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Preface 
Some people underestimate the power of nostalgia, and they believe that nostalgia is a sign of 

weakness. For my part, I completely disagree. Usually nostalgia affects my decisions to a 

large extent. Choosing my master thesis topic was no exception. When I had contact with my 

supervisor for the first-time last summer, a large collection of different projects was 

available. Choosing “ Procedural Content Generation” was an easy matter. So now you may 

be wondering why? Again, because of the nostalgia. Let me explain that in more detail. 

The story began for ten years ago, in august 2009, when I started my first master thesis in my 

beloved country, Syria. The dissertation was mainly about genetic algorithms, and how it can 

be used to control the output of procedural algorithms. That project was a big success in my 

career, and I can say that with full confidence. I got A-grade, and that moment is 

unforgettable.  

Due to exceptional circumstances, I had to leave my gorgeous country. Fate decreed in 2013 

that I have to move to a faraway country called Norway. 

Six years later, in 2019, I submit my second master thesis that has a title similar to some 

extent to the previous one. I believe that procedural generation represents the lucky charm for 

me. Honestly, I am hopeful that my previous experience with master thesis occurs on more 

time. That is, getting A-grade eventually.  

 

If that happens this time, my belief in nostalgia will turn to a faith!      
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Abstract 
Nowadays, using PCG gains more and more importance, and PCG plays an increasingly 

important role in various areas. Particularly in game design and development where PCG 

have made a qualitative leap forward, especially in recent years.  

In fact, PCG is a very broad discipline. Investigating of this matter is so interesting, and 

satisfaction is guaranteed.    

This thesis mainly reviews the primary techniques, approaches and algorithms that are 

usually used in PCG. Most of the studied approaches and techniques are considered state-of-

the-art. This thesis goes beyond the classical way of demonstrating how PCG techniques 

works unlike any traditional research about this subject. The primary focus is on the practical 

side rather than purely theoretical matters.  

To experience how PCG works in action, over 20 different techniques will be demonstrated, 

implemented in code line by line and tested. After running each algorithm, the results will be 

discussed and a comparison with other techniques will be done if that makes sense. At the 

end of this thesis, the strengths and the weaknesses of each technique will be highlighted. At 

the end of this thesis, an infinite terrain will be implemented as a practical part of PCG. 

 

Without further ado, let´s get started 
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Chapter 1 

Introduction 
1.   Motivation 
Procedural Generation is a method of creating data algorithmically with limited or no human 

contribution, and it's commonly used by developers to create content very quickly. It is a 

powerful tool in the first place. However, it becomes a killer tool that completely ruins your 

design if it is not used wisely. One thing you should always keep in mind before using 

procedural generation that it is not easily controllable. That is, the procedural content can be 

difficult to be manages, and you can easily lose control. 

2.   Scheduling is a critical duty  
Building a successful project is a challenging process. To be successful, you have to plan duly. 

Otherwise, you will most properly run over budget, and you project eventually fails. Using a 

procedural content generation in any projects is a risky choice. Therefore, you have to know 

exactly when to introduce such technique into your project. Usually, the decision to use PCG 

or not is taken early in the project`s lifecycle. In most cases, this crucial decision occurs during 

the design phase [1]. Undoubtedly, time is vital in any project. That being said, the next 

important task after choosing PCG is to carefully estimate how much time you need to build 

the content of your project using PCG. In many projects, this time is underestimated. Be careful 

and do not do that.  

 To be safe, you should always make your estimation flexible as far as possible. That flexibility 

is a necessity because: 

• The one constant in software development is the change [2]. The direction of 

your project could be drastically change at any moment. That implies different 

undesired consequences. For example, the code you have written becomes 

invalid under the new circumstances. Therefore, it should be drafted and 

undrafted many times. 

• Even in a very stable project where the changes are minimal, some adjustments 

and tweaking after releasing the project is inevitable. 

In short, using PCG requires tight development from the very beginning of any project.   
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3.   Implementation and coding  
Some notes on the fly about the code and the figures: 

• Demonstrating how an algorithm works step by step is good. Writing code 

additionally to implement the algorithm is even better. Therefore, I have decided to 

write the code for every single algorithm in my thesis. In my humble opinion, this will 

mainly help to clarify how the different algorithms behave in action. 

• More than 20 algorithms will be demonstrated, implemented and tested throughout 

this thesis. The majority of those algorithms have implemented from scratch and 

coded line by line. In some algorithms, however, I got stuck at some point. I tried 

every possible way I can to go out of this impasse. When I failed, I asked for help on 

the internet. Even though the final code I wrote is completely unique, I still have to 

credit every single help I got from others [3] [4].  

• Programming is my favorite hobby, and I fell in love with it more than ten years ago. 

My programming experience is mainly in both Java and JavaScript. I have started 

using Java professionally since 2008, and JavaScript since 2012. However, I was very 

hesitant about which one to use in this thesis to implement the various algorithms. 

Eventually, I opted JavaScript for two main reasons: 

1- Its simplicity over Java. That is, the amount of code needed in Java to implement 

any of the algorithms is at least doubled. 

2- The available libraries for drawing and animation functionality are superior in 

JavaScript nowadays. 

• All the code in this thesis works perfectly. It has been tested many times, and it is 

absolutely error-free. In order to run this code properly in your own machine, you 

have to do one of the following things:  

1- Use HTML file in order to run the code in your browser.  

2- Use JavaScript open source server environment like Node.js to run the 

code using command prompt. 

• Last but not least, there are over 70 different figures in this thesis. All of them, 

without any exception, are a direct result of running the code that I wrote to 

implement each algorithm. No copy-paste figures at all from any resource. On my 

part, I do not like off-the-shelf stuff. I bet you agree with me!    

One last remark: Keep in mind before reading this thesis that there is no clear distinction 

between the theory part and the results part as usual in any technical report. There are 

results and discussion in every single chapter starting from chapter 2 until chapter 10. 
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Chapter 2      

Theory 

1.   The uselessness / usefulness of PCG 

1.1   PCG Disadvantages 
PCG is simply a two-edge sword. It can be very useful in many cases, but it can be a bad 

choice sometimes. It is absolutely not a panacea, and in particular situations, avoiding it is 

considered to be the right choice. If you decide to integrate it into your project, then you 

should realize all the hazards PCG might bring into your project. 

1.1.1   Quality assurance tests 
Quality assurance (QA) is a crucial factor in any project. It is, however, the main reason to 

avoid using PCG in dome projects as well. Using PCG makes the behavior of your project 

unpredictable somehow. As a sequence, your project is not guaranteed to work exactly as 

designed all the time. As mentioned earlier, the generated content is not fully controllable. 

Moreover, it is impractical to test each part of the generated content. That is infeasible.   

Some risky situations are unavoidable with PCG. Your generator may hide some tiny bugs 

that never appear before the project gets released. To handle such situations, you need testers. 

But it is also possible to introduce extra constraints in order to augment the controllability of 

the generator [1]. However, the more constraints you add to your generator, the less variety 

the generator will bring to your project. The chance to get repetitive content increases 

drastically with over-constrained levels. 

1.1.2   More Demands on Hardware 
At the end of the day, procedural generation is nothing more than an algorithm running on 

your computer to generate a desired content somehow or other. The more complicated your 

generator is, the more advanced hardware your computer should have to run those algorithms 

properly. Likewise, the more advanced hardware installed in your machine, the more money 

you have to pay. It is actually a sort of trade-off. You have always to ask yourself the 

following question: Does it worth to spend extra money in order to enhance the 

performance of your generator?    
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1.1.3   Unpredictable Time  
At the first glance PCG seems like a huge time-saver when it is compared to a handcrafted 

content. But sometimes this is completely deceptive. 

There is no guarantee that the estimated time to build the generator is going to be accurate. 

Practically if the amount of existing code to count on when you design the generator is not 

enough, it will take much more time than what you expect to have your generator done [1].  

Another important factor that affects the time hugely is the amount of tweaking and 

improvement your generator needs after completion it. This process may occur over and over 

again depending on the changes in the requirements of your project. That being said, the 

estimated time in a handcrafted process is much more predictable. 

Therefore, do not rush into making a decision, and reconsider how much PCG you will 

involve in your project. Such decision is very important specifically if both time and money 

are critical for your project. Any careless decision will eventually put you face to face with 

the hard fact; the failure of your project.  

1.1.4   Change is not easy 
Usually you choose an algorithm or a technique to be the core of your generator. If you are 

not satisfied with the generated content after completion the generator, then changing the 

behavior of your generator is an intricate task. Doing that demand a change in the used 

algorithms, and that is impractical if you build a huge generator.  

1.1.5   Random output 
Occasionally, things do work out the way you planned them. It would be unacceptable by any 

means that you invest many resources to build a well-functioning generator, but eventually 

the output of the generator is just random contents. What a frustration that would be ! 

Randomness in this context means that the generated content is boring and full of repetitive 

content that does not make a good experience. 

1.2.   PCG Advantages 
After reading all the above drawbacks of using PCG, you may wonder why you should use 

PCG after all? Do not rush to judgment on that. Good news is coming. In fact, there are 

several obvious beneficial reasons to use PCG, and to prefer it over the traditional, old-style, 

handcrafted content. Moreover, there exist some fun reasons to utilize PCG in your project.  

1.2.1   A Great Time-saver (most of the time) 
This is probably the most tempting reason to use PCG. Time is crucial, valuable and vital in 

real-time projects. With PCG you can create enormous amounts of content far faster than a 
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pure manual-created content. But that not always the case. Although this merit is most often 

very useful, time-saving in particular situations is merely a myth. Particularly, if your 

generator needs a lot of tweaking after completion. Consequently, you are wasting time 

instead of saving it. 

1.2.2   Provide a Unique Experience Each Time  
A great feature of PCG is its ability to give each user a completely unique experience. That is 

due to the unlimited space of varied content it can produce. A hand-crafted content will never 

be able to provide this infinite variety in the generated content. 

1.2.3   Reusability of Existing Code 
Once you build a generator, you can whenever it makes sense reuse it across completely 

different applications. If you decide to reuse an existing code, then all you need is some 

tweaking to the existing variables and attributes to get a content that suits properly another 

project. Thanks to the modular design of the generators, you can easily swap modules 

between different applications [1].  

When you implement big projects sequentially, code reusability is absolutely precious. 

1.2.4   Mirror our Humanity in Different Ways 
As a human being, we all believe in the legendary quote: “nothing comes from nothing”. 

PCG is no exception at all. Although a procedural content is produced algorithmically using 

computers, it depends originally on a human- designed content, even a tiny one. What the 

generator eventually creates is nothing more than a reflection of the creator creativity. In fact, 

the generated content is somehow or other a mirror that tells us about ourselves.  

1.2.5   Enforce a Predefined Set of Rules 
When you intend to build a generator, you can determine a set of rules that must be enforced 

across your generator. These rules guarantee connectivity between elements through the 

generated content. If your code is clean, bug-free and well-structured, then the chance is high 

that your predefined rules get applied properly in your generator. The main purpose of these 

rules is to let you direct the output of your generator the way you want.    

1.2.6   Generate an Infinite Content 
In fact, one of the most reasons to make PCG impressive is its ability to create an infinite 

output somehow. If you ask the most skillful designer to create the best content he can come 

up with, at some point there is certainly a limit to what he can do. PCG can, however, 

generate a content that is simply beyond the scope of our imagination.    
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1.2.7   Produce an Unpredictable and Enjoyable Output 
This feature is interesting because even the most-experienced designers will not be able to 

anticipate what exactly the generator will produce each time it runs. This might seem a 

drawback, particularly from a QA perspective. But for you, as the creator of the generator, it 

gives you a lot of excitement when you experiment your generator and enjoy the 

unpredictable content it generates. 

1.2.8   Provide Content that Feel Real to us 
One of the most prominent weaknesses of hand-crafted content is its lack of diversity. 

Usually such kind of content ends up with a lot of repetition one way or another. PCG, on the 

other hand, generates content that is far more varied and diverse. Procedural techniques are 

able to produce all kinds of lively objects such as weather systems, civilizations, floods, 

populations, and much more. What makes such contents great is that they appear natural to 

us. That is due to the fact many procedural techniques and approaches use patterns that are to 

a great extent analogous to the existing patterns in reality [1]. Later on, a lot of these 

techniques and approaches like random walks, L-Systems, cellular automata and others will 

be discussed in detail in this thesis.    

1.2.9   Simplify the Concept of Infinity 
Infinity is a weird word. We hear it a lot, but perceive it a bit. It is an abstract concept that is 

difficult to be grasped by humans. As mentioned above, procedural generators have the 

capability to come up with infinite content. Dealing with such content is actually a kind of 

pleasure. A good example would be the procedurally generated games which have an infinite 

space such as Minecraft [5], and No Man´s Sky [6]. The enjoyment you feel when you play 

these games comes mainly from exploring infinite worlds. PCG gives you a unique 

opportunity to experience and look closely at an infinite content. 
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Chapter 3          

Random Numbers 

1.   Pseudorandom Number Generators (PRNGs) 
Generating random numbers is actually pretty hard. The whole concept of how computers 

work is that they take an input, and apply some algorithm to it and provide the output of that 

process. There is no algorithm that will produce a truly random response because if we use 

the same input and the same algorithm again, we will eventually get the same output. The 

best we can do is to generate what we call pseudorandom numbers. This is where the 

connection between the input and the output is sufficiently unpredictable that it seems 

random [7]. However, at some level of inspection, that randomness will break down and a  

pattern will eventually appear. But there are some pretty solid algorithms for pseudorandom 

number generators, aka PRNGs. PRNGs are deterministic algorithms [8]. This is to say that 

you start with a seed value, which is used to calculate a new random number. This new 

random number becomes a seed for the next number. The new random number becomes 

again a new seed for the next number and so on (figure 1). Every time you start with a 

specific seed, you will get the same sequence of random numbers. Using different starting 

seed gives you different random sequence [7]. In other words, the pseudorandom number 

generator will always remember its output for each specific seed value. That is, whenever you 

provide the generator with a specific seed value, it will always generate exactly the same 

sequence of random values and with the same exact order. To exemplify this concept, let us 

say that you choose the initial seed to be 8, and the generator gives you the random sequence 

23,45,2,99,156 when you ask about the first five values from this sequence. Whenever you 

provide the generator again with the value 8 as starting seed for the generator, it will return 

the same previous sequence 23,45,2,99,156 and exactly in the same order. This also holds for 

all the remaining numbers in the sequence when the initial seed is 8. Once you change the 

initial seed value, the generator returns a different series of random numbers. This can be 

useful in applications where you want an unpredictable sequence, but you want to be able to 

repeat it whenever you need it again.  
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There are two important characteristics that should be taken into account when you analyze 

any PRNG [9]: 

1- Period: which represents how many random numbers the generator  

can generate before it starts repeating itself. Remember that because each number is 

generated from a seed, which is the previous random number, once you hit a repeat 

you will get stuck in a loop repeating the same series of numbers over and over. 

2- Distribution: which indicates how random are the generated numbers. If the number 

the generator generates tend to be more high than low, low than high, clump around  

certain values, avoid other values or form some kind of pattern, then the usefulness of 

the generators is minimized. 

                         

 

                                    Ppfdfsdfsdfsd 

                Seed                                     Random number 
                        Figure 1 – How PRNGs work 

A final concern is how easy to predict the sequence. This is extremely important for security 

applications that use PRNGs. There are many PRNGs algorithms available. In this section, I 

will start by demonstrating two simple PRNGS. The first one is Middle-Square 

method[MSM] and the second one is Linear Congruential generator[LCG]. It is worth to 

mention beforehand that these two algorithms are not the best out there, but because they are 

so simple, they are good to use for demonstration purposes. After that, another PRNG called 

Mersenne Twister[MT] will be demonstrated as well.    
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1.1   Middle Square Method[MSM]  
This algorithm is the simplest PRNGs, but practically it is inefficient. That it due to its very 

short period (we will experiment and prove that shortly). This algorithm was invented by 

John Van Neumann in 1949 [10], and according to him it can be described by the following 

steps:  

1- A seed value consists of a certain number of digits is used as an input (let us say the 

seed consists of only 4-digits). 

2-  The seed value gets squared. 

3-  At most the result will contain 8-digits. If it is less than that, the left digits are 

substituted by  0s to make sure that the result always includes 8-digits. 

4- The middle four digits represent the new seed value. 

5- Check the termination condition, and go to step 6 if it holds. Otherwise go to step 2.  

6- Terminate the algorithm. 

Implementation 

In practice, you do not need to write all this code (hard-coding) in order to use  this 

algorithm. What you can do, instead, is to use a library in JavaScript that contains a 

predefined function performs all this stuff in just a single line. That way is much more 

efficient in real world scenario. However, I have intentionally written this code here just for 

demonstration purposes. My aim is actually twofold : 

1- Examine how this method works if we ask it to generate a set of random numbers (10 

numbers for instance). For the sake of simplicity, assume that the seed consists of  

only 4-digits. We will run the algorithm using different seed values. 

2- Demonstrate how the period changes when the seed varies. In other words, how many 

numbers the generator can generate before it starts generating duplicates. Using 4-

digit number, we know that at most it is going to be 9999. Let us test this method for 

different initial seed values, and check the period for each value. 
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Code  

The main function that generates a pseudorandom number is: 

 
This function calls three different function to complete its task (steps 2 & 3 & 4). 

Step 2 

 
Step 3 

 
Step 4 

 
To calculate the period, another function should be used: 

 
This function calls another function: 
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Let us test this algorithm using  the following seed values (table 1): 
Initial seed Generated sequence Period 

1234 Figure 2.1 56 

2766 Figure 2.2 8 

9834 Figure 2.3 15 

2369 Figure 2.4 58 

7777 Figure 2.5 43 

7865 Figure 2.6 9 

4321 Figure 2.7 60 

1111 Figure 2.8 43 

Table 1 Different seed values for testing MSM 

 

 

 

                                                   
Figure 2.1 MSM-1-    Figure 2.2 MSM-2-      Figure 2.3 MSM-3-         Figure 2.4 MSM-4- 
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Figure 2.5 MSM-5-    Figure 2.6 MSM-6-     Figure 2.7 MSM-7-     Figure 2.8 MSM-8- 

 

Discussion 

Looking back at the periods the generator generated (table 1), it is very obvious that the 

generator was unable to create varied pseudorandom values for a long time. That is, it 

repeated the sequence after short number of iterations. At best, it could generate 60 different 

seeds (in our test). That considers to be a huge drawback of using this method, and therefore 

we can say that this PRNG is inefficient if our system needs a lot of different seed values. To 

wrap up this discussion, this method is simple and fast, and this what makes it tempting. But 

remember its unacceptable deficiency, and the flaw it can cause in your system.  

Think twice before making your decision! Remorse will get you nowhere! 

Let us have a look at another, more efficient, PRNG called Linear Congruential Generator.   
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1.2.   Linear Congruential Generator(LCG) 
This algorithm has been used as the default PRNG in some languages and systems [11]. For 

my part, I have used it in Java (java.util.Random). It is very simple to implement, and it is 

pretty fast. Its speed and simplicity make it far superior to the middle-squares method. But do 

not think that it is an optimal algorithm. In fact, it is far from perfect. It is completely 

unsuitable for any type of security uses [12].   

In addition to a seed value, this algorithm needs three other values in order to work properly. 

A multiplier, an increment and a modulus. These variables are usually called a, c, m. The 

algorithm works as follows: 

• Multiplies the current seed by the multiplier a. 

• Add the increment c to the previous multiplication.  

• Mod the result by the modulator m. 

That being said, the formula of this generator can be written as proposed in [13]:  

Seed = (a* seed + c) % m  
You may wonder about the values that should be used for those three parameters (a, c, m). 

These values should be selected carefully. There are certain criteria that should be followed 

in order to make good choices here. Poor choices turn the algorithm to be a useless PRNG, 

and good choices, on the other hand, turns it to be efficient [13].  

Implementation 

As mentioned above, there are pre-tested values for those parameters that guarantee good 

results. Let us try two sets of those values and see what we are going to get for each one. 

Each set of values affects the generated sequence the generator generates. You can certainly 

play around with all those values, and see how the generator behaves for different sets of 

values.  

The following values will be tested: 

Source Modulus (m) Multiplier (a) Increment (c) 

Numerical Recipes [14] 2^32 1664525 1013904223 

Java.util.Random 2^48 25214903917 11 

Table 2  Two sets of well-known values for LCG parameters 
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Code 

The main function to generate the seed value is: 

 
This function calls another two functions. The first one is just to define the constant that are 

listed in table 2 : 

 
The other function applies the equation mentioned above in order to calculate the seed value: 

 
To calculate the period, this function is used:  

 
This function calls another function: 
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Running this algorithm, it generates the following sequence of numbers: 

 
Figure 3.1  Generated sequence using Numerical Recipes values 

 
Figure 3.2  Generated sequence using Java.util.Random values 

Discussion 

It is worth to mention that I ran this algorithm for one million iteration without getting any 

duplicates. That is far better than the middle-square method where the duplicates started to 

appear even before 100 iteration. In fact, this is a huge improvement and nobody can deny 

that. But wait! We still have a long way to go.   
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1.3.   Mersenne Twister[MT] 
This algorithm was found in 1997 by both Makoto Matsumoto and Takuji Nishimura [15]. It 

is one of the most popular high-quality PRNGs. It is the default generator in many languages. 

Even if it is not the default in your favorite programming language, you can easily find 

libraries that implement it. To test the quality of PRNGs, there are well-known tests called 

the diehard tests [16]. This algorithm passes all of them. It is far superior to the previously 

discussed PRNGs, but remember the one constant trade-off in any algorithm. The more 

quality the algorithm is, the more complex it becomes as well. Accordingly, this algorithm 

uses more memory and is slower than the previous PRNGs.  

The way this algorithm works is somewhat complicated, and it contains complex operations 

and equations. Therefore, I have avoided writing those steps here. However, I have 

implemented every single step in my code (see implementation underneath). If you are 

curious to know how this algorithm works behind the scene, please have a look at [15]. 

Implementation 

My implementation is completely built on the steps (five steps), and constants values that are 

presented at [15]. More precisely, my code is an implementation to what is called  MT 

11213B as entitled in [15].  

Code 

First of all, we define 6-constants that will be used later on in this algorithm. The name of 

these constants seems somewhat weird. They are called tempering parameters [17].  

 
Steps 2 & 3 are implemented using the following function: 
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And this function is for steps 4 & 5:  

 
The complete code can be found in the appendix. 

Running the generator will produce the following sequence: 

 
Figure 4  Generated sequence using Mersenne Twister 11213B 

Discussion 

Testing this algorithm showed that it has extremely large period even better than LCG. But it 

is much more complicated. From the above experiments, it is obvious that MT generated both 

positive and negative numbers, while both MSM and LCG generated only positive numbers. 
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2.   Normal Probability Distribution  
It was discovered by Carl Friedrich Gauss in 1809 [18]. In many cases, generating a normal 

distribution of numbers instead of linear one is very useful. This way, we end up with 

something resembles a bell. Therefore, it is commonly called bell curve. This curve can be 

useful to generate many types of content. It approximates the variety of properties for many 

things in the real-world. The majority of these properties lie around the middle values, while 

the highest and lowest values occur rarely. There are two main terms that describes the 

normal distribution. The first one is the mean, which represents the value at the peak of the 

curve. The second term is the standard deviation which indicates how “wide” the curve is [1]. 

Implementation 

To demonstrate this concept, I have fulfilled four different experiments (table 3). At the first 

one, the normal distribution has been drawn for the average of two random numbers. To 

improve the resulted curve a little bit, another random number has been added. The resulted 

curve was not satisfactory. Therefore, two more experiments were done. The first one using 

10 numbers, and lastly with 100 numbers. A much better curve has eventually been obtained  

Code 

The way I implement this algorithm can be described by the following steps: 

1. Create an array and fill it initially with zeros. 

 
Each placeholder in the array represents the probability of the corresponding index.   

2. Generate a set of random numbers between 0 and 100, and add them together. 

 
3. Calculate the average of the generated numbers. Then increase by one the 

corresponding placeholder in the array. 
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The algorithm was tested using the following different values (table 3). 
Number of random numbers to be averaged Result 

2 Figure 5.1 

3 Figure 5.2 

10 Figure 5.3 

100 Figure 5.4 

Table 3  Tested values for creating different Bell curves 

       
Figure 5.1 Bell curve for 2-random numbers     Figure 5.2 Bell curve for 3-random numbers 

  

                 
Figure 5.3 Bell curve for10-random numbers  Figure 5.4 Bell curve for100-random numbers 

Discussion 

It is very obvious from the previous experiments that for only two random numbers (figure 

5.1), the curve is somewhat chaotic. To get a curve similar to bell curve, we have to average 

more random numbers. Hopefully you can see that we got a better bell curve shape as we 

increased the random numbers. In a nutshell, the more random numbers you use, the more 

like-bell curve shape you get. 
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3.   Weighted Random  
The concept of weighted random looks familiar and simple. It introduced  by Fisher in 1935 

and Rao 1965 [19]. It is very beneficial in a plenty of various applications. A weighted 

random function is a way to define several random outcomes, and then choose one of those 

randomly in a way where some outcomes are more likely to occur than others. This can be 

very useful in a game, for instance, where at a certain point of the game a monster will 

appear. Let us say that your game has four different types of monsters. Those monsters are 

troll, zombie, vampire and ghost. Your purpose is to keep the process random, but mostly you 

want trolls with the occasional zombie or vampire and every once in a long while a rare ghost 

will appear. To do that, you have to use a weighted random function where you prioritize 

some monsters over others. In this example, you might give the trolls 50%, both the zombie 

and the vampire 22.5% and the ghost only 5%. Weighted random can be used whenever you 

have some cases, and you want to choose among them in a controllable manner, but without 

losing the sense of randomness. In other words, you give higher priority to what you think 

more important, and lower priority to what you think less important. 

Implementation 

There are unlimited number of applications where this concept can be applied. For the sake of 

simplicity, and to keep my code as short as possible I have chosen an application called coin 

flipper and implemented it to demonstrate how this concept can be used in practice. The coin 

flipper system has only two cases. The idea of this application is very simple. You have a 

coin, and you want to flip it a specific number of times (let us say 100 times).  

Our space (the canvas) will be divided into two separate regions. The right side represent 

number of  heads, while the left side represents the number of  tails. 

Experiment 1 

Let us assume firstly that both cases (heads and tails in our example) are equally important. 

This means that both of them have the same priority. In other words, they have the same 

chance to be chosen. Since the process is still random, and not deterministic, you will not 

necessarily get 50 heads and 50 tails if you flip the coin 100 times. What you will actually get 

is roughly equal amount of coins on each side.      
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Code 

The code is straightforward. First of all, the space (canvas in our implementation) is divided 

vertically into two equal parts in order to display the number of tails on one side, and the 

number of heads on the other side. 

 
After that, the priority for either heads or tails should be determined. 

 
This way we set the priority for both heads and tails to be roughly 0.5.  

Then, we generate randomly the coordinate (x , y) of a pixel (point) inside the left-hand side 

of the canvas where the tails will be drawn.  

 
We check then to see if the current result is a tail, we draw a circle inside the left-hand side. 

Otherwise, the circle is drawn inside the right-hand side. 

So, whenever it is not a tail, we have to move to the right side to draw a head. 

 
Lastly, no matter whether we are on the left-side or on the right-side, at the end of the day, a 

circle must be drawn. 
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Running this code, we get the following distribution: 

 
Figure 6.1  Weighted random for two equally-important cases 

Experiment 2 

Let us assume that the tails are much more important than the heads. Therefore, you prioritize 

it by setting its chance of appearing to 80%, and only 20% to the heads. Running the code 

with the new values will give the following result:   

 
Figure 6.2  Weighted random for two cases with different importance 

Discussion 

In the previous examples, we experimented only two cases (heads/tails), but in fact this 

principle holds no matter how many cases exist in your application. The idea is still 

completely valid, and you can easily expand its uses to meet the requirements of your system. 

How utilitarian weighted random is! 
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Chapter 4 

Perlin Noise 
Thanks to Ken Perlin for his tremendous contribution when he discovered Perlin noise in 

1983 [20]. At its core, Perlin noise produces smooth sequence of pseudo-random numbers. 

Smoothness, in this context, means that the random number you might pick at any point in 

time is related to the random number you might pick later on or a moment before. On the 

other hand, in pure random algorithms, those numbers are not related at all. That is the core 

difference. Random noise is just a set of random values that has no relationship to each other. 

Perlin noise, however, also provides randomness, but the values are close to each other and 

have a relationship, which can be seen as a smooth transition between the points. Therefore, 

we mentioned above that  Perlin noise provide a smooth randomness. When generating 

textures and terrains from scratch, you normally want to apply some kind of randomness. 

However, using a completely random numbers to generate a texture makes it looks chaotic 

and extremely random. Instead, we use a noise function such as Perlin noise function where 

the values are not totally random, but they have some relationship to each other. That allows 

changes to occur gradually. This kind of noise is referred to usually as pseudo random noise.  

Perlin noise has become a common tool that is used to generate heightmaps in two/three 

dimensional spaces, although it can be used for an arbitrary number of dimensions. Typically, 

textures consist of several layers of noise. Each layer has its own frequency/amplitude values. 

Usually, the amplitude is high and the frequency is low at the first layer. Additional layers 

have lower amplitude, but higher frequency. These layers have two different impacts. A small 

effect on the overall structural height due to its lower amplitude. An important effect by 

adding interesting details to the existing valleys and peaks [1] 

Note: 

Perlin noise function will be used in chapter 10 to build an elegant infinite terrain.  
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Implementation: 

My purpose is to test Perlin noise in two-dimensional space. What I am going to do here is to 

color every single pixel inside the canvas with a grayscale value according to the 

corresponding Perlin noise value at that particular pixel.  

 

Code 

In JavaScript, there exist a function called noise() that returns a value between 0.0 and 1.0 

represent the Perlin noise value at given coordinates. 

The idea is simple. For any pixel inside the canvas, do the following three steps: 

• Find its location. 

 
• Calculate its brightness using the built-in noise() function. 

 
• Color it according to the value from the previous step. 

 
 

Let us experiment Perlin noise for different increment values. 
Increment Result 

5 Figure 7.1 

0.5 Figure 7.2 

0.05 Figure 7.3 

0.005 Figure 7.4 

Table 4  Different increment values for Perlin noise 



 
 

 39 

     
        Figure 7.1  Perlin noise -1-         Figure 7.2  Perlin noise -2- 

 

 

     
     Figure 7.3  Perlin noise -3-         Figure 7.4  Perlin noise -4- 
   
Discussion 

By looking at the previous figures, we can easily infer that: 

• As long as the increment decrease, the changes from one pixel to another decrease as 

well. Therefore, we end up with an almost gray image (figure 7.4).  

• Looking closer at (figure 7.4), the image appears cloudy because pixels are similar to 

the surrounding pixels. It is very much like blurring an image. Consequently, the 

fewer changes there are, the more blurring effect there is. 
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Chapter 5 

Filling space 

1.   Random Walks 
This term was introduced for the first time in 1905 by Karl Pearson [21]. Random walks are 

ubiquitous in applications of mathematics. They are used to modeling plenty of real-world 

phenomena in which the movement of an object can be described in a sequence of steps. The 

direction of each step is chosen randomly [22], and is determined probabilistically. To 

simplify this concept, and demonstrate it in an interesting manner, let us assume that there is 

a drunk person stumbling around. His movement is a kind of walk haphazardly, and does not 

really have a predictable pattern of which way he will go. Random walks essentially emulate 

exactly this behavior. Let us say that the drunk person is walking on a two-dimensional grid. 

Then, he can move within certain number of directions (figure 8). 

 

 

 

 
                         Figure 8   A drunk person moves in 2D space 

Our task is to track how the drunk person moves over a long period of time. He would 

probably cross his own path sometimes. He might stumble back and forth. If we track 

everywhere that he would go, we most probably come up eventually with a pattern similar to 

a map. That is essentially what we are going to get when we perform a random walk. We just 

imagine that there is an object who just walks around the map. The object randomly picks a 

direction, and keep doing that over and over a specific number of times according to our 

application. This technique, as all other techniques, has advantages and disadvantages. 

Its advantages: 

• It is fast and simple to implement. 

•  It is a powerful tool if our purpose is just to create maps haphazardly. 

Its main drawback: 

• It is not the best choice if we want to generate maps that follow specific patterns. In 

such cases, we need more advanced techniques like cellular automata which will be 

discussed in detail later on in this chapter.   
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Random walks are not restricted to movement in two-dimensional space. It can be applied in 

any dimension. For example, If the random walks occur in two-dimensional integer grid, it 

starts somewhere on the grid. Then the next movement has equal probability to take place in 

one of the four available directions; up, down, left and right. In general, if the random walks 

occur in a d dimensions space, there will be 2*d directions to move on. Since any movement 

is equally likely to be in any direction, there is a 1/2d chance for the movement to occur in a 

specific direction.  

Implementation: 

Let us implement a random walk in 2D space. We will start with a random point that has (x ,  

y) coordinates, and at each step there are four different possibilities for the next movement. 

Each time one direction will be randomly chosen: 

• Moving to the left  

• Moving to the right  

• Moving up  

• Moving down 

Code 

the code is very straightforward. Firstly, a random number between 0-3 is generated. 

Secondly, a direction is chosen depending on the previously generated value.   

 
The step length can be chosen according to your specific need. In the above 

implementation, the step length is 2. You may have to modify the step length 

many times in order to end up with the best possible value that suits your 

application.  
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Running this code for roughly two-minutes generates the following map. 

 
                                             Figure 9.1  Random walk in 2D 

Suggested-improvement (Modified version): 

We all know that a vector has a length and a direction. Instead of having separate values for 

both x and y, we will use a vector that can point to any direction in the space, and has a 

variant length. This way, the random walks can be at happened at any given direction, and the 

length of the vector (step size) could change between different movements. This modification 

enhances the classical random walks, and make makes this version of random walks much 

more flexible. The reason is that the movement is no longer limited to occur in only one of 

the four obligatory directions. Previously, the probability of moving in any direction was 

exactly the same for all directions (25% for each direction in 2D space). But now, the 

probabilities will vary and the random walks do not have to be equal for each move. Some 

steps can be longer than others. Therefore, the probability of the step size will vary as well.  

Code 

The main difference compared to the previous code is that we will use vectors instead of 

points. Otherwise, the core idea is still exactly the same. That is, every movement occurs 

according to a probability. 

We generate a random number between 0 and 1. If its value is less than 0.0125, then increase 

the step value. Otherwise, move normally without any step amplification.  
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This function calls another function: 

 
Running the improved version generates the following pattern  

 
                       Figure 9.2 Improved version of random walk in 2D using vectors 

 

Running it again, the random walker will follow a completely different path. 

 
                     Figure 9.3 Improved version of random walk in 2D using vectors 
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2.   Diffusion Limited Aggregation (DLA) 
This algorithm proposed by both T.A Witten Jr. and L.M. Sander in 1981 [23]. The idea of 

this algorithm is quite simple. It is strongly related to the concept of random walks that we 

discussed earlier. At its core, it represents an object that grows gradually over time. It starts 

by only one particle, and then becomes larger and larger due to the process of diffusion and 

aggregation of other particles in the space. How this algorithm works can be described by the 

following steps [24]: 

1. Locate a particle (point) somewhere in a 2D space. 

2. Locate a set of random walkers (other points) randomly in the space. 

3. Fire a random walker in the space. 

4. Continuously, the random walker moves randomly until it hits the previously located 

particle /particles. 

5. Attach the particles together. 

6.  Check the termination condition 

6.1. If it holds, Go to step 7. 

6.2. Otherwise, Go to step 3. 

     7.  Terminate the execution. 

This process repeats over and over again as long as there are random walkers waiting to be 

fired in the space. The path each random walker follows to reach the particle represents a part 

of the final generated content. By combining all those paths, we get the pattern this algorithm 

creates [24].  

Implementation 

This algorithm will be tested in a 2D space. The code is fairly large, and therefore I will only 

mention to the most important parts of it. However, the whole code can be found in the 

appendix.  

There are some important parameters that affects the performance of the algorithm:  

• How many walkers in the system? 

• The radius of each particle. 

• The collision criterion.  
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Code 

 

 
Each walker inside this array is created randomly: 

 

 
This function calls another function that checks if a collision occurs between the current 

walker and the previously located particles. 
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Experiment 1 

The collision criterion holds when the distance between the moving walker and any other 

particle in the space equals three times the radius of any particle. 

The algorithms took roughly 6 minutes to generate the following pattern (figure 10.1).  

 
Figure 10.1  Generated content using DLA -1- 

 

Experiment 2 

The collision criterion holds when the distance between the moving walker and any other 

particle in the space equals twice the radius of any particle. 

The algorithms took over 15 minutes to generate the pattern (figure 10.2).   

 
Figure 10.2  Generated content using DLA -2- 
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Discussion 

The experiments showed that: 

• Each time the algorithm run, a completely different content will be generated. The 

reason for that is due to the random, unpredictable behavior for each random walker. 

A random walker follows a different path each time, and therefore this algorithm 

generates a different pattern.  

• The values of the parameters mentioned above affected the performance of the 

algorithm hugely. A simple modification  in any parameter will dramatically increase 

/ decrease the performance. For example, a little change in the termination criterion as 

mentioned in the experiments above decreased the performance in the second 

algorithm by roughly 3-times. As a result, changing the value of any parameter should 

be done very carefully. 
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3.   Cellular Automata (CA)  
This concept was originally discovered by Stanislaw Ulam and Jon von Neumann in the 

1940s [25]. CA are algorithmic models that use computation to iterate on very simple rules to 

try to simulate complex phenomena [26]. CA can simulate a variety of real-world systems 

including biological and chemical ones. 

There are two important principles related to CA as proposed in [26].  

1- Spatial structure: a typical example is a 2D integer grid structure. Every cell 

represents a location where an agent representing an individual is settled. You can 

think of this in a very abstract and simplified model of how people live in a city for 

example. A cell represents the place of a house or an apartment. Each cell has 

neighbors on each side. 

2- Local interaction: means that individuals can only interact with others in a close 

distance around them. The way you model the neighborhood can be used to express 

how local or global the interaction your model is.  

To model what happens in interaction in a cellular automaton, there are two basic principles 

[27]: 

1- Agents in the cells have a state. The state represents, for example, their opinions, their 

ethnicities, etc...   

2- States can change. Agents can change their states depending on their current state and 

the state of their neighbors as well. 

Time is discrete in cellular automata models [28]. That is, time moves on in steps. We 

distinguish two important types of state change dynamics. 

• Influence dynamics: the agents do not change their locations, but they change the 

state. For example, you may change your opinion depending on the opinion of the 

majority of your neighbors.  

• Migration dynamics: the agent changes their locations. For example, the agent may 

move into another place in the worlds depending on the current state of the 

neighborhoods (if the agent has conflicts with the neighbors for instance).   

Implementation 

Due to its fame in the world of cellular automata, the Game of live has been chosen to be 

implemented in this section. This cellular automaton was invented in 1970 by John Horton 

Conway [29]. The Game of life exists in two dimensions. There are a number of  generations 

in this game, and to move from one generation to another, you should run some computations 

on the grid’s  cells. Each state could be either 0 or 1. At each generation we evaluate the state 
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of the cells one by one and get a new state based on the previous state. In this cellular 

automaton, the neighborhoods for each cell in the grid are the eight cells surrounding it. This 

means that for each cell, we evaluate all its neighbors to determine whether it should stay as a 

zero or it should turn into new state; becomes one. 

The reason it is called the Game of the life is because its rules for the movement from one 

generation to another resembles some type of biological process. If we think about 

population, a cell that is surrounded by dead neighbors cannot stay alive. On the other hand, a 

cell that is surrounded by neighbors that are alive, can come to live or stay alive. Finally, a 

cell that is surrounded by too many neighbors cannot stay alive due to overpopulation.  

The ruleset for this cellular automaton can be described by Conways genetic laws [29]: 

• Reproduction phase: a dead cell (its value 0) becomes alive if and only if it has 

three live neighbors.  

• Survival phase: A live cell survives and moves to the next generation if and only if 

it has either two or three neighbors. 

• Death phase: A live cell (its value 1) dies whether it has less than two or greater 

than three live neighbors.  

Keep in mind that all phases take place concurrently at each generation. The way the game of 

life works can be described as follows: 

1. Create a checkerboard (2D grid). 

2. Fill the checkerboard with random values (combination of zeros or ones). 

• Zero represents a dead cell. 

• One represents a live cell. 

3. For each cell: 

• Count the number of its live neighbors. 

• Determine its new state in the next generation using Conway´s genetic laws. 

4. At each generation, color the survival cells with white to distinguish them from other 

cell. 
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Code 

The following code is a step by step implementation of the steps above. 

Step 1: 

 
Step 2: 

 
The number of neighbors for each cell depends on its location at the checkerboard. For 

example, a cell at the corner has only three neighbors, while the cell in the center has eight 

neighbors. Therefore, we should find the number of neighbors for each cell before applying 

Conways genetic rules. 

Step 3: 
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Step 4: 

 
Running this code generates the following pattern: 

 
   Figure 11  The Game of Life 

Discussion 

It is worth mentioning that in order to apply this algorithm, it does not necessitate a perfect 

grid of cells. I have used a 2D grid of cells just for demonstration purposes. It could be, for 

instance, a bunch of tiled triangles, or arbitrary polygons. But keep in your mind, that this 

change has a huge impact on the rulesets because it governs how many neighbors each cell is 

going to have. For example, if each cell has a hexagon shape, then it has six neighbors instead 

of 8 and so on.   
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Chapter 6  

Sequence Generation 
1.   Markov Chains 
This concept introduced for the first time by Andrey Markov in 1906 [30]. Markov chains are 

widely used in different kinds of systems. They can be used, among other things, in financial 

systems, scientific data, weather patterns, predicting earthquakes based on some set of sensor 

readings, and much more. Each Markov chain consists of multiple states. Each state has a 

certain probability of either moving on to a new state, or looping back onto itself, starting the 

process over. What Markov chains actually do is analyzing a sequence of states, and then 

generate outcomes based on that sequence. For the sake of simplicity, think of those states as 

the different states of a baby; playing, eating and crying. 
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                                                                  0.4 
                               Figure 12.1   Markov chain for three states 

Imagine that the baby can only be in one of these three states at a time. What really matters is 

the probability of moving between these states. Let us say that when the baby plays, there is a 

chance of 30% to cry if he does not like what he plays with or if he needs something from his 

mother for example. On the contrary of that, the chance to move from crying state to playing 

state is 40%. That is reasonable because whenever the baby cries, there is a high chance that 

his mother plays with him or gives him a toy to play with. The probability to move from 

playing state to eating state is not too high because when the baby plays, he does not ask for 

Play Cry 

Eat 
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food unless he is hungry. Therefore, a 10% is reasonable. Each state has an internal transition 

where it moves to itself. Let us say that if the baby plays, then the likelihood to continue 

playing without crying or asking for food is 60%. Likewise, we can analyze the likelihood 

between all other states and come up with the likelihood for each possible transition(table 5). 

State Playing Eating Crying 

Playing 60% 10% 30% 

Eating 40% 30% 30% 

Crying 40% 50% 10% 

Table 5   Markov chain likelihoods for three states 

The whole chain can be represented as a graph, and each state as a node belong to that graph. 

The transitions between states represent the edges in the graph. The weight on each edge 

represents the probability of the corresponding transition [31]. How Markov chains are 

generated, can be described by the following steps: 

1. Start at a particular node. 

2. The node´s value is considered as the first value of the sequence. 

3. Choose the next node randomly from the nodes that branches from the current node. 

4.  The new node´s value is considered as a new value in the sequence. 

5. If the termination condition does not hold, Go to step 3. Otherwise, Go to step 6. 

6. Terminate the process. 

The termination criterion depends entirely on the application. For example, if our purpose is 

to generate a chain of length equals to 10, then the termination condition will be a specific 

length of the sequence (in this case length = 10). 

Implementation 

In order to examine Markov chains in practice, let us implement an interesting application 

that uses Markov chains. Imagine the following scenario. Your wife gives birth, and you are 

hesitant which name you should opt for your darling newborn. Do not worry, Markov chains 

can be certainly of help to you. The purpose of this application is to procedurally generate a 

text (a name for your baby in our case).  

Input: A set of random names (50 names in our implementation).  

Output: The generator should generate10 different names, so you can choose one as a name 

to your baby. If you are not satisfied with the generated names, take it easy, and run the 

generator again. Each time you run the generator, you will get a new set of names. How 

flexible our generator is!   

Before implementing this application, let us have a quick look at how a text can be generated 

using Markov Chains. 
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Text Generation 
Generating a text using Markov chains is very  popular and it is used in many applications. 

For example, you can use it to generate a title for your new book, or a poetry or music, and 

much more. Markov chains can be implemented in different ways. However, the core idea of 

any implementation is still exactly the same. Generally speaking, any implementation will 

contain at least the following steps somehow or another: 

• Read input data, and split it into a big array of separate words. 

• For each word (state), find the probability of a list of words that comes after/before it 

(possible transitions). This step may hugely vary from an implementation to another. 

You may only interest in the words that come after a specific word. Other developer 

may prefer to check the words before a given word, and so on. Another factor that 

affects the final result is how many words you are interested in after/before a given 

word. This step is usually referred to as building a Markov chains dictionary.  

• Using the previously built dictionary, generate the next word (state) in the final chain 

as long as the termination condition has not held yet. 

Remember that the more words in your input data are, the better results you get. 

For the sake of simplicity, let us say that our input data contains only 10 names. Let us apply 

the previous steps and see what we will get. 

Input: [Alex, Peter, Kevin, Alex, David, Tim, Peter, Alex, Kevin, Tim] 

The next step is to represent the probability of each state. We start by creating a state for each 

word, and then assign it with its transition probability.  
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               Figure 12.2   Markov Chain for five states. 

Alex 

Tim 

Peter 

David 
Kevin 



 
 

 55 

The point of this example is just to demonstrate how we can build the Markov chain using text. 

Looking at the previous graph, we can predict that whenever the word Alex occurs in the 

chain, the likelihood for any of the following states (Peter, Kevin, David) is 33.33% to come 

after it. Likewise, whenever the state David occurs, it will always be followed by the state 

Tim. We analyze all other states in  a similar manner.     

 Code 

The way I implement this task is by creating a class called MarkovChain. In the constructor, 

the following are done: 

1. Create an empty dictionary. 

2. Split the input data into an array of individual names. 

 
3.  The next step is building Markov dictionary: 

 
Lastly, a function that generate next name depending on the probabilities inside the 

dictionary. 

 
There are some other utility functions in my implementation. You can find the complete code 

in the appendix.  
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Running this generator generates the following sequence:   

 
Figure 12.3   Generation of 10 random names using Markov chains 

Running it again will generate another list of names, and so on: 

 
Figure 12.4   Generation of 10 random names using Markov chains 
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2.   Fractals 
This term introduced for the first time in 1975 by Benoit Mandelbrot [32]. In general, all 

shapes can be categorized into two main sub categorizes: Simple shapes and complex shapes. 

The former contains all kinds of well-known simple shapes such as a triangle, a rectangle, a 

circle, oval and so on. The latter contains any compound shapes that are made up of two or 

more simple shapes. Any car is can be considered as a complex shape. It has four circular 

tires, the mirrors have different shape, the chassis has another different shape and so on. In 

regards to fractals, a fractal is nothing more than a special kind of complex shapes. What 

make a fractal shape stands out, is its special structure that comprises sub-shapes identical to 

the main shape. This kind of symmetry is called self-similarity. To be more precise, the sub-

shapes do not need to be completely identical to form a fractal, but the similarity to a great 

extent is very obvious. The most important aspect of fractals is that they are infinite [33], at 

least from a theoretical point of view. Practically, the recursive loop of creating sub-shapes of 

the same fractal should be terminated somehow or another at some point. In other words, we 

have to limit how many times the recursion should be performed.  

One of the most prominent fractal patterns is Sierpinski triangle which is named after 

Waclaw Sierpinski [34]. This pattern starts with one big equilateral triangle. At each iteration, 

the triangle is subdivided into smaller equilateral triangles, and the process goes over and 

over again until a predefined termination condition holds.  

There exist seven different common ways to construct this pattern [35].  

1. Removing triangles. 

2. Shrinking and duplication. 

3. Chaos game. 

4. Arrowhead construction of Sierpinski gasket. 

5. Cellular automata. 

6. Pascal´s triangle. 

7. Towers of Hanoi. 

The method I have chosen to implement this pattern is chaos game. You may wonder why I 

have particularly chosen this method. My answer is just because this method is the simplest 

one with regard to coding, in my humble opinion.  
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2.1 Chaos Game 
This method introduced by Michael Barnsley [36]. The way this method works can be 

described by the following steps [37]: 

1. Choose any three points in the space (canvas in our case) to constitute an equilateral 

triangle. 

2. Choose randomly any point inside the previous triangle. 

3. The chosen point is considered to be the current position in the space. 

4.  Choose randomly any one of the three vertex points (from step 1). 

5. Calculate half the distance between the current position and the chosen point in step 4. 

6. Move to the new position, and plot it. 

7. Check the termination condition: 

7.1  If you are done, Go to step 8. 

7.2  Otherwise, go to step 3 again. 

8. Terminate the process.  

Implementation 

My implementation is very straightforward. It is just coding the previous steps one by one. 

Code 

Firstly, set up the plane(canvas in my implementation) to be ready for drawing . 

 
Then, step 1: 
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After that, step 2: 

 
Then step 4 & 5 : 

 
Finally, check the termination condition (step 7). 

 
The complete code can be certainly found in the appendix. 

Let us run this algorithm for different numbers of iterations (table 6). 
Number of iterations Result 

5 Figure 13.1 

50 Figure 13.2 

500 Figure 13.3 

5000 Figure 13.4 

Table 6  Different number of iterations for Chaos Game 

   
Figure 13.1 Sierpinski triangle -1-  Figure 13.2 Sierpinski triangle -2- 
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Figure 13.3 Sierpinski triangle -3- 

 

 

 

 
Figure 13.4 Sierpinski triangle -4- 

Discussion 

For a few iterations, we ended up with a figure that had only a few points distributed 

randomly inside the main triangle. In fact, that seems a sort of chaos.  

For 500 iterations, the pattern became clearer (figure 13.3). It is still, however, not totally 

unmistakable. In order to get a satisfied result, a huge number of iterations should be 

performed (figure 13.4). The last experiment executed for 5000 iterations. 

According to the huge number of experiments I have done on this method, it is worth to 

mention that interestingly enough :  

• The order of the vertices does not matter at all as long as they are chosen randomly 

and with equal probability. 
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2.2.   Space Colonization Algorithm[SCA] 
This algorithm is all about colonizing a two-dimensional space of leaves in order to build a 

tree iteratively. It starts with a collection of attraction points represents the leaves of the tree, 

and one or more tree nodes.   

Let     D1: the distance between a tree node and an attraction point. 

 D2: influence distance. 

 D3: kill distance. 

There are two rules govern how this algorithm works [38]: 

1- An attraction point attracts a tree node if: D1 < D2. 

2- An attraction point is removed if: D1< D3.  

In other words, for any attraction point(leaf) to be relevant, the following criterion should be 

true: D3 < D1 < D2. 

The way this algorithm works can be described as follows [38]: 

1- The tree structure contains initially random number of tree nodes and attraction 

points.  

2- Start a new iteration, and do the following:  

3- Each attraction point is associated with the closest tree node if the rule-1- holds.  

4- The normalized vectors from each node to its attraction point are found. 

5- The vectors are added and their sum is normalized again causing new nodes to be 

added to the tree.  

6- Check rule-1- and rule-2- each time new tree nodes are added. 

7- Construct the tree again depending on the results of step 6. 

8- Go to step 2. 

Implementation    

This algorithm will be tested for different numbers of leaves (table 7).  

Code   

To end up with a tree, two things must be done firstly: 

1. Create a number of attraction points (leaves) inside the space (the canvas in our case). 
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2. No tree can ever be existed without a root. Therefore, the root of should be created. 

 
At this point, the space contains both leaves and root. Let us begin by checking if the root 

hopefully locates in a good position to be attracted by one of the attraction points. To do that, 

the distance D1 should be calculated beforehand: 

 
Then we check if the rule-1- holds for the root: 

 
This function calls another two functions. The first one when the rule-1- holds. The other one  

when the rule-1- does not hold. Remember, if the rule holds, the root will be attracted. 

 
If that is not the case, do not give up. Discard the root, create a new segment and continue 

your adventure. The new segment becomes a new root, and the process goes on over and over 

again until a root gets attracted. That is reasonable because it does not make sense to build the 

body of a tree before getting the root in place.  

 



 
 

 63 

 
The next step is to expand the tree. First of all, we have to find the closest branch to each leaf, 

and check if it locates within the range [D2, D3]. In other words, we have to check the rules 

1&2 for every single attraction point inside the canvas. Let us start by rule-2- to figure out if 

an attraction point is done. 

 
If that is the case, this particular attraction point should be removed because it is no longer 

has a role in the algorithm. 

 
Then we check the rule-1-. If it holds, there exists  closest segment for this particular attraction 

point.  Assume that v1: closest segment, v2: normalized vector. Then v3= v1+v2. 

        V3 

                                                                   Attraction point 

                                                                             V2 

                                                                  V1          V3 

                          
Whenever exists closest segment, the steps 4 & 5 should be applied. A normalized vector 

should be found and added to the closest segment vector in order to constitute the new vector 

v3 that is closer to the attraction point. The normalized vector is found by simply subtracting 

the current position of the attraction point from the position of the closest segment. 
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When everything is done, the tree should be drawn on the canvas: 

 
The algorithm was tested for the values listed in table 7: 

D2 D3 Number of leaves Result 

150 10 80 14.1 

150 10 800 14.2 

150 10 8000 14.3 

150 10 80000 14.4 

Table 7   Tested values used in SCA 

 

 

         
Figure 14.1  Generated tree SCA-1-                     Figure 14.2  Generated tree SCA-2- 
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Figure 14.3  Generated tree SCA-3-                       Figure 14.4  Generated tree SCA-4- 

 

Discussion 

The experiments showed that  

1- The density of the tree increases when the kill distance decreases. 

2- The density of the tree increases when the number of leaves increases. 

3- If any two attraction points are by coincidence located at the same distance from the 

any tree node, then both points will be ignored. That is, they exist in the space alone 

(figure 14.2).  
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2.3.   Lindenmayer Systems (L-Systems) 
L-Systems was named after Aristid Lindenmayer when he introduced this concept for the 

first time by in 1968 [39]. L-System is used to generate fractal patterns. This topic is broad in 

the sense that there are tons of L-systems that you can make. We can describe it as a 

recursive way of generating sentences over and over using string replacement. L-system at its 

core is really a grammar. It is rewriting system. It is a way of looking at strings of characters, 

and rewriting those strings of characters again in a recursive way. 

An L-system has [40] : 

• An alphabet represents the allowed characters in this particular L-system.  

• An axiom represents the beginning of a particular L-system.  

• A set of rules represents the production rules. We can have one or more rules. 

Implementation 

Two different systems will be implemented in this section. The first one is a simple and 

classic example. The second one is interesting and challenging at the same time.  

Experiment 1 

Let us experiment first L-system by using two simple rules. The choice of rules is completely 

random. Any change in the rules will affect the generated content. For example, if we start by 

the following two randomly chosen rules:  

• Alphabet: A and B. 

• Axiom is A. 

• Ruleset: 

1-  A                  BABA.  

2- B                    ABBBA. 

Running this system for 3-generations generates the following sentences: 

 
Figure 15.1   Generated sentences using simple L-System 

Let us make a tiny change in the first rule by just changing the first letter to becomes A 

instead of B. Everything else remains the same.  
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Ruleset : 

A                    AABA.  

B                    ABBBA. 

The new generated sentence is:

 
Figure 15.2  Generated sentences using simple L-System 

 

Unmistakably, the two set of sentences are entirely different.  

Code 

The coding process can be divided into three main parts. 

Firstly, generating the rules: 

 
Then, generating a number of sentences depending on the previously built rules: 
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Finally, checking the termination condition, and display the generated sentences so far. 

 
The generated sentences can be interpreted in unlimited number of ways. It depends totally 

on your application. For example, you may want to read the generated sentences as a poetry. 

Or perhaps you would like to use it to be a song, or you tie it to graphics and so on. It is all up 

to you. After implementing the simplest form of L-system, let us go one step further and 

implement something more interesting.  

Experiment 2 

In the first implementation, the alphabet included only two characters A and B. Let us expand 

it a little bit to contain five characters F, +, -, [, ]. Likewise, let us replace the simple rules 

with a complex one. So, our new L-system looks like: 

Alphabet: F + - [ ] 

Axiom: F 

Ruleset: F                    FF+[+F-F-F]-[-F+F+F]  

Again, whenever you make any change in the ruleset, the generated content will vary 

accordingly. The purpose of this implementation is to read each generated sentence, and then 

draw it on the screen (canvas). The drawing in this case represents our interpretation of the 

generated sentences. But before doing that, we have to decide exactly how to interpret the 

generated sentences. Suppose that our interpretation is something similar to the following: 

• F: means move forward and draw a line. 

• +: means turns right. 

• -: means turns left. 

• []: means save where you are. This is useful for backtracking. 

There are absolutely no must-follow patterns or rules at all on how to interpret the generated 

sentences. You can, for instance, interpret F as a rotation with 60 degrees, and + as a drawing 

a rectangle, and so on and so forth. Just play with the generated sentences, and interpret it 

differently each time, and see how impressive is that. 
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Let us inspect the generation process step by step, and running the system for four different 

generations (table 8). 
Number of generations Result 

1 Figure 15.3 

2 Figure 15.4 

3 Figure 15.5 

4 Figure 15.6 

Table 8  Tested values for L-System 

            
Figure 15.3 One generation L-system        Figure 15.4 Two generations L-system 

 

      
Figure 15.5 Three generations L-system            Figure 15.6 Four generations L-system 
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You can surely go further in generation process as many generations as you want as long as it 

makes sense to you. 

Code 
Basically, the code is exactly as the previous one, but the main difference is where we interpret the 
generated sentences.  

 
 

Discussion 

There exist a set of pre-tested rules that generate some well-known patterns [41]. But you can 

anytime play with the ruleset, and change the axiom and the alphabet. You will eventually 

end up with your own patterns. Congratulations!   
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2.4.   Barnsley Fern 
This concept was introduced by the British mathematician Michael Barnsley in 1993 [42]. 

There are four different transformations that should be used in order to end up with Barnsley 

fern. Each one has the following formula [42]: 

 
The constants in this equation a, b, c, d, e, f represents the coefficients of the equation. There 

is another important variable that is denoted as p represents the probability for each 

transformation to be chosen. The values Barnsley proposed are listed in the following table: 

Transformation number A b c d E f P 

1 0 0 0 0.16 0 0 0.01 

2 0.85 0.04 -0.04 0.85 0 1.6 0.85 

3 0.20 -0.26 0.23 0.22 0 1.6 0.07 

4 -0.15 0.28 0.26 0.24 0 0.44 0.07 

Table 9    Coefficient values in Barnsley Fern affine transformations 

 

All the numbers in this table have a meaning. It represents rotation, scaling and shifting on y-

axis (f). Moreover, p represents the weight (probability) which means how important the rule 

is. All the weights add up to one.  

The way this algorithm works can be described as follows [36]: 

1. starts with a single random point inside a 2D space (canvas in our case). 

2. Choose randomly one of four options on each iteration. More precisely, the random in 

this algorithm is weighted according to predefined constants. 

3. Depending on the choice from step 2, a specific transformation applies to the chosen 

point using a 2D transformation matrix. 

4. Draw the point after applying the correct transformation. 

5. Check the termination condition: 

• If it holds, Go to step 6. 

• Otherwise, Go to step 2. 

6. Terminate the process.   

Implementation 

Let us implement this algorithm in 2D space. Firstly, the values in table-9- will be used 

without any change. Then we will play around with those values and check which patterns we 

can come up with.   
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Code 

The coding process is just step by step implementation of the above steps. First of all, we 

declare all the constants that are listed in the table above: 

 
 Then we create a random point inside the canvas 

 
Then we opt an option from the four available options, and apply the transformation. 

 

 
After that we draw the point : 
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Running the code, we get the following gorgeous fern: 

 
Figure 16.1  Barnsley Fern -1-. 

 

 

Discussion 

You may wonder (and I did) what would happen if some of the values in table-9- are 

changed. The answer is very simple. You will get a new pattern each time you make a 

change. Occasionally, very weird patterns may show up. Let us alter some of those values a 

little bit, and see which patterns appear. For the sake of simplicity, we will make all the 

changes in just one row of the table. Let us choose the second line of the table 10, and apply 

the following changes on a, c, e, probabilityFactor : 

 

Coefficient Old value New value Result 

 a 0.85 0.5 Figure 16.2 

c  - 0.04 - 0.7 Figure 16.3 

e 0 - 0.5 Figure 16.4 

probabilityFactor 0.85 0.5 Figure 16.5 

Table 10   Tested values for coefficients a and c 
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           Figure 16.2  Barnsley Fern -2-  Figure 16.3  Barnsley Fern -3- 

 

 

 

 

 

 

     
         Figure 16.4  Barnsley Fern -4-   Figure 16.5  Barnsley Fern -5- 
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Chapter 7                      

Partitioning Space 
Whenever you use PCG, you do not absolutely expect to get an arranged, partitioned space as 

an output from your generator after first attempt. The content, in most cases, is normally an 

open and unpartitioned space. This content needs to be polished several times by split it into a 

set of regions. For instance, the generator may generate a map haphazardly, and then you split 

it into political areas to give it a meaning somehow or another.        

1.   Binary Space Partitioning(BSP)  
This term was developed in the context of 3D computer graphics [43]. BSP is just a fancy 

way of saying you cut something in half a bunch of times. BSP at its core is a very simple 

concept. You can use BSP in a couple of different ways. You simply take a space, and cut it 

in half a certain number of times. This process stops when a predefined criterion holds. The 

criterion could be either a specific number of splits, a specific size for the resulting spaces, or 

something else. Depending on the size of the space, and the number of times you are going to 

split it, you can determine how many rooms you have. It is basically an exponential function 

2^x. So, if you split the space one time, that is, x=1, then you will get two new, smaller, 

spaces. If you split the space twice, that is x=2, you will get 4 rooms, and so on and so forth. 

This means you are rapidly going to end up with a lot of smaller spaces after a few times of 

splitting.  
    

    

    

    

Figure 17.1   Partitioning the space for x=4 

This tool is really powerful because it allows you to create equidistant sort of regions. But in 

other cases, you may need a bunch of smaller spaces that are not necessarily equal. So, what 

you might do is to determine a range of possible sizes. For example, you can say that you 

want to split a room in two, and you want it to be anywhere from 30-70%. In other words, 

you do not want the room to be smaller than 30%, and likewise not above 70%. So, you can 

constrain your generated rooms to some required values. For example, if the random number 

generator produces 35% first time, then you will get two rooms. Now, let us say that for the 
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first room the generator gives 50%, and for the second room it gives 65%. This way you can 

generate a number of rooms that have different sizes (figure 17-2). 

 

                                       35% 

 

 

 

               50%  

                                                                                      65% 
   
                           Figure 17.2  Generated rooms with different sizes 

 

2.   Voronoi Diagram 
Voronoi diagram is named after Georgy Voronoi when he introduced it for the first time in 

1908 [44]. Voronoi diagrams are arguably the most well-known concept in computational 

geometry, and have many useful applications in practical cases [45]. The basic idea is that 

instead of being concerned with the initial data points that exist in the data set, we are 

actually more concern about the data points that surround them. An important concept is  

Voronoi region which is basically a single region that surrounds one of the input data points. 

A single Voronoi region defines all the points outside the original data set which are closer to 

that data point (the one that is centered in the region) than to any other data point in the data 

set. So, you basically define regions in space that are closer to your input points than to any 

of the other input points. So, it is the sort of the closest neighbor type of analysis. All Voronoi 

regions are always convex without exception [46]. That is, polygons in 2D, and polyhedral in 

3D. For example, let us say that you are hopefully a businessman, and you have a plan to start 

a new business in your city. Your business is basically to open a number of groceries that 

hold your name. Using a Voronoi diagrams jargon, we can say that each point in the data set 

represents a grocery store in the city. Likewise, each Voronoi region contains the residences 

that are closest to a particular grocery store. In order to succeed in your business, your 

groceries should be located in the city in a way that guarantees a sort of balance. In other 

words, the residences should be used each of your groceries approximately in an equal ratio.  
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Implementation 

To exemplify this algorithm, let us implement it to generate a diagram for a data set consists 

of 100 input points (sites). The way I implemented this algorithm can be described as 

follows: 

• Create a collection of points (100 points in our case). 

• Distribute the points randomly in a 2D space. 

• For each pixel, figure out which point is the closest to it. 

• Color the pixel based on that. 

More details in the code section below. 

Code 

The code for this part is somewhat long, and therefore it would be better to go through it step 

by step. 

To provide a better look to the generated diagram, the Voronoi regions will be colored 

randomly. A function generates a hex-color is responsible for that:  

 
The core idea behind Voronoi diagram is to calculate the distance between each point in the 

data set and its neighbors. Therefore, a function to calculate the Euclidean distance is a 

demand.  

 
All the points in the data set are distributed randomly in the space (canvas in our case). The 

coordinates for each point will be chosen from two arrays. Both arrays are filled with random 

values. We need another randomly filled array to be used as a source to color every Voronoi 

region.  
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The function that is responsible for that is the following one: 

 
To draw the diagram, we need two different functions. The first one draws Voronoi regions. 

 
And the second one draws all the points in the data set (100 points in our case). 

 
Using both of them, we can generate the whole diagram. 
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Running this algorithm will generate the following diagram. 

 
Figure 18.1  Voronoi diagram -1- 

Running this generator again, it generates another diagram, and so on: 

 
Figure 18.2  Voronoi diagram -2- 

 

Note 

It is worthwhile to mention here that Voronoi diagrams is a very broad subject, and a whole 

master thesis can be done only to investigate this important concept. In my case, however, I 

would like to admit that I have barely scratched the surface of this topic. This would be a 

promising future research for me, or for any other ambitious student. Highly recommended 

topic! 
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Chapter 8                     

Maze Generation 
As a matter of fact, a master thesis about procedural generation would be not valuable 

without raising maze generation for discussion. There exist many different algorithms to 

generate mazes procedurally. To demonstrate this concept clearly, I have chosen two 

different algorithms to be demonstrated and implemented. They are recursive backtracker 

algorithm and reaction diffusion algorithm.   

1.   Recursive Backtracker[RB] 
In fact, this algorithm is one of the easiest maze generation algorithms. It is used by another 

algorithm called depth-first search (DFS) in order to generate a maze. RB normally uses a 

stack as a data structure in its implementation. Its downside, however, that it leads to a few 

dead ends. That means it generates relatively less-complicated mazes comparing to other 

maze generation algorithms. In fact, if you want to build a game the includes mazes, then the 

following statement always holds: the more complicated and intricate the mazes are, the more 

interesting and enjoyable your game is. The following steps describe how this algorithm 

works as proposed in [47] :  

1- Choose an initial cell within the grid. 

2- Check if its neighbors have been visited before. If not, continue to step 2.1. 

Otherwise, go to step 3. 

2.1- Pick random neighbor. 

2.2- Put the neighbor on the stack. 

2.3- Remove the wall between the current cell and the chosen neighbor. 

2.4- Mark a path from the current cell to the selected neighbor. 

2.5- Go to step 2, and repeat the process 

3- Mark the current cell as visited, and pop it off the stack as long as the stack is 

not empty. Otherwise, go to step 5. 

4- Go to the cell at the top of the stack and go to step 2. 

5- Stop when the stack is empty. 
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Implementation 

In my suggested implementation, the algorithm is going to figure out which walls should be 

removed to generate a nice maze pattern eventually. Each cell in the grid represents an object, 

and it should mainly know two things:  

• Its location on the grid. That is, what is its row and column coordinates?  

• The situation of its surrounding walls. That is, is it opened or closed?   

Code  

Only the most important parts of the code will be demonstrated. The complete code can be 

found in the appendix. The coding process can be divided into the following steps: 

1. Create a 2D grid consists of a number of cells. 

 

 
2. Choose an initial cell to start the algorithm. 

 
Then check its neighbors to see if there are any unvisited cells in the neighborhood. If that is 

the case, choose randomly one neighbor. This represents the step 2.1 from the steps above. 
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3. For any unvisited neighbor, perform the steps 2.2 & 2.3 & 2.5 & 3. 

 
Note: 

In order to end up with a grid similar to a maze, the algorithm should continuously remove 

the walls between adjacent cells. Depending on how the cells are located, we can distinguish 

between two different wall-removing processes: 

• For adjacent cells, a vertical wall that separates them will be removed: 

 
• For orthogonal cells (the cells on the top of each other’s), a horizontal wall that 

separates them will be removed: 
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Running this algorithm will generate the following nice maze. 

 
Figure 19  Generated maze using recursive backtracker algorithm 
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2.   Reaction Diffusion Algorithm [RDA] 
Reaction diffusion systems can be implemented in different ways. The way I have chosen is 

called Gray Scott Model of  reaction diffusion [48]. This algorithm simulates the reaction and 

diffusion between those two chemicals A and B on a two-dimensional grid. In our case, we 

are going to use a JavaScript canvas to display the generated content. The canvas is going to 

be filled with chemical B, and then chemical A will be added at a specific "feed" rate into the 

canvas. This causes the reaction to start immediately. There are two different phases in this 

algorithm. The reaction phase in which chemical A turns into chemical B. The diffusion 

phase in which chemical B is removed at a specific "kill" rate. This system can be described 

by the equations underneath. There are some key constants in those equations. The first 

constant is the feed rate which represents the ratio of adding chemical A to the reaction. The 

second constant is the kill rate which represents the ration of removing chemical B from the 

system. Each cell on the grid  contains certain amount of chemicals A and B. This amount is 

represented by a value between 0 and 1. If the value equals 1, there is a lot of chemical A. if it 

is 0, there is none. This value is used to set the color for a pixel on the canvas. This algorithm 

is built on the following two equations [49]: 

 
At first glance, those equations look intimidating, but they are actually mathematically 

simple. The new values of A and B can be found depending on: 

• The previous known values of A and B. 

• The values of its neighbors. 

• Some other given constants. 

For each cell in the grid, a convolution of 3x3 matrix should be applied. The convolution 

in our context means that for any cell in the grid, each of its neighbors is multiplied by a 

specific value called weight.  

 

Implementation 

This algorithm will be implemented in a 2D space. Only the most important parts of the code 

will be highlighted. The whole code can be found in the appendix. 
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Code 

First of all, I would like to mention that all the values in my code are exactly as proposed in 

[49]. 

Two grids will be used, a main grid and an auxiliary grid. Each cell in the grid contains some 

amount of chemical A or chemical B, or potentially a combination of both A and B. The 

auxiliary grid is useful when we moved from one generation to another. The new calculated 

values are saved temporarily in the auxiliary grid, and then moved to the main grid. This 

process occurs at each movement from one generation to another.   

The coding process can be divided into the following steps: 

1- Fill the entire main grid with only chemical A. 

 
2- Insert chemical B into a small area of the main grid (in my implementation, chemical 

B is inserted into only 30 cells). 

 
3- After adding chemical B, the reaction starts. There is a specific equation that should 

be applied for every chemical A. 
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And another reaction equation for every chemical B. 

 
4- Once the reaction occurs, it causes the previously amounts of both chemical A and B 

to be changed. The new values depend on: 

• Some given constants [Da, Db, killRate, feedRate] [49]. 

• The current amount of both chemical A and B. 

• A Laplacian function that is performed with 3x3 convolution, using the 

following weights [49]: 

(a)  -1 for the center cell. 

(b)   0.2 for adjacent neighbors. 

(c)   0.05 for diagonals. 

The Laplacian function is performed using the following methods: 

 

 
And this one:  
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5- The applying the Laplacian function, the new values for both A and B can be found 

using the following function:  

 
6- Finally, in order to draw the maze, a color is attached to each cell (pixel) in the main 

grid.   

 
By the way, the color is calculated depending on the values of both chemical A and B: 

 
Experiments 

In order to test this algorithm, and to see the variety of pattern it can produce, four different 

experiments will be done. The values in the table will be used. The values in the first two 

lines are proposed in [49].   

DA DB feedRate killRate Result 

1 0.5 0.0545 0.062 Figure 20.1 

1 0.5 0.0367 0.0649 Figure 20.2 

1 0.5 0.045 0.0625 Figure 20.3 

0.4 0.2 0.045 0.0625 Figure 20.4 

Table 11    Tested values in RDA 
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           Figure 20.1 RDA-1                                 Figure 20.2  RDA-2         
 

 

     

      
            Figure 20.3  RDA-3                               Figure 20.4  RDA-4 
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Chapter 9  

Procedural Flowers 
If you would like to generate various flower patterns, there are a lot of different algorithms 

for this specific purpose. The algorithm I have chosen is built completely around the concept 

of polar coordinates. We all know that if (x, y) are the coordinates in cartesian coordinates 

system, and (r, q) the coordinates in a polar coordinates system, then as it is proposed in[50]: 

𝑥 = 𝑟cos(kq) 

   𝑦 = 𝑟sin(kq) 
Where k is a constant.  

Implementation 

All the experiments will be done in a 2D space. 
Code 
The following function is responsible for creating a specific pattern each time we change the 

value of the constant k. 

 
This function calls another two functions: 
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Note that you are not restricted to use only cos() function as we did in this implementation. 

You can replace it with any other function. Each time you change the function, you will get a 

new pattern. For example, try to use sin() function or tan() function instead of cos(). 

No matter the function you choose, you can get infinite number of different flower patterns 

by simply changing the value of the constant k. Different values will be tested (table 12). 

Value of constant K Figure 

 0.9 21.1 

 0.09 21.2 

0 8 21.3 

1000 21.4 

Table 12  Tested values for the constant k 

 
                Figure 21.1    Flower pattern -1-               Figure 21.2    Flower pattern -2- 

 
          Figure 21.3  Flower pattern -3-                    Figure 21.4  Flower pattern -4- 
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Chapter 10           

Procedurally Generated Infinite Terrain 
Some notes on the fly: 

• This project is built using Unity 2018.3.4f1 version.  

• Nowadays, neither Java nor JavaScript can be used with Unity. In fact, Unity supports 

only C#. Therefore, the code for this project is written completely using C#. 

1   A simple & static terrain 
If you ask any designer about the most obvious and simple way to create a terrain, the answer 

most likely would be to use one of the tiling techniques. My answer is no exception, and I 

will choose tiling as well if you ask me. In fact, tiling is the intuitive way to start with. 

1.1   Tiling  
I have started the project by randomly picking up an image from Google (figure 22.1), and 

divided it into a number of equivalent squares. Each square represents a small tile (160 

squares in my code) as depicted in figure 22.2. This image represents the texture that will be 

used to build the terrain.   

 

Figure 22.1    Grass image 
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Figure 22.2   Dividing an image into small tiles. 

To do that, the code is very straightforward.  

 
1.2   Make it random 
Instead of using one texture to build the terrain, using multiple textures makes the terrain 

certainly looks better. Let us add two new textures to our terrain. The first texture is sand and 

the second one is rocks. These textures will be tiled before adding them to the terrain. To 

build the terrain, one tile from the three textures will be randomly chosen at each iteration 

until the terrain is completely filled with tiles. The generated terrain is a varied terrain that 

consists of three different textures. 

 
Figure 22.3  Randomly generated terrain using tiling. 
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Each time we run the generator, a completely different terrain will show up. That is due to the 

randomness that dominates our generator so far.    

 

 
Figure 22.4  Randomly generated terrain using tiling 

 

Until now the generated terrain is uncontrollable. The generation process is still random, and 

we cannot control by any means how the different textures are distributed in the terrain. 

Let us go one step further, and make the process controllable somewhat or another. 

 

1.3   Pseudorandom instead of random 
It would be a huge improvement if we can find a way to make the generator remembers each 

terrain it generates somehow. This way, whenever we need to get back a previously generated 

terrain, we can do that. To add this feature, we have to use a method that return a 

pseudorandom number instead of a pure random. Earlier in this thesis, pseudorandom 

numbers generators and Perlin noise were discussed in detail (chapters 3 & 4). These 

techniques should look familiar to us now. Let us use one of them in order to replace the 

completely random behavior with a pseudorandom one. A particular value called seed will be 

used to generate the pseudorandom numbers. This way, whenever you use the same seed, the 

generator generates the exact same terrain. Likewise, whenever we provide the generator with 

a different seed, a new terrain will be generated. Let us use a Perlin noise function to achieve 

our purpose.  
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The following two methods do exactly what we want. 

 
Let us run the generator for different seed values, and see what we will get. For a seed value 

equals 2.45, the generator generates the following terrain: 

 
  Figure 22.5   Generated terrain for seed=2.45 

For a tiny modification in the seed to be 2.46, many changes occur in the generated terrain. 

 
Figure 22.6   Generated terrain for seed=2.46 
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Let us assume that for some reason, we need to get the first terrain again. This task becomes 

now very simple. Just provide the generator with the seed value 2.45, and the generator will 

regenerate the previous terrain (figure 22.7). 

 
Figure 22.7   Generated terrain for seed=2.45 

 

Our progress has been satisfactory up to now. So far so good ! 

But, wait a minute. Would not it be dreamy if there is a way to make our small 

terrain goes somehow infinitely, and forever? 

But I know, it is  just a fantasy…………… 

1.4   Fill the entire space and enjoy the infinity 
What we have done so far is getting some images on the screen, tiling them, and display them 

in the scene. Our current terrain has specific dimensions, and if you move in any direction, 

you will inevitably hit one of its four boundaries (figure 22.8).    

But what if we want to expand our nice terrain indefinitely, and forever? 

 
Figure 22.8   Terrain boundary 
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To make our dreams come true, the generator has to redraw the terrain forever.  

The idea is very simple. Let us say that: 

P: is a player or a user moves inside the terrain. 

D: represents the distance between the current player location and the center of the terrain. 

The player starts from the center. No matter the direction of the movement, whenever the 

player moves a distance equals to D in any direction, the generator will redraw the terrain 

again. This process repeats over and over again as long the redrawing criterion holds. In fact, 

what happens behind the scene is that the generator moves the blocks (tiles) in specific 

direction according to the player movement each time we ask the generator to redraw the 

terrain. Even though it seems a simple trick, but it does exactly what we want. At least it 

gives us the illusion of infinity. Is not it so ?      

2.   A gorgeous & dynamic terrain 

 2.1   Polish the generated Terrain 
You might ask yourself: well, our generator generates an infinite terrain that goes on forever. 

That is our main purpose of this chapter. So, why do we need any further enhancements?   

Well, on one hand, we are actually done, and we have generated an infinite terrain using 

tiling. But, on the other hand, tiling are certainly not the best choice to do that. The reason is 

you have to control every way the transition occurs between any adjacent tiles. Tiling is very 

straightforward. That is, what you see is exactly what you get on the scene.  For every tile, 

you should control how does it border and connect to other tiles. Our implementation so far is 

just a collection of tiles that are placed next to each other. There is no interaction or 

overlapping between the tiles. Our terrain is very static so far. Therefore, it looks far away 

from a real terrain. If you insist on building the dynamic terrain with only tiling, and your aim 

is to allow different textures to overlap, your first intuitive suggestion might be to place the 

images over each other’s. But you know what, you will get into a big trouble. That is 

because: 

• You have to control how the textures will connect to each other’s.  

•  A huge amount of extra work with graphics will be added. 

Keep in your mind that the more textures you add to get a more real terrain, the more 

complex it becomes in regards to graphics.  

• From code perspective, whenever you add any texture, you need to take  four tiles at 

once into your account. That is, what is the tile at each direction: above, to the right, 

to the left and at the bottom? Just imagine, that your terrain may consist of thousands 

of different tiles. How do you manage all that in your code? For example, for a terrain 
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that has only two types of textures (grass and water). There are 16 different 

combinations for each tile. That is: WWWW- WGWG-GWGG- and so on (W refers 

to water and G to grass). To check out the potential combinations for every single tile 

in your code is certainly impractical. 

That being said, how could we decrease this complexity ?    

2.2   Moving smoothly between different textures    
The way I have chosen to overcome the previous problem is by using a texture tile that fades 

into the next texture using transparencies. In other words, using a graphics that overlap each 

other instead of just sitting side by side. Each texture will be located at its own separate layer. 

The order of each layer is important and it should be taken into account because it affects the 

generated terrain. That is, whenever the order of any layer changes, the generated terrain 

changes. When we use tiling, there exist only one layer. Therefore, the order of layers does 

not make sense. But now with different layers located on the top of each other’s, the order of 

each one really matters. The way the layers are located resembles the concept of the queue. 

That is, First In First Out [FIFO]. Any new layer will be located at the bottom of the 

previously located layers. To implement this idea in code, the first texture is given the highest 

priority. Before adding any new texture to the terrain, the priority should be decreased by 

one, and so on. But how can we display some parts from all the layers at the generated terrain 

if all of them are underneath the top texture? To make that possible, a transparency layer to 

some parts of each layer has been added. This way, the generated terrain contains parts from 

all the layers no matter the priority they have. The following method perform this task. 

 
The generated terrain looks now much better than before. It feels real to us (figure 22.9). 
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Running the generator gives the following terrain: 

 
Figure 22.9   Generated terrain using transparencies between layers 

 

Changing the order of some layers, the generated terrain differs (figure 22.10). 

 
Figure 2210   Generated terrain using transparencies between layers 

 

The complete code can be found in the appendix. 
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Chapter 11  

Discussion       
Throughout the previous chapters, more than 20 algorithms have been illustrated, 

implemented and tested. Let us discuss and recap what we have done so far. In chapter 3, we 

demonstrated three different algorithms: MSM, LCG and MT. the main purpose of those 

algorithms is to generate pseudorandom numbers instead of pure random ones. Each one has 

its own benefits and drawbacks as well. MSM is good choice because: 

• The simplest one in regards to implementation. 

• It is very fast. 

But its huge drawback, however, is: 

• It has a very short period. 

Keep in your mind that in any pseudorandom number generator, a short period is considered 

to be as a fatal flaw. The experiments we performed on MSM were intimidating. This 

algorithm was unable to create even 100 different numbers before it created duplicates. 

Luckily, not all hope is lost, because there are various PRNGs available that aim to bridge 

this gap in particular. Of them is LCG that comes as lifesaver because: 

• It has a great period, and it is much superior of MSM.  

But it still has deficiency when: 

•  It is used for security purposes. In such cases, it fails immediately. 

Both MMS and LCG are not categorized as a high-quality PRNGs. Therefore, we 

demonstrated one of those which is called MT. This algorithm is : 

• The most widely-used PRNG. 

• The default PRNG in many programing languages, frameworks and libraries. 

• It has a very long period. 

• It passes huge number of tests including Diehard tests.     

However, it has some detrimental side effects: 

• Due its high quality and great performance, it needs much more memory. 

• It is not the best choice to be used as a cryptographic technique. 

Bottom line is, which PRNG should you use is entirely dependent on your application and the 

resources available. If the memory is not a big concern, then you should for sure opt MT. 
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In chapter 4, Perlin noise was illustrated and tested. It is very popular in procedural systems, 

and it is considered as the classic noise. A Perlin noise function was also used in chapter 10 

to generate an infinite terrain. One of its useful aspects is: 

• The smooth transition it provides between values.  

However, it has some weaknesses. The major one is: 

• It is extremely slow for higher dimensions. 

To overcome this problem, Ken Perlin came up with improved version of Perlin noise in 

2001. It is called Simplex noise [51]. According to Ken Perlin, this noise is: 

• Easy to implement. 

• The complexity of computational is less compared to classic Perlin noise. 

• Faster and easy to extend to multiple dimensions. 

In chapter 5, three different algorithms for filling the space were discussed and tested. The 

first one is random walks. Two variant implementations were discussed. The classical 

random walks where the direction of movement is restricted to the dimensions of the space. 

Then an improvement was suggested to free the movement from the previous constrains. That 

is, the walker can move in the space randomly in unlimited number of possible directions. 

Random walks are good if your purpose is: 

• Filling the space haphazardly.  

If that is not the case, you should avoid using random walks. 

The second algorithm was DLA, where a number of attraction points located randomly in the 

space, and a number of random walkers fire alternatively in the space until it gets attracted by 

one of the attraction points. Depending on the specific content that you want to fill the space 

with, you can choose between random walks and DLA. The classis random walks generate a 

pattern similar to map. On the other hand, DLA generates a pattern similar to tree somewhat.  

The third concept was cellular automata. CA are very useful to describe many biological 

phenomena. It is a great choice if: 

• The system is spatially heterogeneous [52].  

And a bad choice if: 

• The system is spatially homogeneous. In Such cases, ODEs (Ordinary Differential 

Equations) and DDEs (Discrete Difference Equations) should be used [52]. 
In chapter 6, sequence generation techniques were demonstrated. We started with Markov 

chains, and implemented it to generate a text. A very useful merit of Markov chains [53]: 

• Its ability to model the majority of systems where there exist dependencies between  

states. 
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However, it has a known drawback, which is [53]: 

• Its need to a huge number of states to represent some simple systems. 

After that, three different methods to generate fractals were studied. Chaos game was the first 

method which served as a tool to generate Sierpinski triangle. Then another method called 

Space Colonization Algorithm was illustrated. This algorithm is used to generate a like-tree 

pattern. At the end of this chapter, L-Systems was demonstrated and two examples were 

implemented. Fractals are a huge topic, and there exists tremendous number of  algorithms to 

generate fractals.  

Moving to chapter 7, two methods to partition the space were studied. The first one is Binary 

Space Partition, which is a common tool to divide a space into smaller parts. The subdivision 

process of the space can be represented by a tree data structure known as BSP tree. These 

trees have some advantages and disadvantages. A big advantage is [54]: 

• It is very efficient to detect collisions in the map in a fast manner.  

A huge drawback, however [54]: 

• To achieve high performance, this algorithm needs additional requirements which 

turns BSP trees to be somehow complicated.  

After BSP, Voronoi diagram was demonstrated. A real-world example was implemented 

using Voronoi diagrams. 

In chapter 8, two methods were studied to generate like-maze patterns. Even though recursive 

backtracker and  reaction diffusion algorithm generates eventually a pattern similar to a maze, 

there are a major difference. RDA has the ability to generates enormous number of different 

patterns. Each time a tiny modification for one of its parameters, a completely new maze 

shows up. Recursive backtracker, however, will always generate almost the same pattern. 

In chapter 9, a method to procedurally generate flowers was demonstrated. Even though only 

one function was used to generate flowers (cosine function), there are  plenty of functions 

that can be used to generate different flower patterns compared to what we got in our 

experiments.  

Finally, in chapter 10 something different was implemented. No algorithms or techniques 

were demonstrated. An infinite terrain was implemented step by step. We ended up 

eventually with a terrain very close to a real one.    
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Chapter 12    

Conclusion 
Throughout this thesis, different topics were studied, implemented and discussed. Firstly, a 

survey of applications of procedural generation was introduced. In chapter 2 particularly, the 

main focus was to draw attention to the cases where using PCG is considered to be either a 

merit or a demerit. Then a categorizing of the techniques, design patterns and approaches that 

are used in PCG were demonstrated. The main categories in this thesis are: 

1- Random numbers. 

2- Perlin Noise. 

3- Filling Space. 

4- Sequence generation. 

5- Partitioning space. 

6- Maze generation. 

7- Procedural flowers. 

Then in chapter 11, the strength and weaknesses of the different strategies were highlighted. 

With regards to further developments and future works, i would like to mention that this topic 

is a broad discipline. Honestly, with roughly 140 pages in this thesis, I have to admit that I 

have barely scratched the surface. Every single category in this thesis is a good candidate as a 

separate master thesis. Moreover, the infinite terrain that was implemented in chapter 10 can 

be effectively used as the cornerstone of unlimited number of games. An infinite space is the 

backbone for almost every game nowadays. Our generated infinite terrain can be easily 

polished by any designer/developer to be consistent with different games. How valuable our 

infinite terrain is!     
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Appendix 
All the lists in the appendix are written in JavaScript. In order to run any of them, you need 

HTML file. The following file is general-purpose file. That is, you can use with any one of 

the JavaScript files. All you have to do is write the name of the file you want to run in the 

mentioned area below. Do not forget to add the correct extension. For example, if you want 

to run the code to test Middle Square Method, you have to copy the list-1- from the next page 

into a text file, and save the file using the extension .js. Then use the HTML template below, 

and write Middle Square Method.js in the placeholder in line 13.   
 

1. <!DOCTYPE html>   
2. <html lang="en">   
3.   <head>   
4.     <meta charset="UTF-8" />   
5.     <meta name="viewport" content="width=device-width, initial-scale=1.0" />   
6.     <meta http-equiv="X-UA-Compatible" content="ie=edge" />   
7.     <title>Procedural Generation</title>   
8.   </head>   
9.   <body>   
10.     <canvas id="canvas" width="500" height="500"></canvas>   
11.     <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.6.1/p5.js"></script>   
12.     <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.6.1/addons/p5.dom.js"><

/script>   
13.     <script src=" Here you have to write the name of the file you want to run"></script

>   
14.   </body>   
15. </html>   
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List 1 - Middle Square Method 
****************************** 

1. let { seed, index, randomNumber, period } = declareVariables()   
2.    
3. window.onload = () => {   
4.   printResult()   
5.   findPeriod() }   
6.  
7. function declareVariables () {   
8.   let index   
9.   let randomNumber   
10.   let period = []   
11.   let seed = 1234   
12.   return { seed, index, randomNumber, period } }   
13.    
14. function setup () {}   
15.    
16. function squareNumber () {   
17.   let numOfDigits = 4   
18.   let pseudoRandomNumber = (seed * seed).toString()   
19.   return { numOfDigits, pseudoRandomNumber } }   
20.    
21. function middleSquareAlgorithm () {   
22.   let { numOfDigits, pseudoRandomNumber } = squareNumber()   
23.   padResult()   
24.   pullMiddleDigits()   
25.   return seed   
26.    
27.   function pullMiddleDigits () {   
28.     let start = Math.floor(numOfDigits / 2)   
29.     let end = start + numOfDigits   
30.     seed = parseInt(pseudoRandomNumber.substring(start, end)) }   
31.    
32.   function padResult () {   
33.     while (pseudoRandomNumber.length < numOfDigits * 2) {   
34.       pseudoRandomNumber = '0' + pseudoRandomNumber } } }   
35.    
36. function printResult () {   
37.   for (index = 0; index < 10; index++) {   
38.     createP(middleSquareAlgorithm()) }}   
39.    
40. function checkRepetition () {   
41.   for (index = 0; index < 100; index++) {   
42.     randomNumber = middleSquareAlgorithm()   
43.     if (period[randomNumber]) { break }   
44.     period[randomNumber] = true }   
45.   return index }   
46.    
47. function findPeriod () {  createP(checkRepetition()) }   
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List 2- Linear Congruential Generator [LCG] 
*************************************************** 

1. let index, period, seed = 123456,result = []   
2.    
3. function setup () {   
4.   createCanvas(600, 600) }   
5.    
6. window.onload = () => { printResult() }   
7.    
8. function linearCongruentialGenerator () {   
9.   const { a, c, m } = defineConstants()   
10.   applySeedEquation(a, c, m)   
11.   return seed }   
12.    
13. function applySeedEquation (a, c, m) {   
14.   seed = (a * seed + c) % m }   
15.    
16. function defineConstants () {   
17.   const a = 1664525   
18.   const c = 1013904223   
19.   const m = Math.pow(2, 32)   
20.   return { a, c, m } }   
21.    
22. function checkRepetition () {   
23.   for (index = 0; index < 1000000; index++) {   
24.     let randomNumber = linearCongruentialGenerator()   
25.     if (result[randomNumber]) { break }   
26.     result[randomNumber] = true }   
27.   return index }   
28.    
29. function findPeriod () {   
30.   period = checkRepetition()   
31.   return period }   
32.    
33. function printResult () {   
34.   for (let index = 0; index < 10; index++) {   
35.     createP(linearCongruentialGenerator()) }   
36.   createP(findPeriod()) }   
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List 3- Mersenne Twister 
*************************** 

1. // This implementation uses values for ID= MT 11213B.   
2. //Source: http://www.math.sci.hiroshima-u.ac.jp/   
3. //      ~m-mat/MT/ARTICLES/mersenneTwister.pdf   
4. // All these values are listed in the table in page.8   
5. const seed = 123434,a = 0xccab8ee7,m = 175,degreeOfRecurrence = 351,   
6.     last32Bit = 18122433253 & 0xffffffff   
7. let y   
8.    
9. window.onload = () => {   
10.   printRandomSequence() }   
11.    
12. function setup () {   
13.   createCanvas(500, 500) }   
14.    
15. function performSuccessiveTransformations (mersenneTwister, i) {   
16.   // Tempering parameters   
17.     const { TEMPERING_SHIFT_U, TEMPERING_SHIFT_S, TEMPERING_MASK

_B,   
18.         TEMPERING_SHIFT_T, TEMPERING_MASK_C, TEMPERING_SHIFT_L } 

=   
19.         defineTemperingConstants();   
20.   // Step 4   
21.   y = mersenneTwister[i]   
22.   y ^= TEMPERING_SHIFT_U   
23.   y ^= TEMPERING_SHIFT_S & TEMPERING_MASK_B   
24.   y ^= TEMPERING_SHIFT_T & TEMPERING_MASK_C   
25.   y ^= TEMPERING_SHIFT_L   
26.   // Step 5   
27.   i = (i + 1) % degreeOfRecurrence   
28.   return y }   
29.    
30. class MersenneTwister {   
31.   constructor (seed) {   
32.     let i = 0   
33.     let mersenneTwister = [seed]   
34.     for (let j = 1; j < degreeOfRecurrence; j++) {   
35.       mersenneTwister[j] =   
36.       last32Bit * (mersenneTwister[j - 1] ^ (mersenneTwister[j - 1] >> 30)) +1}   
37.     this.nextNumber = () => {   
38.       if (i === 0) { generateNextNumber() }   
39.       return performSuccessiveTransformations(mersenneTwister, i) }   
40.    
41.     function generateNextNumber () {   
42.       for (let i = 0; i < degreeOfRecurrence; i++) {   
43.         // Step 2   
44.           y = mersenneTwister[i] & 0x80000000 ||mersenneTwister[(i + 1)   
45.               % degreeOfRecurrence] & 0x7fffffff   
46.         // Step 3   
47.     mersenneTwister[i]=mersenneTwister[(i + m) % degreeOfRecurrence] ^ (y >> 1)   
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48.         if (y % 2 !== 0) {mersenneTwister[i] = mersenneTwister[i] ^ a }}}}}   
49.    
50. function defineTemperingConstants() {   
51.   const TEMPERING_MASK_B = 0x31b6ab00;   
52.   const TEMPERING_MASK_C = 0xffe50000;   
53.   const TEMPERING_SHIFT_U = y >> 11;   
54.   const TEMPERING_SHIFT_S = y << 7;   
55.   const TEMPERING_SHIFT_T = y << 15;   
56.   const TEMPERING_SHIFT_L = y >> 17;   
57.     return { TEMPERING_SHIFT_U, TEMPERING_SHIFT_S, TEMPERING_MAS

K_B,    
58.         TEMPERING_SHIFT_T, TEMPERING_MASK_C, TEMPERING_SHIFT_L };

 }   
59.    
60. function printRandomSequence () {   
61.   let MT = new MersenneTwister(seed)   
62.   for (let i = 0; i < 10; i++) {   
63.     let nextRandomNumber = MT.nextNumber()   
64.     createP(nextRandomNumber) } }   
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List 4- Normal Probability Distribution 
******************************************** 

1. let index   
2. function setup () {   
3.     createCanvas(500, 500) }   
4.    
5. window.onload = () => {   
6.   let probabilities = []   
7.   fillWithZeros(probabilities)   
8.    
9. function generateRandomRange (min, max) {   
10.     return min + Math.random() * (max - min) }   
11.    
12. function findNormalProbabilityDistribution () {   
13.     let numOfRandomNumbers = 3   
14.    let total = FindfSumOfRandomNumbers(numOfRandomNumbers, generateRandom

Range)   
15.     increaseProbability()   
16.      
17. function increaseProbability () {   
18.       average = Math.floor(total / numOfRandomNumbers)   
19.       probabilities[average] += 1 } }   
20.    
21.      
22. function draw () {   
23.     for (index = 0; index < 150; index++) {   
24.       let h = probabilities[index] * -20   
25.       rect((width / 100) * index, height, width / 100, h)   
26.       fill(0) } }   
27.    
28.      
29. function update () {   
30.     findNormalProbabilityDistribution()   
31.     draw()   
32.     requestAnimationFrame(update) }   
33.     update() }   
34.    
35. function FindfSumOfRandomNumbers (numOfRandomNumbers, generateRandomR

ange) {   
36.   let total = 0   
37.   for (index = 0; index < numOfRandomNumbers; index++) {   
38.     total += generateRandomRange(0, 100) }   
39.   return total }   
40.    
41. function fillWithZeros (probabilities) {   
42.   for (index = 0; index < 500; index++) {   
43.     probabilities[index] = 0 } }   
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List 5- Weighted Random 
**************************** 

1. function setup () {   
2.   createCanvas(600, 600)   
3.   divideCanvasVertically()   
4.   for (let index = 0; index < 100; index++) {   
5.     let tails = setPriorities()   
6.    
7.     let { x, y } = generateRandomlyPixelCoordinate()   
8.     x = moveToRightHandSide(tails, x)   
9.     drawResultOnCanvas(x, y) } }   
10.    
11.  function moveToRightHandSide (tails, x) {   
12.   if (!tails) { x += width / 2 }   
13.   return x }   
14.    
15.  function generateRandomlyPixelCoordinate () {   
16.   let y = Math.random() * height   
17.   let x = (Math.random() * width) / 2   
18.    return { x, y }}   
19.    
20.  function divideCanvasVertically () {   
21.   line(width / 2, 0, width / 2, height) }   
22.    
23.  function setPriorities () {   
24.   return Math.random() > 0.5 }   
25.    
26.  function drawResultOnCanvas (x, y) {   
27.   ellipse(x, y, 20, 20)   
28.   fill(0) }   
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List 6- Perlin Noise 
********************* 

1. let pixelLocation, brightness   
2. function setup () {   
3.   createCanvas(300, 300)   
4.   pixelDensity(1) }   
5.    
6. function colorEverypixel (pixelLocation, brightness) {   
7.   // Color each pixel using RGB   
8.   let i = 0   
9.   while (i < 3) {   
10.     pixels[pixelLocation + i] = brightness   
11.     i++ }   
12.   // alpha value   
13.   pixels[pixelLocation + 3] = 255 }   
14.    
15. function applyPerlinNoise (verticalCoordinate,horizontalCoordinate,   
16.   horizontalOffset, verticalOffset,increment) {   
17.   verticalCoordinate = 0   
18.   while (verticalCoordinate < width) {   
19.     findPixelLocation(verticalCoordinate, horizontalCoordinate)   
20.     calculateBrightness(horizontalOffset, verticalOffset)   
21.     colorEverypixel(pixelLocation, brightness)   
22.     horizontalOffset += increment   
23.     verticalCoordinate++ }   
24.   return { verticalCoordinate, horizontalOffset } }   
25.    
26. function calculateBrightness (horizontalOffset, verticalOffset) {   
27.   brightness = noise(horizontalOffset, verticalOffset) * 255 }   
28.    
29. function findPixelLocation (verticalCoordinate, horizontalCoordinate) {   
30.   pixelLocation = (verticalCoordinate + horizontalCoordinate * width) * 4 }   
31.    
32. function draw () {   
33.   let increment = 0.08   
34.   let horizontalCoordinate = 0   
35.   let verticalCoordinate   
36.   let verticalOffset = 0   
37.   loadPixels()   
38.   while (horizontalCoordinate < height) {   
39.     let horizontalOffset = 0   
40.         ;({ verticalCoordinate, horizontalOffset } = applyPerlinNoise(   
41.             verticalCoordinate,horizontalCoordinate,horizontalOffset,   
42.             verticalOffset, increment ))   
43.     verticalOffset += increment   
44.     horizontalCoordinate++ }   
45.   updatePixels() }   
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List 7- Random Walk 
************************ 

1. let p1 = (p2 = 120)   
2.    
3. window.onload = () => {   
4.   createCanvas(500, 500)   
5.   background(0) }   
6.    
7. function walkRandomly () {   
8.   let randomNumber = floor(random(4))   
9.   switch (randomNumber) {   
10.     case 0:   p1 += 2 // Right-movement   
11.       break   
12.     case 1:   p1 -= 2 // Left-movement   
13.       break   
14.     case 2:   p2 += 2 // Up-movement   
15.       break   
16.     case 3:   p2 -= 2 // Down-movement   
17.       break } }   
18.    
19. function draw () {   
20.   stroke(255, 255)   
21.   strokeWeight(1.8)   
22.   point(p1, p2)   
23.   walkRandomly() }   
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List 8- Improved Random Walk 
************************************ 

1. let currPosition, previousPosition   
2.    
3. function setup () {   
4.   createCanvas(500, 500)   
5.   background(0)   
6.   currPosition = createVector(250, 250)   
7.   previousPosition = createVector(250, 250)   
8.   copyVector() }   
9.    
10. function increasevectorLength (step) {   
11.   let vectorAmplification = random(25, 75)   
12.   step.x *= vectorAmplification   
13.   step.y *= vectorAmplification }   
14.    
15. function copyVector () {   
16.   previousPosition.x = currPosition.x   
17.   previousPosition.y = currPosition.y }   
18.    
19. function addVector (step) {   
20.   currPosition.x += step.x   
21.   currPosition.y += step.y }   
22.    
23. function stepAccordingToProbability (step) {   
24.   let probability = random(1)   
25.     if (probability < 0.0125) { increasevectorLength(step) }    
26.     else {   
27.     let magnitude = sqrt(step.x * step.x + step.y * step.y)   
28.     step.magnitude } }   
29.    
30. function draw () {   
31.   stroke(250)   
32.   strokeWeight(1.8)   
33.   let step = p5.Vector.random2D()   
34.   line(currPosition.x, currPosition.y, previousPosition.x, previousPosition.y)   
35.   previousPosition.set(currPosition)   
36.   stepAccordingToProbability(step)   
37.   addVector(step) }   
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List 9- Diffusion Limited Aggregation 
****************************************** 

1. let {growingObject,maxWalkers,walkers,iterations,particleRadius} =                         
DeclareVariables()   

2.    
3. function setup () {   
4.   createCanvas(500, 500)   
5.   locateParticleRandomly()   
6.   createRandomWalkers() }   
7.    
8. // Step 1   
9. function locateParticleRandomly () {   
10.   let p1 = floor(random() * width)   
11.   let p2 = floor(random() * height)   
12.   growingObject[0] = new Walker(p1, p2) }   
13.    
14. // Step 2   
15. function createRandomWalkers () {   
16.   for (let index = 0; index < maxWalkers; index++) {   
17.     walkers[index] = new Walker() } }   
18.    
19. function draw () {   
20.   background(255)   
21.   displayOnCanvas()   
22.   fillWalkersArray();   
23.   fireWalkersInSpace()   
24.    
25.   function displayOnCanvas () {   
26.     displayGrowingObject()   
27.     displayWalkers() } }   
28.    
29. function fillWalkersArray() {   
30.   while (walkers.length < maxWalkers) {   
31.     walkers.push(new Walker()); } }   
32.    
33. function displayGrowingObject () {   
34.   for (let index = 0; index < growingObject.length; index++) {   
35.     growingObject[index].show() } }   
36.    
37. function displayWalkers () {   
38.   for (let index = 0; index < walkers.length; index++) {   
39.     walkers[index].show() } }   
40.    
41. // Steps 3 & 4   
42. function fireWalkersInSpace () {   
43.   let index = 0   
44.   while (index < iterations) {   
45.     for (let index = 0; index < walkers.length; index++) {   
46.       walkers[index].moveRandomlyInSpace()   
47.       if (walkers[index].checkCollision(growingObject)) {   
48.         attachParticle(index) } }   
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49.     index++ } }   
50.    
51. // Step 5   
52. function attachParticle (index) {   
53.   growingObject.push(walkers[index])   
54.   // Remove the walker from the array after attaching it   
55.   walkers.splice(index, 1) }   
56.    
57. function createWalkerRandomly () {   
58.   return createVector(random(width), random(height)) }   
59.    
60. function euclideanDistance (par1, par2) {   
61.   let horDistance = par2.x - par1.x   
62.   let verDistance = par2.y - par1.y   
63.   return horDistance * horDistance + verDistance * verDistance }   
64.    
65. class Walker {   
66.   constructor () {   
67.     this.setUpWalker()   
68.     this.radius = particleRadius   
69.     this.moveRandomlyInSpace = () => {   
70.       this.increaseWalkerSpeed();   
71.       this.constrainWalkerMovement() }   
72.    
73.     this.checkCollision = otherParticles => {   
74.       for (let index = 0; index < otherParticles.length; index++) {   
75.         let distance = this.calculateDistance(otherParticles, index)   
76.         if (distance <= 3 * particleRadius) {   
77.           this.collision = true   
78.           return true } }   
79.       return false }   
80.     this.show = () => {   
81.       if (this.collision) { fill(0) }   
82.        else { fill(360, 0, 255) }   
83.       ellipse(this.position.x,this.position.y,this.radius * 2,this.radius * 2 ) } }   
84.    
85.   increaseWalkerSpeed() {   
86.     let velocity = p5.Vector.random2D();   
87.     this.position.add(velocity); }   
88.    
89.   setUpWalker () {   
90.     this.position = createWalkerRandomly()   
91.     this.collision = false }   
92.    
93.   calculateDistance (otherParticles, index) {   
94.     return euclideanDistance(this.position, otherParticles[index].position) }   
95.    
96.   constrainWalkerMovement () {   
97.     this.position.x = constrain(this.position.x, 0, width)   
98.     this.position.y = constrain(this.position.y, 0, height) } }   
99.    
100.  
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101. function DeclareVariables () {   
102.   let growingObject = []   
103.   let walkers = []   
104.   let maxWalkers = 50   
105.   let iterations = 1000   
106.   let particleRadius = 2   
107.   return { growingObject, maxWalkers, walkers, iterations, particleRadius } }
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List 10- Game Of Life (Cellular Automata) 
************************************************ 

1. let checkBoard ,numOfColumns, numOfRows, cellSize = 10   
2.    
3. function setup () {   
4.   createCanvas(600, 600)   
5.   numOfColumns = width / cellSize   
6.   numOfRows = height / cellSize   
7.   createCheckboard() }   
8.    
9. function createCheckboard () {   
10.   // Determine the size for each cell   
11.   numOfColumns = width / cellSize   
12.   numOfRows = height / cellSize   
13.   checkBoard = create2DArray(numOfColumns, numOfRows)   
14.   fillGridRandomly() }   
15.    
16. function fillGridRandomly () {   
17.   for (let i = 0; i < numOfColumns; i++) {   
18.     for (let j = 0; j < numOfRows; j++) {   
19.         checkBoard[i][j] = floor(random(2)) } } }   
20.            
21. function draw () {   
22.   background(0)   
23.   whitenSurvivalCells()   
24.   determineNextState() }   
25.    
26. // Step 4   
27. function whitenSurvivalCells () {   
28.   // Loop through each cell in the checkerboard   
29.   for (let i = 0; i < numOfColumns; i++) {   
30.     for (let j = 0; j < numOfRows; j++) {   
31.       // If its current value is one, then it survives   
32.       if (checkBoard[i][j] == 1) {   
33.         fill(255) // Whiten it.   
34.         rect(i * cellSize, j * cellSize, cellSize, cellSize) }}}}   
35.    
36. function create2DArray (numOfColumns, numOfRows) {   
37.   let arr = new Array(numOfColumns)   
38.   for (let i = 0; i < arr.length; i++) {   
39.     arr[i] = new Array(numOfRows) }   
40.   return arr }   
41.    
42. // Step 3   
43. function determineNextState () {   
44.   let tempCheckBoard = create2DArray(numOfColumns, numOfRows)   
45.   for (let i = 0; i < numOfColumns; i++) {   
46.     for (let j = 0; j < numOfRows; j++) {   
47.       let cellState = checkBoard[i][j]   
48.       checkNeighborsState(i, j, cellState, tempCheckBoard)   
49.     } } checkBoard = tempCheckBoard }   
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50.        
51. function checkNeighborsState (i, j, cellState, tempCheckBoard) {   
52.   let numOfLiveNeighbors = countLiveNeighbors(checkBoard, i, j)   
53.   applyConwaysLaws(cellState, numOfLiveNeighbors, tempCheckBoard, i, j) }   
54.        
55. function applyConwaysLaws (cellState, numOfLiveNeighbors, tempCheckBoard, i, j

)   
56. {   
57.   // Reproduction phase   
58.   if (cellState == 0 && numOfLiveNeighbors == 3) { tempCheckBoard[i][j] = 1 }   
59.   // Death Phase   
60.  else if (cellState == 1 && (numOfLiveNeighbors < 2 || numOfLiveNeighbors > 3))   
61.   {   
62.     tempCheckBoard[i][j] = 0 }   
63.   // Survival Phase   
64.   else { tempCheckBoard[i][j] = cellState} }         
65.    
66. // Find the number of live neighbors for each cell   
67. function countLiveNeighbors (checkBoard, cellColumn, cellRow) {   
68.   let currentCellValue = checkBoard[cellColumn][cellRow]   
69.   let totalLiveNeighbors = 0   
70.   let neighborColumn   
71.   let neighborRow   
72.   let horizontaloffset, verticaloffset   
73.   for (horizontaloffset = -1; horizontaloffset <= 1; horizontaloffset++) {   
74.     for (verticaloffset = -1; verticaloffset <= 1; verticaloffset++) {   
75.       neighborColumn =   
76.         (cellColumn + horizontaloffset + numOfColumns) % numOfColumns   
77.       neighborRow = (cellRow + verticaloffset + numOfRows) % numOfRows   
78.       totalLiveNeighbors += checkBoard[neighborColumn][neighborRow] }}   
79.   return totalLiveNeighbors - currentCellValue }   
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List 11- Markov Chains 
*************************** 

1. let inputData = `Moira Jurek Tai Pflug Alfonzo Cohan Floria Grahm   
2. Barbera Golden Karina Clonts Deane Lauria Esteban Broder   
3. Susann Canada Aiko Balcom Benny Manley Lanora Lightsey   
4. Allison Thiessen Edmund Gathright Thomasena Broadfoot   
5. Clarice Kornreich Laurel Dameron Coleen Dangelo Penni Leech   
6. Shonta Rankins Iola Soloman Arlinda Vickery Detra Rousey   
7. Violet Aquilar Jesse Surette Cecille Barnaby Lonny Lavoie   
8. Libby Bondurant Erminia Fagan Kena Alvardo Bianca Irvin   
9. Ethelyn Hyneman Hoyt Wisneski Vincent Fuchs Valrie Rayo   
10. Laurence Hemingway Minh Yoshimura Brady Claar Thad Krueger`   
11.    
12. function setup () {   
13.   createCanvas(500, 500)   
14.   for (let index = 0; index < 10; index++) {   
15.     createP(new MarkovChain(inputData).generateNames()) } }   
16.    
17. class MarkovChain {   
18.   constructor (inputData) {   
19.     this.dictionary = Object.create(null)   
20.     this.IsDictionaryBuilt = false   
21.     this.listOfIndividualNames = inputData.split(' ')   
22.       this.startOfEachChain = [this.listOfIndividualNames[0]] }   
23.          
24.   getRandomElementOfArray (array) {   
25.       return array[Math.floor(Math.random() * array.length)] }   
26.    
27.   // get the nextWord set of listOfIndividualNames as a string   
28.   getNextWords (index) {   
29.     return this.listOfIndividualNames.slice(index, index + 1).join(' ') }   
30.    
31.   buildMarkovDictionary () {   
32.     this.listOfIndividualNames.forEach((name, index) => {   
33.       let nextWord = this.getNextWords(index + 2)   
34.       ;(this.dictionary[name] = this.dictionary[name] || []).push(nextWord)   
35.       this.startOfEachChain.push(name) })   
36.       return (this.IsDictionaryBuilt = true) }   
37.    
38.   // generateNames new text from a markov lookup   
39.     generateNames () {   
40.     if (this.buildMarkovDictionary()) {   
41.     let randomStartingName = this.getRandomElementOfArray(this.startOfEachChain

)   
42.         let randomChoice = this.getRandomElementOfArray(this.dictionary   
43.             [randomStartingName])   
44.     let array = [randomStartingName]   
45.       array.push(randomChoice)   
46.       return array.join(' ') }}}   
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List 12- Fractals / Chaos Game 
*********************************** 

1. window.onload = () => {   
2.   let sierpinskiTriangle = new SierpinskiTriangle()   
3.   for (let index = 0; index < 500; index++) {   
4.     sierpinskiTriangle.start() } }   
5.    
6. class Point {   
7.   constructor (x, y) {   
8.     this.x = x   
9.     this.y = y }   
10.    
11.   findHalfDistance (p) {   
12.     let distance = new Point(this.x - p.x, this.y - p.y)   
13.     return new Point(this.x - distance.x / 2, this.y - distance.y / 2)}}   
14.    
15. class SierpinskiTriangle {   
16.   constructor () {   
17.     this.setUpCanvas()   
18.     this.drawRectangleVertices()   
19.     this.chooseRandomPoint() }   
20.    
21.   setUpCanvas () {   
22.     this.canvas = document.getElementById('canvas')   
23.     this.x = this.canvas.width   
24.     this.y = this.canvas.height }   
25.    
26.   drawRectangleVertices () {   
27.     this.canvas = this.canvas.getContext('2d')   
28.     let p0 = this.x   
29.     let p1 = this.x / 2   
30.     this.topPoint = new Point(p1, 0)   
31.     this.leftPoint = new Point(0, p1)   
32.     this.rightPoint = new Point(p0, p1)   
33.     this.trianglePoints = [this.topPoint, this.leftPoint, this.rightPoint]   
34.     for (let index = 0; index < this.trianglePoints.length; index++) {   
35.       this.drawPoint(this.trianglePoints[index]) } }   
36.    
37.   chooseRandomPoint () {   
38.     this.randomPoint = new Point(   
39.       Math.floor(Math.random() * this.x),   
40.       Math.floor(Math.random() * this.y)) }   
41.    
42.   drawPoint (point) {   
43.     this.canvas.beginPath()   
44.     this.canvas.arc(point.x, point.y, 2.4, 0, Math.PI * 2)   
45.     this.canvas.closePath()   
46.     this.canvas.fillStyle = 'blue'   
47.     this.canvas.fill() }   
48.    
49.   
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50.  chooseMidPoint () {   
51.     let randomChoice = Math.floor(Math.random() * this.trianglePoints.length)   
52.     return this.randomPoint.findHalfDistance(this.trianglePoints[randomChoice]) }   
53.    
54.   start () {   
55.     let MiddlePoint = this.chooseMidPoint()   
56.     this.drawPoint(MiddlePoint)   
57.     this.randomPoint = MiddlePoint }}   
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List 13- Fractals / Space Colonization Algorithm 
******************************************************* 

1. let { tree, influenceDistance, killDistance } = declareVariables();   
2.    
3. function setup () {   
4.   createCanvas(500, 500)   
5.   tree = new Tree() }   
6.    
7. function draw () {   
8.   background(0)   
9.   tree.drawTree()   
10.   tree.extendTree() }   
11.    
12. class Segment {   
13.   constructor (position, direction, parent, len) {   
14.     this.position = position   
15.     this.direction = direction   
16.     this.parent = parent   
17.     this.origDirection = this.direction.copy()   
18.     this.getAttractedTimes = 0   
19.     this.len = len   
20.     this.reset = () => {   
21.       this.direction = this.origDirection.copy()   
22.       this.getAttractedTimes = 0 }   
23.    
24.     this.buildNextSegment()   
25.    
26.     this.drawSegment = () => {   
27.       if (parent != null) {   
28.         stroke(255)   
29.         line(this.position.x,this.position.y,this.parent.position.x,this.parent.position.y)}}

}   
30.    
31.   buildNextSegment () {   
32.     this.buildNext = () => {   
33.       let nextDirection = p5.Vector.mult(this.direction, this.len)   
34.       let nextPosition = p5.Vector.add(this.position, nextDirection)   
35.       let nextSegment = new Segment(nextPosition,this.direction.copy(),   
36.         this,random() * 15)   
37.       return nextSegment }}}   
38.    
39. class AttractionPoint {   
40.   constructor () {   
41.     // Locate the point randomly in the space   
42.     this.position = createVector(random(width), random(height - 170))   
43.     this.isDone = false   
44.     this.drawAttractionPoint = () => {   
45.       ellipse(this.position.x, this.position.y, 3, 3) }} }   
46.    
47.  
48.  
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49. class Tree {   
50.   constructor () {   
51.     this.createAttractionpoints()   
52.     this.segments = []   
53.     let currentSegment = this.setUpRoot()   
54.     currentSegment = this.checkRule1ForRoot(currentSegment)   
55.    
56.     this.extendTree = () => {   
57.       for (let i = 0; i < this.attractionPoints.length; i++) {   
58.         let attractionPoint = this.attractionPoints[i]   
59.         // Step 6   
60.         let attractionDistance = influenceDistance   
61.         let closestSegment = null   
62.         for (let j = 0; j < this.segments.length; j++) {   
63.           let segment = this.segments[j]   
64.           let D1 = p5.Vector.dist(attractionPoint.position, segment.position)   
65.           // Rule 2   
66.           if (D1 < killDistance) {   
67.             closestSegment = null   
68.             attractionPoint.isDone = true   
69.             break }   
70.           // Rule 1   
71.           else if (D1 < attractionDistance) {   
72.             closestSegment = segment   
73.             attractionDistance = D1 }}   
74.    
75.         PerformAttractionProcess(closestSegment, attractionPoint) }   
76.    
77.       // Remove attraction point after it is done   
78.       this.removeLeaf()   
79.       // Do only for segments that get attracted at least one time   
80.       for (let i = 0; i < this.segments.length; i++) {   
81.         let segment = this.segments[i]   
82.         if (segment.getAttractedTimes > 0) {   
83.           findAverageOfAttractionTimes(segment)   
84.           this.segments.push(segment.buildNext())   
85.           segment.reset() } } }   
86.    
87.     // Draw the tree   
88.     this.drawTree = () => {   
89.       this.drawAllAttractionPoints()   
90.       this.drawAllSegments() }}   
91.    
92.   drawAllSegments () {   
93.     for (let i = 0; i < this.segments.length; i++) {   
94.       this.segments[i].drawSegment() } }   
95.    
96.   drawAllAttractionPoints () {   
97.     for (let i = 0; i < this.attractionPoints.length; i++) {   
98.       this.attractionPoints[i].drawAttractionPoint() } }   
99.    
100.  removeLeaf () {   
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101.     for (let i = 0; i < this.attractionPoints.length; i++) {   
102.       if (this.attractionPoints[i].isDone) {   
103.         this.attractionPoints.splice(i, 1) }}}   
104.    
105.   checkRule1ForRoot (currentSegment) {   
106.     let isAttracted = false   
107.     while (!isAttracted) {   
108.       // Calculate the distance between the currentSegment segment and every   
109.       // attraction point in the space   
110.       for (let i = 0; i < this.attractionPoints.length; i++) {   
111.         let D1 = this.calculateD1(currentSegment, i)   
112.         isAttracted = DoIfRule1Holds(D1, isAttracted) }   
113.       currentSegment = this.DoIfRule1NotHold(isAttracted, currentSegment) }   
114.     return currentSegment }   
115.    
116.   calculateD1 (currentSegment, i) {   
117.     return p5.Vector.dist(   
118.       currentSegment.position,   
119.       this.attractionPoints[i].position ) }   
120.    
121.   // if the current segment can not be attached to any attraction point   
122.   // Then create a new one and make it the current segment   
123.   DoIfRule1NotHold (isAttracted, currentSegment) {   
124.     if (!isAttracted) {   
125.       let segment = currentSegment.buildNext()   
126.       currentSegment = segment   
127.       this.segments.push(currentSegment) }   
128.     return currentSegment }   
129.    
130.   setUpRoot () {   
131.     // The position of the root in the center of the canvas   
132.     let position = createVector(width / 2, height)   
133.     // Make the root pointing up   
134.     let direction = createVector(0, -1)   
135.     let rootLength = random() * 24   
136.     let root = createTreeRoot(position, direction, rootLength)   
137.     this.segments.push(root)   
138.     let currentSegment = root   
139.     return currentSegment }   
140.    
141.   createAttractionpoints () {   
142.     this.attractionPoints = []   
143.     for (let i = 0; i < 80; i++) {   
144.       this.attractionPoints.push(new AttractionPoint()) } } }   
145.    
146. function findAverageOfAttractionTimes (segment) {   
147.   segment.direction.div(segment.getAttractedTimes + 1) }   
148.    
149.  
150.  
151.  
152.  
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153. // Steps 4 & 5   
154. function PerformAttractionProcess (closestSegment, attractionPoint) {   
155.   if (closestSegment != null) {   
156.     let newSegmentDirection = findCloserSegment(attractionPoint,                     

closestSegment)   
157.     newSegmentDirection.normalize()   
158.     closestSegment.direction.add(newSegmentDirection)   
159.     closestSegment.getAttractedTimes++ } }   
160.    
161. function findCloserSegment (attractionPoint, closestSegment) {   
162.   return p5.Vector.sub(attractionPoint.position, closestSegment.position) }   
163.    
164. function DoIfRule1Holds (D1, isAttracted) {   
165.   if (D1 < influenceDistance) {   
166.     isAttracted = true }   
167.   return isAttracted }   
168.    
169. function createTreeRoot (position, direction, rootLength) {   
170.   return new Segment(position, direction, null, rootLength) }   
171.    
172. function declareVariables() {   
173.     let tree;   
174.     let influenceDistance = 150;   
175.     let killDistance = 10;   
176.     return { tree, influenceDistance, killDistance }; }   
177.      
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List 14- Fractals / L-Systems – 1-  
************************************* 

1. window.onload = () => {   
2.   createP(axiom)   
3.   for (let index = 0; index < 3; index++) {   
4.     generateLSystem() } }   
5.          
6. const axiom = 'A'   
7. let sentence = axiom   
8. const { firstRule, secondRule } = MakeRules()   
9.    
10. function setup () {}   
11.    
12. function MakeRules () {   
13.   const firstRule = { currentState: 'A', nextState: 'AABA' }   
14.   const secondRule = { currentState: 'B', nextState: 'ABBBA' }   
15.   return { firstRule, secondRule } }    
16.    
17. function generateLSystem () {   
18.   let index = 0 , nextSentence = ' '   
19.   while (index < sentence.length) {   
20.     let currentCell = sentence.charAt(index)   
21.     switch (currentCell) {   
22.       case firstRule.currentState:   
23.         nextSentence += firstRule.nextState   
24.         break   
25.       case secondRule.currentState:   
26.         nextSentence += secondRule.nextState   
27.         break   
28.       default:   
29.         nextSentence += currentCell   
30.         break }   
31.     index++ }   
32.   sentence = nextSentence   
33.   createP(sentence) }   
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List 15- Fractals / L-Systems -2-  
************************************ 

1. window.onload = () => {   
2.   for (let index = 0; index < 4; index++) {   
3.     generateFractalTree() } }   
4.    
5. let rules = [],rotationAngle,axiom = 'F',sentence = axiom,branchLength = 80   
6.    
7. makeRule()   
8.    
9. function generateFractalTree () {   
10.   branchLength *= 0.5   
11.   let nextSentence = ''   
12.   for (let index = 0; index < sentence.length; index++) {   
13.     let current = sentence.charAt(index)   
14.     let existed = false   
15.     for (let j = 0; j < rules.length; j++) {   
16.       if (current == rules[j].currentState) {   
17.         existed = true   
18.         nextSentence += rules[j].nextState   
19.         break }}   
20.     if (!existed) {   
21.       nextSentence += current } }   
22.   sentence = nextSentence   
23.   createP(sentence)   
24.   drawFractalTree() }   
25.    
26. function drawFractalTree () {   
27.   resetMatrix()   
28.   stroke(0)   
29.   translate(width / 2, height)   
30.   interpretRules() }   
31.    
32. function interpretRules () {   
33.   for (let index = 0; index < sentence.length; index++) {   
34.     let current = sentence.charAt(index)   
35.     switch (current) {   
36.       case '[':  push()   
37.         break   
38.       case ']':  pop()   
39.         break   
40.       case 'F':   
41.                  line(0, 0, 0, -branchLength)   
42.                  translate(0, -branchLength)   
43.         break   
44.       case '+':  rotate(rotationAngle)   
45.         break   
46.       case '-':  rotate(-rotationAngle)   
47.         break } } }   
48.    
49. function setup () {   
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50.   createCanvas(350, 350)   
51.   rotationAngle = radians(40)   
52.   createP(axiom)   
53.   drawFractalTree() }   
54.    
55. function makeRule () {   
56.   rules[0] = {   
57.     currentState: 'F',   
58.     nextState: 'F[+FF][-FF]F[-F][+F]F' } }   
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List 16- Fractals / Barnsley Fern  
************************************ 

1. let Coefficients = declareEquationCoefficients()   
2. let x = Math.random()   
3. let y = Math.random()   
4.    
5. function declareEquationCoefficients () {   
6.   return [   
7.     { a: 0,       b: 0,       c: 0,        d: 0.16,  e: 0,  f: 0,      probabilityFactor: 0.01 },   
8.     { a: 0.85,  b: 0.04,  c: -0.04,  d: 0.85,  e: 0,  f: 1.6,   probabilityFactor: 0.85},   
9.     { a: 0.2,    b: -0.26, c: 0.23,   d: 0.22,  e: 0,  f: 1.6,   probabilityFactor: 0.07 },   
10.     { a: -0.15, b: 0.28,  c: 0.26,   d: 0.24,  e: 0,  f: 0.44, probabilityFactor: 0.07 }   
11.   ]}   
12.    
13. function setup () {   
14.   createCanvas(400, 400) }   
15.    
16. function draw () {   
17.   for (let index = 0; index < 200; index++) {   
18.     FindNextPoint()   
19.     let { x1, y1 } = constrainDrawing()   
20.     makeItGreen()   
21.     strokeWeight(0.5)   
22.     point(x1, y1) } }   
23.    
24. function makeItGreen () {   
25.   let greenColor = color(0, 128, 0)   
26.   stroke(greenColor) }   
27.    
28. function constrainDrawing () {   
29.   let x1 = map(x, -2.5, 3, 0, width)   
30.   let y1 = map(y, -1, 11, height, 0)   
31.   return { x1, y1 } }   
32.    
33. function FindNextPoint () {   
34.   let randomValue = Math.random(),newX, newY   
35.   for (let index = 0; index < Coefficients.length; index++) {   
36.     if (randomValue < Coefficients[index].probabilityFactor) {   
37.       ;({ newX, newY } = applyAffineTransformations(newX, index, newY))   
38.       break }   
39.     randomValue -= Coefficients[index].probabilityFactor   
40.     ;({ newX, newY } = applyAffineTransformations(newX, index, newY))}   
41.   x = newX   
42.   y = newY }   
43.    
44. function applyAffineTransformations (newX, index, newY) {   
45.   newX =x * Coefficients[index].a +y * Coefficients[index].b +Coefficients[index].e   
46.   newY =x * Coefficients[index].c +y * Coefficients[index].d +Coefficients[index].f   
47.   return { newX, newY }}   
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List 17- Voronoi Diagrams  
******************************* 

1. window.onload = () => plotVoronoiDiagram()   
2. function declareVariables () {   
3.   let cvs = document.getElementById(`canvas`)   
4.   let ctx = cvs.getContext('2d')   
5.   let w = cvs.width   
6.   let h = cvs.height   
7.   let x = (k = distance1 = distance2 = j = 0)   
8.   let w1 = w - 2   
9.   let h1 = h - 2   
10.   let firstArray = new Array(100)   
11.   secondArray = new Array(100)   
12.   thirdArray = new Array(100)   
13.   return { ctx, w, h, firstArray, secondArray, thirdArray, w1, h1, x } }   
14.    
15. function fillArraysRandomly (firstArray, w1, h1) {   
16.   for (let index = 0; index < 100; index++) {   
17.     firstArray[index] = Math.floor(Math.random() * w1)   
18.     secondArray[index] = Math.floor(Math.random() * h1)   
19.     thirdArray[index] = generateHexColor() }}   
20.    
21. function generateHexColor () {   
22.   let generatedColor = '#'   
23.   let hexAlphabet = '0123456789ABCDEF'   
24.   for (let index = 0; index < 4; index++) {   
25.     generatedColor += hexAlphabet[Math.floor(Math.random() * 16)] }   
26.   return generatedColor }   
27.    
28. function fillWithWhite (ctx, w, h) {   
29.   ctx.fillStyle = 'white'   
30.   ctx.fillRect(0, 0, w, h) }   
31.    
32. function FindEculideanDistance (h1, w1, firstArray, x) {   
33.   distance2 = Math.sqrt(h1 * h1 + w1 * w1)   
34.   j = -1   
35.   for (let index = 0; index < 100; index++) {   
36.     distance1 = Math.sqrt( (firstArray[index] - x) * (firstArray[index] - x) +   
37.         (secondArray[index] - k) * (secondArray[index] - k) )   
38.     if (distance1 < distance2) {   
39.       distance2 = distance1   
40.       j = index }}}   
41.    
42. function plotVoronoiDiagram () {   
43.   let { ctx, w, h, firstArray, w1, h1, x } = declareVariables()   
44.   fillWithWhite(ctx, w, h)   
45.   fillArraysRandomly(firstArray, w1, h1)   
46.   x = drawVoronoiRegions(h1, x, w1, firstArray, ctx)   
47.   drawDataPoints(ctx, firstArray) }   
48.    
49. function drawVoronoiRegions (h1, x, w1, firstArray, ctx) {   
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50.   for (k = 0; k < h1; k++) {   
51.     for (x = 0; x < w1; x++) {   
52.       FindEculideanDistance(h1, w1, firstArray, x)   
53.       ctx.fillStyle = thirdArray[j]   
54.       ctx.fillRect(x, k, 3, 3)}}   
55.   return x }   
56.    
57. function drawDataPoints (ctx, firstArray) {   
58.   ctx.fillStyle = 'black'   
59.   for (let index = 0; index < 100; index++) {   
60.     ctx.fillRect(firstArray[index], secondArray[index], 4, 4) }}   
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List 18- Maze Generation / Recursive Backtracker  
********************************************************* 

1. let { numOfColumns, cellSize, numOfRows, grid, currentCell, stack } =                      
declareVariables();   

2.    
3. function createGrid () {   
4.   numOfColumns = floor(width / cellSize)   
5.   numOfRows = floor(height / cellSize)   
6.   fillGridWithCells() }   
7.    
8. function fillGridWithCells () {   
9.   for (let row = 0; row < numOfRows; row++) {   
10.     for (let column = 0; column < numOfColumns; column++) {   
11.       let cell = new Cell(column, row)   
12.       grid.push(cell) } } }   
13.    
14. function generateMaze () {   
15.   DoForInitialCell()   
16.   DoForUnvisitedCells()   
17.    
18.   function DoForUnvisitedCells () {   
19.     let nextCell = currentCell.checkIfNeighboursVisited()   
20.     if (nextCell) {   
21.       stack.push(currentCell)   
22.       removeWalls(currentCell, nextCell)   
23.       currentCell = nextCell   
24.         nextCell.visited = true }   
25.      else if (stack.length > 0) { currentCell = stack.pop() } }   
26.    
27.   function DoForInitialCell () {   
28.     currentCell.visited = true   
29.     currentCell.markAsVisited() } }   
30.    
31. class Cell {   
32.   constructor (column, row) {   
33.     this.walls = [true, true, true, true]   
34.     this.column = column   
35.     this.row = row   
36.     this.visited = false   
37.     this.checkIfNeighboursVisited = () => {   
38.       let neighbors = []   
39.       let { top, right, bottom, left } = this.findNeighboursLocation(column,row)   
40.       this.addToStack(top, neighbors, right, bottom, left)   
41.       if (neighbors.length > 0) {   
42.         let randomNumber = floor(random(0, neighbors.length))   
43.           return neighbors[randomNumber] }   
44.       else { return undefined } }   
45.     this.markAsVisited = () => {   
46.       let { x, y } = this.findCellLocation()   
47.       colorVisitedCell(x, y) }   
48.     this.displayCell = () => {   
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49.       let { x, y } = this.findCellLocation()   
50.       stroke(255)   
51.       this.drawWalls(x, y) } }   
52.    
53.   findCellLocation () {   
54.     let x = this.column * cellSize   
55.     let y = this.row * cellSize   
56.     return { x, y } }   
57.    
58.   drawWalls (x, y) {   
59.     this.drawTopWall(x, y)   
60.     this.drawRightWall(x, y)   
61.     this.drawBottomWall(x, y)   
62.     this.drawLeftWall(x, y) }   
63.    
64.   drawLeftWall (x, y) {   
65.     if (this.walls[3]) line(x, y + cellSize, x, y) }   
66.    
67.   drawBottomWall (x, y) {   
68.     if (this.walls[2]) line(x + cellSize, y + cellSize, x, y + cellSize) }   
69.    
70.   drawRightWall (x, y) {   
71.     if (this.walls[1]) line(x + cellSize, y, x + cellSize, y + cellSize) }   
72.    
73.   drawTopWall (x, y) {   
74.     if (this.walls[0]) line(x, y, x + cellSize, y) }   
75.    
76.   addToStack (top, neighbors, right, bottom, left) {   
77.     addTopNeighbour(top, neighbors)   
78.     addRightNeighbour(right, neighbors)   
79.     addBottomNeighbour(bottom, neighbors)   
80.     addLeftNeighbour(left, neighbors) }   
81.    
82.   findNeighboursLocation (column, row) {   
83.     let top = topNeighbourLocation(column, row)   
84.     let right = rightNeighbourLocation(column, row)   
85.     let bottom = bottomNeighbourLocation(column, row)   
86.     let left = leftNeighbourLocation(column, row)   
87.     return { top, right, bottom, left } } }   
88.    
89. function leftNeighbourLocation (column, row) {   
90.   return grid[findCellIndex(column - 1, row)] }   
91.    
92. function bottomNeighbourLocation (column, row) {   
93.   return grid[findCellIndex(column, row + 1)] }   
94.    
95. function rightNeighbourLocation (column, row) {   
96.   return grid[findCellIndex(column + 1, row)] }   
97.    
98. function topNeighbourLocation (column, row) {   
99.   return grid[findCellIndex(column, row - 1)] }   
100.    
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101. function addLeftNeighbour (left, neighbors) {   
102.   if (left && !left.visited) neighbors.push(left) }   
103.    
104. function addBottomNeighbour (bottom, neighbors) {   
105.   if (bottom && !bottom.visited) neighbors.push(bottom) }   
106.    
107. function addRightNeighbour (right, neighbors) {   
108.   if (right && !right.visited) neighbors.push(right) }   
109.    
110. function addTopNeighbour (top, neighbors) {   
111.   if (top && !top.visited) neighbors.push(top) }   
112.    
113. function colorVisitedCell (x, y) {   
114.   fill(250, 250, 255, 200)   
115.   rect(x, y, cellSize, cellSize) }   
116.    
117. function findCellIndex (column, row) {   
118.   return column < 0 || row < 0 || column > numOfColumns - 1 ||    
119.   row > numOfRows - 1  ? -1 : column + row * numOfColumns } 
120.  
121.    
122. function removeWalls (cell1, cell2) {   
123.   removeWallForAdjacentCells(cell1, cell2)   
124.   removeWallForOrthogonalCells(cell1, cell2) }   
125.    
126. function removeWallForOrthogonalCells (cell1, cell2) {   
127.   let index = cell1.row - cell2.row   
128.   switch (index) {   
129.     case -1:  cell1.walls[2] = false   
130.               cell2.walls[0] = false   
131.       break   
132.     case 1:   cell1.walls[0] = false   
133.               cell2.walls[2] = false   
134.       break } }   
135.    
136. function removeWallForAdjacentCells (cell1, cell2) {   
137.   let index = cell1.column - cell2.column   
138.   switch (index) {   
139.       case -1:   cell1.walls[1] = false   
140.                  cell2.walls[3] = false   
141.       break   
142.       case 1:    cell1.walls[3] = false   
143.                  cell2.walls[1] = false   
144.       break } }   
145.    
146. function setup () {   
147.   createCanvas(300, 300)   
148.   createGrid()   
149.   currentCell = grid[0] }   
150.    
151.  
152.  
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153. function draw () {   
154.   background(0)   
155.   showGrid()   
156.   generateMaze() }   
157.    
158. function showGrid () {   
159.   for (let column = 0; column < grid.length; column++) {   
160.     grid[column].displayCell() } }   
161.    
162. function declareVariables() {   
163.    let currentCell, stack = [], grid = [], cellSize = 20, numOfColumns,          

   numOfRows; 
164.     return { numOfColumns, cellSize, numOfRows, grid, currentCell, stack };}   
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List 19- Maze Generation / Reaction Diffusion Algorithm  
***************************************************************** 

1. let { mainGrid, auxiliaryGrid, Db, killRate, feedRate, Da } = declareVariables();   
2.    
3. function setup () {   
4.   createCanvas(300, 300)   
5.   pixelDensity(1)   
6.   fillGridWithOnlyChemical_A()   
7.   fillPartiallyWithChemical_B() }   
8.    
9. function fillPartiallyWithChemical_B () {   
10.   let p = width / 2   
11.   for (let i = p; i < p + 30; i++) {   
12.     for (let j = p; j < p + 30; j++) {   
13.       mainGrid[i][j].chemical_B_amount = 1 } } }   
14.    
15. function fillGridWithOnlyChemical_A () {   
16.   mainGrid = []   
17.   auxiliaryGrid = []   
18.   for (let x = 0; x < width; x++) {   
19.     mainGrid[x] = []   
20.     auxiliaryGrid[x] = []   
21.     for (let y = 0; y < height; y++) {   
22.       mainGrid[x][y] = { chemical_A_amount: 1, chemical_B_amount: 0 }   
23.       auxiliaryGrid[x][y] = { chemical_A_amount: 1, chemical_B_amount: 0 }}}}   
24.    
25. function draw () {   
26.   background(255)   
27.   calculateNewChemicalValues()   
28.   loadPixels()   
29.   colorPixels()   
30.   updatePixels()   
31.   swap() }   
32.    
33. function colorPixels () {   
34.   for (let x = 0; x < width; x++) {   
35.     for (let y = 0; y < height; y++) {   
36.       let { pixelLocation, grayScaleColor } = findGrayColor(x, y)   
37.       colorSinglePixel(pixelLocation, grayScaleColor) } } }   
38.    
39. function colorSinglePixel (pixelLocation, grayScaleColor) {   
40.   pixels[pixelLocation + 0] = grayScaleColor   
41.   pixels[pixelLocation + 1] = grayScaleColor   
42.   pixels[pixelLocation + 2] = grayScaleColor   
43.   pixels[pixelLocation + 3] = 255 }   
44.    
45. function findGrayColor (x, y) {   
46.   let pixelLocation = (x + y * width) * 4   
47.   let chemical_A_amount = auxiliaryGrid[x][y].chemical_A_amount   
48.   let chemical_B_amount = auxiliaryGrid[x][y].chemical_B_amount   
49.   let grayScaleColor = floor((chemical_A_amount - chemical_B_amount) * 255)   
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50.   grayScaleColor = constrain(grayScaleColor, 0, 255)   
51.   return { pixelLocation, grayScaleColor } }   
52.    
53. function calculateNewChemicalValues () {   
54.   for (let x = 1; x < width - 1; x++) {   
55.     for (let y = 1; y < height - 1; y++) {   
56.       let chemical_A_amount = mainGrid[x][y].chemical_A_amount   
57.       let chemical_B_amount = mainGrid[x][y].chemical_B_amount   
58.       applyEquationForChemical_A(x, y, chemical_A_amount, chemical_B_amount)   
59.       applyEquationForChemical_B(x, y, chemical_B_amount, chemical_A_amount)   
60.       constrainChemicalValues(x, y) }}}   
61.    
62. function constrainChemicalValues (x, y) {   
63.   auxiliaryGrid[x][y].chemical_A_amount = constrain(   
64.   auxiliaryGrid[x][y].chemical_A_amount,0,1)   
65.   auxiliaryGrid[x][y].chemical_B_amount = constrain(   
66.     auxiliaryGrid[x][y].chemical_B_amount, 0,1 ) }   
67.    
68. function swap () {   
69.   let tmp = mainGrid   
70.   mainGrid = auxiliaryGrid   
71.   auxiliaryGrid = tmp }   
72.    
73. function applyEquationForChemical_B (x,y,chemical_B_amount,chemical_A_amou

nt) {   
74.   auxiliaryGrid[x][y].chemical_B_amount =chemical_B_amount +   
75.     Db * applyLaplaceConvolution(x, y, 'chemical_B_amount') +   
76.     chemical_A_amount * chemical_B_amount * chemical_B_amount -   
77.     (killRate + feedRate) * chemical_B_amount }   
78.    
79. function applyEquationForChemical_A (x,y,chemical_A_amount,chemical_B_amou

nt) {   
80.   auxiliaryGrid[x][y].chemical_A_amount = chemical_A_amount +   
81.     Da * applyLaplaceConvolution(x, y, 'chemical_A_amount') -   
82.     chemical_A_amount * chemical_B_amount * chemical_B_amount +   
83.     feedRate * (1 - chemical_A_amount) }   
84.    
85. function applyLaplaceConvolution (x, y, value) {   
86.   let wieght = 0   
87.   let centerCellWieght = mainGrid[x][y][value] * -1   
88.   wieght += centerCellWieght   
89.   wieght = calculateAdjacentCellsWeight(wieght, x, y, value)   
90.   wieght = calculateDiagonalCellsWeight(wieght, x, y, value)   
91.   return wieght }   
92.    
93. function calculateDiagonalCellsWeight (wieght, x, y, value) {   
94.   wieght += mainGrid[x - 1][y - 1][value] * 0.05   
95.   wieght += mainGrid[x - 1][y + 1][value] * 0.05   
96.   wieght += mainGrid[x + 1][y - 1][value] * 0.05   
97.   wieght += mainGrid[x + 1][y + 1][value] * 0.05   
98.   return wieght }   
99.    
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100. function calculateAdjacentCellsWeight (wieght, x, y, value) {   
101.   wieght += mainGrid[x - 1][y][value] * 0.2   
102.   wieght += mainGrid[x + 1][y][value] * 0.2   
103.   wieght += mainGrid[x][y + 1][value] * 0.2   
104.   wieght += mainGrid[x][y - 1][value] * 0.2   
105.   return wieght }   
106.    
107. function declareVariables() {   
108.   let mainGrid, auxiliaryGrid, Da = 1, Db = 0.5, feedRate = 0.0545, killRate = 

0.062;   
109.   return { mainGrid, auxiliaryGrid, Db, killRate, feedRate, Da }; }   
110.      
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List 20- Procedural Flowers  
********************************* 

1. function setup () {   
2.   createCanvas(600, 600) }   
3.    
4. function createFlowerPattern () {   
5.   beginShape()   
6.   for (let theta = 0; theta < TWO_PI; theta += 0.04) {   
7.     let radius = calculateRadius(theta)   
8.     let { x, y } = convertPolarToCartesian(radius, theta)   
9.     vertex(x, y) }   
10.   endShape(CLOSE) }   
11.    
12. function calculateRadius (theta) {   
13.   return 150 * cos(k * theta) }   
14.    
15. function convertPolarToCartesian (radius, theta) {   
16.   let x = radius * cos(theta)   
17.   let y = radius * sin(theta)   
18.   return { x, y } }   
19.    
20. function startDrawingFromCenter () {   
21.   translate(width / 2, height / 2) }   
22.    
23. function draw () {   
24.   background(255)   
25.   startDrawingFromCenter()   
26.   createFlowerPattern() }   
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List 21- Infinite Terrain / Main 
************************************* 

1. using UnityEngine;   
2. using System.Collections;   
3. using System;   
4.    
5. public class Main : MonoBehaviour   
6. {   
7.     public float x1 = 0.1F;   
8.     public float y1 = 0.1F;   
9.     public float seed = 0.25F;   
10.     public Vector3 coordinateAdjustment;   
11.     public GameObject tile;   
12.     public Sprite[] mainImages;   
13.     public int width = 40;   
14.     public int height = 40;   
15.     public Transform Player;   
16.     public float DistanceBeforeRedrawing = 9;   
17.     public SpriteRenderer[,] theRenerers;   
18.    
19.     private void RedrawTerrainForever()   
20.     {   
21.         MoveTerrainToSurroundPlayer();   
22.         RenderTerrainUsingPerlinNoise(); }   
23.    
24.     private void MoveTerrainToSurroundPlayer() {   
25.         transform.position = new Vector3((int)Player.position.x, (int)Player.position.y, 

Player.position.z); }   
26.    
27.     private void RenderTerrainUsingPerlinNoise() {   
28.         for (int i = 0; i < width; i++) {   
29.             x1 += seed;   
30.             for (int j = 0; j < height; j++) {   
31.                 y1 += seed;   
32.                 theRenerers[i, j].sprite = mainImages[ Mathf.RoundToInt((  

Mathf.PerlinNoise(x1,y1))*8)]; } } }   
33.    
34.     private void SetUpTile() {   
35.         coordinateAdjustment = new Vector3(0 - width / 2, 0 - height / 2, 0);   
36.         int OrderOfLayer = 0, i = 0;   
37.         while (i < width)   
38.         {   
39.             for (int j = 0; j < height; j++)   
40.             {   
41.                 tile = new GameObject();   
42.                 tile.transform.position = new Vector3(i, j, 0) + coordinateAdjustment;   
43.                 SpriteRenderer overlap = theRenerers[i, j] = tile.AddComponent 

<SpriteRenderer>();   
44.                 overlap.sortingOrder = OrderOfLayer--;   
45.                 tile.transform.parent = transform;   
46.             }   
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47.             i++; }   }   
48.    
49.     private bool ShouldRedraw() {   
50.         return DistanceBeforeRedrawing < Vector3.Distance(Player.position, transform

.position) ? true : false; }   
51.    
52.     private void Start() {   
53.         theRenerers = new SpriteRenderer[width, height];   
54.         SetUpTile();   
55.         RedrawTerrainForever(); }   
56.    
57.     private void Update() {   
58.         if (ShouldRedraw()) {   
59.             RedrawTerrainForever(); } } }   
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List 22- Infinite Terrain / Move 
************************************* 

1. using UnityEngine;   
2. using System.Collections;   
3.    
4. public class Move : MonoBehaviour   
5. {   
6.     private float defaultSpeed = 1;   
7.     private KeyCode increaseSpeed = KeyCode.S;   
8.    
9.     public float DefaultSpeed { get => defaultSpeed; set => defaultSpeed = value; }   
10.     public KeyCode IncreaseSpeed { get => increaseSpeed; set => increaseSpeed =     

value; }   
11.    
12.     private Vector3 selectDirection() {   
13.      return   new Vector3(Input.GetAxis("Horizontal"), Input.GetAxis("Vertical"), 0); 

}   
14.    
15.     private void moveTheScene() {   
16.         if (Input.GetKey(increaseSpeed))   
17.         { fastSpeed(); }   
18.         normalSpeed(); }   
19.    
20.     private void normalSpeed() {   
21.         transform.Translate(selectDirection() * defaultSpeed * Time.deltaTime);}   
22.     private void fastSpeed()   
23.     { transform.Translate(selectDirection() * 3 * Time.deltaTime); }   
24.    
25.     void Start() { }   
26.    
27.     void Update() { moveTheScene(); } }   
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