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Abstract

In modern agriculture, there is a high demand to move from tedious manual harvesting 
to a continuously automated operation. This chapter reports on designing a simulation 
and control platform in V-REP, ROS, and MATLAB for experimenting with sensors and 
manipulators in robotic harvesting of sweet pepper. The objective was to provide a com-
pletely simulated environment for improvement of visual servoing task through easy test-
ing and debugging of control algorithms with zero damage risk to the real robot and to 
the actual equipment. A simulated workspace, including an exact replica of different robot 
manipulators, sensing mechanisms, and sweet pepper plant, and fruit system was created in 
V-REP. Image moment method visual servoing with eye-in-hand configuration was imple-
mented in MATLAB, and was tested on four robotic platforms including Fanuc LR Mate 
200iD, NOVABOT, multiple linear actuators, and multiple SCARA arms. Data from simu-
lation experiments were used as inputs of the control algorithm in MATLAB, whose out-
puts were sent back to the simulated workspace and to the actual robots. ROS was used for 
exchanging data between the simulated environment and the real workspace via its publish-
and-subscribe architecture. Results provided a framework for experimenting with different 
sensing and acting scenarios, and verified the performance functionality of the simulator.

Keywords: agricultural robots, automated harvesting, simulation, visual servo control, 
image processing

1. Introduction

Traditional harvesting of fruiting vegetables for fresh market is a labor-intensive task that 

demands shifting from tedious manual operation to a continuously automated harvesting. 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In spite of the advances in agricultural robotics, million tons of fruits and vegetables are still 

hand-picked every year in open-fields and greenhouses (Figure 1). Other than the high labor 

cost, the availability of the skilled workforce that accepts repetitive tasks in the harsh field con-

ditions impose uncertainties and timeliness costs. For robotic harvesting to be cost-effective, 
fruit yield needs to be maximized to compensate the additional automation costs. This leads 

to growing plants at higher densities which make it even harder for an autonomous robot to 

simultaneously detect the fruit, localize, and harvest it. In the case of sweet pepper fruit, with 

an estimated yield of 1.9 million tons/year in Europe, reports indicate that while an average 

time of 6 s per fruit is required for automated harvesting, the available technology has only 

achieved a success rate of 33% with an average picking time of 94 s per fruit [1]. For cucumber 

harvesting, a cycle time of 10 s was proven to be economically feasible [2]. Only in Washington 

State, 15–18 billion apple fruits are harvested manually every year. An estimated 3 million tons 

of apples is reported to have been produced in Poland in 2015 [3], out of which one-third are 

delicate fruits and are less resistant to bruising from mass harvester machines. Also in Florida, 

where the current marketable yield of sweet pepper fruits in open-field cultivation is 1.6–3.0 
with potential yield of 4 lb/ft2 in passive ventilated greenhouses [4], manual harvesting is still 

the only solution. Therefore, development of an automated robotic harvesting should be con-

sidered as an alternative method to address the associated labor shortage costs and timeliness.

Research and development in agricultural robotics date back to 1980s, with Japan, the 

Netherlands, and the USA as the pioneer countries. The first studies used simple mono-

chrome cameras for apple detection inside the canopy [5]. Advances in the sensor technol-

ogy and imaging devices have led to the employment of more sophisticated devices such 

as infrared [6], thermal [7] and hyperspectral cameras [8], or combination of multi-sensors 

[9] that are adopted with novel vision-based techniques for extracting spatial information 

from the images for fruit recognition, localization, and tracking. Examples of some of the 

recent achievements include automatic fruit recognition based on the fusion of color and 

3D feature [10], multi-template matching algorithm [11], and automatic fruit recognition 

from multiple images [12]. Unlike the industrial case, an agriculture robot has to deal with 

different arrangement of plantings size and shapes, stems, branches, leaves, fruit color, 
texture, and different location of fruits and plants with respect to each other. Significant 
contributions have been made by different research groups to address these challenges; 
however, there is currently no report of a commercial robotic harvesting for fresh fruit mar-

ket [13], mainly due to the extremely variable heterogeneous working condition and the 

complex and unpredicted tasks involved with each scenario. Some of the questions to be 

addressed in designing of a complete robotic harvesting are the simultaneous localization 

Figure 1. Manual harvesting of fruits.
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of fruit and environment mapping, path planning algorithms, and the number of detect-

able and harvestable fruits in different plant density conditions. The function of a robot 
can be separated into three main sections as sensing (i.e., fruit recognition), planning (i.e., 
hand-and-eye coordination), and acting (i.e., end-effector mechanism for fruit grasping) 
[14]. A common approach in fruit detection is by using a single view point, as in the case of 

a cucumber harvesting robot [15], or multiple viewpoints with additional sensing from one 

or few external vision sensors that are not located on the robot [16]. Other than the issues 

with frame transformation, this solution is not promising if the fruit is heavily occluded 

by the high density plant leaves [17]. Obviously, the final robot prototype needs to be rela-

tively quicker for mass-harvest, with an affordable cost for greenhouse growers. Swarms 
of simple robots with multiple low-cost camera and grippers, or human-robot collabora-

tion are the research topics to solve the facing challenges in robotic harvesting that current 

technology cannot overcome. These approaches can significantly improve the processing 
time of multiple fruit detection in the high-density plants, and provide ground truth results 

over time for machine learning algorithms based on human-operators experience. Research 

on agricultural robotics with a focus on automated harvesting of fruiting and vegetable 

are huge. See for example the works carried out on sweet pepper [1, 18–20], oil palm [21], 

cucumber [15, 22–24], apple [25], strawberry [26, 27], cherry fruit [6], citrus [28], and tomato 

[29]. Most of these works have used eye-in-hand look-and-move configuration in their 
visual servo control (Figure 2). Other researches are concentrated on the end-effector design 
[30], analysis of the robot performance in the dense obstacle environments using stability 

tests [31], motion planning algorithms [32], and orchard architecture design for optimal 

harvesting robot [33]. In addition, several software frameworks have been developed for 

agricultural robotics. An example includes the work of [34], in which a generic high-level 

functionality was provided for easier and faster development of agricultural robots. Some 

of the most recent advances in sensing for robotic harvesting include the works of [29, 35] 

which address the problem of detecting fruits and obstacles in dense foliage. Moreover, [20] 

and [25] have extensively explored the use of combined color distance, or RGB-D, data on 

apples and on sweet-peppers, respectively, while [36] present a study devoted to symmetry 

analysis in three-dimensional shapes for products detection on the plant.

Figure 2. Research and development in robotic harvesting of fruits with different manipulators and gripper mechanisms 
for: (A) citrus, (B, C) sweet pepper, (D, E) tomato, (F) cucumber, (G, H) strawberry, and (I–K) apple.
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Improvement of robotic harvesting requires experimenting with different sensors and 
algorithms for fruit detection and localization, and a strategy for finding the collision-free 
paths to grasp the fruits with minimum control effort. Experiments with the actual hard-

ware setup for this purpose are not always feasible due to time constraints, unavailability 

of equipment (i.e., sensors, cameras, and the robot manipulator), and the operation costs. 
In the other hand, some hardware setups may result in actuator saturation, or create unsafe 

situation to the operators and/or plants system. Simulation offers a reliable approach to 
bridge the gap between innovative ideas and the laboratory trials, and therefore can accel-

erate the design of a robust robotic fruit harvesting platform for efficient, cost-effective 
and bruise-free fruit picking. This research was motivated based on the sensing task in 

robotic harvesting, which requires delivering a robust pragmatic computer vision pack-

age to localize mature pepper fruits and its surrounding obstacles. The main objective was 

to create a completely simulated environment for improvement of plant/fruit scanning 

and visual servoing task through an easy testing and debugging of control algorithms 

with zero damage risk to the real robot and to the actual equipment. The research was 

carried out in two main phases: (i) the creation of the simulated workspace in the vir-

tual robot experimentation platform (V-REP), and (ii) the development of communica-

tion and control architecture using the robot operating system (ROS) and MATLAB (The 
MathWorks Inc., Natick, MA, USA). The simulated workspace included an exact replica of 

the Fanuc LR Mate 200iD robot manipulator with six degrees of freedom (Fanuc America 
Corporation, Rochester Hills, MI), models of sweet pepper fruit and plant system, and 
different vision sensors were created in (V-REP). A simulated color camera attached to the 
end-effector of the robot was used as fruit localization sensor. ROS was used for exchang-

ing data between the simulated environment and the real workspace via its publish-and-

subscribe architecture. This provides a tool for validating the simulated results with those 

from experimenting with a real robot. V-REP and MATLAB were also interfaced to create 

two-way communication architecture for exchanging sensors and robot control messages. 

Data from the simulated manipulator and sensors in V-REP were used as inputs of a visual 

servo control algorithm in MATLAB. Results provided a flexible platform that saves in cost 
and time for experimenting with different control strategies, sensing instrumentation, and 
algorithms in automated harvesting of sweet pepper.

2. Overview of the simulation environment

Computer simulation of a complete robotic harvesting task requires: (i) CAD file setup including 
good replications of the plants-and-fruit scene and the robot manipulators, (ii) simulation envi-
ronment and calculation modules for the manipulator candidates and platforms (i.e., inverse 
kinematics and path planning), (iii) different sensors setup, and more importantly (iv) algo-

rithms for control tasks such as visual servoing and gripper control mechanism. The main simu-

lation environment, scene objects, and calculation modules were built in the latest version of 

V-REP Pro Edu V3.4.0 for Linux 64 (available at www.coppeliarobotics.com), and ROS installed 
on Ubuntu 14.04.3 LTS. Some of the used terminal commands are summarized in Table 1.
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Commands Description Commands Description

File commands System info

ls Directory listing date Show the current date and 

time

ls -al Formatted listing with hidden 
files

cal Show this month’s calendar

cd dir_name Change directory to dir_name uptime Show current uptime

cd ~ Change to home w Display who is online

pwd Show current directory whoami Who you are logged in as

mkdir dir_name Create a directory dir_name finger user Display information about 

user

rm file_name Delete file uname -a Show kernel information

rm -r dir_name Delete directory dir_name cat /proc./cpuinfo CPU information

rm -f file_name Force remove file cat /proc./meminfo Memory information

rm -rf dir_name Force remove directory 

dir_name

man command Show the manual for 

command

cp file_name_1 file_name_2 Copy file1 to file2 df Show disk usage

cp -r dir_name1 dir_name2 Copy dir1 to dir2; du Show directory space usage

mv file_name_1 file_name_2 Rename or move file_name_1  

to file_name_2

Working with compressed files Shortcuts

tar xf file.tar Extract the files from file.tar Ctrl + Alt + T Opens a new terminal 

window:

tar czf file.tar.gz files Create a tar with gzip 

compression

Shift + Ctrl + T Opens a new terminal tab:

tar xzf file.tar.gz Extract a tar using gzip Ctrl+C Halts the current command

tar cjf file.tar.bz2 Create a tar with bzip2 

compression

Ctrl+Z Stops the current command,

tar xjf file.tar.bz2 Extract a tar using bzip2 Ctrl+D Log out of current session, 

exit

gzip file Compresses file and renames  
it to file.gz

Ctrl+W Erases one word in the 

current line

gzip -d file.gz Decompresses file.gz back to 
file

Ctrl+U Erases the whole line

Install from source Ctrl+R Type to bring up a recent 

command

./configure (For example, ./vrep.sh will run 

v-rep)

!! Repeats the last command

dpkg -i pkg.deb Install a package (debian) exit Log out of current session

rpm -Uvh pkg.rpm Install a package (rpm)

Table 1. List of the most used Ubuntu terminal commands used for navigating in the simulation environment.
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ROS Indigo was used to provide a bidirectional communication (information exchange) 
between simulated robot and cameras with the real world. Experimental packages for Fanuc 

manipulators within ROS-Industrial (available at http://wiki.ros.org/fanuc_experimental) 
were used for controlling the manipulator. This design allows reading information from the 

simulation scene (i.e., robot joints velocity, position, sensors, etc.) and publishes them across 
ROS network for further process. Results can be used by the simulation, and/or by the real 

robots and controllers. The image-based visual servo control was carried out in V-REP and 

MATLAB. For the sake of this chapter, we only provide a brief description of ROS and V-REP.

ROS is a collection of software frameworks for robot software development. It was originally 

developed in 2007 by the Stanford Artificial Intelligence Laboratory, and with the support of the 
Stanford AI Robot project. It provides a solution to specific set of problems encountered in the 
developing large-scale service robots, with philosophical goals summarized as: (i) peer-to-peer, 
(ii) tools-based, (iii) multi-lingual, (iv) thin, and (v) free and open-source [37]. From 2008 until 

2013, development was performed primarily at Willow Garage, a robotics research institute/

incubator. During that time, researchers at more than 20 institutions collaborated with Willow 

Garage engineers in a federated development model. Since 2010, ROS has released several ver-

sions, including Box Turtle (March, 2010), C Turtle (August, 2010), Diamondback (March, 2011), 
Electric Emys (August, 2011), Fuerte Turtle (April, 2012), Groovy Galapagos (December, 2012), 
Hydro (September, 2013), Indigo (July, 2014), and Jade (May, 2015). The open-source ROS makes 
it possible to develop code and applications that can be shared and used in other robotic system 

with minimum effort. It also offers standard operating system features such as hardware abstrac-

tion, low-level device control, implementation of commonly used functionalities, message pass-

ing between processes, and package management. ROS Packages are files and folders that are 
built to create minimal collections of code for easy reuse. A ROS package usually includes the 

followings folders and files: bin, msg, scripts, src, srv, CMakeLists.txt, manifest.xml (Figure 3).

Fundamental concepts of the ROS are: Nodes, Messages, Topics, and Services. ROS works 

based on a “publish-and-subscribe” architecture where processes (called nodes) publish and/
or subscribe to specific topic on which information is exchanged in the form of messages 
(Figure 3). A Node is an executable file that uses ROS to communicate with other Nodes. A 
Message is ROS data type that is used when subscribing or publishing to a topic. Nodes can 

Figure 3. Diagram showing ROS file architecture and nodes communicating system.
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publish messages to a Topic as well as subscribe to a Topic to receive messages. Service helps 

Nodes find each other. ROS nodes use a ROS client library to communicate with other nodes. 
Nodes can also provide or use a Service. With this architecture, each node in ROS is able to 

respond to input and activate other nodes, allowing participation of a sequence of nodes 

to complete complicated robot mission tasks. Installation details and basic configuration of 
ROS environment, as well as installation and configuration of packages such as V-REP/ROS 
bridge, and the details of the Fanuc manipulator package are not in the concept of this chap-

ter. A more detailed discussion can be found in [38].

V-REP is like a Swiss knife in robotic simulation community. Its first public release was in 
March 2010, and its latest version (V3.4.0 v1) was released on April 16, 2017. It possesses vari-
ous relatively independent functions, features, or more elaborate APIs, that can be enabled 

or disabled as desired. Compared to gazebo, V-REP is very stable and easy to set up and run-

ning. For example, the vision sensors are reasonably well simulated and if the scene is not too 

complex, the run times of the simulations are generally good as well. If the project requires 

building a custom robot in the simulator (i.e., NOVABOT or Fanuc LR Mate 200iD manipula-

tor), the setups for links, joints, and calculation modules such as inverse kinematics neces-

sitates some practice, however, that is the case in any robot simulation software. Another 

big advantage is its true cross-platform, which means it can be run in Windows or Linux. By 

default, the V-REP distribution for Linux should be automatically ROS enabled based on ROS 

Figure 4. Schematic diagram showing the architecture and the main elements of V-REP simulator.
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Figure 5. Demonstration of the steps in the robust image processing algorithm using edge detection with fuzzy-logic for 

identification and tracking of sweet pepper.

Indigo and Catkin. Each object/model in V-REP scene can be individually controlled via an 

embedded script, a plugin, a ROS node, a remote API client, or a custom solution. Controllers 

can be written in C/C++, Python, Java, Lua, Matlab, and Octaveor Urbi. The three main ele-

ments of V-REP simulator are scene object (i.e., joints, shape, sensors, path, etc.), calcula-

tion modules (i.e., inverse kinematics, collision detection, etc.), and control mechanism (i.e., 
scripts, plugin, sockets, etc.). In addition, V-REP inverse kinematics supports four different 
dynamic engines: The Bullet, ODE, Newton, and the Vortex Dynamics Engine. An overview 

of V-REP framework architecture is shown in Figure 4.

3. Image processing, publishing and subscription

Quantification of fruits to estimate the time required for robotic harvesting is an intensive 
labor task that is either ignored in high density greenhouses or is carried out manually by the 

use of hand pickers. We proposed a low-cost robust sweet pepper fruit recognition and track-

ing system using stream RGB images. Main hardware and software components of the system 

included a laptop computer (Lenovo Intel(R) Core(TM) i5-6200 U CPU@2.30GHz, RAM 8.00GB, 
64-bit OS Windows 10), a Logitech camera (C920 HD Pro USB 1080p), supplementary halogen 
lamps, Adafruit Ultimate GPS breakout module 66 channel w/10 Hz (NY, USA), and Arduino 
Uno Microcontroller board. The image processing algorithm was implemented in MATLAB 

and applies median filter and image segmentation method to remove color noise from the RGB 
images of pepper fruits taken in the lab experiments at different angles, positions, and light con-

ditions disturbances (varying illumination and overlapping). Figure 5 shows: (A) original image, 
(B–D) red, green, and blue bands, (E) mask of only red object, (F) regions filled, (G) masked-red 
image, (H) extracting red component from the masked red image and applying median filter to 
filter out the noise, (I) convert the resulting grayscale image into a binary image and removing 
all pixels with a gray level value less than 3000, (J) masked image showing only red-detected 
object, (K) blob analysis, bounding the red objects in rectangular box and showing centroid. The 
image processing algorithm was validated using 78 images obtained from lab experiments and 
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internet sources, with a recognition success rate of 94% and average recognition time of less than 

2 s per image. Results of the image processing were sent from MATLAB to V-REP for simulation 

of visual servo control. For the actual experiment, color images of sweet pepper were acquired 

under natural daylight condition in different greenhouse environment in the presence of the hal-
ogen lamps. Each band of the RGB image was transferred as a 24-bit, 640 by 480 pixels matrix and 

was processed in real time by the custom built MATLAB application on the laptop computer. ROS 

was used for exchanging data between the simulated environment and the real workspace via 

its publish-and-subscribe architecture. Another 57 images were obtained for experimenting with 

different fruit and plant position scenarios. In addition, internet searched images of sweet pepper 
taken at different greenhouse environments were used to verify the reliability and to improve 
the accuracy of the algorithm. The image subscription and publishing was performed by having 

V-REP ROS enabled based on ROS Indigo and Catkin build. The general ROS functionality in 

V-REP is supported via a generic plugin “libv_repExtRos.so” or “libv_repExtRos.dylib.” It should be 

noted that plugins are loaded when V-REP is launched, and the ROS plugin will be successfully 

loaded and initialized only if “roscore” is running at that time. The plugin is open source and can 

be modified as much as needed in order to support a specific feature or to extend its functionality. 
Three of the main ROS package folders in the V-REP, (located in programming/ros_packages) are 

the “vrep_common,” “vrep_plugin,” and “vrep_joy” as shown in the left side of Figure 6.

The first package was used to generate the services and stream messages that were needed to 
implement the V-REP API functions, while the second is the actual plugin that was compiled to a 

“.so” file used by V-REP. The “vrep_joy” package enables interaction with a joystick. Having the 
services and stream messages in a separate package allows for other application to use them in 

order to communicate with V-REP via ROS in a convenient way. These packages were copied to 

Figure 6. Image publishing and subscribing in ROS, Left image: snapshot of the main ROS package folders in the V-REP, 

and right image: snapshot of the simulation environment in V-REP publishing an image to a ROS node.
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the catkin_ws/src folder. The command “$ roscd” was then used to check whether ROS is aware of 

these packages (e.g., $ roscd vrep_plugin). After navigating to the catkin_ws, the command “$ cat-

kin_make” was used to build the packages and to generate the plugins. The created plugins were 

then copied to the V-REP installation folder to be used for image subscription and publishing. A 

new terminal was opened in Ubuntu for staring the ROS master using the command “$ roscore.” 

Another terminal was opened and was navigated to the V-REP installation folder to launch the 

V-REP simulator in Ubuntu by typing the command “$. /vrep.sh.” The entire procedure is sum-

marized as these steps: (i) installing ROS Indigo on Ubuntu and setting up the workspace folder, 
(ii) copying “ros_packages” in V-REP into the “catkin_ws/src” folder, (iii) source “setup.bash” file, 
(iv) run “roscore” and “. /vrep.sh.” The two available nodes, “/rosout” and “/vrep” and the three top-

ics “/rosout,” “/rosout_agg,” “/vrep/info” were checked using “$ rosnode list” and “$ rostopic list” 

commands, respectively. In addition, the command “$ rosservice list” was used to advertise all the 

services. It should be noted that the only V-REP topic that was advertised was “info” publisher that 

started as soon as the plugin was launched. All other V-REP topics for publishing and subscrib-

ing images and sensors were individually enabled using Lua commands: “simExtROS_enablePub-

lisher” and “simExtROS_enableSubscriber.” Moreover, to visualize the vision sensor stream images 

and data, the “$ rosrun image_view image_view image:=/vrep/visionSensorData” and “$ rostopic echo/
vrep/visionSensorData” were used, respectively. Snapshot of the simulation environment is shown 

in the right side of Figure 6.

4. Simulation scene and objects

Simulation scene in V-REP contains several elemental objects that are assembled in a tree-

like hierarchy and operate in conjunction with each other to achieve an objective. In addi-

tion, V-REP has several calculation modules that can directly operate on one or several scene 

objects. Major scene objects and modules used in the simulation scene include (i) sensors, 
(ii) CAD models of the plant and robot manipulator, (iii) inverse kinematics, (iv) minimum 
distance calculation, (v) collision detection, (vi) path planning, and (vii) visual servo control. 
Other objects that were used as basic building blocks are: dummies, joints, shapes, graphs, 

paths, lights, and cameras (Figure 7). In this section, we provide description for the sensors 

and CAD models, and assign the next section to the calculation modules.

4.1. Sensors

V-REP supports different vision sensors (orthographic and perspective type) and proximity 
sensors (Ray-type, pyramid-type, cylinder-type, disk-type, and cone- or randomized ray-type 

Figure 7. Major scene objects used in the simulation.
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proximity sensors). It is possible to model almost any proximity sensor subtype, from ultrasonic 

to infrared. In addition it has built-in CAD models of several available commercial sensors such 

as Microsoft Kinekt, 2D and 3D laser scanners, blob detection camera, Hokuyo URG 04LX UG01, 
SICK S300, and TimM10 sensors. Other models can be built similarly based on combinations of 
different vision and proximity sensors. The V-REP model of each sensors used for this simula-

tion is shown below its actual images in Figure 8 which include: Fish-eye RGB Axis 212 PTZ 

sensor (Figure 8A), Infrared Proximity Sensor Long Range-Sharp GP2Y0A02YK0F (Figure 8B), 

SICK TiM310 fast laser measurement scanner (Figure 8C), Fast Hokuyo URG-04LX-UG01 scan-

ning Laser Rangefinder (Figure 8D), and Microsoft Kinect (Figure 8E).

The fish-eye RGB camera was added for fruit detection, tracking, and for visual servo control 
with a custom set of filters that were designed for the image processing algorithm in MATLAB 
and V-REP. Two color cameras were also added for tracking the scene and the position of the 

robot end-effector with respect to the fruit and plant in order to provide a wider view of the 
vision sensor. The V-REP model of the Microsoft Kinect sensor includes RGB and depth vision 
sensors, and was used in the scene to calculate the time needed for the laser signal to hit an 

object and bounce back to its source, creating in this way a three-dimensional representation 

of the object. Five different proximity sensors with different shapes were also experimented 
in the simulation, including: laser ray, pyramid, cylinder, disk, and randomized ray-type. 

The laser-scanner rangefinder was considered in the simulation to measure distance between 
an observer object (i.e., the robot gripper or the end-effector camera) and a target (i.e., fruit, 
plant, or obstacles). Typical range finders work based on time-of-flight (TOF) and frequency 
phase-shift technologies. The TOF method utilizes laser by sending a pulse in a narrow beam 

toward the object and measuring the time taken by the pulse to be reflected off and return 
to the sensor. The frequency-phase shift method measures the phase of multiple frequencies 

on reflection together with performing simultaneous math calculations to deliver the final 
measure. Rangefinders are available in V-REP in the form of vision-sensors and proximity 
sensors. For example, the Hokuyo URG-04LX-UG01 and the 3D laser scanner range finder 
use a ray-type laser proximity sensor. The V-REP model for Fast-3D laser scanner uses vision 

sensor with the filters as illustrated in Figure 9. It should be noted that vision-sensors-based 

rangefinders have high calculation speed but lower precision, while proximity-sensors-based 
rangefinders have higher prevision in calculating the geometric distance with relatively lower 
calculation speed.

Figure 8. Major sensors used in the experiments, first row image are the actual and the second row images are the 
simulated sensors.
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4.2. CAD models

The CAD models of the sweet pepper plant, including stem system, leaves, and pepper fruits, 

as well as the single and multiple arms robot manipulators that were used in the simulation 

are shown in Figures 10–13. The Fanuc LR Mate 200iD robot manipulator shown in Figure 11  

is a compact six-axis robot with the approximate size and reach of a human arm. It com-

bines best-in-class robot weight-load capacity with standard IP67 protection and outstanding 

FANUC quality. This makes the Fanuc LR Mate 200iD the best and most reliable mini robot for 

process automation in many industries. The maximum load capacity at wrist = 7 kg, repeat-

ability = 0.02 mm, mechanical weight = 25 kg, and reach = 717 mm. The joints motion range 

and maximum speed are summarized in the operator manual [39]. As alternative innova-

tive solutions, simple robots, including a platform with multiple linear actuators (Figure 12),  

and multiple SCARA robot arms (Figure 13) with multiple lower-cost cameras and grippers 

were also designed for simulation.

Figure 10. CAD models of the entire plant system: fruit, leaves, stem, calyx, and leaves.

Figure 9. Filter used by each of the two vision sensors in “Fast Hokuyo URG-04LX-UG01” V-REP model (top), and by 
the vision sensor in the “3D laser scanner Fast” V-REP model (bottom).

Figure 11. Simulation scene setup with CAD models of the professional robot manipulator used in visual servo control 

experiment, left: Fanuc LR Mate 200iD, right: NOVABOT.
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5. Calculation modules

In order to setup the robot manipulator for different experiment, several calculation modules, 
including minimum distance calculation, collision detection, path planning, inverse kinematics, 

and different control mechanism were used in V-REP. Snapshot of the calculation modules is 
provided in Figure 14. V-REP control mechanism are divided into (i) local interfaces, including 
Embedded scripts, Plugins, Add-ons, and (ii) remote interfaces, including remote API clients, 
custom solutions, and ROS nodes, as shown in Figure 14A. It should be noted that different 
V-REP control mechanisms can be used simultaneously in one scene, or even work in conjunc-

tion with each other, which provides a multipurpose and accessible framework for the purpose 

of more complex robotic simulation. Scripting in V-REP is in the Lua language which is a fast 

scripting language designed to support procedural programming. Scripts in V-REP are the main 

control mechanism for a simulation. For the sake of this book chapter, we only provide brief illus-

tration of the inverse kinematic task for the NOVABOT manipulator and the visual servo control.

5.1. Inverse kinematics

The inverse kinematic (IK) task in V-REP requires three things: (i) CAD data of the manipula-

tor links (ii) joints, (iii) kinematic chain, (iv) tip and target dummies, and (iv) IK task. The CAD 

Figure 13. Simulation scene setup with CAD models of the multiple SCARA arm robotic platform.

Figure 12. Simulation scene setup with CAD models of the multiple linear actuator robotic platform.
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Figure 14. Demonstration of (A) five different control mechanisms in V-REP, (B) inverse kinematics chain, (C, D) 
minimum distance calculation from tip vision sensor and plant/fruit model, (E) collision detection between robot links 
and plant model, and (F) path planning for moving a harvested fruit to the bin.

file was imported to the scene from [Menu bar --> File --> Import --> Mesh]. It should be noted 
that depending on how the original CAD data was generated in the original CAD software, 

the imported mesh file could be at a different scale, different location, or even subdivided 
into several shapes. The assigned color of imported shapes is random. V-REP also provides 

basic tools and options for creating model of a new robot if the CAD file is not available from 
external sources. Upon importing the CAD file, a single simple shape is located in the middle 
of the scene and appears in the scene hierarchy on the left hand side of the main window. For 

the IK task, the single CAD shape was divided by selecting [Menu bar --> Edit --> Grouping/
Merging --> Divide selected shapes]. This divided the original shape into several sub-shapes 
that were grouped manually for a same rigid entity using [Menu bar --> Edit --> Grouping/
Merging --> Group selected shapes]. For example, all shapes that were related to the robot 
base were grouped together and renamed as robot_base in the scene hierarchy. It is usually 

easier to change the color of each shape for a better visual appearance and for selecting the 
shapes that belong to one group. In the case, when all shapes that were meant to be grouped 

shared the same visual attributes, they were merged together instead using [Menu bar --> Edit 
--> Grouping/Merging --> Merge selected shapes]. After the shapes were grouped in a com-

pound shape, the robot joints that logically belong to a shape (robot link) were added into the 
scene using [Menu bar --> Add --> Joint --> Revolute] with their correct position and orienta-

tion specified. All joints were then set to the IK mode and were placed at the correct position. 
In case, when the exact joint positions were not known, they were extracted manually based 

on the position of the relevant shapes. It is often helpful to refer to the robot design manual 

for a better understanding of links and joints functionality for building the kinematic chain, 
going from tip to base. The IK task requires specification of the kinematic chain described 
with a “tip” dummy and a “base” object, and a “target” dummy that the “tip” dummy will be 

constrained to follow as shown in Figure 15. After all elements for the definition of the IK task 
were ready, the “target dummy” was selected as the linked dummy to the “tip dummy,” and 

the IK task was registered as an IK group with proper selection of calculation method (DLS or 
pseudo inverse), damping, and constraints (x, y, z, alpha-beta, gamma).
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5.2. Visual servo control algorithm

A robot can be controlled in V-REP simulation through several ways such as child script, writ-

ing plugins, ROS nodes, external client applications that relies on the remote API, or writing 

an external application that communicates with V-REP plugin or script via pipes, sockets, or 

serial port. V-REP supports seven supported languages: C/C++, Python, Java, Matlab, Octave, 

Lua, and Urbi. In this research, we used MATLAB as the remote API because it provides a very 

convenient and easy way to write, modify and run image based visual servoing control codes. 

This also allows controlling a simulation or a model (e.g., a virtual robot) with the exact same 
code as the one that runs the real robot. The remote API functionality relies on the remote API 

plugin (on the server side), and the remote API code on the client side. Both programs/proj-
ects are open source (i.e., can be easily extended or translated for support of other languages) 
and can be found in the ‘programming’ directory of V-REP’s installation. Visual servo control 

scheme with eye-in-hand configuration, as shown in Figure 16, was implemented in MATLAB 

Figure 15. Demonstration of the joint functionality and the inverse kinematics chain for the NOVABOT manipulator.

Figure 16. Visual servo control scheme with eye in hand configuration based on image moment method used with the 
Fanuc LR Mate 200iD and the NOVABOT manipulators.
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Figure 17. Schematic diagram of an innovative approach for robotic harvesting based on multiple low-cost manipulators 

(e.g., multiple linear actuators or SCARA arms).

based on image moment method. For the case of the multiple linear actuators and the SCARA 

arms, we divided the camera view into multiple camera views to enhance the accuracy of the 

fruit detection algorithm and also to accelerate the image processing time (Figure 17). Details 

of the visual servo control algorithm are considered intellectual property of authors’ research 

group and are beyond the content of this chapter.

6. Results and discussions

Results provided a simulated environment for improvement of plant/fruit scanning and visual 

servoing task through easy testing and debugging of control algorithms with zero damage risk 

to the real robot and to the actual equipment. It also contributed to experimenting new ideas 

in robotic harvesting of sweet pepper, as well as testing different sensing instrumentation 
and control strategies on the currently used manipulators. Three groups of experiments, with 

separated V-REP scenes were designed for investigating different algorithms, robot manipu-

lator, and sensors setup. They are summarized as experimenting with: (i) fruit detection and 
tracking algorithm using different camera views (Figures 18 and 19), (ii) manual and auto-

mated plant/fruit scanning in x-y, x-z, and y-z plane, and x-y-z space (Figures 20 and 21), 
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(iii) fruit/plant scanning using Kinect, Hokuyo, fast 3D Laser, proximity 3D Laser scanner, and 
proximity Hokuyo URG04LXUG01 sensors (Figure 22), and (iv) visual servoing control law 
on single (Figure 23) and multiple (Figure 24) robot manipulator. Depending on the objectives 

of each scenario, sensors were placed in fixed spots, or on a moving link of the robot such as 
the end-effector. For example, the RGB vision sensor for fruit detection and tracking was used 
as eye-in-hand configuration with end-point closed-loop control. For the manual fruit/plant 
scan experiment with RGB sensors, the robot joints were controlled via sliders or by directly 

entering the desired joint angles in each label box as shown in Figure 20. This enabled sens-

ing from the gripper from multiple viewpoints. In order to provide an interface with real 

workspace, two 2-axis analog Joysticks with push button were then used with Arduino Uno 
microcontroller to manually control angular positions for the joints. The automated fruit/plant 

Figure 18. Results of the image processing algorithm for fruit localization using wide camera view (left) and divided 
camera view (right).

Figure 19. Result of the image processing algorithm for quantification and tracking of sweet pepper in different fruit-
and-plant scenario.
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scan experiments with RGB sensor were also carried out in different x, y, and z direction. The 
objective from this experiment was to simulate various camera pose and views for the best 

fruit attack and harvest. For Scanning in x-y plane, a 360° scan configuration of the fruit in 
the horizontal x-y plane is shown in Figure 20, with 30° increment snapshots of the simulated 
fruit. A similar scanning has been employed by [40]. For scanning in x-y-z space, two scan 

configurations in x-y-z space were used with snapshots of the resulting camera view shown in 
Figure 21. In this setup, the RGB sensor mounted on the robot tip is moved on the horizontal 

plane x-y to find the best view of the fruit. Moreover, the manipulator is “twisted” to provide 
different viewpoints for the end-effector camera.

The “3D Laser Scanner Fast” sensor model in V-REP is based on vision-sensor with a perspec-

tive angle equal to 45°, a resolution of 512 by 512 and minimum and maximum 0.05 and 5 m 
distance of operation. Snapshot of the experiment with this sensor is shown in Figure 22. 

The “Fast Hokuyo URG-04LX-UG01” model in V-REP also works in perspective mode with 
an operability angle equal to 120°, and a resolution that was set at 512 by 1 which means it 
scans along a line shown on the floating view. It has a minimum and maximum distance of 
operability, respectively, equal to 0.04 and 5. The image processing in this case is similar to 

the 3D laser sensor except that the intensity map scale component is omitted. This sensor in 
fact does not come with any floating view by default. Two floating views were added for the 

Figure 20. Two dimensional scanning experiment (x-y, x-z, and y-z planes) for finding the maximum fruit visibility. 
Camera was set to move at 30 degrees increments around the fruit and plant model.

Figure 21. Three dimensional scanning experiments (x-y-z space) for finding the maximum fruit visibility. Camera was 
set to rotate around the fruit and plant until it finds the best angle of attack.

Automation in Agriculture - Securing Food Supplies for Future Generations98



Figure 22. Simulation of scanning experiment with Laser scanners and depth sensors.

Figure 23. Simulation of visual servo control experiment with the eye-in-hand configuration and PID Control law on 
joint angles with feedbacks from image moments. Stability was achieved in 2.5 s without overshoot and oscillations.
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two vision sensors of the “Fast Hokuyo URG-04LX-UG01” model. The black line inside the 
floating view of each sensor indicates presence of object (i.e., fruit, leaf, robot, and plant). First 
row images in Figure 22 are snapshot of the scene with Kinect depth sensor in action for fruit/
plant scan, and the bottom row images are, respectively, from left to right are: snapshot of 
the scene with vision sensors, showing the “3D Laser scanner Fast,” the “Fast Hokuyo URG-
04LX-UG01,” snapshot of the scene with proximity sensors showing the “3D-Laser scanner,” 
and the “Hokuyo URG-04LX-UG01” scanning scene.

For the visual servo control task, a robot end-mounted camera was used to position the robot 

arm in a plane orthogonal to the axis, such that the fruit to be harvested is centered in the 

camera’s field of view. The system had no trajectory generator, instead a feedback loop closed 
visually, was used to control the robots arm position. The sensor and robot was programmed 

for visual servoing task in such a way that the end-effector tracks the largest detected fruit 
until maximum possible view of that fruit is provided. Two different control approaches was 
designed and tested, one based on joint velocity control and the other based on joint posi-

tion control. In both design a PID control law was implemented to minimize the offset error 
between image position of a detected fruit and center of the camera frame. Results showed 

that the robot could adjust itself in such a way that its tip RGB sensor shows maximum possi-

ble view of the largest detected fruit and become stable in a short time. It should be noted that 

both control algorithms were designed and tuned based on the experiments and statistical 

results from fruit/plant scan. Video demonstration of the entire experiments can be accessed 

from the links listed in Table 2.

As the final discussion, we would like to highlight that agricultural robotic is a part of the 
big picture in the future production of vegetable and crops, i.e., growing plants in space. 

Figure 24. Simulation of robotic harvesting with arrays of linear actuators.
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An example includes space research for development of Mars greenhouses to produce vegeta-

bles during a mission to Mars or at Antarctica. The trend in food production is toward urban 

farming techniques, compact Agri-cubes, and automated systems with minimum human 

interface. The idea is that even people with limited experience/knowledge in vegetable culti-

vation can operate these units. While this integration might seem too ambitious, it can serve 

as a prophetic awareness for a perceptive outlook in the farming system. For example, the 

conventional arrangements of citrus groves, orchards, and the trees shapes in Florida had to 

be reconsidered for the mechanical harvesting machines to operate successfully. It is likely 

that the greenhouse planting systems for sweet pepper will also be re-shaped to match with 

a customized robotic platform. Two of the key challenges to be solved during the design of 

robotic harvesting framework are addressed by [40] as (i) detection of a target location of the 
fruit, and (ii) moving the end-effector toward that location with precision for harvesting task. 
We argue that these two challenges have not been stated accurately. First of all, it is not always 

necessary to detect the target location of the fruit, especially in the case of a mass harvesting 

platform with shaking grippers. Second, moving the end-effector toward the target fruit is not 
a scientifically sound statement, e.g., considering the strategy case in which the plant system 
is moved toward a fixed end-effector. To avoid this divergence, the task should have been 
stated as minimizing the error between the location of the end-effector and the target fruit. In 
fact, a promising solution to the robotic harvesting is not through a single robot manipulator. 

We provided a quick review of the previous works, and used simulation approach to reveal 

that single arm robots for harvesting are still far beyond realization, and have failed mainly 

due to the sensing and moving action in high vegetation density. In this approach, even if the 

fruit localization is accurate, and the robot control calculates an optimum trajectory to reach 

the fruit without receiving additional sensing feedback from the camera, the moment it enters 

into the dense plant canopy it disrupts the exact location of the target fruit.

Simulation experiment Video demo link

Simulation of NOVABOT innovative manipulator https://youtu.be/R38IoVcOVt0

Simulation of multiple SCARA arms https://youtu.be/TLLW3S-55ls

Simulation of multiple linear actuators https://youtu.be/iFu7FAxLvmg

Robotic Harvesting with Fanuc LR Mate 200iD https://youtu.be/BwRBUeB812s

Simulation of Environment mapping and scanning https://youtu.be/XD3J7b0cDGM

Detailed demonstration of fruit and plant scan https://youtu.be/6EOy1NesvQg

Detailed demonstration of visual servo control https://youtu.be/VupoirQOL0Y

Testing Visual Servo Control Algorithm https://youtu.be/VupoirQOL0Y

Environment Setup: Ubuntu, V-REP, ROS https://youtu.be/tKagjNQ9FW4

Real-time, robust and rapid red-pepper fruit detection https://youtu.be/rFV6Y5ivLF8

Table 2. Links to the video demonstrations.
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7. Conclusion

Research and development for the use of robotics in agriculture that can work successively 
have grown significantly in the past decade; however, to this date, a commercial robotic 
harvesting is still unavailable for fresh fruit market. With the decrease of greenhouse work-
force and the increase of production cost, research areas on robotic harvesting have received 
more and more attention in recent years. For the success of robotic harvesting, the identifi-
cation of mature fruit and obstacle is the priority task. This chapter reported on a simula-
tion and control platform for designing, testing, and calibration of visual servoing tasks in 
robotic harvesting of sweet-pepper. Creation of a virtual environment was carried out as a 
response to the improvement of fruit detection rate. We provided a documented guideline 
for a reliable, cheap and safe experiment platform with a faster approach for development, 
testing, and validating control strategies and algorithms to be used with different robot can-
didates and gripper mechanism in automated harvesting of fruiting vegetables. Results of 
the image processing confirmed that the presented approach can quantify and track mature 
red sweet pepper fruits from its surrounding obstacles in the real-time. It can be concluded 
that development of an affordable and efficient harvesting robot requires collaboration in 
areas of horticultural engineering, machine vision, sensing, robotics, control, intelligent 
systems, software architecture, system integration, and greenhouse crop management. In 
addition, practicing other cultivation systems in the greenhouse, such as single row, might 
be necessary for overcoming the problems of fruit visibility and accessibility. It can also be 
concluded that human-robot collaboration might be necessary to solve the challenges in 
robotic harvesting that cannot yet be automated. In a collaborative harvesting with human-
robot interface, any fruit that is missed by the robot vision is identified by the human on the 
touch screen, or the entire robot actions are controlled manually in a virtual environment. 
Nevertheless, robotic harvesting must be economically viable which means it must sense 
fast, calculate fast, and move fast to pick a large number of fruits every hour that are bruise 
free.
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