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Problem Description

Condition monitoring based on combined  black-box - and first principal models.

Statoil ASA has developed a tool for condition monitoring on oil- and gas processes. The tool is
called  Early Fault and Disturbance Detection  (EFDD) and is a black-box equipment. The EFDD
system contains, among others, a module called  Principal Component Analysis  (PCA). PCA is a
linear data driven method used to support condition monitoring. To increase the performance of
PCA a modification to the existing implementation is desired. The modification is based on using
available models of the process being analyzed. The idea is that a priori knowledge about the
process that may increase the performance of the PCA method.

The master thesis should focus on several models of heat exchanger and pump processes. The
models should contain different degrees of complexity and serve to investigate the following
problems.

1. Nonlinearities: By compensating known nonlinearities the linear PCA method would
   increase its performance.
2. Extrapolation: The black-box model is only valid for data region spanned by the
   configuration dataset. It is assumed that a modification with the use of models
   would extend the valid data region.
3. Instrumentation:  Most processes have a sub-optimal instrumentation
   (lack of  measurements). Investigate if the lack of measurements could be
   compensated by models.

The following approaches may be investigated, where at least A and B shall be verified.

A. Nonlinear expansion to PCA
B. MBPCA, model based PCA.
C. Nonlinear PCA, including Kernel PCA (KPCA) and neural networks.

The assignment should contain an overview of the different approaches with a discussion of their
main properties. The assignment should explain different ways to take care of the problems
mentioned above and document with the use of simulated experiments, or based on data from
Statoil installations.
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Summary and conclusions 

 
This master thesis investigates Principal Component Analysis (PCA) methods used in the 
field of Early Fault and Disturbance Detection (EFDD).  Statoil and ABB have in 
collaboration developed an application for EFDD that among others consist of PCA 
methods. The applications are used to run condition monitoring on oil- and gas 
processes, and are a software prototype currently being tested in Statoil. To make the 
method more robust and convincing to the operators it is desirable to improve the 
application. 
 
This thesis will focus on the Principal Component Analysis (PCA) method and some 
extension to it based on Model Based PCA (MBPCA). The PCA in its simplest form have 
some severe restrictions due to linear and stationary data. The motivation will therefore 
be to see how PCA and extension based on MBPCA and Nonlinear PCA (NLPCA) methods 
operates when used on non-linear data.  
 
For the PCA to describe a process adequately a certain amount of data is required. In the 
industry the process is often sort of instrumentation. The next motivation would be to 
investigate if lack of instrumentation could be replaced by some estimates and then 
approve the ability for the PCA analysis.  
 
Another issue concerning instrumentation is the use of virtual tags. Virtual tags are 
mathematical functions based on already available measurements.  The idea is based on 
process insight. If we know the process well and the cause of nonlinearities some 
additional nonlinear functions could be incorporated to increase the performance of the 
PCA method. To verify the factors mention above some of the methods would use data 
from a heat exchanger – and Centrifugal pump process, and some using only one of the 
processes. 
 
The conclusion from the work is as follows:  
    
Based on the simulations preformed it’s evident that using MBPCA do improve the PCA 
method for fault detection, even if the model is not entirely correct to the real process. 
When it comes to using virtual tags the simulations on centrifugal pump increased the 
performance of the PCA method. NLPCA here based on Autoassociative Neural 
Networks did not perform as well as MBPCA but the method is harder to tune and 
therefore it would be wrong to brush aside this method. The improvement of using 
estimates for missing measurement gave small improvement. 
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Chapter 1 

INTRODUCTION 
 

1.1 Background 
 

The industry today often consists of a big organization where a lot of decision making, 
maintenance planning and operational responsibilities are important daily tasks. To deal 
with this a process monitoring (PM) tools becomes evident. In collaboration between Statoil 
and ABB such a PM tool has been developed and implemented. The system is based on both 
a rule based - and a data driven PM method and the tool, as well as the overall concept, is 
referred to as Early Fault and Disturbance Detection (EFDD). Both the rule based – and the 
data driven methods have their own advantages and drawbacks.  
 
The rule based method is based on having a database containing both nominal and faulty 
process signatures. This database needs to be updated as new scenarios occur and will 
therefore demand more from the user. This method will increase its performance over time 
because we will expect an increase in different scenarios in the database. A pure data driven 
method does not need any updating work and its approach will yield meaningful results 
upon installation, but a decreased performance over time. Through assessing these 
strengths and weaknesses there are reasons to believe that by combining them we will 
utilizes the overall PM system. 
 
In this master thesis there will be focus on the data driven PM method called principal 
component analysis (PCA), model based PCA (MBPCA) and an expansion called nonlinear 
principal component analysis (NLPCA). All methods are powerful with several applications. 
The methods will be tested on an heat exchanger - and a pump processes. These processes 
are standard in the oil- and gas industry and a good PM method is therefore desirable. In 
order to test their performance on fault detection, different faults will be simulated using 
the heat exchanger- and pump models. 
 
All the methods are data driven and therefore dependent on process data. To be able to 
describe the process adequately the number of data variables must be of a certain amount. 
In heat exchanger processes used for EFDD there are assumed some missing measurements. 
In this case there would be investigated if some of these missing measurements could be 
replaced with estimates, based on some real measurements and some process assumptions. 
There would be tested if this addition data would increase the performance of the PCA - , 
MBPCA - and NLPCA methods. A test is run to check if the additional data increases the 
performance of the PCA- MBPCA- and NLPCA methods.    
 
A major drawback concerning PCA is non-linear data. The method is based on linear 
correlations between the data and this is not typical in the two processes being used. One 
approach to reduce this problem is the idea of virtual tags. Virtual tags are here based on 
mathematical functions of already measured data. The idea is based on process insight. If we 
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know the process well and the cause of nonlinearities some additional nonlinear functions 
could be incorporate to increase the performance of the PCA method. This idea will be 
tested for the centrifugal pump process.  
 
Another approach to reduce the sensitivity of nonlinear data is the MBPCA. This method is 
based on analyzing the portion of the observed variance that cannot be predicted using a 
model of the process, and thus significantly enhances the attainable diagnostic resolution. 
This method will be tested for both processes.  
 
The NLPCA is also a method that has been popular and has received increasing attentions for 
the last two decades. There are many sort of NLPCA and in this master thesis the NLPCA is 
based on autoassociative neural networks. This method is capable to handle linear and non-
linear data. This method will also be tested on both processes.    
 
As mention the methods will be tested on heat exchanger – and centrifugal processes. First 
there will be given a process description on both pump processes and heat exchanger and a 
process model are developed for both systems. All the results in this thesis will be based on 
model data and not real process data. 
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1.2 Problem description 
 
The industry today is meeting an increased competition and safety demand and therefore 
having a top modern system to reduce downtime and discover severe faults before they 
cause dramatic consequences in a process is seen as a big advantage.  
 
Early Fault and Disturbance Detection is a new software application developed by the 
combined efforts of ABB, Statoil and academic institutions. The overall goal is to support 
decision making: maintenance, repairs, production planning or optimization. The EFDD 
system consists of newly developed data-driven and generic process monitoring software 
[7]. State of the art fault detection algorithms are used for the purpose of monitoring a 
variety of processes, ranging from small tasks such as sensor integrity verification to plant-
wide monitoring. There are several desirable attributes characteristics that an Early Fault 
and Disturbance Detection system should contain to work ideally [1]. In this master thesis 
the focus will be on early detection on different faults and not isolation of them. EFDD 
systems contains a module called Principal Component Analysis (PCA) (see chapter 13 in 
[11]) which is a linear analysis method used for condition monitoring. MBPCA [2] and NLPCA 
[20] are based on this method and would also be used on different scenarios. The use of PCA 
for EFDD system are being investigated on two processes, heat exchanger and pumps. 
 
This master thesis investigates the PCA method in use for early fault and disturbance 
detection. The method will be tested on two processes, a plate heat exchanger and a 
centrifugal pump. The two processes are taken from an offshore installation. Several issues 
are presented to check the PCA - MBPCA - and NLPCA performance in these two processes. 
The main subjects are the lack of measurements, nonlinear- and non-stationary behaviour. 
Oil-and gas processes often have less measurements than is ideal. In these cases estimators 
or virtual measurements (measurements made from mathematical operators of existing 
measurements) could be incorporated. PCA will be compared to MBPCA with both linear and 
nonlinear models. PCA is a linear method and its ability to work with nonlinear data will be 
investigated. Normal PCA will also be compared to a Nonlinear PCA based on associative 
network. 
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1.2 Collection of PCA data 
 

The PCA methods are data - driven and data must therefore be available. If the methods 
should be tested on real processes, two data sets are required. One set of data describing 
normal operation condition (NOC) taken from a process operating in a normal operating 
region. And one set containing known faults from the same process. It’s often difficult to get 
access to this data from a running process. We also have to know when we have a potential 
fault data set and when we have a normal one. A high degree of process knowledge is 
therefore required. 
 
To eliminate this problem it was used first principal models of the two processes that the 
PCA methods would be tested on. The advantage of using a model is the possibility to 
generate different kinds of faults that we want to test the system from and we have free 
access to manipulate different process parameters. 
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1.3 Description of plate heat exchanger 
 
As mention in the problem description, one of the processes that are being used to 
investigate different PCA methods is a plate heat exchanger system. These processes are 
standard in oil –and gas industry and existing in several processes. The basis for the heat 
exchanger is a condensate cooling process. This is a plate heat exchanger and a flowchart of 
the process is given in figure 2. The process contains a control loop that controls the 
temperature on the condensate by manipulating the flow on the refrigerant side. A 
description of the measurements variables are listed in table 1. The heat exchanger is 
divided into two parts. HJ1 and HJ2. The reason for this kind of design could be many and 
will not be discussed further. In chapter 4 a model based on this process is made. The two 
parts HJ1 and HJ2 are modelled as one.   
    
 

 
Figure 1 Flowchart plate heat exchanger pump (taken from an 
offshore installation) 

Variable Description 
FT1 Inlet volumetric flow. 
PDT1 Pressure drop across strainer. 
PDT2 Pressure drop across strainer. 
PT1 Gas inlet pressure. 
TT1 Gas inlet temperature 
TT2 Gas outlet temperature – of 

the joint cooler flow 
TC2 Gas outlet temperature 

controller output, assumed to 
be identical to the valve 
position (TV2). 

TT3 Cooling medium inlet 
temperature 

Table 1 Measurement tags heat exchanger 

 
 
 
Heat exchanger process is known to be nonlinear both to respect of flow and temperature. 
From the condensate cooling process in figure 3 there is a lack of output cold temperature 
and the flow on the cold side. Therefore when generating data from the heat exchanger 
model there is not being collected data from the cold side flow and cold side output 
temperature. So the basis data for PCA methods is the one in table 1 except for the 
pressures that are being neglected. To test the idea of about a priori knowledge, estimators 
are made for the missing flow and temperature on the cold side (see chapter 6.1 for details).  

In a heat exchanger the problem of wax deposition is normal. The normal situation is that 
the wax deposition increases over the time the heat exchanger operates.  This wax 
deposition affects the heat transfer coefficient and therefore reducing the efficiency of the 
heat exchanger. A detection of such a fault is wanted in an early state to be able to prepare 
maintenance. This is a considered as a fault and will be discussed further in chapter 5.  
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1.4 Description of centrifugal pump 
 
The next process used for exploration of PCA methods is a centrifugal pump process. In this 
section a part of the condensate transfer process for export is investigated. Basis for the 
centrifugal pump is taken from an offshore installation that transferring condensate for 
export. In figure 2 a flowchart of the process is given and in table 2 a description of the 
measurements is presented. The process contains a control loop that controls the flow 
through the pump by manipulating the speed. 
 

 
Figure 2 Flowchart Centrifugal pump (taken from an offshore 
installation) 

Variable Description 
Ptin Inlet pressure, common 

manifold 
Sca/b Output from the pump’s speed 

controller (assumed to be 
equal to the actual speed) 

FTa/b The volumetric flow through 
the pump. 

PTout Common down stream 
manifold pressure 

Table 2 Measurement tags Centrifugal pump 

 
 
Also a centrifugal pump is known to be a nonlinear process. The main nonlinearity in the 
pump is the (near) quadratic pressure-flow and pressure-speed dependency.  Only one 
pump is operating at a time therefore only one of the pump are modelled. For details of the 
pump model see chapter 6.2  
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1.5 Early Fault and Disturbance Detection 
 

Early Fault and Disturbance Detection [EFDD] is a new software application developed by the 
combine efforts of ABB, Statoil and academic institutions. The overall goal is to support 
decision making: maintenance, repairs, production planning or optimization. This software 
utilizes both rule-based and pure data driven algorithms. The rule based method based on 
having a database with both nominal- and faulty process signatures. This method will 
demand more from the users then the data driven method in the sense that databases must 
be updated with new scenarios as they occur, but will increase its performance over time. 
The data driven method is opposite. A data driven approach will yield meaningful results 
upon installation, but the performance will not improve over time. This thesis will be 
focusing on the data-driven method.  

1.5.1 Faults, failures, malfunctions 
 

One of the main tasks of an EFDD system is to detect process abnormalities in a process and 
below follows a discussion of different sorts of process abnormalities.   

“A fault is an unpermitted deviation of at least one characteristic property (feature) of the 
system from the acceptable, usual, standard condition” (page 9 in [20]). 

Failure: 

“A failure is a permanent interruption of a system’s ability to perform a required function 
under specified operating conditions” (page 9 in [20]). 

Malfunction: 

“A malfunction is an intermittent irregularity in the fulfilment of a system’s desired function” 
(see page 21 in [20]). 

Figure 3 shows the relation of faults, failures and malfunctions. The fault may develop 
abruptly, like a step-function, or incipiently, like a driftlike function.  
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Figure 3 Development of the events “failure” or “malfunction” from a fault which causes a 
stepwise or driftwise change of a feature (taken from page 22 [10]) 

 

Faults may include 

• Process unit failures 
• Process unit degradation 
• Control system failure 
• Sensor failure 
• Actuator failure 
• Parameter drifts or grosses changes 
• Operation beyond normal regimes 

 

A more detailed discussion follows: 

Process Unit Failure and Degradation 

Structural changes result in changes in the information flow between different variables. 
This would obviously affect any models used in control. 

Control, Actuator or Sensor Failure 

Gross errors usually occur with sensors and actuators. These types of fault often propagate 
rapidly though a process due to a control system. Problems with sensors include 
measurement noise. Many sensor and actuator faults can be readily detected and remedied 
by means of a data validation system. This ensures that the data feed to afault detection 
system is valid. 
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Parameter Drifts or Gross Changes 

These types of faults occur when an independent variable enters the system from the 
environment. This includes unusual process disturbances. This may affect control or 
operator decisions. 

Operation beyond Normal Regimes 

This is closely related to parameter changes as operating in a different process regime will 
result in grossly different relationships between variables.  

Faults for analysis  

The faults used in this report would be sensor failure, parameter drifts and operation 
beyond normal regimes. All this failure would be simulated for both processes. A more 
detailed description of the different faults is presented in chapter 5 and 6. 
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Chapter 2 

PCA and extension 
 

2.1 PCA Theory 
Principle component analysis (PCA) is a powerful data driven method used in several 
applications, such as face recognition, image compression and predictive models for 
mention a few. The PCA method is one part of the EFDD system developed by Statoil and 
ABB and would be the main focus in this master thesis. PCA method task in EFDD system is 
used for detecting faults and disturbance in oil- and gas processes. 
 
PCA is a non-parametric method that could effectively reveal hidden information of a 
process from sometimes confusing data sets (see chapter 13 in [9]). The idea behind PCA is 
to reduce the dimensionality of the original data set and still capture as much as possible of 
the variance present in the original data set. To achieve this goal the PCA is using projection 
technique based on linear algebra. It can project the original data set onto a lower 
dimensional space that contains the greatest variance of original data. This would give us a 
new set of variables; the principal components (PCs), which are uncorrelated to each other. 
This strength has become a popular pre-processing tool for multivariate statistical process 
monitoring (MSPM) schemes for detecting faults of multivariate process before they become 
critical. 
 
However, PCA has some severe drawbacks for EFDD. Most processes in the real industry 
contain non-stationary, time-varying and nonlinear behaviour. These properties will often 
make a conventional PCA unsuitable, because PCA is a linear method and in addition, once 
static PCA is built, that means almost settled mean, variance, and covariance exists among 
variables. If a conventional PCA method is being used on these types of processes it may 
produce an excessive number of false alarms or miss faults. 
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2.2 PCA Calculation steps 
 
First a data matrix  𝑋 ∈  ℜ𝑛×𝑚 that contains n samples of m process variables is collected 
under normal operation condition (NOC). The matrix 𝑋 needs to be normalized to zero mean 
and unit variance. With the scale parameter vectors �̅� and 𝑠as the mean and variance 
vectors respectively. The next step is to construct the covariance matrix R: 
 

 𝑅 =
1

1 − 𝑛
𝑋𝑇𝑋 (1) 

 
 
 
Where X is the data matrix and then solve the eigenvalues 𝜆𝑗 of the matrix 𝑅 and the 
eigenvectors 𝑝𝑗 of  
 �𝑅 − 𝜆𝑗  I�𝑝𝑗 = 0    𝑗 = 1, … ,𝑚 (2) 
 
 
The eigenvectors with the corresponding most dominated eigenvalues are those of interest. 
This would explain most of the variance of the process. The transformation matrix 
𝑃 ∈  ℜ𝑚×𝑎 is therefore generated choosing 𝑎 eigenvectors or columns of 𝑝𝑗 corresponding 
to 𝑎 principal eigenvalues. Matrix P transforms the space of the measured variables into the 
reduced dimension space. 
 
 𝑇 = 𝑋 𝑃 (3) 
 
 
The columns of matrix P are called loadings and elements T are called scores.  
Scores are the values of the original measured variables that have been transformed into the 
reduced dimension space. If all eigenvectors are selected the original data set could be 
transformed by: 
 𝑋 = 𝑇 𝑃𝑇 (4) 
 
 
If some eigenvectors are been neglected the original data space can be calculated as: 
  
 𝑋 = 𝑇 𝑃𝑇 + 𝐸 (5) 
 
,Where 𝐸 = 𝑋 − 𝑋�.  𝑇 𝑃𝑇 is called the structure part and E is called the noise part.  
 
 
 
This separation is done to reduce the dimensionality of a data set. Considering a large 
number of interrelated variables, while retaining as much as possible of the variation 
present in the original data set. This variation is captured in the T and P and is achieved by 
transforming the measured data to a new set of variables, the principle components, which 
are the most of the variation present in all of the original variables, ([9] chapter 13). 
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There are other methods for calculating the PCA [23]. Non-linear Iterative Partial Least 
Square method (NIPALS algorithm) and alternating least Squares Method (ARL algorithm) 
where the solution is (randomly) rotated in the factor space. These methods are much more 
computationally expensive and have little or no advantage over the covariance method and 
are not used here.     
 
 
PCA algorithm: 
 

1) The first step in a PCA is to put the input data in a matrix X.  
Let X = [𝑥1 𝑥2 … 𝑥𝑚] ∈ 𝑅𝑛𝑥𝑚be the data matrix with n samples and m variables. 
 

2) Find the mean for each column and subtract it from the corresponding columns. 
  

3) Calculate the eigenvalues and eigenvectors for the autocorrelation matrix 
𝐴 = 1/(𝑛 − 1)𝑋𝑇𝑋. 
 
 

4) Choose how many eigenvalues to keep and set up the respective eigenvectors for 
these eigenvalues in a transformation matrix P = [𝑝1 𝑝2 … 𝑝𝑟] 
 

5) Calculation of the new data matrix. 𝑇 = 𝑋ʹ𝑃[𝑡1  𝑡2 … 𝑡𝑟] The result data matrix T with 
all original data but a reduced number r<m of coordinates or variables, i.e. the 
principal components.  
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2.3 Select number of principal components 
 
One of the main difficulties in using principal component analysis (PCA) is the selection of 
the number of principal components (PCs). If too few principal components are selected 
than required, a poor model will be obtained and an incomplete representation of the 
process will result. Different approaches to select PCs have been proposed in the past: (1) 
Akaike information criterion (AIC), (2) minimum description length (MDL), (3) imbedded 
error function (IEF), (4) cumulative percent variance (CPV), (5) scree test on residual percent 
variance (RPC), (6) average eigenvalue (AE), (7) parallel analysis (PA), (8) autocorrelation 
(AC), (9) cross validation based on the PRESS  and  R ratio, and (10) variance of 
reconstruction error (VRE). All these methods are discussed and evaluated in [12].  
 
One of the most commonly used criteria for solving the number-of –components problem is 
the average eigenvalue method [15]. This criterion accepts all eigenvalues with values above 
the average eigenvalue and resets those below the average. The reason is that a PC 
contributing less than an “average” variable is insignificant. For covariance-based PCA the 
average eigenvalue is 1/m trace(covariance matrix),and for correlation-based PCA the 
average eigenvalue 1/m trace(correlation matrix), which is 1. Then all the eigenvalues above 
1 will be selected as the principal eigenvalues to form the model.  
 
The average eigenvalue method has a number of positive features that have contributed to 
its popularity. Perhaps the most important reason for its widespread use is its simplicity: You 
do not make any subjective decisions, but merely retain components with eigenvalues 
greater than one. It also has a positive side when small to moderate number of variables are 
being analyzed and the variable communalities are high. One of its drawbacks is that it could 
lead to retaining a certain number of components when the actual difference in the 
eigenvalues of successive components in only trivial. In short, the average eigenvalue 
method can be helpful when used judiciously, but the thoughtless application of this 
approach can lead to serious errors of interpretation.  
 
Based on the simplicity and advantages when small to moderate numbers of variables are 
being analyzed the average eigenvalue method is here being used to give a hint of number 
of PCs. Since the number of variables used here are few, the PCA models would also be 
tested build on be PCs that are nearly 1 (0.9-1).   
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2.4 Model-based PCA 
 

In model-based PCA (MBPCA) is an extension to PCA and used the portion of the observed 
variance that cannot be predicted using a model of the process, and thus significantly 
enhances the attainable diagnostic resolution. This method has shown good result in some 
applications such as Ethylene compressor monitoring [7] and Fault detection in NMOS 
Fabrication [2]. As described in chapter 2.4 the PCA method has some drawbacks do to 
nonlinearities.  

The idea behind the MBPCA is to remove nonlinear data before given to PCA. The method 
makes use of models of the real system that is being monitored and subtracts the data made 
from the model from the real measurement process. In theory, when the model is perfect, 
the data not predicted by the model would be relatively insensitive to variations caused 
from non-linearity of the process or changes in operating conditions, thus significantly 
enhancing process diagnosis. However, since the model in use most likely consists of 
parametric and structural uncertainty the method is vulnerable. In figure 4 a example of 
MBPCA structure is presented.  

 

 

Figure 4 Block diagram illustrating the MBPCA principle (Taken from [7]). 
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2.5 Kernel based PCA 

Another method for dealing with nonlinear data is a method called Kernel based PCA (KPCA). 
KPCA perform a nonlinear form of principal component. The only differance is that instead of 
calculate PCA on the data in space 𝑅𝑛 it first map the data into a feature space 𝐹 by some 
nonlinear mapping ɸ and then do PCA in space 𝐹 [21].  

 
 

2.6 Nonlinear PCA based on auto-associative neural network 
 
As mentioned PCA is a method for dimensional reduction and, to work ideally, linear data is 
required. To be able to confront linear and nonlinear data, a nonlinear PCA (NLPCA) based 
on auto-associative neural networks may sometimes be preferable. Kramer [x] proposed 
such a method. This method is based on 
using an artificial neural network (ANN), 
which, in essence, is an identity mapping 
that consists of a total of 5 layers (see figure 
2) for training procedures to generate 
nonlinear features. The networks are of a 
conventional type, featuring feedforward 
connections and linear or sigmoidal nodal 
transfer functions, trained by 
backpropagation.  

NLPCA based on AA network algorithm 

 

In NLPCA, the mapping into feature space is generalized to allow arbitrary nonlinear 
functionalities. By analogy to Eq. (2.3), we seek a mapping in the form: 

 𝑇 = G�X� (6) 
 
Where G is a nonlinear vector function, composed of f individual nonlinear vector  
functions; G=�𝐺1,𝐺2,…,

�𝐺𝑓��, analogous to the columns of P in Eq. (2.3), such that if  
Tirepresents the ith element of 𝑇 
 
 Ti = Gi�X� (7) 
 
By analogy to the linear case, Gl is referred to as the primary nonlinear factor, and Giis the 
ith nonlinear factor of 𝑌. The inverse transformation, restoring the original dimensionality of 
the data, analogous to Eq. (2.4), is implemented by a second nonlinear vector function 
H=�𝐻1,𝐻2,…,

�𝐻𝑚} �: 

Figure 5 Network architecture for simultaneous 
determination of f nonlinear factors using an 
autoassociative network (Taken from [kramer]) 
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 Xʹi = Hj(T) (8) 
 
The loss of information is again measured by E = X − Xʹ, and analogous to PCA, the functions 
G and H, a basis function approach is used has shown that functions of the following form 
are capable of fitting any nonlinear function v = f(u) to an arbitrary degree of precision:  
 

 𝑣𝑘 = �wjk2σ��wijui + θj

N1

i=1

�
N2

j=1

 (9) 

 
Where 𝜎(x) is any continuous and monotonically increasing function with 𝜎(x) → 1 as x →
+∞ and 𝜎(x) → 0 as c → −∞. A suitable function is the sigmoid: 
 

 𝜎(x) =
1

1 + e−x
 (10) 

  

 

2.7 Adaptive PCA 
 
All the different additions to PCA described so far have varied capability to handle 
nonlinearities, but they all require an extent of stationary data. As described in the theory of 
PCA, the model is made from defined normal operation conditions. From this interval a 
mean of the different variables is being calculated and later used when running online. If the 
mean changes too much from the NOC the PCA model would not be valid and may generate 
a false alarm in the use of early fault detection. To cope with this problem, the PCA must 
adapt the monitoring model in a continuous and automatic manner in compliance with 
present process condition. A rule based online recursive PCA (RPCA) is proposed in [3]. This 
method may be suitable for slow time-varying properties.   
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Chapter 3 

PCA in Early fault detection 
 

3.1 PCA Monitoring 
 
To implement a monitoring and fault detection system based on PCA, two main tasks are 
necessary: 
 
(a). OFF-LINE.  

Gather a decided number of training data from a normal operation conditions (NOC). 
Then scale the training data by subtracting the mean �̅� of the samples of each 
variable and divide it with the standard deviation s. Then find the eigenvalues and 
corresponding eigenvectors of the covariance matrix. Determine the number of 
principal components and the upper control limits for 𝑇2 and Q statistics. 

 
(b). ON-LINE  

a) Obtain the next testing sample x, and scale it using the scale parameter vectors �̅�      
and s. 
b) Evaluate the 𝑇2and Q statistics using the obtained PCA model. If one of these      
exceeds the upper limits, this measurement is considered an alarm. If there are some 
consecutive established numbers of alarms, an uncommon event has occurred. 
c) Repeat from step 2.   
 

 
When using PCA for early fault detection the use of multivariate control charts using 
Hotelling’s 𝑇2 and square prediction error (SPE) is most common [22]. Hotelling’s 𝑇2 that is a 
measure of the variation within the PCA model and SPE measure of lack of model fit. 𝑇2 is 
the sum of normalized squared scores defined as: 
 
Ti2 =  ti(TkTTk)−1tiT 
 
In this case ti refers to the 𝑖𝑡ℎ row of 𝑇𝑘, the matrix of k scores vectors and the term in 
parentheses is a diagonal matrix of eigenvalues of the covariance matrix of X. The SPE 
statistic indicates how well each sample conforms to the PCA model and is a measure of the 
amount of variation not captured by the model and is defined as: 
 
SPEi =  eieiT =   xi(I − PkPkT)xiT 
 
Where eiis the 𝑖𝑡ℎ row of E. The columns of Pkare the first k loadings vectors retained in the 
PCA model and I is the identity matrix of appropriate size (n by n) 
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This report will analysis SPE for process monitoring and the reason is that the SPE may have 
lower changes to give false alarms when monitoring the processes being investigated [13]. 
Both the heat exchanger- and the pump process are hardly normally distributed and 
stationary and since 𝑇2 captures the non-stationary parts of the signals and is more likely to 
give an alarm then the SPE chart how looks much more stationary and random. The 
structure of the online process after defining PCA models is given in the figure 6. 
  

 
Figure 6 Structure for PCA for fault detection 

 

3.2 Upper control limit 
 

When monitoring SPE we need some assessment to the probability of fault. A normal 
situation is then to define an upper control limit (UCL).  The value of this limit would depend 
on the process but often it’s defined from the variance of the process. A popular rule is the 
Three-sigma rule [19]. The Three-sigma rule is applied to evaluate the contribution of the 
probability of fault to the predicted risk. It is known that, for a normal distribution, nearly all 
(99.7%) the values lie within 3 standard deviations of the mean. The UCL is therefore sat to 3 
times the standard deviation of the SPE values. In addition to the UCL an indicator value for 
fault status could be used.  
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Since some values SPE values would violate the UCL a defined value of legal violations in a 
specific interval could be technique. This would then be a tuning parameter and depend on 
the process being monitored.  
 

3.3 Implementation of PCA and NLPCA 
 

The PCA method used in simulation chapter 6 is based on algorithm in chapter 2.2. Both the 
PCA algorithm and SPE plots are made in MATLAB script. The NLPCA method used are based 
on auto associative network and taken from a Nonlinear PCA toolbox for MATLAB [17]. 
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Chapter 4 

Models 

 
As described earlier a plate heat exchanger and centrifugal pump are processes that are being used 
to investigate PCA performance in an EFDD system. In this chapter models and estimators on the two 
processes are given. These models will be used to simulate different kinds of faults and normal 
operation conditions that will give the PCA – MBPCA  and NLPCA data. The models are implemented 
in MATLAB and SIMULINK. 

   

4.1 Dynamic and static heat exchanger models 
 
 
The heat exchanger process contains a dynamic model of the heat exchanger and a control 
loop that control loop that controls the output temperature on the hot-side by manipulating 
the cold side flow. The control loop is modelled by a PI – controller and a valve. In some of 
the experiments there would be used estimates for assumed missing measurements. These 
are based on different types of estimates concerning complexity.  
  
A heat exchanger process can be described by physical laws concerning mass, energy and 
momentum. The process is known to be nonlinear and the main reason for the nonlinearity 
is the strong mass flow dependence and even temperature dependence of the heat transfer 
coefficients. The model being used here is based on what may be called “Direct lumping of 
the process” and taken from [5]. This means that the heat exchanger is divided into sections 
(cells), and a model for each section is computed and put in a network to form the overall 
heat exchanger (see figure 7).  
  
 

 
Figure 7 Elements in a plate heat exchanger with control loop 
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Process Assumptions: 
 

• No pressure drops form inlet to outlets. 
• Even mass distribution along the heat exchanger. 
• Heat exchange with the ambient is ignored. 
• 𝑇𝑐𝑖, 𝑇ℎ𝑖 , 𝑤ℎ  are measurements from real process data, and 𝑤𝑐 based on assumption 

of the pressure difference over the valve. 
• Assumed density𝜌ℎ𝑖  and 𝑝𝑐𝑜. 
• The metal element below the two sections is ignored. 
• PI controller with assumed structure and parameters. 
• Assumed valve characteristic. 

 
Models parameters are: 
U Total heat coefficient between the streams [𝑊/(𝑚2𝐾)] 
ℎℎ Heat transfer coefficient at condensate (hot) side [𝑊/(𝑚2𝐾)] 
ℎ𝑐  Heat transfer coefficient at refrigerant (cold) side 𝑊/(𝑚2𝐾)] 
A Heat exchanger area for heat conduction between the two stream [𝑚] 
𝑐𝑝,ℎ Specific heat capacity for the mass at the condensate (hot) side [ 𝐽/(𝑘𝑔 𝐾)] 
𝑐𝑝,𝑐  Specific heat capacity for the mass at the refrigerant (hot) side [ 𝐽/(𝑘𝑔 𝐾)] 
𝜌ℎ Density condensate (hot) side [𝑘𝑔 𝑚3⁄ ] 
𝜌𝑐  Density refrigerant (cold) side [𝑘𝑔 𝑚3⁄ ] 
𝐶′,𝑦 Constant  
𝑘 Valve constant 
 
 
Input data are: 
𝑚ℎ       The mass of the liquid at the condensate side [𝑘𝑔] 
𝑚𝑐 The mass of the liquid at the refrigerant side [𝑘𝑔] 
𝑤ℎ Mass flow at the condensate side [𝑘𝑔/𝑠] 
𝑤𝑐        Mass flow at the refrigerant side [𝑘𝑔/𝑠] 
𝑇ℎ,𝑖       Inlet temperature at the condensate side [℃] 
𝑇𝑐,𝑖 Inlet temperature at the refrigerant side [℃] 
𝑝𝑐𝑜 Pressure before valve [bar] 
𝑝𝑐𝑡 Pressure after valve [bar] 
𝑢 Output from controller  
 
Output data are:   
𝑇ℎ,𝑜 Outlet temperature at the condensate side [℃]   
𝑇𝑐,𝑜 Outlet temperature at the refrigerant side [℃]   
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4.1.1 Dynamic model of plate heat exchanger  
 
The heat exchanger is modelled using the two model equations (11) and (12) from [5]. 
  

 
𝑑𝑇ℎ,𝑗

𝑑𝑡
=
𝑤ℎ∆𝑇ℎ,𝑗

𝑚ℎ,𝑗
−

𝑄𝑗
𝑚ℎ,𝑗𝑐𝑝,ℎ,𝑗

 (11) 

 
𝑑𝑇𝑐,𝑗

𝑑𝑡
=
𝑤𝑐∆𝑇𝑐,𝑗

𝑚𝑐,𝑗
+

𝑄𝑗
𝑚𝑐,𝑗𝑐𝑝,𝑐,𝑗

 (12) 

 
 
∆𝑇ℎ,𝑗 and ∆𝑇𝑐,𝑗 describes the temperature difference between the inlets and outlet on hot 
side and inlet and outlet on cold side respectively. j is the element index and are here set to 
10. (10 element plate heat exchanger). 
 
The coupling term 𝑄𝑗 is equal  (13) and describes the energy transfer between the two 
sections . 
 
 𝑄𝑗 = 𝑈𝑗𝐴𝑗∆𝑇𝑙𝑚,𝑗 = 𝑤ℎ𝑐𝑝,ℎ,𝑗∆𝑇ℎ,𝑗 = −𝑤𝑐𝑐𝑝,𝑐,𝑗∆𝑇𝑐,𝑗 (13) 
 
Where A is the Heat exchanger area for heat conduction between the two streams, U 
Coefficient of total heat conduction between the streams and the ∆𝑇𝑙𝑚,𝑗 term is the 
logarithmic mean temperature differences between the two sections and are given in (14). 
The heat conduction area is set to 0.5 𝑚2. 
 
 

 ∆𝑇𝑙𝑚,𝑗 =
�∆𝑇1,𝑗 − ∆𝑇2,𝑗�
𝑙𝑜𝑔�∆𝑇1,𝑗/∆𝑇2,𝑗�

 (14) 

 
, where  ∆𝑇1,𝑗 = 𝑇ℎ,𝑗,𝑖𝑛 − 𝑇𝑐,𝑗,𝑜𝑢𝑡 and ∆𝑇2,𝑗 = 𝑇ℎ,𝑗,𝑜𝑢𝑡 − 𝑇𝑐,𝑗,𝑖𝑛  
 
 The nonlinearities in a heat exchanger come from the strong massflow dependence and 
temperature dependence of the heat transfer coefficients. The model is here only based on 
the massflow dependence. To include this in the equations empirical relations from [5] has 
been used see (15).  
 
 

 𝑁𝑢 =  
ℎ𝑑
𝑘

= 𝐶𝑃𝑟𝑥𝑅𝑒𝑦 = 𝐶 �
𝑐𝜇
𝑘
�
𝑥
�
𝑢𝑑𝜌
𝜇
�
𝑦

 (15) 

 
 
By neglecting the temperature dependency and after some rearranging, (15) becomes.   
 
 ℎ = 𝐶′�̇�𝑦 (16) 
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By assuming that equation (16) applies to both of the heat transfer coefficients, ℎℎ and ℎ𝑐, 
the overall heat transfer coefficient, U can be written as. The thermal resistance in the metal 
is here neglected. 
 

 𝑈(𝑡) =
 ℎℎ(𝑡) ℎ𝑐(𝑡)
ℎℎ(𝑡) + ℎ𝑐(𝑡)

=
𝐶′��̇�ℎ(𝑡)�̇�𝑐(𝑡)�

𝑦

��̇�ℎ
𝑦(𝑡) + �̇�𝑐

𝑦(𝑡)�
 (17) 

 
 𝐶′ and  𝑦 are assumed to be the same for both ℎℎ and ℎ𝑐. This is done to keep the number 
of parameters that is later being assumed at a minimum. 
 
Usually heat transfer coefficients are based on a distributed heat exchanger model. 
Therefore heat transfer coefficient used in lumped models 𝑈 from equation (17) must be 
increased to give the same overall effectiveness when using few elements [8]. The constant  
𝑦 are assumed to be 0.67, and 𝐶′ was adjusted to 5540 𝑊/(𝑚2𝐾) to reach the same 
temperature output on hot side as for real data taken from an offshore installation. 
 
 

4.1.2 PI-controller 
 
The PI controller was made from the equation (18).  
 
 u = Kp + Kp/Tis (18) 
 
The parameters Kp and Ti is sat to 0.005 and 50 respectively. These are parameters selected 
by the author.  
 

4.1.3 Valve model  
 
The next model used in the plate heat transfer process is the valve. The valve equation used 
is given in equation (19) 
  
 
 𝑤𝑐 = 𝑘𝑢𝜌𝑐�𝑝𝑐𝑜 − 𝑝𝑐𝑡 (19) 
 
 
The pressure before the valve 𝑝𝑐𝑜 is simulated with a mean value of 1 bar. And the valve 
constant 𝑘 is assumed by the author to be 0.3 × 10−3. The density is sat to 𝜌𝑐  745 𝑘𝑔 𝑚3⁄ . u 
is the output from the PI – controller. To make the output pressure dependent on the valve 
opening the pressure 𝑝𝑐𝑡 was set as a constant multiplied by the output from the PI-
controller. 
 
 
In the equation given so far there are used assumptions about different constants. 
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Some of the constant are selected from trial and error from real measurements on an 
offshore installation. The constant most likely does not fit to a real heat exchanger.  

 

4.1.4 Estimators of missing measurements 
 
To support the PCA - and NLPCA method with more measurements, estimators was 
implemented. From the heat exchanger process there are no measurements of the flow on 
refrigerant liquid, but since we are controlling the refrigerant liquid we have access to the 
output u from the controller output. Based on the output u and assumption of a valve model 
we could estimate the flow. 
 

4.1.5 Flow estimate cold side  
The valve estimate was based on the same structure as the valve that serves as the real.  

 

 𝑤�𝑐 = 𝑘�𝑢𝜌�𝑐��̂�𝑐𝑜 − �̂�𝑐𝑡 (20) 
 
The constant 𝑘�  is here set to 0.25 × 10−3 and the pressure difference �̂�𝑐𝑜 − �̂�𝑐𝑡 is sat to 0.7 
bar. The density is set to 1000 𝑘𝑔 𝑚3⁄ and the density 𝜌�𝑐  are assumed constant and equal 
1000. u is the output from the PI -  controller. The output from the controller is 𝑢 and the 
reason why it’s squared is to simulate an equal percentage characteristic.  
 

4.1.6 Static estimate temperature cold side 
 
A static estimation of the outlet temperature on the cold side is made to give more data to 
PCA methods. The estimate is based on equation (11) at steady state and the equation (13), 
and the estimate from (20). 
 
  

 𝑇�𝑐,𝑜 = 𝑇𝑐,𝑖 +
𝑐𝑝,ℎ

𝑐𝑝,𝑐

𝑤ℎ

𝑤�𝑐
− (𝑇ℎ𝑖 − 𝑇ℎ𝑜) (21) 
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4.1.7 Estimate heat transfer coefficient 
To increase the data quantity to the PCA methods further it’s also made estimates on the 
heat transfer coefficient. These estimates are based on the estimates of flow and cold side 
output temperature and also the available measurements.  
 
  

 𝐼ℎ =
𝑈𝐴
𝑐𝑝,ℎ

=
𝑤ℎ∆𝑇ℎ
∆𝑇𝑙𝑚

 (22) 

 

 𝐼𝑐 =
𝑈𝐴
𝑐𝑝,𝑐

=
𝑤�𝑐∆𝑇𝑐
∆𝑇𝑙𝑚

 (23) 

 
 

4.1.8 Estimate temperature output hot side 
 

To be able to use the MBPCA approach there was used a model of the hot side output 
temperature. The estimate use the same model equations as the model that serves as the 
real system eq. (11) and (12), but instead of using the logarithmic mean temperature 
differences between the two sections given in (14) the linear equation (24) was used. 
 
 

 ∆𝑇𝑙𝑚,𝑗 =
𝑇ℎ,𝑖𝑛 + 𝑇ℎ,𝑜𝑢𝑡

2
−
𝑇𝑐,𝑖𝑛 + 𝑇𝑐,𝑜𝑢𝑡

2
 (24) 

 

In chapter 6.1  there are used three different models when using MBPCA. The structure are 
the same but with some change in the values. The difference comes from equation (16). 
They all uses 𝐶′ equal to 5400 𝑊/(𝑚2𝐾) (a change from the real model by 150), but with 
different 𝑦. 

MBPCA linear uses 𝑦 =1 

MBPCA incorrect non-liner 𝑦 = 0.8 

MBPCA correct non-liner 𝑦 = 0.67 
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Green colour boxes: Real process

Blu colour boxes: Estimates

Yellow colour boxes: Real measuremnts sensors.

Orange colour boxes: Input variable 
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 Estimate heat coefficient
Ih=UA/ch and Ic=UA/cc

4.2 Implementation of heat exchanger in SIMULINK 
 

As mentioned in the intro the models are simulated in MATLAB and SIMULINK. The model 
generating the data is simulated in SIMULINK and the PCA models are made in MATLAB 
code. In the figure 8 an overview of the model that serves as the real process and the 
estimators are given. 

 

 

  

Figure 8 SIMULINK plate heat exchanger process for training data 
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4.2 Static centrifugal pump model 
 

As for the heat exchanger process we need a process model of the centrifugal pump. The 
Centrifugal pump are modelled using a static equations made from a polynomial from [11]. 
There is also given a model of a control loop consisting of a PI – controller and an estimate of 
the flow for use in the MBPCA. 
 
Centrifugal pump model  
 
MODEL ASSUMPTION: 

 
• Neglect pump dynamics 
• Neglect the pressure losses by the casing of the pump 

 
The model is made from an approximating polynomial derived from the Euler pulse moment 
equation and can be represented as the following: 
 
 𝑝 = 𝑘 ∙ 𝑝𝐸 − 𝑝𝐻𝐿 − 𝑃𝐷 (24) 
 
 
where  

p Pressure differential across the pump 

k Correction factor. The factor is introduced to account for dimensional fluctuations, 
blade incongruity, blade volumes, fluid internal friction, and so on. The factor 
should be set to 1 if the approximating coefficients are determined 
experimentally. 

PE Euler pressure 

pHL Pressure loss due to hydraulic losses in the pump passages 

pD Pressure loss caused by deviations of the pump delivery from its nominal value 
 

 

The Euler pressure can be approximated with the equation 

 𝑃𝐸 = 𝜌𝑟𝑒𝑓�𝑐0 − 𝑐1 ∙ 𝑞𝑝� (25) 

where  

ρref Fluid density [𝑘𝑔 𝑚3⁄ ] 

c0,c1 Approximating coefficients. 
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QP Pump volumetric delivery [𝑚3 𝑠⁄ ] 

The pressure loss due to hydraulic losses in the pump passages, pHL, is approximated 
with the equation 

 𝑝𝐻𝐿 = 𝜌𝑟𝑒𝑓 ∙ 𝑐2 ∙ 𝑞𝑝2 (26) 

where  

ρref Fluid density [𝑘𝑔 𝑚3⁄ ] 

c2 Approximating coefficient 

qP Pump volumetric delivery [𝑚3 𝑠⁄ ] 

The pressure loss, pD, is estimated with the equation 

 𝑃𝐷 = 𝜌𝑟𝑒𝑓 ∙ 𝑐3�𝑞𝐷 − 𝑞𝑝�
2
 (27) 

 

where  

ρref Fluid density [𝑘𝑔 𝑚3⁄ ] 

c3 Approximating coefficient  

qP Pump volumetric delivery [𝑚3 𝑠⁄ ] 

qD Pump design delivery (nominal delivery) [𝑚3 𝑠⁄ ] 

The resulting approximating polynomial takes the form: 

 𝑝 = 𝜌𝑟𝑒𝑓 �𝑘�𝑐0 − 𝑐1𝑞𝑝� − 𝑐2𝑞𝑝2 − 𝑐3�𝑞𝐷 − 𝑞𝑝�
2
� (28) 

 

Since the pump model will be simulated with different speed and density the affinity 
laws are used. This law makes it possible to establish pump characteristics for several 
velocities and densities given characteristics for one specific velocity and density. The 
affinity laws are said to be valid when the velocity is between 50 % to 120 % of the 
specific velocity  𝑛𝑟𝑒𝑓 [13]. 

   

 

 𝑞𝑟𝑒𝑓 = 𝑞
𝑛𝑟𝑒𝑓
𝑛

 (29) 
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where q and ω are the instantaneous values of the pump delivery and angular velocity. 
Then the pressure differential across the pump at a different angular velocity and 
density is determined with the formula 

 𝑝 = 𝑝𝑟𝑒𝑓 ∙ �
𝑛
𝑛𝑟𝑒𝑓

�
2

∙
𝜌
𝜌𝑟𝑒𝑓

 (30) 

where  pref  is the pressure differential computed with equation (3.18) at pump delivery 
determined according to equation (3.19). The unknown coefficients are calculated from 
a pump curve given in appendix 1.  

Control loop 

The process contains a PI-controller that controls the flow thorough the pump by 
manipulating the speed. The PI – controller is taken from the Simulink library. The P- 
and I parameter are set by the author.   

Flow estimate 

 
 

Since MBPCA should be tested on the pump an estimate of the flow is made. This 
estimate will be dependent on the velocity and the pressure across the pump.   The 
estimated also uses the affinity law from equation (3.19) 

 𝑞�𝑝 =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
 (31) 

Where  

𝑎 = −�𝑐2_𝑒𝑠𝑡 + 𝑐3_𝑒𝑠𝑡� 

𝑏 = 2𝑐3_𝑒𝑠𝑡𝑞𝐷 − 𝑘𝑐1_𝑒𝑠𝑡𝑞𝑝 

𝑐 = 𝑘𝑐0_𝑒𝑠𝑡 − 𝑐3_𝑒𝑠𝑡𝑞𝐷2 −
𝑝
𝜌𝑟𝑒𝑓

 

To calculate the unknown coefficients c0, c1, c2, and c3 a pump characteristics is used for 
a specific fluid and a specific angular velocity. See appendix A for details 
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4.2.1 Implementation  
 

All the process models are implemented in SIMULINK to form the pump process.  

 
 

Figure 9 SIMULINK picture of Centrifugal pump process 
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Chapter 5 

Experimental Setup 
 

As mentioned in chapter 2 a plate heat exchanger- and a centrifugal pump are being 
monitored for early fault detection using PCA, MBPCA and NLPCA. The two processes both 
contain nonlinear behaviour that would be adequate for verifying the performance for the 
different method due to non-linear data. There would be performing to experiment series 
first on heat exchanger (see chapter 6.2) then on centrifugal pump (see chapter 6.3). Before 
the two simulation experiments series are taken place a setup description for both processes 
are given. 

5.1 Simulation experiment heat exchanger 
 

For the heat exchanger process there are 4 sections of simulations are taken place. In each 
section there is used three PCA -and one NLPCA model based on different number of 
measurements. The last three of the section contains experiment with MBPCA and the first 
one without MBPCA.  
  
In the first section two of the PCA - and the NLPCA models use linear estimates datasets in 
addition to all other available data.  
 
In the second section there is used the same measurements as for the first section except for 
the output hot temperature measurement. These measurements are used to form a linear 
MBPCA structure using the residual from a dynamic linear estimate subtracted from the real 
measurement. 
 
The third section contains the same data setup as in section two, but here a nonlinear 
estimate of the output hot temperature is used. The nonlinearities are incorporated into the 
heat transfer coefficient, but are not of same character as the real one. 
 
The fourth sections are the same as the third, but here the incorporated nonlinear heat 
transfer coefficient are exact the same as the real one.   
  

For a summary of the methods and the dataset used see table 3 
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5.1.2 Generation of training data heat exchanger 
 

The Normal Operating Training Dataset 

Before simulation experiments are executed the PCA, MBPCA and NLPCA needs dataset for 
training. For accurate fault detection it is important that the processes have been richly 
excited over the period that the training data has been captured. This could be a major 
problem when training with data from real processes, due to change in production, 
operator’s interference and fluctuating upstream and downstream- processes would 
frequently change the process behaviour. Since models of real processes are being used in 
this work the author has defined a normal operating region for the heat exchanger model 
(see table 4 for details). The normal operating training dataset is from now on called normal 
operation conditions (NOC). 

Before forming the PCA- and NLPCA models a 23.5 hour simulation is executed. From this 
interval a sample is taken every minute giving total of 1400 samples for each variable. To 
remove noise from the signal and hopefully give more comfortable SPE charts and reduce 
calculation time for PCA and NLPCA the 1400 samples are divided into groups of 7 samples, 
giving totally 200 groups of samples. Instead of using the original samples the average in 
each of the grouped samples are used.  

The number of samples in each group is a tuning parameter and could mask some faults if 
selected to height. Another consequence of the manipulation is to do with the online 
monitoring. By manipulating the data there will be a delay in the analysis because the group 
of samples needs to be filled before a SPE plot for the group is calculated. These are 
important considerations that have to be evaluated for each process being monitored.  

In the heat exchanger experiments the input temperature variable and the hot side flow are 
data taken from a real offshore installation. All other input variables are simulated by the 
author. For a summary of the data inputs and their values see table x
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5.1.2 Heat exchanger fault data set 

 

In this section a discussion of different faults simulated in chapter 6 is presented. All the 
faults are simulated by adding on some bias step function to the measurements. The fault is 
triggered after the simulation has started and removed before it ends. All of the fault dataset 
used are the same as for the training dataset except for the fault simulated.  

 

Sensor fault dataset 

Sensor fault is a typical fault in the process industry and an early detection of such a fault is 
of usage interest. In the heat exchanger process there will be simulated a faults in the 
temperature measurement and cold side input. 

 

 Wax composition fault dataset 

In heat exchanger process wax composition is a normal fault that would influence the 
efficiency of the exchanger capability to transport heat. The normal situation is that the wax 
composition increases over time. To detect such an error is valuable and could give 
maintenance personal information for planning maintenance stop. Since this type of fault 
typically evolves slowly over time a step function would not be very realistic, but will still be 
adequately for testing the different PCA methods 

  

Novel Fault Data set 

Novel means that the algorithm has not trained with the data for fault regions. The novel 
dataset does not need to be a fault, but only a change in production or other natural process 
drifting that was not present in the training dataset. Detecting such a fault would therefore 
be of varying interest depending on the process being monitored. For the heat exchanger 
process the novel fault dataset contains a change in process input flow on hot side.  

  



 
 

34 
 

5.2 Centrifugal pump training data set 
 
For the centrifugal pump process two simulation experiments series are taken place. 
The first one contains models build from a NOC with normal instrumentation and some 
virtual measurements. And the second series contain models build from a NOC where a 
MBPCA approach is used. The same measurements are used except for the flow 
measurement that is a residual of the flow (measurement subtracted with a flow estimate). 
(MBPCA approach). Both the two parts containing 3 different PCA models made from 
different numbers of datasets and one NLPCA model made of one dataset (see table 17). 
Both the NOC series operates in the same interval.  

All the Centrifugal pump data variables used in the training dataset are defined by the 
author. In table 6 the range of values for the different variables are described.    
 

5.2.1 Generation of training data heat exchanger 
 
 
Before forming the PCA- and NLPCA models a 24 hour simulation is consistent to collect NOC 
data. From this interval the sampling rate is 1 minute giving a total of 1440 samples for each 
variable. To remove noise from the signal and thereby giving more comfortably SPE plots 
and in the same time reduce calculation time for PCA and NLPCA the 1440 samples are 
divided into groups of 10 samples giving 144 groups of samples. Instead of using the original 
samples the average in each of the grouped samples are used. The number of sample groups 
selected is a tuning parameter and will affect the sensitivity of fault detection on the two 
methods. Another problem with the data manipulation has to do with online analysis. If the 
EFDD are preformed online there will be a delay in the analysis, because the group of 
samples needs to be filled before a SPE plot for the group is calculated. These are important 
considerations that have to be evaluating for each process being monitored.  

When the NOC datasets was available a construction of PCA and NLPCA models was taken 
place. The procedure is the same as for heat exchanger (see chapter 5.1.2). Then the SPE, 
UCL and fault indicator are calculated as for the heat exchanger (see chapter 5.1.3). 
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5.2.2 Centrifugal pump fault data set 
 

To investigate the PCA and NLPCA for fault detection, known fault dataset need to be 
available. Since the simulations in chapter 6 is based on making data from mathematical 
models of the centrifugal pump the different faults are being simulated. All the faults that 
are being discussed below are simulated with a step-function (see chapter 2.2.1). In real 
processes many faults (some of them simulated here) may not act as step-function. But to 
reduce the scope of the simulations, only the step-function is being used. It should also be 
mention that only one fault is simulated in each dataset to reduce complexity. 

The faults used in simulations in chapter 6 would be sensor failure, parameter change and 
operation beyond normal regimes. A more detailed description of the different faults is 
presented in chapter 6. Now a discussion of different faults simulated in chapter 6 are 
presented. 

 

Sensor fault dataset 

Sensor fault is often a source to failure in the process industry and would be an important 
failure to detect. In the pump process model there are two measurements that are serves as 
real, the pressure over the pump and the speed of the pump. Both these measurement 
faults would affect the hold process do to the height degree of correlation (see chapter 5 for 
detail process description). Both these measurements are being simulated with a fault in 
separate datasets. The fault dataset was generated by changing the value from the 
measurements by a step-function in the SIMULINK model. 

 

Process malfunction fault dataset 

During the lifetime of a centrifugal pump process wear and tear would appear. This is often a 
fault that growth slowly over time and a detection of such a fault would be valuable to know 
at an early state to make plans of a maintenance stop. To simulate such a fault one of the 
parameters in the pump model would be changed with a step-function during the simulation 
interval. A step change is not a ideal function to use to simulate such a fault but for simplicity 
this is done. 

Novel Fault Data set 

One data set is used as novel fault set. Novel means that the algorithm has not trained with 
the data for fault regions. The novel data is used to test the ability of the technique to detect 
unseen faults. The novel dataset don’t need to be a fault, but only a change in the process 
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operating conditions. These changes could come from other upstream- or downstream 
processes or locally do change in set point of the controller.  

 

5.3 Procedure for making PCA and NLPCA 
 

PCA 

1. Normal operation data was generated executing a SIMULINK model on both the 
processes. All data variables (training data) for analysis were collected in a data array. 
 

2. Training data was put into desired groups of interval and the mean value for each 
group was used further in the analysis. After this manipulation the data was centered 
(subtraction of mean and divided by standard deviation) and used in a PCA algorithm 
described in chapter 2.4.1. The output from the algorithm gave the number of 
variances on each principal component and the user could then select how many 
components that the model should be based on.  

 
3. After selecting number of principal components the PCA algorithm calculated SPE 

plots and defined an upper control limit UCL with a value 3𝜎.   

 

NLPCA based on ANN 

1. Same as for point 1. in PCA 
 

2. The same groups of data as for PAC in 2 was used for nonlinear PCA (NLPCA) 
algorithm based on auto-associative neural network [x]. Before running the algorithm 
the number of principal components in the hyper dimension must be selected by the 
user. The NLPCA then runs an optimization procedure to build a network that is 
reachable in the original plane, and then makes SPE plots and defining a UCL with a 
value of 3𝜎 of the SPE plot.  
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5.3.1  SPE – and UCL  plots and Fault indicator 
 

From the SPE values there was selected an UCL (details see chapter 3.2) that serves as and 
upper limit for when the process is normal (without false). If the SPE plots is under this line 
the process is interprets as normal. This limit is here defined to be 3 times the standard 
deviation of the SPE plot (3𝜎) (see chapter 2 for details). 

 To have a supplement to the UCL there are used a fault indicator value. The indicators are 
the number of samples that violates the UCL during the selected interval. The intervals being 
used are of same length as the NOC dataset. Since some of the SPE samples always violate 
the UCL when using PCA models the NOC violations are ignored and the numbers of the 
indicator are the number of violations under operating subtracted from the NOC violations 
(made from the NOC). This is important to note when study the simulations in chapter 6.  

 

5.4 Offline or Online Analysis 
 

In the EFDD system it is desirable to run an online analysis from the processes. Some of the 
models especially NLPCA is relatively slow to train. This is not a serious problem to online 
analysis, because the models only need to be trained once to set a basis line for the normal 
operating and fault regions. On the other hand if the system that is being monitored often 
changes operation region, and therefore imply frequently demands of updating the models 
the use of NN models could be a problem. This has to be weighted with the type of process 
that is being monitored and the demand time required that faults must be detected. The 
analysis presented in the following section has been preformed offline in a batch-wise 
manner in a Matlab environment. This is because running the calculations online would add 
no value to the way the results are presented here. The results are focused on exploring the 
detection of faults, rather than taking appropriate action to correct them. 
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Chapter 6 

6 Results 
 

In this chapter all the result from the simulations are presented. The chapter is divided in 
two main parts, where the first one is containing results on the plate heat exchanger 
(chapter 6.1) and the second part centrifugal pump (chapter 6.2). Conclusions for the two 
processes are presented at the end of the chapter. Under each main parts there are given 
two simulation experiments for fault detection with different PCA- MBPCA and NLPCA 
models. 

 This section start with a presentation of the building process of the PCA and NLPCA for the 
heat exchanger and then the different faults simulations are given for the heat exchanger. 
Then the hold process is repeated with the use of the pump process. There are given a 
conclusion after both processes.  

 

6.1 Heat exchanger results  
 

There are used three PCA models containing different numbers of datasets and one NLPCA 
with one dataset (see table 3). When the MBPCA are used the 𝑇ℎ𝑜 is replaced with the 
residual  𝑇ℎ𝑜 − 𝑇�ℎ𝑜. An overview of the simulations is given in table 4.  

 

PCA Dataset     1:  [𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢] 
PCA Dataset     2:  �𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 
PCA Dataset      3: �𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ 𝐼𝑐�   
NLPCA Dataset 2: �𝑤ℎ 𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  
Table 3 PCA – and NLPCA models datasets for heat exchanger 
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Without MBPCA 
Fault 1 Fault 2 Fault 3 
Sim.1 Sim.2 Sim.3 

   
MBPCA linear model 

Fault 1 Fault 2 Fault 3 
Sim.4 Sim.5 Sim.6 

   
MBPCA incorrect non-linear model 

Fault 1 Fault 2 Fault 3 
Sim.7 Sim.8 Sim.9 

   
MBPCA correct non-linear model 

Fault 1 Fault 2 Fault 3 
Sim.10 Sim.11 Sim.12 

Table 4 Overview of the simulations on heat exchanger 

 

The combined data from the experiments to obtain the normal operating region are shown 
in figure 10. For an explanation of the variables see table 6. It’s clear that some variables 
have tight distribution (e.g variable 3: the temperature on input hot side), while others have 
large variances (e.g. variable 6- mass flow rate from estimated cold side).  We can also see 
the presence of outliers (e.g. variable 7 – estimated temperature cold side out ). In table 5 
the different faults simulated on heat exchanger are given.  

Fault Description Value Percent 
of NOC 

Fault 1 Sensor fault  Temperature measurement cold side in 0.4℃ 8 % 
Fault 2 Wax composition  200 𝑊/(𝑚2𝐾) 0.83 % 
Fault 3 Change in flow hot side  0.54 𝑘𝑔 𝑠⁄  17 % 
Table 5 Different Faults simulated on heat exchanger 
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Figure 10 Box plot for heat exchanger normal operation region 

 

 

 

Variable 
Name 

Range Noise 
Variance 

Description 

1 Tc-in 14 − 18 ℃ 0.1 Temperature cold side in  
2 Wh 36 − 48 𝑘𝑔 𝑠⁄  0.1 Flow hot side 
3 Th-in 65 − 68 ℃ 0.1 Temperature hot side in 
4 Th-out 26 − 29 ℃ 0.1 Temperature hot side out 
5 u 0.31 − 0.8 - Output controller 
6 Wc-est 20 − 53 𝑘𝑔 𝑠⁄  - Flow estimate cold side 
7 Tc-out-est 35 − 60 ℃ - Temperature estimate cold side 

out 
8 Ih 40 − 63 - Heat capacity hot side 
9 Ic 22 − 34 - Heat capacity cold side 
Table 6 Variables selected for the Analysis 
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Training without MBPCA 

 
Figure 11 Variance from all variables in the different datasets heat exchanger. 

 

When training without MBPCA we got the variance of each PCs given in figure 11. The 
number of principal components (PCs) was selected based on average eigenvalue method 
(see chapter 2.3). The average eigenvalue method proposes the use of 2 PCs for all the PCA 
models. Since the third PCs was far from 1 the propos was followed. In table 6 the overview 
of variance explained by the selected PCs are listed 

 

PCA models 1.PCs 2. PCs Variance  
explained 

PCA  Dataset:1 49.54 % 33.40 % 82.94 % 
PCA  Dataset:2 57.45 % 28.98 86.43 % 
PCA  Dataset:3  59.05% 29.31 % 88.36 % 

Table 6 Principal components variance for the different PCA models heat exchanger 

 

After the selection of principal components the SPE plot for normal operation region, upper 
control limit and number of legal violations was generated as described in chapter 3.2 (see 
figure 12 -14). The number of samples that violated the upper control limits was counted for 
each of the models and set as an acceptable number of violations meaning that if no more 
samples violate the UCL the process was defined to act normal (without faults). In table 6 
the models, with their corresponding dataset and number of normal operation region 
violations (Legal violations), are presented. In NLPCA there is no opportunity to select 
number of PCs from a proposal. The PCs has to be selected before the training dataset and 
was here set to 6. The SPE - and UCL SPE values are given in figure 15.  
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SPE charts using trained data without MBPCA 

 

 
Figure 12 Normal operation region for PCA Dataset 1 

 
Figure 13 Normal operation region for PCA Dataset 2 

 
Figure 14 Normal operation region for PCA Dataset 3 

 
Figure 15 Normal operation region for NLPCA Dataset 2 

 

 

   

 

 

 

When all the models are made the system is ready to analyse data. The models are now 
being tested for different faults mention in chapter 5.1.2 and the overview of the different 
faults are given in table 5. 

 

 

Models Legal  
violations 

PCA Dataset       1: [𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢] 9 
PCA Dataset       2: �𝑤ℎ 𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 9 
PCA Dataset:      3: �𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ  𝐼𝑐�   9 
NLPCA Dataset 2: �𝑤ℎ 𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  0 

Table 7 NOC violation in SPE plot 
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6.2 Simulations of fault without MBPCA 
 

Simulation 1, Heat exchanger without MBPCA  

FAULT 1 

 
Figure 16 SPE plot PCA Dataset 1 

 
Figure 17 SPE plot PCA Dataset 2 

 
Figure 18 SPE plot PCA Dataset 3 

 
Figure 19 SPE plot NLPCA Dataset 2 

 

In simulation 1, fault in temperature measurement on 
cold input side is simulated. A bias of 0.4 ℃ is added 
on the original measurement at sample 50 and is 
removed at sample 150. The plots of the SPE statistics 
together with the upper control limits (found from the 
normal operating data) are shown in figure 16-19.  
 
Table 8 shows how many samples that violate the 
upper control limits for PCA- and NLPCA models. 
There is only the NLPCA model that shows detection of the fault. But its also give some false 
alarms after sample 150 when the fault are removed.

Models Counted 
Violations  

PCA  Dataset 1: 
 [𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢] -4 

PCA Dataset 2: 
 �𝑤ℎ 𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 

-4 

PCA Dataset 3: 
�𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ 𝐼𝑐�   

-4 

NLPCA Dataset 2:  
�𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  

48 

Table 8 Number of violating samples in 1 day interval 
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Simulation 2, Heat exchanger without MBPCA 

FAULT 2 

 
Figure 20 SPE plot PCA Dataset 1 

 
Figure 21 SPE plot PCA Dataset 2 

 
Figure 22 SPE plot PCA Dataset 3 

 
Figure 23 SPE plot NLPCA Dataset 2 

 

 In simulation 2, fault in the overall heat 
transfer coefficient are simulated. A bias of 
200 𝑊/(𝑚2𝐾) is added on the original 
measurement at sample 50 and is removed at 
sample 150. The plots of the SPE statistics 
together with the upper control limits (found 
from the normal operating data) are shown in 
figure 20-23 
 
Table 9 shows how many samples that violate the upper control limits for PCA- and NLPCA 
models. The PCA models detect the fault poorly. NLPCA on the other hand shows a usable 
detection.  
 

 

Models Counted 
Violations 

PCA Dataset 1: [𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢] 4 
PCA Dataset 2: 
�𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 

8 

PCA Dataset 3: 
�𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ 𝐼𝑐�   

5 

NLPCA Dataset 2:  
�𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 

64 

Table 9 Number of violating samples in 1 day interval 
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Simulation 3, Heat exchanger without MBPCA 

FAULT 3 

 
Figure 24 SPE plot PCA Dataset 1 

 
Figure 25 SPE plot PCA Dataset 2 

 
Figure 26 SPE plot PCA Dataset 3 

 
Figure 27 SPE plot NLPCA Dataset 2 

 

In simulation 3, fault in the input flow on hot 
side is simulated temperature measurement on 
hot input side is simulated. A bias of 0.54 𝑘𝑔 𝑠⁄  
is added on the original measurement at 
sample 50 and is removed at sample 150. The 
plots of the SPE statistics together with the 
upper control limits (found from the normal 
operating data) are shown in figure 24-27.  
 
Table 10 shows how many samples violations for the upper control limits for PCA- and 
NLPCA models. All the models detect the fault poorly in this simulation. 
 
  

Models Counted 
Violations 

PCA Dataset 1: [𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢] 1 
PCA Dataset 2: 
�𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 

0 

PCA Dataset 3: 
�𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ 𝐼𝑐� 

0 

NLPCA Dataset 2:  
�𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 

1 

Table 10 Number of violating samples in 1 day interval 
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Training with MBPCA linear model 

 In this simulation a linear estimate is used for MBPCA structure.  The estimate is based on a 
dynamic model of the heat exchanger but with the linear equations given I chapter 4.1.8   

 

 

 
Figure 28 Box plot for heat exchanger normal operation region 
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Figure 29 Variance from all variables in the different datasets heat exchanger. 

 

When training with linear MBPCA we got the variance of each PCs given in figure 29. The 
number of principal components (PCs) was selected based on average eigenvalue method 
(see chapter 2.3). The average eigenvalue method proposes the use of 2 PCs for all the PCA 
models. Since the third PCs where far from 1 the propos was followed. In table 11 the 
overview of variance explained by the selected PCs are listed 

 

PCA models 1.PCs 2. PCs Variance  
explained 

PCA  Dataset:1 61.97 %  24.46% 86.44% 
PCA  Dataset:2 55.85 % 33 % 88.92 % 
PCA  Dataset:3  53.70%  37.31% 91 % 

Table 11 Principal components variance for the different PCA models heat exchanger 

 

After the selection of principal components the SPE plot for normal operation region, upper 
control limit and number of legal violations was generated as described in chapter 3.2 (see 
figure 30 -32). The number samples that violated the upper control limits was counted for 
each of the models and sat as an acceptable number of violations meaning that if no more 
samples violate the UCL the process was defined to act normal (without faults). In table 6 
the models with there corresponding dataset and number of normal operation region 
violations (Legal violations) are presented (for details see chapter 3.2). In NLPCA there is no 
opportunity to select number of PCs from a proposal. The PCs has to be selected before the 
training dataset and was here set to 6. The SPE - and UCL SPE values are given in figure 33.  
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SPE charts using trained data with Linear MBPCA 

 
Figure 30 Normal operation region for PCA Dataset 1 

 
Figure 31 Normal operation region for PCA Dataset 2 

 
Figure 32 Normal operation region for PCA Dataset 3 

 
Figure 33 Normal operation region for NLPCA Dataset 2 

 

   

   

Models Legal  
violations 

PCA Dataset       1: [𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢] 11 
PCA Dataset       2: �𝑤ℎ 𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 12 
PCA Dataset:      3: �𝑤ℎ  𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ  𝐼𝑐�   11 
NLPCA Dataset 2: �𝑤ℎ 𝑇ℎ𝑖  𝑇ℎ𝑜𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  0 

Table 12 NOC violation in SPE plot 
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Simulation 4, Heat exchanger with Linear MBPCA 

FAULT 1 

 
Figure 34 SPE plot PCA Dataset 1 

 
Figure 35 SPE plot PCA Dataset 2 

 
Figure 36 SPE plot PCA Dataset 3 

 
Figure 37 SPE plot NLPCA Dataset 2 

 

In simulation 4, fault in 
temperature measurement on 
cold input side is simulated. A 
bias of 0.4 ℃ is added on the 
original measurement at sample 
50 and is removed at sample 150.  
 
The plots of the SPE statistics together with the upper control limits (found from the normal 
operating data) are shown in figure 34-37. Table 13 shows how many samples that violate 
the upper control limits for PCA- and NLPCA models. All the models show poor performance 
in detecting the fault.  

Models Counted 
Violations  

PCA  Dataset      1: [𝑤ℎ  𝑇ℎ𝑖�𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢] 0 
PCA Dataset       2: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 1 
PCA Dataset       3: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ  𝐼𝑐�   5 
NLPCA Dataset  2: �𝑤ℎ  𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜�𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  0 

Table 13 Number of violating samples in 1 day interval 
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Simulation 5, Heat exchanger with Linear MBPCA 
 
FAULT 2 

 
Figure 38 SPE plot PCA Dataset 1 

 
Figure 39 SPE plot PCA Dataset 2 

 
Figure 40 SPE plot PCA Dataset 3 

 
Figure 41 SPE plot NLPCA Dataset 2 

 

In simulation 5, fault in the 
overall heat transfer 
coefficient are simulated. A 
bias of 200 𝑊/(𝑚2𝐾) is added 
on the original measurement 
at sample 50 and is removed at  
sample 150. The plots of the SPE statistics together with the upper control limits (found from 
the normal operating data) are shown in figure 38-41. Table 14 shows how many samples 
that violate the upper control limits for PCA- and NLPCA models. PCA models shows some 
detection of the fault.  

 

 

Models Counted 
Violations 

PCA  Dataset      1: [𝑤ℎ  𝑇ℎ𝑖�𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢] 10 
PCA Dataset       2: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 15 
PCA Dataset       3: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ  𝐼𝑐�   20 
NLPCA Dataset  2: �𝑤ℎ  𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜�𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  0 

Table 14 Number of violating samples in 1 day interval 
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Simulation 6, Heat exchanger with Linear MBPCA 

FAULT 3 

 
Figure 42 SPE plot PCA Dataset 1 

 
Figure 43 SPE plot PCA Dataset 2 

 
Figure 44 SPE plot PCA Dataset 3 

 
Figure 45 SPE plot NLPCA Dataset 2 

 

In simulation 6, fault in the 
input flow on hot side is 
simulated temperature 
measurement on hot input side 
is simulated. A bias of 0.54 𝑘𝑔 𝑠⁄  
is added on the original 
measurement at sample 50 and is removed at sample 150. The plots of the SPE statistics 
together with the upper control limits (found from the normal operating data) are shown in 
figure 42-45. Table 15 shows how many samples violations for the upper control limits for 
PCA- and NLPCA models. NLPCA is here the best model, but it does not detect the fault 
longer then sample 80. 
     
 
  

Models Counted 
Violations 

PCA  Dataset      1: [𝑤ℎ  𝑇ℎ𝑖�𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢] 7 
PCA Dataset       2: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 3 
PCA Dataset       3: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ  𝐼𝑐�   6 
NLPCA Dataset  2: �𝑤ℎ  𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜�𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  30 

Table 15 Number of violating samples in 1 day interval 
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Training with not perfect non-linear MBPCA 

In this simulation a non-linear estimate is used for MBPCA structure (see chapter 4.1.8).  The 
estimate is based on a dynamic model of the heat exchanger but with the linear equations 
given I chapter 4.1.8   

 

 

 

Figure 46 Variance from all variables in the different datasets heat exchanger. 

When training with not perfect non-linear MBPCA we got the variance of each PCs given in 
figure 46. The number of principal components (PCs) was selected based on average 
eigenvalue method (see chapter 2.3). The average eigenvalue method proposes the use of 2 
PCs for all the PCA models. Since the third PCs were far from 1 the propos was followed. In 
table 16 the overview of variance explained by the selected PCs are listed 

 

PCA models 1.PCs 2. PCs Variance  
explained 

PCA  Dataset:1  48.29% 39.77 % 88.06% 
PCA  Dataset:2 32.41 %  32.41%  89.55% 
PCA  Dataset:3 61.28 %  30.34%  91.62% 

Table 16 Principal components variance for the different PCA models heat exchanger 

 

After the selection of principal components the SPE plot for normal operation region, upper 
control limit and number of legal violations was generated as described in chapter 3.2 (see 
figure 47 -49). The number samples that violated the upper control limits was counted for 
each of the models and sat as an acceptable number of violations meaning that if no more 
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samples violate the UCL the process was defined to act normal (without faults). In table 6 
the models with there corresponding dataset and number of normal operation region 
violations (Legal violations) are presented. In NLPCA there is no opportunity to select 
number of PCs from a proposal. The PCs has to be selected before the training dataset and 
was here set to 6. The SPE - and UCL SPE values are given in figure 50  
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SPE charts using trained data with not perfect non-linear MBPCA 

 
Figure 47 Normal operation region for PCA Dataset 1 

 
Figure 48 Normal operation region for PCA Dataset 2 

 
Figure 49 Normal operation region for PCA Dataset 3 

 
Figure 50 Normal operation region for NLPCA Dataset 2 

 

 

   

  

Models Legal  
violations 

PCA  Dataset      1: [𝑤ℎ  𝑇ℎ𝑖�𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢] 11 
PCA Dataset       2: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 12 
PCA Dataset       3: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ  𝐼𝑐�   13 
NLPCA Dataset  2: �𝑤ℎ  𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜�𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  0 

Table 17 NOC violation in SPE plot 
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Simulation 7, Non-linear not perfect MBPCA 

FAULT 1 

 
Figure 51 SPE plot PCA Dataset 1 

 
Figure 52 SPE plot PCA Dataset 2 

 
Figure 53 SPE plot PCA Dataset 3 

 
Figure 54 SPE plot NLPCA Dataset 2 

 

In simulation 7, fault in 
temperature measurement on 
cold input side is simulated. A 
bias of 0.4 ℃ is added on the 
original measurement at 
sample 50 and is removed at 
sample 150.  
 
The plots of the SPE statistics together with the upper control limits (found from the normal 
operating data) are shown in figure 51-54. Table 18 shows how many samples that violate 
the upper control limits for PCA- and NLPCA models.  In this simulation the PCA models 
detect the fault clearly, but not the whole fault interval. 

Models Counted 
Violations  

PCA  Dataset      1: [𝑤ℎ  𝑇ℎ𝑖�𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢] 39 
PCA Dataset       2: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 44 
PCA Dataset       3: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ  𝐼𝑐�   53 
NLPCA Dataset  2: �𝑤ℎ  𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜�𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  1 

Table 18 Number of violating samples in 1 day interval 
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Simulation 8, Non-linear not perfect MBPCA 

FAULT 2 

 
Figure 55 SPE plot PCA Dataset 1 

 
Figure 56 SPE plot PCA Dataset 2 

 
Figure 57 SPE plot PCA Dataset 3 

 
Figure 58 SPE plot NLPCA Dataset 2 

 

 In simulation 8, fault in the 
overall heat transfer 
coefficient are simulated. A 
bias of 200 𝑊/(𝑚2𝐾) is added 
on the original measurement 
at sample 50 and is removed at  
sample 150. The plots of the SPE 
statistics together with the upper control limits (found from the normal operating data) are 
shown in figure 55-58. Table 19 shows how many samples that violate the upper control 
limits for PCA- and NLPCA models. PCA models shows a good performance in detecting the 
fault.  
 
 

Models Counted 
Violations 

PCA  Dataset      1: [𝑤ℎ  𝑇ℎ𝑖�𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢] 91 
PCA Dataset       2: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 90 
PCA Dataset       3: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ  𝐼𝑐�   89 
NLPCA Dataset  2: �𝑤ℎ  𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜�𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  1 

Table 19 Number of violating samples in 1 day interval 
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Simulation 9, Non-linear not perfect MBPCA 

FAULT 3 

 
Figure 59 SPE plot PCA Dataset 1 

 
Figure 60 SPE plot PCA Dataset 2 

 
Figure 61 SPE plot PCA Dataset 3 

 
Figure 62 SPE plot NLPCA Dataset 2 

 

In simulation 9, fault in the 
input flow on hot side is 
simulated temperature 
measurement on hot input 
side is simulated. A bias of 
0.54 𝑘𝑔 𝑠⁄  is added on the original 
measurement at sample 50 and is removed at sample 150. The plots of the SPE statistics 
together with the upper control limits (found from the normal operating data) are shown in 
figure 59-62.  
 
Table 20 shows how many samples violations for the upper control limits for PCA- and 
NLPCA models. PCA models do detect the fault for some samples.  
 
 

 

Models Counted 
Violations 

PCA  Dataset      1: [𝑤ℎ  𝑇ℎ𝑖�𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢] 10 
PCA Dataset       2: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 13 
PCA Dataset       3: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ  𝐼𝑐�   12 
NLPCA Dataset  2: �𝑤ℎ  𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜�𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  1 

Table 20 Number of violating samples in 1 day interval 
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Training with perfect non-linear MBPCA 

In this simulation a non-linear estimate is used for MBPCA structure (see chapter 4.1.8).   

 

Figure 63 Variance from all variables in the different datasets heat exchanger. 

When training with perfect non-linear MBPCA we got the variance of each PCs given in figure 
63. The number of principal components (PCs) was selected based on average eigenvalue 
method (see chapter 2.3). The average eigenvalue method proposes the use of 2 PCs for all 
the PCA models. Since the third PCs were far from 1 the propos was followed. In table 21 the 
overview of variance explained by the selected PCs are listed 

 

PCA models 1.PCs 2. PCs Variance  
explained 

PCA  Dataset:1  61.6% 29.96 % 91.56% 
PCA  Dataset:2 65.73 %  26.85%  92.58% 
PCA  Dataset:3 63.11 %  30.56%  93.67% 

Table 21 Variance from all variables in the different datasets heat exchanger 

After the selection of principal components the SPE plot for normal operation region, upper 
control limit and number of legal violations was generated as described in chapter 3.2 (see 
figure 64 -66. The number samples that violated the upper control limits was counted for 
each of the models and sat as an acceptable number of violations meaning that if no more 
samples violate the UCL the process was defined to act normal (without faults). In table 6 
the models with there corresponding dataset and number of normal operation region 
violations (Legal violations) are presented. In NLPCA there is no opportunity to select 
number of PCs from a proposal. The PCs has to be selected before the training dataset and 
was here set to 6. The SPE - and UCL SPE values are given in figure 67  



 
 

59 
 

SPE charts using trained data with perfect non-linear MBPCA 

 

 
Figure 64 Normal operation region for PCA Dataset 1 

 
Figure 65 Normal operation region for PCA Dataset 2 

 
Figure 66 Normal operation region for PCA Dataset 3 

 
Figure 67 Normal operation region for NLPCA Dataset 2 

 

 

   

  

Models Legal  
violations 

PCA  Dataset      1: [𝑤ℎ  𝑇ℎ𝑖�𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢] 8 
PCA Dataset       2: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 9 
PCA Dataset       3: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ  𝐼𝑐�   11 
NLPCA Dataset  2: �𝑤ℎ  𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜�𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  0 

Table 22 NOC violation in SPE plot 
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Simulation 10, Non-linear perfect MBPCA 

FAULT 1 

 
Figure 68 SPE plot PCA Dataset 1 

 
Figure 69 SPE plot PCA Dataset 2 

 
Figure 70 SPE plot PCA Dataset 3 

 
Figure 71 SPE plot NLPCA Dataset 2 

 

In simulation 10, fault in 
temperature measurement on 
cold input side is simulated. A 
bias of 0.4 ℃ is added on the 
original measurements at 
sample 50 and is removed at 
sample 150.  
 
The plots of the SPE statistics together with the upper control limits (found from the normal 
operating data) are shown in figure 68-71. Table 23 shows how many samples that violate 
the upper control limits for PCA- and NLPCA models. The PCA models detect the fault well. 
There are small differences between them. 

Models Counted 
Violations  

PCA  Dataset      1: [𝑤ℎ  𝑇ℎ𝑖�𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢] 89 
PCA Dataset       2: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 91 
PCA Dataset       3: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ  𝐼𝑐�   95 
NLPCA Dataset  2: �𝑤ℎ  𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜�𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  1 

Table 23 Number of violating samples in 1 day interval 
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Simulation 11, Non-linear perfect MBPCA 

FAULT 2 

 
Figure 72 SPE plot PCA Dataset 1 

 
Figure 73 SPE plot PCA Dataset 2 

 
Figure 74 SPE plot PCA Dataset 3 

 
Figure 75 SPE plot NLPCA Dataset 2 

 

In simulation 11, fault in the 
overall heat transfer 
coefficient are simulated. A 
bias of 200 𝑊/(𝑚2𝐾) is added 
on the original measurement 
at sample 50 and is removed at  
sample 150. The plots of the SPE 
statistics together with the upper control limits (found from the normal operating data) are 
shown in figure 72-75. Table 24 shows how many samples that violate the upper control 
limits for PCA- and NLPCA models. The PCA models detect the fault well. There are small 
differences between them. 
 

Models Counted 
Violations 

PCA  Dataset      1: [𝑤ℎ  𝑇ℎ𝑖�𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢] 93 
PCA Dataset       2: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 92 
PCA Dataset       3: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ  𝐼𝑐�   91 
NLPCA Dataset  2: �𝑤ℎ  𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜�𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  1 

Table 24 Number of violating samples in 1 day interval 
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Simulation 12, Non-linear perfect MBPCA 

FAULT 3 

 
Figure 76 SPE plot PCA Dataset 1 

 
Figure 77 SPE plot PCA Dataset 2 

 
Figure 78 SPE plot PCA Dataset 3 

 
Figure 79 SPE plot NLPCA Dataset 2 

 

In simulation 12 a fault in the 
input flow on hot side is 
simulated temperature 
measurement on hot input 
side is simulated.  
 
A bias of 0.54 𝑘𝑔 𝑠⁄  is added on the original measurement at sample 50 and is removed at 
sample 150. The plots of the SPE statistics together with the upper control limits (found from 
the normal operating data) are shown in figure 76-79. Table 25 shows how many samples 
violations for the upper control limits for PCA- and NLPCA models. This fault was best 
detected by NLPCA.  
 
  

Models Counted 
Violations 

PCA  Dataset      1: [𝑤ℎ  𝑇ℎ𝑖�𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢] 11 
PCA Dataset       2: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖 𝑢 𝑤�𝑐 𝑇�𝑐� 10 
PCA Dataset       3: �𝑤ℎ 𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜� 𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐 𝐼ℎ  𝐼𝑐�   10 
NLPCA Dataset  2: �𝑤ℎ  𝑇ℎ𝑖  �𝑇ℎ𝑜 − 𝑇�ℎ𝑜�𝑇𝑐𝑖  𝑢 𝑤�𝑐 𝑇�𝑐�  46 

Table 25 Number of violating samples in 1 day interval 
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 6.2 Centrifugal pump results  

 
For the centrifugal pump process two sections of simulation experiments executed. 
The first one contains models build from a NOC with the available measurements and some 
virtual measurements (measurements based on function from available measurements). 
And the second contain models build from a NOC where a MBPCA approach is used. When 
using the MBPCA the same measurements are used except for the flow measurement that is 
a residual of the flow (flow estimate subtracted from the measurement served as the real 
flow). Both the two parts containing 3 different PCA models made from different numbers of 
datasets and one NLPCA model made of one dataset (see table 26). Both the NOC series 
operates in the same interval.  

 
This section starts with simulations without MBPCA and then continues with MBPCA. But 
before each part result from training are given.  
   
PCA Dataset 1: [∆𝑝 𝑤 𝑞] 
PCA  Dataset 2: [∆𝑝 𝑤 𝑞 q2] 
PCA Dataset 3:[∆𝑝 𝑤 𝑞 q2 w2] 
NLPCA Dataset3: [[∆𝑝 𝑤 𝑞 q2 w2]   
Table 26 PCA – and NLPCA models datasets for pump 

 

In table 27 an overview of the simulations executed for the pump process are presented.  

Without MBPCA 
Fault 1 Fault 2 Fault 3 Fault 4 
Sim.1 Sim.2 Sim.3 Sim.4 

MBPCA  
Fault 1 Fault 2 Fault 3 Fault 4 
Sim.5 Sim.6 Sim.7 Sim.8 

Table 27 Overview of the simulations on Centrifugal pump process 
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Simulations without MBPCA 

 

 

 

Figure 80 3 dimensional plot of speed, flow and pressure from NOC 

 

In figure 80 a 3 dimensional plot of the data generated for NOC. The data contains 3 
measurements (speed, flow and pressure) and we can see the data contains nonlinearities. 
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The combined data from the experiments to obtain the normal operating region are shown 
in figure 81. For an explanation of the variables see table 28 

 

Figure 81 Box plot for NOC on pump 

 

Variable Range Noise on 
measurement 

Description 

1  ∆𝑝 2.7-23.1                    [bar] Variance  0.1 Pressure over pump 
2  q 0.022-0.24               [𝑚3 𝑠⁄ ] - Flow through pump   
3  n 0.99-2.57   × 103   [RMS] Variance 1 Speed on pump 
4  𝑞2 0.048-4.16 × 10−2 [𝑚3 𝑠⁄ ] - Square Flow through pump   
5  𝑛2 0.98-6.6 × 106       [RMS] Variance 1 Square Speed on pump 
Table28 Variable Selected for the Analysis on pump 

  

The different faults simulated on the centrifugal pump are given in table 29. 

Fault Description Value Percent of NOC 
Fault 1 Sensor fault  in pressure measurement  0.2     [bar] 1 % 
Fault 1 Fault in output controller 20     [RMS] 1.27 % 
Fault 3 Change in parameter c2 3000 - 
Fault 4 Novel fault  0.04  [𝑚3 𝑠⁄ ]  18.35 % 
Table 29 Types of faults in centrifugal pump 
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Figure 68 Variance from NOC on the pump 

The number of PCs variance is given in figure 68. The PCs was selected based on average 
eigenvalue method (see chapter 2.4.2). The method suggested two PCs for all three models. 
Since no PCs other then the one suggested were near 1 the suggestion was followed.  

 

PCA models 1.PCs 2.PCs Variance  
explained 

PCA Dataset:1 66.43 % 33.44 % 99.87 % 
PCA Dataset:2 52.35 % 46.35 % 99.7 % 
PCA Dataset:3 60.54 % 38.39 % 99.94 % 
Table 30 Principal components variance for the different PCA models from NOC 

 

The PCs variance selected are given in table 30. After the selection of principal components 
the SPE plot for normal operation region and upper control limit was generated for each of 
the models (see figure 82 to 84). The number of samples that violated the upper control 
limits was counted for each of the models and sat as an acceptable number of violations 
meaning that if no more samples violate the UCL the process was defined to act normal 
(without faults). In table 31 the models with there corresponding dataset and number of 
normal operation region violations (Legal violations) are presented. For a discussion of the 
UCL and the legal violations see chapter 3.2 
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Figure 82 SPE plot PCA dataset 1   

Figure 83 SPE plot PCA dataset 2  

 
Figure 84 SPE plot PCA dataset 3   

Figure 85 SPE plot NLPCA dataset 3  
 

After the PCA models were generated the NLPCA method based on autoassosiatve network 
was calculated. This method do not give the opportunity to select PCs based on the 
magnitude as for the PCA method. The PCs was here selected by a trial and error approach 
and sat to 1. The data was also here manipulated. After the model was finished the SPE and 
UCL was plotted (see figure 85).  

 

  

Models NOC 
violations 

PCAp1  Dataset : [∆𝑝 𝑤 𝑞] 4 
PCAp2  Dataset : [∆𝑝 𝑤 𝑄�𝑝 Q�p2] 3 
PCAp3  Dataset: [∆𝑝 𝑤 𝑄�𝑝 Q�p2  w2] 3 
NLPCAp Dataset:  [∆𝑝 𝑤 𝑄�𝑝 Q�p2  w2]    6 

Table 31 Number of violating samples in 1 day interval 
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When all the models are made the system is ready for monitor the system. The models are 
know being tested for different faults mention in chapter 5.2.2 and a overview of the 
different simulations and faults are given in table 27 and 29 respectively. 

In simulations SPE plots would be presented and annotated. In addition a table would be 
presented containing the different models with the corresponding dataset they are based 
on. In addition the number of samples that violate the UCL (Violations) when the number of 
violations from the normal operating region is subtracted is listed.   
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Simulation 1, without MBPCA 

FAULT 1 

 

 
Figure 86 SPE plot PCA dataset 1  

 
 

Figure 87 SPE plot PCA dataset 2  

 
 

Figure 88 SPE plot  PCA dataset 3  
 

 
Figure 89 SPE plot NLPCA dataset 3  

 

In simulation 1, fault in pressure 
measurement over the pump is simulated. A 
bias of 0.2 bar is added on the original 
measurement at sample 36 and is removed at 
sample 108.  
 
The plots of the SPE statistics together with 
the upper control limits (found from the normal operating data) are shown in figure 86-89. 
Table 32 shows how many samples that violate the upper control limits for PCA- and NLPCA 
models. In this simulation the NLPCA is the best for identification of the fault, but the 
number of violations is not convincing.    

Models Counted 
Violations 

PCA       Dataset  1: [∆𝑝 𝑤 𝑞] 3 
PCA       Dataset  2: [∆𝑝 𝑤 𝑞 q2] 0 
PCA       Dataset  3: [∆𝑝 𝑤 𝑞 q2 w2] 0 
NLPCA Dataset   3: [∆𝑝 𝑤 𝑞 q2 w2] 11 

Table 32 Number of violating samples in 1 day interval 
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 Simulation 2, without MBPCA 

FAULT 2 

 

 
Figure 90 SPE plot PCA dataset 1 

 
 
Figure 91 SPE plot PCA dataset 2 

 

 
Figure 92 SPE plot PCA dataset 3 

 
 
Figure 93 SPE plot NLPCA dataset 3 

 

In simulation 2, fault in speed measurement 
of pump is simulated. A bias of 20 RMS is 
added on the original measurement at sample 
36 and is removed at sample 108.  
 
The plots of the SPE statistics together with 
the upper control limits (found from the normal operating data) are shown in figure 90-93. 
Table 33 shows how many samples that violate the upper control limits for PCA- and NLPCA 
models. In this simulation the NLPCA is the best for identification of the fault, but the 
number of violations may not convincing. 
 
  

Models Counted 
Violations 

PCA       Dataset  1: [∆𝑝 𝑤 𝑞] 3 
PCA       Dataset  2: [∆𝑝 𝑤 𝑞 q2] 0 
PCA       Dataset  3: [∆𝑝 𝑤 𝑞 q2 w2] 0 
NLPCA Dataset   3: [∆𝑝 𝑤 𝑞 q2 w2] 11 

Table 33 Number of violating samples in 1 day interval 
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Simulation 3, without MBPCA 

FAULT 3 

 
 

Figure 94 SPE plot PCA dataset 

 
 
Figure 95 SPE plot PCA dataset 2 

 
Figure 96 SPE plot  PCA dataset 3  

 
Figure 97 SPE plot NLPCA dataset 3 

 

In simulation 3, fault due to hydraulic losses in 
the pump passages is simulated. A change of 
parameter constant is change to 3000 at 
sample 36 and is removed at sample 108.  
 
The plots of the SPE statistics together with 
the upper control limits (found from the 
normal operating data) are shown in figure 94-97. Table 34 shows how many samples that 
violate the upper control limits for PCA- and NLPCA models. In this simulation the NLPCA is 
best for identification of the fault, but the number of violations is not convincing. 
  

Models Counted 
Violations 

PCA       Dataset  1: [∆𝑝 𝑤 𝑞] 0 
PCA       Dataset  2: [∆𝑝 𝑤 𝑞 q2] 0 
PCA       Dataset  3: [∆𝑝 𝑤 𝑞 q2 w2] 0 
NLPCA Dataset   3: [∆𝑝 𝑤 𝑞 q2 w2] 6 

Table 34 Number of violating samples in 1 day interval 
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Simulation 4, without MBPCA 

FAULT 4 

 
Figure 98 SPE plot PCA dataset 1 

 
Figure 99 SPE plot PCA dataset 1 

 
Figure 100 SPE plot PCA dataset 3 

 
Figure 101 SPE plot NLPCA dataset 3 

 

In simulation 4 a fault a change in operating 
condition is simulated. In this simulation the 
flow is increased by 0.04 𝑚3 𝑠⁄  thorough the 
pump at sample 36 and is removed at sample 
108.  
 
The plots of the SPE statistics together with 
the upper control limits (found from the normal operating data) are shown in figure 98-101. 
Table 35 shows how many samples that violate the upper control limits for PCA- and NLPCA 
models. The fault simulated here is not always considered as a fault. It could be desirable to 
not detect faults do to small changes in operation conditions to make the models more 
robust. If this is desirable the PCA model based on dataset 1 would generate a lot of false 
alarms and therefore the three other models would be preferable. 

  

Models Counted 
Violations 

PCA       Dataset  1: [∆𝑝 𝑤 𝑞] 23 
PCA       Dataset  2: [∆𝑝 𝑤 𝑞 q2] -2 
PCA       Dataset  3: [∆𝑝 𝑤 𝑞 q2 w2] -2 
NLPCA Dataset   3: [∆𝑝 𝑤 𝑞 q2 w2] -2 

Table 35 Number of violating samples in 1 day interval 



 
 

73 
 

 

Simulations with MBPCA 

 

 

 

Figure 102 dimensional plot of speed, flow residual and pressure on NOCmbpca 

 

 

In figure 102 a 3 dimensional plot of the data generated for NOC. The figure contains the 
same measurements as for NOC without MBPCA except for the flow that is the residual from 
the estimated flow subtracted from the measurement serve as the real one. 
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The combined data from the experiments to obtain the NOC are shown in figure 103. For an 
explanation of the variables see table 28. 

 

 

Figure 103 Box plot for NOC using MBPCA 

 

 

 

Figure 104 Variance from NOC with MBPCA 
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After the generation of NOC data from the pump model the data was manipulated (as 
discussed in the intro of chapter 6.2) before they was used to form PCA - and NLPCA models. 
The number of PCs variance is given in figure 104. The PCs was selected based on average 
eigenvalue method (see chapter 2.3). The method suggested two PCs for all three models. 
Since no PCs other then the one suggested were near 1 the suggestion was followed. 

  

PCA models 1.PCs 2.PCs Variance  
explained 

PCA Dataset:1 66.6 % 33.15 % 99.76 % 
PCA Dataset:2 66.55 % 24.88 % 91.43 % 
PCA Dataset:3 72.51 % 19.92 % 92.43 % 

Table 36 Principal components variance for the different PCA models on pump large range NOC 

 

 

 

The PCs variance selected are given in table 32. After the selection of principal components 
the SPE plot for normal operation region and upper control limit was generated for each of 
the models (see figure 105-107). The number of samples that violated the upper control 
limits was counted for each of the models and sat as an acceptable number of violations 
meaning that if no more samples violate the UCL the process was defined to act normal 
(without faults). In table 37 the models with there corresponding dataset and number of 
normal operation region violations (Legal violations) are presented. For a discussion of the 
UCL and the legal violations see chapter 3.2 
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Figure 105 SPE plot PCA dataset 1   

Figure 106 SPE plot PCA dataset 2  

 
Figure 107 SPE plot PCA dataset 3   

Figure 108 SPE plot NLPCA dataset 3  
 

 

 

 

 

 

After the PCA models were generated the NLPCA method based on autoassosiatve network 
was calculated. This method does not give the opportunity to select PCs based on the 
magnitude as for the PCA method. The PCs was here selected by a trial and error approach 
and sat to 1. The data was also here manipulated. After the model was finished the SPE and 
UCL was plotted (see figure 108).  

  

 

Models NOC 
violations 

PCA      Dataset  1: [∆𝑝 𝑤 (𝑞 − 𝑞�)] 6 
PCA      Dataset  2: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2] 6 
PCA      Dataset  3: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2 w2] 6 
NLPCA Dataset 4:  [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2 w2] 6 

Table 37 Normal operation region violations 



 
 

77 
 

Simulation 5, with MBPCA 

FAULT 1 

 

 
Figure 109 SPE plot PCA dataset 1  

 
 

Figure 110 SPE plot PCA dataset 2  

 
 

Figure 111 SPE plot PCA dataset 3  
 

 
Figure 112 SPE plot NLPCA dataset 3 

 

In simulation 5, fault in pressure 
measurement over the pump is 
simulated. A bias of 0.2 bar is added 
on the original measurement at 
sample 36 and is removed at sample 
108.  
 
The plots of the SPE statistics together with the upper control limits (found from the normal 
operating data) are shown in figure 109-112. Table 38 shows how many samples that violate 
the upper control limits for PCA- and NLPCA models. PCA with dataset 2 and 3 are showing 
superior result in detecting the fault. NLPCA are also indicates some error.  
  

Models Counted 
Violations 

PCA      Dataset  1: [∆𝑝 𝑤 (𝑞 − 𝑞�)] 0 
PCA      Dataset  2: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2] 61 
PCA      Dataset  3: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2 w2] 61 
NLPCA Dataset  3: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2 w2] 11 

Table 38 Number of violating samples in 1 day interval 
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Simulation 6, with MBPCA 

FAULT 2 

 

 
Figure 113 SPE plot PCA dataset 1  

 
 

Figure 114 SPE plot PCA dataset 2  
 

 
Figure 115 SPE plot PCA dataset 3  

 
 

Figure 116 SPE plot NLPCA dataset 3  
 

In simulation 6, fault in speed 
measurement of pump is simulated. 
A bias of 20 RMS is added on the 
original measurement at sample 36 
and is removed at sample 108.  
 
The plots of the SPE statistics together with the upper control limits (found from the normal 
operating data) are shown in figure 113-116. Table 39 shows how many samples that violate 
the upper control limits for PCA- and NLPCA models. PCA with dataset 2 and 3 are showing 
superior result in detecting the fault. NLPCA are also indicates some error.  
 
 
 
 

Models Counted 
Violations 

PCA      Dataset  1: [∆𝑝 𝑤 (𝑞 − 𝑞�)] 0 
PCA      Dataset  2: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2] 68 
PCA      Dataset  3: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2 w2] 67 
NLPCA Dataset  3: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2 w2] 11 

Table 39 Number of violating samples in 1 day interval 
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Simulation 7, with MBPCA 

FAULT 3 

 
 

Figure 117 SPE plot PCA dataset 1  
 

 
Figure 118 SPE plot PCA dataset 2  

 
 

Figure 119 SPE plot PCA dataset 3  
 

 
Figure 120 SPE plot NLPCA dataset 3  

 

In simulation 7, fault due to 
hydraulic losses in the pump 
passages is simulated. A change of 
parameter constant is change to 
3000 at sample 36 and is removed at 
sample 108.  
 
The plots of the SPE statistics together with the upper control limits (found from the normal 
operating data) are shown in figure 117-120. Table 40 shows how many samples that violate 
the upper control limits for PCA- and NLPCA models. PCA with dataset 2 and 3 and NLPCA 
indicates some error but not convincing results in detecting the fault.  
 
 
 

Models Counted 
Violations 

PCA      Dataset  1: [∆𝑝 𝑤 (𝑞 − 𝑞�)] 0 
PCA      Dataset  2: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2] 10 
PCA      Dataset  3: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2 w2] 9 
NLPCA Dataset  3: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2 w2] 6 

Table 40 Number of violating samples in 1 day interval 
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Simulation 8, with MBPCA 

FAULT 4 

 
 

Figure 121 SPE plot PCA dataset 1  
 

 
Figure 122 SPE plot PCA dataset 2  

 
 

Figure 123 SPE plot PCA dataset 3  
 

 
Figure 124 SPE plot NLPCA dataset 3  

 

In simulation 8, change in operating 
condition is simulated. In this 
simulation the flow is increased by 
0.04 𝑚3 𝑠⁄  thorough the pump at 
sample 36 and is removed at sample 
108.  
 
The plots of the SPE statistics together with the upper control limits (found from the normal 
operating data) are shown in figure 121-124. Table 41 shows how many samples that violate 
the upper control limits for PCA- and NLPCA models. The fault simulated here is not always 
considered as a fault. It could be desirable to not detect faults do to small changes in 
operation conditions to make the models more robust. If this is desirable the PCA model  
 

Chapter 7 

Models Counted 
Violations 

PCA      Dataset  1: [∆𝑝 𝑤 (𝑞 − 𝑞�)] 16 
PCA      Dataset  2: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2] -4 
PCA      Dataset  3: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2 w2] -4 
NLPCA Dataset  3: [∆𝑝 𝑤 (𝑞 − 𝑞�) (𝑞 − 𝑞�)2 w2] -2 
Table 41 Number of violating samples in 1 day interval 
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Conclusion 
 

In table 26 a summary of the fault detected from the simulation experiments on heat 
exchanger process are listed. These samples are the violations from the fault dataset 
subtracted with the NOC violations. All the PCA models are used with two PCs and all the 
NLPCA is based on 6 PCs. All the MBPCA methods are based on using the residual from the 
hot output temperature measurement subtracted with an estimate. There are three 
different estimates used in the MBPCA approaches are implemented with different degree 
of nonlinearities.  
 
Based on the simulations it’s evident that using 
MBPCA where the Model is close to the real 
system concerning to nonlinearities   increases 
the detect ability of the faults dramatically when 
using the PCA models.  

When using a linear model for the MBPCA 
structure, there is small improvement compared 
to the PCA models without MBPCA.  

When using NLPCA the result is opposite. This 
method works best without MBPCA. This method 
is based on selection of PCs without getting a 
suggestion before making the model. Therefore it 
would be wrong to brush aside this method for 
MBPCA. But on the other hand the method is 
hard to tune and therefore has a drawback from 
the other methods. In addition if the method 
takes more time to tune because of optimization 
and are not as intuitive as the PCA.    

In each structure there is used different datasets 
for making the PCA models but the improvement 
for using estimates for missing measurements 
are small for the faults simulated. 

  

Without 
MBPCA 

Fault1 Fault2 Fault3 Sum 

PCA1  -4 4 1 1 
PCA2 -4 8 0 4 
PCA3 -4 5 0 1 
NLPCA 48 64 1 113 
Linear 
MBPCA 

    

PCA1 0 10 7 17 
PCA2 1 15 3 19 
PCA3 5 20 6 31 
NLPCA 0 0 30 30 
Non-
Linear 
MBPCA 

    

PCA1  39 91 10 140 
PCA2 44 90 13 147 
PCA3 53 89 12 154 
NLPCA 1 1 1 3 
Perfect 
Non-
Linear 
MBPCA 

    

PCA1 89 93 11 193 
PCA2 91 92 10 193 
PCA3 95 91 10 196 
NLPCA 1 1 46 48 

Table 42 Result from number of violations on heat exchanger 
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In table 43 a summary of the fault 
detected from the simulation 
experiments on centrifugal pump 
process. Based on the result from the 
simulations in chapter 6.2, the 
experiments without using MBPCA gave 
poor performance concerning detection 
of fault 1-3. Fault 4 is not always 
considered as a fault, because we 
sometimes have drifting processes 
concerning normal changes.  If we place 
emphasis on this the PCA1 model would 
here trig a lot of false alarms where as the other models do not. This could be to the fact 
that we are using virtual measurements containing nonlinear functions of the 
measurements. These nonlinear functions are used because of the pressure – and flow has 
quadratic relationships in the pump model.  

For the experiments using MBPCA the increase in performance are tremendous with the 
respect to PCA2- and PCA3 models. The NLPCA shows no improvement in these simulations.  

Based on the result from the two process models, MBPCA and virtual measurements are an 
efficient method to improve the PCA for fault detections. It looks like the supplement on 
using MBPCA make the PCA model more suitable for non-linear data even if the model used 
are not exactly correct.  When it comes to using NLPCA here based on Autoassociative 
Neural Networks the results are less clear.      

Without 
MBPCA 

Fault1 Fault2 Fault3 Fault4 Sum 

PCA1  3 3 0 23 29 
PCA2 0 0 0 -2 -2 
PCA3 0 0 0 -2 -2 
NLPCA 11 11 6 -2 26 
With 
MBPCA 

     

PCA1 0 0 0 16 16 
PCA2 61 68 10 -4 135 
PCA3 61 67 9 -4 133 
NLPCA 11 11 6 -2 26 

Table 43 Result from number of violations on centrifugal pump 
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Chapter 8 

Further work 
 

To improve and extend on this work in fault detection, the following avenues are open for 
exploration: 

1. Investigate the use of NLPCA method used in this work with different tuning. 
 
 

2. Use different  datasets for online process 
 
 

3. Investigate the kernel based PCA method for the process models in this work. 
 
 

4. Investigate the fault detection and performance with multiple simultaneous faults. 
 
 

5. Use PCs plots in addition to the SPE statistics on the process models in this work. 
 
 

6. Quantify process performance improvement with the use of a online fault detection and 
diagnosis system.    
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Appendixes  
 

A. Calculation of pump coefficients 

To calculate the unknown’s coefficient in the pump model polynomial below, a pump curve 
presented in the figure x below are used. This pump curve is from a real pump on a offshore 
installation. The pump model polynomial is put into matrix and vectors. And head pressure 
and corresponding flow is taken from one of the pump curves. The pump design flow 𝑞𝐷 is 
also used from the pump curve below.  

 𝑞𝐷Different values of head pressure and flow is   and values of Head pressure and flow is  
coefficients are calculated with estimation A number of poinhead pressures and flows under 
the same velocity 2850 RMS is   

 
 𝑝 = 𝜌𝑟𝑒𝑓 �𝑘�𝑐0 − 𝑐1𝑞𝑝� − 𝑐2𝑞𝑝2 − 𝑐3�𝑞𝐷 − 𝑞𝑝�

2
� (3.18) 

The pump polynomial is set into a matrix with 

𝑖 = [1]𝑇 , 𝑗 = −[𝑞𝑝1 
2 𝑞𝑝2 

2 … 𝑞𝑝3 
2 ]𝑇 , 𝑗 = −[𝑞𝑝1 

2 𝑞𝑝2 
2 … 𝑞𝑝3 

2 ]𝑇 

    

𝑘 = −[𝑞𝑝12  𝑞𝑝12 … 𝑞𝑝82 ]𝑇 , 𝑙 = −[�𝑞𝑑 − 𝑞𝑝1�
2

 �𝑞𝑑 − 𝑞𝑝2�
2

…  �𝑞𝑑 − 𝑞𝑝2�
2

] 

 

𝐴 =
1
𝑔

[𝑖 𝑗 𝑘 𝑙] , 𝑏 = [𝐻1 𝐻2 …𝐻8]𝑇 , 𝑥 = [𝑐0 𝑐1 𝑐2 𝑐3]𝑇 

Then we solve the equation 𝐴𝑥 = 𝑏 with respect to x. Since there it’s more equations then 
unknowns we use the matlab backlash operator \. This is the solution in the least squares 
sense to the under- or over determined system of equation 𝐴𝑥 = 𝑏. 
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B. CD Contents 
 

The enclosed CD contains the following: 

1. SIMULINK model of heat exchanger 
2. MATLAB script heat exchanger 
3. SIMULINK model of centrifugal pump 
4. MATLAB script centrifugal pump 
5. PCA MATLAB script 
6. NLPCA MATLAB script 
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