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Abstract: Automatic Speech Recognition, (ASR) has achieved the best results for English, with
end-to-end neural network based supervised models. These supervised models need huge amounts
of labeled speech data for good generalization, which can be quite a challenge to obtain for low-resource
languages like Urdu. Most models proposed for Urdu ASR are based on Hidden Markov Models
(HMMs). This paper proposes an end-to-end neural network model, for Urdu ASR, regularized with
dropout, ensemble averaging and Maxout units. Dropout and ensembles are averaging techniques
over multiple neural network models while Maxout are units in a neural network which adapt their
activation functions. Due to limited labeled data, Semi Supervised Learning (SSL) techniques are
also incorporated to improve model generalization. Speech features are transformed into a lower
dimensional manifold using an unsupervised dimensionality-reduction technique called Locally
Linear Embedding (LLE). Transformed data along with higher dimensional features is used to train
neural networks. The proposed model also utilizes label propagation-based self-training of initially
trained models and achieves a Word Error Rate (WER) of 4% less than that reported as the benchmark
on the same Urdu corpus using HMM. The decrease in WER after incorporating SSL is more significant
with an increased validation data size.

Keywords: speech recognition; locally linear embedding; label propagation; Maxout; low resource
languages

1. Introduction

Automatic Speech Recognition (ASR) can be a vital component in artificially-intelligent interactive
systems. After more than 50 years of research, ASR is still not a completely solved problem. ASR consists
of three main components. These are, (a) extraction of useful features from speech for recognition of
language phonemes or words, (b) classification of extracted features into words and (c) probabilistic
modeling of predicted words based on language grammar and dictionary. The most famous features
used for ASR are the Mel Frequency Cepstral Coefficients (MFCC). MFCC are found by taking the
Discrete Cosine Transform (DCT) of logarithm values of energies in filter banks applied on a Mel scale
to Power Spectral Density (PSD) of speech. Lower MFCC coefficients correspond to slow changing
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frequencies in sound and are used for speaker independent speech recognition as they represent vocal
tract response creating phonemes. This work is focused on pattern recognition of extracted speech
features to classify isolated Urdu words.

Pattern recognition finds patterns in data to perform certain tasks, while processes to learn
patterns present in data can be referred to as machine learning. All machine learning algorithms
can be represented as a general model with tunable hyper parameters which are learned during the
training phase using available data. The model with learned parameters is then used to perform
required tasks in the test phase. Machine learning algorithms are generally categorized as supervised
or unsupervised. Supervised learning algorithms use labeled data as the training set. For labeled data,
each point is manually marked with a target label. Supervised learning tasks usually perform either
classification or regression. Unsupervised learning algorithms learn features or patterns from unlabeled
data. The unsupervised learning generally performs clustering, density estimation and dimension
reduction tasks. Utilizing both supervised and unsupervised techniques for data classification is called
Semi-Supervised Learning (SSL).

ASR got its early success using the statistical pattern classification technique Gaussian mixture
distributions with Hidden Markov Models (HMMs). Despite the earlier success of HMMs, they have
the limitations of being complex and having unrealistic assumptions about distribution shapes of
observed speech features. Recently, using neural networks for speech recognition has achieved the best
results [1]. For neural networks to generalize well they need huge amounts of labeled training data.
Most of the English ASR research utilizes the Texas institute global corpus, which is used and updated
by researchers around the globe. Such resources are missing for low-resource languages like Urdu.
Recently the Urdu Corpus has been developed containing 250 isolated words spoken by 10 different
speakers and is being used for Urdu ASR research [2]. Asadullah et al. reported 25% mean Word Error
Rate (WER) using HMM models for speech recognition on the corpus in speaker independent setup
with 90% of speech used as training and 10% as test data [3].

This paper describes the performance of an end-to-end neural network-based speech recognition
model tested on the same corpus. The model uses dropout, ensemble averaging, Maxout and SSL for
better generalization with limited data. The proposed model achieves a mean WER, 4% lower than
Asadullah et al. [3]. The model is also tested using as low as 50% of the available corpus as training
data for the first time and the performance does not deteriorate drastically with the limited training
data portion because of SSL. This is quite significant for low-resource languages like Urdu.

The rest of the paper is organized as follows. In Section 2, optimization and regularization
techniques, recently proposed, for deep learning have been reviewed and SSL techniques like Label
Propagation and Locally Linear Embedding (LLE) are elaborated. The proposed model is discussed
in Section 3. The mechanism for extracting feature vectors from speech, neural network architecture
and the methodology for utilizing SSL are explained. In Section 4, the model performance is analyzed.
WER is recorded against different size and combinations of training and test data. The impact of neural
network architecture and SSL on training convergence and test validation is discussed. The conclusion
and scope for future work is presented at the end.

2. Literature Review

This paper proposes a hybrid approach with elements of deep learning and SSL to achieve better
results in ASR of low-resource languages. The following subsections list recent trends in deep learning
and SSL regarding ASR.

2.1. Deep Learning

Speech recognition systems proposed for Urdu mostly use traditional statistical techniques like
HMM. Asadullah et al. have used HMM models over 250 words in the Urdu corpus and have achieved
25% mean WER [3]. For English, on other hand, large vocabulary continuous speech recognition has
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recently achieved the best results, with WER down to 18% using deep Recurrent Neural Networks
(RNNs) [1].

Deep neural networks approximate the same function with exponentially less units as compared
to shallow networks [4]. In order to overcome optimization and generalization issues with deep
networks, many optimization and regularization techniques have recently been presented in the
literature. For large training datasets, neural network weights are optimized using randomly selected
sets of training samples, called mini-batches, for each iteration. This is called Stochastic Gradient
Descent (SGD). The SGD reduces computational complexity and randomly sampled mini-bathes give
equally good direction of gradient for training error over complete data sets. Using different learning
rates for network parameters also improves optimization. Adaptive learning proposes an increase in
the learning rate for a parameter if the sign of partial error derivative with respect to that parameter
has not changed in the previous few iterations, otherwise the learning rate is decreased. Momentum
moves the parameters in a direction based on the mean of the gradients over previous iterations.
This overcomes gradient fluctuations caused by SGD [5]. The Adam algorithm has been proposed
for model optimization; it uses adaptive learning rates and momentum [6]. Neural networks have
been shown to perform very well using piecewise linear, Rectified Linear Units (Relu), as hidden layer
activation functions [7]. Relu has either an unbounded linear sum of the previous layer as the output,
if this sum is positive, or zero as the output, if the sum is negative. Leaky Relu is a variant of Relu and
has a very small negative value output, instead of 0, for negative inputs. It is called leaky due to this
very small negative output value for negative inputs. Another very useful variant of Relu is Maxout
unit, which can adapt activation function shapes and has been shown to perform very well. Maxout
has an activation function as the maximum of K linear sums of the previous layer. K is the number of
affine feature maps, pool size or number of previous layer sums to choose from [8].

Generalization is defined as how well neural networks perform on unseen test data. Different
regularization techniques are proposed for better generalization of neural networks, like adding
penalties in cost function for network weights, input data augmentation, multi-task learning, model
averaging and dropout. Averaging of multiple models gives better generalization due to the stochastic
nature of gradient descent and parameters initialization. Neural networks with different architectures
can also be averaged utilizing an ensemble of different functions [9]. Dropout randomly turns off some
units of a layer during training to optimize different shapes of networks. While testing, accumulation
of all these shapes is used to predict output, giving better generalization. Softmax activations keep
outputs as an average of all trained models due to inherent normalization [10].

2.2. Semi-Supervised Learning

Besides supervised regularization techniques, SSL has also been proposed for generalization.
SSL incorporates unsupervised learning techniques to utilize huge amounts of unlabeled data and
uses the obtained information to aid supervised classification tasks [11]. Examples include constrained
clustering, classification of input data with reduced dimensions and multitasking hybrid networks.
Constrained clustering uses unsupervised clustering of complete data; it groups together closer data
points but does so by adding constraints to cluster data points labeled with the same classes in the
same groups [12]. Classification of datasets with dimensions reduced by unsupervised dimensionality
reduction also improves generalization as it utilizes structures in complete data sets, whether labeled
or unlabeled [13]. Multitasking hybrid networks is a proposed technique of sharing classification
network layers with an unsupervised auto-encoder network which tries to regenerate unlabeled input
data at the output [14].

Self-training is a simple SSL technique based on iterative training using confidently predicted test
samples. Most confident test samples predicted by initially trained models are added to training sets
along with their predicted labels as targets, and the model is trained for a few more iterations on the
enhanced training set [15]. We have utilized self-training of neural network models using data points
predicted with high probability using a semi-supervised clustering technique called label propagation.
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Label propagation is a famous graph-based semi-supervised clustering algorithm and utilizes
both labeled and unlabeled data. All data points are represented by fully a connected graph with
edges indicating their geometric distance. In the first step, class labels from all labeled points are
transferred to connected points with the label transfer probability assigned as inversely proportional
to their distance. Net probability for each label against a point after this step is the sum of transfer
probabilities of that label from connected points normalized across all labels. The same is repeated for
unlabeled data points until convergence of label probabilities [16]. Label transfer probability from
point i to point j is computed by Equation (1). k are all labeled and unlabeled points, and graph edges
between points i and j have weight Dij indicating the distance between i and j.

Tij = P(i→ j) =
Dij∑
k Dki

(1)

Usually Euclidean distance is used as the distance metric between two points; however, any metric
can be used provided it gives positive values, as distance values are used to measure the probability of
label transfer.

Probability Pc for a point i against each class c is obtained by normalizing the sum of transition
probabilities Tc for that class across transition probabilities for all classes. Equations (2) and (3) are
used to find label transition probabilities and net class probabilities for each point, respectively.

Tc =
∑

j

Tij (2)

Pc = Tc/
∑

c
Tc (3)

Unsupervised dimensionality reduction is usually used to obtain important features from the
data. Training on reduced dimensions improves the generalization of neural networks by utilizing the
structures of labeled as well as unlabeled data [17]. Linear dimensionality reduction techniques project
data on linear axes. Due to the nonlinear nature of speech, linear techniques are not very useful for
ASR. Nonlinear dimensionality reduction, on the other hand, projects data onto a manifold that is a
nonlinear, smooth and curved subspace within Euclidean space. Every manifold can be considered
as linear very close to a point. LLE uses this and finds weights for a point in order to be represented
linearly by k nearest neighbors. These weights contain information about local structures in the
neighborhood of points. Collection of these weights for all points is used to find target d dimensional
points that fit the same weights matrix obtained with the higher dimensional data [18]. The weight
matrix Dij for J points in X, each having I neighbors, is found by minimizing the reconstruction error of
X. The reconstruction error ∆X for higher dimensional data, X, is given by Equation (4).

∆X =
I∑

i=1

| Xi−
J∑

j=1

DijXj |2 (4)

The weights matrix Dij is used to find the transformed data set Y in reduced dimensions such that
the reconstruction error of Y with same weights Dij is minimized. The reconstruction error ∆Y to be
minimized is given by Equation (5).

∆Y =
I∑

i=1

| Yi−
J∑

j=1

DijYj |2 (5)

This paper proposes to use LLE and self-training based on label propagation for better
generalization of neural network models.
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3. System Model

The proposed model consists of neural network with input data extracted using MFCC and delta
speech features. The features matrix is projected on lower dimensions using LLE, and the compressed
matrix is used to aid input data. The initially trained neural network is further trained using confidently
predicted samples by label propagation. The primary objective of the proposed model is to utilize
recently proposed neural network techniques in order to achieve lower WER as compared to the
benchmark achieved by HMM [3]. A smaller portion of the same corpus is used as training data to
analyze the impact of SSL for a scarce labeled-data availability scenario. The Urdu corpus used for
testing is the same as that used by Asadullah et al. and consists of 250 isolated words spoken by 10
different speakers.

Lower 13 MFCC, corresponding delta and 26 logfbank coefficients are extracted from speech
samples. The sliding window length to extract each set of coefficients is set as 25 milliseconds.
This sliding window is applied every 10 ms. Delta or gradients of MFCC coefficients are computed
with respect to 30 frames ahead and backwards. This gives a feature matrix for each speech sample
with 52 rows and a number of columns equal to the number of feature extraction time frames for that
sample. Feature matrices are flattened to obtain single dimensional vectors for each sample. Speech
signals in the corpus have variable lengths, so in order to warp them in time they are scaled through
linear interpolation to a fixed length chosen to be the minimum feature vector length.

The features matrix is compressed to 972 dimensions for each sample using LLE with the 21
nearest neighbors for each point. This LLE vector for each sample is concatenated to its original feature
vector, so instead of reducing, dimensions of input vector are actually increased to the original plus the
LLE dimensions. This adds useful information about vectors, obtained by incorporating all of the data
set including test samples. Table 1 summarizes the input data set obtained for the experiments.

Table 1. Input data set.

Input Data

No. of words = 250, speakers = 10
No. of samples in corpus = 250 × 10 = 2500
Interval of extracting feature window, 10 ms
Length of each speech sample, Ls milliseconds
No. of 52 feature columns per sample, Nf = Ls/10
Length of flattened feature vector, Lf = 52 × f
Scaled length of feature vectors, Lm = min (Lf)
Target LLE dimensions = 972
Length of concatenated vectors, T = Lm + 972

Input linear interpolation: R2500 X Lf
→ R2500 X Lm

Input LLE transformation: R2500 X Lm
→ R2500 X 972

For 2500 points and 21 neighbors
Features matrix = X = R2500 X Lm

Neighbor matrix of X = B=R2500 X 21 X LM

Weight matrix = W = R2500 X 21, satisfying min |X-WB|
Neighbor matrix of Y = C = R2500 X 21 X 972

LLE output = Y = R2500 X 972, satisfying min |Y-WC|
Input data = I = (X appended with Y)
= I (2500 X T) = R2500 X T

The Adam optimization algorithm is used for optimization [6] of neural network to try to minimize
categorical cross entropy as the cost function for 150 iterations using stochastic gradient descent on
a mini-batch size of 250 samples. Figure 1 illustrates the proposed neural network architecture
graphically. The left-most layer is input layer ‘I’ with dropout ratio 0.5 and dimensions T. H represents
the first hidden layer with 2000 neurons and Relu activation. M represents the second hidden layer
with Maxout activation and 4 affine maps. O represents the output layer with 250 Softmax units, each
representing one of 250 spoken words.
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Figure 1. Neural network model.

Table 2 illustrates the architecture of the proposed neural network model mathematically.
Mathematical expressions for each layer are outlined.

Table 2. Architecture.

Neural Network Architecture

Model Input = Ip = concatenate along 2nd axis (R2500 X Lm, R2500 X 972): pε[1,T]

Hidden layer units: Hq = max (0,
T∑

p=1
Wpq ∗ Ip): qε[1,2000], Wpq = RT X 2000

Maxout affine map = Ajr =
∑2000

q=1 Wqjr ∗Hq

Maxout layer units: Mr = max (Ajr): jε[1,4], rε[1,1000], Wqjr = R2000 X 4 X 1000

Output units: Os = exp (
∑1000

r=1 Wrs ∗Mr)/
∑250

s=1(exp
∑1000

r=1 Wrs ∗Mr): sε[1,250], Wrs = R1000 X 250

Six different neural networks with slight variations in the number of units for each layer are used
for averaging. Two models with the above mentioned architecture, a 3rd with 2250 hidden and 1150
Maxout units, a 4th with 1750, hidden 850 Maxout units, a 5th with 1500 hidden, 750 Maxout units and
a 6th with 1000 hidden and 500 Maxout units are trained. During testing all six models are used to
predict the test data and the average of all outputs gives the target probabilities.

Label propagation is initialized with labels against the same training data set partition that is
used for training of the neural network. The 21 nearest neighbors are used for label propagation.
Test samples predicted with a label probability higher than 0.95 are selected and, among these selected
samples, those which are also predicted as the same word by the initially trained neural network are
chosen as the confidently predicted test set. These confidently predicted points are added to the initial
training set along with their predicted labels as target words. The neural network model is trained
again for 15 iterations on the enhanced training set. This further reduces the predicted WER. The model
is initially trained on 9 speakers and tested on 1. Then the test set size is increased incrementally to 2,
3, 4 and 5 speakers and the WER is recorded with different training and validation set combinations.
These steps are summarized in Algorithm 1.

Figure 2 shows a block diagram of the proposed model illustrating the processing steps on raw
speech to extract input data for a feed forward neural network with the architecture explained earlier.
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Algorithm 1

1. Compute Log Filter Bank, MFCC and Delta coefficients from raw speech
2. Concatenate all coefficients calculated in step 1
3. Flatten across time into single coefficient vector for each speech sample
4. Extract LLE dimensions from the coefficient matrix of the complete corpus data
5. Concatenate LLE vectors with initial feature vectors
6. Use concatenated vectors as input to the neural network
7. Use same input data for Label Propagation and select confidently labeled samples
8. Self-train neural network with confidently labeled points.
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4. Results and Analysis

In this section, results of the proposed model are discussed in three directions. First,
the effectiveness of the proposed model is analyzed while evaluating the WER. Secondly,
the performance of the neural network with different shapes and activation functions is explained.
Finally, the impact of self-training and LLE is discussed.

4.1. WER

WER down to 22% is achieved by the proposed SSL-Neural Network (SSL-NN) model for speaker
independent setup as compared to 25.42% achieved by HMM on the same corpus [3]. The WER
comparison is presented below in Table 3. HMM has better performance for test speakers 0, 2, 5 and 8
while the proposed model predicts better for speakers 1, 2, 3, 4, 6, 7 and 9. Consequently the mean
WER of the proposed model is lower than that of HMM.

Table 3. Word Error Rate (WER) comparison with Asad-Hidden Markov Models (HMMs) [3].

Train Speakers Test Speakers
Word Error Rate %

Asad-HMM [3] SSL-NN

1–9 0 17.6 35.6
0,2–9 1 20 13.6

0–1,3–9 2 12.8 20
0–2,4–9 3 36.4 17.2
0–3,5–9 4 35 9.6
0–4,6–9 5 13.6 33.2
0–5,7–9 6 38 19.6
0–6,8–9 7 24.8 20

0–7,9 8 26.8 27.2
0–8 9 29.2 24.8

Mean 25.42 22.08
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The HMM model is tested with only 10% data reserved for validation. However, the proposed
model is tested to calculate WER with a higher ratio of data from the same corpus reserved as the
validation set. Up to 5 speakers are used to test on a model trained with 5 speakers for training.
Even after using 2, 3, 4 and 5 speakers as test data, WER does not increase drastically due to
unsupervised techniques being incorporated. Table 4 summarizes the mean WER recorded for 20%,
30%, 40% and 50% partition as test data.

Table 4. Mean WER% for different validation dataset size.

Test Set Size WER %

10% 22.08
20% 22.68
30% 27.34
40% 31.35
50% 34.65

WER for different combinations of training and test data are recorded before and after incorporating
SSL and model averaging. WER decreases after adding LLE dimensions, it further decreases after
self-training using label propagation. Averaging over multiple models reduces WER further. While
the lowest WER is obtained after self-training (ST) of ensemble models with LLE appended input data
used for training and testing purposes. Table 5 shows WER details for the validation data set of 1
speaker with neural network trained on 9 speakers after using SSL and averaging.

Table 5. Word Error Rate for 10% data as test.

Train
Speakers

Test
Speakers

Word Error Rate %

Features Adding LLE LLE + ST Ensemble Ensemble + ST

1–9 0 42 40.4 37.2 37.6 35.6
0,2–9 1 15.6 14.8 12.4 12.8 13.6

0–1,3–9 2 28.4 20.8 21.6 22.8 20
0–2,4–9 3 20.4 18.4 17.2 16.8 17.2
0–3,5–9 4 12.4 10.4 10 9.2 9.6
0–4,6–9 5 36 35.2 34.4 36.4 33.2
0–5,7–9 6 20 21.2 22 18.8 19.6
0–6,8–9 7 25.2 21.6 21.2 20.4 20

0–7,9 8 31.2 30 30.8 29.2 27.2
0–8 9 25.6 26.8 25.6 23.6 24.8

Mean 25.68 23.96 23.24 22.76 22.08

Table 6 shows the WER for the validation data set of 2 speakers and the training data of 8 speakers
before and after using regularization techniques.
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Table 6. Word Error Rate for 20% data as test.

Train
Speakers

Test
Speakers

Word Error Rate %

Features Adding LLE LLE + ST Ensemble Ensemble + ST

2–9 0,1 30.2 27.8 27.8 26.2 25
0,3–9 1,2 27.2 24 23.2 21.8 21.2

0–1,4–9 2,3 24.8 18.6 18.6 19.4 17
0–2,5–9 3,4 18.2 15.6 15.6 14.4 14.6
0–3,6–9 4,5 26.8 25.8 26 25 23.6
0–4,7–9 5,6 35 32.6 29.6 30.8 28.2
0–5,8–9 6,7 28.6 28.6 25.8 26 23.8

0–6,9 7,8 32 32.2 28.8 27.6 25
0–7 8,9 30.8 30.8 29.8 27 25.8

mean 28.17 26.22 25.02 24.24 22.68

Table 7 shows the WER over the validation data set of 3 speakers. It can be observed that with an
increasing validation set size, WER recorded without SSL starts increasing considerably as the corpus
data is limited; however, after incorporating SSL, the WER increase is less significant.

Table 7. Word Error Rate for 30% data as test.

Train
Speakers

Test
Speakers

Word Error Rate %

Features Adding LLE LLE + ST Ensemble Ensemble + ST

3–9 0,1,2 42.26 34.64 34 33.3 30.26
0,4–9 1,2,3 25.46 23.06 21.86 20 20.66

0–1,5–9 2,3,4 24.13 18.133 18.26 18.5 18.4
0–2,6–9 3,4,5 36.4 33.867 29.46 29.7 27.2
0–3,7–9 4,5,6 27.2 28.26 25.33 24.8 22.53
0–4,8–9 5,6,7 36.4 35.734 32.266 32.2 31.2

0-5,9 6,7,8 54.4 34.93 44.93 50 42.8
0–6 7,8,9 32.13 51.067 27.33 27.2 25.73

Mean 34.79 32.46 29.17 29.46 27.34

Table 8 shows the WER over the validation data set of 4 speakers. It is visible that with an
increasing validation data set, the improvement in WER by SSL gets more significant as compared to
the smaller validation data partition.

Table 8. Word Error Rate for 40% data as test.

Train
Speakers

Test
Speakers

Word Error Rate %

Features Adding LLE LLE + ST Ensemble Ensemble + ST

4–9 0–3, 39.8 31.4 27.7 30.3 26
0,5–9 1–4, 27.7 25.7 26.4 24.5 24.5

0–1,6–9 2–5, 36.8 29.9 30.2 29.6 28.2
1–2,7–9 3–6, 35.5 32 28.5 29.3 27.2
1–3,8–9 4–7, 31.6 32.2 28.8 29.2 27.5

1–4,9 5–8, 56 52.5 46.2 50.9 46.1
1–5 6–9, 44.8 45.8 42.5 42.4 39.3

mean 38.88 35.64 32.9 33.74 31.25

Table 9 shows the WER for 5 speakers with the neural network trained on 5 speakers. The WER
decreases by 8% using SSL, which is quite significant.
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Table 9. Word Error Rate for 50% data as test.

Train
Speakers

Test
Speakers

WER %

Features Adding LLE LLE + ST Ensemble Ensemble + ST

5–9 0–4, 36.4 34.48 33.52 32.64 30.96
0,6–9 1–5, 40.56 37.52 37.2 35.2 32.8

0–1,7–9 2–6, 38.8 30.8 31.52 30.16 28.64
1–2,8–9 3–7, 40.08 37.44 33.12 35.52 32.8

1–3,9 4–8, 50.8 49.6 46.08 45.6 41.84
1–4 5–9, 50.32 47.2 44.32 45.84 40.88

Mean 42.82 39.5 37.62 37.49 34.65

Table 10 summarizes the WER comparison using Neural Networks (NN) with and without
SSL techniques for different numbers of users reserved as the validation set. More significant WER
improvement with increasing validation set size demonstrates that SSL is very useful for limited
labeled data scenarios, which is the case for low-resource languages like Urdu.

Table 10. Decrease in WER after incorporating Semi-Supervised Learning (SSL) and regularization
techniques.

Validation Data WER% (Simple NN) WER% (SSL) WER Decrease

10% 25.68 22.08 3.6
20% 28.17 22.68 5.49
30% 34.79 27.34 7.45
40% 38.88 31.25 7.63
50% 42.82 34.65 8.17

4.2. Neural Network Architecture Analysis

The optimization and generalization of the neural network model are analyzed with Sigmoid,
Relu, Leaky Relu and Maxout activations in the hidden layer. Maxout activations give the best results;
however, due to multiple affine maps for Maxout, the number of parameters to be optimized is huge.
Hence, a lot of memory resources are required. Using the initial hidden layer with Relu activations and
stacking Maxout as the 2nd hidden layer reduces resource requirements, as the number of parameters
to be optimized decreases due to less inputs to the 2nd hidden layer compared to 1st.

Figure 3 records the optimization of the neural network with the single hidden layer using different
activation functions. It can be seen that the neural network with sigmoid activations in the hidden layer
converges slower than rectified functions and, among rectified functions, Maxout converges fastest
due to its power to adapt with activation shapes, but at the cost of huge resources. Leaky and simple
Relu, however, are similar in convergence with less computational resource requirements. Figure 4
shows test error with different activation functions. Again sigmoid shows the worst performance while
Maxout is the best. Relu and rectified Relu, however, are almost similar.
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Figure 5 shows optimization convergence of neural networks with single and two hidden layers
using different activation functions over the training data of 9 speakers. The optimization is plotted for
neural networks with a single Relu hidden layer, two hidden layers, both Relu, and two hidden layers,
first Relu and second Maxout. It can be seen that the neural network with two hidden layers, first Relu
and second Maxout, converges fastest. Figure 6 shows test error. While all architectures trained on
90% data tend to perform similar on 10% unseen data after steady state, network with Maxout stacked
on Relu hidden layer performs better after less iterations of training.
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4.3. Evaluation of LLE and Self-Training

The WER keeps decreasing after the self-training of the neural network for 15 iterations using
test samples with confidently predicted clusters by label propagation. However, the WER starts to
increase after self-training for more iterations as few errors in clustering keep getting emphasized.
The optimum of the probability to measure confidence in label propagation clustering is found to be
0.95. For lower cluster probability values, a significant number of samples are added for self-training
but more of them include errors, deteriorating the WER. For probability higher than 0.95, a very small
set is obtained for self-training, which does not cause significant improvement.

The optimization and generalization of the model are compared before and after adding LLE
components to speech features. The optimization improves as LLE helps to extract useful features
from the input data set and using structure of both training and test data improves generalization.
Figure 7 shows the optimization over 9 speakers’ data used for training with and without adding LLE
dimensions to speech features. The optimization is faster using LLE as it extracts key features. Figure 8
shows the test error with and without LLE in the same setting. LLE extracted dimensions appended
with speech features improves the steady state validation error on test data due to incorporating the
structure of the complete data set, including the test data portion.
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Figure 9 shows the optimization of 5 speakers’ data used for training and 5 speakers reserved
as the validation set. LLE extracted dimensions improve optimization. Figure 10 shows the test
error in the same setting. With an increase in the unlabeled validation data size, the improvement in
generalization after incorporating LLE becomes more significant.
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5. Discussion and Conclusions

Due to recent advances in deep learning, neural network-based ASR easily outperforms statistical
pattern recognition techniques. Neural networks with Maxout activations in the hidden layer give
the best results, but Maxout layers need more memory resources due to the large number of tunable
parameters. Memory usage can be reduced by stacking Maxout ahead of the Relu hidden layer. Deep
learning regularization techniques, like dropout and model ensembles, reduce WER significantly;
however, ensemble over multiple models is resource intensive. Utilizing unsupervised nonlinear
dimensionality reduction techniques like LLE improves model generalization for problems with
limited labeled data like speech recognition for low-resource languages. SSL techniques like label
propagation-based clustering and self-training also reduce WER.

In Future, this work can be extended for Large Vocabulary, Continuous Urdu Speech Recognition.
Phoneme-based speech recognition can be used for large vocabulary systems, while state of the art
RNNs can be used to incorporate continuous speech. The impact of using discrete time warping DTW
distances for extracting speech features, dimensionality reduction and clustering can be explored.
LLE and label propagation algorithms can be modified to incorporate DTW distances between speech
samples, instead of geographic distance. Incorporating DTW is suitable for variable speed temporal
signals like speech. Finally, model robustness can be analyzed using noisy speech samples for training.
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