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Summary

Parametric roll resonance is a dangerous resonance phenomenon affecting several
types of ships, such as destroyers, RO-RO paxes, cruise ships, fishing vessels and
especially container ships. Worst case, parametric roll is capable of causing roll
angles of at least 50 degrees, and damage in the tens of millions of US dollars.

Empirical and mathematical investigations have concluded that parametric roll
occurs due to periodic changes in the waterplane area of the ship. If the vessel
is sailing in longitudinal seas, with waves of approximately the same length as
the ship, and encounter frequency1 of about twice the natural roll frequency, then
parametric resonance can occur.

While there is a significant amount of literature on the hydrodynamics of para-
metric roll, there is less on controlling and stopping the phenomenon through ac-
tive control. The main goal of this thesis has been to develop controllers capable
of stopping parametric roll. Two main results on control are presented.

To derive, analyze and simulate the controllers, it proved necessary to develop
novel models. The thesis thus contains four major contributions on modeling.

The main results are (presented in order of appearance in the thesis):

Six-DOF computer model for parametric roll The model is valid for non-
constant speed and course and incorporates the effects of waves (first order)
through integrating the pressure field over the instantaneous submerged part
of the hull. Most existing models require constant speed.

The main drawback of the novel model is that it is not analytical, and
thus only suitable for simulation, not analysis.

One-DOF model of parametric roll for non-constant velocity Assuming
that the velocity (speed and course) of the ship changes only slowly, a quasi-
steady approach is used to derive explicit expressions for the heave and pitch
motion as functions of time. Inserting these functions into the known non-
linear couplings between heave/pitch and roll, a 1-DOF analytical model is
derived. The model was verified against the 6-DOF model and showed very
good fit across a wide range of scenarios.

It was also shown that the commonly used Mathieu equation is not capable
of accurately modeling parametric roll resonance if the encounter frequency
(and thus speed and course) is not constant.

1The encounter frequency is the frequency of the waves as seen form the ship. Due to the
Doppler effect, this is not the same as the actual frequency of the waves.
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Three-DOF model of parametric roll Chronologically the first model derived,
this model considers the nonlinear coupling between heave/pitch and roll. Us-
ing a third-order Taylor series expansion of the restoring term, the model is
analytical. Parameters can be computed based on hull data. The model was
verified against experiments with a 1:45 scale model of a 281 m container ship.
The main drawback of the model is that it requires constant ship velocity.

Seven-DOF model for ships with u-tanks of arbitrary shape U-tanks are
anti-roll tanks consisting of two fluid-filled reservoirs (one port side and one
starboard side) with a duct connecting them. The weight and motion of the
tank fluid is used to damp out roll. Existing models require a particular tank
shape, only take into account some degrees of freedom and are largely linear.

The new model has all seven DOFs (six for the ship and one for the tank),
captures all the inherent nonlinearities of the system and can handle u-tanks
of arbitrary shape. The model was derived with Hamiltonian mechanics.

The model was verified against experimental data.

Frequency detuning controller Parametric resonance can only occur if the en-
counter frequency is approximately twice the natural roll frequency. The en-
counter frequency can be changed by changing the ship’s speed or course via
the Doppler effect. Frequency detuning control is exploiting this phenomenon
to drive the encounter frequency away from the dangerous values.

The model was derived using the 1-DOF parametric roll model, and math-
ematically proven to stop parametric roll resonance. The controller was ver-
ified in simulation against both the 1-DOF model and the 6-DOF computer
model. The controller is quite simple, and does not require any special hard-
ware or software on the ship.

There are two main drawbacks of the controller: It requires that the con-
troller be turned on quite early during parametric resonance, when the roll
angle is still small. Furthermore, it requires that the ship is capable of fairly
rapid speed changes.

Active u-tank based controller for parametric roll Using a 2-DOF (roll and
tank state) version of the 7-DOF u-tank model, we derived a controller capa-
ble of stopping parametric roll. The validity of the model was proven math-
ematically, and verified in simulation using two different models of varying
complexity. The control system uses almost no resources.

For comparison, the system was also simulated with the controller turned
off in the same scenario (that is, a ship with a passive u-tank in parametric
roll resonance). The passive u-tank did reduce the roll motion, but was not
capable of driving it to zero. A passive u-tank is also highly dependent on
correct tuning of the u-tank’s natural frequency (which should equal the ship’s
natural roll frequency). However, it is quite difficult to tune this correctly.

An active u-tank does not have this drawback. Given the modest resource
consumption, it is probably advantageous to use an active u-tank.
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Chapter 1

Introduction

In this thesis, the phenomenon of parametric roll resonance is investigated, and
two control strategies presented that attempts to solve the problem. To be able to
derive, analyze and simulate the controllers, a significant amount of modeling work
was also done. Some background material, strictly speaking not new research but
necessary to understand the rest of the work, is also included.

1.1 Motivation

This thesis is motivated largely by several spectacular maritime disasters, of which
two will here be described in detail.

1.1.1 The APL China incident

“Cargo, container and vessel owners and their underwriters confronted
the largest container casualty in history.” France et al. [27]

In late October 1998, the M/V APL China was traveling from Kaohsiung,
South Korea to Seattle, USA carrying over 4 000 containers full of cargo for the
Christmas season. The APL China is no small vessel; it is a post-Panamax C11
container ship, with a length of 260 m, breadth of 40 m and draft of 24.5 m.

Off Alaska’s Aleutian Islands it was overtaken by a violent storm. The encounter
with the storm lasted about 12 hours, and the master reduced speed and attempted
to steer into the increasingly high waves off the vessel’s starboard bow.

The storm was severe, and officers reported green water at bridge level during
the worst of it. Even worse than the violence of the seas were reports of extreme
and violent ship motions during the worst parts of the storm. There were signifi-
cant pitch amplitudes, and simultaneously port and starboard roll angles reached
approximately 35 to 40 degrees.

The following morning, the damage could be assessed: Of the 1 300 containers
on deck, 300 had been lost overboard with their cargo. Another 400 had been
damaged. Containers hung over the sides of the vessel, and the APL China itself
had suffered structural damage. See Figure 1.1 for pictures of her when she arrived
in Seattle.
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Figure 1.1: The APL China incident. Images from cargolaw.com.

Insurance lawyers estimated that the lost cargo was worth more than the total
value of the ship. To limit liability, the ship’s owners, APL, got New York’s federal
district court to limit its liability to USD 50 million, the total value of the ship. It
is regarded as the greatest container disaster in history.

(Account taken from France et al. [27], Ginsberg [35].)

1.1.2 The Mærsk Carolina incident

“The crew described the onset as a sudden departure from the normal
rolling motion of the vessel [. . . ] building to the maximum [of more
than 47 degrees] in only a few roll cycles.” Carmel [12]

In January 2001, the Mærsk Carolina sailed from Algeciras, Spain to Halifax,
Nova Scotia, Canada. She carried 675 containers of 20 ft and 1 505 containers of
40 ft, with a total cargo of 36 021 metric tons. At 290 m length, 32 m breadth and
13.5 m draft, the Mærsk Carolina, too, is a very large vessel.

During worsening weather east of Nova Scotia, and in increasingly heavy seas,
the ship followed standard procedure and reduced speed and turned directly into
the waves. At around 2000 hours local time, the vessel experienced extraordinarily
heavy roll, in excess of 47 degrees. The actual roll angle is impossible to know; the
on-board inclinometer saturates at that value. Simultaneously, the ship experienced
heavy heave and pitch motion, and the crew reported that the roll motion had come
from seemingly nowhere, building up in just a few cycles. Massive amounts of green
water were observed boarding the vessel as the bow pitched down into successive
waves.

When the Mærsk Carolina finally arrived in Halifax (Figure 1.2), an investiga-
tion found that 133 containers were lost at sea, and 50 containers were damaged. In
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total, cargo claims exceeded USD 4 million. The vessel itself also suffered structural
damage, and indicated that the ship had been placed under considerable stress.

(Account paraphrased from Carmel [12].)

Figure 1.2: The Mærsk Carolina incident. Images from cargolaw.com.

1.2 Parametric roll resonance

While other examples exist (such as the 2005 incident with the Horizon Navigation-
owned cruise ship Voyager1), the above examples should provide ample motivation
for why parametric roll should be investigated. However, the examples do not
explain what is happening.

As research has shown, the incidents described (and others like them) were
caused by parametric roll resonance [12, 27, 32]. Parametric roll resonance is, as
the name implies, a resonance phenomenon.

Parametric resonance is distinct from “normal” resonance, which is character-
ized by external forces. It is perhaps best explained with the help of a differential
equation:

ẍ+ dẋ+ k(t)x = u (1.1)

where x is the state and d > 0 is a constant parameter. u is external forcing and
k = k0 + kt cos(ωkt) with k0 > kt ≥ 0 and ωk > 0 constant.

If kt = 0 and u = u0 cos(ωut) with u0 6= 0, then the system will be resonating
if ωe ≈

√
k0 [63]. This is a well-known problem, and x can reach dangerously high

values, as seen in Figure 1.3(a).
However, if kt 6= 0, u = 0 and ωk ≈ 2

√
k0, then as long as d is not too large

and x(t0), ẋ(t0) are not both zero, the system will parametrically resonate. There
are several possible responses, but a typical one is an exponentially increasing
oscillating motion, with frequency of

√
k0, as seen in Figure 1.3(b). [63]

1See www.youtube.com/watch?v=1hUqt2acbm8 or news.bbc.co.uk/2/hi/europe/4264661.stm.
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time

x

(a) “Ordinary” resonance (u0 6= 0, kt = 0).

time

x

(b) Parametric resonance (u0 = 0, kt 6= 0).

Figure 1.3: Two types of resonance (x and y axes on the same scale).

A closer examination of Figure 1.3 shows important differences and similarities
between the two types of resonance. Apart from the values of kt and u0, both
simulations used the same parameters. In both cases, x resonates at the same
frequency (specifically, at the natural frequency

√
k0), despite the fact that the

frequency of excitation are different in the two cases (ωu =
√
k0 while ωk = 2

√
k0).

It is also worth noting that the externally forced resonance causes x to grow fairly
slowly to a maximum (but high) value. Parametric resonance, on the other hand,
builds exponentially2, and – for the linear ODE (1.1) – grows unbounded.

It has been known since the 19th century that several systems are capable of
experiencing parametric resonance [22, 30, 31, 59, 60]. Some ships are susceptible
to parametric resonance, principally in roll [1, 5, 10, 15, 28, 30–32, 38, 46–48, 56,
64, 66–68, 72, 76, 80, 84–86, 89, 90]. This was first described in 1861 [30].

To explain why ships are susceptible, we first note that, commonly, the coeffi-
cient of the restoring moment in roll is considered proportional to the waterplane
area (i.e., the 2-D plane created by cutting the hull at the waterline) [24].3

Consider the following scenario (Figure 1.4):
1. A ship is sailing in longitudinal waves, of wave length approximately the

length of the ship. At this instant in time, the ship has a small, non-zero roll
angle, and the wave trough amidships. If the ship’s hull is correctly shaped,
there will be a very large waterplane area at this time instant. Therefore, the
restoring moment coefficient in roll is quite large, and a large moment forces
the ship upright.

2. Some time later, when the ship is upright and the roll angle – but, crucially,
not roll velocity – is zero, the wave crest is amidships. Due to the shape of the
hull, the waterplane area is now much smaller, and so is the restoring moment
coefficient. Due to this, there is very little resistance to further rolling. And

2This exponential growth explains why sailors stated that the high rolling came “from
nowhere”; the time it takes to go from noticeable to dangerous is very short with exponential
growth.

3Technically, this analysis is a simplification, using only hydrostatics.
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since the ship still has roll velocity and thus angular momentum, it will keep
going.

3. Still later, the ship will be at maximum roll angle. If this coincides with when
the wave through is amidships, the waterplane area and the restoring moment
coefficient will be large. So is the roll angle, and an even larger moment forces
the ship upright again.

4. Once upright, angular momentum is still higher, and the moment stopping
the ship from rolling further very small, and so the ship rolls even further to
the other side.

Over a few cycles, this motion builds up to very high roll values, easily up to 50◦

as seen in the Mærsk Carolina incident [12]. The exact value reached depends on
conditions and the hull shape.

Wave trough amidships

Wave crest amidships
Small water plane area

Large water plane area

Wave trough amidships Large water plane area

Large restoring moment τφ

τφ

Small restoring moment τφ,

hφ

Large restoring moment τφ

τφ

large momentum hφ

Figure 1.4: Parametric roll resonance.

From the above explanation, we can formulate certain empirical criteria for the
onset of parametric roll resonance [27]:
Encounter frequency equal to twice the natural roll frequency This en-

sures the timing necessary for the waterplane area to change in time with the
roll motion.4

Wave length equal to the ship length This is necessary to get sufficiently large
changes in waterplane area.

Sufficient wave height This is necessary to get sufficiently large changes in wa-
terplane area.

4The encounter frequency is the frequency of the waves as seen from the ship. Due to the
Doppler effect, this is not the same as the actual frequency of the waves.
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Sufficiently low roll damping If the damping is too high, the roll motion will
be quickly damped out. Unfortunately, roll damping is usually low.

Worth noting is that if the seas are irregular, it reduces the likelihood of paramet-
ric roll resonance, as it interrupts the precise timing of waterplane area changes
necessary.

As a side note, parametric resonance can also be described in a different manner.
Consider the following equations:

z̈ + dz ż + kzz = u0 cos(ωut) (1.2)
ẍ+ dxẋ+ kxx+ kxzxz = 0 (1.3)

Since z of (1.2) is not affected by x, z will eventually reach a steady-state motion
of z = z0 cos(ωut+ αz) [3]. Eventually, then, (1.3) will become

ẍ+ dxẋ+ [kx + kxzz0 cos(ωut+ αz)]x = 0. (1.4)

This is the same as (1.1), and can parametrically resonate if ωu ≈ 2
√
kx [63, 88].

As it turns out, heave and pitch are coupled nonlinearly with roll in the restoring
moment, giving rise to equations similar to (1.2)–(1.3) [6, 64–66, 68–71, 73, 78, 88].
But, as we have seen, these two ways of looking at the phenomenon are effectively
the same [88].

As mentioned, a crucial necessity for parametric roll to occur is a hull shape
such that the waterplane area can change significantly depending on the position
of the wave crest. Several different types of ship do have this unfortunate shape (so
designed due to other concerns, such as maximizing cargo space and minimizing
drag) and are known to be susceptible to parametric roll. Examples are destroyers
[28], RO-RO paxes [29], PCTCs [72] and fishing vessels [64, 66–68]. Container
carriers, however, are extremely prone to parametric roll because of the hull shape,
i.e., large bow flares and stern overhangs. This makes them particularly prone
to changes in waterplane area. Consequently, significant research has gone into
investigating container ships specifically [5, 11, 32, 38, 46–48, 56, 76, 80, 80, 86, 89,
90], no doubt also spurred by the APL China and Mærsk Carolina incidents.

For an in-depth mathematical investigation of parametric resonance, the reader
might consult Nayfeh and Mook [63]. Tondl et al. [88] gives a thorough overview of
the phenomenon in mechanical systems. The reader might also enjoy Fossen and
Nijmeijer [25].

1.3 Main contributions

There are six main contributions in this thesis, four on modeling and two on control.

1.3.1 Modeling contributions

While the main goal of the thesis work has been to develop control systems that
can stop parametric roll resonance, accurate and powerful models are needed to
derive and test the control schemes. To this effect, four novel models have been
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developed. Three of these are for ships in parametric roll, and the third for ships
equipped with a u-tank (suitable for ships in and out of parametric roll).

One-DOF models (uncoupled roll) have been a popular choice for analyzing
the critical parameters of the phenomenon and derive stability conditions [27, 38,
51, 80, 89]. The very simplest model suitable for parametric roll is the Mathieu
equation [88]

m44φ̈+ d44φ̇+ [k44 + kφt cos(ωet+ αφ)]φ = 0 (1.5)

where φ is the roll angle, m44 is the sum of the rigid-body moment of inertia and
added mass in roll, d44 is a linear damping parameter, k44 a linear spring term
and ωe the encounter frequency (i.e., the Doppler-shifted frequency of the waves as
seen from the ship). kφt gives the amplitude of the change in the linear spring term,
and αφ the phase. All the parameters are constant. Note that (1.5) is equivalent
to (1.1) and (1.4).

The Mathieu equation has the advantage of great simplicity, and is quite capable
of displaying behavior similar to that of a ship suffering parametric roll if the
parameters are given the corrects value. The Mathieu equation will oscillate if
ωe ≈ 2

√
k44/m44; d44, k44 are not too big; and φ(t0), φ̇(t0) are not both zero [88].5

Unfortunately, while simple, the Mathieu equation has certain limitations. One
is its lack of accuracy. While experience shows that parametric roll resonance is
limited in amplitude (although that amplitude can be quite large), the standard
Mathieu equation will grow unbounded (Figure 1.3(b)). Adding a nonlinear spring
term such as kφ3φ3 with kφ3 > 0 to the left-hand side of (1.5) takes care of this
problem [63], and gives the model higher accuracy. It is still only valid for regular
waves and constant forward speed and heading and the accuracy could still be
further improved.

By assuming quasi-steady heave and pitch and the dynamic interaction between
the vertical motions and the roll oscillations, Bulian [9] proposed a 1.5-DOF model.
Moreover, that assumption also allowed an analytical description of the so-called
GZ curve (see, e.g., Faltinsen [20], Fossen [24]) that was approximated as a surface
varying with roll angle and wave crest position. Considered valid for moderate
ship speed in head seas, the model has lead to reasonable results in predicting
parametric roll.

A 3-DOF (heave, roll, pitch) nonlinear fully coupled model was first developed
by Neves [65]. There, restoring forces and moment nonlinearities were Taylor ex-
panded up to second-order. Although the model provided a thorough description of
the nonlinear interactions of the different modes, it tended to overestimate the roll
oscillations. Therefore third-order Taylor series expansion of the restoring forces
and moment was used in Neves and Rodriguez [64]. In that model, the nonlinear
coefficients were mathematically derived as functions of the characteristics of the
hull shape. That 3-DOF model was used for prediction parametric roll in a transom
stern fishing vessel [66, 67], and provided a better match to experimental results
than the second-order model.

This leads us to the first major contribution:

5Other parameter combinations will also give parametric resonance of the Mathieu equation
[63], but these are the one that is most useful for modeling ship behavior [88].
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Contribution 1 (3-DOF parametric roll model). In Chapter 6, we present a 3-
DOF model (heave, roll and pitch) for ships in parametric resonance, suitable for
regular seas.

The results of Neves and Rodriguez [64] was applied to describe the dynamics
of a container ship during parametric roll resonance in head seas with regular
waves. The model parameters were identified based upon the ship line drawings
and loading conditions.

The reliability of the implemented model in simulating parametric roll was ver-
ified against experimental data gathered from model scale tests in SINTEF Mar-
intek’s facilities in Trondheim, Norway.6 The verification showed good agreement
with the experimental results for roll both in the experiments where parametric
roll resonance occurred, and in the experiments where it did not occur.

The model has been published in Holden et al. [40], Rodriguez et al. [77].

However, the 3-DOF model is only valid for regular waves and constant forward
speed/course. Its main advantage over simpler model is greater accuracy, but it is
not capable of modeling fundamentally different scenarios. Furthermore, it has the
disadvantage the the model parameters are computed only for a certain fixed sea
states and forward speeds. Change any of these, and the parameters would have to
be re-computed.

A new model was therefore developed:7

Contribution 2 (6-DOF parametric roll model). In Chapter 5, we present a 6-
DOF model for ships in parametric roll resonance, suitable for both regular and
irregular seas.

External forces due to the surrounding ocean are taken into account by integrat-
ing the instantaneous pressure field of the surrounding ocean over the instantaneous
submerged part of the ship. Some of these forces are computed off-line, but some
are computed on-line. An analytical expression is not derived, which means that
this model can only be used in simulation on a computer. Although our imple-
mentation was done using regular seas, the framework is quite capable of handling
other sea states. Wave-induced forces are effectively included as first-order forces
via the pressure field.

The model is capable of handling a wide range of maneuvers, including both
speed and course changes. This makes the model quite suitable to study the effects
of such changes.

The model has been published in Breu et al. [8].

An unfortunate downside to the 6-DOF model is that it is not analytical. While
the 3-DOF model is, it is not capable of handling different sea states. A compromise
model between the 3-DOF and 6-DOF models was needed:

Contribution 3 (1-DOF parametric roll model for non-constant speed). In Chap-
ter 5, we present a 1-DOF model for ships in parametric roll resonance, suitable
for non-constant forward speed in regular seas.

6Experiments performed by Dr Ingo Drummen.
7Although the 6-DOF and 1-DOF models appear earlier in the thesis than the 3-DOF model,

they were developed later.
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Assuming that the speed changes only slowly (a fairly valid assumption for
high-inertia ships such as the container vessel used in this thesis (76 500 metric
tons)), we use a quasi-steady approach to derive explicit time-domain solutions
to the heave and pitch motions. Inserting these into the known heave and pitch
couplings in roll yields a 1-DOF roll model.

The model is analytical, fairly easy to analyze mathematically, reasonably accu-
rate compared to the 6-DOF model and can handle non-constant forward speeds.
This makes the model suitable for designing a frequency detuning controller (chang-
ing encounter frequency to violate the frequency condition for parametric reso-
nance, see Contribution 5).

The model has been published in Breu et al. [8].

A possible avenue of control was frequency detuning – changing the speed of
the vessel to change the encounter frequency (see Contribution 5). The 6-DOF
and 1-DOF parametric roll models allows us to investigate the effectiveness of
this method. The effects of changes in surge have beens investigated before [32–
34, 47, 83] but not with models of the accuracy 6-DOF model, and with different
goal [47, 83] or different detail [32–34] than that found in Contribution 5.

While frequency detuning can be used to control parametric roll (as seen in
Chapter 11), there are some concerns regarding the effectiveness of this method.
Using direct actuation in roll allows one to set up a counter moment that drives
the roll angle to zero. Most ships aren’t equipped with direct actuators in roll [24],
but there are several options. Among these are u-tanks (see Figure 1.5(a)), fins and
gyro stabilizers (see, e.g., Perez [75]). In this thesis, we have focused on u-tanks
(sometimes known as u-tube tanks or u-shaped anti-roll tanks).

StarboardPort

Datum level

(a) A generic u-tank.
Port Starboard

Datum level

(b) A rectangular-prism u-tank.

Figure 1.5: U-tank design.

As the ship rolls, the fluid inside the u-tank (usually water) moves. Ideally,
for an un-actuated tank, the fluid should move with the same frequency as the
rolling motion of the ship, but lagging a quarter of a period behind the roll motion
[58]. This moment attains its maximum values when the ship passes through its
vertical position. Thus, the vessel’s roll kinetic energy is transformed into kinetic
and potential energy of the tank fluid. Part of the energy is dissipated by vortex
shedding and fluid viscous effects related to skin friction on the walls of the tank
[4].

There are two main advantages of u-tanks: They have medium to high perfor-
mance in terms of roll reduction (estimated to be in the range of 20–70 % (RMS)),
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and their performance is independent of the speed of the vessel. This makes u-tanks
the preferred option for vessels that spend large amounts of time at zero or low
speeds, such as fishing vessels [61].

There are, unfortunately, also disadvantages [4, 58]. Chief among these is that
they take up room that could otherwise have been used for machinery, cargo or
passengers; and that they can (at least if passive, i.e., uncontrolled) have averse
effects on the stability of the ship. Part of this is due to the free surface effect,
but another is because they are, if passive, only designed to reduce roll in certain
frequency bands. In others, they actually increase roll.

From a control perspective, another disadvantage of u-tanks compared to other
potential actuators, is that the roll and tank modes are tightly coupled, and only
indirectly give a control moment in roll. Output stabilization (with roll as output
and the tank state as internal state) tends to not leave the tank in its equilibrium
position, at least in the presence of parametric roll, as seen in Holden et al. [42].

Anti-roll tanks can be either passive or active. In passive tanks, the fluid flows
freely from side to side. The tank is dimensioned so that the tank fluid’s natural
period equals the natural roll period of the ship [57, 58]. In the presence of waves,
however, the roll period is determined by the frequency of the waves, not the
natural frequency in roll [63]. Therefore, active control is necessary to maintain
performance across a wider range of conditions.

Active tanks operate in a similar manner to their passive counterparts, but they
incorporate a control system which modifies the period of the tank to match the
actual ship roll period, and can also ensure optimal phase difference. Control can
be achieved by adjusting the air that flows from one reservoir to the other by means
of an air duct and a controlled valve, high-pressure air, or by pumps located in the
fluid duct [79].

Several models of u-tanks exist. One of the oldest [62] is that of Goodrich [37].
The model is fairly simple; the tank’s effect on roll is attributed to a single linear
term proportional to the difference in fluid volume in the two reservoirs. Kagawa
et al. [49, 50] developed a model based on Lagrangian mechanics for the purpose
of controlling the swaying of skyscrapers during earthquakes. However, they only
modeled the tank’s effect on sway, not on roll. The most commonly used model is
that of Lloyd [57, 58]. This model includes sway, roll, yaw and a single degree of
freedom for the tank fluid.

All these models have in common that they are derived for rectangular-prism
u-tanks, as seen in Figure 1.5(b) [44, 50, 57, 58, 62, 79], while several actually
installed tanks do not match this shape [74, 75, 79]. A model for more generic tank
shapes is therefore useful. In addition, most models are linear, and technically only
valid for small roll angles [26, 37, 50, 57, 58, 62]. During parametric resonance, the
roll angle can reach 40 to 50 degrees [27, 32, 34, 40, 42].

All these drawback necessitated a new model:

Contribution 4 (7-DOF nonlinear model for generic u-tanks). In Chapter 7, we
present a 7-DOF model of u-tanks of arbitrary shape.

The model was derived using Hamiltonian mechanics, and exclusively models
the tank–ship interactions. Other forces, such as those exerted by the ocean, are
added afterwards in a Newtonian framework. The model assumes one-dimensional
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tank flow, but captures the inherent nonlinearities of the dynamics. It is valid for
almost arbitrary conditions.

The model was experimentally verified (Chapter 9) and compared to the model
of Lloyd [57, 58] (Chapter 8).

The model has not yet been published, but is a generalization of that found in
Holden and Fossen [39], Holden et al. [44]. Verification results have been published
in Holden et al. [44] (for a special case of the general model).

1.3.2 Contributions in automatic control

Although deriving new models proved necessary, the main goal of the thesis work
has been to derive controllers that are capable of stopping parametric roll.

There are two basic approaches to control parametric roll; we can call them
direct and indirect.

Indirect methods attempt to ensure that the conditions necessary for parametric
roll to develop are violated, as seen in Breu and Fossen [7], Jensen et al. [47, 48],
Ribeiro e Silva et al. [76]. Perhaps the simplest one of these is to change the ship’s
speed or course, which changes the encounter frequency ωe via the Doppler effect.

The direct method, as seen in Holden and Fossen [39], Holden et al. [42], Umeda
et al. [90] uses actuators to set up a counter-acting moment in roll, and use this
to drive roll to zero. Direct methods can be active or passive. Active methods
use active control, while passive does not. Examples are controlled (active) versus
uncontrolled (passive) u-tanks.

A combination of direct and indirect methods is also possible, as seen in Galeazzi
[32], Galeazzi and Blanke [33], Galeazzi et al. [34].

Although separately, direct (active) and indirect approaches are used in this
thesis.

We investigated an indirect method we have called frequency detuning control.
As mentioned previously in the introduction, ships can parametrically roll if the
encounter frequency is about twice the natural roll frequency. The encounter fre-
quency can be changed via Doppler shift by changing speed and/or course. Thus,
we detune the encounter frequency away from the (potentially) dangerous values.

Frequency detuning has the advantage of great simplicity. As long as the helms-
man is aware that the ship is in danger of parametrically rolling, performing a speed
and/or course change is fairly straightforward and requires no complicated or ex-
pensive control systems.

This leads us to the first control contribution:

Contribution 5 (Frequency detuning control). In Chapter 11, we present a fre-
quency detuning controller capable of stopping parametric roll by changing the
speed of the vessel, and thus Doppler shifting the encounter frequency away from
the dangerous values.

The controller is based on the model listed as Contribution 3. The validity of
the controller is proven mathematically, and verified by simulation against both
the simplified model of Contribution 3 and the 6-DOF model of Contribution 2.

This controller has been published in Holden et al. [43].
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The main disadvantage of frequency detuning control is that it relies on two
key assumptions, that may or may not hold: Firstly, it is vital for the helmsman
to detect parametric roll early, or parametric roll will have time to develop fully
before the controller has had time to become effective (recall that parametric roll
builds exponentially). Secondly, the ship must have the ability to change speed
fairly fast. For high-inertia ships such as container ships and cruise ships (which
are susceptible to parametric roll) or vessels at rest (such as fishing vessels, also
susceptible to parametric roll), this is unlikely to be true.

An active, direct control system is not affected by these drawbacks. This leads
us to the final major contribution of this thesis:

Contribution 6 (Active u-tank control). In Chapter 12, we present a control
system capable of stopping parametric roll. The control system uses u-tanks as
actuators.

The controller was based on a 2-DOF simplification of the model described in
Contribution 4. The stability properties of the controller was proven mathemati-
cally, and verified in simulation using a higher-fidelity model than the one used to
derive the controller.

This controller has been published in Holden and Fossen [39].

The two control schemes can fairly easily be combined, which should further
increase the ship’s ability to stop parametric roll. However, due to time constraints,
this was not investigated during the course of my PhD studies.
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[8] Makes up the majority of Chapter 5.
[39] Makes up the majority of Chapter 12. Chapter 7 presents a generalization of

the model found in [39].
[40] Makes up the majority of Chapter 6 and Appendix C.
[42] Referred to in the text, but does not form a significant part of the thesis.
[43] Makes up the majority of Chapter 11 and Appendix D.
[44] Makes up part of Chapter 8 and the majority of Chapter 9. Chapter 7 presents

a generalization of the model found in [44].
[77] Makes up parts of Chapter 6.

1.5 Thesis organization

The rest of this thesis is organized as follows:
Chapter 2 This chapter explains the nomenclature used in this thesis.
Part II This part contains the modeling section of this thesis. Most models used

in the thesis are found here.
Chapter 3 This chapter presents some basic results on kinematics; it is

presented as necessary background and contains no novel contributions.
Chapter 4 In this chapter, the equations of motion for a rigid body freely

translating and rotating in R3 is presented. Hamiltonian mechanics is
used in the derivation. The results of this chapter are unpublished, but
are used as basis for Chapters 5 and 6.

Chapter 5 This chapter extends the model of Chapter 4 by including the
forces and moments that specifically act on ships. Assuming regular,
longitudinal waves, a 1-DOF simplified model is also presented. Both the
full and simplified models are valid for ships with non-constant velocity,
and the full model is also valid for a wide range of sea states. The chapter
is based on Chapter 4 and Breu et al. [8].
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1. Introduction

Chapter 6 This chapter simplifies the model of Chapter 5 to three degrees
of freedom, and presents experimental verification of the reduced-order
model. The chapter is based on Chapters 4 and 5, and Holden et al.
[40], Rodriguez et al. [77].

Chapter 7 This chapter presents a 7-DOF nonlinear model for ships with
u-tanks of arbitrary shape. The ship–tank system is not rigid, and the
model is derived using Hamiltonian mechanics. This chapter presents un-
published results (specifically, a generalization of the models of Holden
and Fossen [39], Holden et al. [44]).

Chapter 8 This chapter presents the equations for a rectangular-prism u-
tank, such as used in Faltinsen and Timokha [21], Holden et al. [44],
Lloyd [58], and compares it to the model of Lloyd [57, 58]. Results in
this chapter are based on Chapter 7 and Holden et al. [44].

Chapter 9 In this chapter, the model of Chapter 7 is experimentally veri-
fied. This chapter is based on Chapter 7 and Holden et al. [44].

Part III This part contains the control results presented in this thesis.

Chapter 10 This chapter gives a brief introduction to the many ways of
controlling parametric roll resonance. It contains no novel results.

Chapter 11 In this chapter, parametric roll is controlled using frequency
detuning; by changing the speed of the vessel, the encounter frequency is
driven away from the resonant conditions. The validity of the controller
is proven mathematically and shown in simulation. The results of this
chapter are based on Holden et al. [43].

Chapter 12 Based on the model of Chapter 7 and some results from Chap-
ter 9, this chapter presents a u-tank-based controller that is capable
of driving the ship out of parametric roll resonance with almost trivial
energy expenditure. The validity of the controller is proven mathemati-
cally and shown in simulation. This chapter is based on Chapter 7 and
Holden and Fossen [39].

Chapter 13 This chapter presents the conclusions and lists avenues for future
work.

Appendices Here are found some auxiliary results.

Appendix A This appendix contains rules for differentiating matrices with
respect to vectors. It contains unpublished results.

Appendix B This appendix summarizes the basics of Hamiltonian mechan-
ics. It contains no novel contributions, and is presented here only as
necessary background.

Appendix C This appendix contains tables of parameters for the model
presented in Chapter 6. Results are published in Holden et al. [40].

Appendix D In this appendix, a lemma required for Chapter 11 is proved.
It was published in Holden et al. [43].

References Lists the references used in this thesis.
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Chapter 2

Nomenclature

This chapter lists the variables used in this thesis. Note that not every symbol used
will be defined here; only those that are used in more than one chapter are listed.

In general, matrices will be written in uppercase with italic typeface, e.g., A.
Coordinate vectors and scalars are typically written in lowercase with italic type-
face, e.g., a. Whether it is a vector or scaler will be stated in the text, but should
largely be clear from context.

If the vector has an interpretation as a point, velocity or angular velocity in
physical R3, a superscript will typically denote which reference frame is used to
describe the vector, e.g., rn would denote that r is given in the n-frame. Only two
frames are used, the b-frame (fixed to the ship) and the n-frame (fixed to the mean
ocean surface and considered inertial). See Chapter 3.

General

In ∈ Rn×n: The n-by-n identity matrix.
0m×n ∈ Rm×n: The m-by-n zero matrix.
ex = [1, 0, 0]T: Unit vector in the x-direction (in R3).
ey = [0, 1, 0]T: Unit vector in the y-direction (in R3).
ez = [0, 0, 1]T: Unit vector in the z-direction (in R3).
S(·) ∈ SS(3) ⊂ R3×3: A skew-symmetric matrix representing the cross-product in

R3. S(x)y = x× y if x, y ∈ R3.
t: The time.
t0: The initial time.

Rigid body dynamics

R ∈ SO(3) ⊂ R3×3: Rotation matrix representing the orientation of the b-frame
relative to the n-frame. If r is a vector in physical R3, then rn = Rrb.

xn = [x, y, z]T ∈ R3: The position of the origin of the b-frame, described in the
n-frame.
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2. Nomenclature

η = [ηr, η
T
i ]T ∈ R4: Quaternion describing the orientation of the b-frame relative

to the n-frame. ηr = Re η ∈ R, ηi = Im η ∈ R3.

Θ = [φ, θ, ψ]T ∈ R3: Vector of roll (φ), pitch (θ) and yaw (ψ) angles.

q = [xnT, ηT]T ∈ R7: Generalized position of the body frame.

vb: The velocity of the b-frame relative to the n-frame, described in the b-frame.

ωb: The angular velocity of the b-frame relative to the n-frame, described in the
b-frame.

ν = [vnT, ωbT]T: Generalized velocity of the body frame.

G(η) ∈ R3×4: Matrix relating η̇ to ωb; η̇ = 1
2G

T(η)ωb.

GΘ(Θ): Matrix relating Θ̇ to ωb; Θ̇ = GΘ(Θ)ωb.

P(η) ∈ R7×6: Matrix relating q̇ to ν; q̇ = PT(η)ν.

MRB = MT
RB > 0 ∈ R6×6: Generalized inertia of the rigid body.

CRB(ωb) = −CT
RB(ωb) ∈ R6×6: Coriolis/centripetal matrix of the rigid body.

p = [pT
l , p

T
r ]T ∈ R6: Generalized momentum of the rigid body; p = MRBν. pl ∈ R3

and pr ∈ R3 are the first and last three elements.

τ ∈ R6: Generalized forces on the rigid body.

The environment

g > 0 ∈ R: The acceleration of gravity.

ρ > 0 ∈ R: Density of the ocean.

ζ ∈ R: A function describing the ocean surface.

ζ0 > 0 ∈ R: The amplitude of the waves.

ω0 > 0 ∈ R: The frequency of the waves as seen by an observer in the n-frame.

kw ∈ R: The wave number of the waves as seen by an observer in the n-frame.

αζ ∈ R: The phase of the waves as seen by an observer in the n-frame.

The ship

m > 0 ∈ R: Mass of the ship.

J = JT > 0 ∈ R3×3: The ship’s moment of inertia in the body frame.

rbg = [xbg, y
b
g, z

b
g]

T: Position of the ship’s center of gravity, in the b-frame.

MA ∈ R6 : Added mass of the ship.

M = MT > 0 ∈ R6×6: Total inertia of the ship.

C(ωb) = −CT(ωb) ∈ R6×6: Coriolis/centripetal matrix of the ship.

D(ν) ∈ R6×6: Damping matrix of the ship.

k(q) ∈ R6: Restoring force on the ship.

τe ∈ R6: Unmodeled generalized forces on the ship.
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τc ∈ R6: Generalized control forces on the ship.
u ∈ R6: Control input to the ship.
m44 > 0 ∈ R: Total moment of inertia (rigid body and added mass) of the ship in

roll.
d44 > 0 ∈ R: Linear damping parameter in roll.
k44 > 0 ∈ R: Linear restoring parameter in roll.
kφ3 > 0 ∈ R: Nonlinear restoring parameter in roll.
kφt > 0 ∈ R: Amplitude of the changes in the linear restoring parameter in roll.
αφ > 0 ∈ R: Phase of the changes in the linear restoring parameter in roll.

ωφ: The ship’s natural roll frequency; ωφ =
√
k44/m44.

ωe ∈ R: The encounter frequency; the Doppler-shifted frequency of the waves as
seen from the ship.

U-tanks

σ ∈ R: Parameter describing the geometry of the tank.
rbt (σ) = [xbt , y

b
t (σ), zbt (σ)]T ∈ R3: A function describing the centerline of the u-tank,

in the b-frame.
A(σ) > 0 ∈ R: Cross-sectional area of the tank.
ρt > 0 ∈ R: Density of the tank fluid.
ς0 > 0 ∈ R: Mean level of tank fluid.
ςp ∈ R: Instantaneous position of the tank fluid surface in the port side reservoir.
ςs ∈ R: Instantaneous position of the tank fluid surface in the starboard side reser-

voir.
qt ∈ R: Generalized position of the tank fluid.
A0 > 0 ∈ R: An arbitrary parameter.
Vt > 0 ∈ R: Total volume of the tank fluid.
mt > 0 ∈ R: Total mass of the tank fluid; mt = ρtVt.
m̄t > 0 ∈ R: Inertial mass of the tank fluid. Note that m̄t 6= mt.
Mt(qt) = MT

t (qt) > 0 ∈ R7×7: Inertia of a ship with a u-tank.
q̃ = [qT, qt]

T ∈ R8: Generalized position of a ship with a u-tank.
ν̃ = [νT, q̇t]

T ∈ R7: Generalized velocity of a ship with a u-tank.
P̃(η) ∈ R7×6: Matrix relating ˙̃q to ν̃; ˙̃q = P̃T(η)ν̃.
M̃(qt) ∈ R7×7: Total inertia of a ship with a u-tank.
C̃(qt, ν̃) = −C̃T(qt, ν̃) ∈ R7×7: Total Coriolis/centripetal matrix of a ship with a

u-tank.
D̃(ν̃) ∈ R7×7: Total damping matrix of a ship with a u-tank.
k̃(q̃, t) ∈ R7: Restoring forces on a ship with a u-tank.
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2. Nomenclature

τ̃e ∈ R7: Unmodeled forces on a ship with a u-tank.

B̃: Defines which states are directly controllable for a ship with a u-tank.

ut: Control input to the u-tank.

ũ = [uT, uT
t ]T: Control input to the ship with a u-tank.

Ar > 0 ∈ R: The cross-sectional area of the reservoirs.

Ad > 0 ∈ R: The cross-sectional area of the duct.

w > 0 ∈ R: The width of the u-tank, measured from the center of one reservoir to
the other.

rd > 0 ∈ R: The distance along the z-axis from the ship’s center of gravity to the
geometric center of the u-tank.

ht > 0 ∈ R: The fluid depth in the u-tank.
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In theory, there is no difference
between theory and practice.
But, in practice, there is.

Yogi Berra

Part II

Modeling
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Chapter 3

Kinematics

In this chapter, we will focus on kinematics, the mathematical relationship between
two (or more) reference frames. The contents of this chapter are quite general, and
hold true for any reference frames in R3.

The contents of this chapter is largely gathered from Altmann [2], Conway and
Smith [14], Egeland and Gravdahl [19], Fossen [24], Shivarama [81], Shivarama
and Fahrenthold [82] and is presented here merely as necessary background for the
remaining chapters.

3.1 Reference frames

In this thesis, we will use two reference frames. One is fixed to the Earth, and
considered inertial. While not technically true, this approximation is fairly good
for vessels not moving extremely far or extremely fast [24]. The other (non-inertial)
frame is fixed to the vessel, and moves with it. The inertial frame will be labelled
as n, while the body-fixed frame is labelled as b.

The n-frame has its z-axis pointing down towards the center of the earth (i.e.,
parallel to and in the same direction as the gravity field), and its xy-plane at the
mean sea level. Its origin may otherwise be arbitrarily placed.

The b-frame has its origin in the ship. Transversally, the origin is midships.
Vertically, the origin is in the waterline when the ship is at rest in calm seas. Lon-
gitudinal position is arbitrary. The x-axis points forward, the y-axis to starboard
and the z-axis towards the keel. See Figure 3.1.

A vector in R3 that can be interpreted as a point in physical space (i.e., a
position) or the time derivative of such a point (i.e., a velocity) will be written as
~r. Decomposed in either coordinate system, it will be written as rb or rn. These
two coordinate vectors are related by the relationship

rn = Rrb (3.1)

where R is a rotation matrix satisfying det(R) = 1 and R−1 = RT [19].
At any given instant in time, the b-frame may be translated and rotated relative

to the n-frame. The translational part gives the position of the ship relative to the
inertial frame, and can be fairly straightforwardly handled mathematically. If the

23



3. Kinematics

zb

xbyb

yn

zn
xn

Figure 3.1: Reference frames used in this thesis.

position of the body origin in the inertial frame is xn = [x, y, z]T, then the (linear)
velocity of the body origin (in the inertial frame) is ẋn = [ẋ, ẏ, ż]T.

In the body frame,

xb = RTxn ⇔ xn = Rxb. (3.2)

However,

ẋb = RTẋn + ṘTxn = RTẋn + ṘTRxb. (3.3)

The velocity of the ship is vn , ẋn in the inertial frame, and vb = RTvn. Thus,

ẋb = vb + ṘTRxb ⇔ vb = ẋb − ṘTRxb. (3.4)

We define

vb , [vb1, v
b
2, v

b
3]T. (3.5)

3.2 Rotation matrices

Before we continue, the rotation matrix R needs further investigation. Before we
do that, we also need to define the cross-product matrix S.

Definition 3.1. For any two vectors x, y ∈ R3, we define the cross-product matrix
S so that

S(x)y = x× y. (3.6)

From this definition follows several properties for vectors x, y, z ∈ R3 [19]:

Property 3.1. If x = [x1, x2, x3]T, then

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 ∈ R3×3. (3.7)
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3.2. Rotation matrices

Property 3.2. S is skew-symmetric, i.e., ST(x) = −S(x).

Property 3.3. For any skew-symmetric matrix S ∈ Rn×n and vector ȳ ∈ Rn,
ȳTS ȳ = 0. As a special case, yTS(x)y = 0.

Property 3.4. S(x)y = −S(y)x.

Property 3.5. S(x)x = 0.

Property 3.6. S(x)S(y)z = x× (y × z) =
(
yxT − xTyI3

)
z.

Property 3.7 (The Jacobi identity). S(x)S(y)z + S(y)S(z)x+ S(z)S(x)y = 0.

Property 3.8. S(S(x)y) = S(x)S(y)− S(y)S(x).

3.2.1 General properties of the rotation matrix

A rotation matrix transforms a vector from one reference frame to another. It is
equivalent to rotating the vector about some axis, but it can also be interpreted as
keeping the vector still and rotating the frame itself.

No matter the interpretation, rotation matrices have certain useful properties
(from Egeland and Gravdahl [19]):

Property 3.9. R ∈ SO(n) ⊂ Rn×n, where SO(n) is the special orthogonal group
of order n for rotations in Euclidean n-space. The special orthogonal group is
characterized by

• R is orthogonal, i.e., all column vectors are orthogonal and all row vectors
are orthogonal.

• RT = R−1.

• det(R) = 1.

Property 3.10. If Rβα is a rotation matrix from reference frame α to frame β, and
Rαβ is a rotation matrix from frame β to frame α, then Rαβ =

(
Rβα
)−1

=
(
Rβα
)T.

Property 3.11. If Rβα is a rotation matrix from reference frame α to frame β, Rγβ
is a rotation matrix from frame β to frame γ, and Rγα is a rotation matrix from
frame α to frame γ, then Rγα = RγβR

β
α.

Property 3.12. In R3, the time derivative of the rotation matrix Rβα from frame
α to frame β is given by

Ṙβα = RβαS(ωα) = S(ωβ)Rβα

where ~ω is the angular velocity vector of frame α relative to frame β and S is the
cross-product matrix of Definition 3.1.

From here on, we will concentrate on rotation matrices in R3, the matrix R
will be the rotation matrix from the body-fixed frame to the inertial frame (i.e.,
R = Rnb ) and ~ω will be the angular velocity of the body frame relative to the
inertial frame.
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3. Kinematics

By Property 3.12, we write

Ṙ = RS(ωb) (3.8)

and define

ωb , [ωb1, ω
b
2, ω

b
3]T. (3.9)

We can then expand (3.4) as

ẋb = vb + S(ωb)xb ⇔ vb = ẋb − S(ωb)xb. (3.10)

3.2.2 Parametrizing the rotation matrix

The rotation matrix R has nine elements, but it can be shown that they are not
independent [19]. Thus, R can be parametrized to be a function of fewer than nine
parameters. There are several ways, three of which will be addressed here. It is
worth noting that the lowest possible number of parameters necessary to describe
an arbitrary rotation is three [19].

Angle-axis representation

For any rotation matrix R, there exists vectors n̄ such that

Rn̄ = n̄. (3.11)

An n̄ satisfying this property is called a rotation axis. Since, for any scalar k,
Rkn̄ = kn̄, there clearly exists an infinite number of rotation axes. However, it can
be shown [19] that all rotation axes are parallel.

Choosing a rotation axis that satisfies ‖n̄‖2 = 1, there exists a ϑ ∈ R so that

R = I3 + sin(ϑ)S(n̄) + (1− cos(ϑ))S2(n̄). (3.12)

Note that we don’t have to specify in which coordinate system n̄ is given, as
n̄b = n̄n, by virtue of (3.11). This gives a four-parameter representation of the
rotation matrix (three parameters of n̄, plus ϑ).

The parameter ϑ has a physical interpretation. The rotation of the b-frame
relative to the n-frame can be seen as a rotation of ϑ around the axis n̄, which is
why this parametrization is known as the angle-axis (or axis-angle) representation.

Note that, if ϑ = 2πk, k ∈ {0,±1,±2, . . .} (corresponding to no rotation) then
R = I3, regardless of choice of n̄. In the case of no rotation, the axis is there-
fore poorly defined. Also note that n̄ is not unique, even when ϑ 6= 2πk, k ∈
{0,±1,±2, . . .}, as both n̄ and −n̄ are valid choices for rotation axis.

In general, both n̄ and ϑ my be time-varying.1 The derivative of the angle-axis
parameters satisfies

ϑ̇ = n̄Tωb (3.13)

˙̄n =
1

2

(
S(n̄)− 1

tan(ϑ/2)
S2(n̄)

)
ωb, tan(ϑ/2) 6= 0. (3.14)

1If n̄ is constant in time, then the rotation is a simple rotation, and R can be parametrized
by only one parameter, ϑ.
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3.2. Rotation matrices

Unit quaternions

Based on the angle-axis representation, we can define another four-parameter parametriza-
tion of R that avoids some of the drawbacks of the angle-axis representation by
using unit quaternions.

A quaternion is a generalization of complex numbers. While complex numbers
have one real and one imaginary part, quaternions have one real and three imag-
inary parts. Alternately, one can view the imaginary part of the quaternion as a
vector in R3. In effect, a quaternion η is a vector in R4 to which we assign special
properties and operators. [2, 14, 19]

We define

ηr , Re η ∈ R (3.15)

ηi , Im η ∈ R3 (3.16)

giving η = [ηr, η
T
i ]T ∈ R4. A unit quaternion is a quaternion that satisfies

ηTη = 1. (3.17)

We will only be focusing on unit quaternions, as they (but no other quaternions)
can be used to parametrize R and thus be interpreted as rotations in R3 [2, 14, 19].

Unit quaternions satisfy several interesting properties (function arguments have
been dropped for brevity):

Property 3.13. The rotation matrix R can be written as [19, 81, 82]

R = EGT (3.18)

where

E ,
[
−ηi ηrI3 + S(ηi)

]
∈ R3×4 (3.19)

G ,
[
−ηi ηrI3 − S(ηi)

]
∈ R3×4. (3.20)

Alternate representations of the rotation matrix are

R = I3 + 2ηrS(ηi) + 2S2(ηi) (3.21)

= (η2
r − ηT

i ηi)I3 + 2ηiη
T
i + 2ηrS(ηi) (3.22)

= (2η2
r − 1)I3 + 2ηiη

T
i + 2ηrS(ηi) (3.23)

= (1− 2ηT
i ηi)I3 + 2ηiη

T
i + 2ηrS(ηi). (3.24)

Property 3.14. The matrix G satisfies

GGT = I3. (3.25)

Proof. From the definition, we have

GGT =
[
−ηi ηrI3 − S(ηi)

] [ −ηT
i

ηrI3 + S(ηi)

]
= ηiη

T
i + η2

rI3 − S2(ηi) = ηiη
T
i + η2

rI3 − ηiηT
i + ηT

i ηiI3

= ηTηI3 = I3 (3.26)

where it has been used that η2
r + ηT

i ηi = ηTη = 1.
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3. Kinematics

Property 3.15. The matrix G satisfies

Gη = 0. (3.27)

Proof. From the definition,

Gη =
[
−ηi ηrI3 − S(ηi)

] [ ηr
ηi

]
= −ηrηi + ηrηi − S(ηi)ηi = 0 (3.28)

where it has been used that S(x)x = 0 ∀ x ∈ R3.

Property 3.16. The matrix G satisfies

Gη̇ = −Ġη. (3.29)

Proof. From Property 3.15 we have Gη = 0. Differentiating on both sides with
respect to time gives Ġη +Gη̇ = 0 ⇒ Ġη = −Gη̇.
Property 3.17. From Egeland and Gravdahl [19], Shivarama [81], Shivarama and
Fahrenthold [82] we have that

η̇ =
1

2
GTωb (3.30)

ωb = 2Gη̇ = −2Ġη (3.31)

where ωb is the body-fixed angular velocity.

Property 3.18. From Shivarama [81], Shivarama and Fahrenthold [82] we have
that

S(ωb) = 2GĠT = −2ĠGT. (3.32)

Property 3.19. The quaternion representation can be computed from the angle-
axis representation by [19]

ηr = cos(ϑ/2) (3.33)
ηi = n̄ sin(ϑ/2). (3.34)

Property 3.20. The unit quaternions η and −η have the same physical interpre-
tation.

Proof. This can most easily be derived from Property 3.19:

−ηr = − cos(ϑ/2) = cos([ϑ+ 2π]/2) (3.35)
−ηi = −n̄ sin(ϑ/2) = n̄ sin([ϑ+ 2π]/2). (3.36)

Since ϑ and ϑ + 2π are equivalent to the same rotation, η = [ηr, η
T
i ]T and −η =

[−ηr,−ηT
i ]T have the same physical interpretation. Note that this does not mean

that η and −η have the same numerical value.

We note that, unlike angle-axis representation, η̇ is always well defined (Prop-
erty 3.17). η is also well-defined for no rotation; η = [1, 01×3]T (and η = [−1, 01×3]T,
see Property 3.20) is equivalent to zero rotation.

However, like the angle-axis representation, the quaternion is not uniquely de-
termined by R (which is why we have Property 3.20).
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3.2. Rotation matrices

Euler angles

Euler angles are three-parameter parametrizations of the rotation matrix. The basic
concept is to (conceptually) first rotate the body frame around a body axis, then
around another of the (now rotated) body axes, and then finally around a third
(rotated) body axis. There are several ways to do this, and they all share the same
basic strengths and weaknesses. The method presented here is commonly known
as roll–pitch–yaw, xyz and sometimes zyx.

For roll–pitch–yaw, the body frame is first rotated around the body x-axis (roll),
then around the (rotated) body y-axis (pitch) and finally around the (rotated) body
z-axis (yaw). The simple rotations around each of these axis are given by [19, 24]

Rx(φ) =

 1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 (3.37)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(φ) 0 cos(φ)

 (3.38)

Rz(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (3.39)

We combine the three angles into the vector Θ defined by

Θ , [φ, θ, ψ]T (3.40)

The components of Θ is known as the Euler angles with roll is given by φ, pitch
by θ and yaw by ψ.

Property 3.21. The rotation matrix is given by

R(Θ) =

 cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (3.41)

where s· = sin(·) and c· = cos(·).

Proof. By Property 3.11, R(Θ) = Rz(ψ)Ry(θ)Rx(φ). Computing this product gives
Equation (3.41).

Property 3.22. The time derivative of Θ is given by [19, 24]

Θ̇ = GΘ(Θ)ωb. (3.42)

where

GΘ(Θ) =

 1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)

 , cos(θ) 6= 0. (3.43)
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The inverse of GΘ is given by

G−1
Θ (Θ) =

 1 0 − sin(θ)
0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(φ) cos(θ)

 . (3.44)

Property 3.23. The matrixGΘ is undefined for θ = π/2+2πk, k ∈ {0,±1,±2, . . .}.
(This corresponds to the rigid body pointing nose up or nose down.) For the same
values of θ, R becomes a function of a single parameter.

Proof. For the specified values of θ, cos(θ) = 0 and sin(θ) = ±1, and the divisors in
the third row of GΘ are zero. The tan(θ) terms in the first row are also undefined.

At cos(θ) = 0, R becomes

R(Θ) =

 0 ±sφcψ − cφsψ ±cφcψ + sφsψ
0 ±sφsψ + cφcψ ±cφsψ − sφcψ
∓1 0 0


=

 0 ± sin(φ∓ ψ) ± cos(φ∓ ψ)
0 cos(φ∓ ψ) − sin(ψ ∓ ψ)
∓1 0 0


=

 0 ± sin(ϑ̄) ± cos(ϑ̄)
0 cos(ϑ̄) − sin(ϑ̄)
∓1 0 0


with ϑ̄ , φ∓ ψ.

The practical implications of this is that, for cos(θ) = 0, it is impossible to
determine the rate of change of the Euler angles. It is also impossible to tell if
the rigid body is rotating around the x- or z-axis (or some combination). This
phenomenon is sometimes referred to as gimbal lock.

Property 3.24. Any Euler-angle representation will break down for some specific
rotations, regardless of which simple rotations it comprises. In general, this holds
true for any three-parameter parametrization of R [19].

Property 3.25. All Θ = [φ+ 2πk1, θ+ 2πk2, ψ+ 2πk3, ]
T have the same physical

interpretation for all all ki ∈ {0,±1,±2, . . .}.

Proof. This follows trivially from the 2π-periodicity of trigonometric functions.

Euler angles are simpler than quaternions or angle-axis representation, having
one fewer degree of freedom. They also have a more intuitive physical interpretation.

The major drawback is the singularity (at θ = ±π/2 for roll–pitch–yaw). Like
the other two representations listed in this chapter, Euler angles are also not
uniquely determined by R, as an infinite number of Θ triples have the same physical
interpretation (Property 3.25).
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3.3. Choice of kinematics

3.3 Choice of kinematics

Given the analysis of the previous section, we have decided to use unit quaternions
as the default representation of the ship’s orientation. This gives

ẋn = R(η)vb (3.45)

η̇ =
1

2
GT(η)ωb (3.46)

as the kinematic equations.
In some cases, we will use reduced-order models. In those cases, quaternions are

not quite as applicable. We will therefore use Euler angles to derive reduced-order
models. Temporarily, we will therefore use

ẋn = R(Θ)vb (3.47)

η̇ = GΘ(Θ)ωb (3.48)

as the kinematic equations where R(Θ) is here to be understood as (3.41).
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Chapter 4

Equations of motion for a rigid body
in R3

In this chapter, the equations of motion for a rigid body in R3 is developed using
Hamiltonian mechanics. The results in this chapter are used as a foundation for the
model in Chapter 5. The model in Chapter 7 expands upon the results in Chapter 4
to a 7-DOF non-rigid body (a ship with a u-tank).

Dynamics for a rigid body translating and rotating in R3 is presented in Egeland
and Gravdahl [19], Fossen [24] among other places, but the equations of motion
are presented without potential energy. Shivarama [81], Shivarama and Fahrenthold
[82] presented the dynamics for a rigid body translating and rotating in R3, with
the translational motion given in the inertial frame and the rotational motion given
in the body frame.

This chapter presents the dynamics of a rigid body translating and rotating in
R3 subject to potential (and kinetic) energy with both the translational and the
rotational motion given in the body frame.

The dynamics can be written in singularity-free form using seven coordinates for
generalized position and six coordinates for generalized momentum (or generalized
velocity).

The results in this chapter have not been published by me, nor are they lifted
from other authors’ work.

4.1 Energy of the rigid body

As in the previous chapter, we let xn ∈ R3 be the position of the body origin in
the inertial frame. Then, the linear velocity ~v is given by

vn = ẋn. (4.1)

The velocities in the body and inertial frames (respectively vb and vn), satisfy

ẋn = Rvb ⇔ vb = RTẋn. (4.2)

The body frame (and the rigid body with it) is rotating with an angular velocity
ωb ∈ R3 (given in the body frame) relative to the inertial frame.
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4. Equations of motion for a rigid body in R3

We define

q , [xnT, ηT]T ∈ R7 (4.3)

ν , [vbT, ωbT]T ∈ R6 (4.4)

and

P (η) ,

[
RT(η) 03×4

03×3 2G(η)

]
∈ R6×7 (4.5)

P(η) ,

[
RT(η) 03×3

04×3
1
2G(η)

]
∈ R6×7 (4.6)

so that

q̇ = PT(η)ν (4.7)
ν = P (η)q̇ (4.8)

by (4.2) and Property 3.17. For brevity, we skip function arguments of P , P, R
and G for the rest of the chapter.

We assume that the potential energy of the system U = U(q) ∈ R has an (at
least local) minimum Umin = U(qmin) for some q = qmin.

The rigid body has mass m > 0 ∈ R and moment of inertia J = JT > 0 ∈ R3×3

about the body origin, in the body frame. The rigid body’s center of gravity is
located at rbg (in the body frame).

The inertia matrix MRB of the system is given by [19, 24]

MRB =

[
mI3 −mS(rbg)

mS(rbg) J

]
= MT

RB > 0 ∈ R6×6. (4.9)

The complementary kinetic energy1 T ∗ of the system is then given by [19, 24]

T ∗ =
1

2
νTMRBν =

1

2
q̇TPTMRBP q̇ =

1

2
q̇TMq̇ (4.10)

with

M , PTMRBP =MT ∈ R7×7. (4.11)

We note that det(M) = 0. The matrix M is singular since the system is over-
parametrized; q ∈ R7, while a freely translating and moving body in R3 only has
six degrees of freedom [19, 24].

We define

W , PTM−1
RBP =WT ∈ R7×7. (4.12)

W is also singular.
We note that the matrices P , P,M and W satisfy several properties:
1Complementary kinetic energy is the kinetic energy as a function of the time derivative of

the generalized coordinates.
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4.1. Energy of the rigid body

Property 4.1. M is symmetric and positive semidefinite.

Proof. M =MT ≥ 0 if it satisfies wTMw ≥ 0 ∀ w ∈ R7. From the definition ofM,
wTMw = wTPTMRBPw = w̃TMRBw̃ ≥ 0 with w̃ = Pw since MRB = MT

RB > 0.
ThusM is at least positive semidefinite. It is not positive definite, however, because
w = [01×3, η

T]T ⇒ wTMw = 0 since Gη = 0 (by Property 3.15).

Property 4.2. W is symmetric and positive semidefinite.

Proof. W =WT ≥ 0 if it satisfies wTWw ≥ 0 ∀ w ∈ R7. From the definition ofW,
wTWw = wTPTM−1

RBPw = w̃TM−1
RBw̃ ≥ 0 with w̃ = Pw since MRB = MT

RB > 0
implies M−1

RB = M−T
RB > 0. Thus W is at least positive semidefinite. It is not

positive definite, however, because w = [01×3, η
T]T ⇒ wTWw = 0 since Gη = 0

(by Property 3.15).

Property 4.3. PPT = I6.

Proof. We have

PPT =

[
RT 03×4

03×3
1
2G

] [
R 03×3

04×3 2GT

]
=

[
RTR 03×3

03×3 GGT

]
= I6

since RT = R−1 and GGT = I3.

Property 4.4. PPT = I6.

Proof. We have

PPT =

[
RT 03×4

03×3 2G

] [
R 03×3

04×3
1
2G

T

]
=

[
RTR 03×3

03×3 GGT

]
= I6

since RT = R−1 and GGT = I3.

Property 4.5. PTPPT = PT.

Proof. We have PTPPT = PTI6 = PT.

Property 4.6. PTPPT = PT.

Proof. We have PTPPT = PTI6 = PT.

Property 4.7. WMW =W.

Proof. We have

WMW = PTM−1
RBPPTMRBPPTM−1

RBP = PTPPTM−1
RBP = PTM−1

RBP =W

where Properties 4.3 and 4.5 have been used.

Property 4.8. MWM =M.

Proof. We have

MWM = PTMRBPPTM−1
RBPPTMRBP = PTPPTMRBP = PTMRBP =M

where Properties 4.4 and 4.6 have been used.
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4. Equations of motion for a rigid body in R3

4.2 Virtual work

Following Shivarama [81], Shivarama and Fahrenthold [82], we define the quasi-
coordinates qω associated with the co-rotating components of the angular velocity
as

q̇ω = ωb. (4.13)

The virtual work done by imposed forces τnf (t) and torques τ bt (t) is then given
by

δW = δxnTτnf (t) + δqT
ω τ

b
t (t). (4.14)

Since

δqω = 2Gδη, (4.15)

(by Property 3.17) we get

δW = δxnTτnf (t) + 2δηTGTτ bt (t) = δqT

[
τnf

2GTτ bt

]
. (4.16)

We therefore see that the vector of generalized forces associated with the virtual
work δW is

τn ,

[
τnf

2GTτ bt

]
∈ R7 (4.17)

with a slight abuse of notation. τn is strictly speaking not a vector in the inertial
frame, as τn ∈ R7, not R3. And while τnf is the forces in the inertial frame, 2GTτ bt
is not the torque in the inertial frame.

4.3 Hamilton’s equations

Using the kinetic and potential energies of Section 4.1, in addition to the virtual
work defined in Section 4.2, we can derive the dynamics of the system. Initially,
this will be given using a generalized momentum in R7. This is somewhat inconve-
nient, as the generalized momentum can be expressed in R6. However, we need to
initially use the more complex form as a stepping stone to get the more compact
representation.

4.3.1 Generalized momentum and Hamiltonian

The generalized momentum of the system is given by [36, 55]

pn =
∂T ∗

∂q̇
=Mq̇ ∈ R7. (4.18)

This is a slight abuse of notation, as pn is not a vector in the inertial frame, as
pn ∈ R7, not R3.
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4.3. Hamilton’s equations

We know that the value of T and T ∗ are the same [36, 55], giving

T (q, pn) = T ∗(q, q̇) =
1

2
q̇TMq̇ =

1

2
q̇TMWMq̇ =

1

2
pnTWpn (4.19)

using Property 4.8.2
Due to the shape of T and U , the Hamiltonian H is simply equal to the sum

of the energy in the system (see Appendix B), or

H(q, pn) = T (q, pn) + U(q) =
1

2
pnTW(q)pn + U(q). (4.20)

4.3.2 Using generalized momentum in R7

Since dim q = 7, while there are only six degrees of freedom, the system has a single
algebraic constraint to satisfy:

ξ(q, pn) , ηTη − 1 = 0 (4.21)

since the quaternion η has to be a unit quaternion (see Chapter 3). We note that

∂ξ

∂q
=

[
03

2η

]
(4.22)

∂ξ

∂pn
= 0. (4.23)

We find the system dynamics to be (see Appendix B)

q̇ =
∂H

∂pn
+ λ

∂ξ

∂pn
=

∂T

∂pn
=Wpn (4.24)

ṗn = −∂H
∂q
− λ∂ξ

∂q
+ τn = −∂T

∂q
− ∂U

∂q
− 2λ

[
03

η

]
+ τn

=
∂T ∗

∂q
− ∂U

∂q
− 2λ

[
03

η

]
+ τn (4.25)

by Property B.1, where λ is a Lagrangian multiplier to be determined. To find the
dynamics, we need to expand (4.25).

SinceM and thus T ∗ are not functions of xn,

∂T ∗

∂xn
= 0. (4.26)

Since MRB is not a function of η, we can use Lemma A.3 to find that

∂T ∗

∂η
=

1

2

∂q̇TMq̇

∂η
=

1

2

∂q̇TPTMRBP q̇

∂η

=
1

2

∂fT(q, q̇)MRBf(q, q̇)

∂η
=
∂f

∂η
MRBf(q, q̇) =

∂f

∂η
MRBP q̇

2We could also have found T via the Legendre transform (see Appendix B).
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4. Equations of motion for a rigid body in R3

with

f(q, q̇) , P q̇ =

[
RTẋn

2Gη̇

]
=

[
RTẋn

−2Ġη

]
since Gη̇ = −Ġη (by Property 3.16).

The partial derivative of f with respect to η is then given by
∂f

∂η
=
[

∂(RTẋn)
∂η −2∂(Ġη)

∂η

]
=
[

∂RT

∂η (ẋn ⊗ I3) −2∂η∂η (1⊗ ĠT)
]

=
[

∂RT

∂η (ẋn ⊗ I3) −2ĠT
]

where Lemma A.2 has been used and ⊗ is the Kronecker product.
Furthermore, RT = I3 − 2ηrS(ηi) + 2S2(ηi), giving

∂RT

∂η
= −2

∂

∂η
(ηrS(ηi)) + 2

∂

∂η
S2(ηi)

with (by Lemma A.2)

∂

∂η
(ηrS(ηi)) =

∂ηrI3
∂η

(S(ηi)⊗ I3) +
∂S(ηi)

∂η
(I3 ⊗ nrI3)

=

[
(vec S(ηi))

T

03×9

]
+ ηr

∂S(ηi)

∂η

∂

∂η
S2(ηi) =

∂S(ηi)

∂η
(S(ηi)⊗ I3)− ∂S(ηi)

∂η
(I3 ⊗ S(ηi))

where

∂S(ηi)

∂η
=


0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0

 .
This gives

∂RT

∂η
(ẋn ⊗ I3) = −2

[
(vec S(ηi))

T

03×9

]
(ẋn ⊗ I3)

− 2
∂S(ηi)

∂η
[ηrI9 − S(ηi)⊗ I3 + I3 ⊗ S(ηi)] (ẋn ⊗ I3)

= −2

[
[S(ηi)ẋ

n]
T

ηrS(ẋn)− S(S(ηi)ẋ
n) + S(ẋn)S(ηi)

]
= −2

[
ηT
i S(ẋn)

ηrS(ẋn)− S(ηi)S(ẋn) + 2S(ẋn)S(ηi)

]
. (4.27)

Thus,
∂T ∗

∂η
=
[

∂RT

∂η (ẋn ⊗ I3) −2ĠT
]
MRBP q̇. (4.28)

This expression could now be inserted into (4.25), but using a generalized mo-
mentum in R7 is needlessly complicated and is therefore only used as a stepping
stone.
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4.3. Hamilton’s equations

4.3.3 Using generalized momentum in R6

The body-fixed momentum vector p is given by

p = MRBν ∈ R6 (4.29)

and note that

pn =Mq̇ = PTMRBP q̇ = PTMRBν = PTp (4.30)

which implies

p = Ppn (4.31)

since PPT = I6. Also worth noting is that

p = MRBP q̇ (4.32)

q̇ = PTM−1
RBp (4.33)

since PPT = I6.
Therefore,

ṗ = Ṗpn + P ṗn = ṖPTp+ P ṗn =

[
ṘT 03×4

03×3
1
2 Ġ

]
pn + P ṗn

=

[ −S(ωb)RT 03×4

03×3
1
2 Ġ

] [
R 03×3

04×3 2GT

]
p+ P ṗn

=

[ −S(ωb) 03×3

03×3 ĠGT

]
p+ P ṗn

=

[
−S(ωb) 03×3

03×3 − 1
2S(ωb)

]
p+ P

(
∂T ∗

∂q
− ∂U

∂q
− 2λ

[
03

η

]
+ τn(t)

)
= −

[
S(ωb) 03×3

03×3
1
2S(ωb)

]
p+ P ∂T

∗

∂q
− P ∂U

∂q
− 2λP

[
03

η

]
+ Pτn(t) (4.34)

since 2ĠGT = −S(ωb) (by Property 3.18), Ṙ = RS(ωb) (by Property 3.12) and
RT = R−1 (by Property 3.9).

We see that

P
[

03

η

]
=

[
03
1
2Gη

]
= 0

Pτn(t) =

[
RTτnf (t)

GGTτ bt (t)

]
=

[
τ bf (t)

τ bt (t)

]
, τ(t)

P ∂T
∗

∂q
=

[
RT ∂T∗

∂xn
1
2G

∂T∗

∂η

]
=

[
03×1

1
2G

∂T∗

∂η

]
.

This gives

ṗ =

[
−S(ωb) 03×3

03×3 − 1
2S(ωb)

]
p+

[
03×1

1
2G

∂T∗

∂η

]
− P ∂U

∂q
+ τ(t). (4.35)
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4. Equations of motion for a rigid body in R3

Note that the Lagrangian multiplier λ has completely disappeared from (4.35).
We define

pl ,
[
I3 03×3

]
p (4.36)

pt ,
[

03×3 I3
]
p (4.37)

as the translational and rotational momentum. By using (4.28), we find that

G
∂T ∗

∂η
= G

[
∂RT

∂η (ẋn ⊗ I3) −2ĠT
]
MRBP q̇ = G

[
∂RT

∂η (ẋn ⊗ I3) −2ĠT
]
p

= G
[

∂RT

∂η (ẋn ⊗ I3) −2ĠT
] [

pl
pr

]
= G

[
∂RT

∂η
(ẋn ⊗ I3)pl − 2ĠTpr

]
= G

∂RT

∂η
(ẋn ⊗ I3)pl − 2GĠTpr = G

∂RT

∂η
(ẋn ⊗ I3)pl − S(ωb)pr.

Furthermore, by using (3.20) and (4.27),

G
∂RT

∂η
(ẋn ⊗ I3)pl = −2

[
−ηi ηrI3 − S(ηi)

]
×
[

ηT
i S(ẋn)

ηrS(ẋn)− S(ηi)S(ẋn) + 2S(ẋn)S(ηi)

]
pl

= 2
[
ηiη

T
i − S2(ηi)− η2

rI3 + 2ηrS(ηi)
]
S(ẋn)pl

+ 4 [S(ηi)− ηrI3]S(ẋn)S(ηi)pl

= 2
[(
ηT
i ηi − η2

r

)
I3 + 2ηrS(ηi)

]
S(ẋn)pl

+ 4 [S(ηi)− ηrI3]S(ẋn)S(ηi)pl

= −2
[
S((η2

r − ηT
i ηi)ẋ

n) + 2S(S2(ηi)ẋ
n)

− S(2ηrS(ηi)ẋ
n) + S(2ηT

i ηiẋ
n)
]
pl

= −2S((I3 − 2ηrS(ηi) + 2S2(ηi))ẋ
n)pl

= −2S(RTẋn)pl = −2S(vb)pl

giving

1

2
G
∂T ∗

∂η
= −S(vb)pl −

1

2
S(ωb)pr = −

[
S(vb) 1

2S(ωb)
]
p. (4.38)

Therefore,

ṗ = −
[
S(ωb) 03×3

S(vb) S(ωb)

]
p−

[
RT ∂U

∂xn
1
2G

∂U
∂η

]
+ τ(t) (4.39)

Defining

kc(q) ,

[
RT ∂U

∂xn
1
2G

∂U
∂η

]
= P ∂U

∂q
∈ R6 (4.40)

S(ν) ,

[
S(ωb) 03×3

S(vb) S(ωb)

]
∈ R6×6 (4.41)
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4.3. Hamilton’s equations

we can write the kinetics as

ṗ = −S(ν)p− kc(q) + τ(t). (4.42)

Since MRB is a constant, ṗ = MRBν̇. If kc(q) ≡ 0 ⇒ U(q) ≡ 0, we recognize
(4.42) as Kirchoff’s equations for a system with (complementary) kinetic energy
T ∗(ν) = 1

2ν
TMRBν (see Egeland and Gravdahl [19], Fossen [24]),

MRBν̇ + S(ν)MRBν = τ(t) ⇔ ṗ+ S(ν)p = τ(t) (4.43)

as we would expect.
We can rewrite (4.42) by noting that

S(ν)p = S(ν)MRBν

=

[
mS(ωb)vb −mS(ωb)S(rbg)

mS(ωb)S(rbg)v
b −mS(vb)S(rbg)ω

b + S(ωb)Jωb

]
=

[
mS(ωb)vb −mS(ωb)S(rbg)
mS(rbg)S(ωb)vb − S(Jωb)ωb

]
=

[
mS(ωb) −mS(ωb)S(rbg)

mS(rbg)S(ωb) −S(Jωb)

] [
vb

ωb

]
= CRB(ωb)ν = CRB(ωb)M−1

RBp (4.44)

where

CRB(ωb) ,

[
mS(ωb) −mS(ωb)S(rbg)

mS(rbg)S(ωb) −S(Jωb)

]
= −CT

RB(ωb). (4.45)

We can write the kinematics as

q̇ =Wpn = PTM−1
RBPPTp = PTM−1

RBp (4.46)

since PPT = I6. We note that M−1
RBp = ν, that is, the vector of generalized

velocities in the body frame. This matches the expected result [19, 24].
We are now ready to define the dynamics for a rigid body with a momentum

vector in R6.

Model I (Momentum-based 6-DOF model of rigid bodies in R3).

q̇ = PT(q)M−1
RBp (4.47)

ṗ = τ(t)− CRB(ωb)M−1
RBp− kc(q) (4.48)

where P is defined in (4.6), MRB in (4.9), CRB in (4.45) and kc in (4.40).

The dynamics satisfy two important properties:

Property 4.9. The function

E =
1

2
pTM−1

RBp+ U(q − qmin)− Umin (4.49)

is a positive definite energy function for the system.
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4. Equations of motion for a rigid body in R3

Proof. We know that pTM−1
RBp = νTMRBν, so the first term is kinetic energy. The

second term is potential energy in the inertial frame, which as been assumed to be
positive definite in q around qmin. Subtracting U(qmin) is simply to make E zero
in zero.

Property 4.10. The system is passive, in fact lossless, with p as output andM−1
RBτ

as input. The system is also lossless with ν = M−1
RBp as output and τ as input.

Proof. We take E of (4.49) as the storage function for our system.

Ė = pTM−1
RBṗ+ q̇T ∂U

∂q

= pTM−1
RB

(
τ(t)− CRB(ωb)M−1

RBp− kc(q)
)

+ pTM−TRB P
∂U

∂q

= pTM−1
RB

(
τ(t) + P ∂U

∂q
− kc(q)

)
− pTM−1

RBC(ωb)M−1
RBp

= pTM−1
RBτ(t)

= νTτ(t)

since pTM−1
RBCRB(ωb)M−1

RBp = 0 (since CRB is skew-symmetric) and kc(q) , P ∂U∂q
(by (4.40)). Choosing M−1

RBτ as input and p as output the system is lossless by
Khalil [52, Definition 6.3]. If we instead use τ as input and ν as output, the system
is lossless by the same definition.

Since the inertia matrix MRB of a rigid body is constant, ṗ = MRBν̇ and we
can define an alternate model.

Model II (Velocity-based 6-DOF model of rigid bodies in R3).

q̇ = PT(η)ν (4.50)

MRBν̇ = τ(t)− CRB(ωb)ν − kc(q) (4.51)

where all the matrices are as in Model I.

The dynamics satisfy two important properties:

Property 4.11. The function

E =
1

2
νTMRBν + U(q − qmin)− Umin (4.52)

is a positive definite energy function for the system.

Proof. We know that the first term is kinetic energy. The second term is potential
energy in the inertial frame, which as been assumed to be positive definite in q
around qmin. Subtracting U(qmin) is simply to make E zero in zero.

Property 4.12. The system is passive, in fact lossless, with ν as output and τ as
input.
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4.3. Hamilton’s equations

Proof. We take E of (4.52) as the storage function for our system.

Ė = νTMRBν̇ + q̇T ∂U

∂q

= νT
(
τ(t)− CRB(ωb)ν − kc(q)

)
+ νTP ∂U

∂q

= νT

(
τ(t) + P ∂U

∂q
− kc(q)

)
− νTC(ωb)ν

= νTτ(t)

since CRB is skew-symmetric and kc(q) , P ∂U∂q (by (4.40)). Choosing τ as input
and ν as output the system is lossless by Khalil [52, Definition 6.3].
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Chapter 5

Equations of motion for a ship in
waves

The results of Chapter 4 describe the equations of motion for any rigid body
freely moving and rotating in R3. This chapter extends that with the forces and
moments known to be acting on a surface ship in waves, giving a 6-DOF ship model.
In addition, this chapter presents a Matlab implementations of the equations of
motion with simulation results.

Furthermore, this chapter presents a 1-DOF parametric roll model suitable for
ships with non-constant velocity. This model is verified against the 6-DOF model.
It is also shown that the commonly used Mathieu equation is not suitable when
the velocity is not constant.

The material in this chapter is based on Chapter 4 and Breu et al. [8].

5.1 Conservative forces and moments on a ship

In this Chapter, we will use the velocity-based 6-DOF model of a rigid body
(Model II) as basis for the equations of motion of a ship in waves:

q̇ = PT(η)ν (5.1)

MRBν̇ = τ(t)− CRB(ωb)ν − kc(q). (5.2)

A ship floating on the surface of the ocean is affected by one potential force,
gravity.1 The ship’s center of gravity is located at rbg = [xbg, y

b
g, z

b
g]

T in the body
frame. This vector is constant, since the ship is a rigid body. If we assume that
the ship has port–starboard symmetry, then by the definition of the body frame in
Section 3.1, ybg = 0.

We need to find the potential energy of the ship. Any infinitesimal volume block
dV of the ship at a position ~r has density ρs(~r) and is at a height h(~r) above some

1Technically, buoyancy (which affects any object submerged in a fluid) is also a potential
force, but this is rendered quite complex in the presence of waves, especially for a moving ship.
We will therefore add buoyancy later.
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5. Equations of motion for a ship in waves

arbitrary zero point. We note that h is the zero level minus the inertial z-component
of ~r, i.e.,

h(~r) = h0 − eT
z r

n = h0 − eT
z Rr

b (5.3)

where eT
z , [0, 0, 1]. The negative signage is because the z-axis has the same direc-

tion as the gravity field.
The potential energy dU of dV is given by

dU = gρs(~r)h(~r)dV, (5.4)

which, in the body frame, can be written as

dU = gρs(r
b)h(rb)dV = gρs(r

b)
(
h0 − eT

z Rr
b
)

dV. (5.5)

The total potential energy U of the ship is then given by

U =

∫
ship

dU = gmh0 − geT
z R

∫
ship

ρs(r
b)rb dV

= gmh0 − gmeT
z Rr

b
g (5.6)

since

rbg ,
1

m

∫
ship

ρs(r
b)rb dV (5.7)

is the definition of the center of gravity.
A priori we know that xn = 0, R = I3 is an equilibrium point for the system.

We therefore take U to be zero at this point. The value of U at the equilibrium
point is therefore

U0 = gmh0 − gm[0, 0, 1]rbg = gmh0 − gmzbg , 0.

Thus,

h0 , zbg. (5.8)

This gives the potential energy

U(q) = gm
[
zbg − eT

z R(η)rbg
]
. (5.9)

The partial derivatives of U are given by

∂U

∂xn
= 0

∂U

∂η
= −mg∂e

T
z R

∂η
rbg.

From (3.21), we have

eT
z R =

[
2(ηi,1ηi,3 − ηi,2ηr) 2(ηi,2ηi,3 + ηi,1ηr) 1− 2(η2

i,1 + η2
i,2)

]
,
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5.2. Hydrodynamic forces and moments on a ship

so

∂eT
z R

∂η
= 2


−ηi,2 ηi,1 0
ηi,3 ηr −2ηi,1
−ηr ηi,3 −2ηi,2
ηi,1 ηi,2 0

 ∈ R4×3. (5.10)

From (4.40), we have

kc(q) =

[
RT ∂U

∂xn
1
2G

∂U
∂η

]
= −mg

[
03×1

1
2G

∂eTz R
∂η rbg

]
(5.11)

From (3.20) and (5.10) we get

G
∂eT
z R

∂η
= 2

 −ηi,1 ηr ηi,3 −ηi,2
−ηi,2 −ηi,3 ηr ηi,1
−ηi,3 ηi,2 −ηi,1 ηr



−ηi,2 ηi,1 0
ηi,3 ηr −2ηi,1
−ηr ηi,3 −2ηi,2
ηi,1 ηi,2 0


= 2

 0 1− 2η2
i,1 − 2η2

i,2 −2ηrηi,1 − 2ηi,2ηi,3
−1 + 2η2

i,1 + 2η2
i,2 0 −2ηrηi,2 + 2ηi,1ηi,3

2ηrηi,1 + 2ηi,2ηi,3 2ηrηi,2 − 2η1,2ηi,3 0


= −2S(RT(η)ez) (5.12)

where the relationship ηTη = 1 has been used.
Thus,

kc(q) = mg

[
03×1

S(RT(η)ez)r
b
g

]
. (5.13)

5.2 Hydrodynamic forces and moments on a ship

To derive the hydrodynamic forces and moments on a ship, we need to make certain
assumptions:

Assumption 1. There is no current.

Assumption 2. The hull can be split into triangular and quadrangular panels
that can be parametrized as two-dimensional surfaces embedded in R3.

Assumption 3. Following maneuvering theory [24], the frequency-dependent damp-
ing, added mass and Coriolis/centripetal matrices can be represented at a constant
excitation frequency.

Assumption 4. The ocean is infinitely deep.

Assumption 5. The pressure field in the ocean is unchanged by the passage of
the ship (in effect, waves are traveling “through” the ship’s hull).

Assumption 6. Generalized forces associated with the virtual work defined in
Section 4.2 obey the superposition principle.
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5. Equations of motion for a ship in waves

The external generalized forces τ are largely a result of the the propulsion
system, wind, gravity, the (dynamic and static) pressure exerted by the surrounding
ocean and various dissipative forces. By assumption, we will neglect wind-induced
forces.

We therefore write

τ = τg + τp + τd + τc + τe ∈ R6 (5.14)

where τg is the weight of the ship, τp is the pressure-induced generalized force, τc
are generalized forces due to the propulsion system, τd are generalized dissipative
forces due to skin friction, vortex shedding, etc. and τe are umodeled generalized
forces and disturbances (including any wind-induced forces).

At any given point rn in the ocean (in the inertial frame), there will be a local
pressure field Ψ = Ψ(rn, q, ν, ν̇, t) ∈ R [75, 91]. We assume (Assumption 2) that
each section of the ship’s hull can be parametrized with parameters u and v, so
that the vector rbi (u, v) gives the position of a point on the surface of panel i, in
the body frame.

Defining

Ψi(u, v) , Ψ([Rrbi (u, v) + xn], q, ν, ν̇, t), (5.15)

we can then take the generalized pressure-induced force on the ship as [18, 75, 91]

τp = −
∑
i

 ∫
Sw,i

Ψi(u, v)
∂rbi
∂u (u, v)× ∂rbi

∂v (u, v) du dv∫
Sw,i

Ψi(u, v)rbi (u, v)×
(
∂rbi
∂u (u, v)× ∂rbi

∂v (u, v)
)

du dv

 (5.16)

where Sw,i is the wetted (submerged) part of panel i and the ship is parametrized
so that the normal vector (∂rbi/∂u)× (∂rbi/∂u)2 points out of the hull. The effects
of current and waves can all be accounted for in the force τp [20, 75].

Unfortunately, computing the pressure field Ψ requires the solution to the
Navier-Stokes equations, where some of the boundary conditions are the state of
the ship [54]. In practice, this is unsolvable without resorting to computational
fluid dynamics [91]. We therefore simplify Ψ to

Ψ(rn, q, ν, ν̇, t) ≈ Ψd(r
n, ν, t) + Ψa(rn, ν̇, t) + Ψb(r

n, t), (5.17)

take

Ψd,i(u, v) = Ψd(Rr
b
i (u, v) + xn, Rν, t) (5.18)

Ψa,i(u, v) = Ψa(Rrbi (u, v) + xn, Rν̇, t) (5.19)

Ψb,i(u, v) = Ψb(Rr
b
i (u, v) + xn, t) (5.20)

2See Edwards and Penney [18] for proof that this is a normal vector.
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5.2. Hydrodynamic forces and moments on a ship

and τp as

τp ≈ −
∑
i

 ∫
Sw,i

Ψd,i
∂rbi
∂u ×

∂rbi
∂v du dv∫

Sw,i
Ψd,ir

b
i ×

(
∂rbi
∂u ×

∂rbi
∂v

)
du dv


−
∑
i

 ∫
Sw,i

Ψa,i
∂rbi
∂u ×

∂rbi
∂v du dv∫

Sw,i
Ψa,ir

b
i ×

(
∂rbi
∂u ×

∂rbi
∂v

)
du dv


−
∑
i

 ∫
Sw,i

Ψb,i
∂rbi
∂u ×

∂rbi
∂v du dv∫

Sw,i
Ψb,ir

b
i ×

(
∂rbi
∂u ×

∂rbi
∂v

)
du dv


≈ −Dpν − CA(ν)ν −MA(Ω)ν̇ − k(q, t) (5.21)

and Dp, CA and MA are recognized as

Dpν + CA(ν)ν ≈
∑
i

 ∫
Sw,i

Ψd,i
∂rbi
∂u ×

∂rbi
∂v du dv∫

Sw,i
Ψd,ir

b
i ×

(
∂rbi
∂u ×

∂rbi
∂v

)
du dv

 (5.22)

MA(Ω)ν̇ ≈
∑
i

 ∫
Sw,i

Ψa,i
∂rbi
∂u ×

∂rbi
∂v du dv∫

Sw,i
Ψa,ir

b
i ×

(
∂rbi
∂u ×

∂rbi
∂v

)
du dv

 (5.23)

kp(q, t) ≈
∑
i

 ∫
Sw,i

Ψb,i
∂rbi
∂u ×

∂rbi
∂v du dv∫

Sw,i
Ψb,ir

b
i ×

(
∂rbi
∂u ×

∂rbi
∂v

)
du dv

 . (5.24)

Following Assumption 3, the frequency-dependence of Dp, CA and MA is omitted.
The matrices are assumed to satisfy

rTDpr > 0 ∀ r 6= 0 ∈ R6 (5.25)

CT
A(ν) = −CA(ν) ∀ ν ∈ R6 (5.26)

MA = MT
A > 0. (5.27)

Note that the above simplifications are only valid if there is zero current; oth-
erwise the velocities would have to be the velocities of the ship relative to the
current.

The generalized force −Dpν is a dissipative force, removing energy from the
system. In addition to this pressure-induced damping, there are also other dissi-
pative effects such as viscous damping and vortex shedding. We include all these
other damping effects in the generalized force

τd = −Dv(ν)ν (5.28)

where Dv satisfies rTDv(ν)r > 0 ∀ r 6= 0 ∈ R6, ν ∈ R6.
Although it is perhaps not obvious, buoyancy is included in the term kp, and the

first three elements of kp (pressure-induced forces) are non-zero even in calm water
for a ship at rest. As the ship is floating, there needs to be a force counteracting
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5. Equations of motion for a ship in waves

this. In fact, this is the weight of the ship. This was not included in the term kc, as
the potential energy of the ship and thus its weight does not depend on the ship’s
position, only its orientation. We therefore add this force manually as [24]

τg(q) = mg

[
RT(η)ez

03×1

]
. (5.29)

Combining all the above, we can write the 6-DOF model for a ship in waves:

Model III (6-DOF model of a ship in waves).

q̇ = PT(η)ν (5.30)
Mν̇ +D(ν)ν + C(ν)ν + k(q, t) = τc(t) + τe(t). (5.31)

where

M ,MRB +MA

D(ν) , Dp(ν) +Dv(ν)

C(ν) , CRB(ν) + CA(ν)

k(q, t) , kp(q, t)− τg(q) + kc(q).

By Fossen [24], the Coriolis/centripetal matrices C can be found from M . If

M =

[
M11 M12

M21 M22

]
∈ R6×6, M11,M12,M21,M22 ∈ R3×3

then

C(ν) =

[
03×3 −S(M11v

b +M12ω
b)

−S(M11v
b +M12ω

b) −S(M21v
b +M22ω

b)

]
.

5.3 Computer implementation of (5.30)–(5.31)

To implement a computer version of the model (5.30)–(5.31), we use data from a
specific, 280 m long container ship. The main characteristics of this vessel can be
found in Table 5.1.

Table 5.1: Main characteristics of the container ship.

Quantity Value

Length between perpendiculars 281 m
Beam amidships 32.3 m
Draught amidships 11.8 m
Displacement 76 468 m3

Roll radius of gyration 12.23 m
Transverse metacentric height 1.84 m

While Model III can be used for other sea states, we have chosen to create an
implementation suitable for parametric roll. As such, we assume that the waves
are planar and sinusoidal.
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5.3. Computer implementation of (5.30)–(5.31)

5.3.1 Forces other than kp

We computed the parameters for inertia MRB, added mass MA and damping Dp

and Dv in VERES [23]. We set the unmodeled force vector τe to zero and the
control force τc as

τc = −



kp(v
b
1 − vb1,d) + ki

∫ t
t0

(vb1(T )− vb1,d(T )) dT

0
0
0
0

κp(ψ − ψd) + κd(ψ̇ − ψ̇d) + κi
∫ t
t0

(ψ(T )− ψd(T )) dT

 (5.32)

with vb1,d the desired surge speed and ψd the desired heading. The rudimentary PID
controllers in surge and yaw are there to keep the ship on course in the presence of
the other forces. Without these controllers, the simulated ship tends to drift quite
heavily off course.

The parameters used are

MRB =

[
mI3 −mS(rbg)

mS(rbg) J

]
m = 7.7358e7

rbg = [−3.7486, 0,−1.120]T

g = 9.81

J =

 1.41e10 0 0
0 3.70e11 0
0 0 3.70e11



MA =


0 0 0 0 0 0
0 7.59e7 0 6.43e7 0 −1.04e9
0 0 7.80e7 0 −7.8e8 0
0 6.43e7 0 2.20e9 0 −9.08e9
0 0 −7.83e8 0 3.39e11 0
0 −1.04e9 0 −9.08e9 0 4.48e11



D(ν) =


5.66e3 0 0 0 0 0

0 3.31e7 0 1.50e7 0 1.22e8
0 0 4.66e7 0 −1.05e9 0
0 1.50e7 0 2.48e8 0 −2.27e9
0 0 −4.03e8 0 2.73e11 0
0 −5.03e8 0 −2.79e9 0 1.35e11


+

[
2.83e4|v1| 01×5

05×1 05×5

]
kp = 7.7358e7

ki = 7.7358e6

κp = 8.18e11

κd = κi = 0
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5. Equations of motion for a ship in waves

with all values in base SI units (kg–m–s).
With these numbers, all forces and moments of (5.31) except for kp can be

computed.

5.3.2 Pressure-induced forces kp

The final generalized force that needs to be computed is the pressure-induced spring
term kp(q, t). This is computed directly from (5.24) with some further simplifica-
tions:

Assumption 7. The waves are a simple, planar, standing sinusoid.

Assumption 8. The “hydrostatic” part of the pressure extends from the instan-
taneous ocean surface and down.

Assumption 9. The “dynamic” part of the pressure extends from the mean ocean
surface and down.

By Faltinsen [20], these approximations and the ones used in deriving (5.31)
give a first-order approximation of the wave forces and moments.

Pressure field

From Faltinsen [20], we have that the ocean surface under these conditions is given
by

ζ(t, rn) = ζ0 cos(ω0t− kwrn1 + αζ) (5.33)

in the inertial frame, with ζ giving the wave height at a position rn = [rn1 , r
n
2 , r

n
3 ]T.

The ocean surface is then at [rn1 , r
n
2 , ζ(t, rn)]T.

The constant parameters are the wave amplitude ζ0, the frequency of the waves
as seen by an observer stationary in the inertial frame ω0, and the wave number
kw. For waves traveling in negative x-direction, kw < 0 and vice versa.

By Faltinsen [20], the pressure field Ψb is given by

Ψb(r
n, t) = gρζ0e

−kw max(rn3 ,0) cos(ω0t− kwrn1 + αζ) + gρrn3 . (5.34)

The parameters are the acceleration of gravity g and the density of sea water ρ. The
term gρrn3 is the “hydrostatic” pressure, and gρζ0e−kw max(rn3 ,0) cos(ω0t−kwrn1 +αζ)
the “dynamic” pressure.

The submerged part of the ship

The ship’s hull, as previously mentioned, is split into panels, each forming a triangle
or quadrangle. In the body frame, panel i has corners pbi,j , j ∈ {1, 2, 3, 4} for
quadrangles and j ∈ {1, 2, 3} for triangles. In the inertial frame,

pni,j = Rpbi,j + xn. (5.35)
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5.3. Computer implementation of (5.30)–(5.31)

As (5.33) gives the explicit wave surface (in the inertial frame) we can compute
which points, at any given time and physical location, are above or below the wave
surface by solving the equation

eT
z p

n
i,j = ζ(t, pni,j).

Rather than solving the equation explicitly, an approximation is used. First,
the points are transformed using

p̄ni,j = pni,j − [0, 0, ζ(t, pni,j)]
T. (5.36)

Any point with a positive z-value is submerged. See Figures 5.1(a) and 5.1(b).

Water line

Avg. water line

(a) Initial state.

Water line

Avg. water line

(b) Post-transformation.

Water line

Avg. water line

(c) Post-cutting.

Water line

Avg. water line

(d) Reverse transformation.

Figure 5.1: Transforming panels.

Each panel was individually parametrized with a bilinear interpolation, so that
for each panel i,

p̄ni = k̄0 + k̄uu+ k̄vv + k̄uvuv (5.37)
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5. Equations of motion for a ship in waves

with u, v ∈ [0, 1) defines all points on panel i.
For each partially submerged panel (one with at least one point underwater

and at least one point above water), the parametrization is used to find where the
edges of the panel intersect the water line, and to compute the coordinates of these
points. The submerged points and the points in the waterline then make up (one or
more) new panel(s). Note that the panels whose submerged part forms a pentagon
are split into three triangular panels, whereas panels whose submerged part forms
a triangle or a quadrangle are kept as such, see Figure 5.2.

Water line

Figure 5.2: Cutting partially submerged panels into new fully submerged panels.

The partially submerged panels and the panels wholly above the waterline are
discarded. The fully submerged panels based on the partially submerged panels
and the original fully submerged panels are kept.

Before computing the forces and moments, the transformation (5.36) needs to
be reversed so that the points are expressed in the inertial frame. We therefore take

pni,j = p̄ni,j + [0, 0, ζ(t, pni,j)]
T. (5.38)

The entire transformation–cutting–inverse transformation process can be seen
in Figure 5.1.

The approximation to find the true intersection of the hull and the ocean surface
is good if the average size of the panels is small relative to the wave length.

The generalized forces

We parametrize the submerged panels bilinearly so that

pni = k0 + kuu+ kvv + kuvuv (5.39)

with u, v ∈ [0, 1) define all points on panel i, in the inertial frame.
The partial derivatives of pni with respect to u and v can be explicitly found as

∂pni
∂u

= ku + kuvv (5.40)

∂pni
∂v

= kv + kuvu. (5.41)
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5.3. Computer implementation of (5.30)–(5.31)

It is worth noting that for triangular panels, kuv = 0.
For each panel, we can compute the pressure-induced force in the inertial frame

as

fni =

{ ∫ 1

0

∫ 1

0
Ψb(p

n
i (u, v), t) [ku + kuvv]× [kv + kuvu] du dv quadrangles∫ 1

0

∫ 1−v
0

Ψb(p
n
i (u, v), t)ku × kv du dv triangles

The integration must be done numerically. Although more points could be used,
for increased computational speed, only corner points were used in the calculation
of the pressure forces. Thus,

fni ≈
{

1
4

∑4
j=1 Ψb(p

n
i (ūj , v̄j), t) [ku + kuv v̄j ]× [kv + kuvūj ] quadrangles

1
6

∑3
j=1 Ψb(p

n
i (ūj , v̄j), t)ku × kv triangles

where

ū1 = 0, v̄1 = 0,

ū2 = 0, v̄2 = 1,

ū3 = 1, v̄3 = 0,

ū4 = 1, v̄4 = 1.

Computations for the torque is similar. However, we need the torque relative
to the body origin rather than the inertial origin. We therefore get

mn
i =


∫ 1

0

∫ 1

0
Ψb(p

n
i (u, v), t) [pni (u, v)− xn] quadr.× ([ku + kuvv]× [kv + kuvu]) du dv∫ 1

0

∫ 1−v
0

Ψb(p
n
i (u, v), t) [pni (u, v)− xn]× (ku × kv) du dv triangles

This is approximated as

mn
i ≈


1
4

∑4
j=1 Ψb(p

n
i (ūj , v̄j), t) [pni (ūj , v̄j)− xn] quadr.
× ([ku + kuv v̄j ]× [kv + kuvūj ])

1
6

∑3
j=1 Ψb(p

n
i (ūj , v̄j), t) [pni (ūj , v̄j)− xn]× (ku × kv) triangles

Note that this torque is still in the inertial frame, but relative to the body origin.
If the set S̄ consists of all i such that panel i is one of the original, fully

submerged panels or one of the newly created (also fully submerged) panels, we
can then take

kp(q, t) ≈
[
RT
∑
i∈S̄ f

n
i

RT
∑
i∈S̄m

n
i

]
(5.42)

to get the total pressure-induced force and moment in the body frame.
The system was simulated with a fixed time step, and for each time instant,

the outlined procedure for computing kp was performed.
It is worth noting that the procedure automatically handles such effects as (first-

order) wave-induced forces and Doppler shift of these. The first by simple virtue of
the pressure field including the dynamic pressure and the second by including xn
in (5.35).
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5. Equations of motion for a ship in waves

5.4 The encounter frequency

To an observer standing in a fixed location on the ocean surface, waves will appear
to have a specific frequency of oscillation (or a range of frequencies if the waves are
irregular). We look at regular sinusoidal waves, described by (5.33).

To a stationary observer, rn is constant. To a moving observer, the waves will
appear to behave differently than to the stationary observer due to the Doppler
effect. We take rn = xn to be the location of the observer (i.e., the ship) in the in-
ertial frame and assume, without loss of generality, that xn(t0) = 0. The observer’s
velocity in the inertial x-direction is then

ẋn , vn1 (5.43)

so that

ζ(t, xn) = ζ0 cos

(
ω0t− kw

∫ t

t0

vn1 (τ) dτ + αζ

)
. (5.44)

Since the velocity in Model III is given in the body frame, we use

vn1 = eT
xRv

b (5.45)

where ex = [1, 0, 0]T.
We can then define the encounter frequency between the observer and the wave

– or the frequency seen by the observer – as

ωe ,
d

dt

(
ω0t− kw

∫ t

t0

vn1 (τ) dτ

)
(5.46)

= ω0 − kweT
xRv

b ≈ ω0 − kweT
xR[vb1, 0, 0]T

= ω0 − kw cos(θ) cos(ψ)vb1 ≈ ω0 − kwvb1 (5.47)

and rewrite (5.44) as

ζ(t, xn) = ζ0 cos

(∫ t

t0

ωe(τ) dτ + αζ

)
. (5.48)

We note that if vn1 is a constant, then so is ωe, and the above simply becomes

ζ(t, xn) = ζ0 cos (ωet+ αζ) . (5.49)

It is an important fact that whereas we cannot change ω0, we can change ωe
by changing the velocity.

5.5 Simplified roll equation

The spring term in the full 6-DOF model is analytically unknown. To derive a
1-DOF roll model we will also make the following extra assumption:

Assumption 10. The ship is traveling directly into the waves.
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5.5. Simplified roll equation

Note that the ship is still allowed to change forward speed.
For ships in parametric resonance, it’s well-known that the most important

degrees of freedom are heave, roll and pitch [40, 64]. Heave and pitch are already
coupled, and during parametric resonance these transfer energy to roll.

Setting all other degrees of freedom to zero, we define

qr3 , [zn, φ, θ]T (5.50)

νr3 , [vb3, ω
b
1, ω

b
2]T (5.51)

and note that (from Properties 3.21 and 3.22)

q̇r3 =

 cos(φ) cos(θ) 0 0
0 1 sin(φ) tan(θ)
0 0 cos(φ)

 νr3 ≈ νr3 . (5.52)

This 3-DOF model can be written as

Mr3 ν̇r3 + Cr3 (νr3) νr3 +Dr3(νr3)νr3 + kr3 (qr3 , t) = τc,r3 + τe,r3 . (5.53)

For simplicity, we will assume that the velocities in heave and pitch are low, and
that the only coupling between these two degrees of freedom and roll exists in the
spring term kr3 . This allows us to write

Mr3 =

 m33 0 m35

0 m44 0
m53 0 m55


Cr3 (νr3) = 03×3

Dr3 (νr3) =

 d33 0 d35

0 d44 0
d53 0 d55


where mij and dij are the i, jth element of M and D (0) from (5.31).

Furthermore, following Holden et al. [40] (see also Chapter 6 for derivation), we
simplify kr3 to

kr3 (qr3 , t) ≈

 k33 0 k35

0 k44 0
k53 0 k55

 qr3 +

 0
kzφz

nφ+ kφθφθ + kφ3φ3

0

+ k̄r3 (t)

with

k̄r3 (t) = −


azζ0 cos

(∫ t
t0
ωe(τ) dτ + αz

)
0

aθζ0 cos
(∫ t

t0
ωe(τ) dτ + αθ

)


where az, αz, aθ, and αθ are constant. We note that k̄r3 (t) is merely ζ of (5.44)
phase-shifted and scaled, effectively sent through a linear filter.
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5. Equations of motion for a ship in waves

Neither heave nor roll nor pitch are likely to be directly actuated, so τc,r3 = 0.
The unmodeled disturbances τe,r3 are also assumed zero.

We can then rewrite (5.53) as

m44φ̈+ d44φ̇+ k44φ+ kφ3φ3 = −[kzφ, kφθ]qr̄2φ (5.54)
Mr̄2 q̈r̄2 +Dr̄2 q̇r̄2 +Kr̄2qr̄2 = k̄r̄2 . (5.55)

with

qr̄2 = [zn, θ]T

Mr̄2 =

[
m33 m35

m53 m55

]
Dr̄2 =

[
d33 d35

d53 d55

]
Kr̄2 =

[
k33 k35

k53 k55

]

k̄r̄2(t) =

 azζ0 cos
(∫ t

t0
ωe(τ) dτ + αz

)
aθζ0 cos

(∫ t
t0
ωe(τ) dτ + αθ

)  .

We note that the qr̄2-subsystem (5.55) is completely decoupled from the roll-
subsystem (5.54) and is merely a linear ordinary differential equation with constant
coefficients and a sinusoidal input. If we assume that ωe is constant, then the system
will have as a steady-state solution

qr̄2 (t) =

 āzζ0 cos
(∫ t

t0
ωe(τ) dτ + ᾱz

)
āθζ0 cos

(∫ t
t0
ωe(τ) dτ + ᾱθ

)  (5.56)

where āz, ᾱz, āθ and ᾱθ are constant.
The main purpose of this chapter is to derive a roll model for changing ωe, thus

we consider the case when ωe is not constant. Let us revisit the equation for ωe,
and note

ω̇e =
d

dt

(
ω0 − kweT

xRv
b
)

= −kweT
x

(
Ṙvb +Rv̇b

)
= −kweT

xR
(
S(ωb)vb + v̇b

)
(5.57)

giving

|ω̇e| ≤ |kw| ‖ex‖ ‖R‖
(∥∥S(ωb)vb

∥∥+
∥∥v̇b∥∥) = |kw|

(∥∥S(ωb)vb
∥∥+

∥∥v̇b∥∥) (5.58)

since ‖ex‖ = ‖R‖ = 1.
For large ships, neither the acceleration

∥∥v̇b∥∥ nor the term
∥∥S(ωb)vb

∥∥ is likely
to be large. To cause parametric resonance, waves have to be approximately of the
same length as the ship, and since kw is inversely proportional to the wave length,
kw is likely to be quite low. Thus |ω̇e| ≈ 0 and a quasi-steady approach can be
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5.6. Model verification

used. We therefore take the solution to (5.55) to be given by (5.56) even when ωe
is non-constant.

We insert the solution (5.56) into the right-hand side of (5.54) and get

[kzφ, kφθ]qr̄2 = kzφāzζ0 cos

(∫ t

t0

ωe(τ) dτ + ᾱz

)
+ kφθāθζ0 cos

(∫ t

t0

ωe(τ) dτ + ᾱθ

)
= kφt cos

(∫ t

t0

ωe(τ) dτ + αφ

)
where

k2
φt = ζ2

0

[
k2
zφā

2
z + k2

φθā
2
θ + 2kzφkφθāzāθ cos(αθ − αz)

]
αφ = arctan

(
kzφāz sin(αz) + kφθāθ sin(αθ)

kzφāz cos(αz) + kφθāθ cos(αθ)

)
.

Thus, under the stated assumptions, we can formulate the 1-DOF parametric
roll model:

Model IV (1-DOF parametric roll model).

m44φ̈+ d44φ̇+

[
k44 + kφt cos

(∫ t

t0

ωe(τ) dτ + αφ

)]
φ+ kφ3φ3 = 0 . (5.59)

The natural roll frequency ωφ is given by

ωφ ,

√
k44

m44
. (5.60)

We note that if we set ω̇e = 0, then this is identical to the Mathieu equation
with a cubic spring term:

Model V (Mathieu model).

m44φ̈+ d44φ̇+ [k44 + kφt cos(ωet+ αφ)]φ+ kφ3φ3 = 0 . (5.61)

5.6 Model verification

To determine the validity of the simplified roll model (5.59), we simulate it and
compare it to simulations of the full 6-DOF model presented in Section 5.3. Since
the Mathieu equation is commonly used to describe ships sailing with constant
surge speed experiencing parametric roll resonance, we additionally investigate its
ability to describe a dynamics of a ship for a non-constant encounter frequency.

As the main difference between the models is in the spring term, it is useful to
compare these. Furthermore, the parameters of these are not known a priori, and
need to be identified.
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5. Equations of motion for a ship in waves

We define the spring torque for the 1-DOF roll Model IV and the Mathieu
Model V as, respectively,

kφ,c(t; s) =

[
k44 + kφt cos

(∫ t

t0

ωe (τ) dτ + αφ

)]
φc(t) + kφ3φ3

c(t) (5.62)

kφ,m(t; s) = [k44 + kφt cos (ωet+ αφ)]φm(t) + kφ3φ3
m(t) (5.63)

where φc and φm indicate the values of φ computed based on the 1-DOF model and
the Mathieu equation, respectively and the parameters are s = [k44, kφt, αφ, kφ3 ].

To determine the parameters s in (5.62) and (5.63), we use nonlinear least-
squares curve fitting:

sc = arg min
s

∑
t

|k4(q(t), t)− kφ,c(t; s)|2 (5.64)

sm = arg min
s

∑
t

|k4(q(t), t)− kφ,m(t; s)|2 (5.65)

where k4 is the fourth element of k in the full 6-DOF Model III.
The instantaneous encounter frequency in the simplified roll equation is calcu-

lated from the simulation of the full 6-DOF model by (5.46). However, even when
attempting to keep constant speed, the waves cause the ship’s speed to oscillate.
This is reflected in the 6-DOF model. Using the instantaneous values of ωe, the
Mathieu equation will not oscillate. Therefore, we use a low-pass filtered encounter
frequency when simulating the Mathieu Model V. The 1-DOF Model IV uses the
unfiltered values.

5.6.1 Constant forward speed

To compare the models when ωe is kept approximately constant, we simulate the
three models with constant speed (barring small variations due to wave-induced
forces in surge).

In the following, the signals of the 6-DOF model is represented without sub-
script, while the subscripts c and m denote the simplified roll equation and the
Mathieu equation, respectively. The simulation parameters and the model param-
eters are summarized in Table 5.2.

Figure 5.3 shows the simulation results for all three models. From Figure 5.3(a)
it is evident that the ship is experiencing parametric roll resonance in this scenario.
Figure 5.3(c) compares the spring torque divided by the roll angle of the the full
6-DOF model to the ones of the simplified roll equation and the Mathieu equation
computed by (5.62), i.e., k4/φ versus

kφ,c
φc

= k44 + kφt cos

(∫ t

t0

ωe (τ) dτ + αφ

)
+ kφ3φ2

c

kφ,m
φm

= k44 + kφt cos (ωet+ αφ) + kφ3φ2
m.

Once steady-state is reached, there is good agreement between the 6-DOFModel III
and the two 1-DOF Models IV and V.
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5.6. Model verification

Table 5.2: Simulation parameters, constant speed.

Quantity Symbol Value

Mean forward speed vb1 7.90 m/s
Mean encounter frequency ωe 0.645 rad/s
Wave amplitude ζ0 2.5 m
Wave length λ 281 m
Wave number kw −0.0224 –
Natural roll frequency ωφ 0.343 rad/s
Modal wave frequency ω0 0.4684 rad/s

k44 1.7646e9 kg m2/s2

Model parameters: kφt 7.3224e8 kg m2/s2

Simplified roll equation αφ 0.2295 rad
kφ3 2.2741e9 kg m2/s2

k44 1.7685e9 kg m2/s2

Model parameters: kφt 7.3369e8 kg m2/s2

Mathieu equation αφ 0.2118 rad
kφ3 2.2691e9 kg m2/s2

In this scenario, the 1-DOF Model IV and the Mathieu Model V behave almost
identically. This is as expected, since with ω̇e = 0 the two models are identical.
The slight variations in ωe in this scenario are not enough to cause any significant
discrepancy.

Up until about 220 s, there is significant discrepancy between the 6-DOF Model
III and the two 1-DOF Models IV and V. The two 1-DOF Models IV and V go
to maximum roll angle much faster than the 6-DOF Model III. This is because
the two 1-DOF Models IV and V are derived under the assumption that heave
and pitch are in steady-state. For the first 200 s or so, that is not the case. Once
steady-state heave and pitch are achieved, the 6-DOF Model III quickly catches
up to the two Models IV and V.

5.6.2 Maximum roll angle

To compare the models under a wide range of scenarios, we simulate the three
models for different (almost constant) forward speeds and different wave amplitudes
and computed the maximum roll angle as a function of the encounter frequency and
the wave amplitude. The simulation scenarios and parameters are identical for all
three models. The spring torque constants for the simplified 1-DOF roll Model IV
(sc of (5.64)) and the Mathieu Model V (sm of (5.65)) are re-estimated for each
forward speed and each wave amplitude.

It is well-known that parametric resonance occurs at wave encounter frequencies
approximately twice the natural roll frequency [27]. We therefore simulate the
models for a nominal surge speed of 0.5 to 12.8 m/s, resulting in a frequency ratio
ωe/ωφ of 1.4 to 2.2. The wave amplitude ζ0 ranges from 0 to 6 meters.

61



5. Equations of motion for a ship in waves
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Figure 5.3: Model comparison. φ, φc and φm are, respectively, roll angles from the
6-DOF Model III, 1-DOF Model IV and the Mathieu Model V.
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Figure 5.4: Maximum roll angle, model comparison.
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5. Equations of motion for a ship in waves

Figure 5.4 depicts the maximum roll angle for the models of different complexity
as a result of the simulations. The roll amplitude is limited to 90◦ in the plots for the
simplified roll equation (Figure 5.4(b)) and the Mathieu equation (Figure 5.4(c))
for the sake of presentability. We note that qualitatively the simplified roll model
(Figure 5.4(b)) is quite close to the 6-DOF model (Figure 5.4(a)), at least for low
wave amplitudes.

The Mathieu equation (Figure 5.4(c)) simulated with the filtered wave en-
counter frequency also behaves reasonably well and is almost indistinguishable
from the 1-DOF model. This is reasonable, as there are only very small variations
in the value of ωe.

5.6.3 Time-varying forward speed

Since the difference between the simplified roll model (5.59) and the Mathieu equa-
tion (5.61) only becomes apparent when the speed is non-constant, we simulate
the system with non-constant forward speed. The scenario tested is a simple speed
change, so that the desired surge speed vb1,d is given by

vb1,d(t) =


vb1,0 ∀ t ∈ [t0, t1]

vb1,0 + l(t− t1) ∀ t ∈ [t1, t2]
vb1,1 ∀ t ∈ [t2,∞)

where l is the desired acceleration and vb1,1 = vb1,0+l(t2−t1). This gives an encounter
frequency

ωe(t) ≈

 ωe,0 ∀ t ∈ [t0, t1]
ωe,0 − kwl(t− t1) ∀ t ∈ [t1, t2]

ωe,1 ∀ t ∈ [t2,∞)

=


ω0 − kwvb1,0 ∀ t ∈ [t0, t1]

ω0 − kw
[
vb1,0 + l(t− t1)

]
∀ t ∈ [t1, t2]

ω0 − kwvb1,1 ∀ t ∈ [t2,∞)
.

Due to small oscillations in surge, ωe does not exactly match the desired value, as
seen in Figure 5.5(b). The Mathieu Model V is once again fed the low-pass filtered
values of ωe, while the 1-DOF Model IV uses the unfiltered values.

The parameters used in the simulation are shown in Table 5.3.
Figure 5.5 depicts the results of the simulation. Again, the ship is in parametric

roll resonance, as shown in Figure 5.5(a). The non-constant forward speed results
in a non-constant encounter frequency and frequency ratio, see Figure 5.5(b). The
spring torque divided by the roll angle is compared in Figure 5.5(c) for the three
models. The simplified roll equation is able to estimate the roll motion well even
for non-constant speed, whereas it is apparent that the Mathieu equation is not. It
gradually becomes out of phase with the roll motion of the full 6-DOF model and
never gets back in phase even when the steady-state is reached.

We conclude that the simulations indicate that the 1-DOF simplified roll Model IV
is adequate to describe the ship’s dynamics in parametric roll resonance when the
wave encounter frequency is non-constant. The Mathieu Model V, on the other
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5.6. Model verification

hand, is not able to capture the dynamics to a sufficient extent unless the en-
counter frequency is very close to constant and only if the low-pass filtered value
of ωe is used.

Table 5.3: Simulation parameters, time-varying speed.

Quantity Symbol Value

Initial mean forward speed vb1,0 7.90 m/s
Desired acceleration l 0.005 m/s2

Final mean forward speed vb1,1 9.43 m/s
Initial mean encounter frequency ωe,0 0.645 rad/s
Final mean encounter frequency ωe,1 0.680 rad/s
Simulation start time t0 0 s
Acceleration start time t1 300 s
Acceleration stop time t2 607 s
Wave amplitude ζ0 2.5 m
Wave length λ 281 m
Wave number kw −0.0224 –
Natural roll frequency ωφ 0.343 rad/s
Modal wave frequency ω0 0.4684 rad/s

k44 1.7646e9 kg m2/s2

Model parameters: kφt 7.3224e8 kg m2/s2

Simplified roll equation αφ 0.2295 rad
kφ3 2.2741e9 kg m2/s2

k44 1.7676e9 kg m2/s2

Model parameters: kφt 7.3333e8 kg m2/s2

Mathieu equation αφ 0.2122 rad
kφ3 2.2702e9 kg m2/s2
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Figure 5.5: Model comparison. φ, φc and φm are, respectively, roll angles from the
6-DOF Model III, 1-DOF Model IV and the Mathieu Model V.
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Chapter 6

Reduced-order model of a ship in
waves

The 6-DOF Model III and its computer implementation are quite powerful, and
capable of describing a lot of complex ship behavior. However, it does have the dis-
advantage that the generalized pressure-induced force kp is not analytically known;
Matlab can give its value for any state at any time, but it cannot give the algebraic
expression.

If we assume that the ship is not maneuvering or changing speed, the 6-DOF
Model III can be dramatically simplified. This gives a third-order model, consisting
of the heave, roll and pitch motions. To get an analytical model, kp is approximated
by a third-order Tayler expansion.

The reduced-order model has been experimentally verified, as detailed in this
chapter.

The material in this chapter is largely based on Holden et al. [40], Rodriguez
et al. [77].

6.1 Reduced-order equations of motion

In order to simplify the 6-DOF Model III, we need to rewrite the dynamics slightly.
Rather than use η to describe the orientation of the ship, we’ll use the roll–pitch–

yaw Euler angles described in Section 3.2.2. This is needed in order to reduce the
order of the model.

We define

qe , [xnT,ΘT]T ∈ R6 (6.1)

and rewrite (5.30) as

q̇e = Fe(Θ)ν (6.2)

where

Fe(Θ) ,

[
R(Θ) 03×3

03×3 GΘ(Θ)

]
(6.3)
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6. Reduced-order model of a ship in waves

and R(Θ) and GΘ(Θ) are as in Properties 3.21 and 3.22, respectively. For the rest
of this chapter, when writing R, it is to be understood that this is R(Θ).

Setting

x ≡ x(t0)

y ≡ y(t0)

ψ ≡ ψ(t0)

vb1 ≡ 0

vb2 ≡ 0

ωb3 ≡ 0,

we use qr3 = [zn, φ, θ]T and νr3 = [vb3, ω
b
1, ω

b
2]T as in (5.50) and (5.51), with q̇r3 ≈ νr3

as in (5.52). We can therefore use q̇r3 as generalized velocities.
The forces other than k for the reduced-order system can easily be found by

setting the other degrees of freedom to zero. Finding the spring forces k will,
however, be done by a third-order Taylor series expansion of the terms and setting
all other degrees of freedom to zero.

We will assume that the ship is sailing in head (or stern) seas, with the waves
being planar and sinusoidal.

Setting surge, sway and yaw to zero, we can rewrite (5.31) and define a reduced-
order model.

Model VI (3-DOF parametric roll model).

Mr3 q̈r3 +Dr3(q̇r3)q̇r3 + kr3(qr3 , t) = τe,r3(t) (6.4)

where τe,r3 are directly wave-induced generalized forces and the restoring force vec-
tor kr3 is the third, fourth and fifth elements of k of the 6-DOF Model III, with
x, y and ψ set to zero. The reduced-order Coriolis/centripetal term is approxi-
mately zero. Mr3 and Dr3 are the relevant sub-matrices of M and D of the 6-DOF
Model III.

Due to the port–starboard symmetry of the ship, we know that certain elements
of the inertia and damping matrices are zero Fossen [24]. We also know that heave
and pitch are likely to be fairly small, so we take the damping to be linear in these
two degrees of freedom. However, in parametric resonance, roll might be large, so
we use both linear and quadratic damping in roll. Therefore

Mr3 =

 m+mA,33 0 mA,35

0 J11 +mA,44 0
mA,53 0 J22 +mA,55


Dr3(q̇r3) =

 d33 0 d35

0 d44 + d44,n|φ̇| 0
d53 0 d55


where mA,ij is the i, jth element of the added mass matrix MA, Jij the i, jth
element of J and dij is the i, jth element of D(0) of the 6-DOF Model III, with
the added assumption that rbg = [0, 0, zbg]

T.
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6.2 Generalized restoring forces

As mentioned, we desire an analytical expression for the restoring term kr3 . This
generalized force comes (see Chapter 5) from gravity and buoyancy. The gravity
force on the ship is

fng = mg

 0
0
1

 ∈ R3 (6.5)

where m is the mass of the ship and g is the acceleration of gravity. The buoyancy
force on the ship is

fng (q, ζ) = −gρV∇(q, ζ)

 0
0
1

 ∈ R3 (6.6)

where ρ is the density of the ocean and V∇(q, ζ) is the instantaneous displacement
of the vessel [24].

If rbb(q, ζ) = [xbb(q, ζ), ybb(q, ζ), zbb(q, ζ)]T is the instantaneous center of buoyancy,
then the generalized restoring forces on the ship, in the body frame, is given by
[24]

k(q, t) = k̄(q, ζ) =

[
−RT

(
fng + fnb

)(
RT(Θ)fng

)
× rbg +

(
RT(Θ)fnb

)
× rbb

]
(6.7)

where it has been used that ζ is a function of q and t.
In a slight abuse of notation, we take V∇(qr3 , ζ) and

rbb(qr3 , ζ) = [xbb(qr3 , ζ), ybb(qr3 , ζ), zbb(qr3 , ζ)]T

to mean the instantaneous displacement and center of buoyancy as a function of
qr3 , with the other degrees of freedom set to zero.

We then get

k̄r3(qr3 , ζ) =

 kz(qr3 , ζ)
kφ(qr3 , ζ)
kθ(qr3 , ζ)

 (6.8)

with

kz(qr3 , ζ) = g[ρV∇(qr3 , ζ)−m] cos(φ) cos(θ)

kφ(qr3 , ζ) = g [mzg − ρV∇(qr3 , ζ)zb(qr3 , ζ)] sin(φ) cos(θ)

+ gρV∇(qr3 , ζ)yb(qr3 , ζ) cos(φ) cos(θ)

kθ(qr3 , ζ) = g [mzg − ρV∇(qr3 , ζ)zb(qr3 , ζ)] sin(θ)

− gρV∇(qr3 , ζ)xb(qr3 , ζ) cos(φ) cos(θ).

Unfortunately, it is effectively impossible to compute k̄r3 directly, because the
exact analytical nature of V∇ and rbb is quite complicated. To get analytical values,
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6. Reduced-order model of a ship in waves

the function k̄r3 is Taylor-expanded around zero to the third order, and the coeffi-
cients numerically computed from hull data, loading conditions and knowledge of
the sea state.

We then approximate k̄r3 as

k̄r3(qr3 , ζ) = kzz + kφφ+ kθθ + kζζ

+ kzzz
2 + kzφzφ+ kzθzθ + kzζzζ + kφφφ

2

+ kφθφθ + kφζφζ + kθθθ
2 + kθζθζ + kζζζ

2

+ kzzzz
3 + kφφφφ

3 + kθθθθ
3 + kzzφz

2φ+ kzzθz
2θ

+ kzφφzφ
2 + kφφθφ

2θ + kzθθzθ
2 + kφθθφθ

2 + kzφθzφθ

+ kzzζz
2ζ + kφφζφ

2ζ + kθθζθ
2ζ + kzφζzφζ + kzθzθζ

+ kzζζzζ
2 + kφφζ

2 + kθζζθζ
2 + kφθζφθζ + kζζζζ

3

(6.9)

where

kα ,
∂k̄r3
∂α

∣∣∣∣
qr3=0,ζ=0

∈ R3

kαβ ,
∂2k̄r3
∂α∂β

∣∣∣∣
qr3=0,ζ=0

∈ R3

kα,β,γ ,
∂3k̄r3
∂α∂β∂γ

∣∣∣∣
qr3=0,ζ=0

∈ R3

with α, β, γ ∈ {z, φ, θ, ζ}.
It is worth noting that, due to the symmetry of the vessel and the nature of

k̄r3 , not all the coefficients will be non-zero. Furthermore, the parameters that
are related to hull–wave interactions (i.e, have subscript with at least one ζ) are
functions of the wave frequency ω0. The other parameters are constant.

Since three of the terms in (6.9) are purely a function of ζ, it makes sense to
move them out of the spring term and incorporate them into the external forces.

6.3 External forces

The interaction between ship motion and wave passage is modeled as a variation
of the geometry of the submerged hull defined by the instantaneous wave position.
The external forcing vector τe,r3 includes only contributions independent of ship
motions. For simplicity, we will only include first-order effects.

These forces are characterized by two contributions [20]: the first is due to
Froude-Krylov forces, which are caused by incident waves considering the hull re-
strained from moving and under the assumption that the presence of the hull does
not influence the wave field. The second contribution gives the diffraction forces,
which provide the corrections necessary for the variation of the flow field produced
by the hull.

The wave excitation forces are defined by the wave-force response amplitude
operator (force RAO) for each degree of freedom. We can define the force RAOs

70



6.4. Generalized restoring forces, revisited

as complex-valued functions Fz(ωe), Fφ(ωe), Fθ(ωe) so that

τe,r3(t) = ζ0

 |Fz(ωe)| cos(ωet+ αz(ωe))
|Fφ(ωe)| cos(ωet+ αφ(ωe))
|Fθ(ωe)| cos(ωet+ αθ(ωe))

 (6.10)

where αa(ωe) = αζ + argFa(ωe), a ∈ {z, φ, θ} are the external forces for a simple
sinusoidal wave ζ [75]. The force RAOs are technically also functions of the heading
angle, but we are here assuming that the heading is constant, so this dependency
is dropped. Effectively, the force RAO is a linear filter through which the wave
function is sent to generate a force.

If the ship is sailing in head or stern seas, as assumed, then Fφ(ωe) ≡ 0.

6.4 Generalized restoring forces, revisited

We use the relationships

cos(ωet+ αζ) = cos(αζ) cos(ωet)− sin(αζ) sin(ωet)

cos2(ωet+ αζ) =
1

2
[1 + cos(2ωet+ 2αζ)]

=
1

2
[1 + cos(2αζ) cos(2ωet)− sin(2αζ) sin(2ωet)]

so that

kαζαζ = ζ0 [kαζc cos(ωet) + kαζs sin(ωet)]α

kαβζαβζ = ζ0 [kαβζc cos(ωet) + kαβζs sin(ωet)]αβ

kαζζαζ
2 = ζ2

0 [kαζζ0 + kαζζc cos(2ωet) + kαζζs sin(2ωet)]α

∀ α, β ∈ {z, φ, θ}.
We let kζζ = kζζζ

2 = kζζζζ
3 = 0 as forces induced directly by waves are already

included in τe,r3 .
We recall (5.24):

kp(q, t) ≈
∑
i

 ∫
Sw,i

Ψb,i
∂rbi
∂u ×

∂rbi
∂v du dv∫

Sw,i
Ψb,ir

b
i ×

(
∂rbi
∂u ×

∂rbi
∂v

)
du dv

 .
By integrating over the mean wetted surface and using the planar sinusoidal wave
pressure field (5.34), we can numerically compute estimates of the parameters of
(6.9).

Defining

kα ,

 Zα
Kα

Mα


kαβ ,

 Zαβ
Kαβ

Mαβ
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kαβγ ,

 Zαβγ
Kαβγ

Mαβγ


kαζa ,

 Zαζa
Kαζa

Mαζa


kαβζa ,

 Zαβζa
Kαβζa

Mαβζa


kαζζa ,

 Zαζζa
Kαζζa

Mαζζa


∀ α, β ∈ {z, φ, θ}, a ∈ {0, c, s} and removing the parameters that equate to zero,
we can rewrite (6.9) as

kr3(qr3 , t) ≈

 Z(qr3 , t)
K(qr3 , t)
M(qr3 , t)

 (6.11)

Z(qr3 , t) = [Zz + ζ0Zzζc cos(ωet) + ζ0Zzζs sin(ωet)] z

+ [Zθ + ζ0Zθζc cos(ωet) + ζ0Zθζs sin(ωet)] θ

+ [Zφφ + ζ0Zφφζc cos(ωet) + ζ0Zφφζs sin(ωet)]φ
2

+ Zzzz
2 + Zzθzθ + Zθθθ

2 + Zθθθθ
3 + Zφφzφ

2z + Zφφθφ
2θ

K(qr3 , t) = [Kφ + ζ0Kφζc cos(ωet) + ζ0Kφζs sin(ωet)]φ

+Kzφzφ+Kφθφθ +Kφφφφ
3 +Kzzφz

2φ+Kφθθφθ
2

M(qr3 , t) = [Mz + ζ0Mzζc cos(ωet) + ζ0Mzζs sin(ωet)] z

+ [Mθ + ζ0Mθζc cos(ωet) + ζ0Mθζs sin(ωet)] θ

+ [Mφφ + ζ0Mφφζc cos(ωet) + ζ0Mφφζs sin(ωet)]φ
2

+Mzzz
2 +Mzθzθ +Mθθθ

2 +Mθθθθ
3 +Mφφzφ

2z +Mφφθφ
2θ.

We note that the natural roll frequency ωφ is given by

ωφ =

√
Kφ

J11 +mA,44
. (6.12)

The parameters in (6.11) that come from wave interaction (i.e., those with at
least one ζ in the subscript) are functions of the wave frequency ω0. The others,
which can be derived from hydrostatics, are constant.

Parameters were computed for the experimental conditions. The parameters
can be found in Appendix C.

It is worth noting that the model presented in this chapter has some strengths
and some weaknesses relative to the 6-DOF Model III. The 3-DOF Model VI is ana-
lytical and reasonably manageable. It can be used for control design or analysis, and

72



6.5. Experimental verification

is suitable for simulation. Unfortunately, it is only valid for a set of precomputed
conditions, and conditions are not allowed to change during simulation because
this invalidates the parameters and the model derivation.

The 6-DOF Model III of Chapter 5 on the other hand, is capable of handling
almost any sea state, and conditions are allowed to change. Unfortunately, an
analytical expression and parameters of such are not known. This model is highly
suitable for simulation, but not for control design or analysis.

6.5 Experimental verification

Experiments were conducted with a 1:45 scale model of a container ship in the
towing tank at SINTEF Marintek’s facilities in Trondheim. In all experiments the
ship was subjected to regular, sinusoidal waves in head seas condition.1 For each
experiment, different (but constant) wave heights, wave frequencies and encounter
frequencies were used. A total of 22 different experiments were conducted. Dr Ingo
Drummen performed the actual experiments. Details of the ship and other aspects
of the experiments can be found in his PhD thesis (Drummen [17]).

The ship used in the experiments is the same that was used as the basis for the
the computer implementation of Model III (Section 5.3). The main characteristics
of the vessel (full scale) can be found in Table 5.1. A picture of the model ship can
be seen in Figure 6.1.

Figure 6.1: The ship used in the experiments. Photo courtesy of Dr Ingo Drummen.

1Some experiments were also conducted in irregular seas, but these are not listed. The model
derived here is only valid or regular seas.
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6. Reduced-order model of a ship in waves

The experimental conditions (full scale equivalents) are summarized in Ta-
ble 6.1, sorted by experiment number. The ship’s forward speed vb1, the wave
frequency ω0, the wave amplitude ζ0 and the computed encounter frequency ωe
are listed.

Table 6.1: Experimental conditions (full scale equivalents).

Exp. vb1 [m/s] ω0 [rad/s] ζ0 [m] ωe [rad/s]

1172 5.4806 0.4640 2.5 0.5844
1173 5.4806 0.4425 2.5 0.5519
1174 5.4806 0.4764 2.5 0.6031
1175 5.4806 0.4530 2.5 0.5677
1176 5.4806 0.4893 2.5 0.6231
1177 5.4806 0.4640 1.5 0.5844
1178 5.4806 0.4699 1.5 0.5933
1179 5.4806 0.4583 1.5 0.5756
1180 5.4806 0.4640 3.5 0.5844
1181 5.4806 0.4425 3.5 0.5519
1182 5.4806 0.4893 3.5 0.6231
1183 5.4806 0.4530 3.5 0.5677
1184 5.7556 0.4640 2.5 0.5904
1185 6.0240 0.4640 2.5 0.5963
1186 6.2990 0.4640 2.5 0.6023
1187 6.5740 0.4640 2.5 0.6084
1188 7.1241 0.4640 2.5 0.6204
1189 7.6675 0.4640 2.5 0.6324
1190 7.3991 0.4640 2.5 0.6265
1191 5.2056 0.4640 2.5 0.5783
1192 4.6555 0.4640 2.5 0.5662
1193 4.9305 0.4640 2.5 0.5723

The 3-DOF Model VI was simulated with the initial conditions of Table 6.2.
During simulation, there was no feedback from the experimental data. Simulations
started at t = 0 s and lasted to t = 1000 s.

A comparison of the simulation results with the experimental results can be
seen in Table 6.3. The data in this table are sorted by wave amplitude ζ0, then
frequency ratio ωe/ωφ.

The data in the percentage error column, rounded to integer value, is given by

100
max |φsim| −max |φexp|

max |φexp|
,

where max |φsim| is the maximum simulated roll angle and max |φexp| is the maxi-
mum experimentally measured roll angle. Note that most of the experiments were
stopped before the final steady-state roll angle could be achieved due to fear of
vessel capsizing. It is worth pointing out that the percentage errors in the cases
with no parametric resonance are meaningless, as maximum simulated roll angle is
merely the starting value, which was chosen arbitrarily.

The “Result” column indicates whether or not the model correctly predicted
parametric roll. Entries marked “C” indicate a correct result (the simulations and
experiments both showed parametric resonance, or both showed no parametric
resonance), “FP” false positives (simulations show parametric resonance, but the
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6.6. Analysis of the model based on the verification results

Table 6.2: Simulation initial conditions.

Exp. z(0) [m] φ(0) [◦] θ(0) [◦] ż(0) [m/s] φ̇(0) [◦/s] θ̇(0) [◦/s]

1172 0.025 0.2000 0 0 0 0
1173 0.050 2.0000 0 0 0 0
1174 0.050 0.0020 0 0 0 0
1175 0.050 1.0000 0 0 0 0
1176 0.050 0.0010 0 0 0 0
1177 0.050 2.4000 0 0 0 0
1178 0.050 0.5000 0 0 0 0
1179 0.050 2.0000 0 0 0 0
1180 0.050 0.0050 0 0 0 0
1181 0.050 2.0000 0 0 0 0
1182 0.050 0.0010 0 0 0 0
1183 0.050 0.0010 0 0 0 0
1184 0.050 0.1000 0 0 0 0
1185 0.050 0.0300 0 0 0 0
1186 0.050 0.0050 0 0 0 0
1187 0.050 0.0300 0 0 0 0
1188 0.050 0.0300 0 0 0 0
1189 0.050 0.1400 0 0 0 0
1190 0.050 0.0100 0 0 0 0
1191 0.050 0.2000 0 0 0 0
1192 0.050 2.0000 0 0 0 0
1193 0.050 0.1000 0 0 0 0

experiments don’t) and “FN” (of which there are none) indicates false negatives
(simulations show no parametric resonance, but the experiments do).

Figure 6.2 shows the maximum roll angle for a select number of the experiments
(those with wave amplitude ζ0 = 2.5 m). Figures 6.3–6.24 show heave, roll and pitch
as functions of time, both experimental and simulated.

6.6 Analysis of the model based on the verification results

In Figure 6.2, we can see the maximum roll angle achieved in the simulations and
experiments for certain conditions, plotted against the ratio of encounter frequency
to natural roll frequency (ωe/ωφ). The data in the figure is all for ζ0 = 2.5 m.

What is interesting is that the graph for the maximum simulated roll angle is
quite similar to that of Figure 11.2. That figure is based on the model

φ′′ + 2ιγφ′ + [κ+ 2ι cos(2t̃)]φ+ αιφ3 = 0

where prime indicates derivative with respect to the time t̃ and the parameters
are constant. By comparing to the results of Chapter 11, it seems that the cubic
term in the equations is causing the maximum roll angle to slant down for lower
ωe/ωφ. To get a curve closer to the experimental one, it might be necessary to use
a higher-order Taylor polynomial, or perhaps a trigonometric function for the roll
nonlinearity. This was not further investigated during the thesis work due to time
constraints.

The third-order Model VI developed for the 281 m long container ship shows
high capabilities in reproducing the vertical and transversal dynamics of the vessel
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6. Reduced-order model of a ship in waves

Table 6.3: Simulation results.

Exp. ζ0 [m] ω0 [rad/s] ωe/ωφ maxφsim [◦] maxφexp [◦] Err [%] Result

1179 1.5 0.4583 1.9337 2.0000 0.2791 617 C
1177 1.5 0.4640 1.9633 8.1666 16.9032 -52 C
1178 1.5 0.4699 1.9932 12.0995 22.2113 -46 C

1173 2.5 0.4425 1.8541 2.0000 0.6753 196 C
1192 2.5 0.4640 1.9021 9.7799 0.8459 1056 FP
1175 2.5 0.4530 1.9072 6.3508 0.6612 861 FP
1193 2.5 0.4640 1.9226 11.8080 1.8206 549 FP
1191 2.5 0.4640 1.9428 13.5465 21.5589 -37 C
1172 2.5 0.4640 1.9633 15.1622 23.6341 -36 C
1184 2.5 0.4640 1.9834 16.5792 22.5894 -27 C
1185 2.5 0.4640 2.0032 17.8812 20.6209 -13 C
1186 2.5 0.4640 2.0234 19.2712 21.3706 -10 C
1174 2.5 0.4764 2.0261 21.4924 26.2491 -18 C
1187 2.5 0.4640 2.0439 20.4611 20.2754 1 C
1188 2.5 0.4640 2.0842 22.4097 22.5976 -1 C
1176 2.5 0.4893 2.0933 26.7459 1.1659 2194 FP
1190 2.5 0.4640 2.1047 23.4472 1.3757 1604 FP
1189 2.5 0.4640 2.1245 24.2884 1.3689 1674 FP

1181 3.5 0.4425 1.8541 2.0000 1.9260 4 C
1183 3.5 0.4530 1.9072 11.0942 8.8094 26 C
1180 3.5 0.4640 1.9633 18.8898 23.8131 -21 C
1182 3.5 0.4893 2.0933 30.2110 24.6150 23 C

under parametric resonance conditions, as shown by the comparison of the exper-
imental results (Figures 6.2–6.24).

Considering the 13 experiments where parametric resonance did occur, the im-
plemented Model VI performs well: starting from similar initial conditions and be-
ing subjected to the same excitation forces used during the experiments, Model VI
develops parametric resonance within the same time frame as the 1:45 scale model
ship in most of the cases.

The most obvious differences between the simulation and the experimental re-
sults consists of the amplitude of the oscillations. In all the experiments where
parametric resonance occurred, the peak value of the roll oscillations is higher
than the saturation level at which Model VI settles. Although Model VI has a
general tendency to underestimate the peak value of the roll motion, the gap is
relatively small in most cases.

Considering the nine experiments where parametric roll did not occur, Model VI
produced six false positives. In order to understand this disagreement between
model behavior and experimental results, the tuning factor ωe/ωφ must be taken
into consideration. All the five false-positive cases occur with a tuning factor close
to the limits of the first instability region of the Mathieu equation (ωe ≈ 2ωφ), as
shown in Figure 6.2. Looking at the peak value of the roll oscillations (Figure 6.2
and Table 6.3), it can be seen that the largest differences are in the region of high
tunings (ωe/ωφ ≥ 2.1) for which Model VI predicts large roll motion whereas the
experiments showed no amplification. It seems obvious that when the experimental
conditions are close to the limits of stability Model VI does not match exactly the
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Figure 6.2: Maximum roll angle for ζ0 = 2.5 m.

frequency at which the abrupt variation in roll motion take place.
The errors indicated in experiments 1173, 1179 and 1181 have no real physical

meaning, since the initial condition of 2◦ was chosen arbitrarily and high in order
to indicate a decaying motion.

For all 22 experiments, heave and pitch dynamics have shown relatively good
agreement with the experiments. In all the test runs the two modes oscillates at
the excitation frequency, matching the experimental records. The amplitude of the
oscillations is close to that of the experimental values.

77



6. Reduced-order model of a ship in waves

z
[m

]

time [s]

sim
exp

0 200 400 600 800 1000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Heave.

φ
[◦
]

time [s]

sim
exp

0 200 400 600 800 1000
-30

-20

-10

0

10

20

30

(b) Roll.

θ
[◦
]

time [s]

sim
exp

0 200 400 600 800 1000
-3

-2

-1

0

1

2

3

(c) Pitch.

Figure 6.3: Exp. 1172, simulation vs experiments (full scale).
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Figure 6.4: Exp. 1173, simulation vs experiments (full scale).
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Figure 6.5: Exp. 1174, simulation vs experiments (full scale).
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Figure 6.6: Exp. 1175, simulation vs experiments (full scale).
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Figure 6.7: Exp. 1176, simulation vs experiments (full scale).
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Figure 6.8: Exp. 1177, simulation vs experiments (full scale).
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Figure 6.9: Exp. 1178, simulation vs experiments (full scale).
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Figure 6.10: Exp. 1179, simulation vs experiments (full scale).
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Figure 6.11: Exp. 1180, simulation vs experiments (full scale).
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Figure 6.12: Exp. 1181, simulation vs experiments (full scale).
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6. Reduced-order model of a ship in waves
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Figure 6.13: Exp. 1182, simulation vs experiments (full scale).
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6.6. Analysis of the model based on the verification results
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Figure 6.14: Exp. 1183, simulation vs experiments (full scale).
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6. Reduced-order model of a ship in waves
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Figure 6.15: Exp. 1184, simulation vs experiments (full scale).
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6.6. Analysis of the model based on the verification results
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Figure 6.16: Exp. 1185, simulation vs experiments (full scale).
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6. Reduced-order model of a ship in waves
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Figure 6.17: Exp. 1186, simulation vs experiments (full scale).
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6.6. Analysis of the model based on the verification results
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Figure 6.18: Exp. 1187, simulation vs experiments (full scale).
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6. Reduced-order model of a ship in waves
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Figure 6.19: Exp. 1188, simulation vs experiments (full scale).
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6.6. Analysis of the model based on the verification results
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Figure 6.20: Exp. 1189, simulation vs experiments (full scale).
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6. Reduced-order model of a ship in waves
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Figure 6.21: Exp. 1190, simulation vs experiments (full scale).
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6.6. Analysis of the model based on the verification results
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Figure 6.22: Exp. 1191, simulation vs experiments (full scale).
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6. Reduced-order model of a ship in waves
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Figure 6.23: Exp. 1192, simulation vs experiments (full scale).
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6.6. Analysis of the model based on the verification results
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Figure 6.24: Exp. 1193, simulation vs experiments (full scale).
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Chapter 7

Equations of motion for a ship with
a u-tank

As discussed in the introduction, u-tanks can be used to control parametric roll,
but existing models have several drawbacks. This necessitated the derivation of a
new model.

From Chapter 4 we have the dynamics of a rigid body in R3 and from Chapters 5
and 6 we have the equations of motion for a ship in a seaway. It is a not uncommon
assumption that a ship is a rigid body [24], as was implicitly assumed in Chapter 5.1
However, a ship equipped with a u-tank is not rigid. As the fluid in the tank moves,
the distribution of mass in the ship changes, rendering the whole system non-rigid.

In general, one needs the full Navier-Stokes equations to describe the motion
of both a ship in water and the water in the tank [54, 91]. However, the effects of
the ocean on the ship can be greatly simplified as shown in Chapter 5, as can the
motion of the fluid in that tank as will be shown in this chapter.

Here, a 7-DOF model for a ship and a u-tank is presented. The model is ex-
perimentally verified, as detailed in Chapter 9. In Chapter 8, it is compared to an
existing model.

The model derivation presented in this chapter are unpublished results (the
model is a generalization of the models of Holden and Fossen [39], Holden et al.
[44]).

7.1 The tank fluid

A u-tank is simply two reservoirs of water or another liquid, one on the port side
and the other at starboard, with a duct in between to allow the passage of liquid.
To be able to model this intrinsically complicated behavior, some assumptions have
to be made (these come in addition to the assumptions listed in previous chapters):

Assumption 11. The surface of the fluid in the tank is perpendicular to the
centerline of the tank.

1A ship actually has more in common with a flexible beam (see, e.g., Drummen [17]), but this
distinction is often not important.
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7. Equations of motion for a ship with a u-tank

Assumption 12. The fluid in the tank is incompressible.

Assumption 13. The flow of fluid in the tank is one-dimensional.

Assumption 14. Tank fluid memory effects are negligible.

Assumption 15. The u-tank is placed at the transversal geometrical center of
the ship.

Assumption 16. The tank is symmetrical around the ship centerline.

Assumption 17. There are no air bubbles in the tank.

Assumption 18. The centerline of the tank is smooth.

Assumption 19. The centerline of the tank runs port–starboard.

Assumption 11 is clearly false for a ship in motion; the actual fluid surface
in the tank is likely to behave in a complicated and chaotic fashion. Modeling
this accurately without resorting to computational fluid dynamics is unfeasible.
Assuming the fluid surface to be horizontal would not be much more accurate than
Assumption 11.

Assumptions 11–19 imply that the tank fluid is parametrizable as a tube of
varying cross-sectional area. Defining the centerline of the tube of fluid as ~rt(σ)
with parameter σ, rbt (σ) can be written as

rbt (σ) =

 xbt
ybt (σ)
zbt (σ)

 . (7.1)

The parameter σ is defined to have zero point at the ship centerline and be
positive to port. The fluid surfaces are located at σ = −ςs ≤ 0 (starboard side)
and σ = ςp ≥ 0 (port side). Thus, σ ∈ [−ςs, ςp] ⊂ R defines the fluid-filled part of
the tank. When the water level is equal in both starboard and port side reservoirs,
ςp = ςs = ς0, and σ ∈ [−ς0, ς0] ⊂ R defines the fluid-filled part of the tank.

Property 7.1 (Properties of rbt ). rbt satisfies the following properties:
• xbt is a constant, per Assumption 19.

• The functions ybt and zbt are smooth (specifically, C1 or greater), per Assump-
tion 18.

• ybt is odd and lies in the second and fourth quadrant (i.e., ybt (−σ) = −ybt (σ),
ybt (0) = 0 and ybt (σ) < 0 ∀ σ > 0), per Assumptions 15 and 16.

• zbt is even (i.e., zbt (−σ) = zbt (σ)), per Assumption 16.

• max zbt = zbt (0), per Assumptions 15 and 16.

To fully describe the tank fluid, the cross-sectional area A(σ) is also needed.

Property 7.2 (Properties of A). By Assumption 17, the fluid fills the entire area
A(σ)∀σ ∈ [−ςs, ςp]. Assumption 16 implies that A(−σ) = A(σ) > 0.

102



7.1. The tank fluid

σ = 0

−ςs

σ
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StarboardPort
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ς0
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−ςp

ςs

xb

Figure 7.1: U-tank parameters.

See Figure 7.1 for an illustration of the u-tank and its parameters.
The chief physically measurable states of the system are the tank fluid levels

ςp, ςs and the volumetric flow of the tank fluid Q (defined positive to port). ςp and
ςs are related to the flow by

ς̇p =
Q

A(ςp)

ς̇s = − Q

A(ςs)
.

We define the generalized tank coordinate qt as

qt ,
1

A0

∫ ςp

ς0

A(σ) dσ (7.2)

where A0 is an arbitrary constant with unit m2.
We note that the total fluid volume in the tank, Vt, is constant. Thus,

Vt ,
∫ ς0

−ς0
A(σ) dσ =

∫ ςp

−ςs
A(σ) dσ

=

∫ −ς0
−ςs

A(σ) dσ +

∫ ς0

−ς0
A(σ) dσ +

∫ ςp

ς0

A(σ) dσ

=

∫ −ς0
−ςs

A(σ) dσ + Vt +A0qt,

This gives

qt = − 1

A0

∫ −ς0
−ςs

A(σ) dσ. (7.3)

The time derivative of qt is given by

q̇t =
1

A0
A(ςp)

dςp
dt

=
Q

A0
. (7.4)

103



7. Equations of motion for a ship with a u-tank

By differentiating on both sides of (7.2) and (7.3) with respect to qt, we get

dςp
dqt

=
A0

A(ςp)
(7.5)

dςs
dqt

= − A0

A(ςs)
. (7.6)

The speed of the tank fluid relative to the tank walls (i.e., the ship), at any
point σ in the tank, is given by

‖~vt,r(σ, q̇t)‖ =
Q

A(σ)
=
A0q̇t
A(σ)

.

From calculus, we know that velocity is tangential to the path, giving

~vt,r(σ, q̇t) =
A0q̇t
A(σ)

d~̄rt
dσ

(σ), (7.7)

where

d~̄rt
dσ

,
d~rt
dσ∥∥d~rt
dσ

∥∥ . (7.8)

Noting that dxbt/dσ = 0, we define

dȳbt
dσ

, [0, 1, 0]
dr̄bt
dσ

=
dybt
dσ√(

dybt
dσ

)2

+
(

dzbt
dσ

)2
(7.9)

dz̄bt
dσ

, [0, 0, 1]
dr̄bt
dσ

=
dzbt
dσ√(

dybt
dσ

)2

+
(

dzbt
dσ

)2
(7.10)

so that (
dȳbt
dσ

)2

+

(
dz̄bt
dσ

)2

≡ 1.

Of course, the ship (and the tank with it) is translating with velocity ~v and
rotating with angular velocity ~ω relative to the inertial frame. Thus, the velocity
of the tank fluid relative to the inertial frame, at any point σ in the tank, is

~vt(σ, q̇t, ~v, ~ω) = ~v + ~ω × ~rt(σ) +
A0q̇t
A(σ)

d~̄rt
dσ

(σ). (7.11)

7.2 Energy of the ship–tank system

To use analytical mechanics, we need to know the potential and kinetic energies of
the system. Here, we find the energy of the tank–ship system. The effects of the
ocean are added later as in Chapters 4 and 5.
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7.2. Energy of the ship–tank system

In the derivation of the model we will largely be following the path of Chapters 4
and 5, but now with the added complexity of having a non-rigid body and one more
degree of freedom. Since the ship (without tank) has six degrees of freedom and
the tank adds one extra degree of freedom, we now have seven degrees of freedom.

As generalized position, we choose

q̃ , [xnT, ηT, qt] = [qT, qt]
T ∈ R8. (7.12)

We note that again the dimension of the generalized position vector is greater than
the number of degrees of freedom, so we will have to use Hamiltonian rather than
Lagrangian mechanics [36, 55].

The time derivative of q̃ can be found from (4.7). We define P̃ as

P̃(η) ,

 RT(η) 03×4 03×1

04×3
1
2G(η) 04×1

01×3 01×4 1

 ∈ R8×7 (7.13)

and the generalized velocity vector ν̃ as

ν̃ ,
[
vbT, ωbT, q̇t

]T
=
[
νT, q̇t

]T ∈ R7 (7.14)

so that

˙̃q = P̃T(η)ν̃. (7.15)

7.2.1 Potential energy

Any infinitesimal volume block dV of the tank or the ship at a position ~r has
density ρ̄(~r) given by

ρ̄(~r) =

{
ρt in the tank
ρs(~r) in the ship (7.16)

and is at a height h(~r) above some arbitrary zero point. We note that h is the zero
level minus the inertial z-component of ~r, i.e.,

h(~r) = h0 − eT
z r

n = h0 − eT
z Rr

b (7.17)

where eT
z , [0, 0, 1]. The negative signage is because the z-axis has the same direc-

tion as the gravity field.
The potential energy dŨ of dV is given by

dŨ = gρ̄(~r)h(~r)dV, (7.18)

which, in the body frame, can be written

dŨ = gρ̄(rb)h(rb)dV = gρ̄(rb)
(
h0 − eT

z Rr
b
)

dV. (7.19)
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7. Equations of motion for a ship with a u-tank

The total potential energy Ũ of the ship and the tank fluid is then given by

Ũ =

∫
ship and tank

dŨ = gm0h0 − geT
z R

[∫
ship

ρs(r
b)rb dV + ρt

∫
tank

rbt dV

]
= gm0h0 − geT

z R

[
mrbg + ρt

∫ ςp(qt)

−ςs(qt)
A(σ)rbt (σ) dσ

]
(7.20)

where

m0 ,
∫

ship and tank
ρ̄(rb) dV

is the combined mass of the ship and the tank fluid, since

rbg ,
1

m

∫
ship

ρs(r
b)rb dV (7.21)

is the definition of the (ship’s) center of gravity.
A priori we know that xn = 0, R = I3, qt = 0 is an equilibrium point for the

system. We therefore take Ũ to be zero at this point. We note that qt = 0⇒ ςp =

ςs = ς0. The value of Ũ at the equilibrium point is therefore

Ũ0 = gm0h0 − gm[0, 0, 1]rbg − gρteT
z

∫ ς0

−ς0
rbt (σ)A(σ) dσ

= gm0h0 − gmzg − gρt
∫ ς0

−ς0
zbt (σ)A(σ) dσ

, 0.

Thus,

m0h0 , gmzg + gρt

∫ ς0

−ς0
zbt (σ)A(σ) dσ. (7.22)

This gives potential energy

Ũ(q̃) = gmzg + gρt

∫ ς0

−ς0
zbt (σ)A(σ) dσ

− geT
z R

[
mrbg + ρt

∫ ςp(qt)

−ςs(qt)
A(σ)rbt (σ) dσ

]
.

(7.23)

7.2.2 Kinetic energy

An infinitesimal volume block dV of the tank or ship at a position ~r in the body
frame has density ρ̄(~r) given by (7.16) and velocity ~vv(~r) given by

~vv(~r) =

{
~v + ~ω × ~r + A0q̇t

A(σ)
d~̄rt
dσ (σ) in the tank

~v + ~ω × ~r in the ship
(7.24)
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7.2. Energy of the ship–tank system

where ~v is the translational and ~ω the angular velocity of the ship. The velocity of
the tank fluid comes from (7.11).

The volume block has kinetic energy dT̃ given by

dT̃ =
1

2
ρ̄(~r)‖~vv(~r)‖22dV, (7.25)

which, in the body frame, can be written

dT̃ =
1

2
ρ̄(rb)‖vbv(rb)‖22dV. (7.26)

The total kinetic energy T̃ of the ship and the tank fluid is then given by

T̃ (q̃, ν̃) =
1

2

∫
tank and ship

ρ̄(rb)‖vbv(rb)‖22 dV

=
1

2

∫
ship

ρs(r
b)
∥∥vb + ωb × rb

∥∥2

2
dV

+
1

2
ρt

∫ ςp(qt)

−ςs(qt)
A(σ)

∥∥∥∥vb + ωb × rbt (σ) +
A0q̇t
A(σ)

dr̄bt
dσ

(σ)

∥∥∥∥2

2

dσ

=
1

2

[∫
ship

ρs(r
b) dV + ρt

∫ ςp(qt)

−ςs(qt)
A(σ) dσ

]
‖vb‖22

− 1

2
ωb

T

[∫
ship

ρs(r
b)S2(rb) dV + ρt

∫ ςp(qt)

−ςs(qt)
A(σ)S2(rbt (σ)) dσ

]
ωb

+ ωb
T

[∫
ship

ρs(r
b)S(rb) dV + ρt

∫ ςp(qt)

−ςs(qt)
A(σ)S(rbt (σ)) dσ

]
vb

+ ρtA0q̇tv
bT

[∫ ςp(qt)

−ςs(qt)

dr̄bt
dσ

(σ) dσ

]
+
ρtA

2
0q̇

2
t

2

[∫ ςp(qt)

−ςs(qt)

1

A(σ)
dσ

]

+ ρtA0q̇tω
bT

[∫ ςp(qt)

−ςs(qt)
S(rbt (σ))

dr̄bt
dσ

(σ) dσ

]

=
1

2
ν̃TMt(qt)ν̃ (7.27)

where

Mt(qt) ,

 (mt +m)I3 −Mν(qt)−mS(rbg) mv,q̇t(qt)
Mν(qt) +mS(rbg) Mω(qt) + J mω,q̇t(qt)

mT
v,q̇t

(qt) mT
ω,q̇t

(qt) m̄t(qt)

 (7.28)

is the inertia matrix. We note that Mt = MT
t ∈ R7×7 is a positive definite matrix.

The components of the inertia matrix are:

mt , ρt

∫ ςp(qt)

−ςs(qt)
A(σ) dσ = ρtVt > 0 (7.29)

m =

∫
ship

ρs(r
b) dV > 0 (7.30)
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7. Equations of motion for a ship with a u-tank

are the mass of the tank fluid and the ship,

Mν(qt) , ρt

∫ ςp(qt)

−ςs(qt)
A(σ)S(rbt (σ)) dσ = −MT

ν (qt) ∈ R3×3 (7.31)

mS(rbg) =

∫
ship

ρs(r
b)S(rb) dV = −mST(rbg) ∈ R3×3 (7.32)

are the cross-couplings between the angular and translational accelerations,

Mω(qt) , −ρt
∫ ςp(qt)

−ςs(qt)
A(σ)S2(rbt (σ)) dσ = MT

ω (qt) > 0 ∈ R3×3 (7.33)

J = −
∫

ship
ρs(r

b)S2(rb) dV = JT > 0 ∈ R3×3 (7.34)

are the moment of inertia of the tank fluid and the ship,

mv,q̇t(qt) , ρtA0

∫ ςp(qt)

−ςs(qt)

dr̄bt
dσ

(σ) dσ ∈ R3×1 (7.35)

mω,q̇t(qt) , ρtA0

∫ ςp(qt)

−ςs(qt)
S(rbt (σ))

dr̄bt
dσ

(σ) dσ ∈ R3×1 (7.36)

give the cross-coupling between the acceleration of the tank fluid and the rigid-body
generalized velocities and

m̄t(qt) , ρt

∫ ςp(qt)

−ςs(qt)

A2
0

A(σ)
dσ > 0 (7.37)

is the inertial mass of the tank fluid (which is distinct from the actual mass mt =
ρtVt of the tank fluid).

As in Chapter 4, we need to rewrite the kinetic energy as a function of the time
derivative of the generalized position vector, ˙̃q. We note that

ν̃ =

 RT(η) 03×4 03×1

03×3 2G(η) 03×1

01×3 01×4 1

 ˙̃q = P̃ (η) ˙̃q

with

P̃ (η) ,

 RT(η) 03×4 03×1

03×3 2G(η) 03×1

01×3 01×4 1

 . (7.38)

Thus, the complimentary kinetic energy T̃ ∗ is given by

T̃ ∗ =
1

2
˙̃qTM̃(q̃) ˙̃q (7.39)

where

M̃(q̃) , P̃T(η)Mt(qt)P̃ (η) = M̃T(q̃) ∈ R8×8. (7.40)
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7.2. Energy of the ship–tank system

As was the case withM in Chapter 4, the matrix M̃ is singular, so an inverse does
not exist.

We define the matrix W̃ as

W̃(q̃) , P̃T(η)M−1
t (qt)P̃(η) = W̃T(q̃). (7.41)

The matrices P̃ , P̃, M̃ and W̃ satisfy several interesting properties:

Property 7.3. M̃ is symmetric and positive semidefinite.

Proof. M̃ = M̃T ≥ 0 if it satisfies wTM̃w ≥ 0 ∀ w ∈ R7. From the definition of
M̃, wTM̃w = wTPTMtPw = w̃TMtw̃ ≥ 0 with w̃ = Pw since Mt = MT

t > 0.
Thus M̃ is at least positive semidefinite. It is not positive definite, however, because
w = [01×3, η

T]T ⇒ wTM̃w = 0 since Gη = 0 (by Property 3.15).

Property 7.4. W̃ is symmetric and positive semidefinite.

Proof. W̃ = W̃T ≥ 0 if it satisfies wTW̃w ≥ 0 ∀ w ∈ R7. From the definition of
W̃, wTW̃w = wTPTM−1

t Pw = w̃TM−1
t w̃ ≥ 0 with w̃ = Pw since Mt = MT

t > 0
implies M−1

t = M−T
t > 0. Thus W̃ is at least positive semidefinite. It is not

positive definite, however, because w = [01×3, η
T]T ⇒ wTW̃w = 0 since Gη = 0

(by Property 3.15).

Property 7.5. P̃P̃T = I7.

Proof. We have

P̃P̃T =

 RT 03×4 03×1

03×3
1
2G 03×1

01×3 01×4 1

 R 03×3 03×1

04×3 2GT 04×1

01×3 01×3 1


=

 RTR 03×3 03×1

03×3 GGT 03×1

01×3 01×3 1

 = I7

since RT = R−1 and GGT = I3.

Property 7.6. P̃ P̃T = I7.

Proof. We have

P̃ P̃T =

 RT 03×4 03×1

03×3 2G 03×1

01×3 01×4 1

 R 03×3 03×1

04×3
1
2G

T 04×1

01×3 01×3 1


=

 RTR 03×3 03×1

03×3 GGT 03×1

01×3 01×3 1

 = I7

since RT = R−1 and GGT = I3.

Property 7.7. P̃TP̃ P̃T = P̃T.
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7. Equations of motion for a ship with a u-tank

Proof. We have P̃TP̃ P̃T = P̃TI7 = P̃T.

Property 7.8. P̃TP̃P̃T = P̃T.

Proof. We have P̃TP̃P̃T = P̃TI7 = P̃T.

Property 7.9. W̃M̃W̃ = W̃.

Proof. We have

W̃M̃W̃ = P̃TM−1
t P̃P̃TMtP̃ P̃TM−1

t P̃ = P̃TP̃ P̃TM−1
t P̃ = P̃TM−1

t P̃ = W̃

where Properties 7.5 and 7.7 have been used.

Property 7.10. M̃W̃M̃ = M̃.

Proof. We have

M̃W̃M̃ = P̃TMtP̃ P̃TM−1
t P̃P̃TMtP̃ = P̃TP̃P̃TMtP̃ = P̃TMtP̃ = M̃

where Properties 7.6 and 7.8 have been used.

7.3 Virtual work

Following Chapter 4, we define the quasi-coordinates qω associated with the co-
rotating components of the angular velocity as

q̇ω = ωb. (7.42)

The virtual work done by imposed forces τnf (t) ∈ R3 and τt(t) ∈ R, and torques
τ bt (t) ∈ R3 is then given by

δW = δxnTτnf (t) + δqT
ω τ

b
t (t) + δqtτt(t). (7.43)

Since

δqω = 2Gδη, (7.44)

(by Property 3.17) we get

δW = δxnTτnf (t) + 2δηTGTτ bt (t) + δqtτt(t) = δqT

 τnf
2GTτ bt
τt

 . (7.45)

We therefore see that the vector of generalized forces associated with the virtual
work δW is

τ̃n ,

 τnf
2GTτ bt
τt

 ∈ R8 (7.46)

with a slight abuse of notation. τ̃n is strictly speaking not a vector in the inertial
frame, as τ̃n ∈ R8, not R3. And while τnf is the forces in the inertial frame, 2GTτ bt
is not the torque in the inertial frame and τt is a scalar.
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7.4. Hamilton’s equations

7.4 Hamilton’s equations

Using the kinetic and potential energies of Section 7.2, in addition to the virtual
work defined in Section 7.3, we can derive the dynamics of the system. Initially,
this will be given using a generalized momentum in R8. This is somewhat inconve-
nient, as the generalized momentum can be expressed in R7. However, we need to
initially use the more complex form as a stepping stone to get the more compact
representation.

7.4.1 Generalized momentum and Hamiltonian

As in Chapter 4, the generalized momentum p̃n ∈ R8 can be found by

p̃n =
∂T̃ ∗

∂ ˙̃q
= M̃ ˙̃q ∈ R8. (7.47)

This is a slight abuse of notation, as pn is not a vector in the inertial frame, as
p̃n ∈ R8, not R3.

Due to Properties 7.9 and 7.10, we can take
˙̃q = W̃ p̃n. (7.48)

By the Legendre transform,

T̃ = p̃nT ˙̃q − T̃ ∗ = p̃nTW̃ p̃n − 1

2
˙̃qM̃ ˙̃q = p̃nTW̃ p̃n − 1

2
q̃tW̃M̃W̃ p̃n

= p̃nTW̃ p̃n − 1

2
q̃tW̃ p̃n =

1

2
p̃nTW̃ p̃n. (7.49)

Due to the shape of T̃ and Ũ , the Hamiltonian H̃ is simply equal to the sum of
the energy in the system (see Appendix B), or

H̃(q̃, p̃n) = T̃ (q̃, p̃n) + Ũ(q̃)

=
1

2
p̃nTW̃ p̃n + gmzg + gρt

∫ ς0

−ς0
zbt (σ)A(σ) dσ

− geT
z R

[
mrbg + ρt

∫ ςp(qt)

−ςs(qt)
A(σ)rbt (σ) dσ

]
.

(7.50)

7.4.2 Using generalized momentum in R8

Since dim q̃ = 8, while there are only seven degrees of freedom, the system has a
single algebraic constraint to satisfy:

ξ̃(q̃, p̃n) = ηTη − 1 = 0. (7.51)

By Appendix B, the dynamics (with q̃, p̃n ∈ R8) are given by
˙̃q = W̃ p̃ (7.52)

˙̃pn =
∂T̃ ∗

∂q̃
− ∂Ũ

∂q̃
− 2λ

 03

η
0

+ τ̃n(t). (7.53)
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7. Equations of motion for a ship with a u-tank

Before we continue, we need to find ∂T̃ ∗/∂q̃ and ∂Ũ/∂q̃.
From (7.39) we have that T̃ ∗ is not a function of xn, but it is a function of η

and qt. Therefore,

∂T̃ ∗

∂xn
= 0. (7.54)

Since Mt is not a function of η, we can use Lemma A.3 to find that

∂T̃ ∗

∂η
=

1

2

∂( ˙̃qTP̃TMtP̃ ˙̃q)

∂η
=

1

2

∂(fT(q̃, ˙̃q)Mtf(q̃, ˙̃q))

∂η
=
∂f

∂η
Mtf(q̃, ˙̃q) =

∂f

∂η
MtP̃ ˙̃q

with

f(q̃, ˙̃q) , P̃ ˙̃q =

 RTẋn

2Gη̇
qt

 =

 RTẋn

−2Ġη
qt

 ∈ R7×1.

since Gη̇ = −Ġη (by Property 3.16). The partial derivative ∂f/∂η is then given by

∂f

∂η
=
[

∂(RTẋn)
∂η −2∂(Ġη)

∂η
∂qt
∂η

]
=
[

∂RT

∂η (ẋn ⊗ I3) −2∂η∂η (1⊗ ĠT) 04×1

]
=
[

∂RT

∂η (ẋn ⊗ I3) −2ĠT 04×1

]
where Lemma A.2 has been used and ⊗ is the Kronecker product. From Chapter
4 we recall that

∂RT

∂η
(ẋn ⊗ I3) = −2

[
ηT
i S(ẋn)

ηrS(ẋn)− S(ηi)S(ẋn) + 2S(ẋn)S(ηi)

]
.

Thus,

∂T̃ ∗

∂η
=
[

∂RT

∂η (ẋn ⊗ I3) −2ĠT 04×1

]
MtP̃ ˙̃q. (7.55)

The product P̃ ˙̃q is not a function of qt, but Mt is. We therefore find (by Cor-
ollary A.4)

∂T̃ ∗

∂qt
=

1

2
˙̃qTP̃T ∂Mt

∂qt
P̃ ˙̃q =

1

2
p̃nTP̃TM−1

t P̃P̃T ∂Mt

∂qt
P̃ P̃TM−1

t P̃ p̃n

=
1

2
p̃nTP̃TM−1

t


03×3 −∂Mν

∂qt

∂mv,q̇t
∂qt

∂Mν

∂qt
∂Mω

∂qt

∂mω,q̇t
∂qt

∂mT
v,q̇t

∂qt

∂mT
ω,q̇t

∂qt
∂m̄t
∂qt

M−1
t P̃ p̃n

since P̃P̃T = P̃ P̃T = I7.

112



7.4. Hamilton’s equations

From (7.31)–(7.37), we find that

∂Mν

∂qt
= ρtA(ςp)

dςp
dqt

S(rbt (ςp)) + ρtA(ςs)
dςs
dqt

S(rbt (−ςs))

= ρtA0S(rbt (ςp)− rbt (−ςs)) (7.56)

∂mv,q̇t

∂qt
= ρtA0

dςp
dqt

dr̄bt
dσ

(ςp) + ρtA0
dςs
dqt

dr̄bt
dσ

(−ςs)

= ρtA
2
0

[
1

A(ςp)

dr̄bt
dσ

(ςp)−
1

A(ςs)

dr̄bt
dσ

(−ςs)
]

(7.57)

∂Mω

∂qt
= −ρt

dςp
dqt

A(ςp)S
2(rbt (ςp))− ρt

dςs
dqt

A(ςs)S
2(rbt (−ςs))

= −ρtA0

[
S2(rbt (ς0))− S2(rbt (−ςs))

]
(7.58)

∂mω,q̇t

∂qt
= ρtA0

dςp
dqt

S(rbt (ςp))
dr̄bt
dσ

(ςp) + ρtA0
dςs
dqt

S(rbt (−ςs))
dr̄bt
dσ

(−ςs)

= ρtA
2
0

[
1

A(ςp)
S(rbt (ςp))

dr̄bt
dσ

(ςp)−
1

A(ςs)
S(rbt (−ςs))

dr̄bt
dσ

(−ςs)
]

(7.59)

∂m̄t

∂qt
= ρt

A2
0

A(ςp)

dςp
dqt

+ ρt
A2

0

A(ςs)

dςs
dqt

= ρtA
3
0

[
1

A2(ςp)
− 1

A2(ςs)

]
(7.60)

by differentiating under the integral sign. We note the partial derivatives of Mt are
exclusively functions of qt.

We can then write

∂T̃ ∗

∂qt
=

1

2
p̃nTP̃TM−1

t

∂Mt

∂qt
M−1
t P̃ p̃n. (7.61)

We see that we can write ∂T̃ ∗/∂q̃ as

∂T̃ ∗

∂q̃
=

 03×7[
∂RT

∂η (ẋn ⊗ I3) −2ĠT 04×1

]
1
2

˙̃qTP̃T ∂Mt

∂qt

MtP̃ ˙̃q. (7.62)

The partial derivative of Ũ with respect to q̃ can be found by noting that it is
not a function of xn, but it is a function of η and qt. We find

∂Ũ

∂xn
= 03×1 (7.63)

∂Ũ

∂η
= −g ∂(eT

z R)

∂η

[
mrbg + ρt

∫ ςp(qt)

−ςs(qt)
rbt (σ)A(σ) dσ

]
(7.64)

∂Ũ

∂qt
= −gρteT

z R

[
rbt (ςp)A(ςp)

dςp
dqt

+ rbt (−ςs)A(ςs)
dςs
dqt

]
= −gρtA0e

T
z R
[
rbt (ςp)− rbt (−ςs)

]
(7.65)
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7. Equations of motion for a ship with a u-tank

using differentiation under the integral. From (5.10), we have

∂(eT
z R)

∂η
= 2


−ηi,2 ηi,1 0
ηi,3 ηr −2ηi,1
−ηr ηi,3 −2ηi,2
ηi,1 ηi,2 0

 ∈ R4×3.

Since we are not interested in the dynamical equations with a generalized mo-
mentum in R8 (except as an aid to find the dynamical equations with a generalized
momentum in R7), we will not insert the expressions for ∂T̃ ∗/∂q̃ and ∂Ũ/∂q̃ into
(7.53).

7.4.3 Using generalized momentum in R7

We define the body-fixed momentum vector p̃ as

p̃ ,Mtν̃ ∈ R7 (7.66)

and note that

p̃n = P̃TMtP̃ ˙̃q = P̃TMtν̃ = P̃Tp̃ (7.67)

which implies

p̃ = P̃ p̃n (7.68)

since P̃P̃T = I7. Also worth noting is that

p̃ = MtP̃ ˙̃q (7.69)
˙̃q = P̃TM−1

t p̃ (7.70)

since P̃ P̃T = I7.
Therefore,

˙̃p = ˙̃P p̃n + P̃ ˙̃pn = ˙̃PP̃Tp̃+ P̃ ˙̃pn

=

 −S(ωb)RT 03×4 03×1

03×3
1
2 Ġ 03×1

01×3 01×4 0

 R 03×3 03×1

04×3 2GT 04×1

01×3 01×3 1

 p̃+ P̃ ˙̃pn

=

 −S(ωb) 03×3 03×1

03×3 − 1
2S(ωb) 03×1

01×3 01×3 0

 p̃+ P̃ ˙̃pn (7.71)

since 2ĠGT = −S(ωb), Ṙ = RS(ωb) and RT = R−1.
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7.4. Hamilton’s equations

Inserting (7.53) into (7.71) gives

˙̃p =

 −S(ωb) 03×3 03×1

03×3 − 1
2S(ωb) 03×1

01×3 01×3 0

 p+ P̃

∂T̃ ∗
∂q̃
− ∂Ũ

∂q̃
− 2λ

 03×1

η
0

+ τ̃n(t)


=

 −S(ωb) 03×3 03×1

03×3 − 1
2S(ωb) 03×1

01×3 01×3 0

 p̃
+ P̃ ∂T̃

∗

∂q̃
− P̃ ∂Ũ

∂q̃
− 2λP̃

 03×1

η
0

+ P̃ τ̃n(t).

(7.72)

We se that

P̃

 03×1

η
0

 =

 03×1
1
2Gη

0

 = 0 (7.73)

P̃ τ̃n(t) =

 RTτnf (t)

GGTτ bt (t)
τt(t)

 =

 τ bf (t)

τ bt (t)
τt(t)

 , τ̃(t) (7.74)

P̃ ∂Ũ
∂q̃

=

 RT ∂Ũ
∂xn

1
2G

∂Ũ
∂η

∂Ũ
∂qt

 =

 03×1
1
2G

∂Ũ
∂η

∂Ũ
∂qt

 (7.75)

P̃ ∂T̃
∗

∂q̃
=

 03×7

1
2G
[

∂RT

∂η (ẋn ⊗ I3) −2ĠT 04×1

]
1
2

˙̃qTP̃T ∂Mt

∂qt
M−1
t

MtP̃ ˙̃q

=

 03×7[
1
2G

∂RT

∂η (ẋn ⊗ I3) −GĠT 04×1

]
1
2 p̃

TM−1
t

∂Mt

∂qt
M−1
t

 p̃. (7.76)

From Chapter 4 we have that G∂RT

∂η (ẋn⊗ I3) = −2S(vb) and from Chapter 3 that
2GĠT = S(ωb). From (7.64) we have

G
∂Ũ

∂η
= −gG∂e

T
z R

∂η

[
mrbg + ρt

∫ ςp(qt)

−ςs(qt)
rbt (σ)A(σ) dσ

]
. (7.77)

From (3.20) and (5.10) we get

G
∂eT
z R

∂η
= 2

 −ηi,1 ηr ηi,3 −ηi,2
−ηi,2 −ηi,3 ηr ηi,1
−ηi,3 ηi,2 −ηi,1 ηr



−ηi,2 ηi,1 0
ηi,3 ηr −2ηi,1
−ηr ηi,3 −2ηi,2
ηi,1 ηi,2 0
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= 2

 0 1− 2η2
i,1 − 2η2

i,2 −2ηrηi,1 − 2ηi,2ηi,3
−1 + 2η2

i,1 + 2η2
i,2 0 −2ηrηi,2 + 2ηi,1ηi,3

2ηrηi,1 + 2ηi,2ηi,3 2ηrηi,2 − 2η1,2ηi,3 0


= −2S(RTez) (7.78)

where we have used that ηTη = 1.
Inserting the above into (7.72), we get

˙̃p = −


[
S(ωb) 03×3 03×1

][
S(vb) S(ωb) 03×1

]
1
2 p̃

TM−1
t

∂Mt

∂qt
M−1
t

 p̃
−

 03×1

gS(RTez)
[
mrbg + ρt

∫ ςp(qt)

−ςs(qt) r
b
t (σ)A(σ) dσ

]
gρtA0e

T
z R
(
rbt (ςp)− rbt (−ςs)

)
+ τ̃(t)

= τ̃(t)−
[ [

S(ν) 06×1

]
− 1

2 p̃
TM−1

t
∂Mt

∂qt
M−1
t

]
p̃− k̃(q̃) (7.79)

where

S(ν) =

[
S(ωb) 03×3

S(vb) S(ωb)

]

kt(q̃) , g

 03×1

S(RTez)
[
mrbg + ρt

∫ ςp(qt)

−ςs(qt) r
b
t (σ)A(σ) dσ

]
ρtA0e

T
z R
(
rbt (ςp)− rbt (−ςs)

)
 = P̃ ∂Ũ

∂q
(7.80)

Similar to in Chapter 4, we define

p̃l ,
[
I3 03×3 03×1

]
p̃ ∈ R3 (7.81)

p̃r ,
[

03×3 I3 03×1

]
p̃ ∈ R3 (7.82)

p̃t ,
[

01×3 01×3 1
]
p̃ ∈ R (7.83)

This allows us to rewrite the product
[
S(ν) 06×1

]
p̃ in a more useful form:

[
S(ν) 06×1

]
p̃ =

 [ S(ωb) 03×3

S(vb) S(ωb)

] [
p̃l
p̃r

]
0


=

 − [ 03×3 S(p̃l)
S(p̃l) S(p̃r)

] [
vb

ωb

]
0


=
[
Cs(p̃) 06×1

]
ν̃ =

[
Cs(p̃) 06×1

]
M−1
t p̃ (7.84)

where

Cs(p̃) , −
[

03×3 S(p̃l)
S(p̃l) S(p̃r)

]
= −CT

s (p̃). (7.85)
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Similarly, the product p̃TM−1
t

∂Mt

∂qt
M−1
t p̃ can be rewritten in a more useful form:

 03×1

03×1
1
2 p̃

TM−1
t

∂Mt

∂qt
M−1
t p̃

 = q̇t

 03×3 −∂Mν

∂qt
03×1

03×3
1
2
∂Mω

∂qt
03×1

∂mT
v,q̇t

∂qt

∂mT
ω,q̇t

∂qt
1
2
∂m̄t
∂qt

 ν̃

+

 03×3 03×3
∂Mν

∂qt
ωb

03×3 03×3 − 1
2
∂Mω

∂qt
ωb

ωbT ∂Mν

∂qt
1
2ω

bT ∂MT
ω

∂qt
0

 ν̃

= q̇t

 03×3 −∂Mν

∂qt
03×1

03×3
1
2
∂Mω

∂qt
03×1

∂mT
v,q̇t

∂qt

∂mT
ω,q̇t

∂qt
1
2
∂m̄t
∂qt

M−1
t p̃

+

 03×3 03×3
∂Mν

∂qt
ωb

03×3 03×3 − 1
2
∂Mω

∂qt
ωb

ωbT ∂Mν

∂qt
1
2ω

bT ∂MT
ω

∂qt
0

M−1
t p̃.

(7.86)

We can rewrite the kinematics as

˙̃q = W̃ p̃n = P̃TM−1
t P̃P̃Tp̃ = P̃TM−1

t p̃ (7.87)

since P̃P̃T = I7. Note that M−1
t p̃ = ν̃, that is, the vector of generalized velocities

in the body frame.
Noting that q̇t = [01×6, 1]M−1

t p̃ and ωb = [03×3, I3, 03×1]M−1
t p̃, we define

Ct(q̃, p̃) ,

 Cs
−∂Mν

∂qt
ωb

1
2
∂Mω

∂qt
ωb

− ωbT ∂Mν

∂qt
− 1

2ω
bT ∂MT

ω

∂qt
0



− q̇t

 03×3 −∂Mν

∂qt
03×1

03×3
1
2
∂Mω

∂qt
03×1

∂mT
v,q̇t

∂qt

∂mT
ω,q̇t

∂qt
1
2
∂m̄t
∂qt


= Cw − q̇tCm (7.88)

were the function arguments have been omitted and

Cw ,

 Cs
−∂Mν

∂qt
ωb

1
2
∂Mω

∂qt
ωb

− ωbT
∂MT

ν

∂qt
− 1

2ω
bT ∂MT

ω

∂qt
0

 = −CT
w (7.89)

Cm ,

 03×3 −∂Mν

∂qt
03×1

03×3
1
2
∂Mω

∂qt
03×1

∂mT
v,q̇t

∂qt

∂mT
ω,q̇t

∂qt
1
2
∂m̄t
∂qt

 (7.90)
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7. Equations of motion for a ship with a u-tank

We can then write the dynamics as

˙̃q = P̃T(q̃)M−1
t (q̃)p̃ (7.91)

˙̃p = τ̃(t)− Ct(q̃, p̃)M−1
t (q̃)p̃− kt(q̃). (7.92)

7.5 External forces

There are other, external, forces acting on the ship–tank system that were not in-
cluded in the above analysis (other than through the virtual work principle). There
are potential and viscous damping effects on the ship [24], damping effects on the
tank fluid [26, 37, 44, 49, 50, 57, 58, 61, 62, 79], buoyancy on the ship [24], envi-
ronmental forces [24], control forces and some gravity-induced forces. Hydrostatic
buoyancy is actual a potential force, but buoyancy is rendered very complex in the
presence of waves and was not included in the previous sections.

We write the external forces as

τ̃ = τ̃g +

[
τp
0

]
+ τ̃d + τ̃c + τ̃e (7.93)

where τ̃g are gravity-induced forces not already included, τp are the pressure-
induced forces calculated in Chapter 5, τ̃d are damping forces, τ̃c are control forces
and τ̃e are unmodeled forces. Most of the forces were computed in Chapter 5.

By the same argument as in Chapter 5, not all gravity-related terms were in-
cluded in the analysis in this chapter. Specifically, the linear force was not included.
By the same analysis as in Chapter 5,

τ̃g = −

 g(m+mt)R
Tez

03×1

0

 . (7.94)

The total mass of the ship–tank system m+mt is used, as both contribute to the
weight of the ship–tank system.

The pressure forces act only on the ship (as the tank fluid is not in contact with
the ocean). From Chapter 5, we get

τp = −MAν̇ +Dpν + CA(ν)ν + kp(q, t). (7.95)

The damping term Dpν only contains some generalized damping forces. There
are also other dissipative effects, such as vortex shedding and viscous damping [20].
In addition, there is also the damping in the tank.

It is possible that the tank damping gives rise to a generalized force on the
ship. When the fluid is moving in the tank, it is damped by (among other things)
contact with the tank wall. By Newton’s Third Law, this should give rise to an
equal and opposite force on the tank (and thus, the ship). This effect is investigated
in Chapter 9, but it is there found to be negligible and therefore not included in
this chapter.

We therefore write the extra generalized damping force τ̃d as

τ̃d = −
[
Dv(ν)ν
dt(q̇t)q̇t

]
. (7.96)
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7.5. External forces

We gather all damping terms in the matrix D̃ and let Ω ≡ Ω̄ where Ω̄ is a constant,
so that [

Dpν +Dv(ν)ν
dt(q̇t)q̇t

]
= D̃(ν̃)ν̃ (7.97)

with

D̃(ν̃) ,

[
Dp +Dv(ν) 03×1

01×3 dt(q̇t)

]
. (7.98)

The control forces can be split into two: The forces acting directly on the ship,
and the forces acting on the tank fluid. We let u be the control input to the ship, and
ut be the control input to the tank itself. Both of these can be multi-dimensional.

A surface ship will typically be directly actuated in surge, yaw and possibly
sway, while not in the other degrees of freedom [24]. Typical actuators would be
rudders and fixed or turnable propellers [75].

The tank can be actuated in several different ways. Placing pumps to pump the
fluid around is a possibility. Sealing the two reservoirs and pumping in or releasing
high-pressure air is another option. Valves could be used in the tank to control the
cross-sectional area, but these would not be able to force the fluid to flow against
the pull of gravity.

If the pump is located at σ = 0, and generates a pressure difference ut = ∆P
(starboard side pressure minus port side pressure), it will give a force of τc,t on the
tank fluid given by

τc,t =
∆P

A(0)
(7.99)

positive to port.
If instead one uses air pumps giving the pressure ps above the starboard reser-

voir and pp over the port reservoir, then the force on the tank fluid will be

τc,t =
ps

A(ςs(qt))
− pp
A(ςp(qt))

≈ ps − pp
A(ς0)

(7.100)

positive to port. We can take ut = ps − pp or ut = [ps, pp]
T.

Combining all control forces into one vector τ̃c, we write

τc =



bx 0
by 0
bz 0
bφ 0
bθ 0
bψ 0
0 bt


[
u
ut

]
= B̃ũ (7.101)
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7. Equations of motion for a ship with a u-tank

with

B̃ ,



bx 0
by 0
bz 0
bφ 0
bθ 0
bψ 0
0 bt


, ũ , [uT, uT

t ]T.

7.6 Total dynamical equations for the ship–tank–ocean
system

We define the added mass in R7×7, M̃A as

M̃A ,

[
MA 03×1

01×3 0

]
,

the added mass-induced Coriolis/centripetal matrix in R7×7, C̃A as

C̃A(ν̃) ,

[
CA(ν) 03×1

01×3 0

]
= −C̃T

A(ν̃),

the total inertia matrix M̃ as

M̃(qt) ,Mt(qt) + M̃A (7.102)

and the total generalized restoring force k̃ as

k̃(q̃, t) , kt(q)− τ̃g(q̃) +

[
kp(q, t)

0

]
=

[
kp(q, t) + kg(q̃)

ρtA0e
T
z R(η)

[
rbt (ςp(qt))− rbt (−ςs(qt))

] ] . (7.103)

with

kg(q̃) , g

[
(m+mt)R

T(η)ez

S(RT(η)ez)
[
mrbg + ρt

∫ ςp(qt)

−ςs(qt) r
b
t (σ)A(σ) dσ

] ] ∈ R6. (7.104)

We can then write the total dynamics as

˙̃q = PTM−1p̃ (7.105)

˙̃p = τ̃e(t) + B̃ũ− M̃A
˙̃ν −

[
Ct(qt, p̃) + D̃(ν̃) + C̃A(ν̃)

]
M−1p̃− k̃(q̃, t). (7.106)

The presence of the added mass term (which gives a generalized force propor-
tional to acceleration) makes it cumbersome to use generalized momentum as a
state variable.
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7.6. Total dynamical equations for the ship–tank–ocean system

We find

˙̃p = Mt
˙̃ν + Ṁtν̃ = Mt

˙̃ν + q̇t
∂Mt

∂qt
ν̃

= τ̃e(t) + B̃ũ− M̃A
˙̃ν −

[
Ct(qt, p̃) + D̃(ν̃) + C̃A(ν̃)

]
M−1p̃− k̃(q̃, t)

= τ̃e(t) + B̃ũ− M̃A
˙̃ν −

[
Ct(qt,Mtν̃) + D̃(ν̃) + C̃A(ν̃)

]
ν̃ − k̃(q̃, t).

We rearrange the terms in the above equality and get

M̃(qt) ˙̃ν = τ̃e(t) + B̃ũ−
[
C̃(qt, ν̃) + D̃(ν̃)

]
ν̃ − k̃(q̃, t) (7.107)

where

C̃(qt, ν̃) , q̇t
∂Mt

∂qt
+ Ct(qt,Mtν̃) + C̃A(ν̃)

is the Coriolis/centripetal matrix.
Dropping function arguments for brevity, we can rewrite C̃(qt, ν̃) as

C̃ =

 Cs + CA
−∂Mν

∂qt
ωb

1
2
∂Mω

∂qt
ωb

− ωbT ∂Mν

∂qt
− 1

2ω
bT ∂MT

ω

∂qt
0



− q̇t

 03×3 −∂Mν

∂qt
03×1

03×3
1
2
∂Mω

∂qt
03×1

∂mT
v,q̇t

∂qt

∂mT
ω,q̇t

∂qt
1
2
∂m̄t
∂qt

+ q̇t


03×3 −∂Mν

∂qt

∂mv,q̇t
∂qt

∂Mν

∂qt
∂Mω

∂qt

∂mω,q̇t
∂qt

∂mT
v,q̇t

∂qt

∂mT
ω,q̇t

∂qt
∂m̄t
∂qt


=

 Cs + CA
−∂Mν

∂qt
ωb

1
2
∂Mω

∂qt
ωb

− ωbT ∂Mν

∂qt
− 1

2ω
bT ∂MT

ω

∂qt
0



+ q̇t

 03×3 03×3
∂mv,q̇t
∂qt

∂Mν

∂qt
1
2
∂Mω

∂qt

∂mω,q̇t
∂qt

01×3 01×3
1
2
∂m̄t
∂qt


= C̃w + q̇tC

T
m (7.108)

with

C̃w ,

 Cs + CA
−∂Mν

∂qt
ωb

1
2
∂Mω

∂qt
ωb

− ωbT ∂Mν

∂qt
− 1

2ω
bT ∂MT

ω

∂qt
0

 = −C̃T
w

CT
m =

 03×3 03×3
∂mv,q̇t
∂qt

∂Mν

∂qt
1
2
∂Mω

∂qt

∂mω,q̇t
∂qt

01×3 01×3
1
2
∂m̄t
∂qt


matching (7.90).

We note that M̃ and C̃ satisfy the following property:
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7. Equations of motion for a ship with a u-tank

Property 7.11. The matrix

˙̃M − 2C̃ (7.109)

is skew-symmetric, that is

˙̃M − 2C̃ = −
(

˙̃M − 2C̃
)T

⇔ wT
(

˙̃M − 2C̃
)
w = 0 ∀ w ∈ R7. (7.110)

Proof. We already know that C̃w is skew-symmetric, so the statement (7.110) is
equivalent to the statement

˙̃M − 2q̇tC
T
m = −

(
˙̃M − 2q̇tC

T
m

)T

.

Since M̃ is only a function of qt, we have

˙̃M − 2q̇tC
T
m = q̇t

∂M̃

∂qt
− 2q̇tC

T
m = q̇t

(
∂Mt

∂qt
− 2CT

m

)

= q̇t


03×3 −∂Mν

∂qt

∂mv,q̇t
∂qt

∂Mν

∂qt
∂Mω

∂qt

∂mω,q̇t
∂qt

∂mT
v,q̇t

∂qt

∂mT
ω,q̇t

∂qt
∂m̄t
∂qt

− q̇t
 03×3 03×3 2

∂mv,q̇t
∂qt

2∂Mν

∂qt
∂Mω

∂qt
2
∂mω,q̇t
∂qt

01×3 01×3
∂m̄t
∂qt



= q̇t


03×3 −∂Mν

∂qt
−∂mv,q̇t∂qt

−∂Mν

∂qt
03×3 −∂mω,q̇t∂qt

∂mT
v,q̇t

∂qt

∂mT
ω,q̇t

∂qt
0

 = −
(

˙̃M − 2q̇tC
T
m

)T

since Mν = −MT
ν implies ∂Mν/∂qt = −∂MT

ν /∂qt. Proof of the equivalency of the
two statements in (7.110) can be found in Kreyszig [53].

We can then write the dynamics for the full 7-DOF ship–tank–ocean system:

Model VII (7-DOF u-tank model). The dynamics of the full 7-DOF u-tank model
with a generic u-tank can be written as

˙̃q = P̃T(η)ν̃ (7.111)

M̃(qt) ˙̃ν = τ̃e(t) + B̃ũ− C̃(qt, ν̃)ν̃ − D̃(ν̃)ν̃ − k̃(q̃, t) (7.112)

where P̃ is defined in (7.13), M̃ in (7.102), B̃ in (7.101), C̃ in (7.108), D̃ in (7.98),
k̃ in (7.103) and τ̃e is the unmodeled disturbances.
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Chapter 8

Rectangular-prism u-tanks and
comparison to an existing model

Most existing models of u-tanks are for u-tanks that consist of three rectangular
prisms; one for each reservoir and one for the duct (see Figure 8.1) [44, 50, 57, 58,
62, 79], so it makes sense to represent the generic-tank model of Chapter 7 for this
special case.

Port Starboard

Datum level

Figure 8.1: A rectangular-prism u-tank.

The results in this chapter are based on the results of Chapter 7 and Holden
et al. [44].

8.1 Equations of motion for a rectangular-prism u-tank

A rectangular-prim u-tank does not fit into the framework developed in Chapter 7;
the tank centerline function is not a C1 function (the derivative doesn’t exist at
the reservoir–duct intersection since these are hard corners). The rectangular-prism
u-tank can, however, be approximated to arbitrary precision by functions that are

123



8. Rectangular-prism u-tanks and comparison to an existing model

C1. We can use functions ybt , zbt and A given by

ybt (σ) =


w
2 ∀ σ ∈ (−∞,−w/2− ε]

−a0 − a1σ − a2σ
2 ∀ σ ∈ [−w/2− ε,−w/2 + ε]

−σ ∀ σ ∈ [−w/2 + ε, w/2− ε]
a0 − a1σ + a2σ

2 ∀ σ ∈ [w/2− ε, w/2 + ε]
−w2 ∀ σ ∈ [w/2 + ε,∞)

(8.1)

zbt (σ) =


rd + w

2 + σ ∀ σ ∈ (−∞,−w/2− ε]
−b0 − b1σ − b2σ2 ∀ σ ∈ [−w/2− ε,−w/2 + ε]

rd ∀ σ ∈ [−w/2 + ε, w/2− ε]
−b0 + b1σ − b2σ2 ∀ σ ∈ [w/2− ε, w/2 + ε]

rd + w
2 − σ ∀ σ ∈ [w/2 + ε,∞)

(8.2)

A(σ) =


Ar ∀ σ ∈ (−∞,−w/2 + ε]

c0 + c1σ ∀ σ ∈ [−w/2− ε,−w/2 + ε]
Ad ∀ σ ∈ [−w/2 + ε, w/2− ε]

c0 − c1σ ∀ σ ∈ [w/2− ε, w/2 + ε]
Ar ∀ σ ∈ [w/2 + ε,∞)

(8.3)

with ε� w/2 and

a0 =

(
ε− w

2

)2
4ε

a1 =
w + 2ε

4ε

a2 = b2 =
1

4ε

b0 =

(
ε− w

2

)2
4ε

− rd

b1 =
w − 2ε

4ε

c0 =
2(Ad +Ar)ε+ w(Ad −Ar)

4ε

c1 =
Ad −Ar

2ε
.

Since the tank has rectangular cross-section, we define

Ar , wrlr (8.4)

Ad , hdld. (8.5)

Furthermore,

ς0 = ht +
w

2
. (8.6)

The value of A0 is arbitrary. We choose

A0 = Ar. (8.7)
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8.1. Equations of motion for a rectangular-prism u-tank

Note that this choice of ai, bi, ci ensures that ybt , zbt ∈ C1 and that A ∈ C0. A tank
described by these functions has a centerline function describing half a rounded
rectangle. Letting ε → 0 gives a rectangular-prism u-tank. The parameters in
(8.1)–(8.5) have the interpretation indicated in Figure 8.2.

σ

Ar

Ad StarboardPort

w

rdht

yb

zb

xb

qt

wr

hd

Datum level

Figure 8.2: Measurements of the u-tank (8.1)–(8.5) with ε = 0.

We could compute the integrals in the system equations before letting ε → 0,
but it gives the same result as setting ε = 0 first and then computing the integrals.
The only caveat is that with ε = 0, the model becomes invalid if the duct is not
always full of fluid.

The functions for the u-tank is sufficiently simple such that it is possible to
explicitly solve (7.2):

qt =
1

A0

∫ ςp

ς0

A(σ) dσ = ςp − ht −
w

2
(8.8)

qt =
−1

A0

∫ −ς0
−ςs

A(σ) dσ = ht +
w

2
− ςs (8.9)

from which we get the relationships

qt = ςp − ς0 = ς0 − ςs (8.10)
ςp + ςs ≡ 2ht + w. (8.11)

The integrals of Mt, Ct and kt can also be solved explicitly. Recalling from
(7.28) that

M̃(qt) ,

 (mt +m)I3 −Mν(qt)−mS(rbg) mv,q̇t(qt)
Mν(qt) +mS(rbg) Mω(qt) + J mω,q̇t(qt)

mT
v,q̇t

(qt) mT
ω,q̇t

(qt) m̄t(qt)

 ,
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8. Rectangular-prism u-tanks and comparison to an existing model

and dropping function arguments for brevity, we get

mt = ρt

∫ ς0

−ς0
A(σ) dσ

= ρt

∫ −w/2
−ht−w/2

wrlr dσ + ρt

∫ w/2

−w/2
hdld dσ + ρt

∫ ht+w/2

w/2

wrlr dσ

= (2htwrlr + whdld) ρt (8.12)

as the mass of the tank fluid,

Mν = ρt

∫ ςp

−ςs
A(σ)S(rbt (σ)) dσ = ρt

∫ −w/2
−ςs

wrlrS

 xbt
w/2

rd + w/2 + σ

 dσ

+ ρt

∫ w/2

−w/2
hdldS

 xbt
−σ
rd

 dσ + ρt

∫ ςp

w/2

wrlrS

 xbt
−w/2

rd + w/2− σ

 dσ

= ρtS

 xbt (2htwrlr + whdld)
−wwrlrqt

2xrlrrdht + hdldrdw − wrlrh2
t − wrlrq2

t

 (8.13)

as the cross-coupling between angular and translational accelerations,

Mω = −ρt
∫ ςp

−ςs
A(σ)S2(rbt (σ)) dσ

= −ρt
∫ −w/2
−ςs

wrlrS
2

 xbt
w/2

rd + w/2 + σ

 dσ

− ρt
∫ w/2

−w/2
hdldS

2

 xbt
−σ
rd

 dσ

− ρt
∫ ςp

w/2

wrlrS
2

 xbt
−w/2

rd + w/2− σ

 dσ

=

 Mω,11 Mω,12 Mω,13

Mω,12 Mω,22 Mω,23

Mω,13 Mω,23 Mω,33

 (8.14)

Mω,11 = 2ρtwrlr(ht − rd)q2
t + ρthdldw

(
rd2 − w2

12

)
+ ρt

(
2r2
d +

w2

2
+

2

3
h2
t − 2rdht

)
wrlrht

Mω,12 = ρtwx
b
twrlrqt

Mω,13 = ρtx
b
twrlrq

2
t − 2ρtwrlrx

b
trdht − ρthdldrdxbtw + ρtwrlrx

b
th

2
t
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8.1. Equations of motion for a rectangular-prism u-tank

Mω,22 = 2ρtwrlr(ht − rd)q2
t + ρthdldw

(
r2
d − (xbt)

2
)

+ ρt

(
2r2
d + 2(xbt)

2 +
2

3
h2
t − 2rdht

)
wrlrht

Mω,23 = −ρtwwrlr(ht − rd)qt

Mω,33 =

(
2(xbt)

2 +
1

2
w2

)
ρtwrlrht +

(
(xbt)

2 +
1

12
w2

)
ρthdldw.

as the moment of inertia of the tank fluid,

mv,q̇t = ρtA0

∫ ςp

−ςs

dr̄bt
dσ

dσ = ρtwrlr

 0

−
∫ w/2
−w/2 dσ∫ −w/2

−ςs dσ −
∫ ςp
w/2

dσ


= −ρtwrlr

 0
w

2qt

 (8.15)

mω,q̇t = ρtA0

∫ ςp

−ςs
S(rbt (qt))

dr̄bt
dσ

(σ) dσ

= ρtwrlr

∫ −w/2
−ςs

S

 xbt
w/2

rd + w/2 + σ

 0
0
1

 dσ

− ρtwrlr
∫ w/2

−w/2
S

 xbt
−σ
rd

 0
1
0

 dσ

− ρthwrlr
∫ ςp

w/2

S

 xbt
−w/2

rd + w/2− σ

 0
0
1

 dσ

= ρtwrlr

 (ht + rd)w
2xbtqt
−wxbt

 (8.16)

as the cross-couplings between the accelerations of the tank fluid and the rigid-body
generalized velocities and

m̄t = ρtA
2
0

∫ ςp

−ςs

1

A(σ)
dσ

= ρt

∫ −w/2
−ςs

wrlr dσ + ρt

∫ w/2

−w/2

w2
r l

2
r

hdld
dσ + ρt

∫ ςp

w/2

wrlr dσ

= ρt

(
2htwrlr +

w2
r l

2
rw

hdld

)
(8.17)

as the inertial mass of the tank fluid.
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8. Rectangular-prism u-tanks and comparison to an existing model

From (7.108), C̃ can be written as

C̃ =

 Cs + CA
−∂Mν

∂qt
ωb

1
2
∂Mω

∂qt
ωb

− ωbT ∂Mν

∂qt
− 1

2ω
bT ∂Mω

∂qt

T
0



+ q̇t

 03×3 03×3
∂mv,q̇t
∂qt

∂Mν

∂qt
1
2
∂Mω

∂qt

∂mω,q̇t
∂qt

01×3 01×3
1
2
∂m̄t
∂qt

 .
Using (8.12)–(8.17), we get

∂Mν

∂qt
= ρtS

 0
−whdld
−2wrlrqt


∂Mω

∂qt
= ρt

 4wrlr(ht − rd)qt wxbthdld 2xbtwrlrqt
wxbthdld 4wrlr(ht − rd)qt −whdld(ht − rd)

2xbtwrlrqt −whdld(ht − rd) 0


∂mv,q̇t

∂qt
= −ρthdld

 0
0

2 hdldwrlr


∂mω,q̇t

∂qt
= ρthdld

 0
2xbthdld
wrlr

0


∂m̄t

∂qt
= 0.

From (7.80) we have

kt(q) = gρt

 03

S(RTez)
∫ ςp(qt)

−ςs(qt) r
b
t (σ)A(σ) dσ

−A0e
T
z R
(
rbt (ςp)− rbt (−ςs)

)
 .

We get

∫ ςp

−ςs
rbt (σ)A(σ) dσ =

∫ −w/2
−ςs

wrlr

 xbt
w/2

rd + w/2 + σ

 dσ

+

∫ w/2

−w/2
hdld

 xbt
−σ
rd

 dσ

+

∫ ςp

w/2

wrlr

 xbt
−w/2

rd + w/2− σ

 dσ
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=

 2wrlrx
b
tht + hdldwx

b
t

−wwrlrqt
−wrlrq2

t + 2wrlrrdht − wrlrh2
t + hdldrdw

 (8.18)

and

rbt (ςp)− rbt (−ςs) =

 xbt
−w/2

rd + w/2− ςp

−
 xbt

w/2
rd + w/2− ςs


=

 0
−w
−2qt

 . (8.19)

8.2 Comparison to the model of Lloyd [57, 58]

Like most other u-tank models [21, 62, 79], the model of Lloyd [57, 58] has four
degrees of freedom; namely sway, roll, yaw and a tank state. The model of Lloyd
[57, 58] is also linear, and only valid for a rectangular-prism tank.

To reduce the order of the model to include only these four degrees of freedom,
we need to rewrite the kinematics. We recall from Chapter 3 that the rigid-body
kinematics can be written as

ẋn = R(Θ)vb

η̇ =
1

2
GΘ(Θ)ωb

where Θ = [φ, θ, ψ]T is a vector of Euler angles.
To get a four-degree-of-freedom model, we set all the other degrees of freedom

to zero, i.e.,

x = z = θ = vb1 = vb3 = ωb2 = 0 (8.20)

and rewrite (7.111) and (7.112). We define

qr4 , [y, φ, ψ, qt]
T (8.21)

νr4 , [vb2, ω
b
1, ω

b
3, q̇t]

T (8.22)

and find that

q̇r4 =


cos(φ) cos(ψ) 0 0 0

0 1 0 0
0 0 cos(φ) 0
0 0 0 1

 νr4 ≈ νr4
for small angles φ, ψ.
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8. Rectangular-prism u-tanks and comparison to an existing model

We define

Mr4 ,


m22 m24 m26 m2t

m24 m44 m46 m4t

m26 m46 m66 m6t

m2t m4t m6t m̄t

+


mA,22 mA,24 mA,26 0
mA,42 mA,44 mA,46 0
mA,62 mA,64 mA,66 0

0 0 0 0

 (8.23)

m22 = m+mt = m+ ρt (2htwrlr + whdld)

m24 = ρt

∫ ςp

−ςs
Azbt dσ −mzg = −ρt

(
2xrlrrdht + hdldrdw − wrlrh2

t

)
−mzg

m26 = −ρt
∫ ςp

−ςs
Azbt dσ +mxg = ρtx

b
t (2htwrlr + whdld) +mxg

m2t = ρtA0

∫ ςp

−ςs

dȳbt
dσ

dσ = −ρtwrlrw

m44 = J11 + ρt

∫ ςp

−ςs
A((ybt )

2 + (zbt )
2) dσ

= J11 + ρthdldw

(
rd2 − w2

12

)
+ ρt

(
2r2
d +

w2

2
+

2

3
h2
t − 2rdht

)
wrlrht

m46 = J13 − ρt
∫ ςp

−ςs
Axbtz

b
t dσ

= J13 − 2ρtwrlrx
b
trdht − ρthdldrdxbtw + ρtwrlrx

b
th

2
t

m4t = ρtA0

∫ ςp

−ςs

(
ybt

dz̄bt
dσ
− dȳbt

dσ
zbt

)
dσ = ρtwrlrw(ht + rd)

m66 = J33 + ρt

∫ ςp

−ςs
A
[
(xbt)

2 + (ybt )
2
]

dσ

= J33 +

(
2(xbt)

2 +
1

2
w2

)
ρtwrlrht +

(
(xbt)

2 +
1

12
w2

)
ρthdldw

m6t = ρtA0

∫ ςp

−ςs

(
xbt

dȳbt
dσ
− dx̄bt

dσ
ybt

)
dσ = ρtwrlrwx

b
t

m̄t = ρt

∫ ςp

−ςs

A2
0

A
dσ = ρt

(
2htwrlr +

w2
r l

2
rw

hdld

)
.

as the inertia,

Br4 =


by 0
bφ 0
bψ 0
0 bt

 (8.24)

defines the directly controlled states,

Dr4 =


d22 d24 d26 0
d42 d44 d46 0
d62 d64 d66 0
0 0 0 dtt

 (8.25)
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where dij is the i, jth element of D(0) of Model III is the linear damping matrix
and

τe,r4(t) =


0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 τ̃(t) (8.26)

are the unmodeled forces.
The restoring fore matrix Kr4 can be found from the reduced-order spring term

kr4 (the nonlinear restoring force for the four-degree-of-freedom model). If kp,i is
the ith element of kp of Model III, then kr4 is given by

kr4 =



kp,2(
kp,4 + gmzg sin(φ) + gρtwwrlrqt cos(φ)

+gρt
[
wrlr(2rdht − h2

t − q2
t ) + hdldrdw

]
sin(φ)

)
kp,6 − g

[
xbtmt +mxg

]
sin(φ)

gρtwrlrw sin(φ) + 2gρtwrlrqt cos(φ)


,

so that

Kr4 =
∂kr4
∂qr4

∣∣∣∣
q̃=0

(8.27)

=


kp,22 kp,24 kp,26 0

kp,42

(
kp,44 + gmzg

+gρt [wrlrht(2rd − ht) + hdldrdw]
) kp,46 gρtwrlrw

kp,62 kp,64 − g
[
xbtmt +mxg

]
kp,66 0

0 gρtwrlrw 0 2gρtwrlr


where

kp,ij =
∂kp,i
∂qj

∣∣∣∣
q̃=0

with qj is the jth element of q are the partial derivatives of the pressure-induced
restoring forces. These parameters may be time-varying.

From Fossen [24] we have that kp,22 = kp,66 = 0. If they are non-zero, it implies
that uncontrolled ship will automatically keep its course and has a “preferred”
position in the plane. This is clearly not true.

Model VIII (Linearized 4-DOF rectangular-prism u-tank model).

Mr4 q̈r4 +Dr4 q̇r4 +Kr4(t)qr4 = Br4 ũ+ τe,r4(t) (8.28)

where Mr4 is defined in (8.23), Dr4 in (8.25), Kr4 in (8.27), Br4 in (8.24) and τe,r4
in (8.26).
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8. Rectangular-prism u-tanks and comparison to an existing model

The model found in Lloyd [57, 58] is a linear, four-degree-of-freedom model,
consisting of sway, roll, yaw and a tank state. The model is derived based on
Newtonian mechanics. The model assumes a rectangular u-tank as in (8.1)–(8.3)
with ε = 0 and lr = ld.

We rewrite the model of Lloyd [57, 58] so that it has the same states as the
model presented here.1

Model IX (The model of Lloyd [57, 58]).

MLq̈r4 +D4q̇r4 +KLqr4 = B4u+ τe,4(t) (8.29)

where qr4 , D4, B4 and τe,4 are as in Model VIII, and

ML =


m+mA,22 mA,24 mA,26 m2t

mA,42 J1,1 +mA,44 mA,46 m4t

mA,62 mA,64 J3,3 +mA,66 m6t

m2t m4t m6t m̄t



KL =


0 0 kp,26 0
0 kp,44 + gmzg kp,46 gρtlrwrw
0 0 kp,66 0
0 gρtlrwrw 0 2gρtlrwr


where matrix parameters are the same as in Model VIII.

This model is largely identical to the linear 4-DOF u-tank Model VIII. The main
difference is in the mass matrix. In the model of Lloyd [57, 58], the only effect on
the inertia matrix of the ship–tank system is adding the coupling terms (m2t, m4t

and m6t) and m̄t. In the calculations shown in this chapter and Chapter 7, the
mass of the tank fluid will also change the other elements of the inertia matrix.
Loading the tank with water will increase the ship’s mass, and also changes its
distribution. This changes the total mass of the ship, the center of gravity and the
moment of inertia. This is not included in the model of Lloyd [57, 58]. However,
the mass of the tank fluid is likely to be quite low compared to the mass of the ship
(1–5 % [57, 58]), so this might not greatly affect the behavior of the model. The
model of Lloyd [57, 58] also assumes that the body center of origin is the center of
gravity, and that J1,3 = 0.

In addition, there are a few differences in the spring term. However, the only
difference related to ship–tank interaction is the lack of the term gxbtmt, which as
been neglected in the model of Lloyd [57, 58].

1Note that in Lloyd [57, 58], the states called are x2, x4, x6 and τ . These equal, respectively,
y, φ, ψ and qt/w. Also note that there are several signage errors in Lloyd [57, 58]:

Lloyd [58, Equation (12.53a) p. 265] reads aτ2 = −Qt, but should read aτ2 = Qt.

Lloyd [58, Equation (12.53d) p. 265] reads aτ6 = −QtxB1
, but should read aτ6 = QtxB1

.

Lloyd [58, Equation (12.54b) p. 266)] reads a42ẍ2 + b42ẋ2 + (I44 + a44)ẍ4 + b44ẋ4 +
c44x4 + a46ẍ6 + b46ẋ6 + c46x6 − [a4τ τ̈ + c4τ τ ] = Fw40 sin(ωet + γ4), but should read
a42ẍ2 + b42ẋ2 + (I44 + a44)ẍ4 + b44ẋ4 + c44x4 + a46ẍ6 + b46ẋ6 + c46x6 + [a4τ τ̈ + c4τ τ ] =
Fw40 sin(ωet+ γ4).

These errors are propagated throughout Lloyd [57, 58].
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8.2. Comparison to the model of Lloyd [57, 58]

Of course, the main advantage of the 7-DOF u-tank Model VII over the model
of Lloyd [57, 58] is that while that model assumes one very specific tank shape, is
completely linear and only has four degrees of freedom, the new model can handle
generic u-tank shapes, is as non-linear as is required, and has all seven degrees of
freedom.
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Chapter 9

Experimental verification of the
u-tank model

In this chapter, the u-tank model of Chapter 7 is experimentally verified.
The results in this chapter are based on the results of Chapter 7 and Holden

et al. [44].

9.1 Laboratory setup

To test the validity of the model of Chapter 7, we conducted 44 experiments at
SINTEF Marintek’s facilities in Trondheim. Since most u-tank models are of rect-
angular tanks, we decided to perform experimens on such a tank.

The purpose of the experiments was to verify the model of Chapter 7, and to
determine the importance of the model nonlinearities.

9.1.1 The rig

The lab setup consists of a mechanized see-saw, powered by a computer-controlled
electrical step motor. A rectangular tank of the type seen in Figure 8.2, described
by (8.1)–(8.5) with ε = 0, is placed on top of the movable part. The complete rig
can be seen in Figure 9.1.

The motion of the see-saw is analogous to the rolling motion of the ship. The rig
is also capable of moving sideways, analogous to sway, but this capability was not
used in the experiments. The rig, excluding the tank, was borrowed from SINTEF
Marintek.

The tank has dimensions

wr = 10 cm

w = 70 cm

lr = ld = 40 cm

hd = 4 cm

rd = 9.8 cm.
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9. Experimental verification of the u-tank model

Figure 9.1: The laboratory setup at SINTEF Marintek.

All measurements are internal.
Due to the extremely elongated cross-section of the duct, it was impossible to

fit an off-the-shelf valve on the tank. Instead, a gate mechanism was used: In the
middle of the duct, an operator can lower or raise a gate to block the fluid or allow
it to flow from one reservoir to the other. The gate is bigger than the duct cross
section, and the interior of the duct is grooved to allow room for the gate. This
design limits leakage. Despite this, the gate is not entirely water-tight. Also, when
the gate is open, some fluid will flow up into the gate mechanism itself. These
effects are small, and only measurable when the fluid is not in motion.

The tank was filled to a level of ht ≈ 18 cm with tap water. A few grams of
the coloring agent “fluoresceinum natricum” was added for easier observation of the
behavior of the fluid.

The parameters ρt and g were assumed to take the values

ρt = 1 000 kg/m3

g = 9.81 m/s2.

9.1.2 Input

The rig is capable of running pre-programmed roll patterns, by use of the step
motor, limited to a range of φ ∈ [−25, 25]◦. The motor can handle speeds well in
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excess of those needed in the experiments, even under full load.

9.1.3 Measurements

A potentiometer hooked up to the rotating axis was used to measure actual roll
angle.

Three sets of sensors were used to measure the torque. The sensors all work by
measuring the deformation of the beam upon which the tank is resting, which is
proportional to the torques involved.

Two of the torque sensors measure the component of the torque normal to the
beam upon which the tank is resting. The average of the two measurements is
used. The final torque sensor measures the component of the torque parallel to the
beam upon which the tank is resting. The total torque is then the sum of these
two components, appropriately scaled.

The depth is measured with two separate resistive sensors, one on the port
side and one on the starboard side. On each sensor, two straight, rigid, conductive
rods are inserted into the fluid, which closes the circuit. The greater the depth of
the fluid in the reservoir, the further up the rods the circuit is closed, giving a
lower measured resistance. The port sensor measures qt directly, and the starboard
sensor measures −qt. After sign-reversing the starboard measurement, the average
of these two measurements is used.

9.1.4 Revised dynamics

The artificial laboratory setup has some key differences with the real-world system
described in Chapter 7. The main differences are:

1. Motion is restricted to roll and the tank state.

2. Roll is the input into the system, not a state.

3. There are no pressure-induced forces.

4. There is no damping in roll.

5. The tank is a rectangular-prism tank as in Figure 8.1.

These differences necessitate some changes to the model.
Ignoring, for now, all points except for points 1 and 5, we can define several

different models based on Chapter 7, even limited to two degrees of freedom (roll
and the tank state).

We define the state qr2 , [φ, qt]
T and define:

Model X (Model L). The model is given by

L :

{
Mr2(qt)q̈r2 + Cr2(qt, q̇r2)q̇r2 +Dr2(q̇r2)q̇r2

+kr2(qr2 , t) = τe,r2(t) +Br2ut
(9.1)
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with

Mr2(qt) =

[
J11 +mA,44 +Mω,11(qt) ρtwrlrw(ht + rd)

ρtwrlrw(ht + rd) ρt

(
2htwrlr +

w2
rl

2
rw

hdld

) ]

Mω,11(qt) = 2ρtwrlr(ht − rd)q2
t + ρthdldw

(
rd2 − w2

12

)
+ ρt

(
2r2
d +

w2

2
+

2

3
h2
t − 2rdht

)
wrlrht

Cr2(qr2 , q̇r2) = 2ρtx
b
twr(ht − rd)qt

[
q̇t φ̇

−φ̇ 0

]
Dr2(q̇r2) =

[
d44 + d44,n|φ̇| 0

0 dtt + dtt,n|q̇t|

]

kr2(qr2 , t) =


(
kp,4(φ, t) + gmzg sin(φ) + gρtwwrlrqt cos(φ)

+gρt
[
wrlr(2rdht − h2

t − q2
t ) + hdldrdw

]
sin(φ)

)
gρtwrlrw sin(φ) + 2gρtwrlrqt cos(φ)


τe,r2(t) =

[
0 0 0 1 0 0 0
0 0 0 0 0 0 1

]
τ̃(t)

Br2 =
[
0, bTt

]T
where kp,4 is the fourth element of kp of the 6-DOF Model III with the non-roll,
non-tank states set to zero.

Model XI (Linearized model Ll). Linearizing the model L about qr2 = 0 gives
the model

Ll : Mr2(0)q̈r2 +Dr2(0)q̇r2 +Kr2(t)qr2 = τe,r2(t) +Br2ut (9.2)

where

Kr2(t) =

[
kp,44(t) + gmzg + gρt [wrlrht(2rd − ht) + hdldrdw] gρtwrlrw

gρtwrlrw 2gρtwrlr

]
where kp,44 =

∂kp,4
∂φ

∣∣∣
φ=0

and the other matrices are as defined in Model X.

Model XII (Extended model eL). The model takes the form

eL :

{
Mr2(qt)q̈r2 + Cr2(qt, q̇r2)q̇r2 + D̄r2(q̇r2)q̇r2

+kr2(qr2 , t) = τe,r2(t) +Br2ut
(9.3)

where

D̄r2(q̇r2) =

[
d44 + d44,n|φ̇| d4t + d4t,n|q̇t|

0 dtt + dtt,n|q̇t|

]
and the other matrices are as defined in Model X.
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Model XIII (Linearized extended model eLl). Linearizing the extended model
eL about qr2 = 0 gives the model

eLl : Mr2(0)q̈r2 + D̄r2(0)q̇r2 +Kr2(t)qr2 = τe,r2(t) +Br2ut (9.4)

where the system matrices are as defined in Models X–XII.

Apart from the extra tank-induced torque in roll, the extended models are
identical to their regular counterparts.

The creation of the two extended models eL and eLl was prompted by Newton’s
Third Law. As the fluid is moving through the u-tank, a damping force is exerted
upon it by contact with the tank walls. By the Third Law, an equal and opposite
force is acting on the tank walls and thus the ship itself. This generates a moment
in roll. On the other hand, roll experiences damping from the surrounding ocean,
not from the tank fluid, so roll gives rise to no similar force on the tank fluid.

The question, of course, is whether or not this extra tank-induced moment in
roll is significant.

Roll dynamics

During the experiments, roll is the input, not a state. As such, the actual roll angle
φ is assumed to perfectly follow the commanded roll angle φd. The rolling motion
is still governed by a differential equation. If we assume the model L of Model X
to be correct, by Euler’s second axiom

J11φ̈ = −gmzg sin(φ) + τc + τL(qr2 , q̇r2 , q̈r2) (9.5)

where τc is the control input and

τL(qr2 , q̇r2 , q̈r2) = −Mω,11(qt)φ̈− ρtwrlrw(ht + rd)q̈t

− gρt
[
wrlr(2htrd − h2

t − q2
t ) + hdldrdw

]
sin(φ)

− gρtwwrlrqt cos(φ)− 4ρtx
b
twr(ht − rd)qtφ̇q̇t.

(9.6)

τL is the moment in roll that would be zero if ρt = 0. In the case where there is
no fluid in the tank, τL ≡ 0. There is no surrounding water, and thus no pressure-
induced forces.

The measured moment τm = −τc, giving

τm = τL(qr2 , q̇r2 , q̈r2)− J11φ̈− gmzg sin(φ).

As φ(t) ≡ φd(t) by assumption, the measured moment is then

τm = τL([φd, qt]
T, [φ̇d, q̇t]

T, [φ̈d, q̈t]
T)− J11φ̈d − gmzg sin(φd). (9.7)

With no fluid in the tank, the measured roll moment is τm,0 = −J11φ̈d −
gmzg sin(φd).

Taking the difference τm − τm,0 yields

τm − τm,0 = τL([φd, qt]
T, [φ̇d, q̇t]

T, [φ̈d, q̈t]
T).
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9. Experimental verification of the u-tank model

All experiments are therefore done both with and without fluid in the tank. The
difference of the two measurements yields the total tank-induced moment in roll.

Doing similar analysis for the other models, we get

τL = −Mω,11(qt)φ̈d − ρtwrlrw(ht + rd)q̈t

− gρt
[
wrlr(2htrd − h2

t − q2
t ) + hdldrdw

]
sin(φd)

− gρtwwrlrqt cos(φd)− 4ρtx
b
twr(ht − rd)qtφ̇dq̇t

(9.8)

τLl = −Mω,11(0)φ̈d − ρtwrlrw(ht + rd)q̈t

− gρt [wrlrht(2rd − ht) + hdldrdw]φd − gρtwwrlrqt
(9.9)

τeL = −Mω,11(qt)φ̈d − ρtwrlrw(ht + rd)q̈t − (d4t + d4t,n|q̇t|) q̇t
− gρt

[
wrlr(2htrd − h2

t − q2
t ) + hdldrdw

]
sin(φd)

− gρtwwrlrqt cos(φd)− 4ρtx
b
twr(ht − rd)qtφ̇dq̇t

(9.10)

τeLl = −Mω,11(0)φ̈d − ρtwrlrw(ht + rd)q̈t − d4tq̇t

− gρt [wrlrht(2rd − ht) + hdldrdw]φd − gρtwwrlrqt
(9.11)

as the total tank-induced torque in roll for, respectively, the model L, the linearized
model Ll, the extended model eL and the extended linearized model eLl.

Tank dynamics

The nonlinear dynamics of (9.1) and (9.3) (models L and eL) simplify down to

m̄tq̈t + (dtt + dtt,n|q̇t|) q̇t + 2gρtwrlrqt cos(φd)

+ gρtwrlrw sin(φd) + ρtwrlrw(ht + rd)φ̈d = 0.
(9.12)

This is a second-order non-homogenous ordinary differential equation with φd as
input.

The linear dynamics of (9.2) and (9.4) (models Ll and eLl) simplify down to

m̄tq̈t + dttq̇t + 2gρtwrlrqt + gρtwrlrwφd + ρtwrlrw(ht + rd)φ̈d = 0. (9.13)

This is a linear, second-order nonhomogenous ordinary differential equation with
φd as input.

9.2 Tank free-decay tests

The purpose of these experiments was to determine the damping parameters in the
tank, parameters that cannot be determined theoretically.

9.2.1 Experiment

To determine the damping in the tank, four experiments of two types were per-
formed. They can be classified as follows:
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Type A (φd(t) ≡ 0, qt(0) 6= 0) With the gate open, the tank was inclined to a
non-zero roll angle. When the fluid level had stabilized, the gate was closed,
and the tank returned to zero angle. When the fluid surface was calm, the
gate was opened and the behavior of the fluid recorded.

Type B (φd(t) ≡ φd(0) 6= 0, qt(0) ≈ 0) With the gate closed and the tank fluid
in the equilibrium position, the tank was inclined to a non-zero roll angle.
When the fluid surface was calm, the gate was opened and the behavior of
the fluid recorded.

There were two experiments of each type:
A1 φd(t) ≡ 0, qt(0) = −3.65 cm, q̇t(0) = 0.62 cm/s.
A2 φd(t) ≡ 0, qt(0) = 2.95 cm, q̇t(0) = −0.20 cm/s.
B1 φd(t) ≡ 6.78◦, qt(0) = −0.57 cm, q̇t(0) = −0.29 cm/s.
B2 φd(t) ≡ −6.89◦, qt(0) = 0.53 cm, q̇t(0) = 0.24 cm/s.

As the derivatives of the states were not directly measured, the values for q̇t(0)
are estimates calculated by taking the numerical derivative of qt, which is directly
measured, at t = 0.

9.2.2 Data processing

The data series gathered from tank free decay tests were processed with the fol-
lowing procedure (each step is performed on the output of the previous step):

1. Zero-phase lowpass-filtering with cut-off frequency of 3.0 Hz.
2. Downsampling from 200 Hz to 50 Hz.
3. Re-calibration.
4. Averaging the two depth measurements to get the final depth measurement.

9.2.3 Results

To determine the unknown parameters, least-squares curve fitting was used to fit
the model to the experimental data.

For the nonlinear models L, eL,

(dtt, dtt,n, m̄t) = arg min
dtt,dtt,n,m̄t

∑
t

‖qt(t)− q̄t(t; dtt, dtt,, m̄t)‖22

where qt(t) is the measured value of qt and q̄t(t; dtt, dtt,n, m̄t) is the simulated value
of qt using the specific parameters and (9.12).

For the linear models,

(dtt, m̄t) = arg min
dtt,m̄t

∑
t

‖qt(t)− q̄t(t; dtt, m̄t)‖22

where qt(t) is the measured value of qt and q̄t(t; dtt, m̄t) is the simulated value of
qt using the specific parameters and (9.13).

Each of the minimization problems were solved for the four time series, each
truncated so that they were of equal length. The simulations were started with the
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9. Experimental verification of the u-tank model

same initial conditions as the real system, and then simulated without input from
the measured data.

The results of the curve fitting can be seen in Tables 9.1 and 9.2. As an example,
the results of experiment A1 can be seen in Figure 9.2.

Table 9.1: Tank decay tests, linear models (Ll and eLl).

A1 A2 B1 B2 Avg. Unit

dtt 18.70 16.51 19.18 19.61 18.50 kg/s

m̄t 79.3 79.5 80.4 80.2 79.9 kg

MSE 1.28 0.98 1.36 1.26 1.22 10−2cm2

Table 9.2: Tank decay tests, nonlinear models (L and eL).

A1 A2 B1 B2 Avg. Unit

dtt 5.34 5.26 6.83 7.48 6.24 kg/s

dtt,n 279.7 293.5 264.3 251.2 272.2 kg/m

m̄t 79.1 79.3 79.5 79.3 79.3 kg

MSE 0.13 0.24 0.52 0.46 0.34 10−2cm2
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Figure 9.2: Tank decay test experiment A1.

As can be seen from Tables 9.1 and 9.2, the error of the nonlinear models is
less than a third (27.9 %) of the error of the linear models. Changing the nonlin-
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9.2. Tank free-decay tests

ear damping function to a higher-order polynomial did not significantly increase
accuracy.

For use in the linear models, the average parameters in Table 9.1 will be used,
while in the nonlinear models the average parameters in Table 9.2 will be used.

9.2.4 Analysis

The inertial tank fluid mass m̄t, which is distinct from the actual tank fluid mass
mt, can be computed from (8.12). However, for a tank with a non-smooth midline
function, the velocity of the tank fluid becomes poorly defined at the points at
which the spatial derivative of the midline function doesn’t exist. In this case,
the intersection between the duct and the reservoirs. One should therefore expect
inaccuracies in the model parameters, most notably in the inertial tank fluid mass
m̄t, which is based on the kinetic energy of the fluid. This is why the optimization
algorithm was free to choose this parameter.

If we look at the theoretical value of m̄t, it should take the value m̄t =
ρtwrlr [2ht + (wwr)/hd] (since lr = ld). For the tank used in the experiments,
this gives m̄t = 84.4 kg. The algorithm gives a value of m̄t of approximately 79.3
kg, a discrepancy of about 6 % from the numbers estimated by the optimization
algorithm.

Is this difference significant? Instead of letting the curve fitting algorithm choose
m̄t, we could use the theoretical value and just let the algorithm choose the damping
parameters. This gives results as in Tables 9.3 and 9.4.

Table 9.3: Tank decay tests, linear models (Ll and eLl). Theoretical value of m̄t.

A1 A2 B1 B2 Avg. Unit

dtt 30.7 28.3 27.2 28.2 28.6 kg/s

MSE 8.59 6.71 5.97 6.27 6.89 10−2cm2

Table 9.4: Tank decay tests, nonlinear models (L and eL). Theoretical value of m̄t.

A1 A2 B1 B2 Avg. Unit

dtt 43.3 42.3 38.5 38.9 40.7 kg/s

dtt,n -232 -321 -186 -170 -227 kg/m

MSE 8.34 6.44 6.68 7.00 7.11 10−2cm2

In the linear case, the mean square error has increased by 560 %, while in the
nonlinear case, the mean square error has increased by 2 000 %.

This huge discrepancy is because m̄t determines the natural frequency of the
tank fluid, and even a small discrepancy here causes the simulations to be com-
pletely out of sync with the experimental data.

The areas of the tank where the model does not accurately reflect real behavior
are the places where the spatial derivative of the tank midline function is discontin-
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9. Experimental verification of the u-tank model

uous, i.e., the corners of the tank used in the experiments. Keeping the dimensions
of the tank constant, the uncertain region increases in size with the ratio of duct
height to fluid depth, hd/ht. One would expect that the discrepancy between ac-
tual values and theoretical values will increase as the ratio hd/ht increases. At any
values hd/ht ≥ 2, the model loses all validity as the duct will no longer be filled
with fluid. (In the experiments, hd/ht ≈ 0.22.)

This suggests that, for maximum accuracy, the value of m̄t should be computed
based on experimental data, rather than computed from theory, especially for high
values of hd/ht.

9.3 Sinusoidal input tests

To determine the validity of the theoretical models, and determine the value of
the parameters d4t and d4t,n, a series of experiments with sinusoidal inputs were
performed.

9.3.1 Experiment

To get a smoother transient behavior of the system, an increasing sinusoid was
used instead of a pure sinusoid. The input took the form

φd(t) =


0 ∀ t ∈ [0, 5]

ru(t; 5, 5)A sin($(t− 5)) ∀ t ∈ (5, 330]
rd(t; 5, 330)A sin($(t− 5)) ∀ t ∈ (330, 380]

0 ∀ t ∈ (380,∞)

(9.14)

with

ru(t;T,∆) =
T − (T + t−∆)e−(t−∆)/T

T
(9.15)

rd(t;T,∆) =
(T + t−∆)e−(t−∆)/T

T
. (9.16)

An example input signal can be seen in Figure 9.3.
All inputs had amplitude A = 7◦, while the input frequencies $ were (in rad/s,

to three decimals precision) $ ∈ {0.500, 1.000, 2.199, 2.387, 2.576, 2.764, 2.858,
2.953, 3.047, 3.141, 3.330, 3.518, 3.707, 3.895, 4.500, 5.000}.

For each $, experiments were performed twice. Once with the gate open (where
the tank fluid is free to move) and once without tank fluid, giving a total of 32
experiments.

9.3.2 Data processing

The data series gathered from experiments with sinusoidal input were processed
with the following procedure (each step is performed on the output of the previous
step):

1. Zero-phase bandpass-filtering with pass band between 0.05 Hz and 3.0 Hz.
2. Downsampling from 200 Hz to 50 Hz.
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9.3. Sinusoidal input tests
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Figure 9.3: Example input signal. A = 7◦, $ = 1 rad/s.

3. Re-calibration.

4. a) Averaging the two depth measurements to get the final depth measure-
ment.

b) Calculating the roll moment based on the normal and parallel compo-
nents.

9.3.3 Results

Tank fluid

For the motion of the tank fluid (see (9.12) and (9.13)) it was deemed advantageous
to create a Bode diagram to summarize the data. However, the system (9.12)
is nonlinear, and a standard Bode diagram is only applicable for linear systems.
Instead, the following procedure was used:

For any single-input single-output system with input ū and output ȳ we define
the functions amp and ph as

amp(ȳ, ū; t1, t2) =

max
t∈[t1,t2]

|ȳ(t)|

max
t∈[t1,t2]

|ū(t)|

ph(ȳ, ū; t1, t2) = arccos

 2

t2 − t1

∫ t2

t1

ȳ(t)

max
t∈[t1,t2]

|ȳ(t)|
ū(t)

max
t∈[t1,t2]

|ū(t)| dt

 .
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9. Experimental verification of the u-tank model

Assuming that ū and ȳ both are sinusoidal signals, the two functions amp and
ph approximate the amplitude and phase difference between ū and ȳ. For a linear
system, with t2 and t1 given wide enough range, amp and ph are equal to the
amplitude and phase difference.

Considering the roll angle φ = φd as input and the tank state qt as the out-
put, the functions amp(qt, φd; t1, t2) and ph(qt, φd; t1, t2) (or rather, their discrete
equivalents) were therefore used as a measure of the “amplitude” and the “phase”
of the tank state. The time interval was chosen to be t1 = 100 s to t2 = 300 s,
where the system is in steady-state.

The simulations were initialized with the same initial conditions as the real sys-
tem, and then simulated without input from the measured data. The tank damping
parameters found in Section 9.2.3 were used in the simulation. A comparison of
the simulation and the measurements can be seen in Figure 9.4, showing amp in
dB (using 20 log10(amp)) and ph in degrees. The mean square errors are in Table
9.5. More detailed example figures can be seen in Figures 9.5 and 9.6.
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Figure 9.4: “Bode” diagram: Roll [rad] to depth [m].

The nonlinear models L and eL are significantly better fits to the experimental
results than the linear models Ll and eLl, having only 0.14 % of the mean square
error, a reduction by three orders of magnitude. However, it can be shown that this
is almost entirely due to the presence of the nonlinear damping terms. Using linear
damping terms in the (still) nonlinear models causes the accuracy of the linear and
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9.3. Sinusoidal input tests

Table 9.5: Mean square errors in qr2 , sinusoidal input.

$ MSE [cm2]
[rad/s] Ll/eLl L/eL
0.5000 0.0052 0.0038
1.0000 0.0024 0.0036
2.1991 0.2740 0.0068
2.3876 1.0679 0.0222
2.5761 4.6073 0.0918
2.7646 22.8388 0.1261
2.8588 46.8886 0.3873
2.9531 111.7322 0.2022
3.0473 265.9854 0.1768
3.1416 438.5790 0.1409
3.3301 93.7724 0.1183
3.5186 15.1579 0.0550
3.7071 3.0985 0.0764
3.8956 0.4164 0.0028
4.5000 0.0010 0.0006
5.0000 0.0003 0.0005

Avg. 62.7767 0.0884

q t
[c
m
]

time [s]

Exp.
Ll/eLl

L/eL

200 201 202 203 204 205
-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 9.5: Depth measurements, sinusoidal inputs, $ ≈ 2.576 rad/s.
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Figure 9.6: Depth measurements, sinusoidal inputs, $ ≈ 3.141 rad/s.

nonlinear models to be almost identical.

Roll moment

The tank-induced moment in roll is merely an analytical function of the states
and their derivatives, not a dynamical equation. As such, a Bode diagram is not
applicable for this data. Instead, a direct comparison between the calculated torque
and the measured torque is performed, and the mean square error computed.

To accurately reflect the differences in the models, the measured tank state was
not used in these calculations. Instead, the tank simulations from Section 9.3.3
were used. The linear models Ll and eLl were fed the linear simulation results, and
the nonlinear models L and eL were fed the nonlinear simulation results.

For the extended models eL and eLl there is the additional problem that the
damping terms d4t and d4t,n are unknown. To estimate them, we took the time
interval t ∈ [60, 315] s for all experiments (that is, the steady-state response) and
used least squares curve fitting on the entire data set to find the parameters that
best fitted the total data set. That is,

(d4t, d4t,n) = arg min
d4t,d4t,n

∑
t

‖τm(t)− τ̄eL(t; d4t, d4t,n)‖2

where

τ̄eL(t; d4t, d4t,n) = τeL([φd(t), qt(t)]
T, [φ̇d(t), q̇t(t)]

T, [φ̈d(t), q̈t(t)]
T; d4t, d4t,n)
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9.3. Sinusoidal input tests

for eL and
d4t = arg min

d4t

∑
t

‖τm(t)− τ̄eLl(t; d4t)‖2

where

τ̄eLl(t; d4t) = τeLl([φd(t), qt(t)]
T, [φ̇d(t), q̇t(t)]

T, [φ̈d(t), q̈t(t)]
T; d4t)

for eLl, where τm is the combined measured moment for all experiments, and τeL
and τeLl are as in Equations (9.10) and (9.11). Note that the measured value of qt
was used for the purpose of finding the parameters. This means that different data
sets were used for estimation and verification, as the verification was done using
the simulated values of qt.

For the nonlinear model eL, the parameters found were

d4t = 0.0578 kg·m/s
d4t,n = 4.3390 kg.

For the linear model eLl, the parameter found was

d4t = 1.3872 kg·m/s.

The experimental results are summarized in Table 9.6. More detailed example
figures can be seen in Figures 9.7 and 9.8.

Table 9.6: Mean square errors in roll moment, sinusoidal input.

$ Mean square error [(N ·m)2]
[rad/s] eLl Ll L eL
0.50 0.12 0.12 0.12 0.12
1.00 0.05 0.05 0.05 0.05
2.20 1.60 1.29 0.09 0.07
2.39 5.09 4.37 0.23 0.17
2.58 18.68 16.95 0.70 0.52
2.76 82.65 78.33 1.20 0.89
2.86 168.31 162.21 2.42 1.87
2.95 376.90 367.71 1.90 1.44
3.05 870.74 860.27 1.42 1.01
3.14 1352.17 1351.37 1.10 0.82
3.33 276.25 283.29 0.62 0.37
3.52 39.56 42.15 0.31 0.19
3.71 6.16 6.98 0.19 0.14
3.90 1.04 1.32 0.17 0.14
4.50 0.48 0.54 0.49 0.48
5.00 0.53 0.55 0.54 0.54

Avg. 200.02 198.59 0.72 0.55
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Figure 9.7: Torque measurements, sinusoidal inputs, $ ≈ 2.576 rad/s.
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Figure 9.8: Torque measurements, sinusoidal inputs, $ ≈ 3.141 rad/s.
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9.4. Pseudorandom input tests

As can be seen from the data, there is significant differences between the models.
The nonlinear models L and eL had three orders of magnitude lower mean square
error relative to the experimental data than the linear models Ll and eLl. The
extended model eL also outperformed the model L, having on average 24 % lower
mean square error and 41 % lower at the most. The difference is greatest around
the peak frequency (3.14 rad/s), as that is when the velocity of the tank fluid is
greatest. However, the mean square errors are so low for the nonlinear models, that
this difference is almost invisible to the naked eye.

The two linear models Ll and eLl perform, for all practical purposes, identi-
cally. The extended model, in fact, performs marginally worse and is slightly more
complicated. It is therefore reasonable to conclude that extending the linear model
is not worthwhile.

9.4 Pseudorandom input tests

The purpose of these experiments was to verify he model using a pseudorandom
desired roll angle φd.

9.4.1 Experiment

To approximate bandwidth-limited zero-mean Gaussian white noise, a sum of si-
nusoids with pseudorandomly selected frequencies and phases were used.

The pseudorandom input signals were generated as

φd(t) =

N∑
n=1

ϕn(t)

ϕn(t) =


0 ∀ t ∈ [0, 5]

ru(t; 2, 5)A sin($nt+ θn) ∀ t ∈ (5, 385]
rd(t; 2, 385)A sin($nt+ θn) ∀ t ∈ (385, 405]

0 ∀ t ∈ (405, 410]

with ru and rd as in (9.15) and (9.16).
The number of sinusoids N = 100. The amplitude of each sinusoid A = 7◦ in

all experiments. The phases θn were uniformly distributed in the range [0, 2π). The
frequencies $n were taken to lie in the range [0.7π, 1.2π) rad/s = [0.35, 0.6) Hz.
The frequency range was split into N evenly distributed frequencies $̄i, and $n

uniformly randomly selected from the range [$̄n, $̄n+1).
Example input series and their power spectral density can be seen in Figures

9.9 and 9.10.

9.4.2 Data processing

The data series gathered from experiments with pseudorandom input were pro-
cessed with the following procedure (each step is performed on the output of the
previous step):

1. Zero-phase bandpass-filtering with pass band between 0.05 Hz and 3.0 Hz.
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Figure 9.9: Pseudorandom input 1.
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Figure 9.10: Pseudorandom input 4.
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2. Downsampling from 200 Hz to 50 Hz.

3. Re-calibration.

4. a) Averaging the two depth measurements to get the final depth measure-
ment.

b) Calculating the roll moment based on the normal and parallel compo-
nents.

9.4.3 Results

Tank fluid

As before, the simulations were initialized with the same initial conditions as the
real system, and then simulated without input from the measured data. The tank
damping parameters found in Section 9.2.3 were used in the simulation. A Bode
diagram is no longer suitable, so direct comparison between the experimental data
and the models was performed. The results are summarized in Table 9.7. Example
time series can be seen in Figures 9.11 and 9.12.

Table 9.7: Mean square errors in qr2 , pseudorandom input.

Exp. MSE [cm2]
no. Ll/eLl L/eL
1 31.4629 0.0380
2 40.1877 0.0541
3 23.1057 0.0536
4 17.7036 0.0679

Avg. 28.1150 0.0534

As can be seen from the data, the error is significantly lower with the nonlinear
models than with the linear models, having a mean square error of only 0.19 %
of the linear models. Once again, however, this difference is almost entirely due to
the presence of the nonlinear damping terms in the nonlinear models. Using linear
damping terms in the (still) nonlinear models causes the mean square error of the
linear and nonlinear models to be almost identical.

Roll moment

As before, the estimated torques are directly compared to the measured torques.
For the extended models, the parameters d4t, d4t,n found in Section 9.3.3 were used.
To accurately reflect the differences in the model, the simulated tank responses from
Section 9.4.3 rather than the measured values were used to compute the estimated
torques. The linear models Ll and eLl were fed the linear simulation results, and the
nonlinear models L and eL were fed the nonlinear simulation results. The details
are summarized in Table 9.8. Example time series can be seen in Figures 9.13 and
9.14.
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Figure 9.11: Depth with pseudorandom input, experiment number 1.
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Figure 9.12: Depth with pseudorandom input, experiment number 4.
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Figure 9.13: Torque measurements, pseudorandom input, experiment number 1.
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Figure 9.14: Torque measurements, pseudorandom input, experiment number 4.
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Table 9.8: Mean square errors in roll moment, pseudorandom input.

Exp. Mean square error [(N·m)2]
no. eLl Ll L eL
1 122.068 121.463 0.604 0.576
2 156.355 155.888 0.969 0.837
3 89.966 89.659 0.587 0.494
4 68.591 68.445 0.415 0.326

Avg. 109.245 108.864 0.644 0.559

The data is largely consistent with the results presented in Section 9.3.3. The
nonlinear models L and eL had three orders of magnitude lower mean square error
relative to experimental data than the linear models Ll and eLl. The extended
model eL outperformed the model L, having 13 % lower mean square error, on
average. The pseudorandom experiments showed a lower reduction in mean square
error than the sinusoidal experiments because the tank fluid moves at a lower
velocity, on average, in the pseudorandom experiments. As before, the mean square
error of the nonlinear models is so low that the difference between L and eL is
almost invisible to the naked eye.

The two linear models Ll and eLl are again almost indistinguishable in quality,
and again the extended model is marginally worse.

9.5 Modeling revisited

From Sections 9.2–9.4, the extended model eL has the best fit with the experimental
data. However, the model is fairly complex, highly nonlinear and only marginally
better than the non-extended model L (which is also complex). Unfortunately, the
linear models eLl and Ll have significantly higher error relative to experimental
data. But, as was noted in Sections 9.2–9.4, the most important nonlinearities are
the damping terms. This suggests a simplified model.1

Model XIV (Simplified model Lr).

Lr : Mr2(0)q̈r2 +Dr2(q̇r2)q̇r2 +Kr2(t)qr2 = τe,r2(t) +Br2ut (9.17)

where Mr2 , Dr2 and Kr2 are as in Models X and XI.

Note that the linearization of Lr about qr2 = 0 is identical to Ll.
To test the model Lr, it and the models eL and Ll were simulated and compared.

For the pressure-induced torque, we used

kp,4(φ, t) =
g(m+mt)

24Ld

[
L2
b − 12L2

d +
L2
b

cos2(φ)

]
sin(φ).

1Note that this model is slightly different from the model eLr presented in Holden et al. [44].
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This corresponds to the hydrostatic pressure of a barge (box-shaped ship) of length
Ll, drought Ld and breadth Lb.

The following (arbitrary but consistent) parameters were used:

J11 = 237.13 kg·m2

m = 2475 kg

Ll = 7.37 m

Lb = 0.9 m

Ld = 0.3731 m

zg = 0.1119 m

mA,44 = 23.713 kg·m2

d44 = 25 kg·m2/s

These parameters are not based on any real ship. The tank parameters were the
same as those used (and found) in Sections 9.2–9.4. The mass of the tank fluid mt

is slightly more than 1 % of this ship’s mass m.
The system was excited by a generalized force τe,r2(t) given by

τe,r2(t) =

[
Aτ sin(ωτ t)

0

]
with frequency ωτ = 3.1524 rad/s, equal to the ship’s – and the tank’s – natural
frequency. Ten simulations were performed, all with initial conditions qr2(0) =
q̇r2(0) = 0, and Aτ ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50} N·m. The tank state qt
was limited to the range |qt| ≤ ht, so as not to violate the condition that the duct
is always full of fluid.

The results are summarized in Tables 9.9 and 9.10. The mean square errors in
Table 9.9 are based on steady-state data from t = 30 s to t = 100 s. An example
time series can be seen in Figure 9.15. For comparison the linear model Ll has also
been simulated.

The reduced model Lr is very accurate in predicting the correct amplitude for
both φ and qt, but is slightly off in phase. The phase error of the linear model Ll
varies depending on the simulation, and can be both greater and smaller than the
phase error of Lr. However, the linear model Ll is highly inaccurate in amplitude
for both states across all time series.

It is also worth noting that the linear model Ll overestimates the effectiveness
of the tank, mostly due to overestimating the response of the tank fluid. The linear
model estimates that the difference in fluid level between the port and starboard
reservoirs will be much greater than the nonlinear models estimate, which gives
an unreasonably high weight difference between port and starboard, and thus a
greater torque. As can be seen in Table 9.9, the most accurate model eL predicts
a reduction of, on average, 54 %, while the linear model Ll predicts a reduction of
67 % on average. The reduced model Lr predicts 54 % reduction.

If one uses a model with the nonlinear spring term kr2(qr2) rather than its lin-
earization about qr2 = 0, Kr2qr2 (i.e., a model identical to L except with Cr2 ≡ 0
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9.5. Modeling revisited
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Figure 9.15: Simulation results, Aτ = 35 N·m.
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9. Experimental verification of the u-tank model

andMr2 ≡Mr2(0)), the reduced model performs almost identically to the full mod-
els L and eL. However, this comes at a high cost in complexity. The reduced model
Lr can therefore probably serve as a useful design tool, especially for feedback con-
trol, combining simplicity with reasonable accuracy. This is further investigated in
Chapter 12.

Table 9.9: Mean square errors, simulations.

Aτ eL to Lr eL to Ll
[N·m] φ [(◦)2] qt [cm2] q1 [(◦)2] qr2 [cm2]

5 0.0000 0.0000 0.0340 0.0305
10 0.0000 0.0000 0.3893 0.2902
15 0.0001 0.0003 1.4595 1.1038
20 0.0017 0.0040 3.4996 2.8073
25 0.0125 0.0239 6.6244 5.6715
30 0.0573 0.0928 10.9539 9.6846
35 0.1941 0.2718 16.2193 16.3562
40 0.5272 0.6515 12.8853 18.8573
45 1.2102 1.3423 6.3290 20.2132
50 2.4334 2.4544 1.8136 24.1079

Avg. 0.4436 0.4841 6.0208 9.9122

Table 9.10: Estimated roll reduction tank vs. no tank, simulations.

Aτ Reduction [%]
[N·m] eL Lr Ll
5 77.0107 77.0111 77.7064
10 73.6133 73.6168 75.4787
15 68.7077 68.7540 73.3612
20 61.7126 61.8314 71.2425
25 55.3550 55.5995 69.1165
30 49.6062 50.0072 67.0226
35 44.4629 45.0067 64.9957
40 39.9191 40.5362 63.0462
45 35.9665 36.5259 61.1726
50 32.5646 32.9052 44.5092

Avg. 53.8919 54.1794 66.7652
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Take control of the input and you
shall become master of the output.

Chairman Sheng-ji Yang,
“Essays on Mind and Matter”,

Sid Meier’s Alpha Centauri

Part III

Control
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Chapter 10

The many ways of controlling
parametric roll

Control strategies for parametric roll resonance can roughly be categorized as direct
or indirect methods.

The direct methods are aimed at directly controlling the roll motion by gener-
ating an opposing roll moment, as seen in Holden and Fossen [39], Holden et al.
[42], Umeda et al. [90]. Direct methods can further be categorized as active or
passive. Active control uses actuators and feedback or feedforward, while with a
passive system that is not the case. For instance, u-tanks with a control system are
active, but they can also be used passive, letting the tank fluid moves on its owen
accord through the system.

Indirect strategies attempt to violate the empirical conditions necessary for the
onset of parametric roll resonance, as seen in Breu and Fossen [7], Jensen et al.
[47, 48], Ribeiro e Silva et al. [76].

A hybrid approach, doing both at the same time, is also possible, as seen in
Galeazzi [32], Galeazzi and Blanke [33], Galeazzi et al. [34].

A simple model of parametric roll resonance is the Mathieu equation [88]

m44φ̈+ d44φ̇+ [k44 + kφt cos(ωet+ αφ)]φ = uc

where m44 is the sum of the rigid-body moment of inertia and the added moment
of inertia in roll, d44 is the linear hydrodynamic damping coefficient, k44 is the
linear restoring moment coefficient, kφt gives the amplitude of the change in the
linear restoring coefficient and ωe is the encounter frequency. All the parameters
are considered constant. The control input is uc.

Direct methods use uc as control input, while indirect methods change ωe.
It is known [63] that the Mathieu equation parametrically resonates at ωe ≈

2
√
k44/m44. The encounter frequency ωe is the Doppler-shifted frequency of the

waves as seen from the ship. As the frequency is Doppler-shifted, it can be changed
by changing the speed of the ship, as seen in Chapters 5 and 11.

In this thesis, both direct and indirect control schemes are considered.
In Chapter 11, we present a controller that is capable of stopping parametric

resonance based on changing the encounter frequency. The main purpose of that
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10. The many ways of controlling parametric roll

chapter is to show that it is feasible to control parametric roll resonance by changing
the encounter frequency to violate the condition ωe ≈ 2

√
k44/m44. We refer to this

frequency detuning control.
Based on the 1-DOF roll Model IV of Chapter 5, we present a simple controller

based on a linear change of the encounter frequency achieved by variation of the
ship’s forward speed. We then prove mathematically that the proposed controller
is able to drive the ship out of parametric resonance, driving the roll motion to
zero. It is worth noting that the controller is in fact simple enough that a human
helmsman can perform the necessary control action, rendering a speed controller
unnecessary.

However, in practice, the usefulness of the controller depends on the ability of
the ship to rapidly perform a speed change. If the ship has high inertia or is at rest
with the engines turned off, it is unlikely that the ship will be able to change its
speed fast enough to avoid large roll angles.

There are also some disadvantages associated with direct control. Ships are often
not actuated in roll [24], as such systems are not necessary for propulsion. Possible
actuators include fins, tanks and gyro stabilizers [75]. During my PhD work, we
have focused on the use of u-tanks as actuators. These have the advantage that
they can be used even if the ship is at rest [58]. As they are internal, they do
not increase drag. Unfortunately, they do take up space inside the hull, potentially
decreasing the available space for other machinery, cargo or passengers.

The basic principle behind u-tank control is to use the weight and motion of the
fluid to give a direct moment in roll, which can be used to counteract parametric
resonance or other unwanted motion.

A disadvantage of u-tanks compared to other potential actuators, is that the
roll and tank modes are tightly coupled, and only indirectly give a control moment
in roll. Output stabilization (with roll angle as output and the tank state as an
internal state) tends to not leave the tank in its equilibrium position as seen in
Holden et al. [42].

In Chapter 12, we present a controller using a reduced-order (2-DOF) version
of 7-DOF u-tank Model VII of Chapter 7 that is capable of driving the roll angle
to zero in the presence of parametric roll resonance. The validity of the controller
is mathematically proven, and tested in simulation.
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Chapter 11

Frequency detuning control

As has been discussed in the previous chapters, ships can parametrically resonate
when the encounter frequency is about twice the natural roll frequency. From Chap-
ter 5, we have seen that the encounter frequency can be changed by changing the
velocity of the vessel. In this chapter, we present a controller that is capable of
stopping parametric roll by detuning the encounter frequency so that ωe 6= 2ωφ.

The results in this chapter are based on the results Holden et al. [43].

11.1 The model used

We assume, in this chapter, that the ship is not equipped with actuators in roll.
Instead, we change ωe (by changing the forward speed) to detune the encounter
frequency and thus violate a necessary condition for the existence of parametric
roll resonance.

To analyze the effects of speed changes, we need to use a model that is valid
under non-constant speed. As discussed in Chapter 5, the commonly used Mathieu
equation is not adequate for time-varying speed.

We will use the simplified 1-DOF Model IV of Chapter 5, given by

m44φ̈+ d44φ̇+

[
k44 + kφt cos

(∫ t

t0

ωe(t) dτ + αφ

)]
φ+ kφ3φ3 = 0 (11.1)

where φ is the roll angle, m44 is the sum of the rigid-body moment of inertia about
the x-axis and the added mass in roll, d44 is linear hydrodynamic damping, k44 is
the linear restoring moment coefficient, kφt gives the amplitude of the change in
the linear restoring coefficient and kφ3 is the cubic restoring moment coefficient.
These parameters are constant.

From Chapter 5, we have that the encounter frequency ωe is given by

ωe = ω0 − kwvn1 = ω0 − kw[1, 0, 0]Rvb (11.2)

and that, if the ship is not rotating (i.e., ωb ≡ 0), then

ω̇e = −kw[1, 0, 0]Rv̇b ≈ −kweT
xR[v̇b1, 0, 0]T

≈ −kwv̇b1 cos(θ) cos(ψ) ≈ −kwv̇b1 cos(ψ) (11.3)
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11. Frequency detuning control

by the assumption that |vb2|, |vb3| � |vb1| (i.e., the ship’s velocity is primarily due to
surge) and that θ ≈ 0. The ship is assumed to be sailing in head or stern seas, that
is cos(ψ) = 1 (head seas) or cos(ψ) = −1 (stern seas).

We can set v̇b1 directly; this is the forward acceleration and can be changed
by increasing or decreasing throttle. It will, however, be limited, so we take it to
satisfy |v̇b1| ≤ v̇b1,max. Thus, we take ω̇e , uc to be the control input, satisfying

|ω̇e| = |uc| ≤ umax = |kw|v̇b1,max . (11.4)

Note that the assumption that the forward speed changes only slowly implies
that vb1,max is quite small. The assumption of slow speed change is a necessity to
derive the Model IV by a quasi-steady approach, as detailed in Chapter 5.

As we can see from the above equation, umax depends on the size of v̇b1,max and
kw. For the type of large, slow vessels that are susceptible to parametric resonance,
v̇b1,max is indeed likely to have quite a low value. For ships to parametrically res-
onate, the wave length has to be rather long, otherwise kφt will be too small [40].
A long wave length implies a small kw, since kw = 2π/λ if λ is the wave length.
Thus umax is quite small.

11.2 Control design

The control objective is to design uc such that the origin of the (unforced) roll
subsystem (11.1) is (at least) asymptotically stable. Choosing a v̇b1 so that ω̇e is
equal to the desired uc is a control allocation problem.1

11.2.1 Control principle

The basic control principle is to (slowly) change the encounter frequency from an
undesired value ωe,0 to a desired value ωe,1.

We tentatively choose the controller

uc(t) =

 0 ∀ t ∈ [t0, t1]
ε ∀ t ∈ [t1, t2]
0 ∀ t ∈ [t2,∞)

(11.5)

for some small constant ε, with t2 ≥ t1 ≥ t0. The initial time is t0.
If ωe(t0) = ωe,0, then

ωe(t) =

∫ t

t0

u(τ) dτ + ωe,0 =

 ωe,0 ∀ t ∈ [t0, t1]
ωe,0 + ε(t− t1) ∀ t ∈ [t1, t2]

ωe,1 ∀ t ∈ [t2,∞)
(11.6)

1It is also possible to change ωe by changing course (i.e., changing ψ). This will have the
unwanted side effect that the ship will now be directly excited by waves, which may also result
in relatively large roll amplitude in the type of seas that give parametric resonance. Due to time
constraints, changing ψ to change the encounter frequency was not investigated during my PhD
work.
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11.2. Control design

where ωe,1 = ωe,0 + ε(t2 − t1). This gives

∫ t

t0

ωe(τ) dτ =

 ωe,0(t− t0) ∀ t ∈ [t0, t1]
ωe,0(t− t0) + 1

2ε(t− t1)2 ∀ t ∈ [t1, t2]
ωe,1(t− t2) + ωe,0(t2 − t0) + 1

2ε(t2 − t1)2 ∀ t ∈ [t2,∞)
.

If cos(ψ) ≡ ±1 and vb2 = vb3 = θ = 0, then

ωe(t) = ω0 − kwvb1 cos(ψ) (11.7)

and the encounter frequency of (11.6) can then be achieved with a surge velocity
of

vb1 =
ω0 − ωe(t)
kw cos(ψ)

=
1

kw cos(ψ)

 ω0 − ωe,0 ∀ t ∈ [t0, t1]
ω0 − ωe,0 − ε(t− t1) ∀ t ∈ [t1, t2]

ω0 − ωe,1 ∀ t ∈ [t2,∞)
. (11.8)

Proving that the controller (11.5) works is done in two steps: First, ensuring
that there exists a (unique finite) solution of (11.1) at t = t2. This step is done in
Appendix D.

Secondly, we need to prove that if ωe(t) ≡ ωe,1 ∀ t ≥ t2, then the solution to
the initial value problem

m44φ̈+ d44φ̇+ [k44 + kφt cos (ωe,1t+ ᾱφ)]φ+ kφ3φ3 = 0 ,

φ(t2) = φ2, φ̇(t2) = φ̇2 ,
(11.9)

where

ᾱφ , αφ − ωe,1t2 + ωe,0(t2 − t0) +
1

2
ε(t2 − t1)2

is a constant, goes to zero for all φ2, φ̇2.

11.2.2 The system (11.9) in the time interval t ∈ [t2,∞)

From the results in Appendix D, we know that there exists a finite solution to
(11.1), valid at t = t2. From t ≥ t2, the trajectories of the system will be the
solution to the initial value problem (11.9).

From Nayfeh and Mook [63], we know that there are parameter values of ωe,1
which ensure that the trajectories of the system (11.9) go to zero. If we assume
that ωe,0 ≈ 2ωφ (where parametric resonance of (11.1) is known to occur), we can
find theoretical values for the regions of stability from the approximate methods
of Nayfeh and Mook [63].

Theorem 11.1 (Frequency detuning control). The behavior of (11.9) can be
categorized into three different categories, depending on the value of ωe,1:

• If 0 ≤ ωe,1 ≤ ωe, then the origin of (11.9) is globally attractive.
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11. Frequency detuning control

• If ωe < ωe,1 ≤ ωe, then the origin of (11.9) is unstable, and there exists a
high-amplitude, stable limit cycle. All trajectories of (11.9) converge to this
limit cycle, with the exception of those starting in the origin.

• If ωe,1 > ωe, then the origin of (11.9) is locally asymptotically stable, there
exists a high-amplitude, asymptotically stable limit cycle and a slightly lower-
amplitude, asymptotically unstable limit cycle.

ωe and ωe are the solutions to the equations√
1− d2

44ω
2
e

k2
φt

− m44ω
2
e

kφt

(
2

√
k44

m44ωe
− 1

)
= 0 (11.10)√

1− d2
44ω

2
e

k2
φt

+
m44ω

2
e

kφt

(
2

√
k44

m44ωe
− 1

)
= 0 . (11.11)

In this theorem, asymptotic stability of limit cycles follows the definition of Khalil
[52, Definition 8.1].

Proof. To simplify the analysis, we define the alternative dimensionless time scale

t̃ ,
1

2
ωe,1t+ ᾱφ (11.12)

giving

d

dt
=

1

2
ωe,1

d

dt̃
d2

dt2
=

1

4
ω2
e,1

d

dt̃2
.

Using primes to indicate derivative with respect to t̃, we rewrite the system
(11.9) as

φ′′ + 2ιγφ′ +
[
κ+ 2ι cos(2t̃)

]
φ+ αιφ3 = 0 (11.13)

where

ι =
2kφt

m44ω2
e,1

γ =
d44ωe,1

2kφt

κ =
4k44

m44ωe,1

α =
2kφ3

kφt

are all positive dimensionless parameters. It is assumed that ι is small.
Equation (11.13) is known to parametrically resonate if κ ≈ 1 (i.e., ω2

e,0 ≈
4k44/m44 = 4ω2

φ; the encounter frequency is twice the natural roll frequency).
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11.2. Control design

Using an O(ι) (big O notation) approximation to the solution of (11.13), Nayfeh
and Mook [63] derives a solution using the method of multiple scales (see Nayfeh
and Mook [63]) given by

φ = a cos(t̃− β/2) +O(ι) (11.14)

where a and β are slowly time-varying functions.
Defining the alternative (also dimensionless) time scale

t̄ = ιt̃ (11.15)

(which is slowly varying) and letting
√
κ = 1− ις (11.16)

(with ς representing the nearness of κ to unity, and thus the system to paramet-
ric resonance), a and β satisfy the (nonlinear homogenous ordinary) differential
equations

∂a

∂t̄
= − a

2
√
κ

sin(β)− γa (11.17)

a
∂β

∂t̄
= 2ςa− a√

κ
cos(β)− 3α

4
√
κ
a3 . (11.18)

The a–β system has equilibrium points (corresponding to a steady-state peri-
odic motion of φ, i.e., a limit cycle) given by

a = 0, β arbitrary (11.19)

(the trivial solution) and

sin(β) = −2
√
κγ, cos(β) = 2ς

√
κ− 3α

4
a2 . (11.20)

Since
√
κ = 1− ις, the non-trivial steady-state solution of φ has the amplitude

a2 =
8ς

3α
± 4

3α

√
1− 4γ2 (11.21)

where only the positive root is relevant.
If 2γ > 1, then (11.21) has no real roots and only the trivial steady-state solution

exists. As this is equivalent to high damping, if 2γ > 1, parametric resonance will
not occur. (The origin of (11.13) is then globally attractive for all ωe,1).

If 2γ ≤ 1, then there is one real root of (11.21) if 2|ς| <
√

1− 4γ2, and two if
2|ς| >

√
1− 4γ2. The condition 2ς = −

√
1− 4γ2 corresponds to (11.10) (giving

ωe) and 2ς =
√

1− 4γ2 to (11.11) (giving ωe).
Figure 11.1 illustrates the stability properties of (11.13) for the different cases.

Dashed lines represent unstable equilibrium values of a for different values of ς,
and solid lines stable equilibrium values.2

169



11. Frequency detuning control

ς

a
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Figure 11.1: Stability regions of (11.13), theoretical.

ς

a

RI RII RIII

Figure 11.2: Stability regions of the 6-DOF Model III of Chapter 5, simulation.
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11.2. Control design

In Region I, there is only the trivial solution. From Nayfeh and Mook [63], this
is globally attractive.

In Region II (where we have parametric resonance), the trivial solution is un-
stable, and there exists a large-amplitude steady-state solution, a limit cycle. Apart
from the case where φ(t2) = φ̇(t2) = 0, this limit cycle is globally attractive [63]
(this behavior is what has been referred to as being in parametric resonance pre-
viously in this thesis).

Region III has three equilibrium values, and is somewhat more complicated.
The value a = 0 (equivalent to φ = 0) is once again (locally) asymptotically
stable. However, there exist two limit cycles, one high-amplitude and one low-
amplitude. The high-amplitude one is (locally) asymptotically stable, whereas the
low-amplitude one is unstable.

Based on the proof of Theorem 11.1, we conclude that it is possible that, if one
increases ωe so that ωe,1 � 2ωφ (i.e., ς � 0), φ does not go to zero but instead
to the high-amplitude limit cycle. If one instead decreases ωe so that ωe,1 � 2ωφ
(i.e., ς � 0), φ will go to zero no matter how large φ(t2) is. This is illustrated
Figure 11.3.

[t2,∞)

t0

t1

[t2,∞)
ς

a

Figure 11.3: Control of parametric roll resonance: Increasing vs decreasing the
encounter frequency.

This suggests that reducing the encounter frequency is the most sensible choice,
and, in fact, the only option that can be guaranteed to work.

2It is worth noting that Figure 11.1 bears strong similarity to a cross-section with the wave
height kept constant of the simulation of the full 6-DOF Model III of Chapter 5, except that with
that model there was no evidence of the high-amplitude solutions of (11.13) in Region III. The
stability regions indicated from simulating the 6-DOF model are shown in Figure 11.2.

171



11. Frequency detuning control

It is, however, worth noting that the analysis is based on a simplification of the
dynamics. The high-amplitude limit cycle has not been observed in the simulations
with the more physically accurate 6-DOF ship Model III of Chapter 5. However,
Galeazzi and Blanke [33], Ribeiro e Silva et al. [76] came to the opposite conclusion
regarding speeding up versus slowing down. But bear in mind that in Galeazzi and
Blanke [33], the conclusion was largely predicated on the need to have sufficient
speed for fins (which were used in addition to speed change) to be effective.

None the less, decreasing the encounter frequency has another benefit: If we
assume that ς starts at zero and slowly increases, trajectories will tend to go to a
higher-amplitude limit cycle as the steady-state value of a increases with increasing
ς in Region II. However, if we instead decrease ς, trajectories will tend to go to
a lower-amplitude limit cycle even if we are still in parametric resonance. This
phenomenon has been observed in the simulations with the 6-DOF Model III of
Chapter 5, so there is reason to suspect that this holds true for real-world cases.

11.3 Simulation results

To test the validity of the controller (11.5), we simulated the closed-loop system
using both the simplified model (11.1) (Model IV) and the full 6-DOF Model III
of Chapter 5, in three different simulation scenarios. In all scenarios, we chose the
initial conditions such that the ship was experiencing parametric roll resonance.

In accordance with the open-loop simulations in Chapter 5, a reduction of the
frequency ratio to ωe,1/ωφ < 1.7 will lead the ship out of the region where the ship
is susceptible to parametric roll resonance.

We simulated three different scenarios:
1. Slow deceleration. The controller is turned on after parametric roll has al-

ready fully developed.
2. Slow deceleration. The controller is turned on before parametric roll has fully

developed.
3. Fast deceleration. The controller is turned on before parametric roll has fully

developed.
The simulation parameters are listed in Table 11.1. The control parameters are

found in Tables 11.2–11.4. The simulation results are summarized in Tables 11.5–
11.6, and can be seen in Figures 11.4–11.6.

Figure 11.4 shows the simulation results for the controlled system in comparison
with the uncontrolled system for the first scenario. It is obvious from Figure 11.4(a)
that the ship is experiencing large roll amplitudes caused by parametric resonance.
The frequency ratio is gradually decreased after 300 s (Figure 11.4(c)) which causes
the expected gradual reduction of the roll motion to zero.

The simulation results with the full 6-DOF Model III of Chapter 5 is shown in
Figure 11.4(b). The controller works equally well with the more complex model.

Of course, since the controller is turned on only after parametric roll has fully
developed, the maximum roll angle in Scenario 1 is the same for controlled and
uncontrolled cases. (The steady-state roll angle is zero, as predicted.)

The simulation results of the second scenario is shown in Figure 11.5. In this
scenario, we reduce the encounter frequency when the roll angle is much lower
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11.3. Simulation results

Table 11.1: Simulation parameters.

Quantity Symbol Value

Wave amplitude ζ0 2.5 m
Wave length λ 281 m
Wave number kw −0.0224 –
Natural roll frequency ωφ 0.343 rad/s
Modal wave frequency ω0 0.4684 rad/s
Simulation start time t0 0 s

k44 1.7533e9 kg m2/s2

Model parameters kφt 7.1373e8 kg m2/s2

(simplified roll equation) αφ 0.2741 rad
kφ3 2.2627e9 kg m2/s2

Table 11.2: Control parameters, Scenario 1.

Quantity Symbol Value

Control action ε −1.7889e−4 rad/s2

Maximum deceleration v̇b1,max 0.008 m/s2

Initial forward speed vb1(t0) 7.44 m/s
Initial encounter frequency ωe,0 0.6346 rad/s
Final encounter frequency ωe,1 0.5831 rad/s
Final forward speed vb1(t2) 5.14 m/s
Controller turned on t1 300 s
Controller turned off t2 588 s

Table 11.3: Control parameters, Scenario 2.

Quantity Symbol Value

Control action ε −1.7889e−4 rad/s2

Maximum deceleration v̇b1,max 0.008 m/s2

Initial forward speed vb1(t0) 7.44 m/s
Initial encounter frequency ωe,0 0.6346 rad/s
Final encounter frequency ωe,1 0.5831 rad/s
Final forward speed vb1(t2) 5.14 m/s
Controller turned on t1 93 s
Controller turned off t2 381 s
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Figure 11.4: Simulation results, Scenario 1.
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Table 11.4: Control parameters, Scenario 3.

Quantity Symbol Value

Control action ε −3.5778e−4 rad/s2

Maximum deceleration v̇b1,max 0.016 m/s2

Initial forward speed vb1(t0) 6.67 m/s
Initial encounter frequency ωe,0 0.6174 rad/s
Final encounter frequency ωe,1 0.5660 rad/s
Final forward speed vb1(t2) 4.37 m/s
Controller turned on t1 55 s
Controller turned off t2 199 s

Table 11.5: Simulation results, maximum roll angles, 1-DOF Model IV.

Scen. Uncontrolled Controlled Reduction

1 25.34◦ 25.34◦ 0%
2 25.34◦ 22.40◦ 11.6%
3 23.57◦ 13.71◦ 41.8%

Table 11.6: Simulation results, maximum roll angles, 6-DOF Model III.

Scen. Uncontrolled Controlled Reduction

1 23.34◦ 23.34◦ 0%
2 23.34◦ 20.33◦ 9.0%
3 17.99◦ 4.83◦ 73.2%

than in the first scenario, early enough that parametric rolling has not yet fully
developed (specifically, when the roll angle is about 5◦). Figure 11.5 shows that
both the simplified 1-DOF Model IV and the full 6-DOF Model III behave similarly.

However, despite the controller being turned on when roll is only at 5◦, the
maximum roll angle is not greatly reduced compared to the uncontrolled case.
This is simply because the ship is moving very slowly out of resonant condition.
Steady-state roll angle is none the less zero, as predicted.

To get the ship to move out of resonant condition before the roll angle has
reached dangerous levels requires, as it turned out, significantly faster deceleration
than in Scenarios 1 and 1, even if the controller was turned on at a lower roll angle.

To this effect, we simulated Scenario 3. The controller is turned on early, at a
time when the roll angle is about 2◦. The ship is decelerating at twice the rate of
Scenarios 1 and 2. Also, both the initial and final encounter frequencies are lower
in Scenario 3 than in the two others. The results are plotted in Figure 11.6.

From Figure 11.6, we see that the controller is capable of reducing the roll
angle sufficiently fast such that the maximum roll angle is only 1/2 (1-DOF) to 1/4
(6-DOF) of that of the uncontrolled case. Interestingly, from Figure 11.6(b) we see
that the controller works significantly better for the full 6-DOF Model III than the
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(a) 1-DOF Model IV.

time [s]

φ
[◦
]

Controlled
Uncontrolled

0 100 200 300 400 500 600 700 800

-20

-10

0

10

20

(b) 6-DOF Model III.

time [s]

ω
e
/ω

φ
[–
]

Controlled (actual)
Ccontrolled (desired)
Uncontrolled

0 100 200 300 400 500 600 700 800

1.65

1.7

1.75

1.8

1.85

(c) Frequency ratio.

Figure 11.5: Simulation results, Scenario 2.
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Figure 11.6: Simulation results, Scenario 3.
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simplified 1-DOF Model IV. Steady-state, the roll angle is zero, as expected.
From the simulation results, we see that the controller is capable of bringing the

controller out of parametric resonance and – assuming sufficient deceleration capa-
bility – reduce the maximum roll angle significantly. It is also vital to turn on the
controller as early as possible. The simulations confirm the theoretical derivations
presented in Section 11.2.

How practical the controller is in a real-world scenario depends almost entirely
on the ability of the captain (or automated systems) to detect parametric resonance
early, and the ability of the ship to rapidly decelerate. If these capabilities are
present, then the controller could prove useful. In the absence of one or both of
these abilities, the practicality of the controller is limited, at least on its own.
However, it might be possible to pair it with another control scheme such as fins
(as done in Galeazzi [32], Galeazzi et al. [34]), u-tanks (investigated used alone in
Chapter 12), gyro stabilizers or other direct controllers.
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Chapter 12

Direct control with u-tanks

In this chapter, an active, direct controller for parametric roll resonance using
u-tanks as actuating system is developed.

This chapter is based on the model from Chapter 7, the results of Chapter 9
and Holden and Fossen [39].

12.1 U-tank model

The u-tank model presented in Chapter 7 is quite accurate. Unfortunately, it is
quite complex.

The minimum number of degrees of freedom to describe the u-tank’s effect on
roll is two: roll, and the tank state. We therefore simplify the 7-DOF Model VII to
a 2-DOF model.

We let qr2 = [φ, qt]
T and νr2 = [ωb1, q̇t]

T as in Chapter 9, and note that q̇r2 = νr2 .
We approximate the pressure-induced restoring moment in roll kp,4 as

kp,4 ≈ k44φ+ kφt cos(ωet+ αφ)φ+ kφ3φ3 (12.1)

as in Holden and Fossen [39], Holden et al. [40] and Chapters 6 and 11.
We can then define a reduced-order model.

Model XV (2-DOF generic u-tank model). The dynamics of the reduced-order
2-DOF u-tank model with a generic u-tank can be written as

Mr2(qt)q̈r2 + Cr2(q̇r2)q̇r2 +Dr2(q̇r2)q̇r2 + kr2(qr2)

+Kr2qr2 +Kr2,t(t)qr2 = τe,r2(t) +Br2ut
(12.2)

where

Mr2(qt) =

[
J11 +mA,44 +Mω,11(qt) mω,q̇t,1

mω,q̇t,1 m̄t

]
= MT

r2(qt) > 0 ∈ R2×2 (12.3)
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with

Mω,11(qt) = −ρteT
x

[∫ ςp(qt)

−ςs(qt)
A(σ)S2(rbg) dσ

]
ex

= ρt

∫ ςp(qt)

−ςs(qt)
A(σ)

[
ybt

2(σ) + zbt
2(σ)

]
dσ

mω,q̇t,1 = ρtA0e
T
x

∫ ςp(qt)

−ςs(qt)
S(rbt (σ))

dr̄bt
dσ

(σ) dσ

= ρtA0

∫ ςp(qt)

−ςs(qt)
ybt (σ)

dz̄bt
dσ

(σ)− zbt (σ)
dȳbt
dσ

(σ) dσ

and m̄t is as in (7.37). The damping matrix is given by

Dr2(νr2) ,

[
d44 0
0 dtt + dtt,n|q̇t|

]
= D0 +Dn(q̇t) (12.4)

D0 ,

[
d44 0
0 dtt

]
Dn(q̇t) ,

[
0 0
0 dtt,n|q̇t|

]
as in Chapter 9. We’re only using linear damping in roll, as nonlinear damping in
roll is known to be quite small [20]. Furthermore,

Cr2(q̇t, νr2) ,
φ̇

2

[
0

dMω,11

dqt
(qt)

−dMω,11

dqt
(qt) 0

]

+
q̇t
2

[
dMω,11

dqt
(qt) 2

dmω,q̇t,1
dqt

(qt)

0 dm̄t
dqt

(qt)

] (12.5)

where
dMω,11

dqt
= ρtA0

[
ybt

2(ςp) + zbt
2(ςp)− ybt 2(ςp)− zbt 2(ςp)

]
dmω,q̇t,1

dqt
= ρtA0

[
ybt (ςp)

dz̄bt
dσ

(ςp)− zbt (ςp)
dȳbt
dσ

(ςp)

]
− ρtA0

[
ybt (ςs)

dz̄bt
dσ

(ςs)− zbt (ςs)
dȳbt
dσ

(ςs)

]
dm̄t

dqt
= ρtA

3
0

[
1

A2(ςp)
− 1

A2(ςs)

]
and

Kr2 ,

[
k44 0
0 0

]
(12.6)

Kr2,t(t) ,

[
kφt cos(ωet+ αφ) 0

0 0

]
(12.7)
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kr2(qr2) ,

[ (
mgzbg + gρt

∫ ςp
−ςs z

b
tA dσ

)
sin(φ)

−gρtA0

[
ybt (ςp) + ybt (ςs)

]
sin(φ)

]

+

[ −gρt ∫ ςp−ςs ybtA dσ cos(φ) + kφ3φ3

−gρtA0

[
zbt (ςp)− zbt (ςs)

]
cos(φ)

] (12.8)

Br2 ,

[
0
bt

]
=

[
0
1

]
(12.9)

τe,r2(t) ,

[
0 0 0 1 0 0 0
0 0 0 0 0 0 1

]
τ̃e(t). (12.10)

This model structure follows quite readily from Model VII if the pressure-
induced moment in roll is given by (12.1).

12.2 Control design

As investigated in Chapter 9, with the exception of the nonlinear damping, the
nonlinearities of Model XV have very little effect on the behavior of the system.
We therefore define a simplified model, which we will use for control design (we
will use Model XV to verify the controller).

Model XVI (Simplified 2-DOF generic u-tank model). The dynamics of the sim-
plified reduced-order 2-DOF u-tank model with a generic u-tank can be written
as

M0q̈r2 +Dr2(q̇r2)q̇r2 +Klqr2 +Kr2,t(t)qr2 = τe,r2(t) +Br2ut (12.11)

where

M0 ,Mr2(0) ,

[
m44 m4t

m4t m̄t

]
(12.12)

Kl , Kr2 +
∂kr2
∂qr2

∣∣∣∣
qr2=0

=

[
k̄44 k4t

k4t ktt

]
(12.13)

with

k̄44 , k44 +mgzbg + 2gρt

∫ ς0

0

A(σ)zbt (σ) dσ

k4t , −2gρtA0y
b
t (ς0)

ktt , −2gρt
A0

A(ς0)

dzbt
dσ

(ς0)

and the system matrices are as in Model XV. We note that ybt (ς0),
dzbt
dσ (ς0) > 0.

We take Model XV as the plant model.
We define

xt , [qT
r2 , q̇

T
r2 ]T ∈ R4 (12.14)
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and rewrite the dynamics as

ẋt = Atx+Btut +Gt(t)xt + gt(q̇r2) (12.15)

where

At ,

[
02×2 I2

−M−1
0 Kl −M−1

0 D0

]
∈ R4×4

Bt ,

[
02×1

M−1
0 Br2

]
∈ R4×1

Gt(t) ,

[
02×2 02×2

−M−1
0 Kr2,t(t) 02×2

]
∈ R4×4

gt(q̇r2) ,

[
02×1

−M−1
0 Dn(q̇t)q̇r2

]
∈ R4×1.

Theorem 12.1 (U-tank control). The origin of the system (12.15) is globally
(uniformly) exponentially stabilized (following Khalil [52, Definition 4.5]1) by the
controller

ut = dtt,n|q̇t|q̇t −Kpxt, (12.16)

where Kp = [Kp,1,Kp,2,Kp,3,Kp,4] ∈ R1×4 is a matrix such that At − BtKp is
Hurwitz and the eigenvalues of At −BtKp chosen such that

λmax(Pt) <
1

2kφt‖M−1
0 ‖2

(12.17)

where Pt is the solution to the Lyapunov equation

Pt(At −BtKp) + (At −BtKp)
TPt = −I4

and λmax(Pt) is the maximum eigenvalue of Pt. Moreover, a Kp such that (12.17)
is satisfied can always be found.

Proof. We immediately note that by choosing ut = dtt,n|q̇t|q̇t+vt, we can transform
the dynamics of the system (12.15) into the linear system

ẋt = Atxt +Btvt +Gt(t)xt. (12.18)

The term Gt(t)xt can be viewed as a time-varying disturbance to the system.
We cannot directly cancel it, both because the parameters are unlikely to be known
and because roll is not directly actuated.

The unperturbed system has the dynamics

ẋt = Atxt +Btvt. (12.19)

1By this definition, exponential stability is stronger than uniform asymptotic stability, and
thus the uniformity is implied.
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12.2. Control design

This system is controllable if its controllability matrix

C =
[
Bt AtBt A2

tBt A3
tBt

]
(12.20)

has full rank (i.e., is nonsingular) [13].
The controllability matrix is given by

C =

[
M−1

0 02×2

02×2 M−1
0

]
C̄ , C̄ ,


0 0 ā1 b̄1
0 1 ā2 b̄2
0 ā1 b̄1 c̄1
1 ā2 b̄2 c̄2


where the parameters are given by[

ā1

ā2

]
= −D0M

−1
0 Br2[

b̄1
b̄2

]
= (D0M

−1
0 D0 −Kl)M

−1
0 Br2[

c̄1
c̄2

]
= (KlM

−1
0 D0 +D0M

−1
0 Kl −D0M

−1
0 D0M

−1
0 D0)M−1

0 Br2 .

From Chen [13], we have that rank(C) = rank(C̄) since the matrix[
M−1

0 02×2

02×2 M−1
0

]
∈ R4×4

is nonsingular.
C̄ has full rank if its determinant is nonzero [13]. Since

det(C̄) = − 1

det2(M0)

([
k̄44m4t − k4tm44

]2
+ d2

44k4tm4t

)
, (12.21)

this gives the condition[
k̄44m4t − k4tm44

]2
+ d2

44k4tm4t 6= 0 . (12.22)

As long as this condition is satisfied, (12.19) is controllable. Since all the parameters
in (12.22) are strictly positive, this condition is always satisfied.

As (12.19) is controllable, we can select a vt = −Kpxt, Kp ∈ R1×4, such that
At−BtKp is Hurwitz, and can place the poles arbitrarily far into the left half-plane
[13]. The closed-loop system is then given by

ẋt = (At −BtKp)xt +Gt(t)x . (12.23)

From Khalil [52], we know that for any positive definite symmetric matrix Nt,
there exists a positive definite symmetric matrix Pt such that

Pt(At −BtKp) + (At −BtKp)
TPt = −Nt . (12.24)
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12. Direct control with u-tanks

We choose Lyapunov function candidate

V(xt) = xT
t Ptxt (12.25)

with P as the solution to (12.24). We note that V is positive definite and decrescent.
Specifically,

λmin(Pt)‖xt‖22 ≤ V(xt) ≤ λmax(Pt)‖xt‖22 (12.26)

where λmin(Pt) and λmax(Pt) are the minimum and maximum eigenvalues of Pt.
The time derivative of V along the trajectories of the closed-loop system (12.23)

is given by

V̇(xt) = xT
t Ptẋt + ẋT

t Ptxt

= xT
t

[
Pt(At −BtKp) + (At −BtKp)

TPt
]
xt + xT

t

[
PtGt(t) +GT

t (t)Pt
]
xt

= −xT
t Ntxt + xT

t

[
PtGt(t) +GT

t (t)Pt
]
xt

≤ −λmin(Nt)‖xt‖22 + 2λmax(Pt) max
t
‖Gt(t)‖2‖xt‖22

≤ −λmin(Nt)‖xt‖22 + 2kφtλmax(Pt)‖M−1
0 ‖2‖xt‖22

= −
[
λmin(Nt)− 2kφtλmax(Pt)‖M−1

0 ‖2
]
‖xt‖22 (12.27)

where we have used that

max
t
‖Gt(t)‖2 =

∥∥∥∥∥∥
 02×2 02×2

−M−1
0

[
kφt 0
0 0

]
02×2

∥∥∥∥∥∥
2

≤ kφt‖M−1
0 ‖2 . (12.28)

By Khalil [52, Theorem 4.10], the origin of the controlled system (12.23) is glob-
ally (uniformly) exponentially stable, as long as λmin(Nt) > 2kφtλmax(Pt)‖M−1

0 ‖2
or

kφt <
λmin(Nt)

2λmax(Pt)‖M−1
0 ‖2

.

The ratio λmin(Nt)/λmax(Pt) is maximized by choosing Nt = I4 [52]. Since we can
choose the eigenvalues of At −BtKp arbitrarily far into the left half-plane, we can
(implicitly) choose λmax(Pt) arbitrarily, as this value depends on the eigenvalues
of At −BtKp [13].

Thus, for any kφt, we can find a controller such that the origin of the controlled
system (12.23) is globally (uniformly) exponentially stable.

If we take a closer look at the controller (12.16), it cancels the nonlinear tank
damping. This damping is “good” damping; in the absence of the time-varying
disturbance (setting kφt = 0) it is fairly straight-forward to show that the origin
of the system (12.15) is GAS by using the energy-like Lyapunov function V̄ =
q̇T
r2M0q̇r2 + qT

r2Klqr2 (via the Krasowskii–LaSalle theorem [52, Theorem 4.4]).
It is therefore reasonable to believe that this damping term is also beneficial

in the presence of the time-varying disturbance (kφt 6= 0). However, proving this
has shown itself to be difficult, and the controller (12.16) is therefore canceling this
term.
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12.3. Simulation study

12.3 Simulation study

We simulated the plant Model XV both with and without the controller (12.16)
to test the validity and the robustness of the controller. For comparison, we also
simulated the controlled nominal system (12.23).

The tank functions ybt , zbt and A were given by (8.1)–(8.3). The tank state qt
was limited so that |qt| ≤ qt,max = Vt/(2A0) so that there is always tank fluid at
the tank center point σ = 0.

Simulation parameters can be found in Table 12.1. The ship parameters J11,
mA,44, d44, k44, kφt and kφ3 were taken from Holden et al. [40, Experiment 1174].
The tank damping parameters are based on experimental values from Chapter 9
and formulas found in Holden et al. [42] and Lloyd [58]. The encounter frequency
ωe was chosen to be twice the natural roll frequency, when the system is known to
parametrically oscillate.

Table 12.1: Simulation parameters.

Parameter Value Unit Parameter Value Unit

J11 1.4014e10 kg·m2 Ar 30 m2

mA,44 2.17e9 kg·m2 Ad 3.6145 m2

d44 3.1951e8 kg·m2/s w 27 m
dtt 2.4618e3 kg·m/s ε 1 m
dtt,n 2.2742e5 kg·m rd 2 m
k44 2.2742e9 kg·m2/s2 ς0 17.5 m
kφt 5.0578e8 kg·m2/s2 A0 30 m2

kφ3 2.974e9 kg·m2/s2 φ(t0) 5 ◦

m 7.64688e7 kg φ̇(t0) 0 ◦/s
zbg −1.12 m qt(t0) 0 m
g 9.81 m/s2 q̇t(t0) 0 m/s
ρt 1000 kg/m3 Kp,1 3.9935e5 kg·m/s2

ωe 0.594 rad/s Kp,2 7.2833e3 kg/s2

αφ 0 rad Kp,3 −4.1664e5 kg·m/s
qt,max 5.6307 m Kp,4 3.9916e5 kg/s

The uncontrolled nominal system (12.15) had eigenvalues

λ(At) ≈ [−0.0049± 0.3327i,−0.0051± 0.2558i]

while the controlled system had eigenvalues

λ(At −BxKp) ≈ [−0.0196± 0.3327i,−0.0206± 0.2558i] .

With the parameters of Table 12.1, the mass of the tank fluid mt was computed
to be mt ≈ 337 800 kg. Per the standard rules of u-tank design [58], the tank is
dimensioned so that the natural frequency of the tank (here, 0.2978 rad/s) is chosen
to be approximately equal to the natural roll frequency (here, 0.2972 rad/s).

The results of the simulation study can be seen in Figures 12.1 and 12.2. We
can clearly see that the system trajectory converges to the origin. Note also that
the trajectory of the nominal system is almost identical to that of the true system.
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12. Direct control with u-tanks

From Figures 12.1(a) and 12.1(b), we can also see that a passive (uncontrolled)
tank is capable of reducing the roll angle compared to not having a tank at all2 (a
reduction in maximum roll angle of approximately 21◦ to 7◦). However, both roll
and the tank fluid will end up in steady-state oscillations.

The issue of correctly tuning the natural frequency of the tank fluid bears some
consideration. For a rectangular-prism tank (and a tank like the one used in the
simulations in this chapter), the natural frequency can be changed by adjusting
the fluid level ς0 or the ratio of Ar and Ad (cross-sectional area of the reservoirs
and the duct, respectively). The latter can of course only be done when the tank
is constructed.

Unfortunately, the natural frequency has very low sensitivity to changes in ς0
[58]. It is therefore almost impossible to change the natural frequency of the tank
after it has been built. However, there can be quite some uncertainty in the natural
roll frequency, which can also depend on loading conditions [20, 58].

If the natural frequency of the tank is not properly tuned, the effect of a passive
tank can be drastically reduced. The more badly tuned it is, the less effective the
tank is. However, as proven in Theorem 12.1, an active (controlled) tank will still
be able to stabilize the origin of the system.

The power and energy consumptions of the control system is also worth noting.
As can be seen from Figures 12.2(a) and 12.2(b), at peak the controller requires
a force of about 250 kN and 210 kW. By integrating the power consumption (over
1 000 s), the total energy use can be found to be approximately 8MJ.

These numbers require some context. If force on the tank fluid is applied by
using high-pressure air in the reservoirs, the pressure difference in the two reservoirs
has to be about 8.5 kPa, or 0.085 bar. When considering the maximum power
consumption 21 kW, bear in mind that the actuator is moving 337.8 metric tons of
fluid, and that the ship itself has a mass of 76 500 metric tons and is likely to have
a quite large power system. The total energy consumption equals about 0.23 liters
of gasoline (using 34.8MJ/liter of gasoline [16]). All in all, the control system if
fairly modest in scale.

2In Holden et al. [42] it was concluded that using a passive tank did not noticeably reduce
the roll angle in parametric resonance, but this tank had a badly tuned natural frequency due
to a calculation error; the ship’s natural roll frequency is the square root of the value given in
Holden et al. [42].
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Figure 12.1: Simulation of the closed- and open-loop system. True and nominal
graphs are closed-loop simulations of Models XV and XVI, respectively. Uncon-
trolled is open-loop simulation of the plant Model XV.
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Figure 12.2: Simulation of the closed-loop system. True and nominal graphs are
simulations of Models XV and XVI, respectively.
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I have come to the conclusion,
after many years of sometimes sad
experience, that you cannot come
to any conclusion at all.

Vita Sackville-West

Part IV

Closing remarks
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Chapter 13

Conclusions and future work

This chapter lists the main conclusions drawn based on the thesis work. It also lists
some possible avenues for future work.

13.1 Conclusions

The main goal of my PhD project has been to develop controllers capable of pre-
venting or reducing parametric roll resonance, a dangerous resonance phenomenon
afflicting especially container ships. Parametric roll is capable of causing damages
for tens of millions of US dollars. Deriving, analyzing and simulating the controllers
also necessitated the development of several novel models.

In this thesis, there have been six major contributions, four on modeling and
two on control. They are listed here in their order of appearance in the thesis text.1

13.1.1 Six-DOF computer model for parametric roll

In Chapter 5, I presented a 6-DOF computer model for ships in parametric reso-
nance (Model III). Unlike most models in literature, it is valid for both constant
and changing velocity, allowing for both speed and course change.

The resulting model is a complex and accurate 6-DOF model. It considers
the external forces due to the hydrostatic and hydrodynamic pressure field of the
surrounding ocean. This includes the effect of waves. The restoring forces are cal-
culated by integrating the pressure field over the instantaneous submerged part of
the vessel, taking into account effects such as Doppler shift.

The model assumes that the pressure field is unchanged by the passage of the
ship, and wave-induced forces are in practice limited to first-order approximations.
The model is not analytical, and is therefore suitable only for simulation. We
implemented the model in Matlab/Simulink using data from a specific, 281 m
container ship.

The model has been published in Breu et al. [8].

1Note that the 3-DOF model described in Section 13.1.3 was, chronologically speaking, the
first model derived during the PhD work. Its inability to describe the motion of ships with non-
constant forward speed and/or course necessitated the development of further models.
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13.1.2 One-DOF parametric roll model

In Chapter 5, I presented a 1-DOF analytical model for ships in parametric res-
onance (Model IV). Using a quasi-steady approach to compute heave and pitch
motions, we derived a model that is suitable for ships with non-constant speed and
course. Most existing models require the ship to be at constant forward speed and
course.

We also showed that the more commonly used Mathieu equation is only valid if
the speed and course of the vessel are constant. If these change, then the Mathieu
equation is no longer able to accurately model the behavior of the ship.

The 1-DOF model was verified against the more complex 6-DOF Model III,
and proved itself capable of capturing the dynamics of the ship across a wide range
of conditions.

The model has been published in Breu et al. [8].

13.1.3 Three-DOF parametric roll model

In Chapter 6, I presented a 3-DOF (heave, roll, pitch) analytical model for ships
in parametric resonance (Model VI). These three degrees of freedom are known to
be coupled during parametric roll resonance.

The model is effectively a reduced-order, analytical version of the 6-DOF Model
III described in Section 13.1.1. By Taylor-expanding the restoring forces to third
order, an analytical model can be found. The parameters of the model can be
computed from hull data. We used the same vessel as for the 6-DOF Model III.

The 3-DOF model was verified against experimental data gathered by Dr Ingo
Drummen at SINTEF Marintek’s towing tank in Trondheim, Norway. The model
showed itself fairly capable of capturing the dynamics of the system, except in the
borderland between no parametric resonance and parametric resonance. As this
area is particularly vulnerable to small model uncertainties, this is to be expected.

One interesting thing to note is that, when plotting maximum roll angle against
encounter frequency, the 3-DOF model shows high degree of similarity to that of
both the 1-DOF Model IV and the 6-DOF computer Model III. As was shown
in Chapter 11, this is due to the third-order restoring term in the 1-DOF and 3-
DOF models. Unfortunately, the experiments show a somewhat different maximum
roll to encounter frequency curve. This may indicate that a higher-order spring
nonlinearity, or perhaps a trigonometric function, should be used instead of merely
a third-order spring nonlinearity. Due to time constraints, this was not further
investigated.

The model has been published in Holden et al. [40], Rodriguez et al. [77].

13.1.4 Seven-DOF model for ships with u-tanks

In Chapter 7, I presented a 7-DOF (6 DOFs for the ship, plus one for the tank)
model for ships with u-tanks (Model VII). The model is suitable for both for ships
suffering and not suffering parametric roll resonance.

Using Hamiltonian mechanics, a singularity-free model incorporating the in-
trinsic nonlinearities of the system was developed. The model is valid for u-tanks
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of arbitrary shape, unlike most existing models, which are limited to u-tanks con-
sisting of three connected rectangular prisms (one for the duct and one for each
reservoir). The most restricting assumption in deriving the model is that the tank
flow is one-dimensional. While technically not true, this is common practice in
the literature. As we are most interested in the effect of the tank on roll, only
the macroscopic motion of the tank fluid is interesting. Effects requiring partial
differential equations to model are therefore of limited interest.

The model was experimentally verified, as detailed in Chapter 9, and compared
to the commonly used model of Lloyd [57, 58] in Chapter 8. The model proved
very capable of capturing the behavior of the tank fluid, significantly more so
than existing models (having three orders of magnitude lower mean square error
relative to experimental data). The experiments were conducted by me at SINTEF
Marintek’s facilities in Trondheim, Norway.

Most notable from the experimental verification was that the most significant
nonlinearity in the system was the damping in the tank fluid. It was found that
linear plus quadratic damping was sufficient to adequately model the damping. The
effects of other nonlinearities was significantly smaller than that of the damping.

The model is not previously published, but is a generalization of the models
found in Holden and Fossen [39], Holden et al. [44]. Experimental verification and
comparison to the model of Lloyd [57, 58] has been published in Holden et al. [44].

13.1.5 Frequency detuning controller

A necessary (but not sufficient) criterion for the occurrence of parametric roll res-
onance is that the frequency of the waves as seen from the ship (the encounter
frequency) is twice the natural roll frequency. Due to the Doppler effect, the en-
counter frequency is not necessarily the same as the actual frequency of the waves.
This has the advantage that the encounter frequency can be changed by changing
speed and/or course of the vessel. We have dubbed exploiting this to drive the
encounter frequency away from potentially dangerous values “frequency detuning
control”.

In Chapter 11, I presented a frequency detuning controller capable of stopping
parametric roll resonance.

The controller is derived based on the 1-DOF parametric roll model for non-
constant speed and course, Model IV, mentioned in Section 13.1.2. The controller
used only speed change. Using the 1-DOFModel IV, we proved mathematically that
the frequency detuning controller is capable of stopping parametric roll resonance.
The controller was verified in simulation, using both the 1-DOF Model IV and the
higher-fidelity 6-DOF Model III. Simulation results confirmed the mathematical
conclusions.

The control structure is quite simple, and requires no extra hardware or soft-
ware on the ship. The main drawbacks of the controller are that it requires that
the helmsman has ample warning about the onset of parametric roll (in practice
probably requiring specialized detection software) and that the ship is capable of
fairly rapid speed changes.

For high-inertia ships such as container ships, particularly the last drawback
may prove critical. For smaller ships, such as fishing vessels, the problem is that
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they often experience parametric roll when they are at rest. In those cases, it can
take some time before the vessel is capable of effecting a significant speed change.

The effectiveness of the controller can in all likelihood be increased by changing
course in addition to changing speed. However, this comes with the drawback that
it will expose the ship to regular roll excitation. Due to time constraints, this was
not further investigated during this PhD work.

The controller was published in Holden et al. [43].

13.1.6 Active u-tank-based controller for parametric roll

In Chapter 12, I presented an active u-tank-based controller capable of stopping
parametric roll resonance.

We derived 2-DOF (roll and tank state) version of the 7-DOF u-tank Model VII
mentioned in Section 13.1.4 and a further simplification of this 2-DOF model based
on the conclusions as to which nonlinearities are important (see Section 13.1.4).
Using the simplified 2-DOF model as control model, we derived a controller and
proved mathematically that it is capable of stopping parametric roll. Zero roll
angle and the tank fluid in it’s equilibrium position was proven to be globally
(uniformly) exponentially stable. The model was verified in simulation using both
the control model and the more complicated 2-DOF model. Simulation results
confirmed the mathematical conclusions, and showed that the control system uses
almost negligible resources.

The controller uses an active u-tank. In simulation, a passive (i.e., uncontrolled)
u-tank was also tested in the same conditions. The uncontrolled tank was capable
of reducing the roll motion, but not driving it to zero as the controlled u-tank
did. The effectiveness of the passive u-tank is also highly dependent on correct
tuning of the tank’s natural frequency. Ideally, it should match the ship’s natural
roll frequency. However, in practice, it is impossible to know the ship’s actual roll
frequency, and estimates are likely to be relatively inaccurate. Furthermore, it is
effectively impossible to retune the tank after it has been installed on the ship. The
controlled tank does not have any of these limitations. That, and the fact that the
controller uses quite limited resources, indicates that an active control system is
advantageous.

Combining the u-tank controller with the frequency detuning controller is quite
possible, and would likely increase the effectiveness of the overall control scheme.
Due to time constraints, this was not tested.

The controller was published in Holden and Fossen [39].

13.2 Future work

The time one has to work an a PhD is limited, and not all the could be done can
be done in the time allotted. Thus, as always, there are several avenues that are
open to further research. I list here some possibilities:

• The 6-DOF Model III should be verified against the same experimental data
set that was used to verify the 3-DOF Model VI (and/or other against data
sets).
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• As mentioned in the conclusions, there is reason to believe that a third-order
restoring moment nonlinearity in roll is not sufficient to get a more highly ac-
curate model of roll during parametric resonance. Higher-order nonlinearities,
or perhaps a trigonometric function, should be tested.

• The 7-DOF u-tank Model VII was verified using a specific rectangular-prism
u-tank. Ideally, other u-tank shapes should also be tested in experiments.

• It is highly likely that the frequency detuning controller and the u-tank con-
troller could be used effectively together. This would likely increase the ef-
fectiveness of the overall control scheme. This bears investigating

• The frequency detuning controller, on its own, could almost certainly be
improved by also performing a course change rather than only a speed change.
However, this does have the side effect that the ship would be subject to
regular roll excitation, and should probably be used with caution. This should
in any case be investigated.

• It is my belief that the stability properties of the u-tank using the more
complicated 2-DOF model can be proven, rather than using a simplification.
This should be examined further.

• Other active u-tank controllers could also be investigated.

• Ultimately, the controllers should be tested on model scale (or, preferably,
full scale) ships.
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Appendix A

Matrix derivatives

The contents of this appendix are unpublished.

A.1 Useful operators

Before we define the derivatives of matrices, we need to define some useful opera-
tors.

We take the matrix A = {ai,j}ā1×ā2 . We can take the vectorization y = vecA ∈
Rā1ā2 as yā1(j−1)+i = ai,j , i.e., stacking each column of A on top of each other to
create y, or

yT =
[
a1,1 a2,1 . . . aā1,1 a1,2 a2,2 . . . aā1,ā2

]
. (A.1)

The Kronecker product of to matrices A = {ai,j} ∈ Rā1×ā2 and B ∈ Rb̄1×b̄2 is
given by

C = A⊗B ,


a1,1B a1,2B . . . a1,bB
a2,1B a2,2B . . . a2,bB

...
...

. . .
...

aa,1B aa,2B . . . aa,bB

 ∈ Rā1b̄1×ā2b̄2 . (A.2)

Lemma A.1 (Properties of the Kronecker product). For appropriately dimen-
tioned matrices A, B, C and D and scalar k, the following hold:

• A⊗ 1 = 1⊗A = A.
• A⊗ 0 = 0⊗A = 0dimA.
• A⊗ (B + C) = A⊗B +A⊗ C.
• (A+B)⊗ C = A⊗ C +B ⊗ C.
• (kA)⊗B = A⊗ (kB) = k(A⊗B).
• (A⊗B)⊗ C = A⊗ (B ⊗ C).
• (A⊗B)T = AT ⊗BT.
• (A⊗B)−1 = A−1 ⊗B−1 if A and B are invertible.
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A. Matrix derivatives

• (A⊗B)(C ⊗D) = AC ⊗BD.
• vec (ABC) = (CT ⊗A)vecB.

Proof. See Horn and Johnson [45], Strang [87]

A.2 Matrix derivatives

We take a matrix function M(x) = {mi,j(x)}m̄1×m̄2 as a function mapping Rn to
Rm̄1×m̄2 . The derivative of this matrix with respect to xk is given by the matrix
of the derivatives of the elements of M , or

∂M

∂xk
=

{
∂mi,j

∂xk

}
m̄1×m̄2

. (A.3)

We can take the derivative of a vector y(x) ∈ Rȳ with respect to x ∈ Rn as a
matrix

dy

dx
,


dy1

dx1

dy2

dx1
. . .

dyȳ
dx1

dy1

dx2

dy2

dx2
. . .

dyȳ
dx2

...
...

. . .
...

dy1

dxn

dy2

dxn
. . .

dyȳ
dxn

 =


dyT

dx1

...
dyT

dxn

 ∈ Rn×ȳ. (A.4)

Note that this implies that the derivative of a scalar-valued function with respect
to a vector is a column vector, and that dyT

dx = dy
dx .

Based on the derivative of a vector with respect to another, we can then take
the derivative of M with respect to x as

dM

dx
,


dm1,1

dx1

dm2,1

dx1
. . .

dmm̄1,1

dx1

dm1,2

dx1
. . .

dmm̄1,m̄2

dx1
dm1,1

dx2

dm2,1

dx2
. . .

dmm̄1,1

dx2

dm1,2

dx1
. . .

dmm̄1,m̄2

dx1

...
...

. . .
...

...
. . .

...
dm1,1

dxn

dm2,1

dxn
. . .

dmm̄1,1

dxn

dm1,2

dx1
. . .

dmm̄1,m̄2

dx1



=


d(vecM)T

dx1

...
d(vecM)T

dxn

 ∈ Rn×m̄1m̄2 . (A.5)

The ith row of the above matrix is the vectorization of M , differentiated with
respect to xi.

Lemma A.2 (Product rule). Let M(x) = A(x)B(x) ∈ Rm̄1×m̄2 , with x ∈ Rn,
A(x) ∈ Rm̄1×ā2 and B(x) ∈ Rā2×m̄2 . Then

dM

dx
=

dAB

dx
=

dA

dx
(B(x)⊗ Im̄1

) +
dB

dx

(
Im̄2 ⊗AT(x)

)
(A.6)

where ⊗ denotes the Kronecker product.
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A.2. Matrix derivatives

Proof. We let l ∈ {1, . . . , n}, k ∈ {1, . . . , m̄1}, r ∈ {1, . . . , m̄2}.
We note that

dmk,r

dxl
=

d

dxl

 ā2∑
j=1

ak,jbj,r

 =

ā2∑
j=1

[
dak,j
dxl

bj,k + ak,j
dbj,k
dxl

]
(A.7)

where the product rule (for scalars) has been used. From the definition of the
derivative of a matrix with respect to a vector, dmk,r

dxl
is found in element (l, m̄1(r−

1) + k) of the matrix dM
dx .

We then look at element (l, m̄1(r − 1) + k) of the matrix dA
dx (B(x)⊗ Im̄1

) +
dB
dx

(
Im̄2
⊗AT(x)

)
. We define C , dA

dx (B(x)⊗ Im̄1
) + dB

dx

(
Im̄2
⊗AT(x)

)
with ele-

ments ci,j . We then find

cl,m̄1(r−1)+k =
d(vecA)T

dxl



0
...
b1,r
...
0
...

bā2,r

...
0


+

d(vecB)T

dxl



0
...

ak,1
...

ak,ā2

...
0



=
dak,1
dxl

b1,r + . . .+
dak,ā2

dxl
bā2,r +

db1,r
dxl

ak,1 + . . .+
dbā2,r

dxl
ak,ā2

=

ā2∑
j=1

[
dak,j
dxl

bj,r + ak,j
dbj,r
dxl

]
(A.8)

which we see is equal to dmk,r
dxl

.

Note that dA
dx ∈ Rn×m̄1ā2 , B(x) ⊗ Im̄1

∈ Rm̄1ā2×m̄1m̄2 , dB
dx ∈ Rn×ā2m̄2 and

Im̄2
⊗ AT(x) ∈ Rā2m̄2×m̄1m̄2 ; so that dM

dx ∈ Rn×m̄1m̄2 as it should be by the
definition (A.5).

We can use Lemma A.2 to prove two corollaries.

Corollary A.3. If A = AT ∈ Rā×ā is a constant and b(x) ∈ Rā is a vector, then

db(x)TAb(x)

dx
= 2

db

dx
Ab(x). (A.9)

Proof. By Lemma A.2,

dbTAb

dx
=

dbT

dx
(Ab⊗ 1) +

dAb

dx
(1⊗ b) =

db

dx
Ab+

dAb

dx
b

=
db

dx
Ab+

db

dx
(1⊗AT)b = 2

db

dx
Ab
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A. Matrix derivatives

where function arguments have been dropped for brevity.

Corollary A.4. If A = AT ∈ Rā×ā is a function of x and b ∈ Rā is a constant,
then

dbTA(x)b

dx
= bT

dA

dx
b. (A.10)

Proof. By Lemma A.2,

dbTAb

dx
=

dAb

dx
(1⊗ b) =

dA

dx
(b⊗ Iā)b = bT

dA

dx
b

where function arguments have been dropped for brevity.

Further properties exist, but the ones listed are the only ones used in this thesis.
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Appendix B

Hamilton’s equations of motion

This appendix summarizes parts of Goldstein et al. [36], Lanczos [55], Shivarama
[81], Shivarama and Fahrenthold [82], and is included here only for convenience.

We investigate a system with n degrees of freedom, with generalized coordinates
q ∈ Rm, m ≥ n. If m > n, Lagrangian dynamics cannot be used. Hamilton’s
equations can still be used, however.

We assume that the system has potential energy U(q) ∈ R and complementary
kinetic energy T ∗(q, q̇) ∈ R.

We define the momentum of the system as

p ,
∂T ∗

∂q̇
∈ Rm. (B.1)

The complementary kinetic energy T ∗ and kinetic energy T have the same
numerical value for all system states, but the kinetic energy is a function of q and
p, while the complementary kinetic energy is a function of q and q̇. That is,

T (q, p) = T ∗(q, q̇) (B.2)

We can find T from this equation if we can find q̇ as a function of p. We can also
find the kinetic energy T from T ∗ via the Legendre transform as

T = pTq − T ∗ ∈ R. (B.3)

If T ∗ is quadratic in q̇ and U is a conservative potential, then the Hamiltonian
H is given by

H(q, p) = T (q, p) + U(q) (B.4)

which is the total energy in the system.
If m = n, then the system dynamics are described by the equations

q̇ =
∂H

∂p
(B.5)

ṗ = −∂H
∂q

+ τ (B.6)
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where τ ∈ Rm are external forces derived from some virtual work principle.
If m > n, then the states have to follow the algebraic constraints

ξ(q, p) = 0 ∈ Rm−n. (B.7)

The system dynamics are given by

q̇ =
∂H

∂p
+
∂ξ

∂p
λ (B.8)

ṗ = −∂H
∂q
− ∂ξ

∂q
λ+ τ (B.9)

where λ ∈ R(m−n)×1 are some Lagrangian multipliers and τ ∈ Rm are external
forces derived from some virtual work principle.

Property B.1. If m = n or ξ = ξ(q), T and T ∗ satisfy

∂T

∂q
= −∂T

∗

∂q
. (B.10)

Proof. First, we note that m = n or ξ = ξ(q) and the fact that H(q, p) = T (q, p) +
U(q) implies that

q̇ =
∂H

∂p
=
∂T

∂p
. (B.11)

From the Legendre transform (B.3)

T = pTq̇ − T ∗. (B.12)

The complimentary kinetic energy T ∗ = T ∗(q, q̇) has the total differential

dT ∗ =

(
∂T ∗

∂q

)T

dq +

(
∂T ∗

∂q̇

)T

dq̇. (B.13)

Therefore,

dT = pTdq̇ + dpTq̇ − dT ∗ = pTdq̇ + dpTq̇ −
(
∂T ∗

∂q

)T

dq −
(
∂T ∗

∂q̇

)T

dq̇

=

(
p− ∂T ∗

∂q̇

)T

dq̇ + dpTq̇ −
(
∂T ∗

∂q

)T

dq. (B.14)

T also has the canonical form as a function of p and q, so

dT =

(
∂T

∂p

)T

dp+

(
∂T

∂q

)T

dq. (B.15)
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Equating (B.14) and (B.15), we get(
∂T

∂p

)T

dp+

(
∂T

∂q

)T

dq =

(
p− ∂T ∗

∂q̇

)T

dq̇ + dpTq̇ −
(
∂T ∗

∂q

)T

dq

⇓(
∂T

∂p
− q̇
)T

dp+

(
∂T ∗

∂q̇
− p
)T

dq̇ +

(
∂T

∂q
+
∂T ∗

∂q

)T

dq = 0.

Since the above must hold for all dp,dq̇,dq, this requires the relationships

q̇ =
∂T

∂p

p =
∂T ∗

∂q̇

∂T

∂q
= −∂T

∗

∂q
.

We recognize the first equality as (B.11), the second equality as the definition of
p, and the third statement as that which was to be proved.
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Appendix C

Numerical values for the parameters
of Model VI

The results in this appendix are from Holden et al. [40].
The parameters can be found in Tables C.1–C.8. All numbers are given in the

kg–m–s (SI) system. Note that α3 and α5 are given in radians.
Table C.1 contains the rigid body inertia matrix, and Table C.2 contains the

body motion parameters. Table C.3 the added mass, while table C.4 contains the
hydrodynamic damping parameters. Table C.5 contains the wave motion parame-
ters for heave. Table C.6 contains the wave motion parameters for roll. Table C.7
contains the wave motion parameters for pitch. Table C.8 contains the external
wave excitation parameters.

Table C.1: Inertia matrix M .

m J11 J22

7.6654e7 1.4014e10 3.1045e11

Table C.2: Wave-independent restoring forces.

Heave Roll Pitch

Zz = 7.9882e7 Kφ = 1.4340e9 Mz = 7.6622e8
Zθ = 7.6622e8 Kφφφ = 2.9740e9 Mθ = 4.1365e11
Zzz = −1.5007e6 Kzφ = −8.4268e7 Mzz = −1.2492e8
Zzθ = −2.4986e8 Kφθ = −1.4090e10 Mzθ = −4.9230e10
Zφφ = −1.4734e8 Kzzφ = 1.3290e7 Mφφ = −1.0307e10
Zθθ = −2.4615e10 Kφθθ = 2.5667e10 Mθθ = −2.4365e12
Zzφφ = 1.4408e8 Mzφφ = 1.3526e10
Zφφθ = 1.3526e10 Mφφθ = 2.0532e12
Zθθθ = 2.5540e8 Mθθθ = 1.4277e11
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C. Numerical values for the parameters of Model VI

Table C.3: Added mass.

ωe ma,33 ma,35 ma,44 ma,53 ma,55

0.5519 8.4377e7 5.2986e8 2.1700e9 2.2140e9 4.3227e11
0.5662 8.3596e7 6.8658e8 2.1700e9 2.0263e9 4.2368e11
0.5677 8.3515e7 5.7142e8 2.1700e9 2.1383e9 4.2519e11
0.5723 8.3266e7 6.5957e8 2.1700e9 2.0402e9 4.2169e11
0.5756 8.3077e7 5.9056e8 2.1700e9 2.1017e9 4.2161e11
0.5783 8.2935e7 6.3403e8 2.1700e9 2.0526e9 4.1972e11
0.5844 8.2604e7 6.0987e8 2.1700e9 2.0637e9 4.1775e11
0.5904 8.2273e7 5.8702e8 2.1700e9 2.0734e9 4.1579e11
0.5933 8.2112e7 6.2852e8 2.1700e9 2.0255e9 4.1376e11
0.5963 8.1955e7 5.6623e8 2.1700e9 2.0816e9 4.1392e11
0.6023 8.0509e7 5.2790e8 2.1700e9 2.0821e9 4.0685e11
0.6031 8.1568e7 6.4758e8 2.1700e9 1.9849e9 4.0935e11
0.6084 8.0003e7 5.0546e8 2.1700e9 2.0875e9 4.0410e11
0.6204 7.9811e7 4.7712e8 2.1700e9 2.1003e9 4.0240e11
0.6231 8.0481e7 6.8112e8 2.1700e9 1.9082e9 4.0059e11
0.6265 7.9714e7 4.6449e8 2.1700e9 2.1051e9 4.0155e11
0.6324 7.9491e7 4.5092e8 2.1700e9 2.1082e9 4.0014e11

Table C.4: Hydrodynamic damping.

ωe d33 d35 d44,0 d44,n d53 d55

0.5519 4.6790e7 1.1900e9 3.1951e8 2.9939e8 2.6485e8 2.7431e11
0.5662 4.6121e7 1.1146e9 3.0467e8 3.7433e8 3.3617e8 2.7151e11
0.5677 4.6051e7 1.1830e9 3.1951e8 2.9939e8 2.6733e8 2.7254e11
0.5723 4.5838e7 1.1351e9 3.0962e8 3.4696e8 3.1392e8 2.7124e11
0.5756 4.5676e7 1.1795e9 3.1951e8 2.9939e8 2.6859e8 2.7166e11
0.5783 4.5554e7 1.1555e9 3.1456e8 3.2205e8 2.9184e8 2.7097e11
0.5844 4.5271e7 1.1757e9 3.1951e8 2.9939e8 2.6995e8 2.7071e11
0.5904 4.4987e7 1.1956e9 3.2445e8 2.7877e8 2.4824e8 2.7045e11
0.5933 4.4849e7 1.1717e9 3.1951e8 2.9939e8 2.7136e8 2.6973e11
0.5963 4.4714e7 1.2147e9 3.2921e8 2.6067e8 2.2754e8 2.7020e11
0.6023 4.4749e7 1.2312e9 3.3415e8 2.4348e8 2.1714e8 2.7166e11
0.6031 4.4383e7 1.1673e9 3.1951e8 2.9939e8 2.7292e8 2.6866e11
0.6084 4.4524e7 1.2498e9 3.3910e8 2.2779e8 1.9803e8 2.7167e11
0.6204 4.3839e7 1.2892e9 3.4898e8 2.0031e8 1.5198e8 2.7044e11
0.6231 4.3451e7 1.1585e9 3.1951e8 2.9939e8 2.7605e8 2.6654e11
0.6265 4.3497e7 1.3088e9 3.5393e8 1.8826e8 1.2903e8 2.6982e11
0.6324 4.3198e7 1.3274e9 3.5878e8 1.7741e8 1.0805e8 2.6943e11

Table C.5: Wave-dependent restoring moment, heave.

ω0 Zzζc Zzζs Zθζc Zθζs Zφφζc Zφφζs

0.4425 −2.3750e6 5.6977e5 −2.4465e8 1.9599e8 8.1275e7 −4.5080e7
0.4530 −2.5435e6 3.2979e5 −2.5538e8 1.5518e8 8.8517e7 −3.3157e7
0.4583 −2.6145e6 2.0307e5 −2.5920e8 1.3333e8 9.1601e7 −2.6808e7
0.4640 −2.6795e6 6.3346e4 −2.6201e8 1.0901e8 9.4449e7 −1.9766e7
0.4699 −2.7334e6 −8.4296e4 −2.6345e8 8.3036e7 9.6854e7 −1.2278e7
0.4764 −2.7763e6 −2.4951e5 −2.6320e8 5.3642e7 9.8827e7 −3.8388e6
0.4893 −2.8063e6 −5.8048e5 −2.5674e8 −6.3854e6 1.0049e8 1.3270e7
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Table C.6: Wave-dependent restoring moment, roll.

ω0 Kφζc Kφζs

0.4425 −2.0159e8 5.0131e7
0.4530 −2.2088e8 2.9835e7
0.4583 −2.2955e8 1.9048e7
0.4640 −2.3800e8 7.0974e6
0.4699 −2.4571e8 −5.5988e6
0.4764 −2.5289e8 −1.9893e7
0.4893 −2.6271e8 −4.8841e7

Table C.7: Wave-dependent restoring moment, pitch.

ω0 Mzζc Mzζs Mθζc Mθζs Mφφζc Mφφζs

0.4425 −2.4465e8 1.9599e8 −4.1210e10 1.3418e10 1.2085e10 −8.3843e9
0.4530 −2.5538e8 1.5518e8 −4.3826e10 8.9360e9 1.2758e10 −6.7092e9
0.4583 −2.5920e8 1.3333e8 −4.4896e10 6.5627e9 1.3023e10 −5.8125e9
0.4640 −2.6201e8 1.0901e8 −4.5844e10 3.9408e9 1.3246e10 −4.8142e9
0.4699 −2.6345e8 8.3036e7 −4.6590e10 1.1646e9 1.3407e10 −3.7486e9
0.4764 −2.6320e8 5.3642e7 −4.7118e10 −1.9490e9 1.3496e10 −2.5428e9
0.4893 −2.5674e8 −6.3854e6 −4.7200e10 −8.2106e9 1.3384e10 −8.2023e7

Table C.8: External wave forces.

ωe |Fz | αz |Fθ| αθ

0.5519 1.1189e7 0.0000 2.9506e9 4.8904
0.5662 5.2714e6 −0.2025 5.2714e6 4.8730
0.5677 8.1228e6 −0.0750 8.1228e6 4.8817
0.5723 5.2225e6 −0.2147 5.2225e6 4.8730
0.5756 6.6526e6 −0.1361 6.6526e6 4.8765
0.5783 5.1755e6 −0.2269 5.1755e6 4.8712
0.5844 5.1300e6 −0.2391 5.1300e6 4.8695
0.5904 5.0859e6 −0.2496 5.0859e6 4.8695
0.5933 3.7086e6 −0.4189 3.7086e6 4.8642
0.5963 5.1571e6 −0.2478 5.1571e6 4.8712
0.6023 5.1384e6 −0.2548 5.1384e6 4.8695
0.6031 2.4887e6 −0.8186 2.4887e6 4.8573
0.6084 5.1053e6 −0.2653 5.1053e6 4.8695
0.6204 4.9566e6 −0.2950 4.9566e6 4.8660
0.6231 2.8160e6 −2.1398 2.8160e6 4.8381
0.6265 4.8859e6 −0.3107 4.8859e6 4.8642
0.6324 4.8381e6 −0.3229 4.8381e6 4.8642
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Appendix D

Existence and uniqueness properties
of (11.1)

In this appendix, we prove the existence and uniqueness properties of (11.1). These
results are from Holden et al. [43].

From Nayfeh and Mook [63], we get the behavior of the system when ωe is a
constant, but not when it is changing. We need to guarantee a unique finite solution
of (11.1) also for time-varying ωe.

To prove the existence (and uniqueness) of the solution to (11.1), we will use
the following theorem and lemma, written here for convenience:

Theorem D.1 (Khalil [52, Theorem 3.3]). Let f(t, x) be piecewise continuous in
t and locally Lipschitz in x for all t ≥ t0 and all x in a domain D ⊂ Rn. Let W be
a compact subset of D, x0 ∈W , and suppose it is known that every solution of

ẋ = f(t, x), x(t0) = x0

lies entirely in W . Then there is a unique solution that is defined for all t ≥ t0.

Lemma D.2 (Khalil [52, Lemma 3.2]). If f(t, x) and ∂f
∂x (t, x) are continuous on

[a, b]×D, for some domain D ⊂ Rn, then f is locally Lipschitz in x on [a, b]×D.

If we take x = [φ, φ̇]T, we can rewrite (11.1) as

ẋ =

[
x2

− d44

m44
x2 − 1

m44

[
k44 + kφt cos

(∫ t
t0
ωe(τ) dτ + αφ

)]
x1 −

kφ3

m44
x3

1

]
= f(t, x)

=

[
0 1

− k44

m44
− d44

m44

]
x+

[
0

− kφt
m44

cos
(∫ t

t0
ωe(τ) dτ + αφ

)
x1 −

kφ3

m44
x3

1

]
= Ax+ g(t, x1) (D.1)

with

f(t, x) ,

[
x2

− d44

m44
x2 − 1

m44

[
k44 + kφt cos

(∫ t
t0
ωe(τ) dτ + αφ

)]
x1 −

kφ3

m44
x3

1

]
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A ,

[
0 1

− k44

m44
− d44

m44

]
g(t, x1) ,

[
0

− kφt
m44

cos
(∫ t

t0
ωe(τ) dτ + αφ

)
x1 −

kφ3

m44
x3

1

]
.

Lemma D.3 (Existence and uniqueness of the solution of (11.1)). There exists
a unique solution of (D.1) (and thus (11.1)) defined for all t ≥ t0.

Proof. It is clear that f(t, x) of (D.1) is continuous in x for all x ∈ R2. It is also
continuous in t for all t ≥ t0, as long as ωe(t) is piecewise continuous. Our choice
of ωe (11.6) satisfies this.

The partial derivative of f with respect to x is given by

∂f

∂x
(t, x) = A−

[
0 0

kφt
m44

cos
(∫ t

t0
ωe(τ) dτ + αφ

)
+ 3

kφ3

m44
x2

1 0

]
(D.2)

which, by the same argument, is continuous in x for all x ∈ R2 and t ≥ t0. By
Khalil [52, Lemma 3.2], f is therefore locally Lipschitz in x for all t ≥ t0 and all
x ∈ R2. The first part of Khalil [52, Theorem 3.3] is then satisfied.

To prove that the trajectories of the system are bounded, we use the Lyapunov
function candidate

V =
1

2
xTPx+

1

4

(
1 +

m44

d44

)
kφ3x4

1 (D.3)

with

P =

 d44 + k44

(
1 + m44

d44

)
m44

m44 m44

(
1 + m44

d44

)  . (D.4)

The time derivative of V along the trajectories of the system (D.1) is given by

V̇ = xTP (Ax+ g(t, x)) +

(
1 +

m44

d44

)
kφ3x3

1x2

= −
(
k44 + kφt cos

(∫ t

t0

ωe(τ) dτ + αφ

))
x2

1 − d44x
2
2 − kφ3x4

1

− kφt cos

(∫ t

t0

ωe(τ) dτ + αφ

)(
1 +

m44

d44

)
x1x2

≤ − (k44 − kφt)x2
1 − d44x

2
2 − kφ3x4

1 + kφt

(
1 +

m44

d44

)
|x1||x2| . (D.5)

While k44 > kφt, V̇ is only negative definite for sufficiently small values of kφt.
If kφt is sufficiently small, then the origin of the system (D.1) would be globally
uniformly exponentially stable, by Khalil [52, Theorem 4.10]. A priori we know
that this is not the case; in parametric resonance, the origin is, in fact, unstable.
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However, V can be used to prove that the trajectories of (D.1) are bounded.
For |x1| ≥ µ > 0⇒ ‖x‖ ≥ µ it holds that

V̇ ≤ − (k44 − kφt)x2
1 − d44x

2
2 − kφ3x4

1 + kφt

(
1 +

m44

d44

)
|x1||x2|

≤ −d44x
2
2 − kφ3µ2x2

1 + kφt

(
1 +

m44

d44

)
|x1||x2|

= −(1− δ)d44x
2
2 − (1− δ)kφ3µ2x2

1

+ kφt

(
1 +

m44

d44

)
|x1||x2| − δd44x

2
2 − δkφ3µ2x2

1 (D.6)

for some δ ∈ (0, 1). Furthermore, the term

kφt

(
1 +

m44

d44

)
|x1||x2| − δd44x

2
2 − δkφ3µ2x2

1

is negative semidefinite if

k2
φt

(
1 +

m44

d44

)2

≤ 4d44δ
2kφ3µ2 ⇒ µ ≥ 1

2δ
√
d44kφ3

kφt

(
1 +

m44

d44

)
. (D.7)

Therefore, for µ satisfying the above inequality,

V̇ ≤ −(1− δ)d44x
2
2 − (1− δ)kφ3µ2x2

1 (D.8)

which is negative definite. By Khalil [52, Theorem 4.18] the trajectories of (D.1)
are bounded for any initial condition x(t0).

Therefore, the second condition of Khalil [52, Theorem 3.3] is satisfied, and
there exists a unique solution of (D.1) (and thus (11.1)) that is defined for all
t ≥ t0.
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