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ON EQ. (6) AND (7)

The reduced “reflection coefficients” R̃i, for i = 1, 2, where the dependence on the degree of anisotropy βi and
relative orientation of two materials θ are separated after performing the polar angle φk integration in the k-space,
are given by
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(1)
The TE and TM modes do not separate in the case of the interaction between anisotropic materials. Thus,
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uniaxial dielectric slab with its principal axes along ẑ is
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The electric mode rE
i

is obtained by replacing H → E in the reflection coefficient for the magnetic mode in Eq. (3).
The bar on the subscript i is used to denote the rotationally symmetric uniaxial background. We have used short
hand notations
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where we have suppressed the explicit frequency dependence in ε⊥ and εni . The coefficients CH,E
i , Fi, and Gi are

given by
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i )
2e−2κE

i
di

] [
1− (ᾱH
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Here X = H,E, and the negative and positive signs (∓) in the numerator of Eq. (5a) correspond to H and E,
respectively.

COMPARISON WITH EXACT UNIAXIAL RESULT
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FIG. 1. Comparison between the leading-order torque T
(2) using the perturbative theory and the total torque T using the

exact theory for the interaction between two uniaxial materials with optical axes in the u-v plane. The left figure exhibits the
interaction between nonidentical “uniaxial” materials BP(XY) and BP(XZ), and the right panel shows the comparison for the
interaction between two identical BP(XY). The inset displays the relative percentage error, which remains well below 5% for
most of the 1-100 nm range.

We show the comparison between our perturbation theory with Barash’s exact result [1] for the torque between
uniaxial materials, whose optical axes make an angle θ with respect to each other and are perpendicular to n̂, in
Fig. 1. We generated “uniaxial” materials using dielectric function of BP(XY) and BP(XZ) after setting the dielectric
component in the direction n̂ of the system equal to one of the in-planar dielectric components, εy = εz. We
compare our results for two cases: the interaction between two nonidentical materials, and the interaction between
two identical materials. The leading order perturbation theory matches with the exact theory excellently for the case
of the interaction between the identical materials. For the interaction between nonidentical materials the relative
percentage error remains within 0.5-5.5% for most of the test range of separation distances 1-100 nm. The relative
error grows large near the separation distance where the torque changes sign as we are dividing by a very small value.
The numerical evaluation of the perturbative calculation performs faster than the exact calculation. The leading order
torque with actual data for the z component is also shown for comparison. The inclusion of εz component not only
changes the magnitude of the torque but can also shift the critical separation distance for a fixed angle θ.

We have also verified and compared results for actual uniaxial materials, like calcite and quartz, using the dielectric
tensor data given in [2]. The perturbative parameter for quartz is of the order of 10−3 while that for calcite remains
below 0.1 (which is zero at two characteristic frequencies) for all frequencies. As predicted, the interaction between
calcite and quartz leads to a sign-reversal in the torque between 1.3-1.4µm, which suggests that the sign-reversal
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behavior is governed by the smaller of the two characteristic frequencies for calcite. The two theories match excellently
with the percentage relative error staying within 1% between 1 to 2µm except close to the sign-reversal distance,
where the value of the torque itself is small.

DIELECTRIC FUNCTION CALCULATION USING DENSITY FUNCTIONAL THEORY

The optical properties of BP and 2D-P are computed within the independent particle approximation using the
Vienna Ab-initio Simulation Package (VASP). Herein, the structures are relaxed with the optB88-vdW functional [3]
to treat the exchange-correlation term taking into account the layered configuration of the material. The optoelec-
tronic properties are calculated for the optB88-vdW structures employing the revised Heyd-Scuseria-Ernzerhof (HSE)
screened hybrid functional [4]. The cut-off energy for the plane-wave basis sets is set at 600 eV and 325 eV for the
relaxation and optical calculations respectively. 8 × 8 × 10 and 14 × 14 × 1 Γ-centered Monkhorst-Pack k-grids [5]
are used in the Brillouin-zone integrations for BP and 2D-P, respectively. With the selected computational setup,
the computed band gap energies of BP and 2D-P are 0.38 and 1.52 eV, respectively. These results are consistent
with the previously reported results [6]. Since the original framework for optical calculations within the independent
particle approximation is developed for 3-dimensional systems, the computed frequency-dependent dielectric function
of phosphorene is scaled to the volume of a single layer. The volume correction is carried out with the assumption
that the single layer corresponds to a thickness of d = 5.37Å, which is half the length of the long direction of the bulk
conventional unit cell. The bulk conventional unit cell is schematically depicted in the inset of Fig. 1 in the main
text. It may be mentioned that different choices of the layer thickness do not alter our torque results.
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