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Abstract
Laparoscopic surgery has a limited field of view. Laser ab-

lation in a laproscopic surgery causes smoke, which inevitably
influences the surgeon’s visibility. Therefore, it is of vital im-
portance to remove the smoke, such that a clear visualization
is possible. In order to employ a desmoking technique, one
needs to know beforehand if the image contains smoke or not,
to this date, there exists no accurate method that could classify
the smoke/non-smoke images completely. In this work, we pro-
pose a new enhancement method which enhances the informative
details in the RGB images for discrimination of smoke/non-smoke
images. Our proposed method utilizes weighted least squares op-
timization framework (WLS). For feature extraction, we use statis-
tical features based on bivariate histogram distribution of gradi-
ent magnitude (GM) and Laplacian of Gaussian (LoG). We then
train a SVM classifier with binary smoke/non-smoke classifica-
tion task. We demonstrate the effectiveness of our method on
Cholec80 dataset. Experiments using our proposed enhancement
method show promising results with improvements of 4% in accu-
racy and 4% in F1-Score over the baseline performance of RGB
images. In addition, our approach improves over the saturation
histogram based classification methodologies Saturation Analy-
sis (SAN) and Saturation Peak Analysis (SPA) by 1/5% and 1/6%
in accuracy/F1-Score metrics.

We can employ our enhancement method in replacement of
RGB images for classifier training e.g., CNN architectures, which
in turn can lead to more accurate classification. Code will be
released for public use.
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INTRODUCTION
Over the last decade, we have seen an increase in the number

of laparoscopic surgeries [1]. During the surgery, such as in cavi-
tary treatment, laser ablation causes smoke [2] which significantly
degrades the perceptual quality of the images which inevitably
influences the surgeon’s visibility, further it also influences the
performance of computer vision based navigation systems [3].
Moreover, surgical smoke is composed of chemical, physical or
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biological particles, which may be harmful for surgeons and pa-
tients [4–6]. Therefore, it is of vital importance to remove the
smoke by computer vision algorithms [7] and by smoke evacua-
tion techniques [8, 9]. In order to employ a desmoking technique,
as a prior knowledge it is essential to know if the image contains
smoke or not. In this work, we propose a method to enhance the
images for better classification of smoke and non-smoke images.
Our goal is to enhance the images, such that the extracted fea-
tures from the enhanced images are informative for discrimination
that can lead to improved smoke/non-smoke image classification.
Note that our goal is not to enhance the images for visual pleas-
antness of observers’ perception, but rather enhance the images
features for improved classification.

Our work is inspired from [10,11]. Sharma et al. in [10] en-
hance the visible (RGB) images using near-infrared (NIR) coun-
terparts and show improvement in the image feature quality for
biometric verification tasks, further in [11], Sharma et al. emu-
lates several image enhancement methods in convolutional neural
networks for an accurate image classification. We have a similar
goal, though our work differs substantially in technical approach
and the application scope. Specifically, we utilize weighted least
squares optimization framework (WLS) [12] to decompose an im-
age to fine and coarse enhanced images, and then combine them in
a more meaningful way such that the combined image have better
image features for our classification task.

Our proposed approach is evaluated on Cholec80 dataset for
smoke/non-smoke image classification. We experimentally show
that our proposed method consistently improve the classification
performance over the baseline RGB images, popular state-of-the-
art enhancement methods, and the saturation histogram based
classification methodologies Saturation Analysis (SAN) and Sat-
uration Peak Analysis (SPA).

The remainder of this paper is structured as follows. First,
we review the related work on image enhancement and smoke de-
tection methods. Next, we describe our proposed method, and dis-
cuss the experimental results. Finally, the conclusions are drawn.

RELATED WORK

Image Enhancement. Image enhancement or filtering tech-
niques enhance the contrast, boost the image details, and pro-
duce more vivid colors, and at the same time removes the ef-
fects of blur, noise, and compression artifacts. Examples of



such filtering methods include weighted least squares (WLS) [12],
bilateral filtering [13], image sharpening, guided filtering [14],
BFWLS AVG [10] and more. Filtering using (1) RGB and (2)
RGB-NIR images are used for several applications in computer
vision and computational photography applications, such as to
improve the contrast of the haze-degraded color images [15];
tone mapping and detail enhancement [12]; denoising in RGB
videos [16] and images [17]; multi-modal medical image fusion
from MRI-CT [18]; illumination transfer from reference to tar-
get images [19]; feature matching [20]; object recognition and
image classification tasks [11]; biometrics verification tasks [10];
and the list goes on. To the best of our knowledge, our work is
the first to show that the image enhancement can be beneficial for
smoke/non-smoke image classification. We compare against vari-
ous of these filtering methods discussed above in our experimental
section.

Smoke Detection. Considerable progress has been seen in the
development of “in the wild” video smoke detection techniques
over the last decade [21]. The traditional detection methods ex-
ploit smoke features, which are intensity, color, motion, and tex-
ture attributes. These features are used to train classifiers for
smoke region detection [22] or frame detection [23, 24]. It has
been found that smoke can reduce the sharpness of edges in order
to mitigate over it, several descriptors have been utilized for fea-
ture extraction, such as wavelet coefficients [25], local binary pat-
tern (LBP) [26,27], textural features are estimated from the smoke
region only [28]. Further, in [29], the authors propose to separate
smoke and background from a single image by the dual-dictionary
approach, and the estimated sparse coefficients are used as fea-
tures for smoke frames detection.

In the medical imaging community, researchers have shown
that the formation of smoke and the lighting condition for laparo-
scopic surgery images are very different, which limits the “in
the wild” smoke detection methodologies applicability in medi-
cal domain [9, 30]. Recently, Chou et al. [31] explore tempo-
ral differences information that is motion blur and block analysis
between current and previous frames as features for smoke detec-
tion. Loukas et al. [32], propose a method to detect electrocautery
smoke for surgical events retrieval. They extract different features
from optical flow estimated by Kanade-Lucas-Tomasi (KLT) al-
gorithm [33], and then a support vector machine (SVM) is trained
to classify each shot. Leibetseder et al. in [9, 30] propose sat-
uration histogram based classification methodologies Saturation
Peak Analysis (SPA) and Saturation Analysis (SAN) and deep
learning (DL) techniques. In [30], Leibetseder et al. train three
variants of convolutional neural network (CNN) models: Google-
LeNet [34] trained with RGB images (GLN RGB) and saturation
channels only (GLN SAT), and a modified AlexNet [35] trained
on RGB images (ALEX RGB). The performance of their CNN
models on Cholec80 [36] dataset are very similar to that of SAN
or SPA. While DL shows its promising performance on smoke
classification [9,30], to the best of our knowledge there is no work
that does image enhancement for smoke classification. Therefore,
we limit to comparisons with the non deep learning based meth-
ods only in our experimental section. Moreover, one can consis-
tently improve the classification performance by employing our
enhancement method and then train the CNN architectures, fol-
lowing the ideas proposed in Sharma et al. [11].
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Figure 1: Pipeline of the proposed method.

PROPOSED METHOD
In this section, we illustrate our proposed approach, starting

with the proposed enhancement method, then the feature extrac-
tion method, and finally classifier training. Figure 1 shows the
schematic layout of our framework.

Proposed Enhancement Method. We denote our WLS-based
filtering method as FC. To enhance the visible RGB image, we
first transform color space from RGB to YCbCr space that is a
luminance-chrominance color space. Our method operates on the
luminance component [37] such that to modify the overall con-
trast and sharpness of the image without sensibly affecting the
color. Where the chrominance is simply re-combined in the final
enhanced image.

In our work, we employ an edge-preserving filter, weighted
least squares optimization framework (WLS) [12]. The WLS is
a non-linear method that captures image details at a variety of
scales via multi-scale decompositions. The WLS helps to find an
approximate enhanced image gFiltered that is close to the input
image g, and also at the same time, is smooth along significant
gradients, thus resulting to sharper preserved edges. Formally, it
is defined as:

gFiltered = Fλ (g) = (I +λLg)
−1g (1)

where Lg = DT
x AxDx +DT

y AyDy with Dx and Dy are discrete dif-
ferentiation operators. Ax and Ay contain the smoothness weights,
the smoothness requirement is enforced in a spatially varying
manner which depend on g. λ is the balance factor that main-
tains a balance between the data term and the smoothness term.
Increasing λ value produces progressively smoother images.

Given an input image, the WLS filter decomposes an image
into base and detail layers. The detail layer is simply obtained
by subtracting the base layer from the the original image. The
base layer comprises of low frequency contents with general ap-
pearance of the image over smooth areas, while the detail layer
comprises of high frequency contents with sharp edges.

In our method, we apply WLS-based two-level decomposi-
tion of the luminance component of an RGB image for extraction
of fine and coarse enhanced sharp images. We retain, for each
pixel an average value between the fine and coarse detail lay-
ers (Step 1). We chose λ1 = 0.125 (WLS1), λ2 = 0.5 (WLS2)
for WLS in our experiments. The fusion criteria is based on the
following observations: the WLS filter is very good at preserving
fine and coarse details at arbitrary scales. Taking an average of
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Figure 2: Proposed enhancement method.

two, allows to retain the informative content from both, thus al-
lowing to preserve the image structures and also moderately boost
the image details. This fusion criteria is denoted as FC AVG.
In addition, we also tried to retain the maximum values between
the two as a fusion criterion. We denote this fusion criteria as
FC MAX. Finally, we combine the new fused detail layer with
the base layer of RGB image obtained using WLS1 (Step 2), we
consider WLS1, as smaller λ values are better for the base layer
because of less smoothing. And which is then re-combined with
the chrominance of RGB image and to reconstruct the final en-
hanced image (Step 3). Figure 2 illustrates our proposed method.

Feature Extraction. In our work, we exploit Xue et al.’s
method [38] for feature extraction. Xue et al. utilize gradient
magnitude (GM) and Laplacian of Gaussian (LoG) maps to de-
scribe the structural information for image perceptual quality as-
sessment. Their method is driven by the image statistics, and ex-
ploits the histogram information, which is perfect for low-level
vision tasks, such as ours. Motivated by this observation, we em-
ploy GM and LoG features to represent the local spatial contrast
information in images.

Formally, gradient magnitude (GM) is defined as:

GM =

√
(I⊗ ∂G

∂x
)2 +(I⊗ ∂G

∂y
)2, (2)

where I is the gray scale image, ⊗ denotes the convolution op-
eration. ∂G

∂x and ∂G
∂y denote the Gaussian partial derivative along

x (horizontal) and y (vertical) directions, respectively. They are
computed as:

∂G(x,y,σ)

∂d
=− 1

2πσ2
d

σ2 e−
x2+y2

2σ2 , (3)

where d ∈ {x,y}, and σ is a scalar parameter. And the Laplacian
of Gaussian (LoG) is defined as:

LoG = I⊗hLoG (4)

hLoG(x,y,σ) =
∂ 2G(x,y,σ)

∂ 2x
+

∂ 2G(x,y,σ)

∂ 2y

=− 1
πσ4 (1−

x2 + y2

2σ2 )e−
x2+y2

2σ2 .

(5)

Subsequently, a joint adaptive normalization step is applied to ad-
just the image statistics of the GM and LoG maps, in order to

reduce its dependency on local image content. Finally, a bivari-
ate histogram based feature vector is computed from the marginal
probability functions and independency distributions of the nor-
malized GM and LoG maps, resulting to a fixed-size feature rep-
resentation vector of 40 dimensions for an image. We used the de-
fault parameters for feature extraction, more details can be found
in [38].

Classifier. In our work, we use linear SVM [39] 1 for a binary
classification task in which the objective is to predict the class
y ∈ {0,1} that is smoke/non-smoke image classification. We use
linear kernel function with C=10k to train/test SVM classifier with
the extracted features.

EXPERIMENTS
In this section, we demonstrate the use of our proposed en-

hancement method on a challenging smoke/non-smoke classifica-
tion dataset [30, 36]. We first introduce the dataset, followed by a
thorough analysis of the proposed method. The analysis includes,
comparison of our proposed method with baseline RGB images,
other popular enhancement methods, and ending with a compari-
son to saturation histogram based classification methodologies.

(a) (b)

Figure 3: Example images from Cholec80 dataset: (a) a smoke
free image, (b) image with smoke, covering the surgeon’s field of
view for visualisation

Dataset. We conduct experiments on Cholec80 dataset [36]
which contains 80 videos of cholecystectomy surgeries manually
labeled with smoke/non-smoke image sequence by [30] 2. The
dataset in overall contains approximately 100K annotated images,
in particular between 200-1300 images of smoke/non-smoke in
each video. In our experiments, we use a subset of the dataset
with three videos for training and nine videos for testing. The
videos are randomly chosen. We extract JPEG images, and resize
them to a resolution of 427× 240px from the original resolution
of 854× 480px, to fasten the image enhancement. In particular,
we use 4,381 images obtained from video{1, 31, 34} for training,
and 10,653 images obtained from video{2, 22, 10, 40, 59, 64,
65, 71, 80} for testing. In Figure 3, we show some examples of
smoke/non-smoke images obtained from Cholec80 dataset. Also,
note that each video represents a unique person in this dataset.

Evaluation Metrics. We use accuracy and F1-Score measures
computed from a confusion matrix between the predicted labels
and the actual ground-truth labels, as the metrics to evaluate the
quality of classification.

1https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
2http://www.itec.aau.at/ftp/datasets/Smoke cholec80



(a) RGB (b) IMSHARP (c) BF (d) GF

(e) WLS (f) BFWLS AVG (g) FC MAX (ours) (h) FC AVG (ours)

Figure 4: Visual comparison of FC AVG and FC MAX against other enhancement methods. We can clearly see that the smoke part
becomes more perceptually visible after image enhancement. Best viewed in color.

Comparison with other enhancement methods. We compare
the proposed enhancement method with the baseline RGB im-
ages, and popular state-of-the-art enhancement approaches: (1)
guided filtering (GF) [14], (2) bilateral filtering (BF) [13, 40], (3)
image sharpening filter (IMSHARP), (4) WLS [12], (5) fused BF
and WLS filter (BFWLS AVG) [10]. In BFWLS AVG, Sharma et
al. [10] apply BF and WLS filters on the NIR channel, and retain
an average of two for each pixel, similar to [10], instead we em-
ploy their technique in the RGB image. For a fair comparison, we
compare all the methods under the same evaluation protocol dis-
cussed above. For the evaluation, we use the same parameters for
feature extraction and classifier training for all methods. We did
not optimize the parameters for the BF, GF, WLS, IMSHARP, and
BFWLS AVG and used the default parameters for each method.
The source code for fast BF 3, WLS 4 and BFWLS AVG 5 are
publicly available, and others are available in the Matlab frame-
work. For comprehensive discussion of different methods, we
refer the reader to [10, 12, 14, 40].

In Table 1, we quantitatively evaluate the accuracy and F1-
Score of our proposed method and other methods. We can clearly
observe that FC AVG performs the best among all methods. En-
hancing an image using FC AVG takes approximately 0.32 sec-
onds. Note that, FC AVG improves over the baseline performance
of RGB images by 4% in accuracy and 4% in F1-Score, giving
higher-quality features to learn from, which in turn lead to more
accurate classification. We believe our work opens many possibil-
ities for further exploration for its usage in other tasks too. Further
the performance gap of FC AVG is 4/5% better than FC MAX
in accuracy/F1-Score measures. Our method FC AVG consis-
tently performs better than all other methods: IMSHARP, BF,
WLS, and GF enhancement methods. In addition, our methods
also performs better than BFWLS AVG, although we agree that
BFWLS AVG is meant for RGB-NIR fusion and not RGB image
enhancement, that may be the reason why it underperforms to our
method. Figure 5 (a) shows the ROC curve for all the methods.

In Figure 4, we compare enhancement methods for an exam-
ple image obtained from video1. We can observe that FC AVG
has improved features for the smoke-part (highlighted by red rect-

3http://people.csail.mit.edu/sparis/bf/
4http://www.cs.huji.ac.il/∼danix/epd/
5https://vivoutlaw.github.io/CIC RGB NIR Codes.zip

angles), in addition to reduced specular intensity when compared
to FC MAX. We believe this plays an important role in discrimi-
nation.

Method Accuracy F1-Score

RGB 0.60 0.60

IMSHARP 0.58 0.58
BF [40] 0.60 0.59
GF [14] 0.60 0.59
WLS [12] 0.60 0.59

BFWLS AVG [10] 0.57 0.56

FC MAX (Ours) 0.60 0.59
FC AVG (Ours) 0.64 0.64

Table 1: Comparison with the baseline RGB images and other
enhancement methods.

Comparison with the saturation histogram based classifica-
tion methodologies. We compare FC AVG with the saturation
histogram based classification methodologies Saturation Analysis
(SAN) and Saturation Peak Analysis (SPA) [9,30]. SAN and SPA
codes are provided by [9, 30] 6. SAN and SPA take advantage
of the saturation channel of the HSV color space. In [9, 30], the
authors show that the histogram bin curve of saturation channel is
strongly correlated with the presence of smoke, as smoke images
contain more low-saturation pixels and that is helpful for classi-
fying smoke/non-smoke images. In their method, a threshold tc is
set empirically. For SAN method, smoke image is recognized if
majority of the bin values are below tc. For SPA method, smoke
image is classified by the number of peaks found below and above
tc. We use the default parameters suggested by Leibetseder et
al. [9, 30] for both SAN and SPA where tc is set to 0.35.

It is evident from Table 2 that FC AVG shows improved
performance over the saturation histogram based classification
methodologies: SAN and SPA. Precisely, FC AVG is 1/5% and
1/6% better than the SAN and SPA methods in accuracy/F1-Score

6https://github.com/amplejoe/SaturationPeakAnalysis
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Figure 5: The ROC curves for the Cholec80 dataset using GM-LoG features [38] for smoke/non-smoke classification task. * denotes the
EER when the false accept rate is equal to the false reject rate. Best viewed in color.

metrics. Further in Figure 5 (b), we show the ROC curve for
FC AVG, SAN and SPA classification methodologies.

Method Accuracy F1-Score

SPA [9] 0.63 0.58
SAN [30] 0.63 0.59

FC AVG (Ours) 0.64 0.64

Table 2: Comparison with the saturation histogram based classi-
fication methodologies Saturation Analysis (SAN) and Saturation
Peak Analysis (SPA)

CONCLUSION
We present a method to enhance RGB images using

weighted least squares filter. Our method successfully enhances
the informative features in the images for discrimination of
smoke/non-smoke images. We demonstrate our proposed method
on Cholec80 dataset. Our proposed method obtains significant
gains over the baseline RGB images and other enhancement meth-
ods. Our method also outperforms the saturation histogram based
classification methodologies. Our enhancement method can be
used to perform explicit enhancement of image texture and struc-
ture features for other tasks too which in turn can lead to more
improved performance.

In future work, we plan to further investigate our method on
the complete Cholec80 dataset, and also train a CNN architecture
with our enhanced RGB images.
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