other information;
Angle of attack,
sideslip angle, position
and orientation.

Figure 7.1: An example snapshot of the simulated flight video window.

7.2. CASE STUDY II: TAKE-OFF 65

without significant oscillations. Notice that the UAV converges to a pitch equi-
librium at about ≈ −1◦. This is because the center of mass for this simulation is
exactly between the nose wheel and the rear wheels in the longitudinal direction,
giving slightly more weight to the nose wheel than for the two rear wheels. Hence,
the nose wheel is slightly more displaced.

Since the UAV has no surge velocity at start, the only airstream is resulting from
the falling motion. This results in a quite “crazy” angle of attack coloring of the
wings during the first few seconds. It has not been considered as important to
solve this particular issue which is obviously only related to the visualization at
near zero surge speed.

Notice that both the right and left elevon deflections are increasing. This is because
the altitude reference is 0 while the UAV really is at an altitude of 0.07 meters.
Also the simulation is started with a little orientation error that results in a desired
roll. Hence, the altitude controller wants the UAV to pitch down, and the heading
controller wants the UAV to roll. Remember that the UAV is in “flight mode”
during the entire simulation. With the UAV standing almost still on the ground,
this is a good demo of issues related to non-nominal flight conditions that the
ordinary flight-mode controller do not comprise any fix for. If this turns out to be
a problem in practice, a separate ground mode controller should be considered.

7.2 Case Study II: Take-Off

Purpose of case: Take-off maneuver

Video time Surge speed Altitude Heading
Start: 0:10 [m/s] [m] [deg]

Previous 0 0 0
New set-point 0:10 20 (+20) 0 0
New set-point 0:15 20 30 (+30) 0
Case end 0:35
Duration 25s

Now voltage is applied to the motor giving thrust. Notice that the power con-
sumption from the powerplant is rapidly increased, and at the same time the nose
pitches slightly further down. This is because the applied thrust force with line of
action over the center of mass in the longitudinal direction gives a negative pitching
moment, further displacing the nose wheel. As the UAV accelerates the wings pro-
duce more lift, resulting in a positive pitching moment. Since the reference altitude
still is zero, the altitude controller outputs elevon deflections to pitch down. The
result is small pitch oscillations. Also notice how the increased velocity gives the
heading controller better controllability of the motion. The roll requested to turn
the aircraft towards the reference heading only results in increased landing gear
friction which turns the aircraft on the ground before take-off.

66 CHAPTER 7. SIMULATED FLIGHT

At 00:15, the surge velocity is close to 20 m/s, and the commanded altitude is
set to 30 meters. Both elevon deflections are increased, and the nose pitches up.
Just as the nose wheel is in the air, notice how the angle of attack is changed,
since the airstream now suddenly hits the UAV from below. (w is increased.)
The increased angle of attack gives more lift, and the UAV takes off. When the
rear wheels are airborne, the moment induced from the landing gear suddenly
disappears. The UAV now converges to the new resulting equilibrium established
by the aerodynamic and thrust forces. First now, the UAV can be considered to be
operating under nominal flight conditions, and the flight mode controller should be
expected to fulfill the control objectives of maintaining altitude, surge speed and
heading.

One experience deduced from this case is that the flight mode controller is not very
well suited for take off, and hence a separate take-off controller is motivated.

7.3 Case Study III: Climbing

Purpose of case: Climbing maneuver

Video time Surge speed Altitude Heading
Start: 0:35 [m/s] [m] [deg]

Previous 20 30 0
New set-point 0:35 20 100 (+70) 0
Case end 0:45
Duration 10s

Climbing is the action of increasing altitude. This is simply done by pitching up
and maintaining the same surge speed by applying more thrust. Notice how the
power consumption is before and during the climb.

7.4 Case Study IV: Horizontal Steady Flight

Purpose of case: Steady flight maneuver

Video time Surge speed Altitude Heading
Start: 0:45 [m/s] [m] [deg]

Previous 20 100 0
New set-point 0:45 18 (-2) 100 0
Case end 1:00
Duration 15s

Steady flight is flight maintaining a certain equilibrium point. Furthermore, hori-
zontal steady flight is flying at a constant altitude. By applying a constant altitude,

7.5. CASE STUDY V: DUTCH ROLL 67

surge speed and heading, notice how all inputs and outputs converges to their re-
spective equilibrium’s after some time.
The UAV is now cruising at 18 m/s or equivalently 65 km/h. Notice how the
velocity components other than surge is almost zero. (Almost zero angle of attack.)
Thus, this particular air surge speed in horizontal steady flight minimizes drag.
This airspeed in surge should therefore be the desired airspeed in surge for missions
where maximum endurance is requested.
Since there is no wind, notice how the air velocity in surge perfectly coincides with
the surge velocity of the UAV -as expected.

7.5 Case Study V: Dutch Roll

Purpose of case: Dutch roll maneuver
Video time Surge speed Altitude Heading
Start: 1:00 [m/s] [m] [deg]

Previous 18 100 0
New set-point - - - -
Case end 1:20
Duration 20s

Dutch roll is a classification of an lateral instability phenomena. It is an oscillation
in roll, sideslip and yaw; A passenger looking out the window of an aircraft in Dutch
roll mode will see the wingtip drawing an elliptic pattern relative to the horizon.
Imagine a lateral wind gust increasing the lateral drag force from the stabilizers
at the rear of an aircraft. This sudden sideslip will perturb the yaw motion of the
aircraft, which in turn produces roll because of distinct air velocity over the two
wings. The yawing motion will turn the aircraft such that it starts sideslipping the
other way. This goes back and fourth until the perturbed yaw-motion is damped
out.
The Dutch roll is typically a consequence of a lateral perturbation from wind.
However, a similar response can be provoked by applying rapid steps on the rudders
to experimentally grasp the lateral stability properties of the craft. This is what
is done in this case; Steps are fed forward to the rudders. At this airspeed, the
UAV shows little oscillation and recovers to zero sideslip efficiently. Thus, lateral
stability for this particular simulated UAV is verified by simulation. Also notice
that the control system immediately rolls to compensate for the heading error.
Since Dutch roll is a lateral stability phenomena, it is worth mentioning that a
perturbation in roll also will introduce another lateral stability phenomena called
spiral dive. For aircraft not naturally stable in roll this might lead to a danger-
ous graveyard spiral if proper correcting action is not carried out. Recce D6 is
expected to be naturally stable in roll and, being unmanned, the autopilot should
automatically compensate for such perturbations.

68 CHAPTER 7. SIMULATED FLIGHT

7.6 Case Study VI: Banked Turn

Purpose of case: Banked turn maneuver
Video time Surge speed Altitude Heading
Start: 1:20 [m/s] [m] [deg]

Previous 18 100 0
New set-point 1:20 18 100 -105 (-105)
Case end 1:45
Duration 25s

Change in heading is effectively carried out by rolling the aircraft towards the
desired direction of heading. This is often called a banked turn.

7.7 Case Study VII: Descent

Purpose of case: Descent maneuver
Video time Surge speed Altitude Heading
Start: 1:45 [m/s] [m] [deg]

Previous 18 100 -105
New set-point 1:45 18 30 (-70) -105
Case end 2:05
Duration 20s

Descent is the action of reducing altitude. This is simply done by pitching down.
Notice how the surge velocity is rapidly increased even if the reference surge velocity
is not changed, and no thrust is applied from the motor. The aircraft is not
equipped with air-brakes, and the motor is not configured to be able to rotate in
the opposite direction. The reference surge velocity is recovered after the descent
is over.

7.8 Case Study VIII: Wind

Purpose of case: Illustrate the effect of gusty wind on the UAV, upwind, crosswind
and tailwind.

Video time Surge speed Altitude Heading
Start: 2:05 [m/s] [m] [deg]

Previous 18 30 -105
New set-point 2:05 18 30 165 (+270)
Case end 3:00
Duration 55s

7.8. CASE STUDY VIII: WIND 69

02:05 02:15 02:50 03:00 03:30++
0

2

4

6

8

10

12

14

Time

W
in

d
st

re
ng

th
 [m

/s
]

Mean wind strength

Figure 7.2: The average wind strength with direction towards 75◦.

At time 2:05, the aircraft is exposed to wind generated by the simple wind model

ξ̈i = kδwiδ (t)− 2ζiω0iξ̇ − ξω2
0i (7.1)

wi = ξi + w̄i (7.2)
i ∈ {N,E} (7.3)

where wi is the wind in [m/s] along N and E respectively. (The wind is modeled
to be entirely horizontal.) δ (t) is unit white noise, w̄i is the wind middle value,
and ω0, ζ, kδw are design constants set to

kδwN = 3 (7.4)
ω0N = π (7.5)
ζN = 0.3 (7.6)
w̄N = −1 (7.7)

kδwE = 0.5 (7.8)
ω0E = π (7.9)
ζE = 0.3 (7.10)
w̄E = 4 (7.11)

The kδi are dynamically set in the simulation, but the average wind direction
is (towards) 75◦. The average wind strength in this direction in the simulation is
shown in figure 7.2. As seen from this figure, and from the video, the wind strength
is rapidly increased towards quite much wind, and then reduced to an average of
about 4.1 m/s at 03:00. This average wind strength is unchanged throughout the
video.

First, notice that the relative wind velocity and surge velocity no longer coincide.
Remember that it is surge speed that is fed back to the surge speed controller,

70 CHAPTER 7. SIMULATED FLIGHT

and not airspeed in surge. The simulated heading is initially towards the wind
direction, so the surge speed controller has to apply thrust in order to maintain a
certain surge speed relative to NED, similar to a boat in a river going towards the
current.

As seen from the model and the video, the wind is quite gusty. Think of this as
turbulence. Notice how all states suddenly goes from being smooth, to heavily
perturbed. The desired heading is now set to be along the wind direction. The
reason for setting the heading reference model to somewhat slow is so that the
transition between upwind and along the wind direction is done slowly here. As
the UAV turns, the sway speed reaches 10 m/s when the heading angle is −175◦
which seem to coincide with the average wind speed. At this heading, the wind
hits the aircraft from the side so this is an expected observation.

As the UAV turns further, the wind starts hitting from behind. (Tailwind) Now
make the interesting observation of the air surge speed being significantly lower
than the UAV surge speed. The aerodynamic forces and moments are quadratic
in terms of the airspeed, not the actual surge speed, so this highly affects the
maneuverability and stability properties of the UAV. Notice in particular that the
low airspeed now gives little damping in yaw, so the UAV actually goes into a Dutch
roll mode with significantly more prominent oscillations than in the enforced Dutch
roll mode from section 7.5, with the controller much less able to counteract it. As
a matter of fact, notice that the aircraft is no longer able to maintain altitude,
and descents while the angle of attack oscillates about the stall angle of the main
wings. Luckily, the wind strength is reduced from fresh breeze to gentle breeze
at this very critical moment, which in turn provide sufficient airspeed in surge
to restore maneuverability. Without this lucky turn of events, a crash or ditch
(emergency landing on water) would have been inevitable -not because of system
failure, but rather because of a system weakness or clumsy or ignorant reference in
surge speed.

This case illustrates that the airspeed highly affects the maneuverability and sta-
bility properties of the UAV, and that surge speed not neccecary provide sufficient
feedback to the control system, or guarantee that the UAV stays within its flight
envelope. Alternatively, the actual airspeed can be implemented as the reference
control objective directly.

7.9 Case Study IX: Touch-and-go, Crosswind

Purpose of case: Touch-and-go maneuver

7.10. CASE STUDY X: STALL 71

Video time Surge speed Altitude Heading
Start: 3:00 [m/s] [m] [deg]

Previous 18 30 165
New set-point 3:00 15 (-3) 10 (-20) 15 (+150)
New set-point 3:15 0 (-15) 0(-10) 15
New set-point 3:27 20(+20) 0 15
New set-point 3:30 20 100(+100) 15
Case end 3:50
Duration 50s

Touch-and-go is a maneuver where the air vehicle performs a controlled landing,
but where it takes off again instead of coming to a full stop. This is a common pilot
training maneuver. The current wind strength is an average of about 4.1 m/s. The
problem of cross wind landings are that the lateral sway velocity comes to a hard
stop at touchdown because of high wheel friction. Observe how the strong lateral
wind forces the aircraft to turn after touching down, while the heading controller
tries to bank the plane in the opposite direction to restore reference heading.

7.10 Case Study X: Stall

Purpose of case: Stall
Video time Surge speed Altitude Heading
Start: 3:50 [m/s] [m] [deg]

Previous 20 100 15
New set-point 3:50 0 (-20) 120 (+20) 15
New set-point 4:10 18 (+18) 100 (-100) 15
Case end 4:30
Duration 40s

Recall that the stall angle for the main wings were set to 13◦. The desired altitude
is set to 120 meters, desiring a climb of 20 meters, but the desired surge velocity
is set to zero. This is equivalent to a sudden motor failure due to the current
propulsion system implementation. Notice how the powerplant produces no thrust
at all. The altitude controller outputs a pitch reference, but as the airspeed is
reduced the nose is forced to pitch down. The air velocity is then increased from
the loss of altitude, and eventually the airspeed gets sufficiently high for the pitch
controller to regain maneuverability. Without thrust, the UAV becomes a glider,
eventually doomed to crash without regaining thrust. Observe that the angle of
attack is oscillating about the stall angle, which is recalled as the airstream angle
relative to the wing where lift is maximized.
This case motivates the implementation of some hardware watchdog looking for
system failure, and a corresponding emergency response. This response may be a
controlled emergency descent, parachute launching or automatic error recovery.

72 CHAPTER 7. SIMULATED FLIGHT

7.11 Case Study XI: Propulsion System

Purpose of case: Illustrate powerplant properties
Video time Surge speed Altitude Heading
Start: 4:30 [m/s] [m] [deg]

Previous 20 100 15
New set-point 4:30 25 (+5) 100 -45 (-60)
New set-point 4:35 20 (-5) 100 -45
New set-point 4:40 25 (+5) 100 -45
New set-point 4:45 20 (-5) 100 -45
New set-point 4:50 25 (+5) 100 -45
New set-point 4:55 18 (-7) 100 -45
Case end 5:20
Duration 50s

Now the UAV has been flying for about four and a half minute. Initially, the
battery capacity was at 8000 mAh, but now only 7600 mAh (95%) remain. As the
reference surge velocity increases and decreases, notice how the battery voltage is
declined as the power consumption is high, and vice verca. This voltage drop is
due to the inner resistance of the battery, and although the motor only consumes
200W, the total power consumption is close to 225W. Also notice that when there
are no power consumption, the battery voltage has decreased from 11.1 to 11.0
volt. This is a consequence of lower battery capacity.

7.12 Case Study XII: Touch-and-go, Upwind

Purpose of case: Landing maneuver
Video time Surge speed Altitude Heading
Start: 5:20 [m/s] [m] [deg]

Previous 18 100 -45
New set-point 5:20 18 30 -65 (-20)
New set-point 5:30 15 10 -65
New set-point 5:45 0 0 -65
New set-point 6:00 15 10 -65
Case end 6:10
Duration 40s

The touch-and-go maneuver as in case 7.9. is repeated, only this time upwind. The
UAV touches down at higher surge airspeed. Thus, the wings produce more lift
at the moment of touchdown, and the landing gear spring results in a somewhat
bumpy landing. Never the less, notice that maintaining the reference heading is
much better ensured at upwind landings that crosswind.

7.13. CASE STUDY XIII: LANDING AT LOW AIRSPEED 73

7.13 Case Study XIII: Landing at Low Airspeed

Purpose of case: Landing at low airspeed

Video time Surge speed Altitude Heading
Start: 6:10 [m/s] [m] [deg]

Previous 15 10 -45
New set-point 6:10 11 (-4) 10 -65 (-20)
New set-point 6:20 8 (-3) 2 -65
New set-point 6:25 0 0 -65
Case end 6:40
Duration 30s

It is clear that landings in as little surge velocity as possible is desired to reduce
the time and distance needed to come to a full stop. In this case, the surge speed
is reduced to a minimum by utilizing information about the wind to set the surge
velocity as low as possible. Notice how the lower airspeed results in an increased
angle of attack right before touching down. Just as it touches down, the angle
of attack is suddenly changed from six degrees to zero. The wings now suddenly
produce much less lift at touchdown, and this results in a smoother landing. It
should be kept in mind though, that the UAV becomes significantly more vulner-
able to perturbations from the wind. Also remember the conclusion of reduced
maneuverability at low airspeeds from case 7.8. Hence, a compromise between a
minimum airspeed and surge speed has to be made.

The landing maneuver is perhaps the most challenging of all UAV maneuvers.
For landings on airstrips, the landings are clearly restricted to be along a certain
direction, and wind direction parallel to the strip can of course not be guaranteed.
This introduces a requirement of controlled landings in crosswind. A sophisticated
landing maneuver is to perform the final approach with heading offset to align
the course of the aircraft with the runway direction. (The course direction is the
direction of the resulting speed of the aircraft.) Then, right before touching down, a
controlled sideslip can be achieved by provoking the Dutch roll mode of the aircraft
to align the heading of the craft to the runway heading. The complexity of the
landing maneuver suggests that the landings of the UAV should be performed on
a field rather then on a runway, where upwind landings always are possible.

To reduce the area needed for landings, a separate breaking procedure by rotating
the propellers in the opposite direction can also be considered. However, the possi-
ble consequence of reversing the propeller direction in air before actually touching
down is a hard impact potentially wrecking the vehicle, so caution should be carried
out in such an implementation.

74 CHAPTER 7. SIMULATED FLIGHT

Chapter 8

Conclusions

The dynamics of the aircraft derived in chapter 3 is based on a first principle
approach comprising aerodynamics, thrust, landing gear and gravity forces. State-
of-the-art aircraft systems such as modern fighters and passenger transport vehicles
are quite complex instrumentation systems compared to the Recce D6 UAV. This
makes the on-board actuation system modeling of Recce D6 quite simple, and
limited to three servo motors and one propulsion system. The model is successfully
augmented with these systems.
The implementation of the simulation model in Matlab /Simulink is properly tuned
to match the most prominent properties of Recce D6 as listed in the specifications.
As shown in the simulated flight of chapter 7, the simulator model seem to produce
a reasonable response and capture well known aircraft handling issues. However,
the model has not been verified by neither experienced pilots nor by comparing
logged flight data to the simulator response, and thus the model should not be
considered to be accurate.
The implemented motion control system is simple, but provide a useful and relevant
basis for simple UAV maneuvers.
The visualization implementation in Matlab is proven very useful to substantiate
the simulator model and motion control system response, and may for instance be
used to generate videos such as the one attached to this thesis.

8.1 Further Work

The model should be tuned to match the dynamics of Recce D6 more accurate
than the current simulator can be assumed to be.
The simulation model and visualization is a suitable basis for hardware-in-the-loop
testing. This may be achieved by using Simulink Coder1 to compile the simulator

1Trademark of The MathWorks, Inc - formerly known as Real-Time Workshop.

75

76 CHAPTER 8. CONCLUSIONS

logic and visualization to run real-time under Matlab or under a native operative
system environment. The on board UAV computer will be a Beagle board2 run-
ning a Linux based distribution named Ångström. Considerations regarding the
constellation of on board instrumentation and this operating system is addressed
in Skøien (2011), while hardware-in-the-loop implementation considerations inter-
facing Matlab with external hardware (such as the Beagle board) is considered in
Stern (2011).

The model can be augmented with models for hardware such as gyro, magnetome-
ter, accelerometer and GPS. The navigation block discussed in chapter 5 can then
be implemented and tested, and further used as reference to the control system.

The model could be used to test more comprehensive guidance schemes and con-
trollers, and different autopilot modes can be tried out.

Last, a set of scenarios can be defined to test robustness of the system such as
motor failure, servo motor malfunctions, rapid changes in aerodynamic properties,
sudden weight distribution changes or operative system failure.

2BeagleBoard.org, an all volunteer activity started-up by a collection of passionate individuals.

8.1. FURTHER WORK 77

Bibliography

Allerton, D., 2009. Principles of Flight Simulation. Chichester: John Wiley &
Sons, Ltd

Barnard, R. H. and Philpott, D.R, 2004. Aircraft Flight. Harlow: Pearson
Education Limited

Egeland, O and Gravdahl, J.T., 2003. Modeling and Simulation for Automatic
Control. Trondheim: Marine Cybernetics AS

Hoerner, S. F., 1958. Fluid-dynamic drag. New Jersey: (Published by the author.)

Hoerner, S. I. and Borst, H.V., 1985. Fluid-dynamic lift. Vancouver: Mrs.
Liselotte A. Hoerner

Fossen, T. I., 2011a. Mathematical models for control of aircraft and satellites.
Trondheim: Department of Engineering Cybernetics, NTNU.

Fossen, T. I., 2011b. Handbook of Marine Craft Hydrodynamics and Motion
Control. John Wiley & Sons Ltd.

Graebel, W. P., 2007. Advanced Fluid Mechanics. Elsevier Inc.

Houghton E.L., Carpenter, P.W., 2003. Aerodynamics for Engineering Students.
Butterworth-Heinemann.

McLean, D., 1990. Automatic Flight Control Systems. Hemel Hempstead:
Prentice Hall International (UK) Ltd.

Nordian Aviation Training Systems, 2005. Principles of flight. London: London
metropolitan university

Skøien, K., 2011. A Modular Software and Hardware Framework with Application
to Unmanned Autonomous Systems. M.Sc. Norwegian University of Science and
Technology.

SNAME (The Society of Naval Architects and Marine Engineers), 1950.
Nomenclature for Treating the Motion of a Submerged Body Through a Fluid.
In: Technical and Research Bulletin No. 1-5. New York: The Society of Naval
Architects and Marine Engineers

78 CHAPTER 8. CONCLUSIONS

Stern, C., 2011. HIL Framework for UAV Testing. M.Sc. Norwegian University of
Science and Technology.

Vik, B., 2000. Nonlinear Design and Analysis of Integrated GPS and Inertial
Navigation Systems. Ph. D. Norwegian University of Science and Technology.

White, F.M., 2008. Fluid Mechanics. 6th ed. New York: McGraw-Hill.

Yechout, T.R., Morris, S.L., Bossert D.E. and Hallgren, W.F., 2003. Introduction
to aircraft flight mechanics. Reston: American Institute of Aeronautics and
Astronautics, Inc.

Yuan, Joseph S.-C., 1988. Closed-Loop Manipulator Control Using Quaternion
Feedback. IEEE Journal of robotics and automation, vol. 4, no.4, August 1988.

Appendix A

Case Study video

The attached video showing a simulated flight of Recce D6 is generated in Mat-
lab/Simulink, (trademarks of The MathWorks, Inc) To facilitate the creation of
similar videos, this appendix shows how this specific video has been produced.

The hardware and software used throughout this thesis, and to generate the video
is

• HP Z200 Workstation

– Intel Core i5 CPU, 3.20GHz, 2 Cores
– 8 GB RAM
– x64

• Microsoft Windows 7 Enterprise

– Version 6.1.7601 Service Pack 1 Build 7601
– x64

• Matlab

– Version 7.10.0.499 (R2010a)
– 64-bit
– Simulink Version 7.5 (R2010a)

All relevant Matlab functions are included in the project folder, so no special Matlab
toolboxes are required to perform the simulation or generate the video. To perform
simulation and generate the same video, complete the following steps: (Keep in
mind that the wind is randomly generated, so the response might vary slightly
since the wind is not identical for each simulation.)

79

80 APPENDIX A. CASE STUDY VIDEO

1. All simulation inputs and variables are defined in the Matlab script RecceD6_init.m.
To properly initialize the simulation, run this script. Matlab will prompt a
question dialog box asking to start Simulink simulation. By clicking Yes,
Matlab will run the RecceD6.mdl simulation. The current solver for this
model is forward Euler; ode1 (Euler) with 2.1 ms step size. The simulation
takes about 15 minutes on the PC it was developed at.

2. When the simulation is finished, all variables needed to generate the video
is in the Matlab workspace. To generate the video, open the MakeVideo.m.
script. This script produces all the figures that represents each video frame,
captures them and makes an array of video-frames. This script require some
explanation:

(a) First, the relative path to where the output AVI file should be specified
by setting the avipath variable. The file name should not be included.

(b) The video is generated using the built-in Matlab-function avifile. One
shortcoming of the development platform is that actually no of the com-
pression parameters for avifile are available. Thus, no compression is
applied during video generation. Hence, the uncompressed output file
size might grow to enormous proportions. The next inconvenience is
that avifile can not write files larger than 2GB. The workaround to
this has been to create many .avi files, and limit the number of frames
in each file such that the output file does not exceed 2GM in size. This
is done by specifying the framesprvideo variable on top of the script.

(c) Next, specify the desired number of frames per second in the output
video by setting the plotInterval variable.

(d) All the video frames has to be exactly equal in size. All the different
plot commands throughout the script might alter the overall figure size
depending on the plotting content. The figure size is therefore set man-
ually right before the figure frame is captured and put into the video
frame array. Currently, the video size is set relative to the screen reso-
lution of the development machine. This video size is set at the end of
the current-plot iteration loop.

(e) An extensive workload is carried out by Matlab for each frame, so gen-
erating the video frames may take as much as four hours to complete.
The output of the case study video is 28 avi-files, with a total size of
56,1GB. The output filename is:
Recce_[year]_[month]_[date]_kl_[hour]_[minute]_vnr_[file number].avi
Hence, by sorting the output files alphabetically, the videos are sorted
in a chronological order.

3. The output file sizes are clearly very unpractical. Therefore, the files are
compressed using the free software Any Video Converter. Video options are
Codec: xvid, Frame size: 1920x1080, Bitrate: 2000. After being compressed,
the videos are 109 MB in size.

81

4. The 28 compressed files are joined to one .avi file by using the free software
AVI Joiner. This is the final video.

Keep in mind that the issues related to the big .avi files may be specific to the
development platform. Other platforms might accept video compression in Matlab
directly. Also other strategies for video creation in Matlab exist, such as “mpg-
write” (available from Matlab Central). Neither this did work on the development
machine.

All 3rd party software discussed here are included in the digital attachment of this
thesis.

82 APPENDIX A. CASE STUDY VIDEO

Appendix B

Matlab code

The Matlab implementation consist of more that 2000 lines of Matlab code, and
listing all code in the report would take 34 pages. Further, printing all model
diagrams from the Simulink implementation takes 31 pages. (Not all are distinct;
the same block for landing gear are used three times for instance.) Printing 65 pages
of Matlab code and Simulink models would be a disgrace to the environment, and
yield no benefit. The initialization file for the simulation, the make-movie script,
the 3d plot function, the artificial horizon function and the compass function are
included.
Focus has been to write readable code for a Matlab script editor, not subject to
a requirement of printer-friendliness. Thus, the code-listing here is subject to an
intentionally disregarded text-wrapping issue at print-out.

B.1 RecceD6_init.m (Matlab script)

1 % Author : Kristoffer Dønnestad , 17.06.2011
2 % Attachment to M.Sc. thesis
3 % Unmanned Vehicle Laboratory
4 % Department of Engineering Cybernetics
5 % Norwegian University of Science and Technology
6 %
7

8 clc; clear all; close all;
9

10 % DEFINE SIMULATION CONSTANTS
11 fignr = 1; % The figure number to plot into
12 simtime = 405; % Number of seconds to simulate
13 StepSize = 1/(24*20) ; % Solver step length .
14

15 % DEFINE SIMULATION INPUTS
16 caseindex = [1 2 2 3 4 5 6 7 8 8

8 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13
13 13 13];

17 ref.time = [0 10 15 35 45 60 80 105 125 135
170 180 195 207 210 230 250 270 275 280 285 290 295 320 330 345 360
370 380 393 simtime];

83

84 APPENDIX B. MATLAB CODE

18 surge_d . signals . values = [0 20 20 20 18 18 18 18 18 18
18 15 0 20 20 0 18 25 20 25 20 25 18 18 15 0 15 11

8 0 0] ’;
19 altitude_d . signals . values = [0 0 30 100 100 100 100 30 30 30

30 10 0 0 100 120 100 100 100 100 100 100 100 30 10 0 10 10
2 0 0] ’;

20 yaw_d . signals . values = [0 0 0 0 0 0 -105 -105 -105 105
105 15 15 15 15 15 15 -45 -45 -45 -45 -45 -45 -65 -65 -65 -65
-65 -65 -65 -65] ’.* pi /180; % 10

21 wind_on . signals . values = [0 0 0 0 0 0 0 0 0 3
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1] ’;
22

23 surge_d .time = ref.time;
24 yaw_d .time = ref.time;
25 altitude_d .time = ref.time;
26 wind_on .time = ref.time;
27

28 surge_d . signals . dimensions = 1;
29 yaw_d . signals . dimensions = 1;
30 altitude_d . signals . dimensions = 1;
31 wind_on . signals . dimensions = 1;
32

33 casetext = {’I: Landing gear dynamics ’
34 ’II: Take -off ’
35 ’III: Climbing ’
36 ’IV: Horizontal steady flight ’
37 ’V: Enforced Dutch roll ’
38 ’VI: Banked turn ’
39 ’VII: Descent ’
40 ’VIII: Wind ’
41 ’IX: Touch -and -go , crosswind ’
42 ’X: Loss of power - stall ’
43 ’XI: Propulsion system ’
44 ’XII: Touch -and -go , upwind ’
45 ’XIII: Landing at low airspeed ’};
46

47 rudders .time = [0 62 66 72 76]; % Rudder feed forward
for Enforced Dutch Roll

48 rudders . signals . values = [0 30 0 -30 0] ’.* pi /180; % Rudder feed forward
for Enforced Dutch Roll

49 rudders . signals . dimension = 1; % Rudder feed forward
for Enforced Dutch Roll

50

51

52 % %%%
53 % BODY DYNAMICS AND KINEMATICS INIT %
54 % %
55 % %%%
56 m = 2.8; % Mass of aircraft
57 M = diag ([... % Inertia of aircraft
58 1.8*0.11^2 + 0.5*0.36^2*2
59 1.8*0.17^2 + 1*0.3^2
60 1.8*0.11^2 + 0.5*0.36^2*2 + 1.8*0.17^2 + 1*0.3^2]) ;
61

62 p_init = [0 0 -.5] ’; % Initial position of
BODY in NED

63 v_init = [0 0 0] ’; % Initial velocities
of BODY in NED

64 q_init = angleAxis2unitQuat ([7* pi /180 1 -.5 0]); % Initial orientation
of BODY in NED

65 omega_init = [0 0 0] ’; % Initial angular
velocities of BODY in NED

66 r_co_cg = [0.5 0 0] ’; % The position of CG
with respect to CO

67

68 % Other

B.1. RECCED6_INIT.M (MATLAB SCRIPT) 85

69 g = 9.81; % The acceleration of
gravity

70 rho = 1.2928; % Density of air
71

72

73 % %%%
74 % FLAP DYNAMICS %
75 % %%%
76

77 leftServo . omega_max = 45* pi /(.1*180) ; % Maximum rotation velocity [rad/s
]

78 leftServo . maxDeflection = 45* pi /180; % Max deflection
79 leftServo . minDeflection = -45* pi /180; % Min deflection
80 leftServo .Kp = 10; %
81

82

83 rightServo . omega_max = 45* pi /(.1*180) ; % Maximum rotation velocity [rad/s
]

84 rightServo . maxDeflection = 45* pi /180; % Max deflection
85 rightServo . minDeflection = -45* pi /180; % Max deflection
86 rightServo .Kp = 10; %
87

88 stabilizerServo . omega_max = 40* pi /(.12*180) ; % Maximum rotation velocity [rad
/s]

89 stabilizerServo . maxDeflection = 45* pi /180; % Max deflection
90 stabilizerServo . minDeflection = -45* pi /180; % Max deflection
91 stabilizerServo .Kp = 10; %
92

93 % %%%
94 % PROPULSION SYSTEM %
95 % %%%
96

97 thrust .r_t = [-0.06 0 -0.075] ’; % Position of center of thrust
98 thrust . prop_d = 0.3; % Propeller diameter
99 thrust .Ct = 3.3; % Coefficient of thrust

100

101 battery .Emax = 8000; % Battery capacity [mAh]
102 battery .Un = 11.1; % Nominal battery volatge
103 battery .a = 1.2e -005; % Linear voltage drop
104 battery .b = 20; % Quadratic voltage drop -

dominant at low battery charge
105 battery .Ri = 0.03; % Inner resistance
106

107 motor .Jm = .2; % Motor inertia
108 motor .La = 1.5e -2; % Motor inductance
109 motor .R = 0.5; % DC Motor winding resistance . U

^2/P = 10^2/200=0.5
110 motor .Ke = 0.75; % Shaft torque constant . Shaft

torque = Ke*i
111 motor .Kp = 0.0176; % Propeller torque constant .

Propeller torque = w|w|* Kp
112

113 %
114 % %%%
115 % %
116 % DEFINE CONTROLLER CONSTANTS %
117 % %
118 % %%%
119

120 % %%%%% SURGE CONTROLLER
121 PIDs. surge .p = 20;
122 PIDs. surge .i = 1;
123 PIDs. surge .d = -.02;
124 PIDs. surge .imax = 10;
125 PIDs. surge .imin = -10;
126 PIDs. surge .max = 10;
127 PIDs. surge .min = 0;
128 PIDs. surge . k_awu = 1;

86 APPENDIX B. MATLAB CODE

129

130 % %%%%% HEADING
131 PIDs.roll.p = 2;
132 PIDs.roll.i = 0;
133 PIDs.roll.d = 0;
134 PIDs.roll.imax = leftServo . maxDeflection ;
135 PIDs.roll.imin = leftServo . minDeflection ;
136 PIDs.roll.max = leftServo . maxDeflection ;
137 PIDs.roll.min = leftServo . minDeflection ;
138 PIDs.roll. k_awu = 0;
139

140 PIDs.yaw.p = 2;
141 PIDs.yaw.i = 0;
142 PIDs.yaw.d = 0;
143 PIDs.yaw.imax = 40* pi /180;
144 PIDs.yaw.imin = -40* pi /180;
145 PIDs.yaw.max = 40* pi /180;
146 PIDs.yaw.min = -40* pi /180;
147 PIDs.yaw. k_awu = 0;
148

149

150 % %%%%% ALTITUDE
151 PIDs. pitch .p = 3;
152 PIDs. pitch .i = .05;
153 PIDs. pitch .d = 0;
154 PIDs. pitch .imax = leftServo . maxDeflection ;
155 PIDs. pitch .imin = leftServo . minDeflection ;
156 PIDs. pitch .max = leftServo . maxDeflection ;
157 PIDs. pitch .min = leftServo . minDeflection ;
158 PIDs. pitch . k_awu = 0;
159

160 PIDs. altitude .p = .1;
161 PIDs. altitude .i = .05;
162 PIDs. altitude .d = 0;
163 PIDs. altitude .imax = 5* pi /180;
164 PIDs. altitude .imin = -5*pi /180;
165 PIDs. altitude .max = 30* pi /180;
166 PIDs. altitude .min = -30* pi /180;
167 PIDs. altitude . k_awu = 0;
168

169

170 % %%%
171 % %
172 % DEFINE REFERANCE MODEL CONSTANTS %
173 % %
174 % %%%
175

176

177 refm. altitude . omega = 75* pi /180;
178 refm. altitude .sat1 = 8;
179 refm. altitude .sat2 = 5;
180

181 refm. pitch . omega = 5*360* pi /180;
182 refm. pitch .sat1 = 360* pi /180;
183 refm. pitch .sat2 = 360* pi /180;
184

185 refm.yaw. omega = 36* pi /180;
186 refm.yaw.sat1 = (360/20) *pi /180;
187 refm.yaw.sat2 = 36* pi /180;
188

189 refm.roll. omega = 2*360* pi /180;
190 refm.roll.sat1 = 180* pi /180;
191 refm.roll.sat2 = 180* pi /180;
192

193 refm. surge . omega = 180* pi /180;
194 refm. surge .sat1 = 15;
195 refm. surge .sat2 = 15;
196

B.1. RECCED6_INIT.M (MATLAB SCRIPT) 87

197

198

199 % %%%
200 % %
201 % DEFINE ALL SIMULATOR MODEL PARAMETERS %
202 % %
203 % %%%
204

205

206 % %%%
207 % LANDING GEAR %
208 % %%%
209

210 % Intermediate values :
211 Kd = diag ([0.01 .35 450]) ; % Damping coefficient
212 Ks = diag ([0 0 350]) ; % Spring coefficient
213

214 r_nw = [1 0 0.1] ’; % Position of nose wheel in BODY
215 r_lw = [0 -0.5 0.1] ’; % Position of left weel in BODY
216 r_rw = [0 0.5 0.1] ’; % Position of right wheel in BODY
217

218

219 % %%
220 % AERODYNAMIC CENTERS %
221 % %%
222

223 af.r = [0.4 0 0.0]’; % Position of fuselage
aerodynamic center

224 awl.r = [0.35 -0.42 0]’; % Position of left wing
aerodynamic center

225 awr.r = [0.35 0.42 0]’; % Position of right wing
aerodynamic center

226 asl.r = [0.07 -0.09 0]’; % Position of left stabilizator
aerodynamic center

227 asr.r = [0.07 0.09 0]’; % Position of right stabilizator
aerodynamic center

228

229 af.q = [1 0 0 0] ’; % Orientation of fuselage
aerodynamic center axes

230 awl.q = [1 0 0 0] ’; % Orientation of left wing
aerodynamic center axes

231 awr.q = [1 0 0 0] ’; % Orientation of right wing
aerodynamic center axes

232 asl.q = [sqrt (3) /2 -1/2 0 0] ’; % Orientation of left
stabilizator aerodynamic center axes

233 asr.q = [sqrt (3) /2 1/2 0 0] ’; % Orientation of right
stabilizator aerodynamic center axes

234

235 % DEFINE LIFT PROPERTIES :
236 af. CLmax = 0.1; % Max lift coefficient of

fuselage
237 awl. CLmax = 0.6; % Max lift coefficient of left

wing
238 awr. CLmax = 0.6; % Max lift coefficient of right

wing
239 asl. CLmax = 0.6; % Max lift coefficient of left

stabilizator
240 asr. CLmax = 0.6; % Max lift coefficient of right

stabilizator
241

242 af.as = 13* pi /180; % Stall angle , fuselage
243 awr.as = 13* pi /180; % Stall angle , left wing
244 awl.as = 13* pi /180; % Stall angle , right wing
245 asl.as = 15* pi /180; % Stall angle , left stabilizator
246 asr.as = 15* pi /180; % Stall angle , right stabilizator
247

248 af.a0 = -2*pi /180; % Zero lift angle , fuselage
249 awl.a0 = -4*pi /180; % Zero lift angle , left wing

88 APPENDIX B. MATLAB CODE

250 awr.a0 = -4*pi /180; % Zero lift angle , right wing
251 asl.a0 = 0* pi /180; % Zero lift angle , left

stabilizator
252 asr.a0 = 0* pi /180; % Zero lift angle , right

stabilizator
253

254 af.Al = 0.079; % Characteristic lift area ,
fuselage

255 awl.Al = 0.3815; % Characteristic lift area , left
wing

256 awr.Al = 0.3815; % Characteristic lift area , right
wing

257 asl.Al = 0.03815; % Characteristic lift area , left
stabilizer

258 asr.Al = 0.03815; % Characteristic lift area , right
stabilizer

259

260 af.kdl = 0; % Flap/AoA ratio , fuselage
261 awl.kdl = 0.15; % Flap/AoA ratio , left wing
262 awr.kdl = 0.15; % Flap/AoA ratio , right wing
263 asl.kdl = 0.3; % Flap/AoA ratio , left

stabilizator
264 asr.kdl = 0.3; % Flap/AoA ratio , right

stabilizator
265

266 % DEFINE DRAG PROPERTIES :
267 af.CDp = diag ([.5 1 1]); % Parasite drag coefficients ,

fuselage
268 awl.CDp = diag ([0.209 0.3 1.17]) ; % Parasite drag coefficients ,

left wing
269 awr.CDp = diag ([0.209 0.3 1.17]) ; % Parasite drag coefficients ,

right wing
270 asl.CDp = diag ([0.18 0.3 1.17]) ; % Parasite drag coefficients ,

left stabilizator
271 asr.CDp = diag ([0.18 0.3 1.17]) ; % Parasite drag coefficients ,

right stabilizator
272

273 af.CDpd = diag ([0 0 0]); % Parasite drag coefficients , due
to flap deflection fuselage

274 awl.CDpd = diag ([0.23 0 0.05]) ; % Parasite drag coefficients , due
to flap deflection left wing

275 awr.CDpd = diag ([0.23 0 0.05]) ; % Parasite drag coefficients , due
to flap deflection right wing

276 asl.CDpd = diag ([.1 0 0.1]) ; % Parasite drag coefficients , due
to flap deflection left stabilizator

277 asr.CDpd = diag ([.1 0 0.1]) ; % Parasite drag coefficients , due
to flap deflection right stabilizator

278

279 af.Ad = [0.0126 0.0958 af.Al];
280 awl.Ad = [0.0183 0.052 awl.Al];
281 awr.Ad = [0.0183 0.052 awr.Al];
282 asl.Ad = awl.Ad .*0.1;
283 asr.Ad = awr.Ad .*0.1;
284

285 af.CDi = 0.16; % Induced drag coefficient ,
fuselage

286 awl.CDi = 0.16; % Induced drag coefficient , left
wing

287 awr.CDi = 0.16; % Induced drag coefficient , right
wing

288 asl.CDi = 0.16; % Induced drag coefficient , left
stabilizator

289 asr.CDi = 0.16; % Induced drag coefficient , right
stabilizator

290

291 % DEFINE PITCHING MOMENT PROPERTIES
292 af. Cmmax = .8; % Max

B.2. MAKEVIDEO.M (MATLAB SCRIPT) 89

293 awl. Cmmax = .8; % Max pitching moment coefficient
of left wing

294 awr. Cmmax = .8; % Max pitching moment coefficient
of right wing

295 asl. Cmmax = .8; % Max pitching moment coefficient
of left stabilizator

296 asr. Cmmax = .8; % Max pitching moment coefficient
of right stabilizator

297

298 af. c_bar = 1.06; % Max lift coefficient of fuselage
299 awl. c_bar = 0.62; % Max pitching moment coefficient

of left wing
300 awr. c_bar = 0.62; % Max pitching moment coefficient

of right wing
301 asl. c_bar = 0.062; % Max pitching moment coefficient

of left stabilizator
302 asr. c_bar = 0.062; % Max pitching moment coefficient

of right stabilizator
303

304 af.cm0 = 1* pi /180; % Zero moment angle , fuselage
305 awl.cm0 = 5* pi /180; % Zero moment angle , left wing
306 awr.cm0 = 5* pi /180; % Zero moment angle , right wing
307 asl.cm0 = 0* pi /180; % Zero moment angle , left

stabilizator
308 asr.cm0 = 0* pi /180; % Zero moment angle , right

stabilizator
309

310 af.kdp = 0; % Flap/AoA ratio , fuselage
311 awl.kdp = 0.5; % Flap/AoA ratio , left wing
312 awr.kdp = 0.5; % Flap/AoA ratio , right wing
313 asl.kdp = 0.5; % Flap/AoA ratio , left

stabilizator
314 asr.kdp = 0.5; % Flap/AoA ratio , right

stabilizator
315

316 %%
317 disp(’All variables initialized ’)
318 button = questdlg (’Perform Simulink simulation ?’);
319 if (strcmp (button ,’Yes ’))
320 disp(’Starting Simulink simulation ’)
321 sim RecceD6 ;
322 disp(’Simulink simulation finished ’)
323 end

B.2 MakeVideo.m (Matlab script)

1 % Author : Kristoffer Dønnestad , 17.06.2011
2 % Attachment to M.Sc. thesis
3 % Unmanned Vehicle Laboratory
4 % Department of Engineering Cybernetics
5 % Norwegian University of Science and Technology
6 %
7 % GENERATE VIDEO :
8 GENERATE_AVI_VIDEO = 1; % 1 for yes , 0 for no
9 avipath = ’..\ AVI\’; % Relative path to AVI folder , from current folder

10 framesprvideo = 350; % Maximum number of videoframes for each AVI file
11

12 % Movie settings
13 plotInterval = 1/24; % 1/ plotInterval = Frames pr second
14 fromTime = 0; % Start movie time
15 toTime = simtime ; % Stop movie time
16

17 % Figure out which indexes from the workspace variables that should be used

90 APPENDIX B. MATLAB CODE

18 % to generate each videoframe (last 20 seconds)
19 timeStepIndexes = zeros (length (p. signals . values) ,1);
20 cIndex = 0;
21 for n=1: length (p. signals . values)
22 if (p.time(n)-plotInterval * cIndex > plotInterval) && (p.time(n)>fromTime)

&& (p.time(n)<toTime)
23 cIndex = cIndex + 1;
24 timeStepIndexes (n) = 1;
25 end
26 end
27

28

29 fighandle = figure (fignr);
30 mainaxes = gca;
31

32 set(fighandle ,’Visible ’,’off ’);
33 mTextBox = uicontrol (’style ’,’text ’);
34 set(mTextBox ,’Position ’ ,[267 960 150 20]);
35 set(mTextBox ,’FontSize ’ ,12);
36

37 cTextBox = uicontrol (’style ’,’text ’);
38 set(cTextBox ,’Position ’ ,[267 1000 350 20]);
39 set(cTextBox ,’FontSize ’ ,12);
40 ctimeindex = 1;
41 ccaseindex = 1;
42

43 movieframeindex = 0;
44 totalmovieframeindex = 0;
45 currentvideonr = 1;
46 disp ([’Total number of videoframes : ’ num2str (cIndex)]);
47 videotime = tic;
48 starttime = clock ;
49

50 % Generate a speed vector for plotting
51 speedNED = zeros (length (p. signals . values) ,1);
52 for n =1:1: length (p. signals . values)
53 speedNED (n) = norm(v. signals . values (n ,1:3));
54 end
55

56 % Adjust axes frames for 3d plot
57 axrange = 1.2; % Big number give small UAV
58 axcenter = [p. signals . values (1 ,1) p. signals . values (1 ,2) p. signals . values (1 ,3)

];
59 ax = [axcenter (1) -axrange % MinX
60 axcenter (1)+ axrange % MaxX
61 axcenter (2) -axrange % MinY
62 axcenter (2)+ axrange % MaxY
63 axcenter (3) -axrange *2/3 % MinZ
64 axcenter (3)+ axrange *2/3] ’; % MaxZ
65

66 for n =1:1: length (p. signals . values)
67 if timeStepIndexes (n)
68

69 plotSec = 20;
70 ctime = p.time(n);
71 stopTime = ctime - plotSec ;
72 plotIndexes = p.time <= ctime & p.time > stopTime ;
73 timeArray = p.time(plotIndexes)-ctime ;
74

75 totsec = floor (ctime);
76 min = floor (totsec /60);
77 sec = floor (totsec - min *60);
78 minStr = num2str (min);
79 secStr = num2str (sec);
80 if(min <10) minStr = [’0’ minStr]; end
81 if(sec <10) secStr = [’0’ secStr]; end
82 set(mTextBox ,’String ’ ,[’Time: ’ minStr ’:’ secStr]);
83

B.2. MAKEVIDEO.M (MATLAB SCRIPT) 91

84 set(cTextBox ,’BackgroundColor ’,’default ’);
85 if(ctime >= ref.time(ctimeindex +1))
86 ctimeindex = ctimeindex + 1;
87

88 if (ccaseindex ~= caseindex (ctimeindex))
89 ccaseindex = caseindex (ctimeindex);
90 set(cTextBox ,’BackgroundColor ’,’red ’);
91 else
92 end
93

94 end
95 set(cTextBox ,’String ’,casetext (ccaseindex));
96

97

98 % 3D PLOT
99 splot3d = subplot (4 ,5 ,[1 2 3 6 7 8 11 12 13]);

100 axtolerance = [axrange /3 axrange /3 axrange /5];
101 if(abs(p. signals . values (n ,1) -axcenter (1)) > axtolerance (1))
102 axcenter (1) = p. signals . values (n ,1) - axtolerance (1)*sign(p.

signals . values (n ,1) -axcenter (1));
103 ax (1) = axcenter (1) - axrange ;
104 ax (2) = axcenter (1) + axrange ;
105 end
106 if(abs(p. signals . values (n ,2) -axcenter (2)) > axtolerance (2))
107 axcenter (2) = p. signals . values (n ,2) - axtolerance (2)*sign(p.

signals . values (n ,2) -axcenter (2));
108 ax (3) = axcenter (2) - axrange ;
109 ax (4) = axcenter (2) + axrange ;
110 end
111 if(abs(p. signals . values (n ,3) -axcenter (3)) > axtolerance (3))
112 axcenter (3) = p. signals . values (n ,3) - axtolerance (3)*sign(p.

signals . values (n ,3) -axcenter (3));
113 ax (5) = axcenter (3) - axrange *2/3;
114 ax (6) = axcenter (3) + axrange *2/3;
115 end
116

117 hold off
118 plot3D (fignr ,splot3d ,p. signals . values (n ,:) ,q. signals . values (n ,:) ,AoA.

signals . values (n),flap_lw . signals . values (n),flap_rw . signals . values (
n),flap_ls . signals . values (n),flap_rs . signals . values (n),r_co_cg ,ax);

119 hold on
120

121

122 % ADD WIND ARROW
123 % Get and compute relevant wind data
124 wx = wind. signals . values (n ,1);
125 wy = wind. signals . values (n ,2);
126 wz = wind. signals . values (n ,3);
127 air = cartesian2air (wind. signals . values (n ,:));
128 Wstr = air (1);
129 Walpha = air (2);
130 Wbeta = air (3);
131

132 if(Wstr > 1e -5)
133 % Define arrow geometry :
134 Sn = 8;
135 ArrowX = meshgrid (0: Wstr/Sn:Wstr);
136 ArrowY = meshgrid (cos (0:2* pi/Sn :2* pi) .*.3) ’;
137 ArrowZ = meshgrid (sin (0:2* pi/Sn :2* pi) .*.3) ’;
138

139 ArrowY (:,Sn) = ArrowY (:,Sn).*2;
140 ArrowZ (:,Sn) = ArrowZ (:,Sn).*2;
141 ArrowY (:,Sn +1) = ArrowY (:,Sn).*0;
142 ArrowZ (:,Sn +1) = ArrowZ (:,Sn).*0;
143 ArrowX (:,Sn +1) = ArrowX (:,Sn)+2* Wstr/Sn;
144

145 ArrowX = ArrowX (: ,2: end);
146 ArrowY = ArrowY (: ,2: end);

92 APPENDIX B. MATLAB CODE

147 ArrowZ = ArrowZ (: ,2: end);
148

149 % Rotate arrow according to wind data
150 WindRotmatr = rotateMatrQuat (e2q (0,0, Wbeta));
151 [ms ns] = size(ArrowX);
152 for mm =1: ms
153 for nn = 1: ns
154 xyz = WindRotmatr *[ArrowX (mm ,nn) ArrowY (mm ,nn) ArrowZ (mm ,

nn)]’;
155 ArrowX (mm ,nn) = xyz (1) .*0.1 + ax (2) - 0.3;
156 ArrowY (mm ,nn) = xyz (2) .*0.1 + ax (3) + 0.3;
157 ArrowZ (mm ,nn) = xyz (3) .*0.1 + ax (5) + 0.3;
158 end
159 end
160

161 % Also add a sphere to the plot to show arrow origin
162 [Sx ,Sy ,Sz] = sphere (Sn);
163 [ms ns] = size(Sx);
164 for mm =1: ms
165 for nn = 1: ns
166 xyz = WindRotmatr *[Sx(mm ,nn) Sy(mm ,nn) Sz(mm ,nn)]’;
167 Sx(mm ,nn) = xyz (1) .*.05 + ax (2) - .3;
168 Sy(mm ,nn) = xyz (2) .*.05 + ax (3) + .3;
169 Sz(mm ,nn) = xyz (3) .*.05 + ax (5) + .3;
170 end
171 end
172

173 % Plot the arrow and the sphere into the figure
174 surf(ArrowX ,ArrowY ,ArrowZ ,ones(size(ArrowX)) *(0.5 - Wstr /20));
175 surf(Sx ,Sy ,Sz ,ones(size(Sx)) .*0.5) ;
176 end
177

178

179 % %%%
180 % " ARTIFICIAL HORIZON " PLOT
181 subplot (4 ,5 ,[4 5])
182 plot(eulerAngles . signals . values (plotIndexes ,3) .*(180/ pi),eulerAngles .

signals . values (plotIndexes ,2) .*(180/ pi),’m’);
183 hold on
184

185 r = EulerAnglesRefMod . signals . values (n ,1);
186 plane = [cos(r) -sin(r); sin(r) cos(r)] ’*[35 -35 -7 0 7; 0 0 14 0

14];
187 plot(EulerAnglesRefMod . signals . values (n ,3) .*(180/ pi),

EulerAnglesRefMod . signals . values (n ,2) .*(180/ pi),’go ’);
188 plot(plane (1 ,1:2)+ EulerAnglesRefMod . signals . values (n ,3) .*(180/(pi)),

plane (2 ,1:2)+ EulerAnglesRefMod . signals . values (n ,2) .*(180/(pi)),’g’)
;

189 plot(plane (1 ,3:5)+ EulerAnglesRefMod . signals . values (n ,3) .*(180/(pi)),
plane (2 ,3:5)+ EulerAnglesRefMod . signals . values (n ,2) .*(180/(pi)),’g’)
;

190

191 r = eulerAngles . signals . values (n ,1);
192 plane = [cos(r) -sin(r); sin(r) cos(r)] ’*[35 -35 -7 0 7; 0 0 14 0

14];
193 plot(eulerAngles . signals . values (n ,3) .*(180/ pi),eulerAngles . signals .

values (n ,2) .*(180/ pi),’bo ’);
194 plot(plane (1 ,1:2)+ eulerAngles . signals . values (n ,3) .*(180/(pi)),plane

(2 ,1:2)+ eulerAngles . signals . values (n ,2) .*(180/(pi)),’b’);
195 plot(plane (1 ,3:5)+ eulerAngles . signals . values (n ,3) .*(180/(pi)),plane

(2 ,3:5)+ eulerAngles . signals . values (n ,2) .*(180/(pi)),’b’);
196

197 r = EulerAnglesRef . signals . values (n ,1);
198 plane = [cos(r) -sin(r); sin(r) cos(r)] ’*[35 -35 -7 0 7; 0 0 14 0

14];
199 plot(EulerAnglesRef . signals . values (n ,3) .*(180/ pi),EulerAnglesRef .

signals . values (n ,2) .*(180/ pi),’ro ’);

B.2. MAKEVIDEO.M (MATLAB SCRIPT) 93

200 plot(plane (1 ,1:2)+ EulerAnglesRef . signals . values (n ,3) .*(180/(pi)),
plane (2 ,1:2)+ EulerAnglesRef . signals . values (n ,2) .*(180/(pi)),’r’);

201 plot(plane (1 ,3:5)+ EulerAnglesRef . signals . values (n ,3) .*(180/(pi)),
plane (2 ,3:5)+ EulerAnglesRef . signals . values (n ,2) .*(180/(pi)),’r’);

202

203 hold off
204 title (’" Artificial horizon "’)
205 set(gca ,’XTick ’ ,[-180 -90 0 90 180]) ;
206 set(gca ,’XTickLabel ’ ,{’South ’ ’West ’ ’North ’ ’East ’ ’South ’});
207 ylabel (’Pitch [deg]’)
208 xlim ([-180 ,180]);
209 ylim ([-58 ,58]);
210 grid on
211

212

213 % %%%
214 % ORIENTATION PLOT
215 subplot (4 ,5 ,10)
216 plot(timeArray , eulerAngles . signals . values (plotIndexes ,1) .*(180/ pi),’b

’);
217 hold on
218 plot(timeArray , eulerAngles . signals . values (plotIndexes ,2) .*(180/ pi),’r

’);
219 plot(timeArray , eulerAngles . signals . values (plotIndexes ,3) .*(180/ pi),’c

’);
220 hold off
221 legend (’\phi - Roll ’,’\ theta - Pitch ’,’\psi - Yaw ’,’Location ’,’

NorthWest ’)
222 title (’Orientation ’)
223 ylabel (’Angle [deg]’)
224 xlabel (’time [s]’)
225 xlim ([- plotSec ,0]);
226 grid on
227

228

229 % %%%
230 % ANGLE OF ATTACK / SIDESLIP PLOT
231 subplot (4 ,5 ,20)
232 plot(timeArray ,AoA. signals . values (plotIndexes) .*(180/ pi),’b’);
233 hold on
234 plot(timeArray ,beta. signals . values (plotIndexes) .*(180/ pi),’r’);
235 legend (’\ alpha ’,’\beta ’,’Location ’,’NorthWest ’)
236 xlim ([- plotSec ,0]);
237 xlabel (’time [s]’);
238 ylabel (’Angle [deg]’)
239 title (’Angle of attack ’)
240 hold off
241 grid on;
242

243

244 % %%%
245 % POSITION PLOT
246 subplot (4 ,5 ,15)
247 plot(p. signals . values (plotIndexes ,2) ,p. signals . values (plotIndexes ,1) ,

’m’);
248 hold on
249 plot(p. signals . values (n ,2) ,p. signals . values (n ,1) ,’bo ’);
250 hold off
251 title (’Position in NE - plane (last 20s)’)
252 ylabel (’N - North [m]’);
253 xlabel (’E - East [m]’);
254 grid on
255 valuesvector = [p. signals . values (plotIndexes ,2) ’ p. signals . values (

plotIndexes ,1) ’]’;
256 if(abs(max(valuesvector)) > 10)
257 axis equal
258 else
259 axis ([-10 10 -10 10]);

94 APPENDIX B. MATLAB CODE

260 end
261

262

263

264 % %%%
265 % ALTITUDE PLOT
266 subplot (4 ,5 ,14)
267 title (’Altitude ’)
268 plot(timeArray ,-p. signals . values (plotIndexes ,3) ,’b’);
269 hold on
270 silarrow = [0 0 .6 .6 1 .6 .6 0 ;
271 -.1 .1 .1 .3 0 -.3 -.1 -.1]’;
272 maxmin = get(gca ,’ylim ’);
273 if(maxmin (1) > altitude_ref . signals . values (n))
274 set(gca ,’Ylim ’ ,[altitude_ref . signals . values (n) maxmin (2)]);
275 elseif (maxmin (2) < altitude_ref . signals . values (n))
276 set(gca ,’Ylim ’ ,[maxmin (1) altitude_ref . signals . values (n)]);
277 end
278 maxmin = get(gca ,’ylim ’);
279 plot(silarrow (: ,1) *2 -2 ,.2* silarrow (: ,2) *(maxmin (2) - maxmin (1))+

altitude_ref . signals . values (n),’g’);
280 set(gca ,’Ylim ’,maxmin);
281 hold off;
282

283 title (’Altitude ’);
284 xlim ([- plotSec ,0]);
285 xlabel (’time [s]’);
286 ylabel (’Altitude [m]’);
287 grid on
288

289

290 % %%%
291 % LEFT FLAPS PLOT
292 subplot (4 ,5 ,16)
293 plot(timeArray , flap_lw . signals . values (plotIndexes) .*(180/ pi),’b’);
294 hold on
295 plot(timeArray , flap_ls . signals . values (plotIndexes) .*(180/ pi),’r’);
296 hold off
297 legend (’\ delta L wing ’,’\ delta L rudder .’,’Location ’,’NorthWest ’);
298 xlim ([- plotSec ,0]);
299 xlabel (’time [s]’);
300 ylabel (’Angle [deg]’);
301 title (’Left control inputs ’)
302 grid on
303

304

305 % %%%
306 % POWER PLANT PLOT
307 subplot (4 ,5 ,17)
308 plot(timeArray , power_consumption . signals . values (plotIndexes ,1))
309 hold on
310 voltageStr = num2str (batt_u . signals . values (n ,1));
311 if length (voltageStr) > 4
312 voltageStr = voltageStr (1:4) ;
313 end
314 %text (-19.3 ,60 ,[’ Propeller : ’ num2str (round (prop_velocity . signals .

values (n) *60/(2* pi))) ’ RPM ’])
315 text (-19.3 ,35 ,[’Battery voltage :’ voltageStr ’ V’])
316 text (-19.3 ,10 ,[num2str (round (batt_mAh . signals . values (n ,1))) ’ mAh

left (’ num2str (round (batt_mAh . signals . values (n ,1) *100/ battery .Emax
)) ’%) ’])

317 xlim ([- plotSec ,0]);
318 ylim ([0 ,240]);
319 xlabel (’time [s]’);
320 ylabel (’Power concumption [W]’);
321 title (’Power plant status ’)
322 hold off
323 %grid on

B.2. MAKEVIDEO.M (MATLAB SCRIPT) 95

324

325

326 % %%%
327 % RIGHT FLAPS PLOT
328 subplot (4 ,5 ,18)
329 plot(timeArray , flap_rw . signals . values (plotIndexes) .*(180/ pi),’b’);
330 hold on
331 plot(timeArray , flap_rs . signals . values (plotIndexes) .*(180/ pi),’r’);
332 hold off
333 legend (’\ delta R wing ’,’\ delta R rudder .’,’Location ’,’NorthWest ’);
334 xlim ([- plotSec ,0]);
335 xlabel (’time [s]’);
336 ylabel (’Angle [deg]’);
337 title (’Right control inputs ’)
338 grid on
339

340

341

342 % %%%
343 % VELOCITIES PLOT
344 subplot (4 ,5 ,19)
345 plot(timeArray , speedNED (plotIndexes),’m’);
346 hold on;
347 plot(timeArray ,v. signals . values (plotIndexes ,1) ,’b’);
348 plot(timeArray ,v. signals . values (plotIndexes ,2) ,’r’);
349 plot(timeArray ,v. signals . values (plotIndexes ,3) ,’c’);
350 %plot(timeArray ,v. signals . values (plotIndexes ,3) ,’r ’); %

INSERT AIRSPEED
351

352 maxmin = get(gca ,’ylim ’);
353 if(maxmin (1) > v. signals . values (n ,1))
354 set(gca ,’Ylim ’ ,[surge_ref . signals . values (n) maxmin (2)]);
355 elseif (maxmin (2) < surge_ref . signals . values (n))
356 set(gca ,’Ylim ’ ,[maxmin (1) surge_ref . signals . values (n)]);
357 end
358 maxmin = get(gca ,’ylim ’);
359 plot(silarrow (: ,1) *2 -2 ,.2* silarrow (: ,2) *(maxmin (2) - maxmin (1))+

surge_ref . signals . values (n),’b’);
360 plot(silarrow (: ,1) *2 -2 ,.2* silarrow (: ,2) *(maxmin (2) - maxmin (1))+

airvelocity_body . signals . values (n ,1) ,’k’);
361 set(gca ,’Ylim ’,maxmin);
362

363 hold off;
364 title (’Speed and velocities ’)
365 legend (’Speed ’,’u’,’v’,’w’,’Location ’,’NorthWest ’);
366 xlim ([- plotSec ,0]);
367 xlabel (’time [s]’);
368 ylabel (’Velocity [m/s]’);
369 grid on
370

371

372 % %%%
373 % WIND PLOT
374 subplot (4 ,5 ,9)
375 circle = [sin (0:2* pi /90:2* pi)’ cos (0:2* pi /90:2* pi) ’];
376 Windstrength = [0.3 1.6 3.4 5.5 8 10.8 13.9 17.2 20.8 23.5 28.5

32.7];
377 BeaufortScale = {...
378 ’Calm ’
379 ’Light air ’
380 ’Light breeze ’
381 ’Gentle breeze ’
382 ’Moderate breeze ’
383 ’Fresh breeze ’
384 ’Strong breeze ’
385 ’Near gale ’
386 ’Gale ’
387 ’Storm ’

96 APPENDIX B. MATLAB CODE

388 ’Violent storm ’
389 ’Hurricane ’
390 };
391

392 % Define aircraft silhouette :
393 silfus = [-.8 .8 .8 5 5 .8 .8 0 -.8 -.8 -5 -5 -.8 -.8 ;
394 -4.5 -4.5 -4 -4 -1 4 5 7 5 4 -1 -4 -4 -4.5

]’;
395 % Define unit wind arrow silhouette :
396 silarrow = [-.1 .1 .1 .3 0 -.3 -.1 -.1 ;
397 0 0 .6 .6 1 .6 .6 0]’;
398

399 desreftap = [2.5* silarrow (: ,1) ’
400 -2.5* silarrow (: ,2) ’+9.5] ’;
401

402 cheading = eulerAngles . signals . values (n ,3);
403 desheading = EulerAnglesRef . signals . values (n ,3);
404 refheading = EulerAnglesRefMod . signals . values (n ,3);
405

406 silfusAct = zeros (size(silfus));
407 for siln = 1: length (silfus)
408 silfusAct (siln ,:) = [cos(cheading) sin(cheading) ; -sin(cheading

) cos(cheading)]* silfus (siln ,:) ’;
409 end
410

411 silfusDes = zeros (size(desreftap));
412 silfusRef = zeros (size(desreftap));
413 for siln = 1: length (desreftap)
414 silfusDes (siln ,:) = [cos(desheading) sin(desheading) ; -sin(

desheading) cos(desheading)]* desreftap (siln ,:) ’;
415 silfusRef (siln ,:) = [cos(refheading) sin(refheading) ; -sin(

refheading) cos(refheading)]* desreftap (siln ,:) ’;
416 end
417

418 for siln = 1: length (silarrow)
419 silarrow (siln ,:) = Wstr *[cos(Wbeta) sin(Wbeta) ; -sin(Wbeta) cos(

Wbeta)]* silarrow (siln ,:) ’;
420 end
421

422

423

424

425

426 plot(circle (: ,1)*7, circle (: ,2) *7);
427 hold on
428 plot(circle (: ,1) *.3 , circle (: ,2) *.3);
429 plot ([0 0] ,[6.5 7.5]) ;
430 plot ([0 0] ,[-6.5 -7.5]);
431 plot ([6.5 7.5] ,[0 0]);
432 plot ([-6.5 -7.5] ,[0 0]);
433

434 plot(silfusDes (: ,1) ,silfusDes (: ,2) ,’r’);
435 plot(silfusRef (: ,1) ,silfusRef (: ,2) ,’g’);
436 plot(silfusAct (: ,1) ,silfusAct (: ,2) ,’b’);
437

438 plot(silarrow (: ,1) ,silarrow (: ,2) ,’m’);
439

440 hold off
441

442

443 for ws = 1: length (Windstrength)
444 BeaufortIndex = ws;
445 if Wstr < Windstrength (ws)
446 break ;
447 end
448 end
449

450 title (’Compass ’)

B.2. MAKEVIDEO.M (MATLAB SCRIPT) 97

451

452 text (0.4 ,7.8 ,[’North ’]);
453 text (7.8 ,0.4 ,[’East ’]);
454 text (-11.2 ,0.4 ,[’West ’]);
455 text (0.4 , -7.8 ,[’South ’]);
456

457

458 WstrStr = num2str (Wstr);
459 if length (WstrStr) > 4
460 WstrStr = WstrStr (1:4) ;
461 end
462

463 text (-12.5 , -4.5 , [’WIND:’]);
464 text (-12.5 , -6 , [num2str (round (Wbeta *180/ pi)) ’{\ circ}’]);
465 text (-12.5 , -7.5 ,[WstrStr ’ m/s’]);
466 text (-12.5 , -9 , [BeaufortScale (BeaufortIndex)]);
467

468 text (-12.5 ,9 , [’AIRCRAFT :’]);
469 text (-12.5 ,7.5 , [num2str (round (eulerAngles . signals . values (n ,3) *180/ pi

)) ’{\ circ}’]);
470

471 axis ([-10 10 -10 10]);
472 axis equal ;
473 set(gca ,’ytick ’ ,[]);
474 set(gca ,’xtick ’ ,[]);
475

476

477 if (GENERATE_AVI_VIDEO)
478 % Create AVI object , and add the current plot to the AVI object :
479 movieframeindex = movieframeindex +1; % Keep

track of number of movieframes in the current AVI
480 totalmovieframeindex = totalmovieframeindex + 1; % Keep

track of total number of movieframes
481

482 % !!!! Make sure all video frames have the exact same size: !!!
483 scrsz = get (0,’ScreenSize ’);
484 set(gcf ,’Position ’ ,[20 50 scrsz (3) -40 scrsz (4) -100]);
485

486 movieframes (movieframeindex) = getframe (fighandle); % Get the
current figure frame , and store it to a movieframe array

487 if(movieframeindex == framesprvideo) % If
maximum number of videoframes pr AVI file is reached

488

489 timeused = toc(videotime); %
Estimate remaining movie generation time

490 videotime = tic;
491 timeleft = (timeused / framesprvideo) * (cIndex -

totalmovieframeindex);
492 hleft = floor (timeleft /(60*60));
493 mleft = floor ((timeleft - hleft *60*60) /60);
494 sleft = floor (timeleft - hleft *60*60 - mleft *60);
495 disp ([’Videoframe ’ num2str (totalmovieframeindex) ’/’ num2str

(cIndex) ’ completed . Estimated time left: ’ num2str (hleft)
’h, ’ num2str (mleft) ’min , ’ num2str (sleft) ’sec.’]);

496

497 time = clock ;
498 ss = floor (mod(time (6)+sleft ,60));
499 mm = floor ((time (5)+ mleft + floor ((time (6)+ sleft)/60)));
500 hh = mod(time (4)+hleft ,24);
501 disp ([’Estimated finishing time at ’ num2str (hh) ’:’ num2str (

mm) ’ ’ num2str (ss) ’.’]);
502

503 % Create AVI object
504 aviobj = avifile ([avipath ’Recce_ ’ num2str (floor (starttime (1)

)) ’_’ num2str (floor (starttime (2))) ’_’ num2str (floor (
starttime (3))) ’_kl_ ’ num2str (floor (starttime (4))) ’_’
num2str (floor (starttime (5))) ’_vnr_ ’ num2str (currentvideonr
)],’FPS ’,round (1/ plotInterval),’compression ’,’None ’);

98 APPENDIX B. MATLAB CODE

505 for n=1: length (movieframes)
506 aviobj = addframe (aviobj , movieframes (n)); % Add all

matlab figures to the AVI object
507 end
508 aviobj = close (aviobj); % ...

close the AVI object
509 clear movieframes ; % Dispose

the covered videoframes
510 movieframeindex = 0; % Reset

the current videoframe indexes
511 currentvideonr = currentvideonr + 1; % And

increase the number of videos
512 end
513 end % End IF AVI video
514

515 end % End Current plot
516 end % Finished iterating through all plot frames
517

518 % Store all the remaining matlab figures to the last AVI file
519 if (GENERATE_AVI_VIDEO)
520 aviobj = avifile ([avipath ’Recce_ ’ num2str (floor (starttime (1))) ’_’ num2str (

floor (starttime (2))) ’_’ num2str (floor (starttime (3))) ’_kl_ ’ num2str (floor (
starttime (4))) ’_’ num2str (floor (starttime (5))) ’_vnr_ ’ num2str (
currentvideonr)],’FPS ’,round (1/ plotInterval),’compression ’,’None ’);

521 for n=1: length (movieframes)
522 aviobj = addframe (aviobj , movieframes (n));
523 end
524 aviobj = close (aviobj);
525 end

B.3 Plot3d.m (Matlab function)

1 % figh = plot3D (fignr ,splot3d ,p,q,aoa ,a_fl ,a_fr ,a_el ,a_er ,r_og ,ax)
2 %
3 % Inputs :
4 % fignr - The figure number
5 % splot3d - The subplot handle to plot 3D plot into
6 % p - The position in NED coordinates . [3 ,1]
7 % q - A quartanion specifying the orientation of BODY in NED. [4 x1]
8 % aoa - Angle of attack . (rad)
9 % a_fl - Angle of the left flap (rad)

10 % a_fr - Angle of the right flap (rad)
11 % a_el - Angle of the left elevator (rad)
12 % a_er - Angle of the right elevator (rad)
13 % r_og - A vector specifying the position of CG in CO. [3 x1]
14 % This point is the point the aircraft is rotated about
15 % ax - Axis argument , e.g. [XMIN XMAX YMIN YMAX ZMIN ZMAX]
16 %
17 % Returns :
18 % fig - The figure handle
19 %
20 % Author : Kristoffer Dønnestad , 17.06.2011
21 % Attachment to M.Sc. thesis
22 % Unmanned Vehicle Laboratory
23 % Department of Engineering Cybernetics
24 % Norwegian University of Science and Technology
25 %
26 function figh = plot3D (fignr ,splot3d ,p,q,aoa ,a_fl ,a_fr ,a_el ,a_er ,r_og ,ax)
27 figh = figure (fignr);
28 cla(splot3d)
29 scrsz = get (0,’ScreenSize ’);
30 set(gcf ,’Position ’ ,[20 50 scrsz (3) -40 scrsz (4) -100]);
31

B.3. PLOT3D.M (MATLAB FUNCTION) 99

32 maxAngle = 15* pi /180; % Max coloring angle
33 maxRange = 2* abs(maxAngle); % The coloring range
34

35 % Define matrices used to draw left and right wing
36 wl (: ,: ,2) =[-46, -40, -2
37 -46, -40, -2
38 -46, -40, -2
39 -46, -40, -2
40 -46, -40, -2];
41 wl (: ,: ,1) =[0, 0, 0
42 17, 23, 54
43 17, 23, 54
44 0, 0, 0
45 0, 0, 0];
46 wl (: ,: ,3) = -[-2.5 , 1, 1
47 -2.5, 1, 1
48 -2.5, -1, -1
49 -2.5, -1, -1
50 -2.5, 1, 1];
51

52

53 wr (: ,: ,1) = wl (: ,: ,1);
54 wr (: ,: ,2) = -wl (: ,: ,2);
55 wr (: ,: ,3) = wl (: ,: ,3);
56

57 aoaNorm = aoa/ maxRange +0.5;
58 if aoaNorm > 1
59 aoaNorm = 1;
60 elseif aoaNorm < 0
61 aoaNorm = 0;
62 end
63

64 wlC = [ones (4 ,1) .*0.5 ones (4 ,1) .* aoaNorm];
65 wrC = [ones (4 ,1) .*0.5 ones (4 ,1) .* aoaNorm];
66

67 % Define matrices used to draw the fuselage
68 b(: ,: ,2) = [-2, -2, 2, 2
69 -2, -2, 2, 2
70 -2, -2, 2, 2
71 -2, -2, 2, 2
72 -2, -2, 2, 2
73 -2, -2, 2, 2];
74 b(: ,: ,1) = [-2, -2, -2, -2
75 62, 62, 62, 62
76 71, 71, 71, 71
77 62, 62, 62, 62
78 -2, -2, -2, -2
79 -2, -2, -2, -2];
80 b(: ,: ,3) =-[-4, 8, 8, -4
81 -4, 8, 8, -4
82 -0, 0, 0, -0
83 -4, -4, -4, -4
84 -4, -4, -4, -4
85 -4, 8, 8, -4];
86 bC = ones (5 ,3) .*0.5;
87

88 % Define matrices used to draw the left and right flap
89 fl (: ,: ,2) =[-40 , -40, -12, -12
90 -40, -40, -12, -12
91 -40, -40, -12, -12
92 -40, -40, -12, -12
93 -40, -40, -12, -12
94 -40, -40, -12, -12];
95 fl (: ,: ,1) =[-3, -3, -4, -4
96 -1, -1, -1, -1
97 0, 0, 0, 0
98 -1, -1, -1, -1
99 -3, -3, -4, -4

100 APPENDIX B. MATLAB CODE

100 -3, -3, -4, -4];
101 fl (: ,: ,3)=-[-1, 1, 1, -1
102 -1, 1, 1, -1
103 0, 0, 0, 0
104 -1, -1, -1, -1
105 -1, -1, -1, -1
106 -1, 1, 1, -1];
107

108 fr (: ,: ,1) = fl (: ,: ,1);
109 fr (: ,: ,2) = -fl (: ,: ,2);
110 fr (: ,: ,3) = fl (: ,: ,3);
111

112 % Now rotate the left flap according to the a_fl argument
113 rotMatr = rotateMatrQuat (angleAxis2unitQuat ([a_fl , 0, -1, 0]));
114 sfl = size(fl);
115 for i=1: sfl (1)
116 for j=1: sfl (2)
117 fl(i,j ,:) = rotMatr *[fl(i,j ,1) fl(i,j ,2) fl(i,j ,3)]’;
118 end
119 end
120

121 % Now rotate the right flap according to the a_fr argument
122 rotMatr = rotateMatrQuat (angleAxis2unitQuat ([a_fr , 0, -1, 0]));
123 sfr = size(fr);
124 for i=1: sfr (1)
125 for j=1: sfr (2)
126 fr(i,j ,:) = rotMatr *[fr(i,j ,1) fr(i,j ,2) fr(i,j ,3)]’;
127 end
128 end
129

130 % Now set color on the flaps according to
131 flCnorm = a_fl/ maxRange +0.5;
132 if flCnorm > 1
133 flCnorm = 1;
134 elseif flCnorm < 0
135 flCnorm = 0;
136 end
137

138 frCnorm = a_fr/ maxRange +0.5;
139 if frCnorm > 1
140 frCnorm = 1;
141 elseif frCnorm < 0
142 frCnorm = 0;
143 end
144

145 flC = ones (5 ,3) .* flCnorm ;
146 frC = ones (5 ,3) .* frCnorm ;
147

148 % Define matrices used to draw left and right stabilizator
149 el (: ,: ,2) =[-2, -2, -2, -2
150 -8.3, -8, -8,-8.3
151 -8.3 , -8.3 , -8.3 , -8.3
152 -2, -2, -2, -2];
153 el (: ,: ,1) =[0, 0, 13, 13
154 0, 0, 3, 3
155 0, 0, 3, 3
156 0, 0, 13, 13];
157 el (: ,: ,3)=-[7.4 , 8, 8, 7.4
158 20, 20, 20, 20
159 20, 20, 20, 20
160 7.4 , 7.4 , 7.4 , 7.4];
161

162 er (: ,: ,1) = el (: ,: ,1);
163 er (: ,: ,2) = -el (: ,: ,2);
164 er (: ,: ,3) = el (: ,: ,3);
165

166 elC = ones (3 ,3) *0.5;
167 erC = ones (3 ,3) *0.5;

B.3. PLOT3D.M (MATLAB FUNCTION) 101

168

169

170

171 % Define matrices used to draw left and right elevator flap
172 fel (: ,: ,2) =[-8.3, -8, -2.5, -2.8
173 -8.3, -8, -2.5, -2.8
174 -8.15 , -8.15 , -2.65 , -2.65
175 -8.3, -8.3, -2.8, -2.8
176 -8.3, -8.3, -2.8, -2.8
177 -8, -8, -2.5, -2.5];
178 fel (: ,: ,1) =[-3, -3, -3, -3
179 -1, -1, -1, -1
180 -0, -0, -0, -0
181 -1, -1, -1, -1
182 -3, -3, -3, -3
183 -3, -3, -3, -3];
184 fel (: ,: ,3)=-[20, 20, 9, 9
185 20, 20, 9, 9
186 20, 20, 9, 9
187 20, 20, 9, 9
188 20, 20, 9, 9
189 20, 20, 9, 9];
190

191

192 fer (: ,: ,1) = fel (: ,: ,1);
193 fer (: ,: ,2) = -fel (: ,: ,2);
194 fer (: ,: ,3) = fel (: ,: ,3);
195

196

197 % Now rotate the left elevator flap according to the a_el argument
198 %yfix = 26.2/11;
199 rotMatr = rotateMatrQuat (angleAxis2unitQuat ([a_el , 0, -5.5, -11]));
200 sfel = size(fel);
201 for i=1: sfel (1)
202 for j=1: sfel (2)
203 fel(i,j ,:) = [fel(i,j ,1) , fel(i,j ,2) +2.65 fel(i,j ,3) +9] ’;
204 fel(i,j ,:) = rotMatr *[fel(i,j ,1) fel(i,j ,2) fel(i,j ,3)]’;
205 fel(i,j ,:) = [fel(i,j ,1) , fel(i,j ,2) -2.65 fel(i,j ,3) -9]’;
206 end
207 end
208

209 % Now rotate the right elevator flap according to the a_er argument
210 rotMatr = rotateMatrQuat (angleAxis2unitQuat ([a_er , 0, -5.5, 11]));
211 sfer = size(fer);
212 for i=1: sfer (1)
213 for j=1: sfer (2)
214 fer(i,j ,:) = [fer(i,j ,1) , fer(i,j ,2) -2.65 fer(i,j ,3) +9] ’;
215 fer(i,j ,:) = rotMatr *[fer(i,j ,1) fer(i,j ,2) fer(i,j ,3)]’;
216 fer(i,j ,:) = [fer(i,j ,1) , fer(i,j ,2) +2.65 fer(i,j ,3) -9]’;
217 end
218 end
219

220 felNorm = a_el/ maxRange +0.5;
221 if felNorm > 1
222 felNorm = 1;
223 elseif felNorm < 0
224 felNorm = 0;
225 end
226

227 ferNorm = a_er/ maxRange +0.5;
228 if ferNorm > 1
229 ferNorm = 1;
230 elseif ferNorm < 0
231 ferNorm = 0;
232 end
233

234 felC = ones (5 ,3) .* felNorm ;
235 ferC = ones (5 ,3) .* ferNorm ;

102 APPENDIX B. MATLAB CODE

236

237

238 % %%
239 % Now all actuators are rotated , and colors have been defined . %
240 % Rotate everything according to UAV orientation %
241 % %%
242

243

244 rotMatrAll = rotateMatrQuat (q);
245

246 downscale = 1.42/92;
247

248 % Right and left wing
249 swl = size(wl);
250 for i=1: swl (1)
251 for j=1: swl (2)
252 wl(i,j ,:) = rotMatrAll *[wl(i,j ,1)*downscale -r_og (1) ...
253 wl(i,j ,2)*downscale -r_og (2) ...
254 wl(i,j ,3)*downscale -r_og (3)]’ + r_og + p ’;
255 wr(i,j ,:) = rotMatrAll *[wr(i,j ,1)*downscale -r_og (1) ...
256 wr(i,j ,2)*downscale -r_og (2) ...
257 wr(i,j ,3)*downscale -r_og (3)]’ + r_og + p ’;
258 end
259 end
260

261 sb = size(b);
262 for i=1: sb (1)
263 for j=1: sb (2)
264 b(i,j ,:) = rotMatrAll *[b(i,j ,1)*downscale -r_og (1) ...
265 b(i,j ,2)*downscale -r_og (2) ...
266 b(i,j ,3)*downscale -r_og (3)]’ + r_og + p ’;
267 end
268 end
269

270 sfl = size(fl);
271 for i=1: sfl (1)
272 for j=1: sfl (2)
273 fl(i,j ,:) = rotMatrAll *[fl(i,j ,1)*downscale -r_og (1) ...
274 fl(i,j ,2)*downscale -r_og (2) ...
275 fl(i,j ,3)*downscale -r_og (3)]’ + r_og + p ’;
276 fr(i,j ,:) = rotMatrAll *[fr(i,j ,1)*downscale -r_og (1) ...
277 fr(i,j ,2)*downscale -r_og (2) ...
278 fr(i,j ,3)*downscale -r_og (3)]’ + r_og + p ’;
279 end
280 end
281

282 sel = size(el);
283 for i=1: sel (1)
284 for j=1: sel (2)
285 el(i,j ,:) = rotMatrAll *[el(i,j ,1)*downscale -r_og (1) ...
286 el(i,j ,2)*downscale -r_og (2) ...
287 el(i,j ,3)*downscale -r_og (3)]’ + r_og + p ’;
288 er(i,j ,:) = rotMatrAll *[er(i,j ,1)*downscale -r_og (1) ...
289 er(i,j ,2)*downscale -r_og (2) ...
290 er(i,j ,3)*downscale -r_og (3)]’ + r_og + p ’;
291 end
292 end
293

294 sfel = size(fel);
295 for i=1: sfel (1)
296 for j=1: sfel (2)
297 fel(i,j ,:) = rotMatrAll *[fel(i,j ,1)*downscale -r_og (1) ...
298 fel(i,j ,2)*downscale -r_og (2) ...
299 fel(i,j ,3)*downscale -r_og (3)]’ + r_og + p ’;
300 fer(i,j ,:) = rotMatrAll *[fer(i,j ,1)*downscale -r_og (1) ...
301 fer(i,j ,2)*downscale -r_og (2) ...
302 fer(i,j ,3)*downscale -r_og (3)]’ + r_og + p ’;
303 end

B.4. AHORIZON.M (MATLAB FUNCTION) 103

304 end
305

306

307 % Draw it all!
308 subplot (splot3d);
309 cmap = [(1: -0.01:0.51) ’ (0:0.01:0.49) ’ (0:0.01:0.49) ’
310 (0.5: -0.01:0) ’ (0.5: -0.01:0) ’ (0.5:0.01:1) ’];
311 colormap (cmap);
312 set(gca ,’CLim ’ ,[0 ,1])
313

314 hold on;
315 surf(wl (: ,: ,1) , wl (: ,: ,2) , wl (: ,: ,3) , wlC);
316 surf(wr (: ,: ,1) , wr (: ,: ,2) , wr (: ,: ,3) , wrC);
317 surf(b(: ,: ,1) , b(: ,: ,2) , b(: ,: ,3) , bC);
318 surf(fl (: ,: ,1) , fl (: ,: ,2) , fl (: ,: ,3) , flC);
319 surf(fr (: ,: ,1) , fr (: ,: ,2) , fr (: ,: ,3) , frC);
320 surf(el (: ,: ,1) , el (: ,: ,2) , el (: ,: ,3) , elC);
321 surf(er (: ,: ,1) , er (: ,: ,2) , er (: ,: ,3) , erC);
322 surf(fel (: ,: ,1) ,fel (: ,: ,2) ,fel (: ,: ,3) ,felC);
323 surf(fer (: ,: ,1) ,fer (: ,: ,2) ,fer (: ,: ,3) ,ferC);
324

325 if ax (5) <0 && ax (6) >0
326 [X,Y] = meshgrid (ax (1) :.3: ax (2) ,ax (3) :.3: ax (4));
327 Z = zeros (size(X));
328 cEarth = ones(size(X) -1) .*0.5;
329 surf(X,Y,Z, cEarth);
330 end
331

332 grid on
333 axis equal
334 axis(ax);
335 set(gca ,’Xtick ’,p(1));
336 set(gca ,’Ytick ’,p(2));
337 set(gca ,’Ztick ’,p(3));
338 set(gca ,’MinorGridLineStyle ’,’-’);
339 set(gca ,’XMinorTick ’,’on ’);
340 set(gca ,’YMinorTick ’,’on ’);
341 set(gca ,’ZMinorTick ’,’on ’);
342 set(gca ,’ZDir ’,’rev ’);
343 set(gca ,’YDir ’,’rev ’);
344 view ([-125 ,30]); % VIEW ANGLE
345 hold off
346 xlabel (’N - Norh (x)’)
347 ylabel (’E - East (y)’)
348 zlabel (’D - Down (z)’)
349 end

B.4 aHorizon.m (Matlab function)

1 % Produces an artificial horizon plot
2 % figh = aHorizon (fignr ,splotHor ,O,Od ,Or)
3 %
4 % figh - the figure handle
5 % fignr - the figure handle to plot into
6 % splotHor - the figure subplot to plot into
7 % O - UAV orientation vector [n ,[roll pitch yaw]]
8 % A vector of n roll , pitch , and yaw - triplets can be specified
9 % to plot the orientation change of pitch and yaw over time

10 % The current orientation is the last element ,
11 % i.e. at [length (O) ,[roll pitch yaw]]
12 % Od - UAV desired orientation [roll_d pitch_d yaw_d]
13 % Or - UAV reference orientation [roll_r pitch_r yaw_r]
14 %

104 APPENDIX B. MATLAB CODE

15 % All angles are specified in [rad]
16 %
17 % Author : Kristoffer Dønnestad , 17.06.2011
18 % Attachment to M.Sc. thesis
19 % Unmanned Vehicle Laboratory
20 % Department of Engineering Cybernetics
21 % Norwegian University of Science and Technology
22 %
23 function figh = aHorizon (fignr ,splotHor ,O,Od ,Or)
24

25 figh = figure (fignr);
26 subplot (splotHor);
27

28 %Plot magenta orientation change history
29 plot(O(: ,3) .*(180/ pi),O(: ,2) .*(180/ pi),’m’);
30 hold on
31

32 % Plot current desired orientation
33 r = Od (1);
34 plane = [cos(r) -sin(r); sin(r) cos(r)] ’*[50 -50 -10 0 10; 0 0 20 0 20];
35 plot(Od (3) .*(180/ pi),Od (2) .*(180/ pi),’ro ’);
36 plot(plane (1 ,1:2)+Od (3) .*(180/(pi)),plane (2 ,1:2) /2+ Od (2) .*(180/(pi)),’r’);
37 plot(plane (1 ,3:5)+Od (3) .*(180/(pi)),plane (2 ,3:5) /2+ Od (2) .*(180/(pi)),’r’);
38

39 % Plot current reference orientation
40 r = Or (1);
41 plane = [cos(r) -sin(r); sin(r) cos(r)] ’*[50 -50 -10 0 10; 0 0 20 0 20];
42 plot(Or (3) .*(180/ pi),Or (2) .*(180/ pi),’go ’);
43 plot(plane (1 ,1:2)+Or (3) .*(180/(pi)),plane (2 ,1:2) /2+ Or (2) .*(180/(pi)),’g’);
44 plot(plane (1 ,3:5)+Or (3) .*(180/(pi)),plane (2 ,3:5) /2+ Or (2) .*(180/(pi)),’g’);
45

46 % Plot current orientation
47 n = length (O);
48 r = O(n ,1);
49 plane = [cos(r) -sin(r); sin(r) cos(r)] ’*[50 -50 -10 0 10; 0 0 20 0 20];
50 plot(O(n ,3) .*(180/ pi),O(n ,2) .*(180/ pi),’bo ’);
51 plot(plane (1 ,1:2)+O(n ,3) .*(180/(pi)),plane (2 ,1:2) /2+O(n ,2) .*(180/(pi)),’b’);
52 plot(plane (1 ,3:5)+O(n ,3) .*(180/(pi)),plane (2 ,3:5) /2+O(n ,2) .*(180/(pi)),’b’);
53

54

55 hold off
56 title (’" Artificial horizon "’)
57 set(gca ,’XTick ’ ,[-180 -90 0 90 180]) ;
58 set(gca ,’XTickLabel ’ ,{’South ’ ’West ’ ’North ’ ’East ’ ’South ’});
59 ylabel (’Pitch [deg]’)
60 xlim ([-180 ,180]);
61 ylim ([-90 ,90]);
62 grid on
63 end

B.5 RecceCompass.m (Matlab function)

1 % Produces a compass plot showing a silhouette of Recce D6
2 % figh = RecceCompass (cheading , desheading , refheading ,wind)
3 %
4 % cheading - The current heading (blue) [rad]
5 % desheading - The desired heading (red) [rad]
6 % refheading - The reference heading (green) [rad]
7 % wind - A vector representing the wind [w_x w_y w_z]
8 %
9 % Outputs the figure handle

10 %
11 % Author : Kristoffer Dønnestad , 17.06.2011

B.5. RECCECOMPASS.M (MATLAB FUNCTION) 105

12 % Attachment to M.Sc. thesis
13 % Unmanned Vehicle Laboratory
14 % Department of Engineering Cybernetics
15 % Norwegian University of Science and Technology
16 %
17 function figh = RecceCompass (cheading , desheading , refheading ,wind)
18 figh = figure ();
19

20 air = cartesian2air (wind);
21 Wstr = air (1);
22 Wbeta = air (3);
23

24 circle = [sin (0:2* pi /90:2* pi)’ cos (0:2* pi /90:2* pi) ’];
25 Windstrength = [0.3 1.6 3.4 5.5 8 10.8 13.9 17.2 20.8 23.5 28.5

32.7];
26 BeaufortScale = {...
27 ’Calm ’
28 ’Light air ’
29 ’Light breeze ’
30 ’Gentle breeze ’
31 ’Moderate breeze ’
32 ’Fresh breeze ’
33 ’Strong breeze ’
34 ’Near gale ’
35 ’Gale ’
36 ’Storm ’
37 ’Violent storm ’
38 ’Hurricane ’
39 };
40

41 % Define aircraft silhouette :
42 silfus = [-.8 .8 .8 5 5 .8 .8 0 -.8 -.8 -5 -5 -.8 -.8 ;
43 -4.5 -4.5 -4 -4 -1 4 5 7 5 4 -1 -4 -4 -4.5

]’;
44 % Define unit wind arrow silhouette :
45 silarrow = [-.1 .1 .1 .3 0 -.3 -.1 -.1 ;
46 0 0 .6 .6 1 .6 .6 0]’;
47

48 desreftap = [2.5* silarrow (: ,1) ’
49 -2.5* silarrow (: ,2) ’+9.5] ’;
50

51

52 silfusAct = zeros (size(silfus));
53 for siln = 1: length (silfus)
54 silfusAct (siln ,:) = [cos(cheading) sin(cheading) ; -sin(cheading

) cos(cheading)]* silfus (siln ,:) ’;
55 end
56

57 silfusDes = zeros (size(desreftap));
58 silfusRef = zeros (size(desreftap));
59 for siln = 1: length (desreftap)
60 silfusDes (siln ,:) = [cos(desheading) sin(desheading) ; -sin(

desheading) cos(desheading)]* desreftap (siln ,:) ’;
61 silfusRef (siln ,:) = [cos(refheading) sin(refheading) ; -sin(

refheading) cos(refheading)]* desreftap (siln ,:) ’;
62 end
63

64 for siln = 1: length (silarrow)
65 silarrow (siln ,:) = Wstr *[cos(Wbeta) sin(Wbeta) ; -sin(Wbeta) cos(

Wbeta)]* silarrow (siln ,:) ’;
66 end
67

68

69

70

71

72 plot(circle (: ,1)*7, circle (: ,2) *7);
73 hold on

106 APPENDIX B. MATLAB CODE

74 plot(circle (: ,1) *.3 , circle (: ,2) *.3);
75 plot ([0 0] ,[6.5 7.5]) ;
76 plot ([0 0] ,[-6.5 -7.5]);
77 plot ([6.5 7.5] ,[0 0]);
78 plot ([-6.5 -7.5] ,[0 0]);
79

80 plot(silfusDes (: ,1) ,silfusDes (: ,2) ,’r’);
81 plot(silfusRef (: ,1) ,silfusRef (: ,2) ,’g’);
82 plot(silfusAct (: ,1) ,silfusAct (: ,2) ,’b’);
83

84 plot(silarrow (: ,1) ,silarrow (: ,2) ,’m’);
85

86 hold off
87 axis ([-10 10 -10 10]);
88 axis equal ;
89 set(gca ,’ytick ’ ,[]);
90 set(gca ,’xtick ’ ,[]);
91

92

93 for ws = 1: length (Windstrength)
94 BeaufortIndex = ws;
95 if Wstr < Windstrength (ws)
96 break ;
97 end
98 end
99

100 title (’Compass ’)
101

102 text (0.4 ,7.8 ,[’North ’]);
103 text (7.8 ,0.4 ,[’East ’]);
104 text (-11.2 ,0.4 ,[’West ’]);
105 text (0.4 , -7.8 ,[’South ’]);
106

107

108 WstrStr = num2str (Wstr);
109 if length (WstrStr) > 4
110 WstrStr = WstrStr (1:4) ;
111 end
112

113 text (-12.5 , -4.5 , [’WIND:’]);
114 text (-12.5 , -6 , [num2str (round (Wbeta *180/ pi)) ’{\ circ}’]);
115 text (-12.5 , -7.5 ,[WstrStr ’ m/s’]);
116 text (-12.5 , -9 , [BeaufortScale (BeaufortIndex)]);
117

118 text (-12.5 ,9 , [’AIRCRAFT :’]);
119 text (-12.5 ,7.5 , [num2str (round (cheading *180/ pi)) ’{\ circ}’]);

Appendix C

Digital attachment

Root folder:

• CaseStudys.avi
The video discussed under Case Studies

• coloringEx.avi
An example video showing the coloring scheme of the 3d plot.

• refModelEx.avi
An example video showing the heading reference model.

Avi folder: Empty folder prepared for video output.

Matlab folder:

• All the developed Matlab code, and Simulink model.

3rd Party Software folder:

• AVI_Joiner
The (free) software used for joining multiple .avi files

• Any Video Converter
The (free) software used to compress the .avi files.

• mpgwrite
MATLAB Movie to MPEG Converter. (Free)

• VLC
A (free) media player very much suitable to playback the example videos.

107

108 APPENDIX C. DIGITAL ATTACHMENT

Appendix D

Recce D6 documentation
from Odin Aero

All the received documentation of Recce D6 provided by Odin Aero is listed here.
This is all the information about the air vehicle that has been available through
the entire thesis work.

The following documentation is the property of Odin Aero AS, and may not be
used or copied without the owners approval.

Title/Name: RECCE D6

Use(s): Reconnaissance and surveillance

Manufacturer and Country: Odin Aero AS, Norway

Powerplant: Type: 200W Brushless motor, Powered by LiPol battery

Performance: Speed 85km/h, Endurance 1 hour at cruising speed 65km/h,
Mission Radius 10km, Ceiling 1000ft.

Dimensions: Length 1.06m, Height 0.26, Wingspan 1.42m

Weights: MTOW 2.8kg Payload 0.5kg

Datalink: RF uplink/downlink, real time video downlink

Guidance/Tracking: Remote control and GPS auto-navigation (Neural
Network Adaptive Control), laptop computer mapping

109

110 APPENDIX D. RECCE D6 DOCUMENTATION FROM ODIN AERO

Payload: CCD video camera, IR camera and other various options

Electrical Power: 12 VDC

Launch: Hand launch/ unprepared terrain

Recovery: Skid landing

Structure Material: Composite

Ground Control Station: Laptop computer, RF datalink

Battery: Thunder Power Li-Polymer 8000mAh/ 11,1V Pro Lite Series.

Motor: Plettenberg motor Orbit 10-22

Propeller: Graupner CFK Folding prop 13-7”

Speed controller: Electrifly SS-35 Brushless Esc 5V/ 2A BEC 2-4 LiPo

Elevon servos: Graupner/ JR C 271 No. 5107

Rudder servo: Robbe FS 500 MG No. 8431

Receiver: Futaba R 617 FS 2,4GHz

Transmitter: Futaba T7C 2,4GHz

Appendix E

Servo motor specifications

The servo motor transit speeds are found from some retailer websites.

111

Selection:

Important new

items

Special offers

Promotional items

Model aircraft

Model helicopters

Model boats

RC cars

Radio control

systems

Servos and gyros

Electric

accessories

Drive motors

Motor accessories

Finishing
materials

Materials

Search:
Registration:

initial registration

Home Help Basket GTB Contact

Servo FS 500 Mg Micro
1-8431

To order:

€:28,00

€:23,33

add to basket

Tell a
Friend

Small, fast, high-torque wing-mounting servo of micro size. Ideal for wing-mounting, even with
thin airfoils. The gearbox is all-metal, from the motor pinion to the output gear. Ideal for large-
span gliders, whose control surfaces tend to destroy the teeth of plastic gears. Also a good choice for
trucks and multi-function boats.
The FS 500 MG micro-servo is supplied with a universal JR connector.

Specification:

Dimensions: 29.0 x 13.5 x 29.5 mm

Mass/weight: 21.00 pond/g

Operating voltage: 4.8 - 6 Volts

Nominal voltage: 4.80 Volts Nominal voltage: 6.00 Volts

Torque: 24.00 Ncm Torque: 30.00 Ncm

Transit speed: 0.12 Sec/45° Transit speed: 0.10 Sec/45°

more
Specifications

Characteristics

SERVO C271 (METAL GEAR)

Order number 5107

Price: 48,90 €
This item is available

SERVO C 261 (MICRO POWER) servo C 341 bulk

Specification

Dimensions (LxWxH) 21 x 11 x 21 mm

Operating voltage 4,8...6 V

Angular travel incl. trim, approx. 2 x 45 °

Replacement gearbox 5107.2

Gear unit Getriebe mg

All-up w eight, approx. 13 g

Bearings Lager pb

No-load current drain, approx. 8 mA

Torque at 6.0V, approx. 20 N/cm

Transit speed at 6.0 V, approx. 0,12 Sek/40°

Charging rate at 6.0V approx. 560 mA

Search

Graupner Shops

Dealer login

Login Repair Service

Factory outlet - online

Newsletter

Register for New sletter

Cancel New sletter

Change profile

Catalogue/Flyer

Price list

New Items 2011

Tangent Catalogue 2011

Main catalogue 51FS 2009

GM-Racing RC-Cars 2011

GM-Racing Catalogue 2009

Websites

iFS-2,4 GHz System

Tangent Modelltechnik

Office Cup

GM-Racing

Robotics

> Products > RC range > Servos, gyros > Analog servos > SERVO C271 (METAL GEAR)

Imprint | Terms and Conditions

Home About Graupner Products News Press Service Links

Like

09.05.2011 Graupner SERVO C271 (METAL GEAR)

graupner.de/en/…/product.aspx 1/1

	Title Page
	Abstract
	Preface
	Abbreviations
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Theory Basis and Advised Literature
	1.3 Thesis Outline and Contributions
	1.4 Recce D6 Overview
	1.5 Current Overall Project Status

	2 Background
	2.1 Kinematics
	2.1.1 Vectors
	2.1.2 Coordinate Systems
	2.1.3 Rotations
	2.1.4 Angular Velocity Transformation

	2.2 Kinetics
	2.2.1 Forces and Moments on a Rigid Body
	2.2.2 Rigid Body Dynamics

	2.3 Aerodynamics

	3 Recce D6 Simulation Model
	3.1 Equations of Motion
	3.1.1 Aerodynamics, a
	3.1.2 Thrust, t
	3.1.3 Landing gear, LG
	3.1.4 Tuning the Aerodynamics

	3.2 Propulsion System
	3.3 Flap Dynamics

	4 Recce D6 Control Design Model
	4.1 Surge Velocity Control
	4.2 Altitude Control
	4.3 Heading Control

	5 Motion Control System, Flight Mode
	5.1 Guidance System
	5.1.1 Reference Models
	5.1.2 Heading Reference Model

	5.2 Control system

	6 Implementation
	6.1 Graphic Interface
	6.1.1 3D Visualization
	6.1.2 Artificial Horizon
	6.1.3 Compass

	6.2 Crash Handling

	7 Simulated Flight
	7.1 Case Study I: Landing Gear Dynamics
	7.2 Case Study II: Take-Off
	7.3 Case Study III: Climbing
	7.4 Case Study IV: Horizontal Steady Flight
	7.5 Case Study V: Dutch Roll
	7.6 Case Study VI: Banked Turn
	7.7 Case Study VII: Descent
	7.8 Case Study VIII: Wind
	7.9 Case Study IX: Touch-and-go, Crosswind
	7.10 Case Study X: Stall
	7.11 Case Study XI: Propulsion System
	7.12 Case Study XII: Touch-and-go, Upwind
	7.13 Case Study XIII: Landing at Low Airspeed

	8 Conclusions
	8.1 Further Work
	Bibliography

	A Case Study video
	B Matlab code
	B.1 RecceD6_init.m (Matlab script)
	B.2 MakeVideo.m (Matlab script)
	B.3 Plot3d.m (Matlab function)
	B.4 aHorizon.m (Matlab function)
	B.5 RecceCompass.m (Matlab function)

	C Digital attachment
	D Recce D6 documentation from Odin Aero
	E Servo motor specifications

