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Summary

The vast majority of research in the field of robotics has over the last few decades shifted
from industrial robots—in the sense of robots mounted in a structured environment such as
a factory floor—to robots operating in unstructured and harsh environments. Even though
industrial robotics has become a mature research field we believe that there is still room
for progress and improvement. In fact, we show this through both theoretical advances
and experimental results in this thesis. However, the main focus of most researchers today
has shifted towards autonomous robots and robots in unstructured environments, and this
is also the main focus of the work presented here.

This thesis is concerned with the borderline between the mature technology that in-
cludes conventional industrial robots and robots operating in unstructured and harsh envi-
ronments, an area that is still undergoing considerable advances. The oil fields of the future
will have to adopt solutions from both mature and evolving technologies—including the
borderline between them—and we will use this application to illustrate the practical im-
portance of the theoretical results throughout the thesis. Several tasks to be performed by
the robot on the oil fields of the future resemble the tasks performed by industrial robots
on the factory floor in thousands of factories around the world today. In this sense we may
consider this a mature and robust technology. At the same time the robots will have to
work in an unstructured environment with little or no direct human intervention and au-
tonomous operation is required also for non-routine tasks. In this sense, the oil platforms
of the future present us with an interesting case study.

We believe there to be two main issues that need to be addressed before partially or
completely robotised oil platforms will see the light of day. The first is concerned with
robustness. Robotic solutions will only be applied to tasks where the efficiency, accuracy,
repeatability, and robustness surpass those of the human operator performing the same
tasks. Remotely located oil platforms, and especially the ones located in sensitive areas
such as the Barents Sea, are characterised by strict legislative standards to protect the
environment and the wildlife. Any installation involving petrochemicals such as oil and
gas will have to show for robust and reliable solutions at every stage of the operation.
Thus, any operation involving robots will have to meet very high standards when it comes
to robustness and fault tolerance. This imposes great challenges on the oil companies that
are to operate in these areas.

The second issue is concerned with the effectiveness and cost efficiency of the opera-
tion. An experienced human operator has an incredible capability to find efficient solutions
to both routine tasks and unexpected occurrences. The robotics system should also strive
to solve any task in an optimal manner. Effective and cost efficient operation is vital to
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be able to justify the high investment in research and installation related with robotised oil
fields. Thus, for these systems to be interesting for the oil companies the daily operation
should not only be more robust compared to human operators, it should also be more cost
efficient to guarantee that the investment in expensive robotic equipment pays off.

When it comes to remotely located oil fields, effectiveness and robustness are very
much related. The main economical risk involved with the operation of oil platforms
today is unscheduled shutdowns. Unscheduled shutdowns, as well as planned maintenance
shutdowns, should be made as short as possible and if possible avoided. A robust solution
with less chance of failure is thus something the oil companies strive for also with the
economical gain as a motivation.

This thesis is divided into four main parts. Part I is concerned with a large class of
robotic systems that will play a very important role in the operation of remotely located oil
platforms, namely vehicle-manipulator systems. One application of such systems is sub-
sea installations where humans do not have direct access. The use of robots mounted on
a underwater vehicles is believed to be the on-shore operator’s main tool for surveillance
and operation of these fields. We are mainly concerned with the mathematical modelling
of a large class of systems, including vehicle-manipulator systems. The main contribution
of this part is the derivation of the dynamics of a general class of vehicle-manipulator sys-
tems that also allows for joints that cannot be represented with generalised coordinates.
These types of joints are often subject to singularities in the representation, but we use Lie
groups and Lie algebras to represent the transformation between the local and global ve-
locity variables and thus obtain a singularity-free formulation of the dynamics. The papers
that are published in this part serve as a detailed study of vehicle-manipulator systems
and are also intended to introduce these results to some relevant research areas where a
singularity-free formulation is not normally adopted. We show that with our formulation
we obtain a set of dynamic equations with the same complexity as the conventional La-
grangian approach but without singularities. The joints are classified depending on what
Lie group we use to represent the configuration space so we can easily build a library of
joints types for easy implementation in a simulation environment.

While Part I is mainly concerned with robustness in the sense that a suitable mathe-
matical representation is chosen, Part II deals with robustness of the manipulator design.
Specifically we address the problem of joint failure, i.e. when the joint loses its actuation
and becomes a passive joint. This is an extremely serious situation as the passive joints in
general cannot be controlled, and external forces, such as gravity or inertial forces, may
cause the manipulator to collapse. This can result in severe damage to the robot’s sur-
roundings. Based on a geometric approach, we thus analyse in detail the effects of joint
failure on serial and parallel manipulators. We find that for serial manipulators this should
be dealt with in the control of the robot once a joint failure is identified. For parallel
manipulators, however, this should be dealt with in the design of the manipulator. We
present a complete set of rules on how to choose the active and passive joints in a parallel
manipulator in order to guarantee fault tolerance.

Maintenance tasks on oil platforms are very important and especially for platforms
situated in high sea, cold locations, and rough environments in general. The corrosion due
to the salt water is for example very damaging to both the platform construction and the
process area of the platform. High pressure water blasting is thus essential for maintenance
and cleaning of the equipment. High pressure water blasting is also used for removing ice
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and preparing the surfaces to be painted. Painting the huge surfaces of the platform with
frequent intervals is another very time consuming task that needs to be performed by the
robots. In Part III we show how we can improve efficiency for robots that are to perform
these tasks by introducing an extended definition of functional redundancy. All the tasks
above are so called pointing tasks, i.e. tasks where only the direction of the robot tool
is of concern and not the orientation. We extend this definition to also allow a small
error in the orientation of the robot tool. For these tasks a small error in the orientation
will not affect the quality of the job, but—as we illustrate through both theoretical and
experimental results—this allows us to substantially reduce the time needed to perform
the task. We show how to cast the problem of finding the optimal orientation error into a
convex optimisation problem that allows us to find the solution in real time. This makes
the approach suitable for several tasks performed by the robotic systems on oil platforms,
but also for spray paint and welding applications in factory installations.

The process area on an oil platform is very complex and the use of redundant manip-
ulators to get access to every part of the robot is inevitable. The inverse kinematics of
redundant robots, however, is challenging due to the infinite number of solutions to the
problem. There are also other robots that do not have a known analytical solution to the
inverse kinematics problem. One example is robots with complex geometry, which often
occurs when we put the cables connecting the tool and the base on the inside of the manip-
ulator structure. Similarly to kinematically redundant manipulators there is in this case no
known solution to the inverse kinematics problem, which thus needs to be solved numeri-
cally. In Part IV we present a set of iterative solutions to the inverse kinematics problem.
We divide the problem into several sub-problems that can be solved analytically. Due
to the analytical solution of every sub-problem we are able to solve the inverse kinemat-
ics problem very efficiently. The approach is also very robust compared to conventional
Jacobian-based methods when the initial point is far from the solution. We also present
an alternative formulation of the gradient method where we solve both the problem of
finding the gradient and the search along the gradient analytically. Even thought our “gra-
dient” is only an approximation of the actual gradient, the approach is computationally
very efficient and a solution is found very quickly.

This thesis addresses several different topics in robotics. All the results presented can
be applied to off-shore robotics, but there are also other applications where the results are
indeed applicable. As the project has progressed we have discovered several of these alter-
native applications and in some cases the theory presented is just as relevant in areas other
than where it was originally intended. We have included several examples including space
robotics and industrial spray paint robots to illustrate this, and we believe this diversity in
terms of applications strengthens the theoretical results presented throughout the thesis.
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Chapter 1

Introduction

1.1 Robotic Solutions in Off-Shore Applications

There is a strong consensus that off-shore oil fields are undergoing a fundamental change
in the way they are operated: from mainly human operation to a completely or partially
automated operation where robots perform the different tasks and with humans mainly as
observers and supervisors (Skourup and Pretlove, 2009). This change has not yet taken
effect, but the increasing interest, both through research projects and financial investment
from oil companies and robot manufacturers, suggests that this change will come in the
very near future.

There are two main motivations behind this fundamental change. The first is increased
productivity and cost efficient solutions due to more reliable solutions, less manpower,
and smaller platforms through the removal of living facilities. The second motivation—
and maybe the most important one—is that the oil fields of the future cannot be built with
today’s technology. Challenges such as deeper water, remote locations, and challenging
weather conditions require new technology.

The transition from platforms operated by humans to more autonomous solutions will
involve many interesting aspects, especially when it comes to utilising solutions taken from
industrial robots in unstructured and far more challenging areas. In this thesis we discuss
several topics in robotics that need to be solved before this transition can take place.

1.1.1 Oil Fields of the Future

On existing oil fields robotic solutions are already used for several tasks, but this is in gen-
eral limited to very specialised niche applications or tasks that cannot or are too dangerous
to be performed by humans. One example is the use of remotely operated underwater
vehicles for inspection of subsea processes. This technology is now developed to a level
where it can be considered functional as well as relatively robust. For topside1 applica-
tions, however, we have not seen the same interest in developing robotic solutions. This is

1Topside means offshore oil and gas installations and ships above the water level.
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Figure 1.1: The offshore Statoil Troll A gas platform located in the North Sea. Note the large living
facilities on the right, which is required due to the large number of workers on the platform. Courtesy
ABB Strategic R&D for Oil, Gas and Petrochemicals.

mainly because, up to today, this has not been cost efficient, nor has it improved the safety
aspects of the operation.

This has, however, changed over the last decade and new technology is believed to
introduce robotic solutions to a wider range of applications. There are many reasons for
this. Firstly, new and cheaper technology has made the use of robotic solutions more cost
efficient than flying human operators to distant fields. The relatively high one-time invest-
ment will pay off due to reduced salaries to human workers. Secondly, robotic solutions
are more reliable and less error prone than humans and we can expect fewer and shorter
shutdowns. Robots work 24 hours a day seven days a week and do so very reliably. Hu-
man workers are subject to stress and difficult working conditions which lead to mistakes
and accidents. Robots thus reduce the probability of un-planned production stops which is
extremely costly for the oil companies. Thirdly, most of the accessible fields close to shore
have already been explored and future fields are situated in more remote and harsh envi-
ronments where accessibility is low. These fields are technically challenging and require
the development of new technology. Much of this relies on the use of robotic solutions.
This is not only due to the extreme costs of safely transporting human workers to these
areas but also because of the extreme working conditions. Many of the oil fields that are to
be developed are not suited for human workers due to temperature and weather conditions,
as well as the distance to on-shore facilities. For example, the Shtokman field located in
the Barents Sea some 600 kilometres north of the Kola Peninsula experiences such ex-
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Figure 1.2: The oil platform of the future. The gantry cranes allow the robots to reach every part of
the platform to perform the pre-defined or operator controlled operation. The large living facilities
are removed or drastically reduced. Courtesy of TAIL IO.

treme weather conditions that for six months of the year one can not expect to frequently
fly workers to and from the platforms by helicopter. Finally, the oil companies address
health, safety, and the environment (HSE) as important issues. The off-shore installations
are some of the most dangerous places to work due to the extreme weather, unstructured
environment and high concentration of dangerous and in some cases deadly gases, such
as hydrogen sulphide H2S. There is an apparent advantage in the use of robots in these
environments in order to reduce the exposure of these hazards to human workers.

History has taught us that for applications where new technology is required in order to
be able to perform a given task, great effort has been put down to develop this technology
and take it into use. On the other hand, when the task can be performed by a human
operator and the technology is not absolutely necessary to be able to perform the task, this
has not always been the case. The simple fact remains though, that for many of the tasks
performed by humans today the technology is available and a robot manipulator can do
the same job as the human operator. As an example, the necessary technological advances
have to a large extent been developed and used for subsea and other dangerous tasks. If
one can automate the process subsea, this should be achievable also topside, which is more
accessible and more structured than the subsea environment.

So the question that arises is why this has not been applied to topside applications ear-
lier. One important aspect is that a higher degree of automation naturally implies changes
in technology, peoples’ work patterns and workplace, and the organisational structure in
general. This reorganisation is complex, much because of the robot-human interaction.
Continuous monitoring and operation by the operator is required and this makes the op-
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Figure 1.3: The daily operation of off-shore platforms include several challenging and potentially
dangerous tasks for the human workers.

erator an integrated part of the control loop. The reorganisation also requires a complete
set of new job descriptions and new competence. This requires detailed planning and
preparation in order to succeed. The most important aspect, however, is probably that the
transition from automating only parts of the process to completely automate an extremely
complex process such as an oil field is a giant step in terms of technological advances.
To develop robotic systems that can solve all the necessary tasks on an oil platform is
probably possible in the very near future, but the main challenges lie in developing a sys-
tem that allows for these systems to interact and work together as a whole. Completely
automating the process requires both old and new technologies such as teleoperation, ex-
treme computational power, complex control algorithms, system integration, and both the
robustness and efficiency of the robotic solutions need to be improved. It is only over the
last few years with advances in areas such as computational power, autonomous robots and
robust solutions for robots operating in harsh environments that this technology is starting
to become available.

Benefits of Autonomous Operation

There are considerable gains related to automating the oil fields of the future, both in HSE
and in economic benefits. An estimate of the main advantages of automating the process
is presented in Vatland and Svenes (2008) and can be summarised as

• Improved HSE Performance when automating oil rigs:

– Reduced need for transport/shuttling

– Reduced manning −60%
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Figure 1.4: ABB-Shell collaboration room - an example of an integrated operations centre. The
operator is located on-shore and has complete control of the off-shore facilities through visual tools.
Courtesy ABB Strategic R&D for Oil, Gas and Petrochemicals.

• Economic benefits when automating oil rigs:2

– Reduced weight of floater ∼ 36%

– CAPEX3 reduction ∼ 30%

– OPEX4 reduction ∼ 32%

– Reduced emissions & chemical consumption

– Total savings of introducing automated solutions compared to today’s solution:
650 Mill USD5

1.1.2 Integrated Operations

Integrated Operations (IO), also known as eField, iField, Smart-Field, etc., is a fast grow-
ing research area that has been made possible mainly due to the enormous increase in the
ability to collect, monitor and process real-time data. The combination of real-time and
historical data from the plant and improved computational power and software represents
an extremely valuable analysis tool. The main goal is to allow for collaboration across dif-
ferent disciplines, i.e. to allow for common access to data for different parts of the overall
system, like the plant, administration, operational centres, and the control, monitoring, and
collaboration rooms. Statoil defines Integrated Operations as (Vatland and Svenes, 2008):

2Figures from previous studies (Vatland and Svenes, 2008)
3Loosely speaking, CAPEX is investment in the business that adds shareholder value.
4Loosely speaking, OPEX is what you have to spend in order to keep your business running.
5Interest rate 7%, platform with 20 year field life
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Figure 1.5: High-pressure water blasting is one relevant application that the robot can perform that
will spare the human worker from potentially dangerous tasks. Courtesy ABB Strategic R&D for
Oil, Gas and Petrochemicals.

“Collaboration across disciplines, companies, organisational and geographical bound-
aries, made possible by real-time data and new work processes, in order to reach safer and
better decisions — faster. “

Robotics and Integrated Operations

As a part of IO, robot technology is believed to play an important role (Vatland and Svenes,
2008):

“[...] robotics technology to supplement and extend human inspection and intervention
capabilities at subsea, topside and onshore facilities. The objective is to develop solu-
tions that combine tele-robotics and advanced visualisation to enable remotely operated
inspection and maintenance operations, as well as to identify and close technology gaps.“

The following advantages are recognised in utilising robotics together with IO in future
plants

• Future Plants

– Modular, interchangeable equipment arrangement with vertical access routes.

– Compact process technology.

– Direct access to equipment status for remote inspection by use of Remote As-
sisted Tools (RATs).

– Mobile decks give enhanced access to equipment.

• Benefits

– HSE performance improvement.

* Remote operation - Hazardous work done by robots.

– OPEX reduction.
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* Considerable reduction in offshore man hours.

* Campaign based maintenance - shortened time window.

– CAPEX reduction.

* Compact, modular process equipment on one deck.

* Shortened fabrication- & project execution-period.

– Increased flexibility.

* Reconfigurations made quickly and at low cost.

* Process modules can be “shared” between installations.

1.1.3 The TAIL IO Project

The TAIL IO project is an international cooperative research project led by Statoil and
an R&D consortium consisting of ABB, IBM, Aker Solutions and SKF. The aim of the
project is to deliver first class innovations to support Statoil in achieving their overall
goals for extending the lifetime of Statoil’s oil and gas fields:

• increase daily production by at least 5 percent by reducing production losses caused
by operational failure, maintenance stops and inadequate equipment performance

• reduce operating, construction and maintenance costs by 30 percent

• reduce the number of unwanted incidents relating to health, safety and the environ-
ment (HSE)

One out of six subproject is concerned with robotics technology with the intention to
supplement and extend human inspection and intervention capabilities at subsea, topside
and on-shore facilities. The objective is to develop solutions that combine telerobotics and
advanced visualisation to enable remotely operated inspection and maintenance, as well as
to identify and close technology gaps. The Tail IO project was supported by the Norwegian
Research Council.

1.2 Robust Solutions

Robustness is the property describing the ability to operate continuously without failure
under a wide range of conditions (Soanes and Stevenson, 2008). A mechanism, system or
design is said to be robust if it is capable of coping well with variations in its operating
environment with minimal or no damage, alteration or loss of functionality. The design of
robust robotic systems is one of the most challenging topics in robotics, and in unstructured
environments with unpredictable and random variations this problem becomes even harder.

It is impossible to design a system that is robust to all possible variations in the envi-
ronment so the main issue here is to design a robotic system that is robust enough so that
utilising it will lead to improvements over other existing systems. If operation is safer and
more reliable using human workers no one will spend a considerable amount of money
robotising the operation. Thus, robot manufacturers and developers need to search for ar-
eas where robots will improve both reliability and safety, and to do this in a cost efficient
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Figure 1.6: The ABB robot test laboratory in Oslo, Norway. Courtesy ABB Strategic R&D for Oil,
Gas and Petrochemicals.

manner. Off-shore oil facilities is definitely one of the areas that stands next in line to be
robotised, but there is no doubt that the main concern for the oil companies, environmen-
talists, and governments is the robustness and reliability of this solution. Parts of Part I
and the entire Part II of this thesis is thus devoted to robustness of robotised solutions on
off-shore facilities.

Part I addresses the effects of mounting a standard robotic manipulator on a moving
base, such as a ship, autonomous underwater vehicle (AUV), or platform. If the motion of
this base is large, like on a ship in high sea, this will add non-inertial terms to the dynamic
equations. If these non-inertial forces are dominant, conventional motion planning and
control approaches may lead to instability or poor robustness and performance. This thus
needs to be included in the control of the robot to guarantee robustness also in these cases.

If remotely located platforms are subject to weather conditions too extreme for hu-
mans, these weather conditions will also cause great challenges to ships sailing to these
facilities. A completely automated off-shore field thus also needs to include solutions for
ships. Robust operation of these ships is extremely critical as they may be loaded with
petrochemicals such as crude oil and gas. At times, ships sail at high sea and, as we show
in Part I, the inertial forces affect both the path planning and control of the robots operat-
ing on these ships. Conventional methods are thus not sufficient for robots mounted on a
non-inertial base when it comes to robustness. This is discussed in detail in Part I.

Robust mathematical models of vehicle-manipulator systems is also of vital impor-
tance when it comes to implementing robust motion planning and control algorithms. In
the setting of this thesis we will say that a model is robust if it is globally valid, i.e. sin-
gularity free. When a robotic manipulator is mounted on a vehicle that can rotate freely,
singularities arise in the mathematical model if the Euler angles are used in the repre-
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Figure 1.7: An ABB robot at work performing routine inspection of process equipment. Courtesy
ABB Strategic R&D for Oil, Gas and Petrochemicals.

sentation. This is a problem when the dynamics are derived in the conventional way, for
example for AUV-manipulator systems. AUVs are believed to be an integrated part of
the oil fields of the future, and robust and computationally efficient models of the AUV-
manipulator dynamics is thus also important to assure robustness of the oil fields of the
future. This is also discussed in Part I.

Part III addresses some issues concerning joint failure. Specifically we address how
to deal with torque failure, i.e. when the actuation of an active joint is lost and this joint
becomes passive, also known as a free-swinging joint fault. A fault tolerant system should
be able continue operation when this occurs. There are basically two ways to deal with
this problem. The first is to develop intrinsically fault tolerant actuators through high
redundancy, i.e. to use several smaller sub-actuators to build the actuators (Muenchhof
et al., 2009; Steffen et al., 2009). The idea here is that a fault in one of the sub-actuators
will not affect the overall performance of the main actuator. This technology is not yet
ready and strictly speaking these actuator are not fault tolerant in the true sense. If for
example power is lost to the actuator, this will affect all sub-actuators and a fault occurs.
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The other way to deal with this is through redundant actuation. In this case the robotic
manipulator can continue operation after a joint fault has occurred by utilising the redun-
dant actuators. This solution, however, requires that all joints are represented by at least
one redundant joint and can only be applied to parallel mechanisms. Redundant joints are
expensive and reduce performance because of added weight. It is thus important to find
the minimal set of joints, for which the manipulator remains operational when joint failure
occurs for an arbitrary joint. This is discussed in Part III for parallel manipulators subject
to torque failure. We also discuss the effect of joint failure in serial manipulators.

1.3 Optimal Solutions

Throughout the history of industry, there has been one dominating factor that has been
driving the progress and technological advances more than any other. That factor is pro-
ductivity. Over the last decade, one of the most important tools to improve productivity,
and the one that has made the most difference in the setting of our work, is computer-based
optimisation methods. Optimisation is basically the art of how to achieve more with less.
This has been done as long as industry and technology has existed, but has reached a new
era with the development powerful computers and software.

On the oil fields of the future, robotic solutions are to substitute many operations previ-
ously performed by humans. Removing the human worker from the platform area presents
us with one great challenge: An experienced human operator has an incredible capability
to notice when something is wrong. Through sight, hearing, smell and physically feeling
the process area he or she can sense deviations from what is normal and trigger the alarm.
To substitute this “sensing operator” with robotic solutions is a huge challenge. This area
is closely related to machine learning and artificial intelligence.

The human operator is also very capable of finding efficient solutions to both routine
tasks and unexpected occurrences. This is a characteristic of the human worker that we
should emulate in our robotic system. For robotic or computerised systems the intelligence
of humans is often substituted through optimisation methods. These range from complex
algorithms and theory found in artificial intelligence to optimal solutions of simpler task
performed by the robot. In this thesis we discuss several aspects concerning optimality in
the setting of off-shore robotics.

For example, for a robot mounted on a ship, we can use information about the ship mo-
tion to find an trajectory planner and for optimal control. This will allow for reduced strain
and tension on the robot, more accurate manipulation and reduced energy consumption.
This is in fact an example where the performance of the robot should surpass that of the
human operator. Anyone who has tried to write or pour coffee while sitting in a moving
vehicle knows that humans are not very capable of reducing the effects of the non-inertial
forces by compensating for these in any way. However, through sophisticated sensors
and control algorithms we can drastically reduce the effects of the non-inertial forces by
modifying the robot controller. This is discussed in detail in Part I.

In Part III we discuss the optimal solution to a large class of tasks that the robotic ma-
nipulator is to perform on off-shore platforms. Most tasks involved with the surveillance
and maintenance of the platform require that some tool is attached at the end of the manip-
ulator chain. For several of these tasks the orientation of this tool is critical, but there are
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also some tasks for which it is not. This is the case with tasks such as high-pressure water
blasting, spray painting, welding and holding a camera for surveillance. As these tasks
constitute a large part of the tasks that are to be performed by the robots we study these in
detail. We show that the time needed to perform these task can be drastically reduced if an
optimal solution is applied and the time saved can thus be allocated to other tasks.

Finally, a human operator can extend his arm to reach areas of the process that are very
difficult to access. This is an area where human performance greatly surpasses robots, as
far as today’s technology is concerned. In general it is very difficult for robots to operate in
complex process areas. To get access to every part of the process, redundant manipulators
need to be used and this greatly complicates the path planning and the inverse kinematics.
In Part IV we discuss one solution to the inverse kinematics problem that can be applied to
redundant actuators. The problem here is that kinematically redundant robots do not have
an analytic solution to the inverse kinematics problem. Part IV is thus devoted to generic
methods for solving the inverse kinematics problem for these kinds of robot arms. The
approach is also applicable to other manipulators with complicated geometry that do not
have a known solution to the inverse kinematics. One group of robots that do not have an
analytical solution to the inverse kinematics problem consists of robots that are hollow on
the inside. Making the robots hollow complicates the kinematics, but is a great advantage
because placing the cables on the inside makes them more protected and they cannot get
stuck in the platform’s process area.

In the following we discuss the contributions of the four different parts in some more
detail.

1.4 Part I - Singularity-Free Vehicle-Manipulator Mod-
elling

Robust solutions are very important for vehicle-manipulator systems such as a manipula-
tor mounted on an autonomous underwater vehicle (AUV) operating subsea, a manipulator
mounted on a satellite operating in space, and for manipulators mounted on a moving ve-
hicle in general. The main strength of such systems is that they can operate in distant and
harsh environments and far away from humans who may just observe the operations or
remotely control them. Such systems thus need to be reliable as direct access may be im-
possible, very time consuming, or extremely costly. The vehicle-manipulator system may
also be part of a larger system, such as a subsea oil installation or a space station. These
systems will then depend on all the sub-systems—including the robotic systems—for con-
tinuous operation and assistance both in routine operations and in emergency situations.

A robotic manipulator mounted on a moving vehicle is a versatile solution well suited
for these applications and will play an important role in the operation and surveillance of
remotely located plants in the very near future. Recreating realistic models of for exam-
ple space or deep-sea conditions is thus important. Both for simulation and for model-
based control the explicit dynamic equations of vehicle-manipulator systems need to be
implemented in a robust and computationally efficient way to guarantee safe testing and
operation of these systems.

We will discuss several different vehicle-manipulator systems in Part I. One example
of such a system is spacecraft-manipulator systems (Egeland and Sagli, 1993; Dubowsky
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and Papadopoulos, 1993; Hughes, 2002; Moosavian and Papadopoulos, 2004, 2007) which
are emerging as an alternative to human operation in space. Operations include assem-
bling, repair, refuelling, maintenance, and operations of satellites and space stations. Due
to the enormous risks and costs involved with launching humans into space, robotic so-
lutions evolve as the most cost-efficient and reliable solution. However, space manipu-
lation involves quite a few challenges. When it comes to space manipulators robustness
is, for obvious reasons, extremely important. The framework presented in Part I is well
suited for modelling spacecraft-manipulator systems, which is quite different from stan-
dard robot modelling. Firstly, the manipulator is mounted on a free-floating (unactuated)
or free-flying (actuated) spacecraft. Secondly, the motion of the manipulator affects the
motion of the base, which results in a set of dynamic equations different from the fixed-
base case due to the dynamic coupling. Finally, the free fall environment complicates the
control and enhances the non-linearities in the Coriolis matrix. Especially when applying
the so-called dynamically equivalent manipulator approach (Liang et al., 1998; Parlaktuna
and Ozkan, 2004) the advantages of the framework proposed in Part I becomes apparent.

A second example which is of great importance in off-shore installations is autonomous
underwater vehicles (AUVs) with robotic arms, or underwater robotic vehicles (URVs)
(Love et al., 2004; Kitarovic et al., 2005; Antonelli, 2006; McMillan et al., 1995). This
is an efficient way to perform challenging tasks over a large subsea area. Operation at
deeper water and more remote areas where humans cannot or do not want to operate, re-
quires more advanced and robust underwater systems and thus the need for continuously
operating robots for surveillance, maintenance, and operation emerges.

The use of robotic manipulators on ships is another important application (Kitarovic
et al., 2005; Oh et al., 2005). In the Ampelmann project (Salzmann, 2007) a Stewart plat-
form is mounted on a ship and is used to compensate for the motion of the ship by keeping
the platform still with respect to the world frame. This requires both good predictions of
the motion of the ship and accurate models including the dynamic coupling between the
ship and the manipulator. This can be modelled as a 2-joint mechanism where one joint
represents the uncontrollable ship motion and one joint the Stewart platform. There are
also other relevant research areas where a robotic manipulator is mounted on a floating
base. Lebans et al. (1997) give a cursory description of a tele-robotic shipboard handling
system, and Kosuge et al. (1992) and Kajita and Kosuge (1997) address the control of
robots floating on the water utilizing vehicle restoring forces. Another interesting research
area is macro/micro manipulators (Yoshikawa et al., 1996; Bowling and Khatib, 1997)
where the two manipulators in general have different dynamic properties.

1.4.1 Euclidean and Non-Euclidean Joints

The framework that we will present i Part I is especially suited for modelling the aforemen-
tioned systems due to the non-Euclidean configuration space of the vehicle. The difference
between Euclidean and non-Euclidean joints or transformations is very important in this
setting so we start with a formal definition. We first need to define the terms generalised
coordinates and generalised velocities.

Definition 1.1. A set of coordinates which uniquely describes the configuration of a body,
or system of bodies, is called the generalised coordinates of the system.
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This set is not unique, but there is normally a set that will allow an easier formulation
and a deeper physical insight. For robotic manipulators with 1-DoF joints the joint posi-
tions are normally chosen. The minimum number of independent generalised coordinates
needed to describe the configuration of a system is known as the degree of freedom or
mobility of the system.

Definition 1.2. A generalised velocity ẋi associated with the generalised coordinate xi is
defined as ẋi =

dxi

dt .

We note that it is not always possible to find a set of generalised velocities to describe
the velocity state of the system in this way. In accordance with much of the literature we
will say that a system can be written in terms of generalised coordinates if we can find a
set of generalised coordinates and generalised velocities written as in Definition 1.2 that
uniquely describe the state of the system.

We now turn to the definition of Euclidean and non-Eucliden joints.

Definition 1.3. A Euclidean joint is represented by a transformation where the state of the
joint can be written in terms of generalised velocities, i.e. the position variables are written
as x ∈ Rn and the velocity variables as v = ẋ ∈ Rn where ẋ = dxi

dt .

All 1-DoF joints are Euclidean and thus also the most commonly found robotic joints.
Also joints with only translational motion are Euclidean.

Definition 1.4. A non-Euclidean joint is represented by a transformation where the state of
the joint cannot be written in terms of generalised velocities, i.e. the position variables are
written as x ∈ Rn and the velocity variables as v = S(x)ẋ ∈ Rn for some transformation
matrix S(x) and ẋ �= dxi

dt . The velocity variables are thus not simply the time derivative
of the position variables.

A spherical joint, or the attitude of a rigid body, is thus a non-Euclidean joint. We see
this if we represent the position variables as the Euler angles for which the state variables
cannot be written in vector form where the velocity is simply the time derivative of the
position variable.

1.4.2 A Short Overview of Modelling of Mechanical Systems

There is a wide variety of approaches that serve as a starting point to derive the dynamics
of mechanical systems. Common for all these is that we want to extract the components of
the forces and state variables that are of interest for simulation and control, and for which
the dynamics are valid. We will in brief discuss three main groups of systems for which we
need to project the dynamics into the useful/valid components: 1) the principle of virtual
work where the equations of motion are projected into the directions associated with the
generalised velocities; 2) systems where the nonholonomic forces need to be eliminated
from the equations; and 3) systems where the configuration space needs to be projected
from the Euclidean space to a configuration space with a topology different than that of
Rn.

The first groups is related with d’Alembert’s principle where the equations of motion
are projected into the directions associated with the generalised velocities and thus the
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forces and torques of the constraints are eliminated from the equations. There are many
different forces present in a mechanical system, but from a simulation and control point of
view we are mainly interested in how the actuator and external forces affect the accelera-
tions of the rigid bodies. Other forces, such as forces of constraint or internal forces are
not of interest when it comes to modelling for control. These forces can then be eliminated
from the dynamic equations in different ways, for example using the principle of virtual
work which has its roots back to d’Alembert’s principle. The principle of virtual work al-
lows us to eliminate the constraint forces without actually deriving them explicitly, which
can be quite hard.

Another point of view regarding the virtual work is the interpretation that the dynamic
equations are projected into directions associated with the generalised coordinates. The
Newton-Euler equations can be derived from d’Alembert’s principle and have shown to be
very useful in robotics, and especially when it comes to deriving computationally efficient
recursive algorithms for simulation and inverse dynamics (Luh et al., 1980). Kane (Kane
et al., 1983; Kane and Levinson, 1985) presents a detailed treatment of this topic and
their approach for eliminating non-contributing forces provides physical insight, is control
oriented, and allows for fast simulations. Kane’s equations can also be implemented using
quasi-coordinates, which we will discuss later.

Also Lagrange’s equations of motion can be derived from d’Alembert’s principle. Sim-
ilarly to Kane’s approach, Lagrange’s equations are derived with d’Alembert as a starting
point and the forces of constraint are eliminated from the equations. The elimination of
these forces are of vital importance when deriving the dynamics of robot manipulators and
allows us to project the equations of motion into the directions for which the system phys-
ically allows for displacements. These directions are given by the generalised coordinates,
and the Lagrange equations are thus only valid when the state variables can be written in
terms of generalised coordinates. We will see that for vehicle-manipulator systems this is
unfortunate as the state variables of the vehicle in general cannot be written as generalised
coordinates.

The second group consists of systems with nonholonomic constraints. Nonholonomic
constraints are not as fundamental as the principle of virtual forces, but they represent a
very important group of systems. Nonholonomic constraints are constraints that are not
integrable, i.e., they occur when the instantaneous velocities of the system are constrained
to a subspace of the configuration space, but the set of reachable configurations are not
restricted to the same subspace. The classical example is a wheeled mechanism where the
friction of the wheels does not allow the mechanism any instantaneous lateral motion and
thus reduces the dimension of the velocity state by one, but at the same time the dimension
of the configuration space is not reduced.

The papers included in this thesis do not discuss nonholonomic constraints, except
very briefly in Chapter 2. We have chosen, however, to mention nonholonomic constraints
and virtual work as they are in many ways related to the next topic. Both for the virtual
work approach and nonholonomic forces the state variables need to be projected into the
admissible space, and this projection has a clear physical interpretation. Similarly, when
the velocity variables cannot be found simply by differentiating the position variables, the
state variables also need to be projected into the admissible space so that the topology
of the configuration space is maintained. In the sense that some component of the state
space, i.e. the velocity, position or forces, needs to be projected to the valid directions,

14



1.4. PART I - SINGULARITY-FREE VEHICLE-MANIPULATOR MODELLING

the three groups discussed here are very much related and a methodology well suited for
one type of projection may also be used for another. Kane’s equations are for example
well suited to incorporate nonholonomic forces in addition to the non-contributing forces
(Tanner and Kyriakopoulos, 2001; Lesser, 1992). Kane’s equations have not been used for
the last group but, as will be clear from Part I, we can reformulate Kane’s equations to also
include this group.

The third group is thus concerned with projecting from the Euclidean space Rn onto
the configuration space with a different topology. This group differs from the previous two
in that the projection is not subject to a physical constraint, but the choice of mathematical
representation of the configuration and velocity states. In robotics, most effort regarding
this projection deals with projecting onto the Lie groups SO(3) and SE(3). These are im-
portant topological spaces in robotics, but unfortunately they are not very well described
using generalised coordinates and a vector representation of these spaces leads to singular-
ities. Part I focuses on how we can describe the dynamics of systems with non-Euclidean
configuration spaces without the presence of singularities.

1.4.3 Manipulator Dynamics

A wide range of dynamical systems can be described by the Lagrange equations, also
commonly referred to as Euler-Lagrange equations (Goldstein et al., 2001)

d

dt

(
∂L
∂ẋ

(x, ẋ)

)
− ∂L

∂x
(x, ẋ) = τ (1.1)

where x ∈ Rn is a vector of generalised coordinates, τ ∈ Rn is the vector of generalised
forces and

L(x, ẋ) : Rn × Rn → R := U(x, ẋ)− V(x). (1.2)

Here, U(x, ẋ) is the kinetic and V(x) the potential energy functions. We assume that the
kinetic energy function is positive definite and in the form

U(x, ẋ) := 1

2
ẋTM(x)ẋ. (1.3)

whereM(x) is the inertia matrix. For a kinetic energy function in this form we can recast
the Lagrange equations (1.1) into the equivalent form

MRB(x)ẍ+ CRB(x, ẋ)ẋ+ n(x) = τ (1.4)

where CRB(x, ẋ) is the Coriolis and centripetal matrix and n(x) is the potential forces
vector defined as

n(x) :=
∂V(x)
∂x

. (1.5)

Robotic manipulators with conventional revolute or prismatic joints can always be
written in terms of generalised coordinates and the Lagrange equations are thus often
the preferred choice to derive the manipulator dynamics. This also allows us to find a
well defined representation of the Coriolis matrix which has certain useful properties. In
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robotics the matrix representing the Coriolis and centripetal forces is normally obtained
by the Christoffel symbols of the first kind as (Egeland and Gravdahl, 2003)

CRB(x, ẋ) := {cij} =

{
n∑

k=1

Γijkẋk

}
, (1.6)

Γijk :=
1

2

(
∂mij

∂xk

+
∂mik

∂xj

− ∂mkj

∂xi

)
(1.7)

where M(x) = {mij}. When representing the dynamic equations using generalised
coordinates we implicitly introduce non-inertial frames in which we represent the iner-
tial properties of the rigid bodies. The Coriolis matrix arises as a result of these non-
inertial frames. We note that there are several ways to define the Coriolis matrix so that
cij(x, ẋ)ẋj = Γijkẋj ẋk is satisfied.

Of special interest in this section is the fact that (1.6) and (1.7) require generalised
coordinates. For each component we multiply the partial derivative of the inertial matrix
with respect to the configuration state xk with the velocity state ẋk. This is only mean-
ingful if the integral of the velocity state can physically be interpreted as the configuration
state. For robotic manipulators this is true, but for most vehicles, as we shall see, this is
not the case.

1.4.4 Singularity Prone Dynamics of Single Rigid Bodies

It is a well known fact that the kinematics of a rigid body contains singularities if the
Euler angles are used to represent the orientation of the body and the joint topology is not
taken into account. One solution to this problem is to use a non-minimal representation
such as the unit quaternion to represent the orientation. This will, however, increase the
complexity of the implementation as the number of variables is increased by one and this
representation cannot be used in Lagrange’s equations. This is a major drawback when it
comes to modelling vehicle-manipulator systems, mainly because a large class of methods
used for robot modelling are based on the Lagrangian approach. It is thus a great advantage
if also the vehicle dynamics can be derived from the Lagrange equations.

The problem arises due to the fact that we cannot simply differentiate the position vari-
ables to get the velocity variables. This is normally solved by introducing a transformation
matrix and we get the relation⎡⎢⎢⎢⎢⎢⎢⎣

ẋ
ẏ
ż

φ̇

θ̇

ψ̇

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
cψcθ −sφcθ + cψsθsφ sψsφ+ cψcφsθ 0 0 0
sψcθ sψcφ+ cφsθsψ −sψsφ+ sθsψcφ 0 0 0
sθ cθsφ cθcφ 0 0 0
0 0 0 1 sφtθ cφtθ
0 0 0 0 cφ −sφ

0 0 0 0 sφ
cθ

cφ
cθ

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
u
v
w
p
q
r

⎤⎥⎥⎥⎥⎥⎥⎦ (1.8)

relating the local and global velocity variables. Here sθ means sin θ etc. The well known
Euler angle singularity appears as θ approaches π

2 .
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Given this relation the dynamics of a single rigid body, such as a ship or an AUV, is
normally given by (Fossen, 2002)

η̇ = J(η)ν, (1.9)

Mν̇ + C(ν)ν +D(ν)ν + n(η) = τ (1.10)

where η =
[
x y z φ θ ψ

]T
is the position and orientation of the vessel given in

the inertial frame, ν =
[
u v w p q r

]T
is the linear and angular velocities given in

the body frame and J(η) is given by (1.8). For underwater vehiclesD(ν)ν is the damping
and friction matrix and M = MRB + MA and C(ν) = CRB(ν) + CA(ν) represent the
rigid body and added mass inertia and the corresponding Coriolis matrices. n(η) is the
vector of gravitational and buoyancy forces.

The fact that the integral of the local velocity variables has no physical meaning means
that the Lagrangian approach cannot be used directly to derive the dynamic equations.
This can, however, be circumvented in several different ways. One solution is to introduce
a more geometric approach. Geometric methods are in general very convenient when
dealing with single rigid bodies, but for multibody systems this approach becomes very
complex. We can also introduce so-called quasi-coordinates which are well suited for
modelling systems which cannot be expressed in terms of generalised coordinates but
most of these methods do not eliminate the singularity from the dynamic equations. In
the following we will look briefly at some geometric methods in robotics and the use of
quasi-coordinates.

1.4.5 Geometric Methods in Robot Modelling

Lie groups and algebras as a mathematical basis for the derivation of the dynamics of me-
chanical systems has been used to obtain a singularity free formulation of dynamics (Selig,
2000; Park et al., 1995). We then choose the coordinates generated by the Lie algebra as
local Euclidean coordinates which allows us to describe the dynamics locally. Lie groups
are manifolds and thus also locally Euclidean. This means that locally we can write the
vector of velocity variables as the derivative of the position vector. This is an important
property that we can use to write the dynamics of a single rigid body in a singularity free
manner. For this approach to be valid globally the total configuration space needs to be
covered by an atlas of local exponential coordinate patches. The appropriate equations
must then be chosen according to the current configuration. The geometric approach pre-
sented in Bullo and Lewis (2004) can then be used to obtain a globally valid set of dynamic
equations on a single Lie group, such as an AUV or spacecraft with no robotic manipulator
attached. This approach is also used in Marsden and Ratiu (1999).

A mechanical system consisting of joints and links can be modelled as a serial combi-
nation of several Lie groups, representing the freedom of each joint. These representations
are not only mathematically correct, the singularities are also removed from the equations.
Unfortunately, the formulation is more involved than other methods and even though com-
binations of Lie groups theoretically can be used to represent multibody systems, the for-
mulation is very complex. These approaches are thus not suited for implementation in a
simulation or control environment even though, mathematically speaking, they are correct.
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The fact that the integral of the local velocity variable has no physical meaning means
that the Lagrangian approach cannot be used directly to derive the dynamic equations.
For single Lie groups, however, these systems can be modelled using the Euler-Poincaré
equations. We can find the Euler-Poincaré equations from Hamilton’s extended principle,
which states that for two fixed end points, we have (Egeland and Gravdahl, 2003)∫ t2

t1

(δL+Wδ)dt = 0. (1.11)

Here, δL denotes the variation of the Lagrangian L, which is to be considered a mathe-
matical tool that reflects an infinitesimal change in L without any change in the physical
variable L. Assume that only kinetic energy is present so L = U = 1

2V
TMV , where U

denotes the kinetic energy and V =
[
v ω

]T
is the velocity variable (twist). Wδ is the

virtual work of the active generalised forces and is given by

Wδ =

n∑
j=1

τjδqj . (1.12)

We can now derive the attitude dynamics of a rigid body on SO(3), i.e. V = ω,
with only kinetic energy. We write Ṙ = Rω̂ for a rotation matrix R and the angular
body velocities ω, and δR = Rσ̂ for an arbitrary vector σ, where p̂ ∈ R3×3 is the skew-
symmetric matrix such that p̂x = p × x for all p, x ∈ R3. Hamilton’s extended principle
gives (Egeland and Gravdahl, 2003)∫ t2

t1

(δL+Wδ)dt =

∫ t2

t1

(
∂U
∂ω

δω + τTωσ

)
dt (1.13)

=

∫ t2

t1

(
∂U
∂ω

(σ̇ + ω̂σ) + τTωσ

)
dt

=

∫ t2

t1

(
− d

dt

(
∂U
∂ω

)
+

∂U
∂ω

ω̂ + τTω

)
σdt

The Euler-Poincaré equations of motion on SO(3) are then given from (1.11) and (1.13)
as

d

dt

(
∂U
∂ω

)T

+ ω̂

(
∂U
∂ω

)T

= τω (1.14)

and similarly the Euler-Poincaré equations of motion on SE(3) are written as

d

dt

(
∂U
∂V

)T

− adTV

(
∂U
∂V

)T

= τ (1.15)

where adV =

[
ω̂ v̂
0 ω̂

]
.
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If we write τ =
[
τT1 τT2

]T
we get the well known Kirchhoff’s equations

d

dt

(
∂U
∂v

)T

+ ω̂

(
∂U
∂v

)T

= τ1 (1.16)

d

dt

(
∂U
∂ω

)T

+ v̂

(
∂U
∂v

)T

+ ω̂

(
∂U
∂ω

)T

= τ2 (1.17)

Kirchhoff’s equations are widely used to model ships and underwater marine vessels as
well as spacecraft. We note however, that the Euler-Poincaré equations of motion on both
SO(3) and SE(3) assume kinetic energy only and do not depend on the position variables.
The Euler-Poincaré equations use only the local velocity variables and we thus avoid the
transformation between the local and global velocity variables. As the position variables
are the integrated global velocity variables, we note that we need this transformation to
include the position variables in the formulation. We thus obtain a singularity free formu-
lation at the expense of the potential energy and position variables.

The reason that we can obtain this singularity free representation is basically that we
are dealing with single bodies, and that the inertia matrix is constant and the kinetic energy
is thus given by U(ω) = 1

2ω
TMω, for SO(3) and similarly for other configuration spaces.

For multibody systems the inertia matrix depends on the configuration of the system, and
so does forces such as gravity, which are also configuration dependent. In this sense the
problem of obtaining the position variables from the local velocity variables is not solved.

There is one specific multibody system where the formulation above can be applied.
Egeland and Pettersen (1998) derive the singularity free dynamic equations of spacecraft-
manipulator systems. These systems are special in two ways which makes it possible to ex-
pand Kirchhoff’s equations to multibody systems. Firstly, there are no gravitational forces
present and the orientation of the spacecraft is not needed in the equations. Secondly, the
orientation of the spacecraft is not needed in the inertia matrix which only depends on the
position of the robot joints, which are Euclidean and thus not subject to singularities. How-
ever, if the attitude of the spacecraft needs to be determined, the transformation between
the local velocity variables and the position variables is once again required.

1.4.6 Quasi-Coordinates and Quasi-Velocities

Another way to deal with the fact that the integral of the velocity variable has no physical
meaning is to introduce quasi-coordinates (Gingsberg, 2007). In many cases it is easier
to formulate the dynamic equations in terms of velocity variables that cannot simply be
written as the time derivative of the position variables. For example, when dealing with
angular motion the angular velocity is not the rate of change at which a rotation angle
changes, except for the planar case. There is thus no finite change in orientation that cor-
responds to the angular velocity. We will denote such velocity variables quasi-velocities,
often represented by γ̇. The corresponding quasi-coordinate γ does not have any physi-
cal interpretation itself whereas γ̇ has the physical interpretation of dγ = γ̇dt, i.e. it is
associated with differential increments.
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Quasi-coordinates are hence velocity coordinates that are not simply the time deriva-
tive of the position coordinates. The relation between the quasi-velocities v and the deriva-
tive of the configuration variables q (generalised coordinates) is given by

v = S(q)q̇. (1.18)

There are many ways to write the dynamics in terms of quasi-coordinates. The Gibbs-
Appel equations (Gibbs, 1879; Lewis, 1996) are obtained by differentiation of a function
of kinematic variables. In this way the Gibbs-Appel equations resemble Lagrange’s equa-
tions and the Euler-Poincaré equations. On the other hand, Kane’s equations (Kane et al.,
1983; Kane and Levinson, 1985) use the virtual work principle as a starting point and can
be considered a generalisation of the approaches that are derived from the virtual work
approach.

There are also some more recent advances. Quasi-coordinates are used in Kwatny
and Blankenship (2000) where the Poincaré equations of motion are derived in terms of
quasi-velocities. Let X be defined in terms of the Lie bracket as

Xj =
[[
tj , t1

] [
tj , t2

]
· · ·

[
tj , tm

]]
(1.19)

where T =
[
t1 t2 · · · tm

]
is given below in (1.20) and the Lie bracket is defined as[

t1, t2
]
= t1t2 − t2t1. The Poincaré equations of motion are then given by

v = S(q)q̇, q̇ = T (q)v (1.20)

d

dt

(
∂L
∂v

)
− ∂L

∂q
T −

m∑
j=1

vj
∂L
∂v

SXj = τT (1.21)

for the Lagrangian L(q, v) in terms of quasi-velocities. If we substitute (1.20) into (1.21)
we get

v̇
∂2L
∂v2

+ vT
∂2L
∂q∂v

− ∂L
∂q

T −
m∑
j=1

vj
∂L
∂v

SXj = τT. (1.22)

We note that the configuration coordinates q are present in the equations and that it is
assumed that q ∈ Rn. In other words the relation between the derivatives of the position
variables and the quasi-velocities depends on the vector q, which we have already seen
leads to singularities in the representation. We see this by writing out the expression for
T (q) as found in Kwatny and Blankenship (2000) for the SE(3) case:

T (q) =

⎡⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0

0 0 0 1 sφsθ
cθ

cφsθ
cθ

0 0 0 0 cφ −sφ

0 0 0 0 sφ
cθ

cφ
cθ

⎤⎥⎥⎥⎥⎥⎥⎦ (1.23)

which is singular at θ = π
2 .
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Once the relation in (1.18) is established, the dynamics can also be written in the form
of the Boltzmann-Hamel equations. The Boltzmann-Hamel equations are derived from
the Lagrangian, but allows the velocity variable to be written in the form of (1.18) as
(Duindam and Stramigioli, 2007, 2008)

d

dt

(
∂L
∂v

)
− S−T

∂L
∂q

+

(∑
k

γkvk

)
∂L
∂v

= τ (1.24)

with the Lagrangian

L(q, v) = U(q, v)− V(q) = 1

2
vTM(q)v − V(q) (1.25)

written in terms of the quasi-velocities and quasi-coordinates and

(γk)ij(q) =
∑
l,m

S−1
li S−1

mk

(
∂Slj

∂qm
− ∂Slm

∂qj

)
. (1.26)

The Boltzmann-Hamel equations thus differ from the Poincaré equations in how the deriva-
tives are computed. While the Poincaré equations use the Lie bracket, the Boltzmann-
Hamel equations require the partial derivatives of the transformation (1.18). The Boltzmann-
Hamel equations are also used in Cameron and Book (1997) and Jarzbowska (2008), and
in Maruskin and Bloch (2007) the same equations are used to solve the optimal control
problem for nonholonomic systems. Nonholonomic constraints are easily included in the
dynamics using the Boltzmann-Hamel equations, and quasi-coordinates in general. In Ko-
zlowski and Herman (2008) and Herman and Kozlowski (2006) several control laws using
a quasi-coordinate approach were presented.

Common for all these methods is, however, that the configuration space of the vehicle
and robot is described as q ∈ Rn. This is not a problem when dealing with 1-DoF revolute
or prismatic joints but for more complicated joints such as ball-joints or free-floating joints
this does not solve the singularity problem, as illustrated by (1.23). Joints with more than
one degree of freedom are sometimes modelled as compound kinematic joints (Kwatny
and Blankenship, 2000), i.e., a combination of 1-DoF simple kinematic joints. For joints
that use the Euler angles to represent the generalised coordinates also this solution leads
to singularities in the representation.

1.4.7 Advantages of the Proposed Approach

From the previous sections we can divide the approaches that deal with non-Euclidean
transformations into two groups:

• The geometric approach - allows us to represent transformations with a different
topology than that of Rn globally, but is not suited for multibody systems.

• The quasi-coordinate approach - allows us to project the velocities into the directions
allowed by the kinematics constraints, and more importantly, project the velocities
so that the configuration space is consistent with the manifold. These approaches
handle multibody systems very well, but singularities arise in the transformation
between the local and global velocity variables.
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In this section we close the gap between the two approaches and find the dynamic
equations of vehicle-manipulator systems using quasi-coordinates, but without the singu-
larities that normally arise (Kwatny and Blankenship, 2000; Cameron and Book, 1997;
Jarzbowska, 2008; Maruskin and Bloch, 2007; Gibbs, 1879; Lewis, 1996; Kane et al.,
1983; Kane and Levinson, 1985). The approach is based on Duindam and Stramigioli
(2007, 2008) and we extend these ideas to vehicle-manipulator systems. We also include
external forces and considerations that do not normally appear in fixed-base manipulators.
Before we go into details on the proposed approach, we list the main advantages:

• The approach is globally valid and there are thus no singularities in the representa-
tion.

• The approach is general and allows for joints with configuration spaces different
than that of Rn anywhere in the chain.

• The approach allows us to use results from the Lie theory, but is valid also for
multibody systems and thus an extension of the approaches that are only valid for
single Lie groups.

• Several results from the Lie theory allow for easy and computationally efficient
implementation of the final equations.

• No local state variables are present in the final equation.

• The use of quasi-coordinates allows us to write the kinematics in a block-diagonal
form and the kinematics of each joint can thus be specified at joint level.

• Specifying the kinematics at joint level allows us to describe systems with more than
one non-Euclidean joint.

• The block-diagonal form allows us to build up a library of different joints and is thus
suited for software implementation.

• The approach is well suited for vehicle-manipulator systems as it allows us to in-
clude gravitational forces, buoyancy forces and the configuration of the vehicle.

We note that none of the approaches mentioned in the previous sections possess all these
properties.

We follow the generalised Lagrangian approach presented in Duindam and Stramigioli
(2007, 2008) which allows us to combine Euclidean joints and more general joints, i.e.,
joints that can be described by the Lie group SE(3) or one of its ten subgroups, and we
extend these ideas to vehicle-manipulator systems. As we have seen, there are several
advantages of following this approach. The use of quasi-coordinates allows us to include
joints (or transformations) with a different topology than that of Rn. For example, for an
AUV we can represent the transformation from the inertial frame to the AUV body frame
as a free-floating joint with configuration space SE(3) and we avoid the singularity-prone
kinematic relations between the inertial frame and the body frame velocities that normally
arise in deriving the AUV dynamics (Fossen, 2002). This transformation is subject to the
well known Euler angle singularities and the dynamics are not valid globally.
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We have seen that there are several different ways to derive the dynamic equations
in terms of quasi-coordinates. Common for all these approaches, however, is that the
transformation matrix in (1.18) is not globally defined. The reason for this is that the
position variables are assumed to be of the form q ∈ Rn. With this as a starting point we
are not able to find a well defined matrix S(q) for which (1.18) is true.

Instead we represent the configuration of the manipulator as a set of configuration
states Q = {Qi}. The configuration state Qi of joint i is then the matrix representation of
the Lie group corresponding to the topology of the joint. The corresponding block Si(Qi)
relating the local and global velocity variables is well known from the Lie theory and can
be found in terms of the Lie bracket or the exponential map (Rossmann, 2002). Note that
Si depends only on Qi. For standard revolute and prismatic joints Qi becomes a scalar
Qi = qi and Si = 1.

The main tool that we use is the exponential map. This allows us to express the dy-
namics in exponential coordinates φ and locally every state Qi is described by a set of
Euclidean coordinates φi ∈ Rni . Thus, in the neighbourhood of Q̄i there exist a function
Φi(Q̄i, φi) that defines a local diffeomorphism between a neighbourhood of 0 ∈ Rni

and a neighbourhood of Q̄i. Q̄i is thus locally described by Qi = Φi(Q̄i, φi) with
Φi(Q̄i, 0) = Q̄i.

The allowed joint velocity is given as an element of the tangent space of the Lie group.
This is uniquely described by a vector vi ∈ Rni . For Euclidean 1-DoF joints we thus get
v = Q̇ ∈ R and the coordinate mapping is given by Φ(Q̄, φ) = Q + φ with φ ∈ R. The
most important group in this thesis is joints with a Lie group topology. Φ is then given by
the exponential map, i.e.

Φ(Q̄, φ) = Q̄e
∑ni

i=1 biφi (1.27)

where bi is the basis elements of the Lie algebra. The block Si(Qi) is now found by

v̂ = Φ̇(Q̄, φ)ΦT(Q̄, φ). (1.28)

Here we can factorise φ̇ and find the relation between v and φ̇. For example, for SE(3)
(1.28) becomes

v =

(
I − 1

2
adφ +

1

6
ad2φ − · · ·

)
φ̇. (1.29)

Another important observation at this stage is that if we think of the global position
variable Q as a parameter (not as a variable), and the local position variable φ as a state
variable, we can write the Lagrangian in terms of this position variable and the velocity
state v, i.e. L(φ, v). The dynamic equations can now be found using the Boltzmann-Hamel
equations. Now, if we evaluate the final equations at φ = 0, we get back our global state
variables as Φi(Qi, 0) = Qi and the dynamics are written in terms of Q and v.

This has two main advantages. Firstly, the dynamics do not depend on the local co-
ordinates as these are eliminated from the equations and the global position and velocity
coordinates are the only state variables. This makes the equations valid globally. Sec-
ondly, evaluating the equations at φ = 0 greatly simplifies the dynamics and makes the
equations suited for implementation in simulation software. This is seen easily in (1.29)
where all the higher order terms vanish and after differentiating and setting φ = 0 only the
second term in the parenthesis is non-zero. We also note that the approach is well suited
for model-based control as the equations are explicit and without constraints.
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Even though the expressions in the derivation of the dynamics are somewhat complex
the final expressions can be written in a very simple form. We present several examples of
how we can use well known results—in addition to some new relations—to simplify the
dynamic equations and speed up the implementation.

The main purpose of Part I is to study systems that consist of a moving vehicle with
a robotic manipulator attached to it. To our best knowledge these systems have not been
studied in detail in literature using the framework presented here. Nor are we aware of
other formulations of vehicle-manipulator systems with all the properties listed above.
The use of quasi-coordinates to derive the dynamics in this way has mainly been applied to
standard robotic manipulators with 1-DoF joints with the extension to more general types
of joints in Kwatny and Blankenship (2000) and Duindam and Stramigioli (2008). How-
ever, the treatment of vehicle-manipulator systems deserves a special treatment. Chap-
ter 2 (From et al., 2010a) presents a detailed study of vehicle-manipulator systems and
also shows how the dynamics can be implemented in a computationally efficient manner.
Chapter 6 (From et al., 2010e) presents a detailed study of the dynamically equivalent
manipulator (DEM) approach for space manipulators and we present the singularity free
dynamic equations of the DEM for the first time. In Chapter 5 we study some important
properties of these systems, namely the boundedness property of the inertia matrix and the
skew-symmetric property of the Coriolis matrix.

1.4.8 Motion Planning and Control of Robots a Non-Inertial Base

From the previous sections we see that we can derive the dynamics of vehicle-manipulator
systems in a robust and computationally efficient way. The explicit equations presented
serve as a good platform for gaining a deeper insight into the dynamic coupling between
the moving base and the manipulator. Based on the formulation presented in Chapter 2
(From et al., 2010a) we develop several new algorithms for motion planning and control
of a robot mounted on a moving base. First, in Chapter 3 (From et al., 2009a) we study
how the non-inertial forces of a moving ship affect a manipulator mounted on the ship
and we show that if we take the non-inertial forces into account in the motion planning
and control of the manipulator we can substantially reduce the torques needed to take
the manipulator from an initial to a final configuration. Then, in Chapter 4 (From et al.,
2009b) we run several experiments and show that even though the future ship motion
can only be predicted with a certain accuracy, we can include the predicted ship motion
in the motion planner and improve performance. We also study in detail for the first
time how the motion of the non-inertial base affects the manipulator and show through
experiments that a manipulator mounted on a ship in only 1 meter wave height has to use
a substantial amount of torque just to compensate the inertial forces. This result serves
as a good motivation for the papers in this section and illustrates the importance of these
studies.

1.5 Part II - Robust Manipulator Design

As already discussed in the previous section, robustness is an extremely critical issue when
it comes to autonomous operation of remotely located facilities. In Part II of this thesis we
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are not only concerned with the mathematical representation of the robots for simulation
and control, but also with the mechanical design of the robot. The main topic covered in
this part is fault tolerance with respect to torque failure, or free-swinging joint faults.

Both serial and parallel robots are widely used in remote and harsh environments where
humans cannot or do not want to operate. In the setting of joint failure there is an important
difference between serial and parallel manipulators. We find that for serial manipulators
the fault tolerance problem needs to be addressed in the control of the robot after joint
failure occurs, while for parallel manipulators this needs to be addressed in the mechanism
design. In any case, the need for a rigorous theory on what happens when joint failure
occurs is important to be able to cope with unforeseen events of this kind. In this part we
present a complete and mathematically rigorous theory of the effects that passive joints
have on serial and parallel manipulators when external forces are present.

Even though the theory developed in this part is presented in the setting of joint failure,
it also gives us valuable insight into how passive joints affect serial and parallel mecha-
nisms in general. The proposed framework is also well suited for mechanism design of
parallel manipulators and motion analysis of such systems.

1.5.1 Joint Failure

Fault tolerance needs to be handled differently for different types of joint failure. The most
important types of joint failure are:

• Free-swinging joint faults (FSJF) - this is the case when an actuated joint turns
passive because, for some reason, no torque is available to control the joint. This is
also known as torque failure.

• Locked joint faults (LJF) - this is the case when the joint, for some reason, becomes
stiff, or locked.

• Incorrectly measured joint position or velocity faults (JPF/JVF) - this occurs when
the measurements of the joint position or velocity becomes unavailable or are mea-
sured incorrectly.

We are only concerned with free-swinging joint failure. Electrical motors can fail, and
when they do it is important to reduce the damage caused by this failure. Due to external
forces such as gravity joint failure of this type may cause the mechanism to collapse.
However, this can sometimes be avoided if the correct precautions are taken in the design
or the control of the mechanism. This is the main topic of this part.

Figures 1.8 and 1.9 illustrate the difference between serial and parallel mechanisms.
In Figure 1.8 we see that a passive joint at the end of a serial chain leads to a motion that
cannot be compensated for if an arbitrary external force is applied. The beam may thus
cause severe damage to the surroundings.

Closed chain manipulators such as parallel manipulators and cooperating serial ma-
nipulators have many advantages over their serial counterparts. Parallel manipulators
are stiffer, faster, and more accurate than serial manipulators at the cost of a smaller
workspace. Cooperating robots can handle heavier and larger objects than serial manipu-
lators and are thus the preferred choice in many applications. Closed chain mechanisms
are also more resistant to torque failures. From Figures 1.8 and 1.9 it is clear that a parallel
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Figure 1.8: Passive joint about the a) y-, b) z- and c) x-axis for a serial manipulator.

manipulator will deal much better with a FSJF than a serial manipulator. For example, the
FSJF in Figure 1.9c) will not be affected by the external forces at all.

1.5.2 Serial Manipulators

For serial manipulators joint failure is extremely serious and will always result in an un-
desired motion if an arbitrary external force is present. Also, this undesired motion cannot
be compensated for by controlling the active joints. We will denote a motion generated by
the passive joints a passive motion. Because serial manipulators do not have any closed
loops, and thus no loop constraints in the mechanism, there will always exist an external
force for which such a passive motion is generated. For example, if the passive motion is
affected by the gravitational forces, the mechanism, or part of the mechanism, will fall to
the ground.

When the external force is known we can in some cases prevent the manipulator from
collapsing and protect the surroundings of the manipulator. In this case we investigate
under what conditions, i.e. for what external forces and for what configurations of the
robot, the external forces do not affect the motion of the passive joints. We will say
that the manipulator is conditionally equilibrated with respect to an external force at all
configurations for which the passive joints are not affected by this specific external force.
Thus, if joint failure occurs we can prevent damage to the robot’s surroundings by taking
the manipulator to one of these configurations in a controlled manner. For example, if the
only external force is a force in the direction of the z-axis (e.g. gravity), the joint in Figure
1.8b) will resist this force as opposed to 1.8a) or 1.8c) and we should thus strive to reach
such a configuration.

From this it is clear that joint failure is extremely serious for serial manipulators. How-
ever, the solution proposed in this part allows us to make the best out of a very difficult
and dangerous situation and may prevent serious damage to the robot’s surroundings.
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Figure 1.9: The conceptual differences of passive joints in serial and parallel manipulators.

1.5.3 Parallel Manipulators

For serial manipulators the fault tolerance needs to be addressed in the control of the robot
after such a failure has been identified. For parallel manipulators, however, the problem
of free-swinging joint failure can—and should—be addressed in the design of the robot.
Parallel mechanisms may have passive joints as an intrinsic property, i.e. a design choice,
or due to joint failure. In any case, it is important to understand how the passive joints
affect the mobility and controllability of the robot.

Because of the closed chains, a joint failure may not affect the mechanism at all. In the
papers presented in Section II we will see several examples of robots that do not collapse,
or can even continue operation, when joint failure occurs. To be able to continue operation,
we need to choose one or more redundant actuated joints and we study in detail how to
choose the active and passive joints of the mechanism to guarantee fault tolerance using as
few actuated joints as possible.

We thus find that parallel manipulators can be designed such that all the degrees of
freedom of the motion remain controllable when joint failure occurs for an arbitrary joint.
This will, however, require more active joints than necessary to control the degrees of free-
dom the manipulator originally was intended to operate in. This actuator redundancy is
in many cases undesirable due to manufacturing and maintenance costs, weight, perfor-
mance, and so on. The number of redundant active joints should thus be kept as low as
possible. We present a mathematically rigorous theory for identifying the smallest set of
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active joints for which the mechanism is fault tolerant.
If the fault tolerance problem is not addressed in the design process it must be handled

in the control of the manipulator in the case of such an occurrence. However, we find that
this is more difficult for parallel than for serial manipulators and the problem of joint faults
should be addressed in the design process to guarantee a fault tolerant solution.

1.5.4 Relevant Literature and Advantages of the Proposed Approach

For parallel manipulators we first need to investigate if a joint failure will allow a passive
motion or not. The relation between the active and passive joints in a parallel manipulator
is important in this setting and well covered in literature. The Jacobian of the parallel
manipulator is investigated in Liu et al. (1999) and Bicchi and Prattichizzo (2000) where
the passive joint accelerations are found from the active joint accelerations by dividing the
Jacobian into an active and a passive part. This tells us how the passive joints move due to
the controlled motion of the active joints, but it does not give us the motion of the different
links directly. The motion of the passive joints is then given in the form (Liu et al., 1999)

θ̇p = −J†
p(θ)Ja(θ)θ̇a (1.30)

where J†
p is the pseudo-inverse of the passive Jacobian and Ja is the active Jacobian.

We will use the concept of mobility which has been studied by various researchers.
The mobility basically tells us how many degrees of freedom the mechanism has, count-
ing both the motion of the end effector and the internal motion of each chain. For non-
overconstrained mechanisms, i.e. when there are no redundant constraints, we can find the
mobility by the well known Grübler formula (Murray et al., 1994). For overconstrained
mechanisms there are many approaches to determine the mobility. The two most important
approaches in this setting are the constraint space and the motion space approaches.

In Dai et al. (2006) the mobility of the mechanism is found from the constraint space.
The constraints of the system are found systematically and the redundant constraints are
identified. The mobility of the mechanism is then found by adding the degrees of freedom
represented by these redundant constraints to the Grübler formula for non-overconstrained
mechanisms. This approach illustrates well the effects of redundant constraints in the
mechanism.

The mobility can also be found by the motion space as in Rico et al. (2003, 2006).
The degree of freedom of the motion of the end effector is first found. Then the degree
of freedom of the self-motion manifold of each chain is added. By this approach the
redundant constraints are not found directly, but this approach gives valuable insight into
where to place redundant actuators in the mechanism, which is our main objective.

For serial manipulators, passive joints are not an intrinsic property of the manipulator
and this has thus not been treated to any extent in literature. A few exceptions can be
found, though, for example in the study of the inverted pendulum with a passive joint.
Some references that address passive joints in serial manipulators are Oriolo and Naka-
mura (1991) and Arai and Tachi (1990), and case studies such as the Acrobot (Hauser and
Murray, 1990).

For a comprehensive treatment on how to identify joint failures see Tinós et al. (2007).
Once these are identified the appropriate control actions should be applied to minimise
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damage to the surroundings. Fault tolerant actuators have recently been proposed as an-
other way to deal with fault tolerance with respect to torque failure (Muenchhof et al.,
2009; Steffen et al., 2009). The main idea here is to use several small actuators and thus
guarantee that if one actuator fails, the remaining actuators can still apply the necessary
torque. This approach will not, however, be tolerant with respect to problems such as
power failure.

The approach presented here is based on the motion space approach, as presented in
Rico et al. (2003, 2006), and we verify if the manipulator—considering the passive joints
only—generates a non-trivial motion. By considering the passive joints only, and assum-
ing all actuated joints as fixed, we gain valuable insight into the uncontrollable motion of
the passive joints in the mechanism. Then, if the passive joints of the manipulator allow
a motion, we investigate what kind of motion it implements. From this we can conclude;
(i) given a mechanism, with respect to what kind of external forces is the manipulator
equilibrated; and (ii) given an external force, what kind of mechanism and for what con-
figurations is the mechanism equilibrated with respect to the external force.

The mobility and classification of robotic mechanisms can be based on several different
frameworks. Lie groups have been extensively used as a basis to represent the motion of
the joints, the chains and the end effector. The early work of Reuleaux (1875) recognised
some commonly used primitive generators as Lie subgroups. The most extensive work
on mechanism topology in this setting is maybe the work by Hervé (1978), Hervé and
Sparacino (1991) and Lee and Hervé (2006) where the topology of parallel mechanisms
was studied based on a Lie geometrical formulation. Based on this work, Meng et al.
(2007) developed a geometric theory for a more precise and complete treatment of the
synthesis problem. Other related work are Angeles (2004), Li et al. (2004) and Selig
(2000).

We use the framework of Meng et al. (2007), where a precise geometric theory for
analysis and synthesis of sub-6 DoF manipulators is presented. The low dimensional sub-
groups or submanifolds of SE(3) are used to represent the lower pairs, or primitive gen-
erators (commonly referred to as joints), while the high dimensional subgroups are used
to represent the desired end-effector motion types. Given a desired end-effector motion
type as a Lie subgroup or a submanifold, the synthesis problem is solved for serial and
parallel manipulators, i.e. for a set of primitive generators they find the type of motion that
these generators implement. Then, from a pre-specified list of primitive generators, all
possible serial and parallel arrangements of the primitive generators so that the resulting
manipulator has the desired end-effector motion type are found.

The main contribution of Part II is that we extend this work and present a complete
and rigorous theory of the effect that passive joints have on robotic mechanisms. First we
use the concept of mobility to define the strongest type of robustness we can obtain for a
parallel manipulator:

Definition 1.5. A parallel manipulator M is denoted equilibrated if M, either through
kinematic constraints or through actuator torque, can resist an arbitrary external wrench

Fext =
[
fT τT

]T
where f, τ ∈ R3. In the case that an arbitrary wrench can be ac-

commodated by the kinematic constraints, we will say that the manipulator is passively
sustained. When an arbitrary wrench can be produced by the actuation torque, we will
denote it actively equilibrated.
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Secondly, we extend the formalism presented in Meng et al. (2007) to analyse the pas-
sive motion of a mechanism. Such a passive motion is always possible for serial manipu-
lators with passive joints, or for parallel manipulators that are not found to be equilibrated
by Definition 1.5. Using this formalism it is found that a mechanism is conditionally equi-
librated with respect to an external force if the mechanism considering only the passive
joints is a motion generator of a motion for which the reciprocal product with the external
force vanishes. If the passive joints of the manipulator allow a motion, we are interested in
what kind of motion this is. This is the concept of conditionally equilibrated mechanism
introduced for the first time in the papers in Part II. We will denote a mechanism-force
pair conditionally equilibrated if the following holds:

Definition 1.6. A manipulator M is denoted conditionally equilibrated with respect to

a given external wrench Fext =
[
fT τT

]T
where f, τ ∈ R3, if M, either through

kinematic constraints or through actuator torque, can produce a wrench opposite to Fext,
i.e. M can produce the wrench −kFext for some k > 0.

Thus, an equilibrated mechanism can resist any external force, while a conditionally
equilibrated mechanism can resist one specific external force, and only for certain con-
figurations. We note that equilibrated mechanism applies to parallel mechanism only, but
conditionally equilibrated applies to both serial manipulators and parallel manipulators
with passive joints.

The proposed approach is a systematic and rigorous analysis of the mobility of closed
chain mechanisms based on the theory of twists. The analysis makes it possible to calculate
the mobility of the mechanism based on the number and type of joints in each sub-chain.
We then determine the minimum set of active joints needed for the manipulator to be
equilibrated and fault tolerant. The mechanism needs to be equilibrated not only with
respect to forces acting on the end effector, but also with respect to forces acting on the
chains. Thus, in addition to the end-effector motion we also need to consider the internal
motion of each chain to guarantee that the mechanism is equilibrated.

We present several examples of how to apply the theory presented to different mecha-
nisms. For three types of mechanisms—exceptional linkages and trivial linkages of type I
and II—we show how to choose the minimum number of active joints so that the mecha-
nisms are equilibrated and fault tolerant.

Even though the mobility of closed chain manipulators is given a lot of attention in
literature, there does not seem to be a thorough treatment of mobility in the light of joint
failure. Torque failure, or free-swinging joint faults are treated in Matone and Roth (1999),
English and Maciejewski (1998), Tinós and Terra (2002) and Tinós et al. (2007). The
passive motion that these joint failures allow have, however, not been treated in literature.

1.6 Part III - Functional Redundancy

Autonomous operation of remotely located fields depends on robots that can perform a
wide variety of tasks. This may be pre-programmed routine operations or tasks that need
to be performed in real time. In any case, robotic manipulators that are to perform a wide
variety of tasks need to be designed so that the operational space of the manipulator is
equal to or bigger than the task space of all the tasks it is to perform. If the dimension of
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the task space is smaller than the operational space for a specific task, we potentially have
more controllable degrees of freedom for the end effector than necessary to perform the
given task. This freedom is known as functional redundancy and can be used to improve
performance if dealt with properly in the motion planning and control of the robot.

We are especially interested in this type of redundancy as it will typically arise in
settings where one manipulator is to perform several different tasks. In remote areas the
robotic manipulator should be able to perform all the tasks previously performed by hu-
mans. Such a wide variety of tasks will lead to tasks with different dimensions of the task
spaces. Several different tasks with different task dimension will itself lead to functional
redundancy.

One common type of application where functional redundancy is utilised to improve
performance is the so-called pointing task. In pointing task applications we only need to
specify the direction of the end effector and not the orientation. In addition to the three
degrees of freedom of the position, the direction of the end effector has only two degrees
of freedom, as opposed to the three degrees of freedom of the orientation. For standard
industrial manipulators with six degrees of mobility this gives one degree of freedom that
can be used to lower energy consumption or the strain and tension on the robots, increase
the speed of the job, or improve the quality of the job in general.

We note that this freedom arises due to the task and not the design of the manipulator
itself. It is thus fundamentally different from the redundancy that arises in manipulators
with many joints in the sense that the freedom arises without the need to add redundant
joints to the chain. We can thus obtain functional redundancy without having to increase
the production cost and the complexity of the manipulator.

We will introduce a wider definition of functional redundancy than the one normally
found in the robotics literature. Functional redundancy is normally defined as an opera-
tional space and a task (and thus independent of the manipulator design) where one or more
degrees of freedom of the operational space are not of concern for the specific task. For
the pointing task the rotation about the end-effector central axis can be chosen arbitrarily
and thus represents a one degree of freedom redundancy.

In many applications, however, we may have a freedom in the specifications of the end
effector that cannot be described by a complete one degree of freedom redundancy as we
could for the pointing task. An easy case to visualise is when we allow a small error in the
orientation of the end effector. If the end-effector orientation is specified, but in addition
we allow an orientation error around one or more axes, this cannot be described using the
conventional framework of functional redundancy. We thus propose a wider definition of
functional redundancy which also allows us to describe these cases.

We start by defining the different classifications of redundancy as they are normally
defined in literature and the spaces used to describe these. We then present a new, wider
interpretation of functional redundancy well suited to represent the kind of freedom that
arises in the cases described above.

1.6.1 Joint Space, Operational Space and Task Space

The concept of redundancy can be defined as an intrinsic kinematic property of the manip-
ulator or as a property relative to the task that the manipulator performs. To get a formal
definition of redundancy and understanding this subtle difference, we need to define the
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different spaces of the manipulator. We use the definitions of Sciavicco and Siciliano
(2005).

Firstly, the operational space is the space in which the manipulator task is specified.
The dimension of this space is given by the minimum number of independent parameters
needed to represent this space. In SE(3)we need three parameters to describe the position
of the end effector and three for the orientation. The dimension of the operational space
in this case is thus m = 6. We denote an element of this space by g ∈ SE(3) and the
minimum number of independent parameters needed to represent the matrix g is normally
given by the vector representation g∨, i.e.

g∨ =

⎡⎢⎢⎢⎢⎢⎢⎣
x
y
z
φ
θ
ψ

⎤⎥⎥⎥⎥⎥⎥⎦ . (1.31)

where x, y, and z determine the position and φ, θ, and ψ are the Euler angles. Similarly,
for the planar case SE(2) we havem = 3.

Secondly, the joint space, or configuration space, defines the space on which the joint
variables live. This determines what is often referred to as the degree of mobility for serial
manipulators. If the manipulator consists of 1-dimensional rotational or translational joints
only, the dimension of the joint space is equal to the number of joints in the open chain.
An element of the joint space is given by a vector

q =

⎡⎢⎢⎢⎣
q1
q2
...
qn

⎤⎥⎥⎥⎦ . (1.32)

For a standard industrial manipulator we have n = 6.
Finally, we define the task space as the subspace of the operational space needed to

describe a specific task. For example the pointing task can be completely described with
only five of the components of the operational space in SE(3), i.e.

g∨pt =

⎡⎢⎢⎢⎢⎣
x
y
z
φ
θ

⎤⎥⎥⎥⎥⎦ (1.33)

and the dimension of this space is r = 5. ψ can thus be chosen freely.

1.6.2 Redundancy

We now define functional, intrinsic and kinematic redundancy from the above-defined
spaces.
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Definition 1.7. A manipulator is denoted intrinsically redundant ifm < n.

We thus note that intrinsic redundancy is a property of the manipulator design and not
of the task. This allows us to design manipulators that always have a freedom that we
can use to improve the performance and increase dexterity. Intrinsically redundant robots
are, however, more expensive to manufacture, the complexity increases with the number
of joints and so does the possibility of joint failure and other faults.

Definition 1.8. A task is denoted functionally redundant if r < m.

Functional redundancy is thus determined by the difference in the dimension of the
operational space and the task space and does not depend on the manipulator design. If
this property is present there are two main approaches that we can take; to improve design
or to improve performance. One solution is to design a manipulator with fewer degrees of
mobility and thus decrease production cost, complexity, and so on. On the other hand, if
the manipulator has n = m degrees of mobility we have one or more degrees of freedom
of the end effector that can be chosen freely. This can be utilised in the motion planning
and control to improve performance.

Finally a manipulator and specific task is denoted kinematically redundant if it is either
intrinsically redundant or functionally redundant, or both. We stress, however, that in most
texts on robotics, kinematic redundancy is defined in the same way as we have defined
intrinsic redundancy above and in some of the papers in Part III we have adopted this
notation.

1.6.3 Extended Definition of Functional Redundancy

In this section we present the basic idea of extending the definition of functional redun-
dancy to also include a freedom in the specification of the end effector that cannot be
described by the conventional framework. The details are found in the papers included
in Part III. The freedom described in this section can be described as a continuous set of
orientations of the end effector. We are only concerned with the end-effector orientation,
but the same ideas can be applied to restrict the end-effector position.

We start by defining a continuous set of frames that satisfy some constraint on the
orientation or direction of the end effector. This set is defined by restricting the allowed
rotation around one or more of the coordinate axes. By restricting the rotation around
different axes we can construct sets with different shapes and sizes suitable for different
tasks. The size of the allowed set is then given by the size of the rotation allowed around
each axis and the shape is given by the sequence of coordinate axes we choose to rotate
about.

Three different sets are shown in Fig. 1.10. Note that all the sets are convex. This is an
important property when we include this cone as a constraint in an optimisation problem.
The different shapes shown in Fig. 1.10 are defined by different norms in R3. All these
sets are well suited to describe the freedom that arises when a small orientation error is
allowed, i.e. when a small deviation from the optimal orientation is not of concern for the
task at hand.
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Figure 1.10: Different convex cones in R3.

1.6.4 Applications

The extended definition of functional redundancy can be used to improve performance for
a wide variety of applications. The most apparent examples are tasks where a small error
in the end-effector orientation does not affect the quality of the job performed. In this
thesis we illustrate the benefits of extending the definition of functional redundancy by a
spray paint example. It can be shown that allowing a small orientation error in spray paint
applications does not affect the quality of the paint job. Platforms in harsh environments,
such as high sea, are subject to extreme corrosion which may require the platforms to
be painted with frequent intervals. Due to the large surfaces to be painted this is time
consuming task and reducing the cycle time without compromising the paint quality may
reduce the cost involved with painting, and also free the robots to perform other tasks.
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The search for new oil fields in more remote areas will force the oil companies to
operate in extremely cold areas, such as the Shtokman field explored by Statoil where
temperatures reach −45◦C. This poses enormous challenges when it comes to preventing
severe damage to the equipment and an important task for the robots will therefore be to
operate heating devices. A heating device mounted on a robotic manipulator is not affected
by the orientation with respect to the surface to a very large extent. We can thus exploit
this in the same way as for spray painting.

High pressure water blasting is another applications where the orientation is not critical
and we can substantially reduce the cycle time by applying the extended definition of
functional redundancy. This is also an important application, especially at sea where high
pressure water blasting is used to avoid corrosion and to prepare the surfaces for painting.
Other applications include arc welding, holding a camera or other measuring equipment,
etc.

This kind of freedom can also be used to improve accessibility. When searching for
the optimal path of the end effector in the presence of obstacles the proposed definition
of functional redundancy allows us to include this freedom in the algorithms. For au-
tonomous operating robots we need a rigorous mathematical representation in order for
the path planner to search all possible paths, including the paths that exploit this freedom.
In the presence of obstacles the proposed approach may thus increase the workspace of
the manipulator for a specific task. The proposed formulation is also well suited for au-
tonomous path generation as the constraints are explicit and well suited for implementation
in path planners and optimisation algorithms in general.

1.6.5 Relevant Literature and Advantages of the Proposed Approach

The approach presented in this paper is based on the observation that a certain group of
non-linear constraints can be transformed into a test of positive definiteness of a linearly
constrained matrix. In Buss et al. (1996) the problem of determining suitable grasping
forces of a robotic hand in order to balance the external forces is solved. The force of
each finger is found subject to a non-linear constraint called the friction cone. The main
contribution of this paper is to transform the problem of friction force limit constraints into
a problem of testing for positive definiteness of a certain matrix. The problem of force
optimisation is then solved as an optimisation problem on the smooth manifold of linearly
constrained positive definite matrices. This guarantees globally convergent solutions that
can be solved very efficiently and in real time.

Han et al. (2000) further cast the problem of friction force constraints into Linear Ma-
trix Inequalities (LMIs) and efficient solutions are found by solving a convex optimisation
problem involving LMIs. Convex optimisation problems have been extensively studied in
literature and a wide range of tools can be used to find efficient algorithms and solving
problems such as the existence problem and finding an initial point that satisfies the con-
straints. Boyd and Wegbreit (2007) present robust and computationally efficient solutions
to these problems.

In Chapter 9 (From and Gravdahl, 2008d) these ideas are used to convert the problem
of orientation error constraints into a test of positive definiteness of a matrix. This is possi-
ble due to the results presented in Chapter 8 (From and Gravdahl, 2007b) where it is shown
how to represent a continuous set of frames representing the end-effector orientation as a
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constraint directly on the four entries of the quaternion. For different types of orientation
errors, a suitable matrix is found and it is shown that positive definiteness of this matrix is
equivalent to an orientation that satisfies the given restrictions.

By transforming the non-linear orientation constraints into positive definiteness con-
straints imposed on certain matrices the problem of finding the optimal orientation is thus
transformed into an optimisation problem on the smooth manifold of linearly constrained
positive definite matrices. For the special case of positive definite symmetric matrices, the
constraints can be written in the form of linear matrix inequalities (LMIs). The constraints
can also be written as barrier functions which allows for simple and efficient implementa-
tion.

There is a huge advantage of being able to formulate the constraints as LMIs. With
the recent advances in computational power, problems formulated in this form can now
be solved in real time and in many cases several times faster than analytical solutions that
often depend on computationally heavy matrix computations. This, together with the fact
that we are guaranteed to find a solution to any convex optimisation problem, makes LMIs
and barrier functions suited for solving real-time problems.

Potkonjak et al. (2000) address the problem of how to reduce the cycle time to paint
a surface, and the idea of introducing the paint quality as a constraint and minimise some
additional cost function is presented. This opens for the possibility of allowing a small
error in the orientation of the end effector in order to increase the velocity of the paint gun,
reduce torques and so on. Also, in From and Gravdahl (2007a) it is shown that by allowing
an orientation error in the end-effector configuration, the speed and the quality of a spray
paint job is improved. However, the problem of choosing the optimal orientation error
remains unsolved as the orientation error is chosen intuitively. The approach presented
is thus not suitable for implementation in an optimisation algorithm. From and Gravdahl
(2008f) reformulate the problem in a convex optimisation setting which allows for a robust
and optimal solution to the spray paint problem. Chapter 10 (From and Gravdahl, 2010b)
presents a detailed case study of how a freedom in the specifications of the end-effector
orientation can be utilised to improve performance in spray paint applications.

In Chapter 11 (From and Gravdahl, 2010a) we validate the promising theoretical re-
sults and simulations presented in From and Gravdahl (2010b) through empirical studies.
The simulations presented in From and Gravdahl (2010b) suggest that the torques needed
to paint a surface can be reduced with as much as 50%. It is thus important to confirm the
simulation results by implementing this on a real robot. The algorithms are implemented
on an ABB robot and we show that both the average torque and the maximum torque val-
ues can be reduced substantially. The theory and simulations are thus validated through
successful experimental results.

1.7 Part IV - Inverse Kinematics of Manipulators with no
Closed Form Solution

Existing oil and gas platforms, and probably also the facilities of the future, are extremely
complex constructions which cause great challenges when it comes to accessibility. A
completely automated facility without direct human intervention needs robotic solutions
with access to every part of the platform. To achieve this, the use of intrinsically redundant
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manipulators is inevitable. These manipulators do, however, pose significant challenges—
but also great potential—when it comes to solving the inverse kinematics problem. In
general the inverse kinematics of intrinsically redundant manipulators cannot be solved in
a closed form, and iterative solutions are applied.

There are also other types of robotic manipulators that do not have a closed form
solution to the inverse kinematics problem. In some cases, the closed form solution is not
known due to the complex geometry of the robot. This is for example the case for the ABB
hollow wrist. The hollow wrist has the great advantage that all cables can be put inside
the wrist, instead of on the outside. This is very favourable when operating in complex
environments, such as an oil platform, and also when it comes to certification for use in
explosive and other critical areas. We can achieve a far more robust solution if we avoid
cables on the outside of the robot.

The challenge with the ABB hollow wrist is that the axes of rotation cannot be rep-
resented as constant twists, but they depend upon the position of the wrist joints. When
the axes of rotation are not constant, we cannot solve the inverse kinematics by reducing
the problem into several sub-problems, known as Paden-Kahan sub-problems, and find a
closed form solution in this way. As there is no known closed form solution to the in-
verse kinematics problem for this kind of manipulators, this problem needs to be solved
iteratively. In Part IV we propose a set of algorithms where we solve the problem numer-
ically by dividing the problem into several sub-problems which allows us to solve each
sub-problem very efficiently.

1.7.1 The Inverse Geometric and Inverse Kinematics Problem

In this part of the thesis we address the inverse geometric problem, often referred to as the
inverse kinematics problem. We will, however, distinguish between the two, even though
this is not always done in literature. The inverse kinematics problem and the inverse geo-
metric problem solve two different problems. Which one we choose depends on whether
we want to control the robot in operational space or in joint space (Khalil and Dombre,
2002). The term inverse kinematics is also often used to cover both inverse geometric and
inverse kinematics in one term. When appropriate we will also adopt this definition, as in
the title of Part IV.

As a general rule we can say that the inverse kinematics problem is solved when oper-
ational space control is applied, while the inverse geometric problem is applied when joint
space control is applied. We will formalise this and point out the main differences in the
following.

Operational Space Control

Operational space control has the advantage that the end-effector motion is specified in
the Cartesian space. One popular control scheme is the Jacobian inverse control where the
transformation from operational to joint space is obtained by solving the inverse kinematics
problem. The inverse kinematics problem finds the joint velocities from the end-effector
velocities by a transformation given by the inverse Jacobian. If we assume that the desired
motion is specified in the operational space by xd, we can also easily find the actual end-
effector configuration x from the joint positions by the forward kinematics. Comparing

37



INTRODUCTION

these we can include a coordinate transformation by the inverse (analytical) Jacobian in
the feed-back loop which gives us the corresponding error in joint space. The control law
is then given by (Sciavicco and Siciliano, 2005)

τ = KΔθ = KJ−1(θ)(xd − x) (1.34)

for some positive definite K and where θ is the vector of joint variables. There are also
several other variations of this control law. The inverse Jacobian in this form is also used
in the inverse dynamic control scheme (Sciavicco and Siciliano, 2005).

Operational space control has many advantages and is fast to compute. A drawback
is that it strongly depends on the inverse Jacobian and that the transformation from op-
erational to joint space is performed inside the feedback loop and thus the recomputation
time of the controller strongly depends of the complexity of this transformation (Perdereau
et al., 2002). This may lead to degrading performance of the controller. Operational space
controllers are however important in force control and when the end effector is in contact
with the environment in general.

When kinematic redundancy is present, the inverse Jacobian approach also allows us
to add a secondary criteria, such as minimising the cost function of joint velocities ψ =
1
2 θ̇

TWθ̇ for some symmetric positive definiteW . ForW = I the solution to this problem
is given by the Moore-Penrose generalised inverse as J† = JT(JJT)−1.

Joint Space Control

For joint space control, the transformation from operational space to joint space is obtained
by solving the inverse geometric problem, i.e. to find the joint positions from the desired
end-effector position/orientation. Then some joint space control scheme can be designed.
The disadvantage of this approach is that the inverse geometric is a time-consuming prob-
lem to solve. The advantage is that the transformation from operational to joint space is
moved outside the control loop. For joint space control there are a wide variety of ap-
proaches available, including standard feedback control and computed torque feedforward
control, as well as robust and adaptive control schemes.

When kinematic redundancy is present, the inverse geometric approach also allows
for optimising a general secondary criteria, and does not depend on finding a suitable
inverse of the Jacobian, such as the Moore-Penrose generalised inverse, as for the inverse
kinematics problem. Another advantage of the inverse geometric approach is that each
joint can be controlled more directly and given the desired characteristics such as joint
stiffness, energy consumption, maximum velocity, and obstacle avoidance. For the inverse
Jacobian approach these characteristics must be added through the choice of the costW .
In some cases, such as the minimisation of energy through the Moore-Penrose inverse, this
is both efficient and elegant, but for other characteristics such a Jacobian may be very hard
or impossible to find.

1.7.2 Closed-form Solutions to the Inverse Geometric Problem

Most industrial manipulators with six revolute joints have a known analytical solution
to the inverse geometric problem. When intersecting axes are present, this can be used
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to reduce the problem to several simpler sub-problems, known as the Paden-Kahan sub-
problems. The Paden-Kahan approach uses the product of exponentials formula found in
Brockett (1984) and was presented in Paden and Sastry (1988). The work was based on
the unpublished work of Kahan (Kahan, 1983).

The basic concept is to apply the kinematic equations to certain points on the intersect-
ing axes and then use this to eliminate the dependence of these joints to the position of the
chosen points. To be able to reduce the problem into Paden-Kahan sub-problems, some
requirement must be met:

• There must be a certain number of intersecting axes.

• Each joint must be represented by the exponential map. This is the same as requiring
that all links revolute around fixed axes.

A wide range of industrial manipulators have a geometry for which we can find inter-
secting axes. We then apply the kinematic equations to points that lie on these intersecting
axes. This simplifies the equations as exp(ξ̂θ)p = p for a point p on the axis ξ eliminates
the dependence of the joint angle θ. For example, we cannot solve the inverse geometric
problem

eξ̂1θ1eξ̂2θ2eξ̂3θ3 = g03 (1.35)

directly, but if we apply the left and the right side to a point p on ξ3, we get

eξ̂1θ1eξ̂2θ2p = g03p (1.36)

for which we have an analytical solution (Murray et al., 1994). By eliminating the depen-
dence of certain joint variables in this way we reduce the problem to several sub-problems
that can be solved analytically.

We stress that there is only a certain class of robotic manipulators for which we can
apply this approach, but this class is rather big and includes some commonly used indus-
trial manipulators. There are also other ways to derive analytical expressions of the inverse
geometric problem, but most of them are based on geometric analysis and often do only
apply to one specific manipulator. There is thus a need for algorithms that work also on
manipulators without certain geometric properties. This is discussed in the next section.

1.7.3 Iterative Methods in Literature

There is a wide variety of methods available for solving the inverse geometric problem
numerically. Most of these stem from the robot research communities, but also the com-
puter graphics community has contributed to this field. Some of the most common ap-
proaches are Jacobian pseudoinverse methods (Whitney, 1969), Jacobian transpose meth-
ods (Balestrino et al., 1984), damped least squares methods (Nakamura and Hanafusa,
1986), conjugate gradient methods (Wang and Chen, 1991; Zhao and Badler, 1994), cyclic
coordinate descent methods (Wang and Chen, 1991), and artificial intelligence methods
(D’Souza et al., 2001; Oyama et al., 2001; Tevatia and Schaal, 2000). These methods can
be divided into two main groups: The first group consists of Jacobian-based methods while
the second is purely optimisation based.
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Firstly, Jacobian based methods take advantage of the geometry of the mechanism and
calculates the incremental change in the joint positions from the end-effector error. There
are many variations of the Jacobian based approach but in its simplest form it is given
iteratively by solving the following algorithm:

• compute the end-effector errorΔx = xd − x,

• compute the corresponding joint position errorΔθ = J−1Δx,

• update the joint positions θk+1 = θk +Δθ.

Here xd is the desired end-effector configuration, x the current end-effector configuration,
J is the analytical Jacobian and θ is the joint positions. This will eventually converge to the
correct solution. Jacobian based methods suffer from singularities due to the inversion of
the Jacobian. The convergence is also poor when the initial guess is far from the solution
and this may lead to oscillations.

Secondly, purely optimisation based methods do not require the Jacobian and do thus
not suffer from singularities. These methods can again be divided in two main groups, the
ones that require the gradient, such as Cauchy steepest descent, and the ones that do not,
such as coordinate descent methods .

The steepest descent method is a popular method for the minimisation of a function of
several variables (Luenberger, 2003). It is also known as the gradient method as it uses
the gradient ∇f to find the search direction. The steepest descent is given by iteratively
calculating the next point by

θk+1 = θk − αk∇f(θk)T (1.37)

where αk is a non-negative scalar minimising f(θk − αk∇f(θk)). αk can be found in
many ways. A computationally quick solution is to let αk be a small constant. This allows
us to do several iterations in a short time, at the cost of not finding the minimum value
in the search direction. We can also search in the direction of the negative gradient for
a minimum of this line. If this can be done in a computationally efficient way, this will
give us a fast and reliable solution. Convergence to a point where ∇f(θ) = 0 can be
proven (Luenberger, 2003).

Methods that do not require the gradient will often divide the problem into sub-problems
that can be solved very efficiently. One such approach that we will focus on is the coordi-
nate descent algorithm that optimises a cost function f(θ), θ ∈ Rn, by sequentially min-
imising with respect to each of the components, θi, for i = 1 . . . n (Grudic and Lawrence,
1993; Johnson, 1995; Wang and Chen, 1991; Luenberger, 2003). The convergence of coor-
dinate descent is in general poorer than the steepest descent as only one variable is updated
at each time step. Coordinate descent is, however, easy to implement and a fast solution
to the sub-problem makes these algorithms relatively fast. We note that we do not need
the gradient which saves a considerable amount of computational power compared to the
steepest descent. The Cyclic Coordinate Descent (CCD) method performs this optimisa-
tion cyclically and is treated in detail in Welman (1993) and Wang and Chen (1991). The
standard description of the CCD assumes an Euler angle representation. Johnson (1995)
extend these works and formulate the CCD using the unit quaternion approach.

40



1.7. PART IV - INVERSE KINEMATICS

1.7.4 The Proposed Approach

We treat the inverse geometric problem as a pure optimisation problem and solve the prob-
lem using the cyclic coordinate descent (CCD) approach. For each joint we find the opti-
mal joint position, assuming all other joints as fixed. By optimal we may refer to the joint
position that minimises the position error of the end effector, the orientation error of the
end effector, or both. Once this is found we move on to the next variable. Inspired by
the work of Welman (1993) and Johnson (1995) we divide the problem into smaller sub-
problems that are solved iteratively. The main contribution of our approach is that, using
the quaternion representation, we find that we can formulate the optimisation problem so
that an analytical solution can be found. This was also done in Johnson (1995) for the
position of the end effector, but we formulate such an optimisation problem also for the
end-effector orientation.

The novelty of the method presented is thus that the minimum of the cost function
with respect to each joint is found analytically and this is exploited to develop a set of
computationally efficient algorithms. It is well known that the convergence of coordinate
descent is slower than steepest descent and Newton’s method. The advantage is that the
analytic solution presented is a lot faster to solve than search algorithms in general. Thus,
by formulation the optimisation problem so that the solution can be found in closed form
for each sub-problem we develop computationally efficient algorithms, even though the
convergence of each step is not as good at gradient or Jacobian based approaches.

A total of six algorithms are presented. The first three use coordinate descent which
looks at one joint at the time. The difference between the approaches lies in the inter-
pretation of the cost function, i.e. how the orientation and position errors are handled by
the algorithm. For example, we may choose to optimise with respect to both position and
orientation for each joint, or we may choose to first optimise with respect to orientation for
all the joints, and then with respect to position for all the joints. In addition we investigate
in detail the effect of changing the sequence of the joints to be optimised, i.e. if we start
with the joint closest to the base or the end effector.

The last three methods can be looked upon as approximations of steepest descent where
the gradient is estimated. The idea here is to use the optimal solution found from each
joint, like for CCD, but without updating the joint positions for each joint. We then use
the information about how far each joint should move to reach the optimal position to
estimate the gradient. This provides us with a very efficient way to estimate the gradient
as the solutions to all the sub-problems are found analytically. This gradient can then be
used in for example the steepest descent approach. Thus, with this method the gradient
can be found very efficiently without the need to differentiate, at the cost of finding only
an approximation. It is also argued that the step size can be set as a constant. Hence,
a closed form and subsequently a computationally very efficient alternative to both the
search direction and the step size of the steepest descent approach is presented.

It is shown that the algorithms that approximate the steepest descent have very good
convergence and reliability for difficult problems. However, for easy problems, when the
initial guess is close to the solution, the convergence is better for conventional Jacobian-
based algorithms than the algorithms proposed here. This corresponds with most of the
literature which states that Jacobian based algorithms perform well when the initialisation
point is close to the solution, but performs poorly for a bad choice of initialisation point.
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For problems where Jacobian based algorithms have poor convergence or reliability,
the algorithms presented here are thus a better choice. A combination of the algorithms
presented and a Jacobian based method should give good and reliable performance for
difficult problems but also reasonably good convergence close to the solution. We thus
propose to use one of the algorithms presented in Part IV to find a configuration in the
neighbourhood of the solution and then a Jacobian based approach to obtain the exact
solution.
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Singularity-Free
Vehicle-Manipulator Modelling
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Chapter 2

Singularity-Free Dynamic
Equations of Vehicle-
Manipulator Systems

2.1 Abstract

In this paper we derive the singularity-free dynamic equations of vehicle- manipu-
lator systems using a minimal representation. These systems are normally modeled
using Euler angles, which leads to singularities, or Euler parameters, which is not a
minimal representation and thus not suited for Lagrange’s equations. We circumvent
these issues by introducing quasi-coordinates which allows us to derive the dynamics
using minimal and globally valid non-Euclidean configuration coordinates. This is a
great advantage as the configuration space of the vehicle in general is non-Euclidean.
We thus obtain a computationally efficient and singularity-free formulation of the dy-
namic equations with the same complexity as the conventional Lagrangian approach.
The closed form formulation makes the proposed approach well suited for system
analysis and model-based control. This paper focuses on the dynamic properties of
vehicle-manipulator systems and we present the explicit matrices needed for imple-
mentation together with several mathematical relations that can be used to speed
up the algorithms. We also show how to calculate the inertia and Coriolis matrices
and present these for several different vehicle-manipulator systems in such a way
that this can be implemented for simulation and control purposes without extensive
knowledge of the mathematical background. By presenting the explicit equations
needed for implementation, the approach presented becomes more accessible and
should reach a wider audience, including engineers and programmers.

Keywords: Robot modeling, vehicle-manipulator dynamics, singularities, quasi-coor-
dinates.
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2.2 Introduction

A good understanding of the dynamics of a robotic manipulator mounted on a moving
vehicle is important in a wide range of applications. Especially, the use of robots in harsh
and remote areas has increased the need for vehicle-robot solutions. A robotic manipulator
mounted on a moving vehicle is a flexible and versatile solution well suited for these
applications and will play an important role in the operation and surveillance of remotely
located plants in the very near future. Recreating realistic models of for example space
or deep-sea conditions is thus important. Both for simulation and for model-based control
the explicit dynamic equations of vehicle-manipulator systems need to be implemented in
a robust and computationally efficient way to guarantee safe testing and operation of these
systems.

One example of such a system is spacecraft-manipulator systems (Egeland and Sagli,
1993; Dubowsky and Papadopoulos, 1993; Hughes, 2002; Moosavian and Papadopoulos,
2004, 2007) which are emerging as an alternative to human operation in space. Opera-
tions include assembling, repair, refuelling, maintenance, and operations of satellites and
space stations. Due to the enormous risks and costs involved with launching humans into
space, robotic solutions evolve as the most cost-efficient and reliable solution. However,
space manipulation involves quite a few challenges. In this paper we focus on modeling
spacecraft-manipulator systems, which is quite different from standard robot modeling.
Firstly, the manipulator is mounted on a free-floating (unactuated) or free-flying (actu-
ated) spacecraft. There is thus no obvious way to choose the inertial frame. Secondly,
the motion of the manipulator affects the motion of the base, which results in a set of dy-
namic equations different from the fixed-base case due to the dynamic coupling. Finally,
the free fall environment complicates the control and enhances the non-linearities in the
Coriolis matrix. The framework presented in this paper is especially suited for modeling
such systems, especially when applying the so-called dynamically equivalent manipulator
approach (Liang et al., 1998; Parlaktuna and Ozkan, 2004). A set of minimal, singularity
free dynamic equations for spacecraft-manipulator systems are presented for the first time
using the proposed framework.

A second example studied in detail in this paper is the use of autonomous underwater
vehicles (AUVs) with robotic arms, or underwater robotic vehicles (URVs). This is an
efficient way to perform challenging tasks over a large sub-sea area. Operations at deeper
water and more remote areas where humans cannot or do not want to operate, require more
advanced and robust underwater systems and thus the need for continuously operating
robots for surveillance, maintenance, and operation emerges (Love et al., 2004; Kitarovic
et al., 2005; Antonelli, 2006; McMillan et al., 1995). We derive the minimal, singular-
ity free dynamic equations of AUV-manipulator systems using the proposed framework,
which is presented for the first time in this paper. We also show how to add the hydrody-
namic effects such as added mass and damping forces.

The use of robotic manipulators on ships is another important application (Kitarovic
et al., 2005; Oh et al., 2005). In From et al. (2009a) the dynamic equations were derived
and the effects of the moving ship on the manipulator was analyzed. In the Ampelmann
project (Salzmann, 2007) a Stewart platform is mounted on a ship and is used to com-
pensate for the motion of the ship by keeping the platform still with respect to the world
frame. This can be modeled as a 2-joint mechanism where one joint represents the un-
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controllable ship motion and one joint the Stewart platform. There are also other relevant
research areas where a robotic manipulator is mounted on a floating base. Lebans et al.
(1997) give a cursory description of a telerobotic shipboard handling system, and Kosuge
et al. (1992); Kajita and Kosuge (1997) address the control of robots floating on the water
utilizing vehicle restoring forces. Another interesting research area is macro/micro manip-
ulators (Yoshikawa et al., 1996; Bowling and Khatib, 1997) where the two manipulators
in general have different dynamic properties.

It is a well known fact that the kinematics of a rigid body contains singularities if the
Euler angles are used to represent the orientation of the body and the joint topology is
not taken into account. One solution to this problem is to use a non-minimal representa-
tion such as the unit quaternion to represent the orientation. This will, however, increase
the complexity of the implementation and because the unit quaternion is a covering man-
ifold for the set of rotation matrices they are also subject to the unfortunate unwinding
phenomenon (Bhat and Bernstein, 2000). Also, as the number of variables is not mini-
mal, this representation cannot be used in Lagrange’s equations. This is a major drawback
when it comes to modeling vehicle-manipulator systems as most methods used for robot
modeling are based on the Lagrangian approach. It is thus a great advantage if also the
vehicle dynamics can be derived from the Lagrange equations.

The use of Lie groups and algebras as a mathematical basis for the derivation of the
dynamics of multibody systems can be used to overcome this problem (Selig, 2000; Park
et al., 1995). We then choose the coordinates generated by the Lie algebra as local Eu-
clidean coordinates which allows us to describe the dynamics locally. For this approach
to be valid globally the total configuration space needs to be covered by an atlas of local
exponential coordinate patches. The appropriate equations must then be chosen for the
current configuration. The geometric approach presented in Bullo and Lewis (2004) can
then be used to obtain a globally valid set of dynamic equations on a single Lie group,
such as an AUV or spacecraft with no robotic manipulator attached.

Even though combinations of Lie groups can be used to represent multibody systems,
the formulation is very complex and not suited for implementation in a simulation envi-
ronment. In Kwatny and Blankenship (2000) quasi-coordinates and the Lie bracket were
used to derive the dynamic equations of fixed-base robotic manipulators without singular-
ities using Poincaré’s formulation of the Lagrange equations. In Kozlowski and Herman
(2008); Herman and Kozlowski (2006) several control laws using a quasi-coordinate ap-
proach were presented, but only robots with conventional 1-DoF joints were considered.
Common for all these methods is, however, that the configuration space of the vehicle
and robot is described as q ∈ Rn. This is not a problem when dealing with 1-DoF rev-
olute or prismatic joints but more complicated joints such as ball-joints or free-floating
joints then need to be modeled as compound kinematic joints (Kwatny and Blankenship,
2000), i.e., a combination of 1-DoF simple kinematic joints. For joints that use the Euler
angles to represent the generalized coordinates this solution leads to singularities in the
representation.

In this paper we follow the generalized Lagrangian approach presented in Duindam
and Stramigioli (2007, 2008) which allows us to combine the Euclidean joints and more
general joints, i.e., joints that can be described by the Lie group SE(3) or one of its ten
subgroups, and we extend these ideas to vehicle-manipulator systems. There are several
advantages in following this approach. The use of quasi-coordinates, i.e., velocity coor-
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Figure 2.1: Model setup for a four-link robot attached to a vehicle, in this case a ship, with coordi-
nate frame Ψb. Frame Ψ0 denotes the inertial reference frame.

dinates that are not simply the time derivative of the position coordinates, allows us to
include joints (or transformations) with a different topology than that of Rn. For example,
for an AUV we can represent the transformation from the inertial frame to the AUV body
frame as a free-floating joint with configuration space SE(3) and we avoid the singularity-
prone kinematic relations between the inertial frame and the body frame velocities that
normally arise in deriving the AUV dynamics (Fossen, 2002). This relation is subject to
the well known Euler angle singularities and the dynamics are not valid globally. With
our approach we thus get improved numerical stability due to the absence of singularities
and, as the dynamics are valid globally, we avoid switching between different dynamic
models in the implementation. This approach differs from previous work in that it allows
us to derive the dynamic equations of vehicle-manipulator systems for vehicles with a
configuration space different from Rn and thus maintains the underlying topology of the
configuration space. The dynamics are expressed (locally) in exponential coordinates φ,
but the final equations are evaluated at φ = 0. This has two main advantages. Firstly, the
dynamics do not depend on the local coordinates as these are eliminated from the equa-
tions and the global position and velocity coordinates are the only state variables. This
makes the equations valid globally. Secondly, evaluating the equations at φ = 0 greatly
simplifies the dynamics and make the equations suited for implementation in simulation
software. We also note that the approach is well suited for model-based control as the
equations are explicit and without constraints. The fact that the configuration space of the
vehicle in general is a Lie group also simplifies the implementation. Even though the ex-
pressions in the derivation of the dynamics are somewhat complex, we have several tools
from the Lie theory that allows us to write the final expressions in a very simple form. We
present several examples of how we can use this to simplify the dynamic equations and
speed up the implementation.

The main purpose of this paper is to study systems that consist of a moving vehicle
with a robotic manipulator attached to it. To the authors’ best knowledge these systems
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have not been studied in detail in literature using the framework presented here. There
is an apparent need to be able to derive the dynamics of such systems globally and using
a minimal representation, especially when it comes to formulating model-based control
laws. In this paper we first present the framework, based on the approach in Duindam
and Stramigioli (2007, 2008), and then show how to expand this to vehicle-manipulator
systems. The use of quasi-coordinates to derive the dynamics in this way has mainly
been applied to standard robotic manipulators with the extension to more general types of
joints in Kwatny and Blankenship (2000); Duindam and Stramigioli (2008). However, the
treatment of vehicle-manipulator systems deserves a special treatment. There are several
reasons for this. Firstly, the vehicle and the manipulator may possess completely different
dynamic properties. One apparent example is when the vehicle possesses a forced un-
controllable motion while the manipulator is controllable. This is the case for manipulators
mounted on ships, as treated in From et al. (2009a), where the high-frequency motion of
the ship is a forced motion due to the waves and wind. Spacecraft-manipulator systems are
another example where the spacecraft may be unactuated and its position is determined by
the robot motion. Secondly, the formulation allows us to study how the two systems, i.e.,
the vehicle and the manipulator, affect each other. The interaction of the two systems will
depend on the inertial properties of the two systems, external forces acting on one or both
systems and the type of the vehicle (floating, submerged, rolling, fixed, etc.).

The paper is organized as follows. Section 2.3 gives the detailed mathematical back-
ground for the proposed approach. This section can be skipped and practitioners mainly
interested in implementation can go straight to Section 2.4 or 2.5. Section 2.4 gives the ex-
plicit dynamic equations for the AUV-manipulator dynamics along with some comments
on implementing these in a simulation environment. This includes hydrodynamic and
damping forces, the added mass and Coriolis matrices and other considerations that are not
encountered in robot dynamics. Section 2.5 presents the dynamic equations for spacecraft-
manipulator systems and the effects of a free-floating base in a free fall environment are
treated in detail. The matrix representation of the dynamics and how to implement this
is presented in great detail for several vehicles with different configuration spaces. This
allows the readers to first analyse the dynamics of the system from the given equations and
then implement this in a simulation or control environment without having to perform all
the detailed computations themselves.

2.3 Dynamic Equations of Vehicle-Manipulator Systems

We extend the classical dynamic equations for a serial manipulator arm with 1-DoF joints
to include the motion of the vehicle on which the manipulator is mounted. We assume that
the motion of the vehicle can be described by a Lie group, i.e., SE(3) or one of its ten
subgroups. The most important examples of “vehicles” that have a Lie group topology are
shown in Table 2.1.

2.3.1 Vehicle-Manipulator Kinematics

Consider the setup of Fig. 2.1 describing a general n-link robot manipulator arm attached
to a vehicle. Choose an inertial coordinate frame Ψ0, a frame Ψb rigidly attached to the
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SE(3) - AUV, 6-DoF ship, aeroplane, spacecraft
X(z) - The Schönflies group
T (3) - 3-DoF gantry crane
SO(3) - Spacecraft (DEM approach), ball joint
SE(2) - Ground vehicle, 3-DoF ship
T (2) - 2-DoF gantry crane

Table 2.1: Lie subgroups of SE(3) and corresponding “vehicles”. Even though some of these
can be modeled as a combination of 1-DoF Euclidean joints we consider these as vehicles and group
them correspondingly. The Schönflies GroupX(z) represent 3-DoF translation and a 1-DoF rotation
about the z-axis.

vehicle, and n frames Ψi (not shown) attached to each link i at the center of mass with
axes aligned with the principal directions of inertia. Finally, choose a vector q ∈ Rn that
describes the configuration of the n joints. Using standard notation (Murray et al., 1994),
we can describe the pose of each frameΨi relative toΨ0 as a homogeneous transformation
matrix g0i ∈ SE(3) of the form

g0i =

[
R0i p0i
0 1

]
∈ R4×4 (2.1)

with rotation matrix R0i ∈ SO(3) and translation vector p0i ∈ R3. This pose can also be
described using the vector of joint coordinates q as

g0i = g0bgbi = g0bgbi(q). (2.2)

The vehicle pose g0b and the joint positions q thus fully determine the configuration state
of the robot. Even though we use g0b (6 DoF) to represent the vehicle configuration,
the actual configuration space of the vehicle may be a subspace of SE(3) of dimension
m < 6. For ground vehicles the configuration space is SE(2), with dimensionm = 3, and
the attitude of a spacecraft has configuration space SO(3), also with dimensionm = 3.

In a similar way, the spatial velocity of each link can be expressed using twists (Murray
et al., 1994):

V 0
0i =

[
v00i
ω0
0i

]
= V 0

0b + V 0
bi = Adg0b

(
V b
0b + Ji(q)q̇

)
(2.3)

where v00i and ω
0
0i are the linear and angular velocities, respectively, of link i relative to the

inertial frame, Ji(q) ∈ R6×n is the geometric Jacobian of link i relative to Ψb, the adjoint
is defined as Adg :=

[
R p̂R
0 R

]
∈ R6×6, and p̂ ∈ R3×3 is the skew-symmetric matrix such

that p̂x = p × x for all p, x ∈ R3. The velocity state is thus fully determined given the
twist V b

0b of the vehicle and the joint velocities q̇.
In the case of m < 6 we define a selection matrix H ∈ R6×m such that the velocity

vector of the vehicle is given by
V b
0b = HṼ b

0b, (2.4)

where Ṽ b
0b ∈ Rm determines the velocity state of the vehicle by selecting elements of V b

0b

that are not trivially zero. More generally we will write the allowed joint velocity as a
vector vi ∈ Rni . The joint velocity is uniquely described by this vector and the joint twist
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can be expressed in terms of this vector as T i,i
j = Xi(Q)vi withXi(Q) ∈ R6×ni a matrix

describing the instantaneously allowed twists. If X is independent of the manipulator
configuration we get H = X . In our case we have vi = q̇i for the Euclidean joints of
the manipulator and the velocity vector vb = Ṽ b

0b for the allowed vehicle velocities. The
spacial velocity whenm < 6 is then written by

V 0
0i =

[
v00i
ω0
0i

]
= V 0

0b + V 0
bi = Adg0b

(
HṼ b

0b + Ji(q)q̇
)
. (2.5)

2.3.2 Vehicle-Manipulator Dynamics

The previous section shows how the kinematics of the system can be naturally described
in terms of the (global) state variables g0b, q, V b

0b, and q̇. We now derive the dynamic
equations for the system in terms of these state variables. We first assume the vehicle to
be free-moving and then restrict the vehicle motion to be kinematically constrained.

To derive the dynamics of the complete mechanism (including the m-DoF between
Ψ0 and Ψb), we follow the generalized Lagrangian method introduced by Duindam and
Stramigioli (2007, 2008). This method gives the dynamic equations for a general mecha-
nism described by a set Q = {Qi} of configuration states Qi (not necessarily Euclidean),
a vector v of velocity states vi ∈ Rni , and several mappings that describe the local Eu-
clidean structure of the configuration states and their relation to the velocity states. More
precisely, the neighborhood of every state Q̄i is locally described by a set of Euclidean
coordinates φi ∈ Rni as Qi = Φi(Q̄i, φi) with Φi(Q̄i, 0) = Q̄i. Φi(Q̄i, φi) defines a
local diffeomorphism between a neighborhood of 0 ∈ Rni and a neighborhood of Q̄i.

The trick here is to first consider Qi a parameter, even though it strictly speaking is
a state variable. We then think of the local coordinate φi as a state variable. The global
coordinates v are thought of as state variables in the normal way. The Lagrangian is
then written in terms of vi for velocity and Φi(Q̄i, φi) for position and we differentiate
with respect to the velocity variable vi and the position variable φi, not Q̄i which we for
now consider a parameter. Recalling that Φi(Q̄i, 0) = Q̄i, we see that evaluating the
expressions at φ = 0 allows us to consider Qi a variable and we are done. The reason we
can do this is that locally the variables φ describe the configuration state of the system in
a neighborhood of any configuration Q̄i.

We start by deriving an expression for the kinetic co-energy of a mechanism, expressed
in coordinates Q, v, but locally parameterized by the coordinate mappings for each joint.
For joints that can be described by a matrix Lie group (actually for the group of n × n
nonsingular real matrices GL(n,R)), this mapping can be given by the exponential map
(Murray et al., 1994). Let A ∈ gl(n,R), where gl(n,R) is the Lie Algebra of GL(n,R).
Then the exponential map exp(A) is given by

eA = I +A+
A2

2
· · · =

∞∑
n=0

An

n!
(2.6)

where I (no subscript) is the identity matrix. This expression is valid for all subgroups of
SE(3) and SE(3) itself by replacing A with the matrix representation of the Lie algebra
associated with the Lie group. We denote the matrix representation of the corresponding
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Lie algebra by φ̂ and thus get

eφ̂ = I + φ̂+
φ̂2

2
· · · =

∞∑
n=0

φ̂n

n!
. (2.7)

Specific examples of φ̂ for different Lie groups are given in the following sections.
The dynamics are thus expressed in local coordinates φ for configuration and v for

velocity, and we considerQ a parameter. After taking partial derivatives of the Lagrangian
function, we evaluate the results at φ = 0 (i.e., at configuration Q) to obtain the dynamics
expressed in global coordinates Q and v as desired. We note that even though local co-
ordinates φ appear in the derivations of the various equations, the final equations are all
evaluated at φ = 0 and hence these final equations do not depend on local coordinates.
The global coordinates Q and v are the only dynamic state variables and the equations
are valid globally, without the need for coordinate transitions between various areas of the
configuration space, as is required in methods that use an atlas of local coordinate patches.

Note also that taking the partial derivatives of the Lagrangian and evaluating at φ = 0
greatly simplifies (2.7) and the closed form expressions of the exponential map is not
needed. We will use this observation to simplify the implementation and reduce the com-
putational complexity of the algorithm. We will see several examples of how we can use
this to simplify the expressions of the Coriolis matrices for different types of vehicles.

In general, the topology of a Lie group is not Euclidean. When deriving the dynamic
equations for vehicles such as ships (Fossen, 2002), AUVs (Antonelli, 2006), and space-
craft (Hughes, 2002), this is normally dealt with by introducing a transformation matrix
that relates the local and global velocity variables. However, forcing the dynamics into a
vector representation in this way, without taking the topology of the configuration space
into account, leads to singularities in the representation or other deficiencies. To pre-
serve the topology of the configuration space we will use quasi-coordinates, i.e., veloc-
ity coordinates that are not simply the time-derivative of position coordinates, but given
by a linear relation. Thus, there exist differentiable matrices Si such that we can write
vi = Si(Qi, φi)φ̇i for every Qi. For Euclidean joints this relation is given simply by the
identity map while for joints with a Lie group topology we can use the exponential map to
derive this relation.

Given a mechanism with coordinates formulated in this generalized form, we can write
its kinetic energy as T (Q, v) = 1

2v
TM(Q)v withM(Q) the inertia matrix in coordinates

Q and v the stacked velocities of the vehicle, represented by vb, and the robot joints,
represented by vi, i = 1 . . . n. The dynamics of this system then satisfy

M(Q)v̇ + C(Q, v)v = τ (2.8)

with τ the vector of external and control wrenches (collocated with v), and C(Q, v) the
matrix describing the Coriolis and centrifugal forces given by

Cij(Q, v) :=
∑
k,l

(
∂Mij

∂φk

S−1
kl − 1

2
S−1
ki

∂Mjl

∂φk

)∣∣∣∣
φ=0

vl (2.9)

+
∑

k,l,m,s

(
S−1
mi

(
∂Smj

∂φs

− ∂Sms

∂φj

)
S−1
sk Mkl

)∣∣∣∣∣∣
φ=0

vl.
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More details and proofs can be found in references Duindam and Stramigioli (2007) and
Duindam and Stramigioli (2008).

To apply this general result to systems of the form of Fig. 2.1, we write Q = {g0b, q}
as the set of configuration states where g0b is the Lie group SE(3) or one of its sub-groups,

and v =
[
Ṽ b
0b
q̇

]
as the vector of velocity states. The local Euclidean structure for the state

g0b is given by exponential coordinates (Murray et al., 1994), while the state q is itself
globally Euclidean. Mathematically, we can express configurations (g0b, q) around a fixed
state (ḡ0b, q̄) as

g0b = ḡ0b exp

⎛⎝ 6∑
j=1

bj(φb)j

⎞⎠ , qi = q̄i + φi ∀ i ∈ {1, . . . , n}, (2.10)

with bj the standard basis elements of the Lie algebra se(3) or one of its subalgebras.
Whenm < 6 we set bi = 0 for all the n−m entries that are trivially zero, corresponding
to Equation (2.4).

From expression (2.5) for the twist of each link in the mechanism, we can derive
an expression for the total kinetic energy. Let Ib ∈ Rm×m and Ii ∈ R6×6 denote the
constant positive-definite diagonal inertia tensor of the base and link i (expressed in Ψi),
respectively. The kinetic energy Ti of link i then follows as

Ti =
1

2

(
V i
0i

)T
IiV

i
0i

=
1

2

(
HṼ b

0b + Ji(q)q̇
)T

AdTgib Ii Adgib

(
HṼ b

0b + Ji(q)q̇
)

=
1

2

(
(Ṽ b

0b)
THT + q̇TJi(q)

T

)
AdTgib Ii Adgib

(
HṼ b

0b + Ji(q)q̇
)

=
1

2

[(
Ṽ b
0b

)T

q̇T
]
Mi(q)

[
Ṽ b
0b

q̇

]
=

1

2
vTMi(q)v (2.11)

withMb =
[
Ib 0
0 0

]
for the vehicle and

Mi(q) :=

[
HT AdTgib Ii Adgib H HT AdTgib Ii Adgib Ji
JT

i AdTgib Ii Adgib H JT

i AdTgib Ii Adgib Ji

]
∈ R(m+n)×(m+n) (2.12)

for the links. Here, HT is the transpose of H which works fine when dealing with the Lie
groups treated here, so we will use this notation throughout this paper. The total kinetic
energy of the mechanism is given by the sum of the kinetic energies of the mechanism
links and the vehicle, that is,

T (q, v) =
1

2
vT

([
Ib 0
0 0

]
+

n∑
i=1

Mi(q)

)
︸ ︷︷ ︸

inertia matrixM(q)

v (2.13)

with M(q) the inertia matrix of the total system. Note that neither T (q, v) nor M(q)
depend on the pose g0b nor the choice of inertial reference frame Ψ0.
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We can write (2.8) in block-form as follows[
MV V MT

qV

MqV Mqq

] [
˙̃V b
0b

q̈

]
+

[
CV V CV q

CqV Cqq

] [
Ṽ b
0b

q̇

]
=

[
τV
τq

]
(2.14)

with τV a wrench of control and external forces acting on the vehicle, expressed in coor-
dinates Ψb (such that it is collocated with Ṽ b

0b). Here the subscript V refers to the first m
entries and q the remaining n−m entries. To compute the matrix C(Q, v) for our system,
we can use the observations thatM(q) is independent of g0b, that S(Q,φ) is independent
of q, and that S(Q, 0) ≡ I . Furthermore, the partial derivative ofM with respect to φV is
zero sinceM is independent of g0b, and the second term of (2.9) is only non-zero for the
CV V block of C(Q, v). This allows us to simplify C(Q, v) slightly to

Cij(Q, v) :=

6+n∑
k=1

(
∂Mij

∂φk

− 1

2

∂Mjk

∂φi

)∣∣∣∣
φ=0

vk +

6+n∑
k=1

(
∂Sij

∂φk

− ∂Sik

∂φj

)∣∣∣∣∣
φ=0

(M(q)v)k.

(2.15)
Finally if gravitational forces are present we include these. Let the wrench associated

with the gravitational force of link i with respect to coordinate frame Ψi be given by

F i
g =

[
fg
r̂igfg

]
= −mig

[
R0iez
r̂igR0iez

]
(2.16)

where ez =
[
0 0 1

]T
and rig is the center of mass of link i expressed in frame Ψi. In

our case Ψi is chosen so that rig is in the origin of Ψi so we have rig = 0. The equivalent
joint torque associated with link i is given by

τ ig = Ji(q)Ad
T

g0i
(Q)F i

g(Q) (2.17)

where Ji is the geometric Jacobian and Adg0i = Adg0b Adgbi is the transformation from
the inertial frame to frame i. We note that both R0i and Adg0i depend on the vehicle
configuration with respect to the inertial frame. The total effect of the gravity from all the
links is then given by

n(Q) =
n∑

i=b

τ ig (2.18)

which enters (2.14) in the same way as τ .

2.3.3 Vehicles with Configuration Space SE(3)

The configuration space of a free-floating vehicle, such as an AUV or an aeroplane can be
described by the matrix Lie group SE(3). In this case we have the mapping (Duindam,
2006)

V b
0b =

(
I − 1

2
adφV

+
1

6
ad2φV

− . . .

)
φ̇V (2.19)
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with adp =
[
p̂4...6 p̂1...3

0 p̂4...6

]
∈ R6×6 for p ∈ R6 relating the local and global velocity

variables, and Ṽ b
0b = V b

0b. The corresponding matrices Si can be collected in one block-
diagonal matrix S given by

S(Q,φ) =

[(
I − 1

2 adφV
+ 1

6 ad
2
φV

− . . .
)

0
0 I

]
∈ R(6+n)×(6+n). (2.20)

This shows that the choice of coordinates (Q, v) has the required form. We note that
when differentiating with respect to φ and substituting φ = 0 this simplifies the expression
substantially.

The precise computational details of the partial derivatives follow the same steps as
in the classical approach (Murray et al., 1994). CV V depends on both the first and the
second term in Equation (2.15). We have i, j = 1 . . . 6. Note that ∂Mij

∂φk
= 0 for k < 7 and

∂Sij

∂φk
= 0 for i, j, k > 6. This simplifies CV V to

Cij(Q, v) =

6+n∑
k=7

⎛⎜⎜⎝∂Mij

∂φk

− 1

2

∂Mjk

∂φi︸ ︷︷ ︸
=0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
φ=0

vk +

6∑
k=1

(
∂Sij

∂φk

− ∂Sik

∂φj

)∣∣∣∣∣
φ=0

(M(q)v)k.

(2.21)

Furthermore, if we write Sb = (I − 1
2 adφV

+ 1
6 ad

2
φV

− . . .) we note that after differ-

entiating and evaluating at φ = 0 the matrices
∑ ∂Sij

∂φk
are equal to − 1

2 ad
T

ek
where ek is a

6-vector with 1 in the kth entry and zeros elsewhere. Similarly,
∑

∂Sik

∂φj
is equal to 1

2 ad
T

ek
.

This is then multiplied by the kth element of M(q)v when differentiating with respect to
φk. We then get

CV V (Q, v) =

6∑
k=1

∂MV V

∂qk
q̇k − 1

2
adT(M(q)v)V −1

2
adT(M(q)v)V

=

6∑
k=1

∂MV V

∂qk
q̇k − adT(M(q)v)V (2.22)

where (M(q)v)V is the vector of the first 6 entries (corresponding to V b
0b) of the vector

M(q)v.
CV q(Q, v), i.e., i = 1 . . . 6 and j = 7 . . . (6+n), is found in a similar manner. First we

note that ∂Mjk

∂φi
= 0 for i = 1 . . . 6 and that ∂Sij

∂φk
= 0 and ∂Sik

∂φj
= 0 for j = 7 . . . (6 + n),

so only the first part is non-zero and we get

CV q(Q, v) =

6∑
k=1

∂MV q

∂qk
q̇k. (2.23)

Finally, the terms CqV and Cqq depend only on the first part of Equation (2.15) and
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can be written more explicitly as (From et al., 2009a)

CqV =

n∑
k=1

∂MqV

∂qk
q̇k − 1

2

∂T

∂q

([
MV V MT

qV

] [V b
0b

q̇

])
, (2.24)

Cqq =
n∑

k=1

∂Mqq

∂qk
q̇k − 1

2

∂T

∂q

([
MqV Mqq

] [V b
0b

q̇

])
. (2.25)

The C-matrix is thus given by

C(Q, v) =

n∑
k=1

∂M

∂qk
q̇k−

1

2

⎡⎣ 2 adT(M(q)v)V 0

∂T

∂q

([
MV V MT

qV

] [V b
0b

q̇

])
∂T

∂q

([
MqV Mqq

] [V b
0b

q̇

])⎤⎦ .

(2.26)

2.3.4 Vehicles with Configuration Space SO(3)

The dynamics of a vehicle-manipulator system for a vehicle with configuration space
SO(3) are derived in the same way. The velocity state is thus fully determined by only
three variables and we choose H so that

V b
0b = HṼ b

0b (2.27)

with

H =

[
03×3

I3×3

]
. (2.28)

We then get

Ṽ b
0b =

(
I − 1

2
φ̂V +

1

6
φ̂2
V − . . .

)
φ̇V . (2.29)

The corresponding matrices Si can be collected in one block-diagonal matrix S given by

S(Q,φ) =

[(
I − 1

2 φ̂V + 1
6 φ̂

2
V − . . .

)
0

0 I

]
∈ R(3+n)×(3+n). (2.30)

We note that when differentiating with respect to φ and substituting φ = 0, once again
this simplifies the expression substantially. The precise computational details of the partial
derivatives follow the same steps as for the SE(3) case except for CV V . Note that

∂Mij

∂φk
=

0 for k < 4 and ∂Sij

∂φk
= 0 for i, j, k > 3. When differentiating and evaluating at φ = 0 the

matrices
∑ ∂Sij

∂φk
are equal to 1

2 êk where ek is a 3-vector with 1 in the k
th entry and zeros

elsewhere. Similarly,
∑

∂Sik

∂φj
is equal to − 1

2 êk. We then get

CV V (Q, v) =

6∑
k=1

∂MV V

∂qk
q̇k + ̂(M(q)v)Ṽ (2.31)

where (M(q)v)Ṽ is the vector of the first three entries of the vectorM(q)v (corresponding
to Ṽ b

0b) and p̂ ∈ R3×3 is the skew-symmetric matrix such that p̂x = p×x for all p, x ∈ R3.
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2.3.5 Summary

Table 2.2 shows the mapping from local to global velocity coordinates and the correspond-
ing C-matrices for different Lie Groups.

Lie Group SV V C

SE(3) I − 1
2 adφV

+ 1
6 ad

2
φV

− . . .
∑n

k=1
∂M
∂qk

q̇k − 1
2

[
2 adT(M(q)v)V 0

A B

]

X(z) I4×4

∑n
k=1

∂M
∂qk

q̇k − 1
2

[
0 0
A B

]

T (3),SE(2) I3×3

∑n
k=1

∂M
∂qk

q̇k − 1
2

[
0 0
A B

]

SO(3) I − 1
2 φ̂V + 1

6 φ̂
2
V − . . .

∑n
k=1

∂M
∂qk

q̇k − 1
2

[
−2 ̂(M(q)v)Ṽ 0

A B

]
T (2),C(1) I2×2

∑n
k=1

∂M
∂qk

q̇k − 1
2

[
0 0
A B

]

T (1),H ,SO(2) I1×1

∑n
k=1

∂M
∂qk

q̇k − 1
2

[
0 0
A B

]

A = ∂T

∂q
([MV V MT

qV ]
[
Ṽ b
0b
q̇

]
) B = ∂T

∂q
([MqV Mqq ]

[
Ṽ b
0b
q̇

]
)

Table 2.2: The Coriolis matrix for different Lie subgroups of SE(3).

2.4 AUV-Manipulator Systems

We start by presenting the state of the art dynamic equations of an AUV-manipulator sys-
tem as it is normally presented in literature. It is well known that these are not valid
globally due to the Euler angle singularity that arises when transforming from local to
global velocity variables. Next, we show how to re-write the dynamics using the proposed
framework in order to avoid the singularities. The dynamic equations have approximately
the same complexity and are better suited for simulation and easier to implement. One
drawback of the proposed approach is that the matrix L = Ṁ − 2C is not skew symmet-
ric. This is a desired property in Lyapunov-based controller design but not in model-based
controller design or simulation environments, for which computational speed, robustness,
and ease are of higher importance.
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2.4.1 State of the Art AUV Dynamics

A wide range of dynamical systems can be described by the Euler-Lagrange equations
(Goldstein et al., 2001)

d

dt

(
∂L
∂ẋ

(x, ẋ)

)
− ∂L

∂x
(x, ẋ) = τ (2.32)

where x ∈ Rn is a vector of generalized coordinates, τ ∈ Rn are the generalized forces
and

L(x, ẋ) : Rn × Rn → R := T (x, ẋ)− V(x). (2.33)

Here, T (x, ẋ) is the kinetic and V(x) the potential energy function. We assume that the
kinetic energy function is positive definite and in the form

T (x, ẋ) :=
1

2
ẋTM(x)ẋ. (2.34)

whereM(x) is the inertia matrix. For a kinetic energy function on this form we can recast
the Euler-Lagrange equations (2.32) into the equivalent form

MRB(x)ẍ+ CRB(x, ẋ)ẋ+ n(x) = τ (2.35)

where CRB(x, ẋ) is the Coriolis and centripetal matrix and n(x) is the potential forces
vector defined as

n(x) :=
∂V(x)
∂x

. (2.36)

The Coriolis and centripetal matrix is normally obtained by the Christoffel symbols of
the first kind as (Egeland and Gravdahl, 2003)

CRB(x, ẋ) := {cij} =

{
n∑

k=1

Γijkẋk

}
, (2.37)

Γijk :=
1

2

(
∂mij

∂xk

+
∂mik

∂xj

− ∂mkj

∂xi

)
(2.38)

where M(x) = {mij}. When representing the dynamic equations using generalized
coordinates we implicitly introduce non-inertial frames in which we represent the iner-
tial properties of the rigid bodies. The Coriolis matrix arises as a result of these non-
inertial frames. We note that there are several ways to define the Coriolis matrix so that
Cij(x, ẋ)ẋj = Γijkẋj ẋk is satisfied. Later, we will see that in deriving the dynamics
using a different framework we get a different Coriolis matrix with different properties.
Normally the terms where i �= j are identified with the Coriolis forces and i = j with the
centrifugal forces.

In addition, for floating or submerged vehicles we need to add the hydrodynamic forces
and moments. The damping forces are collected in the damping matrixD and the restoring
forces (weight and buoyancy) are normally included in n(η). Furthermore, the motion of
the AUV will generate a flow in the surrounding fluid. This is known as added mass.
For completely submerged vehicles operating at low velocities the added mass is given
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by a constant matrix MA = MT

A > 0. The corresponding Coriolis matrix is given by
CA = −CT

A and is found in the same way as CRB by replacingMRB withMA (Fossen,
2009). We also add environmental disturbances such as currents.

The dynamics of underwater vehicles are usually given as (Fossen, 2002)

η̇ = J(η)ν, (2.39)

Mν̇ + C(ν)ν +D(ν)ν + n(η) = τ (2.40)

where η =
[
x y z φ θ ψ

]T
is the position and orientation of the vessel given in

the inertial frame and ν =
[
u v w p q r

]T
is the linear and angular velocities

given in the body frame. D(ν)ν is the damping and friction matrix, M = MRB + MA

and C(ν) = CRB(ν) + CA(ν).
The velocity transformation matrix J(η) in (2.39) transforms the velocities from the

body frame to the inertial frame and is defined as

J(η) =

[
R0b(Θ) 0

0 TΘ(Θ)

]
(2.41)

where R0b(Θ) is the rotation matrix and depends only on the orientations of the vessel

given by the Euler angles Θ =
[
φ θ ψ

]T
, represented in the reference frame. TΘ(Θ)

is given by (zyx-sequence)

TΘ(Θ) =

⎡⎣1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

⎤⎦ . (2.42)

We note that TΘ(Θ), and thus also J(η), are not defined for θ = ±π
2 . This is the well

known Euler angle singularity for the zyx-sequence. The inverse mappings T−1
Θ (Θ) and

J−1(η) are defined for all θ ∈ R but singular for θ = ±π
2 .

This singularity can be removed from the operational space by deriving the kinematic
equations using two Euler angle representations with different singularities and switch-
ing between these two representations. It can also be avoided using the unit quaternion
representation, which does not have a singularity at the cost of introducing a fourth pa-
rameter to describe the orientation. The unit quaternion representation is computationally
challenging when it comes to integration and normalization. Also, in computing the Euler
angles from the quaternions the Euler angle singularity is present and precautions against
computational errors close to this singularity must be taken.

We note that the representation ν =
[
x y z η ε1 ε2 ε3

]T
where Q =[

η ε1 ε2 ε3
]T
is the unit quaternion cannot be used in the Lagrangian approach since

it is defined by 7 parameters. These parameters are hence not generalized coordinates.
We will assume that the ocean current νc is expressed in the inertial frame. Then the

relative velocity in the body-fixed frame is given by

νr = ν −R0bνc. (2.43)

The effects of the current are then included in the dynamics by using νr in the derivation
of the Coriolis and centripetal matrices and the damping terms.
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The relationship between the wrench acting on the vehicle τ and the control input of
the thrusters uV is highly non-linear. However, it is common to approximate this with a
linear relation

τ = BuV (2.44)

where B ∈ R6×pu is a known constant matrix, uV is the pu-dimensional vector of control
inputs and pu is the number of thrusters, rudders, sterns, etc.

We can rewrite the dynamics using general coordinates η, eliminating the body frame
coordinates ν from the equations. We then get

M̃(η)η̈ + C̃(η, η̇)η̇ + D̃(η, η̇)η̇ + ñ(η) = τ̃ (2.45)

where

M̃(η) = J−T(η)MJ−1(η), (2.46)

ñ(η) = J−T(η)n(η), (2.47)

τ̃ = J−T(η)τ, (2.48)

D̃(η, η̇) = J−T(η)D(J−1(η)η̇)J−1(η), (2.49)

C̃(η, η̇)η̇ = J−T(η)
[
C(J−1(η)η)−MJ−1(η)J̇(η)

]
J−1(η). (2.50)

Note that the Equations (2.45-2.50) are only valid when J−1(η) is non-singular, i.e., for
θ �= ±π

2 .
To formulate the Lagrange equations in a body-fixed coordinate frame directly we

need to circumvent the fact the
∫ t

0
νdt has no physical meaning. We do this by rewriting

the Langrange equations using quasi-coordinates. Write ν1 =
[
u v w

]T
and ν2 =[

p q r
]T
and similarly for τ . Then the dynamics can be written as (Meirovich and

Kwak, 1989)

d

dt

(
∂T
∂ν1

)
+ ν̂2

∂T
∂ν1

= τ1 (2.51)

d

dt

(
∂T
∂ν2

)
+ ν̂2

∂T
∂ν2

+ ν̂1
∂T
∂ν1

= τ2. (2.52)

We note that the dynamic equations are independent of the position vector η and the grav-
itational forces are thus not included in the dynamics. We thus need to augment the
equations with (2.39) to get a complete description of the state space. Once again this
introduces a singularity in the equations.

2.4.2 State of the Art AUV-Manipulator Dynamics

The dynamics of an AUV-manipulator system is given by (Antonelli, 2006)

ξ̇ = J(ξ)ζ, (2.53)

M(q)ζ̇ + C(q, ζ)ζ +D(q, ζ)ζ + n(q,R0b) = τ (2.54)
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where ξ =
[
ηT qT

]T
, ζ =

[
νT q̇T

]T
, M(q) ∈ R(6+n)×(6+n) is the inertia matrix

including added mass, C(q, ζ) ∈ R(6+n)×(6+n) is the Coriolis and centripetal matrix and
D(q, ζ) ∈ R(6+n)×(6+n) is the matrix representing the dissipative forces. τ is the vector
of forces and moments working on the mechanism and is given by

τ =

[
τV
τq

]
=

[
B 0
0 I

]
u (2.55)

where u =
[
uT

V uT

q

]T
is the control input. The velocity transformation matrix is given

by

J(ξ) =

⎡⎣R0b(Θ) 0 0
0 TΘ(Θ) 0
0 0 I

⎤⎦ . (2.56)

2.4.3 The Proposed Approach

In this section we show how to derive the AUV-manipulator dynamics without the presence
of singularities. The inertia matrix of the AUV is derived in two steps. First, MRB is
found from (2.13). Then the added massMA = MT

A > 0 is found from the hydrodynamic
properties and we getM = MRB +MA. We can now useM instead ofMRB to derive
the Coriolis and centripetal matrix (Fossen, 2002) which gives us C = CRB +CA. As the
configuration space of an AUV can be described by the matrix Lie group SE(3) we get
(following the mathematics of Equations (2.19-2.25)) the Coriolis matrix

C(Q, v) =

n∑
k=1

∂M

∂qk
q̇k−

1

2

⎡⎣ 2 adT(M(q)v)V 0

∂T

∂q

([
MV V MT

qV

] [V b
0b

q̇

])
∂T

∂q

([
MqV Mqq

] [V b
0b

q̇

])⎤⎦ .

(2.57)
The dynamic equations can now be written as

M(Q)v̇ + C(Q, v)v +D(v)v + n(Q) = τ. (2.58)

Here, v =
[
(V b

0b)
T q̇T

]T
where V b

0b is the velocity state of the AUV and q̇ the velocity
state of the manipulator, and Q = {g0b, q} where g0b ∈ SE(3) determines the configura-
tion space of the AUV (non-Euclidean) and q the configuration space of the manipulator
(Euclidean). We note that the singularity in (2.53) is eliminated and the state space (Q, v)
is valid globally. D(v) and n(Q) are found in the same way as for the conventional ap-
proach. Specifically, n(Q) is found by (2.18). In the following we make some brief
remarks on implementing the dynamic equations in a software environment.

Computing the Partial derivatives ofM(q1, . . . , qn)

The partial derivatives of the inertia matrix with respect to q1, . . . , qn are computed by
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∂M(q1, . . . , qn)

∂qk
=

n∑
i=k

([
I
JT

i

] [
∂T Adgib

∂qk
Ii Adgib +AdTgib Ii

∂ Adgib

∂qk

] [
I Ji

])
(2.59)

+

n∑
i=k+1

[
0 AdTgib Ii Adgib

∂Ji

∂qk
∂TJi

∂qk
AdTgib Ii Adgib

∂TJi

∂qk
AdTgib Ii Adgib Ji + JT

i AdTgib Ii Adgib
∂Ji

∂qk

]
.

Computing the Partial derivatives of Adgij

The main computational burden is on the computation of the partial derivatives ofM with
respect to q for which we need the partial derivatives of the adjoint matrices, also with
respect to q. To compute these one can use a relatively simple relation. If we express the
velocity of joint k as V (k−1)

(k−1)k = Xk q̇k for constant Xk, then the following holds:

Proposition 2.1. The partial derivatives of the adjoint matrix is given by

∂Adgij
∂qk

=

⎧⎨⎩
Adgi(k−1)

adXk
Adg(k−1)j

for i < k ≤ j,
−Adgi(k−1)

adXk
Adg(k−1)j

for j < k ≤ i,
0 otherwise.

Proof. To prove this, we start by writing out the spatial velocity of frame Ψk with respect
to Ψ(k−1) when i < k ≤ j:

X̂kq̇k = V̂
(k−1)
(k−1)k = ġ(k−1)kg

−1
(k−1)k =

∂g(k−1)k

∂qk
gk(k−1)q̇k

where X̂ :=
[
X̂ω Xv

0 0

]
. If we compare the first and the last terms, we get

∂R(k−1)k

∂qk
= X̂ωR(k−1)k, (2.60)

∂p(k−1)k

∂qk
= X̂ωp(k−1)k +Xv. (2.61)

We can use this relation in the expression for the partial derivative of Adg(k−1)k
:

∂Adg(k−1)k

∂q
=

[
∂R(k−1)k

∂qk

p̂(k−1)k

∂qk
R(k−1)k+ p̂(k−1)k

∂R(k−1)k

∂qk

0
∂R(k−1)k

∂qk

]

=

[
X̂ω X̂v

0 X̂ω

] [
R(k−1)k p̂(k−1)kR(k−1)k

0 R(k−1)k

]
= adXk

Adg(k−1)k
. (2.62)

It is now straight forward to show that

∂Adgij
∂qk

= Adgi(k−1)

∂Adg(k−1)k

∂qk
Adgkj

= Adgi(k−1)
adXk

Adg(k−1)k
Adgkj

= Adgi(k−1)
adXk

Adg(k−1)j
. (2.63)
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The proof is similar for j < k ≤ i. The details are found in 2.9.1.

Computing the Jacobian and its Partial Derivatives

The Jacobian Ji of link i is given by

Ji(q) =
[
X1 Adgb1 X2 Adgb2 X3 · · · Adgb(i−1)

Xi 0 · · · 0
]
. (2.64)

When the partial derivatives of the adjoint map are found we can also use these to find the
partial derivatives of the Jacobian, i.e.,

∂Ji
∂qk

=
[
0(k+1)×6

∂ Adgbk

∂qk
Xk+1

∂ Adgb(k+1)

∂qk
Xk+2 · · · ∂ Adgb(i−1)

∂qk
X5 0(6−i)×6

]
(2.65)

For the special case when the twist of each joint cannot be represented as a constant vector
the computation is somewhat more involved. The proposed framework does, however,
allow for joints with non-constant twists. This is shown in 2.9.2.

Implementation

We first define the vector

(M(q)v)V =

⎡⎢⎢⎢⎣
(M(q)v)1
(M(q)v)2

...
(M(q)v)m

⎤⎥⎥⎥⎦ =
[
MV V MT

qV

] [V b
0b

q̇

]
. (2.66)

This gives the adjoint part of the second part of (2.57) as

ad(M(q)v)V = (2.67)⎡⎢⎢⎢⎢⎢⎢⎣
0 −(M(q)v)6 (M(q)v)5 0 −(M(q)v)3 (M(q)v)2

(M(q)v)6 0 −(M(q)v)4 (M(q)v)3 0 −(M(q)v)1
−(M(q)v)5 (M(q)v)4 0 −(M(q)v)2 (M(q)v)1 0

0 0 0 0 −(M(q)v)6 (M(q)v)5
0 0 0 (M(q)v)6 0 −(M(q)v)4
0 0 0 −(M(q)v)5 (M(q)v)4 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The lower part of the matrix in the second term in (2.57) is calculated in the following way

∂T

∂q

([
MV V MT

qV

][V b
0b

q̇

])
=

⎡⎢⎢⎢⎢⎣
∂(M(q)v)1

∂q1

∂(M(q)v)2
∂q1

· · · ∂(M(q)v)6
∂q1

∂(M(q)v)1
∂q2

∂(M(q)v)2
∂q2

· · · ∂(M(q)v)6
∂q2

...
. . .

...
∂(M(q)v)1

∂qn

∂(M(q)v)2
∂qn

· · · ∂(M(q)v)6
∂qn

⎤⎥⎥⎥⎥⎦ (2.68)

=

⎡⎢⎢⎢⎢⎣
∑6+n

i=1
∂M1i(q)

∂q1
vi

∑6+n
i=1

∂M2i(q)
∂q1

vi · · · ∑6+n
i=1

∂M6i(q)
∂q1

vi∑6+n
i=1

∂M1i(q)
∂q2

vi
∑6+n

i=1
∂M2i(q)

∂q2
vi · · · ∑6+n

i=1
∂M6i(q)

∂q2
vi

...
. . .

...∑6+n
i=1

∂M1i(q)
∂qn

vi
∑6+n

i=1
∂M2i(q)

∂qn
vi · · · ∑6+n

i=1
∂M6i(q)

∂qn
vi

⎤⎥⎥⎥⎥⎦
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∂T

∂q

([
MqV Mqq

] [V b
0b

q̇

])
(2.69)

=

⎡⎢⎢⎢⎢⎢⎣
∑6+n

i=1
∂M(m+1)i(q)

∂q1
vi

∑6+n
i=1

∂M(m+2)i(q)

∂q1
vi · · · ∑6+n

i=1
∂M(m+n)i(q)

∂q1
vi∑6+n

i=1
∂M(m+1)i(q)

∂q2
vi

∑6+n
i=1

∂M(m+2)i(q)

∂q2
vi · · · ∑6+n

i=1
∂M(m+n)i(q)

∂q2
vi

...
. . .

...∑6+n
i=1

∂M(m+1)i(q)

∂qn
vi

∑6+n
i=1

∂M(m+2)i(q)

∂qn
vi · · · ∑6+n

i=1
∂M(m+n)i(q)

∂qn
vi

⎤⎥⎥⎥⎥⎥⎦
and is thus also given by the partial derivative of the inertia matrix. We thus only need
to compute the partial derivative ∂M(q)

∂qi
once and use the result in the both in the first and

second part of (2.57). This approach can be used to obtain the dynamic equations for an
arbitrary n-link mechanism mounted on an AUV.

2.5 Spacecraft-Manipulator Systems

Spacecraft-manipulator systems are different from conventional earth-based manipulators
in that they are placed in a free fall environment and that the base is not fixed (free-
floating). In general there are three different cases that must be considered (Dubowsky
and Papadopoulos, 1993). Firstly, if we have reaction jets available and use these to keep
the spacecraft stationary we obtain a fixed spacecraft model which very much resembles
the conventional fixed-based model. Secondly, if no actuation is used for the spacecraft we
have a free-floating spacecraft with reduced fuel consumption at the expense of dynamic
coupling between the spacecraft and the manipulator and a reduced workspace model. Fi-
nally, if the attitude, but not the position, of the spacecraft is actively controlled, we have
a constrained spacecraft. We note that for free-floating spacecraft the center of mass (CM)
of the spacecraft-manipulator system does not accelerate. However, when reaction jets or
momentum wheels are used for control or other external forces are present, the center of
mass is not constant in the orbit-fixed reference frame. The main challenge in modeling
spacecraft-manipulator systems is that the base-fixed coordinate frame cannot simply be
fixed in the orbit-fixed frame. There are two main approaches to deal with a floating base;
the virtual manipulator approach (Vafa and Dubowsky, 1987) or the barycentric vector
approach (Papadopoulos and Dubowsky, 1991).

2.5.1 State of the Art Spacecraft Dynamics

The attitude of a spacecraft is normally described by the Euler parameters, or unit quater-
nion. This is motivated by their properties as a nonsingular representation. We note that
this is not the minimal representation, nor generalized coordinates, and thus not suited for
the Lagrangian approach. Also, when transforming back to Euler angles from the unit
quaternion representation a singularity is present for θ = ±π

2 .
Any positive rotation ψ about a fixed unit vector n can be represented by the four-tuple

Q =

[
η
ε

]
, (2.70)
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where η ∈ R is known as the scalar part and ε ∈ R3 as the vector part. Q(ψ, n) is written
in terms of ψ and n by

η = cos (
ψ

2
), ε = sin (

ψ

2
)n. (2.71)

The kinematic differential equations can now be given by

η̇ = −1

2
εTω0

0b (2.72)

ε̇ =
1

2
(ηIb + ε̂)ω0

0b (2.73)

where ω0
0b is the angular velocity of the body frame with respect to the orbit frame and Ib

is the spacecraft inertia matrix. The attitude dynamics are given by (Hughes, 2002)

Ibω̇
0
0b + ω̂0

0bIbω
0
0b = τ. (2.74)

2.5.2 State of the Art Spacecraft-Manipulator Dynamics

The equations of motion of a spacecraft-manipulator system can be written as (Egeland
and Sagli, 1993)

M(Q)v̇ + C(Q, v)v = τ. (2.75)

Here, v =
[
ṙT0 (ω0

0b)
T q̇T

]T
where r0 is the position of the center of mass of the vehi-

cle, ω0
0b the angular velocity of the vehicle and q is the joint position of the manipulator.

Alternatively we can use the center of mass of the whole system to represent the trans-

lational motion. Then v =
[
ṙTcm (ω0

0b)
T q̇T

]T
where ṙcm is the linear velocity of the

center of mass of the vehicle-manipulator system. This is decoupled from the angular
velocity ω0

0b and the inertia matrix of a free-flying spacecraft-manipulator system can be
written as (Dubowsky and Papadopoulos, 1993)

M =

⎡⎣mI 0 0
0 Mωω MT

qω

0 Mqω Mqq

⎤⎦ (2.76)

wherem is the total mass of the system. The Euler angle rates Θ̇0b relate to ω0
0b by

Θ̇0b = TΘ0b
(Θ0b)ω

0
0b. (2.77)

Again TΘ0b
(Θ0b) is singular at isolated points. The control torques are given by τ =[

τTv τTω τTq
]T
where τv is the spacecraft forces generated by thrusters, τω is the space-

craft moments generated by thrusters, momentum gyros or reaction wheels, and τq is the
manipulator torques.

Other models are also available depending on the actuators available to control the
spacecraft. In the case where τv, τw �= 0 (free-flying space robots) the center of mass of
the system is not constant, but described by the variable rcm of Equation (2.75) if we let

v =
[
ṙTcm (ω0

0b)
T q̇T

]T
. If no external forces act on the system and the spacecraft is
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not actuated with thrusters, the center of mass does not accelerate, i.e., the system linear
momentum is constant and ṙcm = 0. This can be used to simplify the equations to an
n-dimensional system with inertia matrix Mr = Mqq − MqωM

−1
ωωM

T

qω and we get the
reduced system by eliminating ω (Dubowsky and Papadopoulos, 1993; Papadopoulos and
Dubowsky, 1991)

Mr(Q)q̈ + Cr(Q, v)q̇ = τq. (2.78)

The attitude of the spacecraft is then found from

ω = −M−1
ωωM

T

qω q̇. (2.79)

The dynamic coupling between the manipulator and the spacecraft complicates the
modeling and control of such systems. One way to deal with this is to derive a fixed-
based manipulator with the same kinematic and dynamic properties as the free-floating
spacecraft-manipulator system. The dynamically equivalent manipulator (DEM) (Liang
et al., 1998; Parlaktuna and Ozkan, 2004) is a fixed-base manipulator with the base fixed
in the center of mass of the space manipulator. Here, space manipulator refers to both the
satellite and the manipulator. When no external forces are present, the center of mass does
not move and the end-effector of this manipulator is thus given in the inertial frame. It can
be shown that a given sequence of actuator torques acting on the DEM will produce the
same joint trajectories for the space manipulator as for the DEM.

The dynamic equations of the free-floating space manipulator can be derived from from
Lagrange’s equations. We assume that all the joints are stiff and a free fall environment.
The Lagrangian of the space manipulator is then given by the kinetic energy only, i.e.,

T :=

n+1∑
i=b

[
1

2
ρ̇Ti miρ̇i +

1

2
ωT

i R0iIiR
T

0iωi

]
(2.80)

for both the spacecraft and the links, which is different from Equation (2.12) in that the
inertia matrix depends on the configuration of both the spacecraft and the joints. mi is
the total mass of link i and ρi is the distance from the center of mass of the system to the
center of mass of link i.

Similarly, we can define a fixed-based manipulator with a spherical first joint and ki-
netic energy

T ′ :=
n+1∑
i=1

[
1

2
vTi m

′
ivi +

1

2
(ω′

i)
TR′

0iI
′
i(R

′
0i)

Tω′
i

]
(2.81)

where vi is the velocity of link iwith respect to the base. It can be shown that the kinematic
and dynamic parameters of the space manipulator can be mapped to the DEM by (Liang
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et al., 1998; Parlaktuna and Ozkan, 2004)

m′
i = mi

(∑n+1
k=1 mk

)2

∑i−1
k=1 mk

∑i
k=1 mk

, i = 2 . . . n+ 1,

I ′i = Ii, i = 1 . . . n+ 1,

W1 =
R1m1∑n+1
k=1 mk

,

Wi = Ri

(∑i
k=1 mk∑n+1
k=1 mk

)
+ Li

(∑i−1
k=1 mk∑n+1
k=1 mk

)
, i = 2 . . . n+ 1,

lc1 = 0,

lci = Li

(∑i−1
k=1 mk∑n+1
k=1 mk

)
, i = 2 . . . n+ 1, (2.82)

where the vector Wi connecting joint i with joint i + 1 of the DEM is given by Ri and
Li of the space manipulator where Ri is the vector connecting the center of mass of link i
and joint i+ 1 and Li is the vector connecting joint i with the center of mass of link i. lci
is the vector connecting joint i and the center of mass of joint i in the DEM. We refer to
Liang et al. (1998) and Parlaktuna and Ozkan (2004) for details.

2.5.3 The Proposed Approach - SE(3)

As for the AUV, the configuration space of a spacecraft can be described by the matrix Lie
group SE(3) with respect to an orbit-fixed frame. The dynamic equations can be written
as [

MV V MT

qV

MqV Mqq

] [
V̇ b
0b

q̈

]
+

[
CV V CV q

CqV Cqq

] [
V b
0b

q̇

]
=

[
τV
τq

]
(2.83)

where

C(Q, v) =

n∑
k=1

∂M

∂qk
q̇k−

1

2

⎡⎣ 2 adT(M(q)v)V 0

∂T

∂q

([
MV V MT

qV

] [V b
0b

q̇

])
∂T

∂q

([
MqV Mqq

] [V b
0b

q̇

])⎤⎦ .

(2.84)
This can be used both for actuated and unactuated spacecraft.

For free-floating spacecraft we have τV = 0 and we can simplify the dynamics sub-
stantially by re-writing the mass matrix as

Mr = Mqq −MqV MV V M
T

qV . (2.85)

The Coriolis matrix is then found by

Cr(Q, v) =

n∑
k=1

∂Mr

∂qk
q̇k − 1

2

∂T

∂q
(Mrv) (2.86)

67



SINGULARITY-FREE DYNAMIC EQUATIONS OF VEHICLE- MANIPULATOR SYSTEMS

withMr given as in (2.85) and the dynamics are described by

Mr q̈ + CT

r q̇ = τq. (2.87)

When q̈ and q̇ are known, the base velocity vector can be found by

MV V V̇
b
0b + CV V V

b
0b = −(MT

qV q̈ + CV q q̇). (2.88)

This can be done either by projecting g0b onto the allowed configuration space SE(3)
(McLachlan and Quispel, 2006) or by using structure-preserving integration methods (Munthe-
Kaas, 1998). As these equations are based on the singularity-free dynamics (2.83) these
are also singularity-free with the state variables Q = {g ∈ SE(3), q ∈ Rn} and v =[
(V b

0b)
T q̇T

]T ∈ R6+n.

2.5.4 The Proposed Approach: The Dynamically Equivalent Manip-
ulator - SO(3)

In this section we reformulate the dynamic equations of a space manipulator and its dy-
namically equivalent manipulator using the proposed framework. This removes the singu-
larities in the representation, but is otherwise similar. Assume no spacecraft actuation, i.e.,
ṙcm = 0. Then the kinetic energy of link i of the space manipulator is given by

Ti =
1

2

(
V i
0i

)T
IiV

i
0i

=
1

2

(
(Ṽ b

0b)
THT + q̇TJi(q)

T

)
AdTgib Ii Adgib

(
HṼ b

0b + Ji(q)q̇
)

=
1

2

(
(ω0

0b)
THT + q̇TJi(q)

T
)
AdTgib Ii Adgib

(
Hω0

0b + Ji(q)q̇
)

=
1

2

[
(ω0

0b)
T q̇T

]
Mi(q)

[
ω0
0b

q̇

]
=

1

2
vTMi(q)v (2.89)

where

Mi(q) :=

[
HT AdTgib Ii Adgib H HT AdTgib Ii Adgib Ji
JT

i AdTgib Ii Adgib H JT

i AdTgib Ii Adgib Ji

]
(2.90)

and the inertia matrix is given by substituting this into (2.13) and H given as in (2.28).
The configuration space is then given by Q = {R0b, q}.

Similarly, we can define a fixed-based manipulator with a spherical first joint, also with
configuration space SO(3). The corresponding inertia matrices are then given by

M ′
i(q) :=

[
HT AdTg′

ib
I ′i Adg′ib H HT AdTg′

ib
I ′i Adg′ib J

′
i

(J ′
i)

T AdTg′
ib
I ′i Adg′ib H (J ′

i)
T AdTg′

ib
I ′i Adg′ib J

′
i

]
(2.91)

where I ′i and the kinematic relations used to compute R
′
0i and J

′
i are found from (2.82).

Thus, we have Ṽ b
0b = Ṽ

′b
0b as required. The spacecraft inertia matrix is given by

Ib =

⎡⎣Jx 0 0
0 Jy 0
0 0 Jz

⎤⎦ (2.92)
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which also represents the inertial properties of the spherical base link. The Coriolis matrix
then becomes (following the mathematics of (2.27-2.31))

C ′(Q, v) =
n∑

k=1

∂M ′

∂qk
q̇k (2.93)

− 1

2

⎡⎣ −2 ̂(M ′(q)v)Ṽ 0

∂T

∂q

([
M ′

V V (M ′)TqV
] [V b

0b

q̇

])
∂T

∂q

([
M ′

qV (M ′)Tqq
] [V b

0b

q̇

])⎤⎦
where (M ′(q)v)Ṽ is the vector of the first three entries of the vectorM

′(q)v (correspond-
ing to Ṽ b

0b = ω0
0b). The specific computations of the inertia and Coriolis matrices are

performed in the same way as for the AUV (see Section 2.4.3) except from the partial
derivatives of the inertia matrices which now depend on the selection matrix H . This is
shown in Section 2.5.4.

The dynamic equations can now be written as

M ′(q)v̇ + C ′(Q, v)v = τ. (2.94)

Here, v =
[
(ω0

0b)
T q̇T

]T
where ω0

0b is the velocity state of the passive spherical base joint
of the DEM (and thus also the spacecraft) and q̇ the velocity state of the manipulator of the
DEM (and the space manipulator), andQ = {R0b, q} where R0b ∈ SO(3) determines the
configuration of the spherical joint/spacecraft and q the configuration of the manipulators
of the DEM and space manipulator. We note that the singularity that normally arises when
using the Euler angles is eliminated and the state space (Q, v) is valid globally.

Most importantly, we can now use this fixed-base DEM for simulation and control of
the space manipulator. Similar to the conventional approach, the DEM described by (2.94)
have the same kinetic and dynamic properties as the space manipulator and if the same
actuator torques τ(t) = τ ′(t), ∀t are applied on both the DEM and the space manipulator,
this will produce the same joint trajectory q(t) = q′(t) for ∀t ∈ [t0,∞] if q(t0) = q′(t0).

Computing the Partial derivatives ofM(q1, . . . , qn)

The partial derivatives of the inertia matrix with respect to q1, . . . , qn are computed by

∂M(q1, . . . , qn)

∂qk
=

n∑
i=k

([
HT

JT

i

] [
∂T Adgib

∂qk
Ii Adgib +AdTgib Ii

∂ Adgib

∂qk

] [
H Ji

])

+
n∑

i=k+1

[
0m×m HT AdTgib Ii Adgib

∂Ji

∂qk
∂TJi

∂qk
AdTgib Ii Adgib H

∂TJi

∂qk
AdTgib Ii Adgib Ji + JT

i AdTgib Ii Adgib
∂Ji

∂qk

]
(2.95)

which only differs from (2.59) in that the identity matrix I is substituted by H and HT in
the first part and we multiply byH andHT to get the right dimensions in the second part.
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2.6 Ground Vehicle-Manipulator Systems

We now consider a ground vehicle with no non-holonomic constraints. The configuration
space can be described by the matrix Lie group SE(2). The velocity state is thus fully
determined by only three variables and we choose H so that

V b
0b = HṼ b

0b (2.96)

with

H =

⎡⎣1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎤⎦T

. (2.97)

For Euclidean joints Equation (2.19) simplifies to

Ṽ b
0b = φ̇V . (2.98)

S is thus given by the identity matrix, the partial derivatives of S vanish and we get

CV V (Q, v) =

6∑
k=1

∂MV V

∂qk
q̇k. (2.99)

The inertia matrix

I =

⎡⎣m 0 0
0 m 0
0 0 Jz

⎤⎦ (2.100)

then determines the dynamic equations.
If non-holonomic constraints are present, such as for wheeled mechanisms, we get the

selection matrix

H =

[
1 0 0 0 0 0
0 0 0 0 0 1

]T
(2.101)

and velocity state Ṽ b
0b = [ vx

ωz
]. The dynamics are then found by substituting H and Ṽ b

0b

into the formalism presented in Section 2.3.

2.7 A Simple Example

Consider the general structure of the equations for a mechanism with one joint with joint
variable q1 mounted on a vehicle with configuration space SE(3). We can write its inertia
matrix as follows

M(q1) =

[
Ib +AdTg1b I1 Adg1b AdTg1b I1 Adg1b X1

XT

1 AdTg1b I1 Adg1b XT

1 AdTg1b I1 Adg1b X1

]
. (2.102)

Its partial derivative with respect to q is a single matrix

∂M(q1)

∂q1
=

[
I
XT

1

] [
∂T Adg1b

∂q1
I1 Adg1b +AdTg1b I1

∂ Adg1b

∂q1

] [
I X1

]
(2.103)

70



2.7. A SIMPLE EXAMPLE

z

z

z

y

y

y

q1

l

m, J

Ψ0

Ψb

Ψ1

Figure 2.2: One-link robot with a prismatic joint attached to a non-inertial base with configuration
space SE(3).

with
∂g1b
∂q1

= −g1bX̂1gbb = −g1bX̂1. (2.104)

Note that the Jacobian matrix is constant and hence no partial derivatives are taken.
Consider as an example the robot in Figure 2.2 with a single prismatic joint. We can

write the Jacobian as J1 =
[
0 1 0 0 0 0

]T
and the inertia matrix as

M(q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mb 0 0 0 ml −mq1 0
0 Mb 0 −ml 0 0 m
0 0 Mb mq1 0 0 0
0 −ml mq1 Jt,x +ml2 +mq21 0 0 −ml
ml 0 0 0 Jt,y +ml2 −mlq1 0

−mq1 0 0 0 −mlq1 Jt,z +mq21 0
0 m 0 −ml 0 0 m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.105)

whereMb = mb+m and Jt,x = Jb,x+Jx, etc. Assume we are interested in the dynamics
of the prismatic joint. This is given by the last row of the inertia and Coriolis matrix. The
Coriolis matrix is given by (2.26) where the first part is zero and the second part gives

C(q, V b
0b, q̇)=

⎡⎢⎢⎢⎢⎢⎢⎣
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

m
2 ωz 0 −m

2 ωx −m
2 vz−mq1ωx

m
2 lωz

m
2 (vx + lωy)−mq1ωz 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

(2.106)
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The last row here is given by multiplying the ∂M(q1)
∂q1

∈ R7×7 with the vector v =[
(V b

0b)
T q̇1

]T
. Using these expressions, we can write the dynamics of the prismatic joint

due to the motion of the vehicle as[
MqV Mqq

] [V̇ b
0b

q̈

]
+

[
CqV CT

qq

] [V b
0b

q̇

]
= τ

mq̈1 +mv̇y −mlω̇x +
m

2
ωzvx − m

2
ωxvz

−m

2
vzωx −mq1ω

2
x − m

2
(vx + lωy)ωz −mq1ω

2
z = τ

q̈1 + v̇y − lω̇x + (vx + lωy)ωz − vzωx − q1ω
2
x − q1ω

2
z =

τ

m
. (2.107)

Similarly, if we consider a single rigid body in SE(3) the inertia matrix becomes
(dropping the subscript b)

M =

⎡⎢⎢⎢⎢⎢⎢⎣
m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Jx 0 0
0 0 0 0 Jy 0
0 0 0 0 0 Jz

⎤⎥⎥⎥⎥⎥⎥⎦ (2.108)

and when computing the Coriolis matrix we note that the first part of (2.26) is zero and the
second part is given by adT(Mv) and the Coriolis matrix is thus given by

C(q) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −Jzωz Jyωy 0 0 0

Jzωz 0 −Jxωx 0 0 0
−Jyωy Jxωx 0 0 0 0

0 −mvz mvy 0 −Jzωz Jyωy

mvz 0 −mvx Jzωz 0 −Jxωx

−mvy mvx 0 −Jyωy Jxωx 0

⎤⎥⎥⎥⎥⎥⎥⎦ (2.109)

which we recognize as Kirchhoff’s equations. Kirchhoff’s equations are, however, valid
for systems with only kinetic energy.

There are many ways for computing the Coriolis matrix for rigid bodies. One com-
monly found formulation in ship modeling is

C(q) = −
[

0 M̂11ν1 + M̂12ν2

M̂11ν1 + M̂12ν2 M̂21ν1 + M̂22ν2

]
(2.110)

and the dynamics are given by (2.39) and (2.40). The expression in (2.110) can also be
reformulated to the form of (2.109). We note that using this approach we end up with the
transformation in (2.39) which singularity prone.

2.8 Conclusions

In this paper the dynamic equations of vehicle-manipulator systems are derived based on
Lagrange’s equations. The main contribution is to close the gap between manipulator dy-
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namics which are normally derived based on the Lagrangian approach and vehicle dynam-
ics which are normally derived using other approaches in order to avoid singularities. The
proposed framework allows us to derive the dynamics of vehicles with a Lie group topol-
ogy using a minimal, singularity-free representation based on Lagrange’s equations which
naturally extends to include also the manipulator dynamics. The globally valid vehicle-
manipulator dynamics are thus derived for the first time using the proposed framework.
Several examples of how to derive the dynamics for different vehicles, such as spacecraft,
AUVs, and ground vehicles are shown to illustrate the simple analytical form of the final
equations.

2.9 Appendix

2.9.1 Partial Derivatives of Adg - By Direct Computation

The partial derivative of Adgij with respect to qk when i < k ≤ j can be written as

∂Adgij

∂qk
= Adgi(k−1)

∂Adg(k−1)k

∂qk
Adgkj

=

[
Ri(k−1) p̂i(k−1)Ri(k−1)

0 Ri(k−1)

]⎡⎣ ∂R(k−1)k

∂qk

p̂(k−1)k

∂qk
R(k−1)k + p̂(k−1)k

∂R(k−1)k

∂qk

0
∂R(k−1)k

∂qk

⎤
⎦[

Rkj p̂kjRkj

0 Rkj

]

=

⎡
⎢⎢⎢⎣
Ri(k−1)

∂R(k−1)k

∂qk
Rkj

⎡
⎣ Ri(k−1)

∂R(k−1)k

∂qk
p̂kjRkj +Ri(k−1)

p̂(k−1)k

∂qk
R(k−1)j+

Ri(k−1)p̂(k−1)k
∂R(k−1)k

∂qk
Rkj + p̂i(k−1)Ri(k−1)

∂R(k−1)k

∂qk
Rkj

⎤
⎦

0 Ri(k−1)
∂R(k−1)k

∂qk
Rkj

⎤
⎥⎥⎥⎦

=

⎡
⎣Ri(k−1)X̂ωR(k−1)kRkj

[
Ri(k−1)X̂ωR(k−1)kp̂kjRkj+Ri(k−1)(

̂(X̂ωp(k−1)k)+X̂v)R(k−1)j

+Ri(k−1)p̂(k−1)kX̂ωR(k−1)kRkj+p̂i(k−1)Ri(k−1)X̂ωR(k−1)kRkj

]
0 Ri(k−1)X̂ωR(k−1)kRkj

⎤
⎦

=

⎡
⎣Ri(k−1)X̂ωR(k−1)j

[
Ri(k−1)X̂ωR(k−1)kp̂kjRkj+Ri(k−1)

̂(X̂ωp(k−1)k)R(k−1)j+

Ri(k−1)X̂vR(k−1)j+Ri(k−1)p̂(k−1)kX̂ωR(k−1)j+p̂i(k−1)Ri(k−1)X̂ωR(k−1)j

]
0 Ri(k−1)X̂ωR(k−1)j

⎤
⎦

=

[
Ri(k−1)X̂ωR(k−1)j Ri(k−1)X̂vR(k−1)j+Ri(k−1)X̂ω p̂(k−1)jR(k−1)j+p̂i(k−1)Ri(k−1)X̂ωR(k−1)j

0 Ri(k−1)X̂ωR(k−1)j

]

=

[
Ri(k−1)X̂ω Ri(k−1)X̂v + p̂i(k−1)Ri(k−1)X̂ω

0 Ri(k−1)X̂ω

] [
R(k−1)j p̂(k−1)jR(k−1)j

0 R(k−1)j

]

=

[
Ri(k−1) p̂i(k−1)Ri(k−1)

0 Ri(k−1)

] [
X̂ω X̂v

0 X̂ω

] [
R(k−1)j p̂(k−1)jR(k−1)j

0 R(k−1)j

]

= Adgi(k−1)
adXk

Adg(k−1)j
(2.111)

where we have used that

âb̂ = (̂âb) + b̂â, (2.112)

and

p̂(k−1)j = ̂(R(k−1)kpkj) + p̂(k−1)k. (2.113)

The proof when j < k ≤ i follows the same approach.
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2.9.2 Partial Derivatives of theMassMatrix for Joints with Non- Con-
stant Twist

For a non-constant twist Xk, we get the following expression for the partial derivatives of
the inertia matrix

∂M(q1, . . . , qn)

∂qk
=

n∑
i=k

([
HT

JT

i

] [
∂T Adgib

∂qk
Ii Adgib +AdTgib Ii

∂ Adgib

∂qk

] [
H Ji

])

+

n∑
i=k

[
0m×m HT AdTgib Ii Adgib

∂Ji

∂qk
∂TJi

∂qk
AdTgib Ii Adgib H

∂TJi

∂qk
AdTgib Ii Adgib Ji + JT

i AdTgib Ii Adgib
∂Ji

∂qk

]
(2.114)

where the only difference from the constant twist expression (2.95) is that the summing
starts from k and not k + 1 in the last term and that the partial derivatives of the Jacobian
are given by

∂Ji

∂qk
=
[
0II Adgb(k−1)

∂
∂qk

Xk(qk)
∂

∂qk
(Adgbk)Xk+1 · · · ∂

∂qk
(Adgb(i−1)

)Xi(qi) 0II
]

−−−−−−−−−︸ ︷︷ ︸
For non-constant twists only

(2.115)
We still have that qk = q̄k + φ and thus for a constant q̄k we get q̇k = φ̇k so that

the transformation from local to global coordinates for the manipulator is still given by
q̇ = S(q, φ)φ̇ with S(q, φ) = I . Thus the expression for the Coriolis matrix does not
change.
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Chapter 3

Modeling and Motion Planning
for Mechanisms on a Non-
Inertial Base

3.1 Abstract

Robotic manipulators on ships and platforms suffer from large inertial forces due to
the non-inertial motion of the ship or platform. When operating in high sea state,
operation of such manipulators can be made more efficient and robust if these non-
inertial effects are taken into account in the motion planning and control systems.
Motivated by this application, we present a rigorous and singularity-free formu-

lation of the dynamics of a robotic manipulator mounted on a non-inertial base. We
extend the classical dynamics equations for a serial manipulator to include the 6-DoF
motion of the non-inertial base. Then, we show two examples of a 1-DoF and a 4-DoF
manipulator to illustrate how these non-inertial effects can be taken into account in
the motion planning.

3.2 Introduction

The use of unmanned and autonomous vehicles operating in hostile environments has
shown both to be cost efficient and to protect humans from potentially dangerous situ-
ations. One such hostile environment is high sea state. We look into the case when a
manipulator mounted on a ship or a platform is required to operate independently of the
sea state. Large inertial forces may influence the manipulator and make the operation
inaccurate, extremely energy demanding, or impossible due to torque limits. The inertial
forces thus need to be taken into account in both the path planning and control of the robot.

Ships and oil platforms are expected to become increasingly unmanned in the future
and hence the need for continuously operating robots for surveillance, maintenance, and
operation will grow (Love et al., 2004; Kitarovic et al., 2005). All these tasks become
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q1
q2

q3

q4

Ψ0

Ψb

Figure 3.1: Model setup for a four-link robot attached to a non-inertial base with coordinate frame
Ψb. Frame Ψ0 denotes the inertial reference frame.

increasingly important in harsh environments such as high sea state. To be able to continue
operation under these conditions, a good understanding is needed of the effects of the
inertial forces due to the motion of the ship or platform. We therefore develop the dynamic
equations of the robotic manipulator including these effects.

Research on several related topics can be found in literature. Love et al. (2004) ad-
dressed the impact of wave generated disturbances on the tracking control of a manipulator
mounted on a ship based on the classical Lagrangian approach. Repetitive learning con-
trol was used and performance was improved for purely periodic motions, but no formal
derivation of the dynamics equations was presented. The use of cable robots for loading
and unloading cargo between two ships has also been addressed by Kitarovic et al. (2005)
and Oh et al. (2005). In the Ampelmann project (Salzmann, 2007), a Stewart platform
is mounted on a ship and is used to compensate for the motion of the ship by keeping
the platform still with respect to the world frame. Lebans et al. (1997) give a cursory de-
scription of a telerobotic shipboard handling system, and Kosuge et al. (1992); Kajita and
Kosuge (1997) addresses the control of robots floating on the water utilizing vehicle restor-
ing forces. Other related research areas are macro/micro manipulators (Yoshikawa et al.,
1996; Bowling and Khatib, 1997), underwater vehicle/manipulator systems (McMillan
et al., 1995) and spacecraft/manipulator systems (Egeland and Sagli, 1993). Most previous
work deals with robots mounted on a free-floating base. There is, however, an important
difference between modeling a robot on a forced and a free-floating base. A forced base
motion will add inertial forces to the dynamic equations that do not arise in free-floating
case, such as spacecraft/manipulator systems and manipulators on small AUVs.

Our approach differs from previous work in that the dynamic equations are derived
for rigid multibody systems including both Euclidean joints and generalized joints with
configuration spaces different from Rn. We follow the generalized Lagrangian approach
presented in Duindam and Stramigioli (2007, 2008), which allows us to combine the Eu-
clidean joints (the manipulator) and more general joints (the base), i.e. joints that can be
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described by the Lie group SE(3) or one of its ten subgroups. In our case, the transfor-
mation from the inertial frame to the base frame (the platform) is represented as a “free
motion” joint described by the Lie group SE(3). We also show through the examples how
the base motion can be expressed as subgroups of SE(3), in our case SO(2).

For marine vessels in high sea state, very large inertial forces are added to the manip-
ulator dynamics. To illustrate the effect of the inertial forces and how these appear in the
robot equations, we look into the problem of finding the optimal trajectory in terms of ac-
tuator torque. There are many motivations for doing this. First of all the wear and tear on
the manipulator is reduced and, for cooperative manipulation, the possibility of breaking
an object manipulated by two robots is also reduced. Secondly, the solution is more energy
efficient as the inertial forces will, if possible, contribute to the desired motion instead of
working against it. The final motivation is that a good understanding of the effects of the
inertial forces on the dynamic equations is essential in tasks that require high accuracy and
the need to compensate for these effects (Love et al., 2004).

We assume that the motion of the free moving base is forced externally by forces
unknown to us and that the pose, velocity, and acceleration of the base relative to the
inertial world are known for all times. This means we also assume that the motion of the
robot does not influence the motion of the base. The motion of the base will add inertial
forces to the dynamics equations of the robot and the pose of the base will influence the
gravitational forces acting on each link. Finally, we assume the robot to be an ideal rigid
friction-less mechanism with purely torque driven actuators.

Given these assumptions, we consider the following two problems: first, we derive
the dynamic equations describing the motion of the robot under the influence of the non-
inertial base motion. Second, we consider the path planning problem of finding the tra-
jectory between two given configurations for a given base motion. Intuitively, the optimal
solution is the trajectory for which the inertial forces help accelerate and decelerate the
robot as much as possible, such that little control torque is required.

3.3 Multibody Dynamics with a Non-Inertial Base

We extend the classical dynamics equations for a serial manipulator arm with 1-DoF joints
to include the forced 6-DoF motion of the non-inertial base.

3.3.1 Manipulator Kinematics on a Non-Inertial Base

Consider the setup of Fig. 3.1 describing a general n-link robot manipulator arm attached
to a moving base. Choose an inertial coordinate frame Ψ0, a frame Ψb rigidly attached to
the moving base, and n framesΨi (not shown) attached to each link i at the center of mass
with axes aligned with the principal directions of inertia. Finally, choose a vector q ∈ Rn

that describes the configuration of the n joints.
Using standard notation (Murray et al., 1994), we can describe the pose of each frame

Ψi relative to Ψ0 as a homogeneous transformation matrix g0i ∈ SE(3) of the form

g0i =

[
R0i p0i
0 1

]
∈ R4×4 (3.1)
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with rotation matrix R0i ∈ SO(3) and translation vector p0i ∈ R3. This pose can also be
described using the vector of joint coordinates q as

g0i = g0bgbi = g0bgbi(q) (3.2)

The base pose g0b and the joint positions q thus fully determine the configuration state of
the robot.

In a similar way, the spatial velocity of each link can be expressed using twists (Murray
et al., 1994):

V 0
0i =

[
v00i
ω0
0i

]
= V 0

0b + V 0
bi = Adg0b

(
V b
0b + Ji(q)q̇

)
(3.3)

where v00i and ω
0
0i are the linear and angular velocities, respectively, of link i relative to the

inertial frame, Ji(q) ∈ R6×n is the geometric Jacobian of link i relative to Ψb, the adjoint
is defined as Adg :=

[
R p̂R
0 R

]
∈ R6×6, and p̂ ∈ R3×3 is the skew symmetric matrix such

that p̂x = p × x for all p, x ∈ R3. The velocity state is thus fully determined given the
twist V b

0b of the base and the joint velocities q̇.

3.3.2 Manipulator Dynamics on a Non-Inertial Base

The previous section shows how the kinematics of the system can be naturally described
in terms of the (global) state variables g0b, q, V b

0b, and q̇. We now derive the dynamics
equations for the system in terms of these state variables. We first assume the base to be
free-moving under the influence of some prescribed external wrench F , and then restrict
the base motion to be kinematically constrained.

To derive the dynamics of the complete mechanism (including the 6-DoF between
Ψ0 and Ψb), we follow the generalized Lagrangian method introduced by Duindam and
Stramigioli (2007, 2008). This method gives the dynamics equations for a general mecha-
nism described by a set Q = {Qi} of configuration states Qi (not necessarily Euclidean),
a vector v of velocity states vi ∈ Rni , and several mappings that describe the local Eu-
clidean structure of the configuration states and their relation to the velocity states. More
precisely, the neighborhood of every state Q̄i is locally described by a set of Euclidean
coordinates φi ∈ Rni as Qi = Qi(Q̄i, φi) with Qi(Q̄i, 0) = Q̄i, and there exist differen-
tiable matrices Si such that we can write vi = Si(Qi, φi)φ̇i for every Qi.

Given a mechanism with coordinates formulated in this generalized form, we can write
its kinetic energy as Uk(Q, v) = 1

2v
TM(Q)v withM(Q) the inertia matrix in coordinates

Q. The dynamics of this system then satisfy

M(Q)v̇ + C̄(Q, v)v = τ̄ (3.4)

with τ the vector of gravitational, friction, and other external torques (collocated with v),
and C̄(Q, v) the matrix describing Coriolis and centrifugal forces and given by

C̄ij(Q, v) :=
∑
k,l

(
∂Mij

∂φk

S−1
kl − 1

2
S−1
ki

∂Mjl

∂φk

)∣∣∣∣
φ=0

vl

+
∑

k,l,m,s

(
S−1
mi

(
∂Smj

∂φs

− ∂Sms

∂φj

)
S−1
sk Mkl

)∣∣∣∣∣∣
φ=0

vl

(3.5)
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3.3. MULTIBODY DYNAMICS WITH A NON-INERTIAL BASE

More details and proofs can be found in references Duindam and Stramigioli (2007) and
Duindam and Stramigioli (2008).

To apply this general result to systems of the form of Fig. 3.1, we write Q = {g0b, q}
as the set of configuration states, and v =

[
V b
0b
q̇

]
as the vector of velocity states. The local

Euclidean structure for the state g0b is given by exponential coordinates (Murray et al.,
1994), while the state q is globally Euclidean of itself. Mathematically, we can express
configurations (g0b, q) around a fixed state (ḡ0b, q̄) as

g0b = ḡ0b exp

⎛⎝ 6∑
j=1

bj(φb)j

⎞⎠ (3.6)

qi = q̄i + φi ∀ i ∈ {1, . . . , n} (3.7)

with bj the standard basis elements of the Lie algebra se(3). The corresponding matrices
Si can be collected in one block-diagonal matrix S given by (Duindam, 2006)

S(Q,φ) =

[(
I − 1

2 adφb
+ 1

6 ad
2
φb

− . . .
)

0
0 I

]
∈ R(6+n)×(6+n)

with adp =
[
p̂4...6 p̂1...3

0 p̂4...6

]
∈ R6×6 for p ∈ R6. This shows that the choice of coordinates

(Q, v) has the required form.
From expression (3.3) for the twist of each link in the mechanism, we can derive an

expression for the total kinetic energy. Let Ii ∈ R6×6 denote the constant positive-definite
diagonal inertia tensor of link i expressed in Ψi. The kinetic energy Uk,i of link i then
follows as

Uk,i =
1

2

(
V i
0i

)T
IiV

i
0i

=
1

2

(
V b
0b + Ji(q)q̇

)T
AdTgib Ii Adgib

(
V b
0b + Ji(q)q̇

)
=

1

2

[(
V b
0b

)T
q̇T

]
Mi(q)

[
V b
0b

q̇

]
=

1

2
vTMi(q)v (3.8)

with

Mi(q) :=

[
AdTgib Ii Adgib AdTgib Ii Adgib Ji

JT
i AdTgib Ii Adgib JT

i AdTgib Ii Adgib Ji

]
(3.9)

The total kinetic energy of the mechanism is given by the sum of the kinetic energies of
the mechanism links and the non-inertial base, that is,

Uk(q, v) =
1

2
vT

([
Ib 0
0 0

]
+

n∑
i=1

Mi(q)

)
︸ ︷︷ ︸

inertia matrixM(q)

v (3.10)

with M(q) the inertia matrix of the total system. Note that neither Uk(q, v) nor M(q)
depend on the pose g0b and hence the choice of inertial reference frame Ψ0.
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We can write (3.4) in block-form as follows[
MV V MT

qV

MqV Mqq

] [
V̇ b
0b

q̈

]
+

[
C̄V V C̄V q

C̄qV C̄qq

] [
V b
0b

q̇

]
=

[
F b
b

τ

]
(3.11)

with F b
b the external wrench on the base link, expressed in coordinates Ψb (such that it is

collocated with the twist V b
0b). To compute the matrix C̄(Q, v) for our system, we can use

the observations that M(q) is independent of g0b, that S(Q,φ) is independent of q, and
that S(Q, 0) ≡ I . Furthermore, the partial derivative ofM with respect to φb is zero since
M is independent of g0b, and the second term of (3.5) is only non-zero for the C̄V V block
of C̄(Q, v).

The precise computational details of the partial derivatives follow the same steps as
in the classical approach (Murray et al., 1994). To compute the partial derivatives of the
adjoint matrices, one can use a relatively simple relation. If we express the velocity of
joint k as V (k−1)

(k−1)k = Xk q̇k for constant Xk, then the following holds:

∂Adgij
∂qk

=

⎧⎨⎩
Adgi(k−1)

adXk
Adg(k−1)j

for i < k ≤ j
−Adgi(k−1)

adXk
Adg(k−1)j

for j < k ≤ i
0 otherwise

To prove this, we start by writing out the spatial velocity of frame Ψk with respect to
Ψ(k−1) when i < k ≤ j:

X̂kq̇k = V̂
(k−1)
(k−1)k = ġ(k−1)kg

−1
(k−1)k =

∂g(k−1)k

∂qk
gk(k−1)q̇k

where X̂ :=
[
X̂ω Xv

0 0

]
. If we compare the first and the last terms, we get

∂R(k−1)k

∂qk
= X̂ωR(k−1)k, (3.12)

∂p(k−1)k

∂qk
= X̂ωp(k−1)k +Xv. (3.13)

We can use this relation in the expression for the partial derivative of Adg(k−1)k
:

∂Adg(k−1)k

∂q
=

[
∂R(k−1)k

∂qk

p̂(k−1)k

∂qk
R(k−1)k+ p̂(k−1)k

∂R(k−1)k

∂qk

0
∂R(k−1)k

∂qk

]

=

[
X̂ω X̂v

0 X̂ω

] [
R(k−1)k p̂(k−1)kR(k−1)k

0 R(k−1)k

]
= adXk

Adg(k−1)k
(3.14)

It is now straight forward to show that

∂Adgij
∂qk

= Adgi(k−1)

∂Adg(k−1)k

∂qk
Adgkj

= Adgi(k−1)
adXk

Adg(k−1)k
Adgkj

= Adgi(k−1)
adXk

Adg(k−1)j
. (3.15)

Similarly when j < k ≤ i.
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3.3. MULTIBODY DYNAMICS WITH A NON-INERTIAL BASE

3.3.3 Manipulator Dynamics on a Forced Non-Inertial Base

We now simplify and specialize the dynamics equations by assuming that the motion of
the platform is fully determined by external forces that are neither known nor of interest.
We only assume that the relative pose g0b, velocity V b

0b, and acceleration V̇
b
0b of the base

relative to the inertial world are known from measurements. This implicitly implies that
the torques applied to the internal robot joints do not influence the motion of the platform,
which is a reasonable assumption in our application of a relatively small robot attached to
a large moving base.

Since we are not interested in the external forces on the mechanism, we can consider
just the second block-row of (3.11), which expresses the robot accelerations q̈ as a function
of the joint torques τ as well as the non-inertial motion of the base. This can be rewritten
as

Mqq q̈ + C̄qq q̇ +MqV V̇
b
0b + C̄qV V

b
0b︸ ︷︷ ︸

inertial forces

= τ (3.16)

which partially separates the usual robot dynamics (first two terms) from the inertial forces
(third and fourth term), although the matrix C̄qq generally still depends on V b

0b. For a static
base frame (V b

0b ≡ 0), the equations reduce to the regular dynamics of an n-link robotic
mechanism. Note that for constant V b

0b, the terms due to the non-inertial base motion
generally do not drop out, since a constant twist can also contain (non-inertial) angular
components. Note also that neither the inertia of the base nor the second term in (3.5)
appear in these equations.

The terms C̄qV and C̄qq can be written more explicitly as

C̄qV =
n∑

k=1

∂MqV

∂qk
q̇k − 1

2

∂T

∂q

([
MV V MT

qV

] [V b
0b

q̇

])

C̄qq =
n∑

k=1

∂Mqq

∂qk
q̇k − 1

2

∂T

∂q

([
MqV MT

qq

] [V b
0b

q̇

])
This approach can be used to obtain the dynamics equations for an arbitrary n-link mech-
anism attached to a non-inertial base. Specific examples are presented in Section 3.5.

3.3.4 Gravitational Forces

Finally we include the gravitational forces. Let the wrench associated with the gravita-
tional force of link i with respect to coordinate frame Ψi be given by

F i
g =

[
fg
r̂igfg

]
= −mig

[
R0iez
r̂igR0iez

]
(3.17)

where ez =
[
0 0 1

]T
and rig is the center of mass of link i expressed in frame Ψi. In

our case Ψi is chosen so that rig is in the origin of Ψi so we have rig = 0. The equivalent
joint torque associated with link i is given by

τ ig = Ji(q)Ad
T

g0i
(Q)F i

g(Q) (3.18)
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where Ji is the geometric Jacobian and Adg0i = Adg0b Adgbi is the transformation from
the inertial frame to frame i. We note that both R0i and Adg0i depend on the base config-
uration with respect to the inertial frame. The total effect of the gravity from all the links
is then given by τg =

∑n
i=1 τ

i
g which enters Equation (3.16) the same way as the control

torque.

3.4 Compensation Using Motion Planning

In general there are two ways to deal with the inertial forces. We can try to compensate
for the effects in the controller or in the motion planning algorithm. In the first method we
cancel the effects of the inertial forces in the feed-forward terms of the controller. Consider
the control law

τ = τff + τPD (3.19)

where

τff =Mqq q̈d + C̄qq q̇d︸ ︷︷ ︸
tracking terms

+ MqV V̇
b
0b + C̄qV V

b
0b︸ ︷︷ ︸

compensation for inertial forces

−
n∑

n=1

(Ji Ad
T

g0i
F i
g)︸ ︷︷ ︸

gravity compensation

(3.20)

τPD =KP (qd − q) +KD(q̇d − q̇)︸ ︷︷ ︸
PD-controller

(3.21)

This is the standard augmented PD control law which in our case also compensates for
the inertial forces. As we are mainly interested in the feed-forward terms, we will assume
perfect tracking, i.e. q(t) = qd(t). With this control law the non-inertial and gravitational
terms are regarded as disturbances and are canceled.

When large inertial forces are present, canceling these terms may be very energy de-
manding. Thus, instead of regarding these terms as disturbances, we will find the trajectory
for which the non-inertial and gravitational terms coincide with the tracking terms to an as
large extent as possible. In doing this, the inertial forces will contribute to the desired mo-
tion instead of working against it. This will reduce the wear and tear on the manipulator,
require less actuator torques and allow more accurate manipulation.

Given the dynamic equations, the initial position q0, and desired end position qdes in
joint coordinates, we want to find the optimal trajectory given by the minimum of the cost
function P , i.e.

Pmin = min
q(t)

∫ T1

t=T0

P (τ) dt (3.22)

where P (τ) is some cost function representing the torque required for the motion,

q(T0) = q0,

q(T1) = qdes, (3.23)

are the vectors describing the initial and end positions of all the joints and

Mqq q̈ + C̄qq q̇ +MqV V̇
b
0b + C̄qV V

b
0b − τg = τ (3.24)
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determines the dynamics of the system.
The global solution to this problem is generally very complex. Assuming g0b, V b

0b(t)

and V̇ b
0b(t) known, we first need to computeMqq(q), C̄qq(q, q̇, V

b
0b),MqV (q) and

C̄qV (q, q̇, V
b
0b). Then we need to find the optimal trajectory (q(t), q̇(t), q̈(t)) which re-

quires the least amount of torque. Both these operations are computationally very de-
manding.

3.5 Examples

We now present specific examples of how the previous modeling and planning methods
can be applied in case of specific robot motion objectives and given base motion. Here,
we make specific choices as to how to discretize and approximate the problem to make it
solvable; future work will investigate different and more general approaches.

3.5.1 Parameterization of Joint Motion

To reduce the search space, we assume that the shape of each joint trajectory is given so
that we only need to find the starting time and the length of the motion for each joint. We
also consider a cost function P (τ) that is quadratic in τ and thus reduce the problem to

Pmin = min
t0,t1

∫ T1

t=T0

τTDτ dt (3.25)

whereD is a positive definite matrix that defines a metric in τ -space, t0 =
[
t1,0 · · · tn,0

]T
are the starting times and t1 =

[
t1,1 · · · tn,1

]T
are the end times for the n joints, which can

all be chosen independently, with the restriction that T0 ≤ ti,0 < ti,1 ≤ T1 for all i and
for a fixed prescribed time interval (T0, T1). We choose sinusoidal joint motions given by

q̈i(t) = ai sin (bi(t− ti,0)) ,

q̇i(t) =
ai
bi

− ai
bi

cos (bi(t− ti,0)) ,

qi(t) = qi,0 +
ai
bi
(t− ti,0)−

ai
b2i

sin (bi(t− ti,0)) , (3.26)

for t ∈ (ti,0, ti,1) and qi(t) constant otherwise. The boundary conditions qi(ti,0) = qi,0
and qi(ti,1) = qi,des give rise to the following two equations

ai =
(qi,des − qi,0)b

2
i

2π
bi =

2π

ti,1 − ti,0
(3.27)

and hence the motion is fully parameterized by ti,0 and ti,1 for given q0 and qdes. The
motion planning problem is thus reduced to finding the optimal time intervals (ti,0, ti,1)
for all joints i = 1, . . . , n.
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3.5.2 Base Notion

The environmental disturbances that affect the platform motion are wind, waves and ocean
currents. The ocean currents are low frequency disturbances and will not affect the ma-
nipulator dynamics. It is common to assume the principle of superposition when consid-
ering wave and wind disturbances (Fossen, 2002) and they are normally modeled in the
frequency spectrum. Many good models of the ship motion for different sea states are
available in literature (Fossen, 2002; Salvesen et al., 1970).

The platform motion is modeled as g0b(t) ∈ SE(3). Large marine vessels are often
found to have a characteristic motion which we can represent as a vector subspace of
se(3). For the purpose of this paper, we will estimate the main angular motion of the
platform somewhat roughly by a sinusoidal motion in SO(2). Assume that the waves hit
the platform with a velocity in the direction of the y-axis in Ψb. The platform pose and
acceleration are then given by an angular motion about the x-axis:

φ = A sin (Bt) (3.28)

This is a simplified motion, but the dynamic equations are valid for any motion in SE(3).
Specific examples of how this base motion affects the manipulator motion are shown in
the following.

3.5.3 1-DoF Manipulator

Consider first a mechanismwith a single 1-DoF prismatic joint located at pb1 =
[
0 0 l1

]T
in Ψb and moving in the direction of the y-axis. Let the base motion be given as in (3.28).
We setm = 1 and the dynamics equations reduce to

τ = q̈ − l1φ̈− qφ̇2 − g sin(φ). (3.29)

We start by approximating the base motion given in (3.28) by the Taylor approximation

sin (x) ≈ x− x3

3!
+

x5

5!
− x7

7!
+O(x9). (3.30)

We can write φ(t), φ̇(t) and φ̈(t) as

φ(t) ≈ A

(
Bt− (Bt)3

3!
+

(Bt)5

5!
− (Bt)7

7!
+O(t9)

)
,

φ̇(t) ≈ AB

(
1− (Bt)2

2!
+

(Bt)4

4!
− (Bt)6

6!
+O(t8)

)
,

φ̈(t) ≈ AB2

(
− (Bt)

1!
+

(Bt)3

3!
− (Bt)5

5!
+O(t7)

)
.

This is typically a good approximation for one period of sinusoidal motion. We ap-
proximate the desired joint motion given by (3.26) in the same way.

As we have only one joint we set t0 = T0 and t1 = T1. The minimization problem is
then reduced to

Pmin = min
t0,t1

∫ t1

t0

(q̈ − l1φ̈− qφ̇2 − g sin(φ))2dt (3.31)
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∫ τ
2
d
t

t0

Δt

20

15

10

5

0

0
−2 −1.5 −1 −0.5 0.5

1

1 1.5

2

2
0.4

0.6

0.8

1.2

1.4

1.6

1.8

Figure 3.2: The torques needed to move the prismatic joint from q0 = 0 to qdes = 1.5 for high
frequency base motion φ(t) = −1/5 sin (2t) plotted with respect to the start time t0 and the motion
lengthΔt = t1 − t0. The minima found are marked with an "X".

which after substituting the Taylor approximations reduces to the problem of finding the
minimum of a polynomial equation. We can now quickly find the optimal solution with
respect to the start and end times t0 and t1. We define the search space as the time interval
for which the Taylor approximation is accurate, i.e., (t0, t1) ∈ (−tT , tT ) where 2tT is
the wave period of the principal frequency of the waves. Fig. 3.2 illustrates the value of
the integral (3.31) for different start and end times for φ(t) = −1/5 sin (2t), q0 = 0 and
qdes = 1.5. The optimal and worst case trajectories are shown in Fig. 3.3.

3.5.4 4-DoF Manipulator

The previous example can be solved efficiently as it reduces to finding the minimum of
a polynomial equation. As a second example, we show how numerical methods can be
used to compute optimal motion paths for the 4-DoF manipulator shown in Fig. 3.1 with
realistic mass and inertia parameters. We now use the exact equations for base motion and
the manipulator dynamics. The base moves along the angular motion pattern (3.28) at a
relatively low frequency, which means the inertial forces mostly enter through a changing
direction of gravity.

We solve the motion planning problem by numerically minimizing the objective func-
tion (3.22) and parameterize the problem as follows: each joint trajectory is given by a
separate sinusoidal motion (3.26) with parameters ti,0 and ti,1, the total motion from start
to goal is to be finished within a fixed prescribed time interval (T0, T1) = (0, 10), and
the cost function is chosen as (3.25) with D = 10−6I and integrated over the fixed time
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Figure 3.3: Optimal and worst case trajectories. The required torque is the total torque required
for the desired joint motion, which is the sum of the actuator and the inertial torques. The actuator
torque is the torque applied by the actuator so that the total torque is equal to the required torque,
i.e. the inertial torques subtracted from the required torque. This is the torque to be minimized. The
optimal interval is found at t = [-1.58 -0.98]. The worst case is found at t = [-0.95 -0.35]. The
integrated torque (squared) for the optimal solution is 0.87 and 11.38 for the worst case. As the
length of the motion increases (Δt increases in Fig. 3.2), the integrated torque increases unbounded,
thus the worst case starting point search is performed with a fixed motion length of 0.6s.

interval (T0, T1). We choose the start and end configurations as

q(0) =
[
−2.5 0 0 0

]T
q(T ) =

[
2.5 π

2
π
2

π
2

]T
and the base motion as (3.28) with A = 5

4π and B = 2π
5 . The motion planning prob-

lem thus amounts to finding the eight parameters (one start and end time for each joint)
that minimize the total squared required torque integrated over a fixed time interval while
starting and finishing the robot in the required configurations.

Figures 3.4 and 3.5 show the solution obtained using Matlab’s constrained minimiza-
tion function fmincon.mat. A full animation of the resulting motions can be found in the
video accompaniment to this paper. Fig. 3.4 shows still shots of the optimal solution and il-
lustrates the sinusoidal motion of the base. Fig. 3.5 compares three solutions: one baseline
solution that simply takes the start time for each joint trajectory at ti,0 = T0 and the finish
time at ti,1 = T1, one solution that optimizes the cost function assuming zero base motion
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(a horizontal stationary base), and one solution that optimizes the cost function taking the
real base motion into account. The associated costs are 19, 21, and 11, respectively.

The figure shows that, for this example, taking the base motion into account can sig-
nificantly reduce the cost and hence the required torque. The joint motions optimized for
a static base (dashed line) even perform worse than the baseline joint motions (dotted line)
when applied during non-static base motion. When optimizing the joint motions while tak-
ing the base motion into account (solid line), the result is much improved, and the benefit
of the resulting motions can be understood intuitively: the prismatic motion is delayed and
shortened as to optimally use the changing gravity direction (due to base rotation) in the
acceleration and deceleration phase, similar to the previous 1-DoF example. The resulting
required actuator torque τ1 is thus reduced to close to zero during the motion, i.e., in the
time interval (t1,0, t1,1) = (3.2, 7.2). Similarly, the motion of joints 3 and 4 is delayed as
to minimize the amount of time spent holding up the links against gravity.

The example shows how knowledge of the base motion can be used to significantly
reduce torque requirements, even with only little freedom in the optimization (only ti,0
and ti,1 can be optimized). If the shapes of the trajectories are allowed to be changed
and optimized in more detail, improvement should be even more significant. Including
more parameters makes the optimization problem more complex, though, and numerical
solutions may get more easily trapped in local minima.

3.6 Conclusions

The classical dynamics equations for a serial manipulator have been extended to also in-
clude the motion of a forced non-inertial base. The dynamics equations are derived using
a generalized Lagrangian method. This allows us to model the base motion as a “free
motion” joint serially connected with the 1-DoF joints of the manipulator.

Examples for a 1-DoF and 4-DoF manipulator mounted on a platform are presented.
We include the platform motion in the dynamics and find the trajectory that takes the
manipulator from an initial position to an end position with the least amount of torque and
compare this with the optimal trajectory when the platform is assumed not to be moving.
The simulations show that when the ship motion is known the amount of torque needed
for a given task can be substantially reduced if the inertial forces are taken into account.

A possible extension for future work is to optimize the shape of the joint trajectories
with more variables. Adding more details to the joint trajectories should increase perfor-
mance even more. If a sufficiently accurate model of the platform can be obtained, this
may allow us to compensate for the inertial forces in high accuracy applications. Another
interesting topic for future work is to look into how model predictive control can be used
to compensate for the platform motion.
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t = 0 t = 2

t = 4 t = 6

t = 8 t = 10

Figure 3.4: Still shots from the simulation of the fully optimized trajectory corresponding to the
solid lines in Fig. 3.5.
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Figure 3.5: Optimal motion trajectory for a 4-DoF manipulator. Three different trajectories are
shown: a baseline trajectory with maximum motion duration (dotted lines), an optimized trajectory
assuming zero base motion (dashed lines), and an optimized trajectory taking the correct non-zero
base motion into account (solid lines).
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Chapter 4

Motion Planning and Control of
Robotic Manipulators on
Seaborne Platforms

4.1 Abstract

Robots on ships have to endure large inertial forces due to the non-inertial motion of
the ship. It is thus important to investigate to what extent it is possible to predict the
future motion of a ship. The ship motion affects both the motion planning and control
of the manipulator and accurate predictions can improve performance substantially.
Based on these predictions, this paper presents a new approach to motion planning
and control of suchmanipulators. It is shown that the effects of the non-inertial forces
can be eliminated—in fact, the robot can even leverage the inertial forces to improve
performance compared to robots on a fixed base. To perform realistic experiments
a 9-DoF robot is used. The first five joints are used to generate the real ship motion,
and the last four joints are used for motion planning. The dynamic coupling between
the first five and the last four joints is thus exactly the same as the dynamic coupling
between a ship and a manipulator, which allows for very realistic experiments.

Keywords: Marine Systems, Robotics, Stochastic systems, MPC.

4.2 Introduction

Robotic manipulators on non-inertial platforms such as ships have to endure large iner-
tial forces due to the non-inertial motion of the platform. When the non-inertial platform’s
motion is known, motion planning and control algorithms can try to eliminate these pertur-
bations. In some situations the motion planning algorithms can even leverage the inertial
forces to more economically move to a target point. However, for many non-inertial plat-
forms, the motion is unknown.
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This paper first investigates to what extent it is possible to predict the future motion
of a ship. Using real ship motion measurements one can study how the uncertainty of
the prediction algorithms changes with the prediction horizon. Then a new motion plan-
ning approach that, based on the predicted future motion of the ship, finds the optimal
trajectory from an initial to a target configuration is presented. It is also shown that by
including the uncertainty in the cost function the maximum torques needed to reach the
target configuration can be reduced.

Due to the stochastic nature of the ship motion and the dynamic coupling between
the ship and the manipulator, empirical studies are extremely important to validate both
the ship motion predictions and the motion planning algorithms. To perform realistic
experiments a 9-DoF robot is used. The first five joints are used to generate the real ship
motion, and the last four joints are used for motion planning. The dynamic coupling
between the first five and the last four joints is thus exactly the same as the dynamic
coupling between a ship and a manipulator. It is thus possible to perform very realistic
experiments as ship motions measured from a real ship are used to generate the actual
motion and at the same time realistic ship motion predictions are used as inputs to the
motion planner. To get statistically meaningful results several simulations are performed
to confirm the experimental results.

Ships and other seaborne platforms are expected to become increasingly unmanned in
the future and hence the need for autonomously operating robots for surveillance, mainte-
nance, and operation will continue to increase over time (Love et al., 2004; Kitarovic et al.,
2005). The demand for unmanned operation becomes even higher in harsh environments
such as high sea state (Figure 4.1), when it can be dangerous for human operators to be
exposed. High sea environments are not only dangerous to human operators, they also
pose significant challenges for robotic control: Large inertial forces will influence the ma-
nipulator and, when not anticipated and accounted for, can make the operation inaccurate,
extremely energy demanding, and sometimes even impossible due to torque limits. The
inertial forces thus need to be taken into account in the motion planning of the robot.

In From et al. (2009a) the authors solve the problem of optimal motion planning for
a robot mounted on a ship under the assumption the base motion is known for all times.
The approach includes the ship motion in the trajectory planning problem and an optimal
trajectory in terms of actuator torques is found. However, in most practical situations the
forces acting on the ship due to the interaction with waves and wind are very irregular and
one cannot expect to know the base motion for all times.

The extent to which it is possible to obtain accurate ship motion predictions can thus
directly affect how well the inertial forces can be compensated for or even taken advantage
of. However, the accuracy of the ship motion prediction not only directly determines how
optimal a solution one can achieve, it also affects the computational requirements. In
a receding horizon setting, where the optimal control input sequence is re-computed at
regular intervals, the computational burden will increase for an inaccurate model: for an
inaccurate model the initialization point taken from the previous solution is further away
from the optimal solution. In addition to affecting the choice of horizon the modeling error
thus directly determines the frequency for which the optimal control or optimal trajectory
can be recalculated.

An important contribution in this paper is the use of real empirical data, both for the
experiments and the simulations. Much of the literature on ship motion prediction uses
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Figure 4.1: A ship in high sea. The waves forces can result in very high accelerations in the ship
motion.

computer generated data to verify the accuracy of the prediction algorithms, which leads
to unrealistically small errors in the predictions. An important difference of the work
presented here is thus the use of real full-scale ship motion data to test the performance of
the ship motion prediction algorithms.

Another important contribution is the realistic experiments. For the experiments a 9-
DoF robot was used: The real ship motion was fed into the first five joints, generating a
very realistic ship motion, and the last four joints are then used for optimal motion planning
for a 4-DoF robot on a moving base. This allows for experiments performed on a 4-DoF
robot mounted on a base with exactly the same motion as if the robot had been mounted
on a ship. The predictions used are based on the real ship motion and the experiments thus
give important information on to what extent the inertial forces can be compensated for.

Experiments are important to study how the motion of the base affects the manipulator
dynamics. The experiments also allow for direct measurements of the torques that act on
the manipulator due to the inertial forces. This paper thus presents, for the first time, a
detailed study of how the inertial motion of the ship maps to the joint torques. This is
used to show that the forces that act on the manipulator due to the waves are excessive and
cannot be ignored in the motion planning and control of the manipulator.

Stochastic uncertainty is present in a wide variety of systems, ranging frommechanical
systems and process control to finance. In general, receding horizon control is a well suited
control scheme to deal with uncertainties, but most approaches do not use information
about the probability distribution governing the uncertainty and they only assume that
the uncertainty is bounded. Thus, the information about the probabilistic distribution is
ignored and the worst-case representation of the disturbances or constraints often leads to
a conservative solution.

In this paper a new motion planning algorithm that also minimizes the variance of the
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controlled state is presented. First, real ship motion measurements are used to calculate
the variance of the predictions of the forced state. It is found that the variance is different
for roll, pitch and yaw. Second, it is shown how to use the Extended Kalman filter to find
how the variance in the forced state maps to the variance of the controlled state, i.e., how
the uncertainties in the ship motion predictions map to uncertainties in the robot state. The
general idea of this approach is to exploit the fact that there are some components of the
ship motion that are more difficult to predict than others. Also, for different configurations
of the robot, the inertial forces will affect the robot differently. Thus, by including the
variance in the cost function one can force the motion planner to choose a trajectory that
is less affected by the largest and most uncertain components of the base motion. When a
receding horizon approach is applied, it is found that by augmenting the cost function to
also include the variance it is possible to choose a longer horizon than when the variance
is not included.

The paper is organized as follows: Section 4.3 gives a short introduction to ship-
manipulator modeling, presented in more detail in From et al. (2009a). The ship motion
prediction algorithms used are presented in Section 4.4 and in Section 4.5 it is shown how
to use these predictions to improve the motion planning and control of a robotic manipula-
tor on a moving base. The simulations and empirical studies are presented in Section 4.6.
Related research and references are discussed in Section 4.7.

4.3 Ship-Manipulator Modeling

In From et al. (2009a) the classical dynamic equations for a serial manipulator arm with 1-
DoF joints were extended to include the forced 6-DoF motion of the base. For more details
on how to derive the dynamics see From et al. (2009a) and Duindam and Stramigioli (2007,
2008). Consider the setup of Fig. 4.2 describing a general n-link robot manipulator arm
attached to a moving base and choose an inertial coordinate frame Ψ0, a frame Ψb rigidly
attached to the moving base, and n frames Ψi (not shown) attached to each link i at the
center of mass. Finally, choose a vector q ∈ Rn that describes the configuration of the n
joints. Using standard notation (Murray et al., 1994), the pose of each frame Ψi relative
to Ψ0 can be described as a homogeneous transformation matrix g0i ∈ SE(3). This pose
can also be described using the vector of joint coordinates q as

g0i = g0bgbi(q). (4.1)

The base pose g0b and the joint positions q thus fully determine the configuration of the
robot.

In a similar way, the spatial velocity of each link can be expressed using twists (Murray
et al., 1994):

V 0
0i =

[
v00i
ω0
0i

]
= V 0

0b + V 0
bi = Adg0b

(
V b
0b + Ji(q)q̇

)
(4.2)

where v00i and ω
0
0i are the linear and angular velocities, respectively, of link i relative to the

inertial frame, Ji(q) ∈ R6×n is the geometric Jacobian of link i relative to Ψb, the adjoint
is defined as Adg :=

[
R p̂R
0 R

]
∈ R6×6, and p̂ ∈ R3×3 is the skew symmetric matrix such
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q1
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q3

q4

Ψ0

Ψb

Figure 4.2: Model setup for a four-link robot attached to a non-inertial base with coordinate frame
Ψb. Frame Ψ0 denotes the inertial reference frame.

that p̂x = p × x for all p, x ∈ R3. The velocity state is thus fully determined given the
twist V b

0b of the base and the joint velocities q̇.
The dynamic equations can be written in block-form as follows[

MV V MT
qV

MqV Mqq

] [
V̇ b
0b

q̈

]
+

[
CV V CV q

CqV Cqq

] [
V b
0b

q̇

]
=

[
F b
b

τ

]
(4.3)

with F b
b the external wrench on the base link, expressed in coordinates Ψb (such that it is

collocated with the twist V b
0b).

This paper is concerned with the effects that the base pose g0b, the base velocity V b
0b,

and the base acceleration V̇ b
0b have on the manipulator dynamics. This can be seen by

rewriting the dynamics as

Mqq q̈ + Cqq q̇ +MqV V̇
b
0b + CqV V

b
0b︸ ︷︷ ︸

inertial forces

= τ. (4.4)

Finally, the way the gravitational forces map to joint torques depends on the configu-
ration of the base and is added to the right hand side of (4.4). The torque associated with
link i is given by

τ ig = Ji(q)Ad
T

g0i
(Q)F i

g(Q). (4.5)

Note that both R0i and Adg0i depend on the base configuration with respect to the inertial
frame. F i

g is given by

F i
g =

[
fg
r̂igfg

]
= −mig

[
R0iez
r̂igR0iez

]
(4.6)

where ez =
[
0 0 1

]T
and rig is the center of mass of link i expressed in frame Ψi.
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4.4 Ship Motion Prediction

Due to the stochastic nature of the forces that act on ships, ship motion prediction is a very
difficult problem. This section presents two simple and computationally efficient methods
for predicting the future motion of the ship: the Auto-Regressive (AR) predictor and a
predictor using a superposition of sinusoidal waves representation. In this paper the focus
is on these simple and computationally efficient methods as they do not require a ship or
wave model, nor external sensors such as wave cameras or force sensors. Adding sensors
or using more advanced methods will allow for more accurate predictions and the results
presented in the following sections can thus probably be improved if external sensors are
added.

The Auto-Regressive (AR) predictor is an all-pole model (i.e., no inputs) and gives an
estimate of the output directly without the need for information about the forces that cause
the motion. Write

y(t) = −a1y(t− 1)− a2y(t− 2)− · · · − any(t− n) (4.7)

and define

φ(t) =
[
−y(t) −y(t− 1) −y(t− 2) · · · −y(t− n+ 1)

]T
,

θ =
[
a1 a2 . . . an

]T
. (4.8)

CollectingN samples and stacking φ in Φ and y in Y one can find the optimal parameters
θ in the least squares sense by

θ = (ΦTΦ)−1ΦTY (4.9)

and the prediction problem is solved by

y(t+ 1) = φ(t)Tθ. (4.10)

Alternatively one can fit the superposition ofN sine waves to the measurements in the
least squares sense. Following the approach in Chung et al. (1990) write

ξ(t) =

N∑
i=1

Ai sin (ωit+ bi) (4.11)

where Ai is the amplitude of the sines, ωi is the frequency and bi is the phase. Assuming
the frequencies are found from the peaks in the frequency spectrum, the problem amounts
to finding Ai and bi. Note that

ξ(t) =
N∑
i=1

a2i−1 sin (ωit) + a2i cos (ωit) (4.12)

where a2i−1 = Ai cos(bi) and a2i = Ai sin(bi) are used to handle phase shifts. The
parameters

θ =
[
a1 a2 · · · a2N

]T
(4.13)

representing the best fit in the least squares sense are then found from (4.9) with

φ(t)=
[
sin (ω1t) cos (ω1t) · · · sin (ωN t) cos (ωN t)

]T
.
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4.5 Motion Planning and Control in a Stochastic Environ-
ment

This section discusses the motion planning problem, i.e., to take the manipulator from an
initial configuration to a target configuration using as little torque as possible. By planning
the motion so that the inertial forces contribute to the motion and don’t work against it,
it is possible, in addition to save energy, to achieve more accurate trajectory tracking and
reduce the strain and tension on the manipulator.

4.5.1 Motion Planning

Consider the control law
τ = τff + τPD (4.14)

where

τff =Mqq q̈d + Cqq q̇d︸ ︷︷ ︸
tracking terms

+ MqV V̇
b
0b + CqV V

b
0b︸ ︷︷ ︸

compensation for inertial forces

−
n∑

n=1

(Ji Ad
T

g0i
F i
g)︸ ︷︷ ︸

gravity compensation

(4.15)

τPD =KP (qd − q) +KD(q̇d − q̇)︸ ︷︷ ︸
PD-controller

. (4.16)

This is the standard augmented PD control law which in this case also compensates for
the inertial forces. Based on the predictions of g0b, V b

0b, and V̇
b
0b for a given horizon this

control law tries to cancel these disturbances regardless of whether they contribute to the
desired motion or not.

For trajectory tracking this is in general a very energy demanding solution. When
large inertial forces are present, simply canceling these terms as in Equation (4.15) may
require excessive joint torques. Thus, instead of regarding these terms as disturbances, the
prediction of the ship motion can be included in the motion planning. The planner can
then use this information to calculate the trajectory that requires the least actuator torque
for the given base motion. As an example, consider a manipulator that is to move from the
left to the right on the ship. If it chooses to start the trajectory at a time when the inertial
forces contribute to the desired motion it can potentially get an almost free ride from one
side to the other. If it simply chooses to cancel these disturbances, for example by (4.15),
it might end up following a trajectory for which the inertial forces are working against the
desired motion for the entire interval. One intuitive situation where this can occur is when
the manipulator moves uphill instead of downhill for the entire motion and will thus not
take advantage of the gravitational forces.

This paper follows the approach presented in From et al. (2009a) and solves the motion
planning problem by numerically minimizing an objective function representing the joint
torques with respect to the start and end time. The cost function is found from the whole
interval (T0, T1) and not only the interval (t0, t1) when the motion occurs, i.e.,

P = min
t0,t1

∫ T1

t=T0

τTDτ dt (4.17)
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where T0 ≤ t0 < t1 ≤ T1 and D is a positive definite matrix that defines a metric in τ -
space. In From et al. (2009a) this was solved assuming the base motion was known. This
paper uses realistic predictions of the base motion in the cost function. These predictions
will become less accurate as the horizon increases, and it is investigated how the choice of
motion planning algorithm and prediction horizon affects the performance of the motion
planner.

4.5.2 Stochastic MPC

As will be clear in Section 4.6.1 the accuracy of the predictions is different for the dif-
ferent axes. For example for the AR predictor the predictions of the angular acceleration
about the y-axis is less accurate than the x- and z-axes. Also, the linear acceleration in
the direction of the x-axis is far more accurate than the y- and z-axes. Thus, this section
presents a modified cost function that minimizes also the expected variance on the out-
put assuming information about how the variance evolves with time is available for the
different components of the ship motion.

In Cannon et al. (2007) the control objective of the stochastic model predictive control
(stochastic MPC) law is to regulate the expected value and variance of the output state.
In this section the same ideas are applied and by including the covariance matrix in the
cost function a trajectory that also minimizes the variance is chosen. The cost function as
defined in Cannon et al. (2007) is given by

P =
N−1∑
j=0

l(k + j|k) + L(k +N |k) (4.18)

where L is the cost-to-go function and

l(k + j|k) = x̄2(k + j|k) + κ2σ2
x(k + j|k) (4.19)

with

x̄(k + j|k) = Ek(x(k + j|k)) (4.20)

σ2
x(k + j|k) = Ek [x(k + j|k)− x̄(k + j|k)]2 (4.21)

denoting the expected value and variance of x(k + j|k). The relative weighing of the
expected value and the variance can thus be controlled directly through the parameter κ.

In the following the same ideas are applied and the covariance matrix is included in
the cost function so that a trajectory that also minimizes the covariance is chosen. A cost
function similar to the one found in Cannon et al. (2007) is given by

P =

N−1∑
j=0

l(k + j|k) + L(k +N |k) (4.22)

where L(k +N |k) is the cost-to-go and

l(k + j|k) = q̄2(k + j|k) + κ ||Σq(k + j|k)||
r

(4.23)
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with q̄(k + j|k) = E[q(k + j|k)] denoting the expected state of the robot and

Σq =

⎡⎢⎣E[(q1 − q̄1)(q1 − q̄1)] . . . E[(q1 − q̄1)(qn − q̄n)]
...

. . .
...

E[(qn − q̄n)(q1 − q̄1)] . . . E[(qn − q̄n)(qn − q̄n)]

⎤⎥⎦ (4.24)

so that Σq(k + j|k) is the covariance matrix of q(k + j|k) given the measurements of the
robot state q(i) and the ship state g0b(i) for i = k0 . . . k, and ||·||r denotes the Euclidean
norm of each row. Similarly, the second part of (4.19) can be added to the cost in (4.17) to
get the cost function in the form

P = min
t0,t1

∫ T1

t=T0

(
τT(t)Dτ(t) + κ ||Σq(t|T0)||

)
dt. (4.25)

where ||Σq|| denotes the Euclidean norm of the covariance matrix. The problem is thus
to find the start time ti,0 and the end time ti,1 for the motion of each joint subject to the
restriction T0 ≤ ti,0 < ti,1 ≤ T1. The cost, however, sums over the entire pre-defined
interval (T0, T1), i.e., also when the joints do not move and q̇i(t) = 0. Note that in this
case the joint torques are not necessarily zero because of the inertial forces.

Assume that each degree of freedom of the ship motion has a normal distribution, i.e.,⎡⎢⎢⎢⎣
u̇
v̇
...
ṙ

⎤⎥⎥⎥⎦ ∼

⎡⎢⎢⎢⎣
N (¯̇u, σ2

u̇)
N (¯̇v, σ2

v̇)
...

N (¯̇r, σ2
ṙ)

⎤⎥⎥⎥⎦ (4.26)

Examples of the expected value and the variance for the acceleration of the ship are shown
in Figures 4.4 and 4.5, respectively. Similar relations can also be found for the position
and velocity of the ship.

For linear systems the Kalman filter can be used to find the expected state and the
error covariance. For non-linear systems the extended Kalman filter is implemented, i.e.,
linearizing around the mean value, and find the expected state of the robot and the covari-
ance matrix used in (4.25). It is then possible to include both the expected state and the
covariance at time (k + j) given the measurements available at time k also for non-linear
systems. This is then included in the cost function (4.25) and the optimal solution is found
by minimizing the weighed cost of the expected value and the covariance.

4.6 Simulations and Experimental Studies

This section presents the simulation results and the results from experiments performed
in the lab. Due to the stochastic nature of the problem, both experimental and simulation
studies are important. The experimental studies are carried out in order to gain insight
into how the moving base and errors in the prediction of the base motion affect the motion
planning and control of the manipulator. The experiments make it possible to measure
the torques directly and get valuable insight into the complex coupling between the ship
and manipulator and how this affects the motion planning and control of the manipulator.
Also, due to the stochastic nature of the disturbances, simulations are important to be able
to perform a sufficient number of runs and hence get statistically meaningful results.
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Figure 4.3: The Emmy Dyvi class “Erik Bye” used to measure the ship motions. “Erik Bye” is
owned by Redningsselskapet, Norway.

4.6.1 Empirical Data of the Ship Motion

The need for empirical data is of utmost importance when verifying the performance of
prediction algorithms. Most publications on the topic of ship motion prediction use com-
puter generated data such as a combination of sines, a wave model or a sine with added
noise. This will not result a in good performance indicator because of the stochastic nature
of the waves. In this work measurements from a real full-scale ship are used. This makes it
possible to compare the different prediction algorithms on real data and, most importantly,
it gives valuable information about the accuracy of the predictions for different prediction
horizons. The ship used to collect the measurements was the RS 113 “Erik Bye”, shown
in Fig. 4.3, which is a 20.4 meter long Emmy Dyvi class ship and weighs 96 tons. The
wave height at the time of the measurements was about 1 meter. The ship is owned by
Redningsselskapet AS, Norway.

The most important information when including the future motion of the ship in a
model predictive control approach is to have as accurate predictions as possible of the
velocity and the acceleration entries of the state. If gravity plays an important role, the
attitude of the ship should also be included. Fig. 4.4 shows an example of the true and
estimated angular acceleration (roll) of the ship. Note that the predicted acceleration needs
to be estimated at short time intervals to maintain a low prediction error. In general one can
obtain very good results when the predictions are computed every 0.5 or 1.0 seconds. For
predictions up to 3 seconds the predictions are also reasonable and no large errors occur.
The prediction accuracy depends on the frequency of the waves. In general, predictions
with horizons longer than one wave length, which in this case was 3-5 seconds, are not
very reliable. This is mainly due to the fact that these may be out of phase which may lead
to very large errors.

To get a more structured formulation of how the error changes with the prediction
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Figure 4.4: A typical example of true and predicted motion (AR) where a new prediction is calcu-
lated every 0.5 seconds. This clearly shows the need for re-computation of the predicted motion at
short time intervals. The angular acceleration around the x-axis (roll) is shown.

horizon one can look at how the standard deviation evolves over time. This is important
as it allows the path planner and controller to include uncertainty in the cost function and
minimize this. Fig. 4.5 shows the standard deviation for the six degrees of freedom of

the velocity state denoted ν =
[
u v w p q r

]T
. Note that the AR predictions

are more accurate than the superposition of sines, except for horizons of 0.2 seconds or
shorter. The AR method is thus chosen to predict the ship motions to be used in the motion
planning and control presented in the next sections.

4.6.2 Experimental Setup

The experiments are performed using true motion data from the full-scale ship “Erik Bye”
and predictions from the AR model as presented in Section 4.4. All the data is obtained
using inertial sensing in six degrees of freedom. For the experimental setup a 9-DoF robot
(3-DoF gantry crane and 6-DoF industrial manipulator, see Fig. 4.6) is used. A Güdel
gantry crane with three translational degrees of freedom is used to hold an ABB IRB-2400
with six rotational degrees of freedom which is mounted upside down as in Fig. 4.6. The
end effector of the robot is a camera which weighs about 1 kg. Due to limitations in the
workspace of the gantry crane some of the components of the base motion had to be scaled
down. The sway motion is scaled down with about 10% and the heave motion is scaled
down with a factor of 5 to avoid collision between the manipulator and the floor.

The first 5-DoF were used to generate the ship motion. The robot thus generates the
surge, sway and heave motion with the linear actuators of the gantry crane and the roll
and pitch motion with the first two rotational joints of the manipulator. The yaw motion is
very small and can be neglected. The last four links of the manipulator are then considered
a standard manipulator on which the control and motion planning algorithms are tested.
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Figure 4.5: The standard deviation as a function of the prediction horizon. Note that the standard
deviation is smaller with the AR model than for the superposition of sines, except for predictions of
0.2 seconds or less (not visible on the figure). The standard deviation is calculated from 200 samples,
for “Erik Bye” moving at 15 knots at 1 meter wave height.

The motion of the “base”, i.e., link 2 of the manipulator (see Fig. 4.6), is set to exactly
the same as the measurements taken from the full-scale ship. This setup thus allows for
very realistic experiments as the base link has exactly the same motion as the real ship.
Due to the difference in the inertia between the ship and the manipulator the motion of
the manipulator does not affect the motion of the ship. The dynamic coupling between
the base link and the last four links of the manipulator is thus the same as for a 4-DoF
manipulator mounted on a moving base.

4.6.3 Experimental Results Based on Predicted Ship Motions

This section shows how to exploit the inertial forces and choose a trajectory that minimizes
the torques and the strain and tension on the manipulator. The approach is based on From
et al. (2009a) and the motion planning problem is solved by numerically minimizing an
objective function. Two different objective functions are used: i) the objective function
in (4.17) which minimizes torques only, and ii) the objective function in (4.25) which
minimizes torques and the variance.

For a given interval (T0, T1) = (0, 10), the optimization problem is then to find the
start and the end time for each joint with the restriction that T0 ≤ ti,0 < ti,1 ≤ T1 for
all i. The shape, but not the starting time or length, of the trajectory is thus assumed
fixed. By fixing the shape, a sub-optimal solution that can be solved efficiently and in
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———Ψb

——Ψ1

——Ψ4

→y
↑
z

↙
x

Figure 4.6: The ABB IRB-2400 robot mounted on a Güdel gantry crane. The first 5 joints (the 3 of
the gantry crane and the first 2 of the robot) are used to generate the ship motion, represented byΨb,
and the last four joints of the robot, represented by Ψ1,2,3,4, are used for optimal motion planning
of a 4-DoF robot. Links 2 and 3 of the robot are hidden in the wrist and cannot be seen in the figure.
Courtesy ABB Strategic R&D for Oil, Gas and Petrochemicals.

real time is found. Finding the optimal solution over all trajectories is a huge optimization
problem and computationally too demanding to be solved in real time. The start and target
configurations are chosen as

q(0) =
[
0 0 0 0

]T
,

q(T ) =
[
π
2

π
2

π
2

π
2

]T
.

The motion planning problem thus amounts to finding the eight parameters (one start and
end time for each joint) that minimize the cost integrated over a fixed time interval while
the robot start and target configurations are satisfied.

For the first cost function (4.17) letD be a positive definite matrix that defines a metric
in τ -space. Choose D = 10−6 · diag

[
10 2 2 5

]
reflecting the masses of the links.
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Figure 4.7: The motion collected from the ship measurements and given as input to the first five
joints of the manipulator. The full line shows the measured accelerations and the dotted line shows
the predicted ship motion used in the motion planners. Note that the predictions have a damping
effect as the predictions become less accurate.

For the second cost function (4.25) the weight is chosen as κ = 10 to enhance the effect
of adding the variance, but otherwise the same weighing as for (4.17) is used.

First the experiments are performed with a baseline trajectory, i.e., a starting time
ti,0 = T0 and end time ti,1 = T1 for all i. This is how one would choose the trajectory
when no information about the motion of the ship is available. Second, the optimization
problem is solved assuming complete knowledge about the ship motion, including future
motion. This gives information about how well one can expect to perform if accurate mo-
tion predictions are available. Finally, two experiments where the trajectory is calculated
based on the predicted base motion but the base motion is exactly the motion of the ship
are performed. This is done with the cost function given in (4.17) and in (4.25). Thus, the
four algorithms in Table 4.1 were tested.

At the beginning of the time interval the next 10 seconds of ship motion are predicted
based on the previous 5 seconds of known ship motion. Then, after 5 seconds the current
position of the ship is updated and the ship motion for the next 5 seconds is predicted.
Thus, the prediction horizon is 10 seconds for the first half of the time interval, and 5
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Alg. 1 - A baseline trajectory with maximum
(——) motion duration for all the joints.
Alg. 2 - An optimized trajectory taking the
(· · · · ·) correct base motion into account.
Alg. 3 - An optimized trajectory taking the
(- - - -) predicted base motion into account

with cost function (4.17).
Alg. 4 - An optimized trajectory taking the
(− · −·) predicted base motion into account

with cost function (4.25).

Table 4.1: The four algorithms studied. Note the colour coding used in the figures in this section.

seconds for the last half. After 5 seconds the optimal trajectory is thus re-computed based
on the new information and the new trajectory is followed. As accurate predictions are
available for about 3 seconds the algorithms must thus handle the fact that for part of the
interval, the predictions are not very reliable.

To compare the energy used for the different algorithms the following cost function
(power) is used:

Pi =

∫ T1

t=T0

τiq̇idt (4.27)

for each joint i = 1 . . . 4. This gives a good indication of how much energy is used to take
the manipulator from the start to the target configuration.

The positions and the velocities of the four joints for the four different trajectories
are found in Fig. 4.8. Note that the trajectories found for the four different approaches are
quite different. First, the trajectories based on the true and predicted base motions are quite
different, especially for joints 3 and 4. The trajectory based on the true ship motion (Alg.
2) takes advantage of a favourable motion at the end of the interval while the trajectories
based on the predicted motion (Alg. 3 and 4) take advantage of a favourable motion in
the beginning of the interval. This difference arises because the ship motion towards the
end of the interval is not available to the algorithms based on the predicted ship motion,
due to the long horizon and the damping effect seen in Fig. 4.7. Alg. 2 chooses to wait to
start the motion until the very last minute. This probably has a simple explanation. All the
joints start out in the initial condition, as shown in Fig. 4.6, and end up with a rotation of
π
2 radians for all the joints. The largest components of the ship motion lie in the xz-plane,
i.e., the pitch is far bigger than the roll, and the sway is fairly constant at -1 meter. It
can be seen from Fig. 4.6 that the inertial forces affect the manipulator less for the initial
configuration than for the target configuration and thus less energy is used if the motion is
delayed until the end of the interval.

There is also an interesting difference between the torque-based cost function (Alg.
3) and the cost function that is based on both torque and variance (Alg. 4). Note that
Alg 4. calculates an optimal trajectory that is closer to Alg. 2, which is considered the
optimal trajectory. This can be seen in joint 1, which is the most important joint due to its
inertia and also the joint with the highest weight in the cost function. As the uncertainty
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Figure 4.8: Four different trajectories are shown: Alg. 1 - a baseline trajectory with maximum
motion duration (full, red lines), Alg. 2 - an optimal trajectory taking the correct base motion into
account (dotted, green lines), Alg. 3 - an optimized trajectory taking the predicted base motion into
account (dashed, blue lines), and Alg. 4 - an optimized trajectory taking the predicted base motion
into account where the variance is included in the cost function (dot-dashed, black lines).

is biggest in surge, heave, and pitch, and the variance is included in the cost function, this
algorithm will try to keep a configuration for which these components of the ship motion
do not affect the manipulator. In other words, the algorithm will choose a trajectory where
the mapping from the axes with the largest uncertainties (surge, heave, and pitch) to the
internal forces of the manipulator is as small as possible, which is the reason for delaying
the motion for joint 1.

Fig. 4.9 shows the value of the cost (4.27) for the four algorithms, i.e., torque times
velocity for each joint. The most apparent observation here is the difference between joint
1, which is a very heavy joint, and joints 2, 3 and 4, which are very light, i.e., about 10%
of the weight of joint 1. Note that due to the motion of the base, joint 1 needs to use
a substantial amount of torque just to keep the arm fixed. In fact, the largest amount of
torque is used to compensate for the base motion, and not to move the joint from the start
to the target configuration. This is a surprising result as the base motion simulates only
1 meter wave height and that some components of the motion are scaled down. One can
thus conclude that for a manipulator mounted on a ship in high sea, the amount of torque
needed to compensate for the inertial forces will be substantial and needs to be included
in both the motion planning and control of the manipulator in order to obtain accurate and
energy efficient control.

Table 4.2 shows the values of the cost function (4.27) for each joint for the four algo-
rithms studied. The average values of the cost function (4.27) for all joints can be found in
Table 4.3. All the entries are scaled so that the maximum value equals 1, so the values of
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(b) Low pass filtered torques times velocities.

Figure 4.9: The torques times velocity over the trajectory. Four different trajectories are shown:
Alg. 1 - a baseline trajectory with maximum motion duration (full, red lines), Alg. 2 - an optimal
trajectory taking the correct base motion into account (dotted, green lines), Alg. 3 - an optimized
trajectory taking the predicted base motion into account (dashed, blue lines), and Alg. 4 - an opti-
mized trajectory taking the predicted base motion into account where the variance is included in the
cost function (dot-dashed, black lines).

the different joints cannot be compared directly. Note that all the optimization algorithms
perform better than the baseline trajectory, in terms of power. Also note that the optimiza-
tion based on the predicted base motion performs better than the optimization based on the
real base motion when evaluating the cost given in (4.27), which may come as a surprise.

Joint Alg. 1 Alg. 2 Alg. 3 Alg. 4

1 1.000 0.787 0.627 0.856
2 1.000 0.061 0.036 0.817
3 1.000 0.652 0.331 0.960
4 1.000 0.709 0.657 0.669

Table 4.2: Square of the torque times velocity over the trajectory for each joint.

Alg. 1 Alg. 2 Alg. 3 Alg. 4

Average 1.0000 0.552 0.413 0.825

Table 4.3: Average of the square of the torque times velocity over the trajectory.
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On the other hand, as can be seen in Table 4.4, this is not the case when the square of
the torque is used. In this case the optimization based on the real base motion performs
best, as should be expected as this is the cost function used in the optimization algorithm.
Also note that the cost with torque only performs better than when the variance is added.
This is also as should be expected as the cost function used in Alg. 3 is the one found in
(4.27), just with different weights for the four joints.

Joint Alg. 1 Alg. 2 Alg. 3 Alg. 4

1 1.000 0.807 0.844 0.948
2 1.000 0.292 0.417 0.292
3 1.000 0.756 0.511 0.689
4 1.000 0.571 0.327 0.612

Table 4.4: Square of the torques over the trajectory for each joint.

Alg. 1 Alg. 2 Alg. 3 Alg. 4

Average 1.000 0.789 0.799 0.910

Table 4.5: Average values of the square of the torques over the trajectory.

Tables 4.6 and 4.7 show the maximum torques for the four algorithms. In this case,
Alg. 4 performs better than Alg. 3. This was the main intention of adding the variance to
the cost function. When the variance is added to the cost function, the algorithm (Alg. 4)
chooses a safer path in the sense that the mapping from the uncertainties of the base motion
to the uncertainty in the robot state will minimize the uncertainty in the robot state. Also
note, however, that the safest path in terms of maximum torques seems to be the one with
the longest duration and thus more evenly distributing the torques over the entire interval.

Joint Alg. 1 Alg. 2 Alg. 3 Alg. 4

1 0.945 1.000 0.968 0.935
2 0.691 0.876 0.931 1.000
3 0.706 0.768 1.000 0.666
4 0.783 0.762 1.000 0.824

Table 4.6: Maximum of the torques for each joint.

Alg. 1 Alg. 2 Alg. 3 Alg. 4

Average 0.873 0.935 1.000 0.903

Table 4.7: The average of the maximum of the torques.
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4.6.4 Simulations Based on Predicted Ship Motions

Simulations are used to verify the experimental studies by running the motion planning
algorithm several times based on different motion prediction data sets. 200 data sets that
all have the same characteristics were chosen in order to be able to draw some general
conclusions and compare the results to the ones found in experiments. All the sets are
picked from one long sampling and are thus collected during a short period of time and in
a sea state for which the dominant components of the motion were in the xz-plane, i.e., the
pitch is far bigger than the roll, and the sway is almost zero. In other words, all the data
sets are measurements of the ship moving with the same velocity, in the same sea state,
and with the same attack angle on the waves.

Table 4.8 confirms the tendency from Table 4.5: all the algorithms perform better than
the benchmark solution. In fact, all approaches obtain better results in the simulations than
for the experiments. This is a promising result as the large number of simulations make
these results meaningful also for stochastic data. Note that the approach based on the real
base motion performs better in this case. This is reasonable as the amount of accurate data
available should allow for a more optimal solution to be found. Thus, the small difference
between Alg. 2 and 3 in Table 4.5 cannot be taken as a general result.

Alg. 1 Alg. 2 Alg. 3 Alg. 4

Average 1.000 0.670 0.788 0.829

Table 4.8: The square of the torques over the trajectory for all the joints. Average values of all the
joints for 200 samples.

Also, the maximum values found in Table 4.7 can be confirmed. However, Table 4.9
shows that Alg. 2 performs better than Alg. 1, which is not the case for the experiments.
Once again the cost function based on both the torque and the variance decreases the
maximum values of the torque, but increases the overall torque used during the trajectory,
which again is as expected.

Alg. 1 Alg. 2 Alg. 3 Alg. 4

Average 0.890 0.823 1.000 0.888

Table 4.9: The maximum of the torques over the trajectory for all the joints. Average values of all
the joints for 200 samples.

4.6.5 Horizon Length

This section discusses how to choose the horizon and the frequency at which the problem
is re-solved in a receding horizon setting when only predictions of the base motions are
known. The previous sections found that the predictions are very accurate for about 0.5
seconds and relatively accurate for a horizon of about 3 seconds. When it comes to motion
planning, however, it turns out that a longer horizon should be chosen. The reason for this
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is that the algorithm searches for the time interval in which the inertial forces contribute
to the motion as much as possible. It is thus desirable to choose the horizon as long as
possible, but at the same time avoid using predictions that are not accurate and may lead to
large errors. Assume the horizon is equal to the re-computation interval. Table 4.10 shows
the optimal horizon/re-computation interval, the total cost and the maximum torques for i)
a cost function minimizing the torques only (Alg. 3), and ii) a cost function minimizing
the torques and variance (Alg. 4). Table 4.10 shows the value of the cost function based
on only the torque for both algorithms in order to be able to compare the two values.

When the variance is included in the cost function one can allow a longer horizon.
This allows the path planner to use more of the information available, albeit inaccurate,
and results in a slightly lower cost than when only the torque is used. The advantage
of adding the variance is rather small when looking at the squared torque, so the main
advantage of including the variance in the cost function is that maximum values of the
torque decreases, as seen in Table 4.9.

Horizon Torque
[s] Alg. 3 Alg. 4

1 1.000 0.897
3 0.812 0.688
4 0.630 0.688
5 0.667 0.670
6 0.778 0.611
7 1.287 0.687

Table 4.10: The cost for different horizons for a cost function without and with variance, based on
200 simulations.

4.7 Related Research

Research on several related topics can be found in the literature. Love et al. (2004) ad-
dress the impact of wave generated disturbances on the tracking control of a manipula-
tor mounted on a ship based on the classical Lagrangian approach. They use repetitive
learning control and this results in performance improvement for purely periodic motions,
but they do not present a formal derivation of the dynamics equations. Kitarovic et al.
(2005) and Oh et al. (2005) address the use of cable robots for loading and unloading
cargo between two ships. In the Ampelmann project (Salzmann, 2007), a Stewart platform
is mounted on a ship and is used to compensate for the motion of the ship by keeping
the platform still with respect to the world frame. Lebans et al. (1997) give a cursory de-
scription of a telerobotic shipboard handling system, and Kosuge et al. (1992) and Kajita
and Kosuge (1997) address the control of robots floating on the water utilizing vehicle
restoring forces. Other related research areas are macro/micro manipulators (Yoshikawa
et al., 1996) and (Bowling and Khatib, 1997), underwater vehicle/manipulator systems
(McMillan et al., 1995) and spacecraft-manipulator systems (Egeland and Sagli, 1993).

Most previous work deals with robots mounted on a free-floating base. There is, how-
ever, an important difference between modeling a robot on a forced and a free-floating
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base. A forced base motion will add inertial forces to the dynamic equations that do not
arise in the free-floating case, such as spacecraft-manipulator systems and manipulators
on small AUVs.

There are some papers in the literature considering the prediction of ship motion. Yang
et al. (2008a,b) discuss the problem of landing a helicopter on a ship in high sea and predict
the ship motion by fitting the ship model to the measured data using recursive least squares.
Khan et al. (2005) use artificial neural networks to solve the same problem. In Chung et al.
(1990) the sea excitation is extrapolated using the superposition of sines approach and the
ship motion is predicted using the ship model driven by the extrapolated forces.

Stochastic model predictive control (MPC) is discussed in detail in Cannon et al.
(2007) and Couchman et al. (2006) where the output variance is included in the cost
function. The relation between the input and the output variance is also important in
performance assessment, which is discussed in an MPC setting in Zhang and Li (2007)
and the minimum variance performance map is discussed in Harrison and Qin (2009). The
output variance is also discussed in the minimum variance control of stochastic processes
developed by Astrom in the 1960s (Åstrøm, 1967).

4.8 Conclusions

This paper presents the first detailed discussion regarding several important aspects of
ship-manipulator systems. First, the extent to which the ship motion can be predicted and
for what horizon this can be used in the motion planning and control of the manipulator
is investigated. Then several different approaches to the motion planning problem for
robots mounted on ships are discussed and it is shown that the amount of torque needed to
reach a desired configuration can be reduced by including the predicted base motion in the
motion planner. The torques needed to reach the target can be reduced even for relatively
moderate ship motions. Thus, one may conclude that for a ship in high sea it is possible
to substantially improve performance and allow for efficient motion planning and accurate
control in settings where this would otherwise not be possible due to large inertial forces.
It is also shown that by including the variance of the predicted motion for the different
degrees of freedom in the motion planner the maximum torques needed and thus also the
strain and tension on the robot are reduced.

Several simulations and experiments are performed to validate the approaches pre-
sented. For the first time, detailed experimental results of ship-manipulator systems under
the influence of inertial forces are presented. Several simulations with a large number of
data sets are also performed and it is shown that the simulation results are consistent with
the experimental result. Also for the first time, the effect of including the variance in the
cost function in a receding horizon control law is investigated through experiments based
on real ship motion data.

It is found that the inertial forces that act on a manipulator mounted on a ship in only
1 meter wave height pose significant challenges in robot control and motion planning,
especially for the joints with large inertia. Also, for a ship in high sea state, the inertial
forces are significantly higher and must be included in both the motion planner and the
control to guarantee safe, cost efficient and accurate manipulation. An interesting topic
for future work is thus to repeat the same experiments for a ship in high sea.
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Chapter 5

On the Boundedness Property of
the Inertia Matrix and
Skew-Symmetric Property of the
Coriolis Matrix for
Vehicle-Manipulator Systems

5.1 Abstract

This paper addresses the boundedness property of the inertia matrix and the skew-
symmetric property of the Coriolis matrix for vehicle-manipulator systems. These
properties are widely used in control theory and Lyapunov-based stability proofs,
and are therefore important to identify. For example, the skew-symmetric property
does not depend on the system at hand, but on the choice of parameterisation of
the Coriolis matrix, which is not unique. It is the authors’ experience that many
researchers take this assumption for granted without taking into account that there
exist several parameterisations for which this is not true. In fact, most researchers
refer to references that do not show this property for vehicle-manipulator systems,
but for other systems such as single rigid bodies or manipulators on a fixed base.
As a result, the otherwise rigorous stability proofs fall apart. In this paper we point
out several references that are widely used, but that do not show this property and
we refer to the correct references. As most references on this topics are not easily
accessible, we also give the correct proofs for commonly used parameterisations of
the Coriolis matrix and thus provide a proof for future reference. We also correct
several mistakes made in the proofs of the aforementioned references.
The same is the case for the boundedness property of the inertia matrix which

for a bad choice of state variables will not necessarily hold. This is an important
property in several different control laws, such as robust control, and also in simula-

113



PROPERTIES OF VEHICLE-MANIPULATOR SYSTEMS

tion of vehicle-manipulator systems. These control laws can be shown to be globally
valid for single rigid bodies or fixed base manipulators, but not for the most common
formulations of vehicle-manipulator systems which are singularity prone. This can
be solved by deriving the dynamics in terms of quasi-velocities, which allows us to
describe the dynamics without the presence of the Euler angle singularities that nor-
mally arise in vehicle-manipulator dynamics. When the singularities are removed
from the equations, we get an inertia matrix that is bounded in its variables.
To the authors’ best knowledge we derive for the first time the dynamic equations

with both the skew-symmetric property of the Coriolis matrix and the boundedness
property for the inertia matrix for vehicle-manipulator systems with non-Euclidean
joints.

Keywords: Vehicle-manipulator dynamics, robot modelling, dynamic properties, sin-
gularities.

5.2 Introduction

This paper is motivated by a general concern that some frequently used properties of the in-
ertia and Coriolis matrices for vehicle-manipulator systems are assumed true based on the
proofs for other systems. We show that the proofs of these properties for fixed-base robot
manipulators or single rigid bodies (vehicles) cannot be generalised to vehicle-manipulator
systems directly. In fact, we show that the most commonly used dynamic equations for
vehicle-manipulator systems do not possess both the boundedness and skew-symmetric
properties. There is thus a need to clarify to what extent these properties are true and
to find a rigorous mathematical representation of these systems for use in simulations
and controller design. To this end we present a reformulation of the dynamic equations
for vehicle-manipulator systems for which both the boundedness and the skew-symmetric
properties are true.

Lyapunov based controllers are based on several assumptions that make the controller
design both more convenient and physically meaningful. These assumptions should thus
reflect the physical properties of the system. With the increasing popularity of Lyapunov
design some of these properties are almost universally taken for granted. In this paper we
discuss two such properties that cannot be assumed true for vehicle-manipulator systems
without further consideration.

The first property is concerned with the boundedness of the inertia matrix M , i.e. if
there exist lower and upper bounds on its singular values. For robot manipulators this
boundedness property is addressed in Ghorbel et al. (1998) where the class of robots for
which the inertia matrix is bounded is characterised. The work of Ghorbel et al. (1998)
differs from our approach in that they are mainly concerned with the design of the manip-
ulator while we are concerned with the mathematical representation. For a given robotic
manipulator there may exist one mathematical representation for which the inertia matrix
is bounded and another for which it is not. We find that for the most commonly used
mathematical representation of vehicle-manipulator systems this property is not true.

The second property that we are concerned with is to find a parameterisation of the
Coriolis matrix C so that the matrix Ṁ − 2C is skew-symmetric. Such a parameterisation
is easy to find for fixed-base robots or for single rigid bodies, but not always for vehicle-
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Ψ0

Ψb

Ψe

Figure 5.1: Model setup for a four-link robot attached to a non-inertial base with coordinate frame
Ψb. Frame Ψ0 denotes the inertial reference frame and Ψe is the end-effector frame.

manipulator systems. Particularly we find that such a parameterisation is hard to find,
especially together with the boundedness property.

We will focus on two important classes of vehicle-manipulator systems—underwater-
manipulator systems and spacecraft-manipulator systems—but the results are general and
also applicable to other vehicles. Underwater-manipulator systems are extensively treated
in Antonelli (2006), Schjølberg (1996), Schjølberg and Fossen (1994) and Fossen and
Fjellstad (1995). For the choice of state variables used in most of the literature, the bound-
edness property does not hold for the whole configuration space, i.e. there exist isolated
points where the inertia matrix becomes singular. This can, however, be dealt with by
introducing a quaternion representation (Fossen, 2002). The quaternion representation is
well suited for single rigid bodies, but for multibody systems the Euler angles are nor-
mally adopted. The problems regarding the Euler angle singularities are pointed out in
most books and papers when it comes to modelling, but is often left out when dealing with
stability proofs. As a result of this the control law is not valid at isolated points in the
configuration space.

Similarly, the skew-symmetric property of the Coriolis matrix is in general not treated
correctly and is in most cases assumed true without any further proof. In the authors’ view,
this is a strong weakness because this property depends on how we choose to represent the
Coriolis matrix. It is thus not sufficient to refer to an arbitrary proof of skew-symmetry:
one must refer to a proof for the specific parameterisation of the Coriolis matrix chosen.
Most papers on the topic refer to Antonelli (2006), Fossen and Fjellstad (1995), de Wit
et al. (1998) or Schjølberg and Fossen (1994) for this proof. However, none of these ref-
erences actually show the proof. Given the velocity state v, Schjølberg and Fossen (1994)
state that vT(Ṁ − 2C)v = 0, which is true, but a weaker result than skew-symmetry.
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This property is known as the principle of conservation of energy and is always true. This
is often used to show skew-symmetry, which is not correct. Other commonly used refer-
ences are taken from the fixed-base robotics literature, such as Murray et al. (1994) and
Sciavicco and Siciliano (2005). The proof can be found in Schjølberg (1996), but only for
systems where the boundedness property does not hold. We present this proof, and correct
some mistakes made, so that this proof is correctly presented for future reference.

Spacecraft are normally modelled using quaternions and the inertia matrix is thus
bounded for the whole configuration manifold (Wen and Kreutz-Delgado, 1991). A Lie
group formulation of the dynamics of a rigid body is studied in Bullo and Lewis (2004) and
Marsden and Ratiu (1999). For spacecraft-manipulator systems, however, a Langrangian
approach is normally adopted and, again, the dynamics are not globally valid. Such sys-
tems are discussed in Hughes (2002), Moosavian and Papadopoulos (2007), Liang et al.
(1997, 1998) and Vafa and Dubowsky (1987). As for the underwater systems, most pa-
pers concerned with modelling address the boundedness property, but it is often not noted
in the stability proofs (Antonelli, 2006). Also for the skew-symmetric property the most
commonly used references only show this property for fixed-base manipulators, such as in
Murray et al. (1994), Sciavicco and Siciliano (2005) and Craig (1987). For the formula-
tion presented in Egeland and Pettersen (1998) the dynamics possess the skew-symmetric
property and, based on the proof in Schjølberg and Fossen (1994), we show that this can
be shown also when the dynamics are written in terms of global state variables.

5.3 Properties of the dynamics

In this section we list some important properties of dynamical systems in matrix form that
play important roles in system analysis as well as controller design. Assume for now that
we can write the dynamic equations of a mechanical system in the form

M(q)q̈ + C(q, q̇)q̇ = τ (5.1)

where q is the state of the system, M(q) is the inertia matrix and C(q, q̇) is the Coriolis
and centripetal matrix. The following properties can be associated with the inertia and
Coriolis matrices (Børhaug, 2008):

Property 1. (The boundedness property) The inertia matrix M(q) is uniformly bounded
in q, i.e. there exist constants d1 and d2, such that

0 < d1 ≤ ||M(q)|| ≤ d2 < ∞, ∀ q ∈ Rn, (5.2)

where ||·|| is the induced norm for matrices, i.e. a max-bound on the maximum singular
value and a min-bound on the minimum singular value of the matrix.

Property 2. (The skew-symmetric property) The matrix (Ṁ(q) − 2C(q, q̇)) is skew-
symmetric.

Property 1 is true only when there are no singularities present in the formulation. Thus,
if the Euler angles are used to represent the attitude of the vehicle, as in Fossen (2002),
Schjølberg (1996) and Børhaug (2008), this is not satisfied. The existence of the bound-
aries d1 and d2 is the basis of gain controller design and global Lyapunov stability, and
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is used in several manipulator control laws such as robust control (Ghorbel et al., 1998;
Sciavicco and Siciliano, 2005). Given a computed estimate of the inertia matrix denoted
M̂ many controllers assume the property∣∣∣∣∣∣M(q)−1M̂(q)− I

∣∣∣∣∣∣ ≤ d < 1, ∀ q ∈ Rn (5.3)

which is automatically satisfied if the constant d is chosen as

d =
d2 − d1
d2 + d1

. (5.4)

Property 1 guarantees that the constant d is bounded and is thus important in a large class
of existing control laws. We will see one such example in Section 5.4.1.

Property 2 is true for a certain parameterisation of the Coriolis matrix. Such a rep-
resentation is well known for robotic manipulators on a fixed base (Murray et al., 1994;
Sciavicco and Siciliano, 2005) and for vehicles with no manipulator attached (Fossen,
2002). One formulation for spacecraft-manipulator systems is found in Egeland and Pet-
tersen (1998) where the boundedness and skew-symmetric properties are both true. The
formulation uses quasi-velocities and the final equations resemble Kirchhoff’s equations
(Fossen, 2002), but for multibody systems.

The formulation presented in Egeland and Pettersen (1998) is, however, independent
of the vehicle configuration of the vehicle, and there is no obvious way to include these
without introducing the singularities that arise in the transformation between the local and
global velocity variables. The configuration of the vehicle is important in order to include
terms such as gravity and buoyancy in the dynamics. Also other forces, such as ocean
currents are added to the dynamics considering the relative velocity νrel in body-fixed
frame, i.e.

νrel = ν −R0bνcurr (5.5)

where ν is the linear and angular velocity in the body frame, νcurr is the velocity of
the ocean current given in the inertial frame and R0b is the rotation matrix. Hence, this
transformation also requires the position state of the vehicle.

The formulation found in Egeland and Pettersen (1998) does not need the position
variables of the vehicle because they consider this the first link. For more general systems
the position variables may be required in the inertia matrix, and in this setting the formula-
tion in Egeland and Pettersen (1998) does not hold in terms of the boundedness property.
This includes systems with more than one transformation that cannot be represented with
generalised coordinates.

Based on these observations, we organise the paper as follows: In the next section
we start with a motivational example and show how these properties appear in control
algorithms of mechanical systems. In Section 5.5 we derive the dynamics of Lagrangian
systems in terms of generalised coordinates which include fixed-base robotic manipulators
with 1-DoF revolute or prismatic joints and we show that both Properties 1 and 2 hold. In
Section 5.6 we derive the dynamics for single rigid bodies/vehicles when the state space
cannot be written in terms of generalised coordinates and we show that Property 2 holds,
but Property 1 does not. Section 5.7.1 describes the dynamics of vehicle-manipulator sys-
tems as they normally appear in the literature and we show that the boundedness property
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does not hold. In Section 5.7.2 the dynamics of vehicle-manipulator systems are derived
based on Egeland and Pettersen (1998) and the boundedness and skew-symmetric proper-
ties are shown. We also correct some mistakes that occur in Egeland and Pettersen (1998).
In Section 5.7.3 we present the correct equations based on their approach and extend these
to the more general case when also the position variables of the vehicle are included. We
also present the explicit expressions of the matrices that do not appear in Egeland and
Pettersen (1998) as well as a detailed proof of the skew-symmetric property. In Section
5.7.3 we present for the first time a set of equations where both the boundedness and
skew-symmetric properties hold for multibody systems that cannot be written in terms of
generalised coordinates.

5.4 The Boundedness and Skew Symmetric Properties in
Control

In this section we illustrate how the boundedness property of the inertia matrix appears
in control schemes such as robust control and how the skew-symmetric property of the
Coriolis matrix appears in the stability proof of PD control laws. The next two sections
are based on the control laws presented in Sciavicco and Siciliano (2005) and Murray et al.
(1994), respectively.

5.4.1 Robust Control

Assume the dynamics of a robotic manipulator written in the form of (5.1) with the control

τ = M̂(q)y + Ĉ(q, q̇)q̇ (5.6)

where M̂ and Ĉ represent the computed estimates of the dynamic model. We choose the
control action as

y = q̈d +KD(q̇d − q̇) +KP (qd − q) (5.7)

where qd is the desired trajectory in joint space. We further chooseKD andKP as positive
definite matrices which guarantees that the error converges to zero. We see this if we
combine (5.1) and (5.6) which gives

M(q)q̈ + C(q, q̇)q̇ = M̂(q)y + Ĉ(q, q̇)q̇. (5.8)

The inertia matrix of standard industrial manipulators is invertible and we can rewrite this
as

q̈ = y + (M−1(q)M̂(q)− I)y +M−1(q)(Ĉ(q, q̇)− C(q, q̇))q̇. (5.9)

Thus, as we would like to have q̈ = y, the uncertainty is represented by

γ = (I −M−1(q)M̂(q))y −M−1(q)(Ĉ(q, q̇)− C(q, q̇))q̇. (5.10)

We can now write the error dynamics as

ë+KD ė+KP e = γ (5.11)
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where e = qd − q and the left hand side guarantees convergence to zero.
The right hand side of (5.11) represents the uncertainties of the system. We need to

find a control law that guarantees asymptotic stability given that an estimate of the range
of variation of the uncertainties is available. Based on (5.10) we can set up the following
assumptions that will guarantee asymptotic stability (Sciavicco and Siciliano, 2005)

sup
t≤0

||q̈d|| < dM < ∞ ∀q̈d, (5.12)∣∣∣∣∣∣I −M−1(q)M̂(q)
∣∣∣∣∣∣ ≤ d < 1 ∀q, (5.13)∣∣∣∣∣∣Ĉ(q, q̇)− C(q, q̇)
∣∣∣∣∣∣ ≤ dφ < ∞ ∀q, q̇. (5.14)

Assumption (5.12) is trivially satisfied as our planned trajectory should not require infinite
accelerations. Assumption (5.14) depends only on q and q̇, and is satisfied if we assume
that the joint ranges are limited and that there exist maximum saturations on the velocities
of the motors, which is the case in most mechanical systems and certainly for standard
robotic manipulators.

Of special interest in the setting of this paper is Assumption (5.13). For this to be true,
we need to guarantee that the inequality

0 < d1 ≤
∣∣∣∣M−1(q)

∣∣∣∣ ≤ d2 < ∞, ∀ q ∈ Rn. (5.15)

holds. IfM(q) is bounded with lower and upper bounds, this inequality holds and we can
always find a matrix M̂(q) that satisfies (5.13). For example, if we set

M̂ =
2

d2 + d1
I (5.16)

where I is the identity matrix we get∣∣∣∣∣∣M(q)−1M̂ − I
∣∣∣∣∣∣ ≤ d2 − d1

d2 + d1
< 1, ∀ q ∈ Rn (5.17)

and (5.13) is satisfied. Hence, the property that the inertia matrix is strictly positive definite
and bounded is used explicitly in the stability proofs.

5.4.2 PD Control Law

Stability in the sense of Lyapunov can be summarised in the following way: Let V (x, t) be
a non-negative function with derivative V̇ along the trajectories of the system. If V (x, t)
is locally positive definite and V̇ (x, t) ≤ 0 locally in x and for all t, then the origin of the
system is locally stable.

We will now see an example of how the skew-symmetric property of the Coriolis
matrix plays an important role in Lyapunov-based stability proofs. Assume the system
(5.1) and the augmented PD control law

τ = M(q)q̈d + C(q, q̇)q̇d −KD ė−KP e (5.18)
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where e = qd − q. The closed loop system is then given by

M(q)ë+ C(q, q̇)ė−KD ė−KP e = 0. (5.19)

To show stability we choose the Lyapunov function

V (e, ė, t) =
1

2
ėTM(q)ė+

1

2
eTKP e+ εeTM(q)ė (5.20)

which is positive definite for sufficiently small ε. We now evaluate V̇ along the trajectories
of (5.19):

V̇ =ėTMë+
1

2
ėTṀ ė+ ėTKP e+ εėTMė+ εeT(Më+ Ṁ ė) (5.21)

=− ėT(KD − εM)ė+
1

2
ėT(Ṁ − 2C)ė+ εeT(−KP e−KD ė− Cė+ Ṁ ė)

For standard robotic manipulators—but, as we will see, not for general mechanical systems—
we have xT(Ṁ − 2C)x = 0, ∀x and the second term vanishes. Similarly, the third term
can be written as

eT(−KP e−KD ė− Cė+ Ṁ ė) = −eTKP e− eTKD ė+ eT(Ṁ − Cė)ė

= −eTKP e− eTKD ė+ eT(
1

2
Ṁ − Cė)ė+

1

2
eTṀ ė

= −eTKP e− eTKD ė+
1

2
eTṀ ė (5.22)

and again we have used the skew-symmetric property of (Ṁ − 2C). We can now write
(5.21) as

V̇ =− ėT(KD − εM)ė+
1

2
ėT(Ṁ − 2C)ė+ εeT(−KP e−KD ė− Cė+ Ṁ ė)

=− ėT(KD − εM)ė− εeTKP e+ εeT(−KD +
1

2
Ṁ)ė (5.23)

which, for sufficiently small ε < 0 guarantees that V̇ is negative definite and that the
system is exponentially stable. The stability proof thus requires that the terms with (Ṁ −
2C) vanishes.

We note that the stability proofs of neither the robust controller nor the PD controller
are valid if Properties 1 and 2 are not true. With this as motivation we now investigate the
validity of these properties for different formulations of the dynamic equations in matrix
form for mechanical systems.

5.5 Lagrangian Dynamics on Rn

Awide range of dynamical systems can be described by the Lagrange equations (Goldstein
et al., 2001)

d

dt

(
∂L
∂q̇

(q, q̇)

)
− ∂L

∂q
(q, q̇) = τ (5.24)
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where q ∈ Rn is a vector of generalised coordinates and τ ∈ Rn is the vector of gener-
alised forces. We note that the position variables are written as q ∈ Rn and the velocity
variables are written as v = q̇ ∈ Rn. This is a convenient choice of state variables for
many systems, but as we will see later, there are also many systems for which the position
and velocity variables cannot be written in this form. The Lagrangian is given by

L(q, q̇) : Rn × Rn → R := U(q, q̇)− V(q). (5.25)

Here, U(q, q̇) is the kinetic and V(q) the potential energy functions. We assume that the
kinetic energy function is positive definite and in the form

U(q, q̇) := 1

2
q̇TM(q)q̇, (5.26)

where M(q) is inertia matrix. For a kinetic energy function written in this form we can
recast the Euler-Lagrange equations (5.25) into the equivalent form

M(q)q̈ + C(q, q̇)q̇ + n(q) = τ (5.27)

where C(q, q̇) is the Coriolis and centripetal matrix and n(q) is the vector of potential
forces defined as

n(q) :=
∂V

∂q
(q). (5.28)

We can also rewrite (5.27) in workspace coordinates x0
0e ∈ R6. The relation between

the joint and operational space velocities is then given by the Jacobian

ẋ0e = J(q)q̇, J(q) =
∂f

∂q
(5.29)

where f is the mapping f : q → x0
0e. If this mapping is smooth and invertible we can

write

q̇ = J−1(q)ẋ0e, (5.30)

q̈ = J−1(q)ẍ0e +
d

dt
(J−1(q))ẋ0e. (5.31)

We can now substitute this into (5.27) and pre-multiply by J−T which gives

J−TMJ−1ẍ0e +

(
J−TCJ−1 + J−TM

d

dt
(J−1)

)
ẋ0e + J−Tn = J−Tτ. (5.32)

This can be written as

M̄(q)ẍ0e + C̄(q, q̇)ẋ0e + n̄(q) = τ̄ (5.33)

where

M̄(q) = J−T(q)M(q)J−1(q), (5.34)

C̄(q) = J−T(q)

(
C(q, q̇)J−1(q) +M

d

dt
(J−1(q))

)
, (5.35)

n̄(q) = J−T(q)n(q), (5.36)

τ̄(q) = J−T(q)τ. (5.37)
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5.5.1 The Boundedness Property

Ghorbel et al. (1998) identify all manipulators for which Property 1, i.e. the boundedness
condition of the inertia matrix, is satisfied. They find that for a large class of manipulators,
including manipulators with only revolute or only prismatic joints, this property is always
satisfied. They do not address the mathematical representation of the inertia matrix. A bad
choice of state variables may result in an unbounded inertia matrix due to mathematical
singularities. However, as long as we can use generalised coordinates to represent the state
of the robot, as in (5.27), we can do this without the presence of singularities. In this case,
all manipulators characterised by Ghorbel et al. (1998) to satisfy Property 1 from a design
point of view, will also satisfy Property 1 from mathematical point of view, as is our main
concern.

This is also true for the formulation in (5.33). However, we note that J(q) is not always
invertible. This is not due to singularities in the mathematical representation, but due to
kinematic singularities. Kinematic singularities are configurations at which the mobility
of the manipulator is reduced, i.e. it is not possible to impose an arbitrary motion to the
end effector. This is thus a property of the manipulator design and not due to singularities
in the mathematical representation.

The Jacobian of a robotic manipulator has a very simple form: The columns repre-

senting a rotation around an axis z1 are in the form J1 =
[
(z1 × p1)

T zT1
]T
for a point

p1 on z1, and the columns representing a translation along the axis z2 are in the form

J1 =
[
zT2 0

]T
.

Example 5.1. As an example we use the geometric Jacobian of the SCARA robot (Murray
et al., 1994) which has three revolute joints and one prismatic joint, all with respect to the
same axis z. The end effector of the SCARA manipulator can thus translate freely in R3

and rotate around the z-axis. This is known as the Schoenflies motion. The Jacobian is
given by

J(q) =

[
z × p1 z × p2 z × p3 z

z z z 0

]
(5.38)

=

⎡⎢⎢⎢⎢⎢⎢⎣
0 l1 cos q1 l1 cos q1 + l2 cos (q1 + q2) 0
0 l1 sin q1 l1 sin q1 + l2 sin (q1 + q2) 0
0 0 0 1
0 0 0 0
0 0 0 0
1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ (5.39)

where l1 is the length of link 1, l2 is the length of link 2 and z =
[
0 0 1

]T
. The

determinant of the 4× 4-matrix of (5.39) representing the 4-DoF motion (cancelling rows
4 and 5) is given by

det (J(q)) = l1l2(cos q1 sin (q1 + q2) + sin q1 cos (q1 + q2)). (5.40)

We note that the determinant is zero only if q2 = {0, π/2}. This is the case when the
arm is stretched out (q2 = 0) and the manipulator loses mobility. This kinematic sin-
gularity is thus due to the geometry of the manipulator and not due to the mathematical
representation.
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We see from (5.38) that manipulators with only revolute and prismatic joints will not
have mathematical singularities. We can assume that the configurations that lead to kine-
matic singularities are avoided and thus that J(q) is invertible for standard industrial ma-
nipulators. Since J(q) is invertible Property 1 holds also when the dynamics are written
in the form of (5.33).

5.5.2 The Skew-Symmetric Property

For robotic manipulators represented in generalised coordinates, the Coriolis matrix is
normally obtained by the Christoffel symbols of the first kind as (Murray et al., 1994)

C(q, q̇) := {cij} =

{
n∑

k=1

cijk q̇k

}
, (5.41)

cijk :=
1

2

(
∂mij

∂qk
+

∂mik

∂qj
− ∂mkj

∂qi

)
(5.42)

where M(q) = {mij}. Given this representation it is straight forward to show that the
matrix (Ṁ −2C) is skew-symmetric (Murray et al., 1994; Sciavicco and Siciliano, 2005).
We see this if we write out the components of (Ṁ − 2C):

(Ṁ − 2C)ij = ṁij − 2cij

=

n∑
k=1

(
∂mij

∂qk
q̇k − ∂mij

∂qk
q̇k − ∂mik

∂qj
q̇k +

∂mkj

∂qi
q̇k

)

=

n∑
k=1

(
∂mkj

∂qi
q̇k − ∂mik

∂qj
q̇k

)
. (5.43)

We see that (Ṁ − 2C)T = −(Ṁ − 2C) and Property 2 is satisfied.
We note that to obtain the Coriolis matrix we multiply the position variables and the

velocity variables. For example, we multiply ∂mij(q)
∂qk

with q̇k and get

{cij} =
1

2

{
n∑

k=1

(
∂mij

∂qk
+

∂mik

∂qj
− ∂mkj

∂qi

)
q̇k

}
, (5.44)

which only makes sense if the derivative of the position variable equals the velocity vari-
able. This is the case for robot manipulators with revolute or prismatic joints, but not
for vehicles with configuration space SO(3) or SE(3). We will say that a configuration
space is non-Euclidean when the velocity variable cannot be written simply as the time-
derivative of the position variable. The Christoffel symbols can thus not be used to derive
the Coriolis matrix for vehicle-manipulator systems where the vehicle has a non-Euclidean
configuration space.
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For the formulation in (5.33) we compute

˙̄M − 2C̄ =J−TṀJ−1 − 2J−TM
d

dt
J−1 − 2J−TCJ−1 + 2J−TM

d

dt
(J−1) (5.45)

=J−T(Ṁ − 2C)J−1 − 2J−TM
d

dt
J−1 + 2J−TM

d

dt
(J−1) (5.46)

=J−T(Ṁ − 2C)J−1 (5.47)

which, given that (Ṁ − 2C) is skew-symmetric, is skew-symmetric.

5.6 Vehicle Dynamics

The dynamics of a single rigid body, such as an underwater vehicle, are usually given by
(Fossen, 2002)

η̇ = J(η)ν, (5.48)

Mν̇ + C(ν)ν +D(ν)ν + n(η) = τ (5.49)

where η =
[
x y z φ θ ψ

]T
is the position and orientation of the vehicle in the

reference frame and ν =
[
u v w p q r

]T
is the linear and angular velocities in

the body frame. D(ν) is the friction and damping matrix present for underwater vehicles
and n(η) represents the gravitational and buoyancy forces.

The kinematics of the system (5.48) is given by the velocity transformation matrix
J(η) which gives the relation between the local and global velocity variables. J(η) is
defined as

J(η) =

[
Rb0(Θ) 0

0 TΘ(Θ)

]
(5.50)

where Rb0(Θ) is the rotation matrix and depends only on the orientation of the vessel

represented by the Euler angles Θ =
[
φ θ ψ

]T
, given in the reference frame. TΘ(Θ)

is given by (zyx-sequence)

TΘ(Θ) =

⎡⎣1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

⎤⎦ . (5.51)

We note that TΘ(Θ), and thus also J(η), is not defined for θ = ±π/2.

Similarly to robotic manipulators we can rewrite the dynamics using general coordi-
nates η, eliminating the body frame coordinates ν from the equations. The dynamics are
then written as

M̃(η)η̈ + C̃(η, η̇)η̇ + D̃(η, η̇)η̇ + ñ(η) = τ̃ (5.52)
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where

M̃(η) = J−T(η)MJ−1(η) (5.53)

ñ(η) = J−T(η)n(η) (5.54)

τ̃ = J−T(η)τ (5.55)

D̃(η, η̇) = J−T(η)D(J−1(η)η̇)J−1(η) (5.56)

C̃(η, η̇) = J−T(η)
[
C(J−1(η)η)−MJ−1(η)J̇(η)

]
J−1(η) (5.57)

5.6.1 The Boundedness Property

First note that for the system (5.48-5.49) the inertia matrix is always bounded as it is
independent of the position variables. In this sense it is advantageous to formulate the
dynamics in the body frame. Consider the system (5.52-5.57) and recall that J(η) is
not defined for θ = ±π/2. This is the well known Euler angle singularity for the zyx-
sequence. The inverse mappings T−1

Θ (Θ) and J−1(η) are defined for all θ ∈ R but singular
for θ = ±π/2. The boundedness of the inertia matrix in Property 1 is thus not true. We
can only obtain a weaker result than the one found in Property 1:

Property 3. (The weak boundedness property) The inertia matrix M̃(η) is uniformly
bounded in η for θ separated from ±π/2, i.e. there exists constants d1 and d2 such that

0 < d1 ≤
∣∣∣∣∣∣M̃(η)

∣∣∣∣∣∣ ≤ d2 < ∞, ∀ η ∈ R6\{
∣∣∣|θ| − π

2

∣∣∣ ≥ δ} (5.58)

for some small positive delta. We note that the lower bound d1 > 0 only exists if |θ| is
separated from π/2 by some constant δ.

When θ = π/2 we have d1 = 0 and (5.3) does not hold as d = 1.
This singularity can be avoided by using the unit quaternion representation, which

does not have a singularity at the cost of introducing a fourth parameter to describe the
orientation. However, in computing the Euler angles from the quaternions the Euler angle
singularity reappears.

5.6.2 The Skew-Symmetric Property

There are many ways to choose the Coriolis matrix so that Ṁ − 2C is skew-symmetric.
We first note that ifM is constant, and thus Ṁ = 0, this is true if C is skew-symmetric.
The Coriolis matrix can for example be written as

C(ν) =

[
0 M̂11ν1 + M̂12ν2

M̂11ν1 + M̂12ν2 M̂21ν1 + M̂22ν2

]
(5.59)

where ν =
[
νT1 νT2

]T
and λ̂ is the skew-symmetric matrix representation of λ ∈ R3

given by

λ̂ =

⎡⎣ 0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0

⎤⎦ ∈ so(3). (5.60)
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Alternatively, from Kirchhoff’s equations we get

C(ν) = −
[

0 ∂̂U
∂ν1

∂̂U
∂ν1

∂̂U
∂ν2

]
(5.61)

where U(η) is given as in (5.26). The proof is found in Sagatun and Fossen (1992). Both
these representations satisfy Property 2. Several other representations for which the Cori-
olis matrix is skew-symmetric are found in Fossen and Fjellstad (1995).

If the inertia matrix is not constant and the dynamics are in the form of (5.52), we can
also show this property. The time derivative of the inertia matrix can be written as (Fossen,
1991)

˙̃M = J−T(Ṁ − 2MJ−1J̇)J−1 (5.62)

and we get

( ˙̃M − 2C̃) =J−TṀJ−1 − 2J−TMJ−1J̇J−1 − 2J−TCJ−1 + 2J−TMJ−1J̇J−1

=J−T(Ṁ − 2C)J−1 (5.63)

and thus, as (Ṁ − 2C) is skew-symmetric, so is ( ˙̃M − 2C̃) and ( ˙̄M − 2C̄).

5.7 Multibody Dynamics with a Free-Floating Base

In this section we review some commonly used approaches for modelling multibody sys-
tems and propose a new approach that has certain advantages when it comes to the bound-
edness and skew-symmetric properties addressed in this paper. Consider the setup of
Fig. 5.1 describing a general n-link robot manipulator arm attached to a free-moving base.
Choose an inertial coordinate frame Ψ0, a frame Ψb rigidly attached to the moving base,
and n framesΨi (not shown) attached to each link i at the centre of mass with axes aligned
with the principal directions of inertia. Finally, choose a vector q ∈ Rn that describes the
configuration of the n joints.

5.7.1 The Model of Schjølberg (1996)

In this section we present the dynamic equations as they are normally presented in the un-
derwater robotics literature. The details can be found in Schjølberg (1996). The dynamics
can be written as

ξ̇ = J(ξ)ζ, (5.64)

M(q)ζ̇ + C(q, ζ)ζ +D(q, ζ)ζ + n(ξ) = τ (5.65)

where ξ =
[
ηT qT

]T
, ζ =

[
νT q̇T

]T
, M(q) ∈ R(6+n)×(6+n) is the inertia matrix,

C(q, ζ) ∈ R(6+n)×(6+n) is the Coriolis and centripetal matrix andD(ξ, ζ) ∈ R(6+n)×(6+n)

is the damping matrix. The velocity transformation matrix is given by

J(ξ) =

⎡⎣R0b(Θ) 0 0
0 TΘ(Θ) 0
0 0 I

⎤⎦ ∈ R(6+n)×(6+n). (5.66)
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where I (no subscript) denotes the identity matrix. Similarly to the dynamics of the ve-
hicle with no robotic arm, the vehicle-manipulator equations can be written in the form
of Equations (5.53-5.57) but with the velocity transformation matrix as in (5.66). Let ν00i
denote the linear and angular velocity of body i represented in the inertial frame, and
Pi(q) ∈ R6×(6+n) be the transformation matrix of link i, that gives the relation

ν00i = Pi(q)ζ. (5.67)

The inertia matrix of the vehicle-manipulator system can then be written as (Egeland and
Pettersen, 1998)

M(q) =
n∑

i=b

PT

i (q)IiPi(q) (5.68)

where Ii ∈ R6×6 denotes the constant positive-definite diagonal inertia tensor of link i
expressed in Ψi and we thus sum from the base b to the end of the chain, i.e., link n. We
note that the inertia matrix is independent of the position η of the vehicle.

The Coriolis matrix is given by

C(q, ζ) =

n∑
i=b

ṖT

i (q)IiPi(q)− PT

i (q)Wi(ζ)Pi(q) (5.69)

whereWi(ζ) is a skew-symmetric matrix (Schjølberg, 1996). We will use the framework
of Egeland and Pettersen (1998) to find an expression forWi(ζ). This is shown in Section
5.7.2.

Alternatively we can write the dynamics in terms of the vector ς =
[
ηT (x0

0e)
T
]T ∈

R12 where x0
0e is the manipulator position/orientation vector in the inertial frame. We

present the equations as first presented in Schjølberg (1996), but correct an error in the
expression of the Coriolis matrix. The dynamics can be written as

M̄(η, q)ς̈ + C̄(η, q, ζ)ς̇ + D̄(η, q, ζ)ς̇ + n̄(η, q) = τ̄ (5.70)

with the matrices as in (5.53-5.57), but with

J̄(η) =

[
J(η) 0

R̄b0(Θ)J̄1(η) R̄b0(Θ)J̄2(q)

]
∈ R12×(6+n) (5.71)

where J(η) is given by (5.50) and J̄1 and J̄2 satisfy

ẋb
be = J̄1(η)ν + J̄2(q)q̇ (5.72)

where xb
be is the end-effector position/orientation in the base frame and

R̄b0(Θ) =

[
Rb0 0
0 Rb0

]
. (5.73)

This formulation is convenient because it allows us to write the dynamics in terms of the
end-effector position and orientation directly.
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5.7.2 Multibody Dynamics in Terms of Quasi-Velocities

In this section we derive the dynamics of a robotic manipulator mounted on a free-floating
base in terms of quasi-velocities. The approach is based on Egeland and Pettersen (1998),
but a few errors from this paper have been corrected and we also provide some more details
in the derivation.

First, write the linear and angular velocities ν00i of each link i represented in the inertial
frame (frame 0) as

ν00i =

[
ν00i,v
ν00i,ω

]
=

∂ν00i
∂ζ

ζ. (5.74)

Then the dynamics can be written as (Egeland and Pettersen, 1998)

6∑
i=b

{
∂ν00i
∂ζ

T
[
d

dt

∂Ui

∂ν00i

T

+

[
ν̂00i,ω 0
ν̂00i,v ν̂00i,ω

]
∂Ui

∂ν00i

T
]}

= τ (5.75)

where

τ =

6∑
i=b

{
∂ν00i
∂ζ

T
}
. (5.76)

We now derive the dynamics in matrix form following the approach in Egeland and
Pettersen (1998), but in addition we show the explicit expressions for the matrices which
were not shown in Egeland and Pettersen (1998) and we correct an error is the expression
of the Coriolis matrix. First write

d

dt

∂Ui

∂ν00i
=

d

dt
(Iiν

0
0i) = Iiν̇

0
0i = Ii

(
∂ν00i
∂ζ

ζ̇ +
˙∂ν00i
∂ζ

ζ

)
, (5.77)

and

[
ν̂00i,ω 0
ν̂00i,v ν̂00i,ω

] [
∂Ui

∂ν0
0i,v

∂Ui

∂ν0
0i,ω

]
=

[
ν̂00i,ω

∂Ui

∂ν0
0i,v

0

ν̂00i,v
∂Ui

∂ν0
0i,v

ν̂00i,ω
∂Ui

∂ν0
0i,ω

]

=

[
− ∂Ui

∂ν0
0i,v

× ν00i,ω 0

− ∂Ui

∂ν0
0i,v

× ν00i,v − ∂Ui

∂ν0
0i,ω

× ν00i,ω

]

= −

⎡⎣ 0 ∂̂Ui

∂ν0
0i,v

∂̂Ui

∂ν0
0i,v

∂̂Ui

∂ν0
0i,ω

⎤⎦[
ν00i,v
ν00i,ω

]
. (5.78)
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Substituting (5.77) and (5.78) into (5.75) we get

6∑
i=b

{
∂ν00i
∂ζ

T
[
d

dt

∂Ui

∂ν00i

T

+

[
ν̂00i,ω 0
ν̂00i,v ν̂00i,ω

]
∂Ui

∂ν00i

T
]}

= τ

6∑
i=b

⎧⎨⎩∂ν00i
∂ζ

T

⎡⎣Ii (∂ν00i
∂ζ

ζ̇ +
˙∂ν00i
∂ζ

ζ

)
−

⎡⎣ 0 ∂̂Ui

∂ν0
0i,v

∂̂Ui

∂ν0
0i,v

∂̂Ui

∂ν0
0i,ω

⎤⎦[
ν00i,v
ν00i,ω

]⎤⎦⎫⎬⎭ = τ

6∑
i=b

⎧⎨⎩∂ν00i
∂ζ

T

Ii
∂ν00i
∂ζ

ζ̇ +
∂ν00i
∂ζ

T

Ii
˙∂ν00i
∂ζ

ζ − ∂ν00i
∂ζ

T

⎡⎣ 0 ∂̂Ui

∂ν0
0i,v

∂̂Ui

∂ν0
0i,v

∂̂Ui

∂ν0
0i,ω

⎤⎦[
ν00i,v
ν00i,ω

]⎫⎬⎭ = τ

6∑
i=b

[
∂ν00i
∂ζ

T

Ii
∂ν00i
∂ζ

]
ζ̇ +

6∑
i=b

⎡⎣∂ν00i
∂ζ

T

Ii
˙∂ν00i
∂ζ

− ∂ν00i
∂ζ

T

⎡⎣ 0 ∂̂Ui

∂ν0
0i,v

∂̂Ui

∂ν0
0i,v

∂̂Ui

∂ν0
0i,ω

⎤⎦ ∂ν00i
∂ζ

⎤⎦ ζ = τ

(5.79)

where we have used the relation in (5.74). The inertia and Coriolis matrices are then found
from (5.79) as

M(q) =

n∑
i=b

PT

i (q)IiPi(q) (5.80)

where

Pi(q) =
∂ν00i
∂ζ

(5.81)

and

C(q, ζ) =
n∑

i=b

(
PT

i (q)IiṖi(q)− PT

i (q)WiPi(q)
)

(5.82)

where

Wi(ν
0
0i) =

⎡⎣ 0 ∂̂Ui

∂ν0
0i,v

∂̂Ui

∂ν0
0i,v

∂̂Ui

∂ν0
0i,ω

⎤⎦ . (5.83)

5.7.3 General Multibody Dynamics

In this section we extend the formulation in the previous section to include more general
structures and also mechanisms where the position of the vehicle needs to be included
in the dynamics. The approach is based on Duindam and Stramigioli (2008) and From
et al. (2009a) where the dynamics of vehicle-manipulator systems are derived and the
boundedness property holds. However, for the Coriolis matrix presented in From et al.
(2009a) the skew-symmetric property does not hold. In this section we thus present a
new formulation of the dynamic equations for vehicle-manipulator systems where both
the boundedness and the skew-symmetric properties hold and which allows us to include
the vehicle configuration in the representation.
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Using standard notation (Murray et al., 1994), we can describe the pose of each frame
Ψi relative to Ψ0 as a homogeneous transformation matrix g0i ∈ SE(3) of the form

g0i =

[
R0i p0i
0 1

]
∈ R4×4 (5.84)

with rotation matrix R0i ∈ SO(3) and translation vector p0i ∈ R3. This pose can also be
described using the vector of joint coordinates q as

g0i = g0bgbi = g0bgbi(q). (5.85)

The base pose g0b and the joint positions q thus fully determine the configuration state of
the robot. In a similar way, the spatial velocity of each link can be expressed using twists
(Murray et al., 1994):

ν00i =

[
ν00i,v
ν00i,ω

]
= ν00b + ν0bi = Adg0b

(
νb0b + Ji(q)q̇

)
(5.86)

where ν00i,v and ν
0
0i,ω are the linear and angular velocities, respectively, of link i relative to

the inertial frame, Ji(q) ∈ R6×n is the geometric Jacobian of link i relative to Ψb and the
adjoint is defined as Adg :=

[
R p̂R
0 R

]
∈ R6×6. The velocity state is thus fully determined

given the twist νb0b of the base and the joint velocities q̇.
This illustrates how the kinematics of the system can be naturally described in terms of

the (global) state variablesQ = {g0b, q} and v = {νb0b, q̇}. We will use these observations
to reformulate the relation given in (5.74). We will also rewrite the inertia matrix, as given
in (5.26) and (5.80), in terms of the globally defined state variables.

Given a mechanism with coordinates formulated in this generalised form, we can write
its kinetic energy as U(Q, v) = 1

2v
TM(Q)v withM(Q) the inertia matrix in coordinates

Q. The dynamics of this system then satisfy

M(Q)v̇ + C(Q, v)v = τ (5.87)

with τ the vector of gravitational forces, friction, and other external forces (collocated with
v).

From expression (5.86) for the twist of each link in the mechanism, we can derive an
expression for the total kinetic energy. The kinetic energy Ui of link i then follows as

Ui =
1

2

(
ν00i

)T
Iiν

0
0i

=
1

2

(
νb0b + Ji(q)q̇

)T
AdTgib Ii Adgib

(
νb0b + Ji(q)q̇

)
=

1

2

[(
νb0b

)T
q̇T

]
Mi(q)

[
νb0b
q̇

]
=

1

2
vTMi(q)v (5.88)

with

Mi(q) :=

[
AdTgib Ii Adgib AdTgib Ii Adgib Ji

JT

i AdTgib Ii Adgib JT

i AdTgib Ii Adgib Ji

]
(5.89)
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where Ji(q) is the geometric Jacobian of link i. The total kinetic energy of the mechanism
is given by the sum of the kinetic energies of the mechanism links and the non-inertial
base, that is,

U(q, v) = 1

2
vT

([
Ib 0
0 0

]
+

n∑
i=1

Mi(q)

)
︸ ︷︷ ︸

inertia matrixM(q)

v (5.90)

with M(q) the inertia matrix of the total system. Note that neither U(q, v) nor M(q)
depend on the pose g0b and hence the choice of inertial reference frame Ψ0.

We see that from (5.89) we can reformulate the expression in Egeland and Pettersen
(1998) for the inertia matrix and we get

M(q) =
n∑

i=b

PT

i (q)IiPi(q) (5.91)

where
Pi(q) =

[
Adgib AdgibJi

]
∈ R6×(6+n) (5.92)

and the Jacobian Ji of link i is given by

Ji(q) =
[
X1 Adgb1X2 Adgb2X3 · · · Adgb(i−1)

Xi 0(n−i)×6

]
. (5.93)

The partial derivatives of the adjoint map is found by (From et al., 2009a)

∂Adgij
∂qk

=

⎧⎨⎩
Adgi(k−1)

adXk
Adg(k−1)j

for i < k ≤ j
−Adgi(k−1)

adXk
Adg(k−1)j

for j < k ≤ i
0 otherwise

which also gives us the partial derivative of the Jacobian as

∂Ji
∂qk

=
[
0k×6

∂ Adgbk

∂qk
Xk+1 · · · ∂ Adgb(i−1)

∂qk
Xi 0(n−i)×6

]
(5.94)

Similarly the Coriolis matrix can be found by

C(q, ζ) =

n∑
i=b

(
PT

i (q)IiṖi(q)− PT

i (q)WiPi(q)
)

(5.95)

whereWi is given by (5.83) and Pi by (5.92). C(q, ζ) is thus also well-defined.
We see that this approach allows us to include forces such as gravity and buoyancy

forces. Let the wrench associated with the gravitational force of link i with respect to
coordinate frame Ψi be given by

F i
g =

[
fg
r̂0gfg

]
= −m0ig

[
R0iez
r̂0gR0iez

]
(5.96)
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where ez =
[
0 0 1

]T
and r0g is the center of mass of link i expressed in frame Ψi. In

our case Ψi is chosen so that r0g coincides with the origin of Ψi so we have r0g = 0. The
equivalent joint torque associated with link i is given by

τ0g = Ji(q)Ad
T

g0i
(Q)F i

g(Q) (5.97)

where Ji is the geometric Jacobian and Adg0i = Adg0b Adgbi is the transformation from
the inertial frame to frame i. We note that both R0i and Adg0i depend on the base config-
uration with respect to the inertial frame. The total effect of the gravity from all the links
is then given by n(Q) =

∑n
i=1 τ

0
g which enters Equation (5.87) in the same way as the

control torque.
We note that to obtain the complete representation of the dynamics we need to make

sure we do not leave the manifold when we perform the integration. This can be done either
by projecting g0b onto the allowed configuration space SE(3) (McLachlan and Quispel,
2006) or by using structure-preserving integration methods (Munthe-Kaas, 1998).

5.7.4 Multibody Dynamics in Terms of Quasi-Coordinates
We can also follow the generalised Lagrangian method introduced by Duindam and Strami-
gioli (2008, 2007) and From et al. (2009a). This method gives the dynamic equations for a
general mechanism described by a set Q = {Qi} of configuration states Qi (not necessar-
ily Euclidean), a vector v of velocity states vi ∈ Rni , and several mappings that describe
the local Euclidean structure of the configuration states and their relation to the velocity
states. More precisely, the neighbourhood of every state Q̄i is locally described by a set
of Euclidean coordinates φi ∈ Rni as Qi = Qi(Q̄i, φi) with Qi(Q̄i, 0) = Q̄i, and there
exist differentiable matrices Si such that we can write vi = Si(Qi, φi)φ̇i for every Qi.

The inertia matrix M(q) is then given by (5.90) and the Coriolis matrix C(Q, v) is
given by

C̄ij(Q, v) :=
∑
k,l

(
∂Mij

∂φk

S−1
kl − 1

2
S−1
ki

∂Mjl

∂φk

)∣∣∣∣
φ=0

vl

+
∑

k,l,m,s

(
S−1
mi

(
∂Smj

∂φs

− ∂Sms

∂φj

)
S−1
sk Mkl

)∣∣∣∣∣∣
φ=0

vl

(5.98)

More details and proofs can be found in Duindam and Stramigioli (2008, 2007).

5.7.5 The Boundedness Property
The dynamics as presented in Schjølberg (1996) and Section 5.7.1 do not satisfy Property
1. Due to the singularity there exist isolated points in the configuration space where the
inertia matrix is singular. Even though this is the most common formulation of vehicle-
manipulator systems in the literature this fact is normally not addressed in Lyapunov stabil-
ity proofs. The formulation in Egeland and Pettersen (1998) and Section 5.7.2 is globally
valid and the inertia matrix is bounded the whole configuration space. For systems where
the configuration of non-Euclidean joints needs to be included in the dynamics, there does
not seem to be a straight forward way to include the transformation between the local and
global state variables without introducing singularities to the formulation.
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This is, however, possible with the formulation presented in Sections 5.7.3 and 5.7.4
where the inertia matrix is bounded for the whole configuration space also for non-Eucliden
joints with a Lie group topology, such as SO(3) and SE(3). These formulations allow us
to use the matrix representation g0i ∈ SE(3) of the configuration space and the structure
of the configuration manifold is thus maintained.

5.7.6 The Skew-Symmetric Property
Schjølberg (1996) show that for the formulation presented in Section 5.7.1 the skew-
symmetric property holds in body-fixed coordinates. Based on this proof we can show that
this property also holds for the approaches presented in Sections 5.7.2 and 5.7.3. First, for
the Coriolis matrix given in (5.69) and (5.82) we can write

(Ṁ − 2C) =
d

dt

(
n∑

i=b

PT

i (q)IiPi(q)

)
− 2

n∑
i=b

(
PT

i (q)IiṖi(q)− PT

i (q)WiPi(q)
)

=

n∑
i=b

(
ṖT

i (q)IiPi(q) + PT

i (q)IiṖi(q)− 2PT

i (q)IiṖi(q) + 2PT

i (q)WiPi(q)
)

=2

n∑
i=b

PT

i (q)WiPi(q) (5.99)

and (Ṁ − 2C) is skew-symmetric, for skew-symmetricWi. Thus, the formulations given
in Sections 5.7.1, 5.7.2 and 5.7.3 all satisfy the skew-symmetric property. This is not true,
however, for the parameterisation in 5.7.4.

As we have seen, this property is also true if the system is written in terms of global
state variables, as in (5.52) and (5.70), i.e. as long as (Ṁ − 2C) is skew-symmetric, so is

( ˙̃M − 2C̃) and ( ˙̄M − 2C̄).

5.8 Conclusions
The boundedness property of the inertia matrix and the skew-symmetric property of the
Coriolis matrix both depend on the choice of mathematical representation. The proofs of
such properties thus need to be based on the particular representation chosen. In other
words, a reference to a proof for a different choice of state variables or a different param-
eterisation of the matrices is not valid. In this paper we have shown that several widely
used formulations of vehicle-manipulator dynamics do not possess these properties. We
have also shown that some of the most commonly used references used in for example in
stability proofs of Lyapunov-based control laws in fact do not show these properties. As a
result, many of the control laws presented in the literature are not valid.

For several formulations of vehicle-manipulator dynamics commonly found in the lit-
erature we have have studied whether the boundedness and skew-symmetric properties
hold. When we find the dynamic equations to satisfy these properties we have also in-
cluded the proofs for future reference. These proofs have not previously been presented
correctly for vehicle-manipulator systems. Finally we propose a modified version of the
dynamic equations that satisfy both properties for general multibody systems.
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Chapter 6

A Singularity Free Formulation
of the Dynamically Equivalent
Manipulator Mapping for
Free-Floating and Free-Flying
Space Manipulators

6.1 Abstract

In this paper we derive, for the first time, the singularity-free dynamic equations
of the dynamically equivalent manipulator (DEM) of spacecraft-manipulator sys-
tems. The DEM is a fixed-base manipulator with the same dynamic properties as
the corresponding spacecraft-manipulator system. The DEM consists of a spherical
joint, representing the spacecraft, and a robotic arm with the same joint types as the
space manipulator. A spherical joint is normally modeled using Euler angles, which
leads to singularities, or Euler parameters, which is not a minimal representation
and thus not suited for Lagrange’s equations. We circumvent these issues by intro-
ducing quasi-coordinates which allows us to derive the dynamics using minimal and
globally valid non-Euclidean configuration coordinates. This is a great advantage as
the configuration space of a spherical joint is non-Euclidean. We thus obtain a com-
putationally efficient and singularity-free formulation of the DEM dynamics with the
same complexity as the conventional Lagrangian approach. The closed form formu-
lation makes the proposed approach well suited for system analysis and model-based
control. The inertia and Coriolis matrices are presented in such a way that this can
be implemented for simulation and control purposes without extensive knowledge of
the mathematical background.
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Chapter 7

A Geometric Approach to
Handling Torque Failure in
Serial and Closed Chain
Manipulators with Passive Joints

7.1 Abstract

The increasing use of robotic manipulators in remote and sensitive areas calls for
more robust solutions when handling joint failure, and the industry demands mathe-
matically robust approaches to handle even the worst case scenarios. For both serial
and parallel manipulators, torque failure is indeed a worst case scenario as the ma-
nipulator can collapse due to external forces, such as gravity. It is a very hard task,
and in some cases impossible, to prevent damage when this occurs. When possible,
however, these aspects should be a concern both in the design of the manipulators
and in the control of the manipulator after such an occurrence. Thus, a systematic
analysis of the effects of external forces on manipulators with passive joints is pre-
sented.
For serial manipulators we investigate under what conditions the robot is con-

ditionally equilibrated, that is, equilibrated with respect to a specific external force.
These conditions are, as expected, very restrictive, but for many manipulators we can
find certain configurations for which the manipulator does not collapse when the ex-
ternal force is known. The serial, or subchain, case also serves as a good platform for
understanding and analysing parallel manipulators. In parallel manipulators pas-
sive joints can appear as a design choice or as a result of torque failure. In both
cases a good understanding of the effects that passive joints have on the mobility and
motion of the parallel manipulator is crucial. We first look at the effect that passive
joints have on the mobility of the mechanism. Then, if the mobility, considering pas-
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Chapter 8

Representing Attitudes as Sets of
Frames

8.1 Abstract

A general framework for representing continuous sets of frames with the unit quater-
nion representation is presented. The determination and control of the attitude of a
rigid body is important in a wide range of applications and has been given much
attention in the control community. Not always, however, must the desired attitude
be restricted to one given orientation, but can be given as a discrete or continuous
set of orientations subject to some restriction. An attitude can be represented by the
four-parameter unit quaternion without the presence of singularities. It is shown how
continuous sets of frames can be described by the unit quaternion representation. It
is also shown how this set can be reorientated into an arbitrary coordinate system
by the quaternion product. Some work is done on finding the attitude that is closest
to the desired orientation when the desired orientation is out of reach due to some
restriction on the allowed orientations or rotations.

8.2 Introduction

The attitude control problem of a rigid body is given much attention in the control com-
munity, and its applications range from attitude control of aircraft, spacecraft and satellites
(Dwyer, 1984; Kristiansen et al., 2005) to rigid bodies held by robotic manipulators (Yuan,
1988; Xian et al., 2004). A thorough discussion on the attitude control problem is given in
Wen and Kreutz-Delgado (1991), where global stability is shown for a variety of control
laws using the unit quaternion representation in a Lyapunov function.

The unit quaternion group allows orientation and rotation to be represented globally
without singularities. One problem of the unit quaternion group is that it is not as easy
to visualise as the Euler angles. Many methods have been developed to help visualising
quaternions and the relationship between quaternions and three-dimensional rotations. A
good introduction on how to visualise quaternions can be found in Hanson (2006) and
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REPRESENTING ATTITUDES AS SETS OF FRAMES

Kuipers (2002). Hanson (2006) also gives a thorough presentation of quaternion curves,
surfaces and volumes. Of special interest is the work presented on quaternion volumes,
where it is shown that a continuous set of frames can be represented by a quaternion and
a set of intuitive restrictions in Euler angle representation. The theory of quaternion vol-
umes closely relates to orientation maps. Several techniques that can be used to visualise
orientations are discussed in Alpern et al. (1993).

In this paper, the work on quaternion volumes is taken one step further, and a schematic
approach on how to represent sets of frames is presented. It is shown how this set can be
visualised by a set of points in the unit sphere, and how this set relate to the corresponding
quaternion volume. It is also shown how this set can be reorientated so that it is defined
with respect to some other reference frame. A test to verify if a quaternion satisfies the
restrictions given by the quaternion volume is also presented.

This paper also addresses the problem of how the unit quaternion group can be utilised
to find the attitude that is closest to some given orientation when rotations about one axis
only are allowed. This work is similar to the results found in Yuan (1988); Wen and
Kreutz-Delgado (1991); Hanson (2006) in how the orientation error is presented, but goes
one step further in also finding the closest orientation.

8.3 Representing Rotations

Most of the fundamental principles of rotation were presented in two papers by Leonhard
Euler in 1775 (Alpern et al., 1993). The first paper shows that any rotation can be accom-
plished by a sequence of three rotations about the coordinate axes. In the second paper,
Euler states that any orientation can be represented by a rotation of some angle φ about
some fixed axis n. He also shows that the composition of two rotations is itself a rotation.

8.3.1 The Unit Quaternion

The unit quaternion representation closely relates to the results presented in Euler’s sec-
ond paper. A good introduction to quaternions is found in Kuipers (2002). Any positive
rotation φ about a fixed unit vector n can be represented by the four-tuple

Q =

[
q0
q

]
, (8.1)

where q0 ∈ R is known as the scalar part and q ∈ R3 as the vector part. Q(φ,n) is written
in terms of φ and n by

q0 = cos (
φ

2
), q = sin (

φ

2
)n. (8.2)

Q is a quaternion of unit length and denoted a unit quaternion. Henceforth, all quaternions
have unit length if not other is stated. The quaternion product of a rotation Q followed by
a rotation P is written in vector algebra notations as

P ∗Q =

[
p0q0 − p · q

p0q + q0p+ p× q

]
. (8.3)
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8.3. REPRESENTING ROTATIONS

The cross product implies that quaternion multiplication is not commutative, as expected.

Let P =
[
p0 p1 p2 p3

]T
and Q =

[
q0 q1 q2 q3

]T
. Then the quaternion product

is written as

QP ∗Q =

⎡⎢⎢⎣
p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 + p2q0 + p3q1 − p1q3
p0q3 + p3q0 + p1q2 − p2q1

⎤⎥⎥⎦ . (8.4)

The quaternion product of two unit quaternions is a unit quaternion. By the definition
of the quaternion the quaternionsQ and −Q produce the same rotation. This is referred to

as the dual covering. The quaternion identity is given by QI =
[
1 0 0 0

]T
.

A pure quaternion is a quaternion with zero scalar part. Any vector, v̄ =
[
x y z

]T
can be represented by a pure quaternion

v =

[
0
v̄

]
. (8.5)

The conjugate of a quaternion is defined as Q∗ =
[
q0 −q1 −q2 −q3

]T
.

8.3.2 Quaternions and Rotations

Let a vector, v̄1, be represented by the pure quaternion v1. This vector can be rotated φ
radians around the axis n by

v2 = Q ∗ v1 ∗Q∗. (8.6)

Every vector v̄ ∈ R3 can be represented by a pure quaternion, hence v is not necessarily
a unit quaternion. The quaternion, Q(φ,n), however, is unitary. This represents the angle
and the axis that the vector v̄1 is to be rotated about. The resulting vector, v̄2, is then of the
same length as v̄1 if and only ifQ is a unit quaternion. The quaternion representation also
leads to a useful formula for finding the shortest rotation from one orientation to another.
Let P and Q be two orientations. Then, by taking

E = P ∗ ∗Q, (8.7)

E will rotate P into Q by the shortest rotation.
Note that equation (8.7) rotates one frame into another frame. By a frame it is meant

a coordinate system in R3 using Cartesian coordinates. One frame with respect to another
frame represents three degrees of freedom and is referred to as an attitude orientation.
Equation (8.6) rotates one vector into another vector and has two degrees of freedom (e.g.
longitude and latitude) (Ahuactzin and Gupka, 1999). A unit vector with respect to a
unit reference vector is referred to as an attitude direction. Henceforth, when referred to
direction, this is the direction of the z-axis of the body frame with respect to the z-axis of
the reference frame.
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8.4 Quaternion Volumes

8.4.1 General Definition

A set of frames that correspond to a reference frame by a rotation about a fixed axis, n,
can be represented by a quaternion and some restriction1

Q(φ,n), for φmin < φ < φmax. (8.8)

When restrictions are not limited to one axis only, a more general description of all allowed
orientations can be defined by a combination of rotations given by the quaternion product
of two or more quaternions and their restrictions. In this paper, only sets of frames that
can be described by a sequence of rotations about fixed axes are treated.

Definition 8.1 (Quaternion Volume). A quaternion volume, Q⊗, is defined as

Q⊗ � {Q(φ1, . . . , φn,n1, . . . ,nn) | φ1,min ≤ φ1 ≤ φ1,max

... (8.9)

φn,min ≤ φn ≤ φn,max}

for n ≥ 1 and where

Q(φ1, . . . , φn,n1, . . . ,nn) = Q(φ1,n1) ∗ · · · ∗Q(φn,nn). (8.10)

From the above it is clear that a quaternion volume is obtained by the quaternion prod-
uct of one or more quaternion volumes. This is stated in the next proposition.

Proposition 8.1 (Quaternion Product of Quat. Volume(s)). The quaternion product of
two quaternion volumes, or a quaternion volume and a quaternion, is itself a quaternion
volume.

Proof. By equation (8.3) the quaternion product of two quaternions is a quaternion. Let P
be a quaternion with the restrictions φmin ≤ φ ≤ φmax. Then it is a quaternion volume
by definition 8.1 with n = 1. Then the quaternion product E = P ∗ Q consists of the 16
elements of equation (8.4). LetQ be a quaternion, then E can be written in terms of e0−3.

e0 = p0(φ)q0 − p1(φ)q1 − p2(φ)q2 − p3(φ)q3, (8.11)

e1 = p0(φ)q1 + p1(φ)q0 + p2(φ)q3 − p3(φ)q2, (8.12)

e2 = p0(φ)q2 + p2(φ)q0 + p3(φ)q1 − p1(φ)q3, (8.13)

e3 = p0(φ)q3 + p3(φ)q0 + p1(φ)q2 − p2(φ)q1. (8.14)

Note that, as Q is a quaternion, the elements of E are sums of the products of a constant
(q0−3) and the elements of the quaternion volume (p0−3(φ)). By representing P ∈ R4

and Q ∈ R4 as four-tuples, the quaternion product is given by (8.11)-(8.14) and the field

1The dual covering allows every rotation to be described twice. In this paper, however, it is only described
once, so that all angles are assumed to be in the interval [−π, π]. It is also assumed that all angles of inverse
trigonometric functions are in this interval with the correct sign. For arctan, this is denoted arctan2.
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8.4. QUATERNION VOLUMES

property closure2 is satisfied so that e0−3 ∈ R. Thus, e0−3 are functions of φ so that the
restrictions on φ can be applied to the quaternion product. Furthermore, as ||P || = 1 for
all φ, ||E|| = 1 so that E is a quaternion volume by definition 8.1 with n = 2.

Similarly, when both P and Q are quaternion volumes the elements of E are sums of
products of pi(φ1)qj(φ2) and E is a quaternion volume by the same argumentation. The
same argumentation applies when P and Q are quaternions or quaternion volumes with
more than one restriction, n > 1.

8.4.2 Quaternion Volumes by Rotations Sequences

A rotation sequence describes a rotation about one coordinate axis followed by a rotation
about another of the coordinate axes in the rotated coordinate system. A general frame-
work on how to construct easily visualisable quaternion volumes by rotation sequences is
presented. The rotation sequence starts with two subsequent rotations about two coordi-
nate axes, represented by the quaternion Qs. This defines the attitude direction. The last
degree of freedom is added by a rotation about the direction vector, here the z-axis, byQz .
In equation (8.6), let Qz represent the vector to be rotated and let Qs be the quaternion
describing the direction of this vector. Then the rotation sequence

V = Qs ∗Qz ∗Q∗
s (8.15)

represents the direction of the z-axis for a given rotation Qs given by the direction of
the vector part of V and the rotation about the z-axis given by the scalar part or length
of the vector part of V by ψ = 2arcsin(||v̄||) = 2 arccos(v0)sgn(ψ). Henceforth, V
is called a visualising quaternion. Note that V does not represent a rotation. It is used
as a tool to visualise rotations and as a help to define an appropriate set of frames for
different applications. The visualising quaternion and the corresponding quaternion should
be viewed upon as a pair, (Q,V), where the visualising quaternion, V , gives an intuitive
description of a rotation of a frame by Q.

Let the vector part of the visualising quaternion be plotted as a point in the xyz-sphere.
Then the direction of the z-axis, rotated by the corresponding quaternion is given by the
vector from the origin to this point, and the rotation about the z-axis itself is given by the
length of this vector. Hence, a continuous set of quaternions (a quaternion volume) is rep-
resented by a “cloud” in the xyz-sphere describing the corresponding set of orientations.

The quaternion that rotates the reference frame into the orientation described by equa-
tion (8.15) is then given by

Q = Qz ∗Qs. (8.16)

Finally, the quaternion volume is given by restricting the allowed rotations of each quater-
nion.

2The real numbers are closed under addition and multiplication, hence if a and b are real numbers, so are a+b
and ab (Kuipers, 2002).
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REPRESENTING ATTITUDES AS SETS OF FRAMES

Given a visualising quaternion volume by the sequence

V⊗ = Q⊗
s ∗Q⊗

z ∗ (Q⊗
s )

∗ (8.17)

and the restrictions on Q⊗
s and Q

⊗
z . Then the corresponding quaternion

volume that results in the set of orientations described by V⊗ is given by

Q⊗ = Q⊗
z ∗Q⊗

s (8.18)

with the same restrictions applied to Q⊗ as to V⊗.

Figure 8.1 shows the difference between the quaternion volume and the visualising quater-
nion volume when the vector part is plotted in the xyz-sphere3. Note that the dual covering
also applies to the visualising quaternion volume. Hence, one should always keep track
of the sign of the rotation so that a negative rotation about the z-axis is not interpreted
as an opposite direction of the z-axis. This can be done by moving the negative sign to
the scalar part (which is positive in (−π, π) or to assume all angles in the interval (0, 2π)
where sin(φ2 ) is positive.

8.4.3 Reorientation of Quaternion Volumes

Let Q⊗ be a quaternion volume and the quaternion P represent some transformation on
Q⊗. It will be claimed that the transformation Q⊗

P = Q⊗ ∗ P rotates the entire set of
frames by a rotation P . Similarly, the transformation Q⊗

P = Q⊗ ∗ P ∗ allows the set of
frames represented by the quaternion volume to be represented with respect to a new ref-
erence frame P . The transformation induced by changing from one reference orientation
to another is called reorientation (Alpern et al., 1993).

Proposition 8.2 (Transformation of Quaternion Volumes). Any quaternion volume, Q⊗,
represented with respect to the identity frame can be transformed into another quaternion
volume by

Q⊗
P = Q⊗ ∗ P, (8.19)

where the orientations represented by Q⊗
P relate to P in the same way as Q⊗ relates to

the identity frame.

Proof. The quaternion productE = Q∗P can be viewed upon as a rotation P followed by
a rotationQ with respect to the new frame that resulted from the first rotation P . Hence, E
relates to P in the same way asQ relates to the identity frame. By the same argumentation
the quaternion volume Q⊗

P relates to P in the same way as Q⊗ relates to the identity
frame.

In proposition 8.2, the reference frame is kept constant and all the elements of the
quaternion volume are rotated by P . Reorientation, however, is a rotation of the reference
frame (change of observer) while the quaternion volume is kept constant. The proof of the
reorientation Q⊗

P = Q⊗ ∗ P ∗ is constructed in the same way as the proof of proposition
8.2.

3In figure 8.1, the orientations are plotted by sin (φ
2
)n (the orthographic orientation map (Alpern et al.,

1993)) for both the quaternion volume and the visualising quaternion volume.
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Figure 8.1: The quaternion volume and the visualising quaternion volume in the xyz-sphere. The
upper plots show a freedom about the z-axis and the lower plots show all vectors that span out a cone
and the orientations about these vectors. The visualising quaternion volume gives a more intuitive
picture of the orientations described by the quaternion volume than the quaternion volume itself
when plotted in the xyz-sphere.

Comment 1. From equations (8.3) and (8.6), four different ways of transforming quater-
nion volumes arise.

1) Q⊗
P1

= Q⊗ ∗ P 3) Q⊗
P3

= Q⊗ ∗ P ∗ (Q⊗)∗

2) Q⊗
P2

= P ∗Q⊗ 4) Q⊗
P4

= P ∗Q⊗ ∗ P ∗

The first transformation is used in Hanson (2006) to find a set of frames, all with one axis
pointing in a fixed direction, as a mean to find an optimal path in the quaternion space. If
Q⊗ represents a freedom about one of the coordinate axes, say the z-axis, Q⊗

P1
can also

represent a set of orientations where the z-axes have the same angles with respect to the
reference frame z-axis, determined by P . For this special case, the same result is obtained
by the third representation. Even though the two representations present the same set of
vectors they differ in orientation. The set of frames described byQ⊗

P1
is the set that results

from rotating the frame represented by P about the coordinate axis, while Q⊗
P3
is the set
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of frames when the shortest rotation is taken from the reference frame to the directions
described by P and Q⊗.

8.5 Coordinate Axis Rotation

There are several ways of representing the proximity of two frames (Yuan, 1988; Wen
and Kreutz-Delgado, 1991). Here, the proximity of two frames will be described by the
rotation required to take one frame into the other by the shortest rotation.

Definition 8.2 (Quaternion Space Proximity). Given two orientations represented by the
two quaternions P and Q. Let the error quaternion be denoted

E = P ∗ ∗Q. (8.20)

Then the scalar part of E, e0, describes the proximity of the two frames.

Definition 8.3 (Minimal Rotation). The larger (closer to 14) the error quaternion scalar
part e0, the closer are the two orientations P and Q.

An uncountable number of devices have only one degree of rotational freedom, rang-
ing from human elbows and revolute robotic joints to satellites with only one operating
actuator. The control of a one-actuator satellite is important whenever actuator failure
occurs. Two questions arise:

1. How close to the desired orientation can one get with just one degree of freedom.

2. What is the reachable orientation closest to the desired orientation.

Assume that P⊗
z represents the set of orientations when the identity frame is rotated

about the z-axis. Then the problem is to find the Pz that that is closest to Q.

Proposition 8.3 (Optimal Rotation). Consider an orientation Q =
[
q0 q1 q2 q3

]T
.

The orientation described by the quaternion Pz =
[
p0 0 0 p3

]T
that is closest to Q

(by definition 8.2 and 8.3) is given by

p0 =
±sq0√
q20 + q23

(8.21)

p3 =
±sq3√
q20 + q23

(8.22)

where the two ±s have the same sign.

Proof. E = P ∗ ∗Q can be written[
e0
e3

]
=

[
p0 p3
−p3 p0

] [
q0
q3

]
(8.23)

4Note that an equally good description of proximity is given when e0 approaches −1. As cos(
φ
2
) is positive

for φ in the chosen interval (−π, π), the positive value of e0 is chosen.
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[
e1
e2

]
=

[
p0 p3
−p3 p0

] [
q1
q2

]
(8.24)

By definitions 8.2 and 8.3, the quaternion Pz that is closest to Q is found by the error
quaternion with e0 closest to 1.

e0 = p0q0 + p3q3 (8.25)

= q0 cos(
ψ

2
) + q3 sin(

ψ

2
), (8.26)

so that
de0
dψ

= −q0
2
sin(

ψ

2
) +

q3
2
cos(

ψ

2
). (8.27)

Let de0
dψ = 0. Then

tan(
ψ

2
) =

q3
q0

. (8.28)

Then by using arctan(x) = arcsin
(

x√
1+x2

)
(Bronshtein et al., 2003), ψ is written as

ψ = 2arctan(
q3
q0

) (8.29)

= 2arcsin

⎛⎝ q3
q0√

1 + ( q3
q0
)2

⎞⎠ (8.30)

= 2arcsin

(
q3√

q20 + q23

)
. (8.31)

From the definition of the quaternion

ψ = 2arcsin(p3). (8.32)

By comparing equations (8.31) and (8.32), equation (8.22) is given. Similarly by arctan(x) =

arccos
(

1√
1+x2

)
sgn(x)

ψ = 2arctan(
q3
q0

) (8.33)

= 2arccos

⎛⎝ 1√
1 + ( q3

q0
)2

⎞⎠ sgn(
q3
q0

) (8.34)

= 2arccos

(
q0√

q20 + q23

)
sgn(

q3
q0

). (8.35)

Note that the sign of ψ = 2arccos(p0)sgn(ψ) is given by equation (8.32). Hence, equation
(8.21) is found. For ψ to be in the interval [−π, π], the sign ±s is chosen positive, so that
e0 is positive. Similarly when P rotates about the x- and y-axis.
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The largest rotation is given when e0 is close to zero.

e0 = p0q0 + p3q3 (8.36)

= q0 cos(
ψ

2
) + q3 sin(

ψ

2
) = 0. (8.37)

tan(
ψ

2
) = −q0

q3
. (8.38)

Similar to the proof of proposition 8.3, the orientation Pz furthest away from Q is given
by

p0 =
±sq3√
q20 + q23

(8.39)

p3 =
±tq0√
q20 + q23

(8.40)

where the ±s and ±t have opposite signs.

8.6 Quaternion Volume Desired Attitude

In the following, a satellite is used to illustrate the results presented above and how they
apply to the control of rigid bodies. Two basic problems are addressed in this paper.

1. Fuel consumption is critical in the control of satellites. A methodology on how to
represent the desired attitude by a quaternion volume as a mean to save energy is
proposed.

2. Failure in one or more of the satellite actuators greatly complicates the control and
can result in a desired attitude that is out of reach. A method on how to take the
satellite as close as possible to the desired attitude with just one actuator is proposed.

A satellite with three actuators is considered. Each actuator applies a torque about one
of the coordinate axes of the satellite body frame.

The body frame and desired attitude are defined with respect to the North-East-Down
coordinate system (NED-frame). The x-axis of the body frame points in the speed direc-
tion and the operating device (camera, telescope, transponder, etc) is aligned along the
body frame z-axis.

8.6.1 Desired Attitude Direction

First assume that the satellite attitude must be aligned such that the z-axis is always orthog-
onal to the earth’s surface, pointing towards the earth. This gives the satellite one degree
of freedom about the z-axis. An arbitrary rotation, ψ, about the z-axis can be represented
by the quaternion volume

Q⊗
free =

[
cos (ψ2 ) 0 0 sin (ψ2 )

]T
, for − π < ψ < π. (8.41)

Hence, the quaternion volume is given with respect to the identity frame. Further, assume

the desired quaternion volume instead is to be rotated by Qd =
[
d0 d1 d2 d3

]T
with
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respect to the identity frame. The quaternion volume that describes all attitudes where the
z-axis points in the same direction as the z-axis of Qd is given by Q

⊗
d = Q⊗

free ∗ Qd so
that

Q⊗
d =

⎡⎢⎢⎣
d0 cos(

ψ
2 )− d3 sin(

ψ
2 )

d1 cos (
ψ
2 )− d2 sin (

ψ
2 )

d2 cos (
ψ
2 ) + d1 sin (

ψ
2 )

d3 cos (
ψ
2 ) + d0 sin (

ψ
2 )

⎤⎥⎥⎦ , for − π < ψ < π. (8.42)

Example 7. If the desired orientation is set so that the z-axis is always orthogonal to the xy-

plane, pointing outwards into space, by a rotation about the y-axis,Qd =
[
0 0 1 0

]T
,

equation (8.42) simplifies to

Q⊗
d =

[
0 − sin (ψ2 ) cos (ψ2 ) 0

]T
, for − π < ψ < π. (8.43)

It can be shown that this quaternion volume represents all attitudes with a z-axis in the
opposite direction of the NED-frame z-axis.

z⊗ = Q⊗
d ∗ vz ∗ (Q⊗

d )
∗ (8.44)

=

⎡⎢⎢⎣
0

− sin(ψ2 )

cos(ψ2 )
0

⎤⎥⎥⎦ ∗

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ ∗

⎡⎢⎢⎣
0

sin(ψ2 )

− cos(ψ2 )
0

⎤⎥⎥⎦

=

⎡⎢⎢⎣
− cos(ψ2 ) sin(

ψ
2 ) + cos(ψ2 ) sin(

ψ
2 )

0
0

− cos2(ψ2 )− sin2(ψ2 )

⎤⎥⎥⎦

=

⎡⎢⎢⎣
0
0
0
−1

⎤⎥⎥⎦ , for − π < ψ < π. (8.45)

8.6.2 Desired Attitude Orientation

The attitude can be represented as a set of frames. This set can be composed by a rota-
tion sequence of quaternion volumes. Two rotation sequences are discussed, the ZYZYZ-
sequence, as in Hanson (2006) and Alpern et al. (1993), and the XYZYX-sequence.

The ZYZYZ-sequence

The ZYZYZ-sequence allows the desired attitude to be defined as a set of vectors that
span out a cone about the reference z-axis and all orientations about these vectors. Let

Qs(α, β) = Q(β,y)∗Q(α, z)whereQ(α, z) =
[
cos (α2 ) 0 0 sin (α2 )

]T
andQ(β,y) =
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[
cos (β2 ) 0 sin (β2 ) 0

]T
so that

Qs(α, β) =

⎡⎢⎢⎣
cos (α2 ) cos (

β
2 )

sin (α2 ) sin (
β
2 )

cos (α2 ) sin (
β
2 )

sin (α2 ) cos (
β
2 )

⎤⎥⎥⎦ . (8.46)

The quaternion volume can be visualised in the xyz-sphere (see figure 8.1) by the three
last elements of

V⊗(α, β, γ) =

⎡⎢⎢⎣
cos(γ2 )

sin(γ2 ) sin(β) cos(α)
sin(γ2 ) sin(α) sin(β)

sin(γ2 ) cos(β)

⎤⎥⎥⎦ . (8.47)

α represents the allowed orientations about the z-axis of the first rotation while β is the
allowed orientation about the new y-axis. If α has no restrictions, β is the offset angle
that defines a cone with the z-axis at the centre. γ restricts the orientation about the z-axis
itself. A cone sector that allows a deviation, bmax, in the sector defined by the restrictions
on α in the xy-plane is defined by

Q⊗
d = Q⊗

z ∗Q⊗
s =

⎡⎢⎢⎣
cos(β2 ) cos(

α
2 + γ

2 )

sin(β2 ) sin(
α
2 − γ

2 )

sin(β2 ) cos(
α
2 − γ

2 )

cos(β2 ) sin(
α
2 + γ

2 )

⎤⎥⎥⎦ (8.48)

and the restrictions

amin ≤ α ≤ amax (8.49)

0 ≤ β ≤ bmax (8.50)

cmin ≤ γ ≤ cmax (8.51)

Example 8. Assume a satellite where the z-axis is to point outwards into space. Further
assume that a small error, bmax, in the orientation is allowed and only the attitude direc-
tions are restricted. The set of frames describing these attitudes is given by (8.48) and the
restrictions

−π ≤ α ≤ π (8.52)

π ≤ β ≤ π + bmax (8.53)

−π ≤ γ ≤ π (8.54)

It can be showed that this is the same as substituting
β ← π + β and α ← −α into equation (8.48) so that

Q⊗
d = Q⊗

s ∗Q⊗
z =

⎡⎢⎢⎣
− sin(β2 ) cos(

α
2 − γ

2 )

cos(β2 ) sin(
α
2 + γ

2 )

cos(β2 ) cos(
α
2 + γ

2 )

− sin(β2 ) sin(
α
2 − γ

2 )

⎤⎥⎥⎦ (8.55)
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and keeping the restrictions (8.49)-(8.51). Note that equation (8.55) can also be obtained
by rotating the quaternion volume of the previous example by π radians about the y-axis,

hence by equation (8.19) with P =
[
0 0 1 0

]T
and Q⊗ =

[
q0 q1 q2 q3

]T
as in

(8.48) so that Q⊗
d =

[
−q2 q3 q0 −q1

]T
, which is the same as equation (8.55).

The XYZYX-sequence

The XYZYX-sequence defines a pyramid of allowed orientations where the allowed ori-
entations about the x-axis and the (new) y-axis are restricted. This is a good estimation
of restricting the orientation about the globally defined x- and y-axes whenever the angles
are kept small. Qs(α, β) is then given by

Qs(α, β) =

⎡⎢⎢⎣
cos(α2 ) cos(

β
2 )

sin(α2 ) cos(
β
2 )

cos(α2 ) sin(
β
2 )

− sin(α2 ) sin(
β
2 )

⎤⎥⎥⎦ , (8.56)

and visualised by

V⊗(α, β, γ) =

⎡⎢⎢⎣
cos(γ2 )

sin (γ2 ) sin (β)
− sin (γ2 ) sin (α) cos (β)
sin (γ2 ) cos (α) cos (β)

⎤⎥⎥⎦ . (8.57)

The corresponding quaternion volume is again given by

Q⊗
d = Q⊗

z ∗Q⊗
s (8.58)

and the restrictions

amin ≤ α ≤ amax (8.59)

bmin ≤ β ≤ bmax (8.60)

cmin ≤ γ ≤ cmax (8.61)

Example 9. Assume a satellite where the attitude is to be restricted similarly to example
8, but instead of allowing some error in the orientation, an orientation error about the x-
and y-axes are restricted to ±a and ±b. Then the set of frames describing these attitudes
is given by (8.58) and the restrictions

π − a ≤ α ≤ π + a (8.62)

−b ≤ β ≤ b (8.63)

−π ≤ γ ≤ π (8.64)
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8.7 Control

Two ways to exploit the quaternion volume representation to reduce fuel consumption are
presented.

1. Let the desired attitude (one frame only) take part in a control loop. When the
attitude is inside the attitude specifications given by the quaternion volume, some
action is taken to save energy. This may be to switch to another controller which
requires less energy or to switch to another desired attitude inside the quaternion
volume, closer or equal to the current attitude. Note also that if the quaternion
volume defines a set of orientations close to some reference orientation, a linearised
model of the satellite may be used.

2. Find the frame within the set of frames restricted by the quaternion volume that
corresponds to the shortest rotation from the current orientation and set this as the
desired attitude.

Two problems arise.

1. A test to verify if a frame is inside the quaternion volume is needed.

2. Find the orientation inside the quaternion volume that results in the shortest rotation
from the current orientation.

8.7.1 Quaternion Volume Test

Consider a quaternion volume defined by the ZYZYZ-sequence. A test to verify if a

query quaternion Qqry =
[
q0 q1 q2 q3

]T
is an element of the quaternion volume is

presented.
A query quaternion can be represented in terms of α, β and γ. The transformation

between the quaternion representation and the (α,β,γ)-representation can be performed
in many ways, by geometric analysis, by the visualising quaternion or through a quater-
nion/orientation map. The first method is often the easiest and most intuitive method and
works well when only the direction is concerned. When the full orientation is to be deter-
mined, this approach is not suitable. In the following, it is shown how this method can be
combined with the visualising quaternion to find the orientation.

By noting that α and β can be seen from the direction of the z-axis only (not from the

entire frame), they can be found from the vector z̄ =
[
x y z

]T
of the rotation of the

vector along the z-axis, v̄z =
[
0 0 1

]T
by z = Qqry ∗ vz ∗ Q∗

qry . Then, by standard
geometrical relations α and β are found.

α = arctan2
(y

x

)
, (8.65)

β = arccos(z), (8.66)

where x, y and z are the elements of z̄ given by

z̄ =

⎡⎣ 2q0q2 + 2q1q3
2q2q3 − 2q0q1

q20 − q21 − q22 + q23

⎤⎦ . (8.67)
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As already stated, the rotation about the z-axis cannot be seen from the vector rotation
of the z-axis, but is found from V by γ = 2arccos(v0). The sign of γ is lost in the
transformation but can be found by, for example the sign of the fourth element of V .

Given a query quaternion Qqry. Then α, β and γ from the ZYZYZ-
sequence are found by

α = arctan2

(
q2q3 − q0q1
q0q2 + q1q3

)
, (8.68)

β = arccos(q20 − q21 − q22 + q23), (8.69)

γ = 2arccos (v0) sgn(v4). (8.70)

It is now straight forward to verify if the quaternion is inside the quaternion volume.
The quaternion volume is not always of such a structure that it can be analysed ge-

ometrically. Then the analytic expression of the quaternion volume can be used. For
comparison, this approach is also shown for the ZYZYZ-sequence.

The quaternion volume is given by equation (8.48) and its restrictions.⎡⎢⎢⎣
cos(β2 ) cos(

α
2 + γ

2 )

sin(β2 ) sin(
α
2 − γ

2 )

sin(β2 ) cos(
α
2 − γ

2 )

cos(β2 ) sin(
α
2 + γ

2 )

⎤⎥⎥⎦
⎡⎢⎢⎣
q0
q1
q2
q3

⎤⎥⎥⎦
(I)
(II)
(III)
(IV )

(8.71)

By substituting (II) into (III), (III) simplifies to

sin(
β

2
)

√
1− q21

sin2(β2 )
= q2 (8.72)

so that β is found by

β = 2arcsin
√

q21 + q22 . (8.73)

β is positive by definition. α and γ are found by dividing (II) by (III) and (IV) by (I):

tan(
γ

2
− α

2
) =

q1
q2

, (8.74)

tan(
γ

2
+

α

2
) =

q3
q0

. (8.75)

Further let
γ

2
− α

2
= arctan(

q1
q2

), (8.76)

γ

2
+

α

2
= arctan(

q3
q0

). (8.77)

so that α and γ are given by

α = arctan(
q3
q0

)− arctan(
q1
q2

), (8.78)

γ = arctan(
q3
q0

) + arctan(
q1
q2

). (8.79)

211



REPRESENTING ATTITUDES AS SETS OF FRAMES

Hence, α and β can by found by geometrical interpretation while α, β and γ are found
from the analytical expression of the quaternion volume. In the following, it is shown that
these two approaches give the same result. From equation (8.69), β is simplified by

β = arccos(q20 − q21 − q22 + q23) (8.80)

= arccos(2(q20 + q23)− 1) (8.81)

and the trigonometric relation 2 arccos(x) = arccos(2x2 − 1) (Bronshtein et al., 2003) so
that

β = 2arccos
√
q20 + q23 . (8.82)

By arccos(x) = arcsin(
√
1− x2) this is equal to equation (8.73). By arctan(x) +

arctan(y) = arctan2
(

x+y
1−xy

)
, equation (8.78) can be written as

α = arctan(
q3
q0

)− arctan(
q1
q2

) (8.83)

= arctan2

(
q3
q0

− q1
q2

1 + q1q3
q0q2

)
(8.84)

= arctan2

(
q2q3 − q0q1
q0q2 + q1q3

)
. (8.85)

γ can be written in the same way so that, alternatively, a complete description of the query
quaternion can be given by

Given a query quaternion Qqry . Then α, β and γ from the ZYZYZ-
sequence are found by

α = arctan2

(
q2q3 − q0q1
q0q2 + q1q3

)
, (8.86)

β = 2arccos
√
q20 + q23 , (8.87)

γ = arctan2

(
q2q3 + q0q1
q0q2 − q1q3

)
. (8.88)

8.7.2 Transformed Quaternion Volumes

The easiest way to verify if a query quaternion is inside a quaternion volume transformed
by equation (8.19) is to transform the query quaternion by the opposite transformation, P ,
so that both the quaternion volume and the query quaternion are presented in the identity
frame. Hence, the two problems below are identical.

Qqry ∈ P ∗Q⊗ ? (8.89)

P ∗ ∗Qqry ∈ Q⊗ ? (8.90)

This operation is computationally demanding. As equation (8.19) gives an analytical ex-
pression of the transformed quaternion volume, the orientation should be found by a set of
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parameters similar to the ones found in equations (8.86)-(8.88). This may be done when
the quaternion volume is on a simple form, for example by equation (8.55). Then the
query quaternion may be tested against the restrictions in (8.49)-(8.51) directly. By fol-
lowing the mathematics of equations (8.71)-(8.88), α, β and γ are found with respect to

the coordinate system of P =
[
0 0 1 0

]T
by

αP = arctan2

(
q0q1 − q2q3
q0q2 + q1q3

)
, (8.91)

βP = 2arcsin
√
q20 + q23 , (8.92)

γP = arctan2

(
q0q1 + q2q3
q0q2 − q1q3

)
. (8.93)

Hence, as expected

βP = β − π, (8.94)

αP = −α, (8.95)

γP = γ. (8.96)

8.7.3 Clamping

If any of the restrictions are violated, the quaternion might be clamped into the set of
frames restricted by the quaternion volume in many ways. Hanson (2006) suggests finding
the nearest point in the quaternion metric. Another intuitively tempting approach is to set
the exceeded value to the maximum allowed value. Then a quaternion that is inside the
quaternion volume may be constructed by the definition in equation (8.48) directly. If the
quaternion volume is on a simple form, the orientation can be clamped into the quaternion
volume by the shortest rotation in order to save energy.

8.7.4 Shortest Rotation

How to find the orientation in the quaternion volume that results in the shortest rotation
from the current attitude depends on the quaternion volume. One simple solution oc-
curs when the quaternion volume represents a freedom about one axis. Then the theory
from section 8.5 can be applied directly. Let Q be the current attitude and P⊗

free =[
cos (ψ2 ) 0 0 sin (ψ2 )

]T
represent the set of allowed attitudes, both defined in the

NED-frame. Then the attitude within the quaternion volume that is closest to the current
attitude is given by

p0 =
±sq0√
q20 + q23

(8.97)

p3 =
±sq3√
q20 + q23

(8.98)

and the rotation required to take Q into P (the error) is given by

ψ = 2arccos(e0), (8.99)

where e0 = p0q0 + p3q3.
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8.7.5 Closest Orientation

Closely related to the problem of the previous subsection is the problem of finding the
optimal rotation when actuator failure occurs. When only one actuator is functional, the
satellite can only rotate about one of the axes of the body frame. Let the current body
orientation be described in the NED-frame by T . The desired orientation, Qd, is also
given in the NED-frame. Assume that the freedom, represented by a quaternion volume,
Q⊗

free, is given with respect to the body frame, so that

Q⊗
T = T ∗Q⊗

free. (8.100)

represent all reachable orientations. Then the problem is to find the quaternionQ ∈ Q⊗
free

that takes the satellite as close to the desired orientation as possible. This is given by
proposition 8.3 where E is given by

E = Q∗
d ∗Q⊗

T (8.101)

= Q∗
d ∗ T ∗Q⊗

free. (8.102)

Let T ∗
d = Q∗

d ∗ T =
[
q0 −q1 −q2 −q3

]
. Then, as only the size (not the direction) of

the rotation is considered, the closest possible orientation is given by equations (8.21) and
(8.22) and the rotation needed to take the satellite from the closest reachable orientation to
the desired orientation (the error) is given by equation (8.99).

8.8 Conclusions

The unit quaternion group is used to find a general framework for representing sets of ori-
entations. It is also shown how this set can be represented with respect to another reference
frame or how to rotate this set when the reference frame is kept constant. Several examples
of sets of orientations are presented and it is shown how these sets can be represented by
a quaternion and some easy to visualise restrictions. A satellite is used to illustrate how
to save energy by defining the desired attitude as a set of orientations. A method to verify
whether a quaternion is inside a quaternion volume is also presented. It is also shown how
to find the rotation that requires less energy in order to take the desired attitude into an
element of the quaternion volume. Some work is done on finding the orientation closest to
the desired orientation when the desired orientation is out of reach.
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Chapter 9

On the Equivalence of
Orientation Error and Positive
Definiteness of Matrices

9.1 Abstract

In this paper we show how a continuous set of orientations can be represented as a
positive definiteness test on a given matrix. When this continuous set is restricted by
the maximum allowed orientation error in some or all directions it is shown that the
requirement for an orientation to satisfy these restrictions is equivalent to positive
definiteness for a certain matrix. The problem of finding the optimal orientation that
satisfies these restrictions is hence transformed into an optimisation problem on the
Riemannian manifold of linearly constrained symmetric positive definite matrices.
Thus, the problem of finding the optimal orientation can be solved as a standard op-
timisation problem with the constraints written in the form of linear matrix inequal-
ities or barrier functions. Linear matrix inequalities have been extensively studied in
the optimisation communities and good and efficient algorithms are available.

9.2 Introduction

In a wide range of applications the orientation of a rigid body does not need to be restricted
to one frame but can be given as a continuous set of frames. The attitude of a satellite can
for example be set so that the transmitter or receiver points approximately in the direction
of the earth. Another example is the end effector of a robotic manipulator where an orien-
tation error is allowed in the end-effector orientation. In Potkonjak et al. (2000) the idea
of introducing the paint quality as a constraint and minimise some additional cost function
was presented. This opens for the possibility of allowing an orientation error in the orien-
tation of the end effector in order to improve the speed of the job, reduce torques and so
on. It was shown in From and Gravdahl (2007a) that by allowing an orientation error in
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the end effector configuration of a robotic manipulator, the speed and the quality of the job
was improved. The orientation error was chosen intuitively, and the approach presented
was not suitable for implementation in an optimisation algorithm. The pointing task is
another example where a continuous set of orientations is allowed in the specifications of
the end-effector orientation.

In Buss et al. (1996) the problem of friction force limit constraints is transformed into
a problem of testing for positive definiteness of a certain matrix. In this paper the same
ideas are used to convert the problem of orientation error constraints into a test of positive
definiteness of a matrix. For different types of orientation errors, a suitable matrix is found
and it is shown that positive definiteness of this matrix is equivalent to an orientation that
satisfies the given restrictions on the orientation.

By transforming the nonlinear orientation constraints into positive definiteness con-
straints imposed on certain symmetric matrices the problem of finding the optimal ori-
entation is transformed into an optimisation problem on the smooth manifold of linearly
constrained positive definite matrices. For the special case of positive definite symmetric
matrices, the problem can be transformed into solving a linear matrix inequality (LMI).
Convex optimisation problems involving LMIs have been extensively studied in literature,
and good solutions, such as interior point algorithms, are known.

For many sets of orientations a symmetric matrix can be found very easily. For other
sets with a more complicated structure, a symmetric matrix may be hard to find. It is a clear
advantage to choose the sets for which a symmetric matrix can be found because LMIs of
symmetric matrices are in general solved very efficiently. The difference between the sets
for which a symmetric matrix can and cannot be found is shown through the examples.

The applications range from satellites and aircraft to robotics and rigid bodies in gen-
eral. A satellite acted upon by an external force can be written as an LMI with an additional
linear constraint. The cost function will typically tend to infinity at the border of positive
definiteness, which is equivalent to orientation error constraints. In robotics, the freedom
represented by the orientation can be used to improve the performance as in From and
Gravdahl (2007a). The advantage of the approach presented here is that the problem can
be formulated as an optimisation problem on a smooth manifold. Hence, an optimal so-
lution can be found, as opposed to the intuitively found geometric solution presented in
From and Gravdahl (2007a).

The problems considered are formulated as maxdet-problems subject to LMI con-
straints. This is convenient when it comes to introducing several constraints on the orien-
tation. A simple example when the directions of the x-axis and z-axis of the end-effector
frame are specified independently is shown.

9.3 Representing Rotations

Most of the fundamental principles of rotation were presented in two papers by Leonhard
Euler in 1775 (Alpern et al., 1993). The first paper shows that any rotation can be accom-
plished by a sequence of three rotations about the coordinate axes. In the second paper,
Euler states that any orientation can be represented by a rotation of some angle φ about
some fixed axis n. He also shows that the composition of two rotations is itself a rotation.
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9.3.1 The Unit Quaternion

The unit quaternion representation closely relates to the results presented in Euler’s sec-
ond paper. A good introduction to quaternions is found in Kuipers (2002). Any positive
rotation φ about a fixed unit vector n can be represented by the four-tuple

Q =

[
q0
q

]
, (9.1)

where q0 ∈ R is known as the scalar part and q ∈ R3 as the vector part. Q(φ,n) is written
in terms of φ and n by

q0 = cos (
φ

2
), q = sin (

φ

2
)n. (9.2)

Q is a quaternion of unit length and denoted a unit quaternion. Henceforth, all quaternions

have unit length if not other is stated. Let QP =
[
p0 pT

]T
. The quaternion product of a

rotation Q followed by a rotation QP is written in vector algebra notations as

QP ∗Q =

[
p0q0 − p · q

p0q + q0p+ p× q

]
. (9.3)

The cross product implies that quaternion multiplication is not commutative, as expected.

Let QP =
[
p0 p1 p2 p3

]T
and Q =

[
q0 q1 q2 q3

]T
. Then the quaternion prod-

uct is written as

QP ∗Q =

⎡⎢⎢⎣
p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 + p2q0 + p3q1 − p1q3
p0q3 + p3q0 + p1q2 − p2q1

⎤⎥⎥⎦ . (9.4)

The quaternion product of two unit quaternions is a unit quaternion. By the definition of
the quaternion the quaternionsQ and −Q produce the same rotation. This is referred to as

the dual covering. The quaternion identity is given by QI =
[
1 0 0 0

]T
.

A pure quaternion is a quaternion with zero scalar part. Any vector, v̄ =
[
x y z

]T
can be represented by a pure quaternion

v =

[
0
v̄

]
. (9.5)

The conjugate of a quaternion is defined as

Q∗ =
[
q0 −q1 −q2 −q3

]T
. (9.6)

9.3.2 Quaternions and Rotations

Let a vector, v̄1, be represented by the pure quaternion v1. This vector can be rotated φ
radians around the axis n by

v2 = Q ∗ v1 ∗Q∗. (9.7)
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Every vector v̄ ∈ R3 can be represented by a pure quaternion, hence v is not necessarily
a unit quaternion. The quaternion, Q(φ,n), however, is unitary. This represents the angle
and the axis that the vector v̄1 is to be rotated about. The resulting vector, v̄2, is then of the
same length as v̄1 if and only ifQ is a unit quaternion. The quaternion representation also
leads to a useful formula for finding the shortest rotation from one orientation to another.
Let QP and Q be two orientations. Then, by taking

E = Q∗
P ∗Q, (9.8)

E will rotate QP into Q by the shortest rotation.
Note that Equation (9.8) rotates one frame into another frame. By a frame it is meant

a coordinate system in R3 using Cartesian coordinates. One frame with respect to another
frame represents three degrees of freedom and is referred to as orientation. The inertial
frame is denoted, FI and the frame that correspond to the inertial frame by a rotation Q
from the inertial frame is denotedFQ. Equation (9.7) rotates one vector into another vector
and has two degrees of freedom (e.g. longitude and latitude) (Ahuactzin and Gupka, 1999).
A unit vector with respect to a unit reference vector is referred to as direction. Henceforth,
the main concern is with the direction of the central axis, which is assumed to be the body
frame z-axis of the end effector.

9.3.3 Rotation Sequences

In this paper, the orientation is represented by a rotation sequence of three rotations about
the unitary axes. The ZYZ-sequence is given by first a rotation α about the z-axis followed
by a rotation β about the new y-axis. This describes the direction of the z-axis. The last
degree of freedom is given by the rotation γ about the z-axis. When the sequence is given,

a one-to-one1 mapping between (α, β, γ) and the quaternionQ =
[
q0 q1 q2 q3

]T
can

be found whenever β �= 0.
Given a quaternion Q. Then α, β and γ from the ZYZ-sequence are found by (From

and Gravdahl, 2007b)

α = arctan2

(
q2q3 − q0q1
q0q2 + q1q3

)
, (9.9)

β = 2arcsin
√

q21 + q22 , (9.10)

γ = arctan2

(
q2q3 + q0q1
q0q2 − q1q3

)
. (9.11)

The following relations are also used in the following:

α = arctan(
q3
q0

)− arctan(
q1
q2

), (9.12)

γ = arctan(
q3
q0

) + arctan(
q1
q2

), (9.13)

and hence

α+ γ = 2arctan(
q3
q0

). (9.14)

1If the dual covering of the quaternion is taken into account, a one-to-two mapping can be found.
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The following lemmas will be used in the following to determine positive definiteness
of a matrix.

Lemma 9.1. (Sylvester’s criterion) A matrix M is positive definite if and only if all of
the leading principal minors are positive. M is positive semi-definite if all the leading
principal minors are non-negative.

Lemma 9.2. A block diagonal matrix

P =

⎡⎢⎢⎢⎣
P1 0 . . . 0
0 P2 . . . 0
...

...
. . .

...
0 0 . . . Pk

⎤⎥⎥⎥⎦ (9.15)

is symmetric (semi) positive definite if and only if each block Pi, i = 1, . . . , k is symmet-
ric (semi) positive definite.

9.4 Orientation Error Constraints as LMIs

9.4.1 Cone

Assume that one would like to restrict the z-axis of FQ to point in approximately the
same direction as the z-axis of the inertial frame FI . This can be visualised by a cone of
directions and restricted by |β| ≤ βlim where 0 ≤ βlim ≤ π. The orientation error β can
be found only from q1 and q2 from the quaternion Q by (9.10)

β = 2arcsin
√

q21 + q22 . (9.16)

Due to this observation, a test to verify if the z-axis of FQ does not deviate from the z-axis
of FI by more than βlim is given in the following.

Proposition 9.1. Given a restriction in the orientation error, βlim. Then the z-axis of FQ

rotated by Q =
[
q0 q1 q2 q3

]T
from the inertial frame FI lies within the restrictions

given by βlim if and only if

P =

⎡⎣ η 0 q1
0 η q2
q1 q2 η

⎤⎦ � 0 (9.17)

where η = sin βlim

2 , 0 ≤ βlim ≤ π and� means positive semi-definiteness of the symmet-
ric matrix P .

Proof. As η ≥ 0 and η2 ≥ 0, from Lemma 9.1 it only remains to test for det(P ). The
determinant of P is given by

det(P ) = η(η2 − q21 − q22). (9.18)
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Note that 0 ≤ βlim < π ⇒ η ≥ 0 so that det(P ) ≥ 0 can be written as

η2 − q21 − q22 ≥ 0

η2 ≥ q21 + q22

η ≥
√

q21 + q22

sin
βlim

2
≥

√
q21 + q22 (9.19)

As 0 ≤
√
q21 + q22 ≤ 1 ⇒ 0 ≤ arcsin

√
q21 + q22 , the following holds

0 ≤ 2 arcsin
√

q21 + q22 ≤ βlim. (9.20)

Then Equation (9.16) concludes the proof as

0 ≤ β ≤ βlim. (9.21)

Similarly for strictly positive definiteness.

Note that the restrictions in Proposition 9.1 are on the directions of the z-axis only and
that rotations about the z-axis itself are not restricted (the pointing task). Note also that P
is a symmetric matrix. This is an important property that will be used in the next sections.

9.4.2 Restriction on the Orientation about the Central Axis

In the following a condition on the orientation error about the central axis is given. As-
sume that the x-axis points in the direction of the velocity and that it is desired that the
body frame x-axis points in approximately the direction of the x-axis of the reference
orientation. Again consider the ZYZ-sequence. In the case when no orientation error is
allowed for the direction of the central axis, this is given trivially by |γ| < cmax, where
cmax is the maximum allowed orientation error of the x-axis. For the ZYZ-sequence the
direction of the x-axis is given by both α, β and γ. Assume that the orientation error of
the direction of the z-axis is restricted as in the previous section. When this is restricted
to be relatively small, the error in the direction of the x-axis can be approximated by the
error in the orientation about the central axis. This error is written as

ε = α+ γ. (9.22)

This leads to the following result.

Proposition 9.2. Assume that the orientation error of the direction of the z-axis is small.
Given a restriction in the orientation error εlim about the central axis, the x-axis of FQ

rotated by Q =
[
q0 q1 q2 q3

]T
from the inertial frame FI lies within the restrictions

given by εlim if and only if

P =

[
κ q3

q0
q3
q0

κ

]
� 0 (9.23)

where κ = tan εlim
2 .
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Proof. The determinant of P is given by

det(P ) = κ2 − q23
q20

(9.24)

As 0 ≤ tan εlim
2 for 0 ≤ εlim ≤ π, det(P ) ≥ 0 is written as

κ2 ≥ q23
q20

κ ≥
∣∣∣∣q3q0

∣∣∣∣
tan

εlim
2

≥
∣∣∣∣q3q0

∣∣∣∣
εlim ≥ |2 arctan (q3

q0
)| (9.25)

Then Equation (9.14) concludes that

εlim ≥ |ε| (9.26)

where ε is given by Equation (9.14).

9.4.3 Direction of the x-axis

Alternatively, one might want to restrict the direction of the x-axis directly. Note that the
matrix given in the previous section is not affine and cannot be used directly as an LMI in
a maxdet-problem. Hence, another matrix that is both symmetric and affine is proposed in
the following.

Assume that the direction of the x-axis is to be restricted. Similarly to Equation (9.17),
the requirement that the body frame x-axis is to point in the direction of the inertial frame
x-axis is given by

P2 =

⎡⎣ ξ 0 q2
0 ξ q3
q2 q3 ξ

⎤⎦ � 0 (9.27)

where ξ = sin βlim

2 .
Also note that the results presented are not restricted to the global reference frame FI .

Assume that the direction of the body frame x-axis is to point in an arbitrary direction

given by the direction of the x-axis of Qd =
[
d0 d1 d2 d3

]T
. In order to apply the

restriction given by (9.27), but to the direction of the x-axis of FQd
and not that of FI ,

Q is transformed back into the inertial frame and the test is performed on the transformed
quaternion

Qt = Q∗
d ∗Q =

⎡⎢⎢⎣
∗
∗

−d2q0 + d0q2 − d3q1 + d1q3
−d3q0 + d0q3 − d1q2 + d2q1

⎤⎥⎥⎦ (9.28)

Note that when Qt is substituted into (9.27), P2 is still symmetric and affine in Q.
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9.4.4 Pyramid

Assume instead that one would like to restrict the allowed rotation differently around dif-
ferent axes. For example, if the set of allowed orientations is given by restrictions on
the rotation about the x-axis followed by a rotation about the y-axis, this will result in a
pyramid-shaped set of allowed directions. The following observations are important in the
following.

Rotating the vector v̄1 =
[
0 0 1

]T
by α about the x-axis of the inertial frame

followed by a rotation β about the y-axis, also of the inertial frame, is given by

v̄I =

⎡⎣cosα sinβ
− sinα

cosα cosβ

⎤⎦ . (9.29)

For a rotation α about the x-axis of the inertial frame followed by a rotation β about the
y-axis of the rotated coordinate system is given by

v̄R =

⎡⎣ sinβ
− sinα cosβ
cosα sinβ

⎤⎦ . (9.30)

This can also be written as a quaternionQ. Let the vector v̄1 =
[
0 0 1

]T
, represent the

z-axis, be rotated by Q into v2 = Q ∗ v1 ∗Q∗. Then v2 is written as

v2 =

⎡⎢⎢⎣
0

2(q0q2 + q1q3)
2(q2q3 − q0q1)

q20 − q21 − q22 + q23

⎤⎥⎥⎦ (9.31)

This is a point on the unit sphere.

Proposition 9.3. Given a restriction αlim in the orientation error about the x-axis of the
inertial frame and βlim in the orientation error about the y-axis of the rotated coordinate

frame. Then the z-axis of frame FQ rotated by the quaternion Q =
[
q0 q1 q2 q3

]T
with respect to the inertial frame FI lies within the restrictions given by βlim if and only if

P1 =

⎡⎣ η 0 q1
0 η q0
q3 q2 η

⎤⎦ ≥ 0 (9.32)

where η =
√

sin βlim

2 and ≥ means positive semi-definiteness for the non-symmetric ma-
trix P1.

Proof. The determinant of P1 is given by

det(P1) = η(η2 − q0q2 − q1q3). (9.33)

Assume det(P1) ≥ 0

η2 − q0q2 − q1q3 ≥ 0

η2 ≥ q0q2 + q1q3 (9.34)
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As βlim ≥ 0, comparing Equations (9.30) and (9.31) gives

sinβlim ≥ 2|q0q2 + q1q3|. (9.35)

Let
β′ = arcsin (2(q0q2 + q1q3)), (9.36)

and the initial requirement is obtained by

−βlim ≤ β′ ≤ βlim (9.37)

where β′ is the angle between the new z-axis and the yz- plane.

Proposition 9.4. Given a restriction αlim in the orientation error about the x-axis and
βlim in the orientation error about the y-axis, both in the inertial frame. Then the z-axis of

frame FQ rotated by the quaternion Q =
[
q0 q1 q2 q3

]T
with respect to the inertial

frame FI lies within the restrictions given by αlim if and only if

P2 =

⎡⎣ ξ q2q3 0
q2q3 ξ q0q1
2ξ q0q1 ξ

⎤⎦ ≥ 0 (9.38)

where ξ = sinαlim

2 .

Proof. The determinant of P2 is given by

det(P2) = ξ(ξ2 − (q0q1)
2 − (q2q3)

2 + 2q0q1q2q3). (9.39)

Assume det(P1) ≥ 0

ξ2 − (q0q1)
2 − (q2q3)

2 + 2q0q1q2q3 ≥ 0

ξ2 ≥ (q0q1)
2 + (q2q3)

2 − 2q0q1q2q3

ξ2 ≥ (q0q1 − q2q3)
2

|ξ| ≥ |q0q1 − q2q3| (9.40)

As αlim ≥ 0, comparing Equations (9.31) and (9.29) gives

sinαlim ≥ 2|q0q1 − q2q3|. (9.41)

Let
α = arcsin (2(q0q1 − q2q3)), (9.42)

and the initial requirement is obtained by

−αlim ≤ α ≤ αlim. (9.43)
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Note that in Proposition 9.3 the second rotation is with respect to the rotated coordinate
frame and restricts only the rotations about the y-axis while in Proposition 9.4 the second
rotation is with respect to the rotated coordinate frame and restricts the allowed rotations
about the x-axis only. This simplifies the computations substantially. For small α and
β this is a good approximation. The next step is to put the two restrictions together to
one block-diagonal matrix. This shows how two restrictions on the orientation can be put
together and represented as one constraint.

Note that the matrices given in Propositions 9.3 and 9.4 are not symmetric and that
P2 in (9.38) is not affine. Hence, the constraints cannot be represented as LMIs. They
can, however, be represented as barrier functions given as the negative logarithm of the
determinant. This is discussed shortly in Section 9.6.

Example 10. Given a restriction αlim in the orientation error about the x-axis and βlim

in the orientation error about the y-axis. Then the z-axis of frame FQ rotated by the

quaternion Q =
[
q0 q1 q2 q3

]T
with respect to the inertial frame FQ lies within the

restrictions given by αlim and βlim if and only if

P =

[
P1 0
0 P2

]
≥ 0 (9.44)

where P1 and P2 are given as in Equations (9.32) and (9.38).

Alternatively, if one would like to restrict the orientation about the x-axis followed by
the orientation about the new y-axis, this can be achieved by substituting

η =

√
sinαlim cosβ

2
(9.45)

where β = arcsin 2(q0q2 + q1q3) for η into Equation (9.32) which will give the exact
solution.

9.5 Applications

In this section it is shown how the results from the previous section can be used as LMIs
in an optimisation problem.

9.5.1 Analytic Centering

The problem
minimise φ(x) = log detG(x)−1

subject to G(x) � 0
(9.46)

where
G(x) = G0 + x1G1 + x2G2 + · · ·+ xmGm, (9.47)

is known as the analytic centering problem. If the feasible set X = {x|G(x) � 0} is
non-empty and bounded, then the matrices Gi, i = 1, ...,m are linearly independent and
the objective function is strictly convex onX (Vandenberghe et al., 1996). In this case, it
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can be guaranteed that the optimality condition ∇φ(x∗) = 0, for an optimal solution x∗,
can be reached.

In our case, for the specification of the z-axis:

minimise φ(x) = log detP (x)−1

subject to P (x) � 0
(9.48)

where P is given by Equation (9.17) and can be written as

P (x) = P0 + x1P1 + x2P2 + x3P3 + x4P4, (9.49)

where x1 = q0, x2 = q1, x3 = q2, x4 = q3, (9.50)

P0 =

⎡⎣η 0 0
0 η 0
0 0 η

⎤⎦ , P1 = P4 =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ ,

P2 =

⎡⎣0 0 1
0 0 0
1 0 0

⎤⎦ , P3 =

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦ .

q0 and q3 do not affect the solution and can be eliminated from the equations.
The optimal solution to this problem is given by the set

Qopt = {Q | q1 = q2 = 0} (9.51)

or similarly by all quaternions on the form

Qopt =
[
cos ψ

2 0 0 sin ψ
2

]T
. (9.52)

The solution to this problem is trivially given by all the orientations that make the body
frame z-axis point in the direction of the inertial frame z-axis. We now look into the case
when an additional constraint is added. Two cases are considered; (a) two constraints are
represented by the positive definiteness of two matrices P1 and P2 and the determinant of
the block diagonal matrix P = Blockdiag(P1, P2) is minimised; and (b) P1 is minimised
and P2 is a constraint.

9.5.2 Blockdiagonal G-matrix

To combine the restrictions of the x- and z-axes, substitute (9.28) into (9.27), denote the
resulting matrix F , and write it on the form of (9.49) so that

F (x) = F0 + x1F1 + x2F2 + x3F3 + x4F4, (9.53)

x1 = q0, x2 = q1, x3 = q2, x4 = q3, (9.54)

F0 =

⎡⎣ξ 0 0
0 ξ 0
0 0 ξ

⎤⎦ , F1 =

⎡⎣ 0 0 −d2
0 0 −d3

−d2 −d3 0

⎤⎦ ,
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F2 =

⎡⎣ 0 0 −d3
0 0 d2

−d3 d2 0

⎤⎦ , F3 =

⎡⎣ 0 0 d0
0 0 −d1
d0 −d1 0

⎤⎦ ,

F4 =

⎡⎣ 0 0 d1
0 0 d0
d1 d0 0

⎤⎦ .

The problem can now be formulated as follows:

minimise φ(x) = log det

[
P (x) 0
0 F (x)

]−1

subject to

[
P (x) 0
0 F (x)

]
� 0

(9.55)

for which the solution is the orientation which minimises the error both of the x-axis and
the z-axis with a “metric” that increases exponentially with the shortest angular distance
from the desired directions of the x- and z-axes.

9.5.3 LMI Constraint

Alternatively the determinant of P can be minimised under the constraint F (x) � 0.

minimise φ(x) = log detP (x)−1

subject to P (x) � 0
F (x) � 0.

(9.56)

Hence, the optimal solution of the direction of the z-axis is found and the direction of the
x-axis is within the restrictions. If the x-axis is close or far from the desired direction does
not affect the solution.

9.5.4 Normalisation

The optimisation algorithms described optimise freely over all quaternions, and it is thus
not guaranteed, nor likely, that the resulting quaternion is of unit length. One simple,
though not very mathematically sound solution is to optimise freely over all quaternions
and then normalise the result afterwards. Another option is to add the constraint |Q| = 1
in the optimisation algorithm which guarantees that the search space is only the set of
quaternions of unit length. For the restriction given by Equation (9.17), it is for example
sufficient to add the restriction

q21 + q22 ≤ 1. (9.57)

9.6 Future Work

The examples shown in this paper are all very basic. They do, however, show how the
formulation allows the programmer to include the constraints on the orientation error in
optimisation problems in the form of linear matrix inequalities. Constraints in the form of
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LMIs are convenient in the sense that they are easily combined with other LMIs into one
“big” LMI. This is exploited in for example Han et al. (2000).

Consider the LMI

Blockdiag(P1(x), P2(x), . . . , Pk(x)) � 0. (9.58)

Let P1(x1) be the constraint on the orientation error. Then, P2(x) . . . Pk(x) may impose
other constraints on the optimisation problem. These may be related to the orientation, as
in (9.55). The true advantage of representing the constraints as LMIs, however, only come
apparent when the constraints on the orientation is combined with other constraints such
as joint torque or the quality of the job performed. This is left as future research topics.

In this paper only LMIs have been considered, but the restrictions on the orientation
could just as well have been formulated as for example barrier functions. Given the re-
strictions in Proposition 9.1, this can be formulated as a the barrier for the cone constraint

φ = − log(η2 − q21 − q22) (9.59)

which is then included in the barrier subproblem

minimise F (x) + φ(x)
subject to P (x) = 0

(9.60)

where F (x) is the objective function that we want to minimise and P (x) is some additional
constraint.

9.7 Conclusions

This paper casts constraints on the orientation error into linear matrix inequalities. For
many practically important examples, it has been shown that the continuous set of orienta-
tions that satisfy a given constraint can be represented by a positive definiteness constraint
of a certain matrix where the four real quaternion-quantities q0, q1, q2 and q3 are the en-
tries. Some simple examples of how to include the LMIs into the maxdet-problem are
given. The LMIs can be included in optimisation algorithms to find the optimal orienta-
tion of some devise, such as a satellite or the end effector of a robotic manipulator, subject
to some optimisation criteria.
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Chapter 10

A Real-Time Algorithm to
Determine the Optimal Paint
Gun Orientation in Spray Paint
Applications

10.1 Abstract

In this paper we present a method for increasing the speed at which a standard in-
dustrial manipulator can paint a surface. The approach is based on the observation
that a small error in the orientation of the end effector does not affect the quality of
the paint job. It is far more important to maintain constant velocity throughout the
trajectory. We consider the freedom in the end-effector orientation as functional re-
dundancy and represent the restriction on the orientation error as barrier functions
or linear matrix inequalities. In doing this we cast the problem of finding the optimal
orientation at every time step into a convex optimisation problem that can be solved
very efficiently and in real time. We show that the approach allows the end effector to
maintain a higher constant velocity throughout the trajectory guaranteeing uniform
paint coating and substantially reducing the time needed to paint the object.

Note to Practitioners—This paper is motivated by the observation that uniform
paint coating cannot be achieved in steep turns. Even if the manipulator possesses
the necessary actuator torques to maintain constant speed for a straight line tra-
jectory the torques needed to maintain constant velocity during turn are far higher.
Thus, the operator has to lower the trajectory speed, also in the straight line segments
where this would normally not be necessary, or accept a thicker layer of paint in the
turns. The method proposed in this paper is to implement a slightly different plan-
ning algorithm in turns allowing the paint gun to follow the trajectory with a higher
constant velocity. This will allow the paint gun to follow the trajectory, including
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both straight line segments and turns, with constant velocity and thus achieve uni-
form paint coating. We show how to choose the desired orientation of the paint gun
at every time step and present the explicit expressions for solving and implementing
the algorithms.
The approach can also be used for other applications where introducing a free-

dom in the end-effector orientation improves performance, such as welding and high-
pressure water blasting.

Keywords—Spray painting, assembly-line manufacturing, convex optimisation, robotics,
functional redundancy, modelling.

10.2 Introduction

One of the most important benefits of introducing industrial manipulators to the assembly
line automotive manufacturing in the 1980s was the removal of all human workers from
the spray paint area, relieving them from a toxic working environment. It is crucial for the
flow of the automotive assembly line that the spray painting is performed both with high
quality and in an efficient manner. In this paper we address the problem of reducing the
time needed to paint a surface without compromising the quality of the coating. This is
based on the observation that the velocity at which the end effector follows the path is far
more important to guarantee uniform paint coating than the orientation of the end effector.

We assume that the tool centre point trajectory, i.e. the trajectory at the surface that
the paint gun is to follow, is known. Several approaches for finding the optimal path in
terms of speed, coverage and paint waste have been presented in literature. An automatic
trajectory planning system is presented in Suh and I.-K. Woo (1991). Both the painting
mechanics and the robot dynamics are used to find the optimal trajectory with respect to
paint uniformity and cycle time given a CAD model. Ramabhadran and Antonio (1997);
Antonio (1994) present a computationally efficient formulation of the trajectory tracking
problem in spray paint application while Kim and Sarma (2003) find the optimal sweeping
paths by minimising the cycle time subject to actuator speed limits and coating thickness.

Some work has also been done on modelling the paint composition on a surface.
Hertling et al. (1996) present a mathematical model of the paint coating for a tilted gun
and Conner et al. (2005) develop computationally tractable analytic deposition models that
allow us to include the paint model, including the orientation with respect to the surface,
when considering the paint coating. Smith et al. (2001) discuss the problem of minimising
the orientation error when following curved surfaces and Atkar et al. (2005) include the
paint model in their framework for optimising cycle time and coating quality.

In Potkonjak et al. (2000) the idea of introducing the paint quality as a constraint and
minimise some additional cost function was presented. This opens for the possibility of
allowing a small error in the orientation of the end effector in order to increase the velocity
of the paint gun, reduce torques and so on. It was shown in From and Gravdahl (2007a) that
by allowing an orientation error, the speed and quality of the job was improved. However,
the optimal orientation error was chosen intuitively and the approach presented was not
suitable for implementation in an optimisation algorithm.

In Buss et al. (1996) the problem of friction force limit constraints was transformed
into a problem of testing for positive definiteness of a certain matrix. In From and Gravdahl
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(2008d) the same ideas were used to convert the problem of orientation error constraints
into a test of positive definiteness of a matrix. For different types of orientation errors,
a suitable matrix was found and it was shown that positive definiteness of this matrix is
equivalent to an orientation satisfying the given restrictions.

By transforming the non-linear orientation constraints into positive definiteness con-
straints imposed on certain symmetric matrices we transform the problem of finding the
optimal orientation into an optimisation problem on the smooth manifold of linearly con-
strained positive definite matrices. For the special case of positive definite symmetric
matrices, the constraints can be written on the form of linear matrix inequalities (LMIs).
We also show how to write the constraints as barrier functions and how to solve these.
Convex optimisation problems involving LMIs or barrier functions have been extensively
studied in literature, and reliable and efficient solutions are known (see Vandenberghe et al.
(1996); Boyd and Vandenberghe (2004); Boyd et al. (1994)).

10.3 Problem Statement

There are two main factors that play an important role in obtaining uniform paint coating
in automotive manufacturing. The first is to move the paint gun with constant velocity
throughout the trajectory. This is in general an easy task in following straight lines but
can be a challenge in turns where high accelerations are required. The second factor is the
orientation of the paint gun with respect to the surface, which should be orthogonal. It can
be shown that the velocity of the paint gun is far more important than the orientation when
it comes to uniform paint coating. A small orientation error (<20◦) in the paint gun does
not affect the quality of the coating to the same extent as changes in the velocity. Based
on these observations we represent the orientation not as one frame, but as a constrained
continuous set of frames. The problem treated in this paper is then formulated as follows:

Given a maximum allowed orientation error of the paint gun and a trajectory on the
surface that the paint gun is to follow with constant velocity and with a fixed distance from
the paint gun to the trajectory. Then the problem is to find the orientation of the paint
gun at every point on the trajectory that allows it to follow the trajectory with the highest
possible constant velocity.

We note that in this paper we do not require the orientation to be optimal. The optimal
solution to this problem, considering both kinematics and dynamics, is extremely complex.
However, we formulate the problem as an optimisation problem based on a simple and
intuitive cost function and show that the solution to this problem substantially improves
performance. In the following we will denote the solution to this optimisation problem the
"optimal orientation" although strictly speaking there might exist other orientations that
improve performance even further.

We consider a standard industrial manipulator, in our case the ABB IRB-5400 series
which is illustrated in Fig. 10.1. The first three joints are referred to as the main axes,
or the main joints. These are the strongest joints and also the ones that require the most
energy. While the main axes are mainly used for positioning the paint gun, the last three
joints, referred to as the wrist joints, determine the orientation of the paint gun. We fix
the inertial reference frame to the base of the manipulator. We also attach a frame to the
end effector of the manipulator, in our case the paint gun. This is attached so that the
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Figure 10.1: The ABB IRB spray paint robot with the definitions of the reference and tool frames.
Picture courtesy of ABB Robotics.

end-effector z-axis is aligned with the direction of the paint flow. This axis is referred to
as the central axis of the end effector.

To find the optimal orientation we first need to define a set of allowed orientations
from which we can choose the optimal one. This set of orientations is defined using the
unit quaternion which allows us to re-write the constraints using very simple expressions.
Sections 10.4 and 10.5 give a brief background on representing orientations and continuous
sets of orientations of rigid bodies. We also show how we can re-write restrictions on the
direction of the central axis as a simple constraint on the unit quaternion. In Section 10.6
we present the theoretical background on how to write constraints on the orientation in
a convex optimisation setting and in Section 10.7 we provide the equations needed for
implementing the algorithms such that a solution can be found in real time.

In Section 10.8 we show how we can increase the speed at which the manipulator can
paint a given surface without compromising the paint quality. The solution in itself is
very simple. It basically allows us to distribute the work-load more evenly on the different
joints. In our case we find that for the main joints the actuator torques are very close to
the torque limits while the wrist joints use only a fraction of the torque available. We thus
choose the orientations in a way that will make the main joints move less, and thus require
less torque. One easy way to do this is to force the position of the wrist towards the centre
of the surface reducing the length of its trajectory. Keeping in mind that the main joints are
mainly used for displacement, this will reduce the required torques of these joints. Section
10.8 also includes several simulations to verify the efficiency of the approach presented.
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10.4 Representing Rotations

10.4.1 The Unit Quaternion

The unit quaternion is well suited for representing orientations or continuous sets of ori-
entations of rigid bodies. A good introduction to quaternions is found in Kuipers (2002).
Any positive rotation φ about a fixed unit vector n can be represented by the four-tuple

Q =

[
q0
q

]
, (10.1)

where q0 ∈ R is known as the scalar part and q ∈ R3 as the vector part. Q(φ,n) is written
in terms of φ and n by

q0 = cos (
φ

2
), q = sin (

φ

2
)n. (10.2)

Q is a quaternion of unit length and denoted a unit quaternion. Henceforth, all quaternions

have unit length if not other is stated. Let QP =
[
p0 pT

]T
. The quaternion product of a

rotation Q followed by a rotation QP is written in vector algebra notations as

QP ∗Q =

[
p0q0 − p · q

p0q + q0p+ p× q

]
. (10.3)

The cross product implies that quaternion multiplication is not commutative, as expected.

Let QP =
[
p0 p1 p2 p3

]T
and Q =

[
q0 q1 q2 q3

]T
. Then the quaternion prod-

uct is written as

QP ∗Q =

⎡⎢⎢⎣
p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 + p2q0 + p3q1 − p1q3
p0q3 + p3q0 + p1q2 − p2q1

⎤⎥⎥⎦ . (10.4)

The quaternion product of two unit quaternions is a unit quaternion. From the definition of
the quaternion we see that the quaternionsQ and−Q produce the same rotation. This dual
covering allows every rotation to be described twice. In this paper all angles are assumed
to be in the interval [−π, π] so every orientation corresponds to one specific quaternion. It
is also assumed that all angles of inverse trigonometric functions are in this interval with
the correct sign. For arctan, this is denoted arctan2. The quaternion identity representing

the inertial frame is given by QI =
[
1 0 0 0

]T
.

A pure quaternion is a quaternion with zero scalar part. Any vector, v̄ =
[
x y z

]T
can be represented by a pure quaternion v =

[
0 v̄T

]T
. Finally the conjugate of a quater-

nion is defined as Q∗ =
[
q0 −q1 −q2 −q3

]T
.

10.4.2 Vector Rotations

Let a vector v̄1 be represented by the pure quaternion v1. This vector can be rotated φ
radians around the axis n by

v2 = Q ∗ v1 ∗Q∗. (10.5)
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Every vector v̄ ∈ R3 can be represented by a pure quaternion, hence v is not necessarily
of unit length. The quaternion Q, however, is unitary. This represents the angle and the
axis that the vector v̄1 is rotated about. The resulting vector v̄2 is then of the same length
as v̄1 if and only if Q is a unit quaternion.

Note that Equation (10.3) rotates one frame into another frame. By a frame it is meant
a coordinate system in R3 using Cartesian coordinates. One frame with respect to another
frame represents three degrees of freedom and is referred to as orientation. The reference
frame is the inertial frame denoted FI and the frame that corresponds to the inertial frame
by a rotation Q is denoted FQ. Equation (10.5), however, rotates one vector into another
vector and represents two degrees of freedom, i.e. a point on a sphere. A unit vector with
respect to a unit reference vector is referred to as direction. Henceforth, the main concern
is with the direction of the central axis, which is assumed to be the body frame z-axis of
the end effector. We refer to van der Ha and Shuster (2009) for a good reference on vectors
and attitudes. The following lemmas will also be used.

Lemma 10.1. (Sylvester’s criterion) A matrix P is positive definite if and only if all the
leading principal minors are positive. P is positive semi definite if all the leading principal
minors are non-negative.

Lemma 10.2. A block diagonal matrix P = Blockdiag(P1, . . . , Pi, . . . , Pk) is symmetric
positive definite if and only if each block Pi, i = 1, . . . , k is symmetric positive definite.
P is positive semi definite if each block is positive semi definite.

10.5 Quaternion Volumes

We start by representing a continuous set of orientations defined by a set of constraints
in Euler angles and a sequence of rotations. This allows us to find the corresponding
constraints on the quaternion entries q0, q1, q2 and q3. We denote this continuous set of
quaternions a quaternion volume. We then use this intuitive and well defined tool in the
next sections to represent these constraints as LMIs or barrier functions.

10.5.1 General Definition

A set of frames corresponding to a reference frame by a rotation φ about a fixed axis n
can be represented as

Q(φ,n), for φmin ≤ φ ≤ φmax. (10.6)

When the rotations are not limited to one axis only, a more general description of all
allowed orientations can be represented by a sequence of rotations given by the quaternion
product of two or more quaternions and their restrictions.

Definition 10.1 (Quaternion Volume). A quaternion volume Q⊗ is defined as

Q⊗ � {Q(φ1, . . . , φn,n1, . . . ,nn) | φ1,min ≤ φ1 ≤ φ1,max

... (10.7)

φn,min ≤ φn ≤ φn,max}
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for n ≥ 1 and where

Q(φ1, . . . , φn,n1, . . . ,nn) = Q(φn,nn) ∗ · · · ∗Q(φ1,n1). (10.8)

In this paper, only sets of frames that can be described by a sequence of rotations
about the coordinate axes are treated. We refer to Hanson (2006) and From and Gravdahl
(2007b) for a detailed discussion on quaternion volumes.

10.5.2 Reorientation of Quaternion Volumes

The quaternion product of two quaternion volumes, or a quaternion volume and a quater-
nion, is itself a quaternion volume. We can use this observation to transform quaternion
volumes and to represent them in a rotated coordinate system.

LetQ⊗ be a quaternion volume and the quaternion P represent some transformation on
Q⊗. Then the transformation Q⊗

P = Q⊗ ∗ P rotates the entire set of frames by a rotation
P . Similarly, the transformation Q⊗

P = Q⊗ ∗ P ∗ allows the set of frames represented
by the quaternion volume to be represented with respect to a new reference frame P .
The transformation induced by changing from one reference frame to another is called
reorientation (Alpern et al., 1993).

Proposition 10.1 (Transformation of Quaternion Volumes). Any quaternion volume Q⊗

represented with respect to the reference frame can be transformed into another quaternion
volume by

Q⊗
P = Q⊗ ∗ P, (10.9)

where the orientations represented by Q⊗
P relate to P in the same way as Q⊗ relates to

the reference frame.

Proof. The quaternion product E = Q ∗ P can be viewed upon as a rotation P followed
by a rotation Q with respect to the new frame. Hence, E relates to P in the same way as
Q relates to the reference frame. By the same argumentation the quaternion volume Q⊗

P

relates to P in the same way as Q⊗ relates to the reference frame.

In Proposition 10.1 the reference frame is kept constant and the quaternion volume
is rotated by P . Reorientation, however, is a rotation of the reference frame (change of
observer) while the quaternion volume is kept constant. The proof of the reorientation
Q⊗

P = Q⊗ ∗ P ∗ is constructed in the same way as the proof of Proposition 10.1.

10.5.3 The Pointing Task

We now show how to represent the freedom of the pointing task as a quaternion volume.
First assume that the z-axis of the end effector must be aligned with the z-axis of FI . This
gives the end effector one degree of rotational freedom about the z-axis. The pointing task
can be represented by an arbitrary rotation ψ about the z-axis as the quaternion volume

Q⊗
pt =

[
cos (ψ2 ) 0 0 sin (ψ2 )

]T
, for − π < ψ ≤ π. (10.10)

The quaternion volume is thus given with respect to the reference frame. Assume the

desired quaternion volume instead is to be rotated by Qd =
[
d0 d1 d2 d3

]T
from the
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reference frame. The quaternion volume that describes all orientations where the z-axis
points in the same direction as the z-axis of Qd is given by Q

⊗
d = Q⊗

pt ∗Qd so that

Q⊗
d =

⎡⎢⎢⎣
d0 cos(

ψ
2 )− d3 sin(

ψ
2 )

d1 cos (
ψ
2 )− d2 sin (

ψ
2 )

d2 cos (
ψ
2 ) + d1 sin (

ψ
2 )

d3 cos (
ψ
2 ) + d0 sin (

ψ
2 )

⎤⎥⎥⎦ , for − π < ψ ≤ π. (10.11)

Example 11. If the desired orientation is chosen so that the z-axis of the end effector
always points in the opposite direction of the z-axis of FI by a rotation about the y-axis

Qd =
[
0 0 1 0

]T
, Equation (10.11) simplifies to

Q⊗
d =

[
0 − sin (ψ2 ) cos (ψ2 ) 0

]T
, for − π < ψ ≤ π. (10.12)

All the quaternions that satisfy this restriction result in an end effector pointing in
the opposite direction of the z-axis of FI . Wee see this by rotating the vector v̂z =[
0 0 1

]T
by Q⊗

d . Then for −π < ψ ≤ π we have

z⊗ = Q⊗
d ∗ vz ∗ (Q⊗

d )
∗ (10.13)

=

⎡⎢⎢⎣
0

− sin(ψ2 )

cos(ψ2 )
0

⎤⎥⎥⎦ ∗

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ ∗

⎡⎢⎢⎣
0

sin(ψ2 )

− cos(ψ2 )
0

⎤⎥⎥⎦

=

⎡⎢⎢⎣
cos(ψ2 ) sin(

ψ
2 )− cos(ψ2 ) sin(

ψ
2 )

0
0

− cos2(ψ2 )− sin2(ψ2 )

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
−1

⎤⎥⎥⎦ . (10.14)

10.5.4 Cone Shaped Quaternion Volumes by Rotations Sequences

A rotation sequence describes a rotation about one coordinate axis followed by a rotation
about another coordinate axis in the rotated coordinate system. A general framework on
how to construct easily visualisable quaternion volumes by rotation sequences is presented.
We show how to construct different types of quaternion volumes and how these relate to
the different rotation sequences. This will allow the programmer to choose the quaternion
volume most appropriate for the task in hand or to define volumes using other rotation
sequences to obtain a new shape well suited for a specific task. The rotation sequence starts
with two subsequent rotations about two coordinate axes, represented by the quaternion
Qs. This defines the direction of the central axis, which is our main concern. The last
degree of freedom is added by a rotation about the central axis itself, here the z-axis, by
Qz . Then the orientation of the end effector is described by

Q = Qz ∗Qs. (10.15)

We will look into two different rotation sequences, the ZYZ-sequence and the XYZ-
sequence. For the ZYZ-sequence the direction of the central axis is determined by a
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a) ||·||2-cone in R3
√
x2 + y2 ≤ ν|z|

c) ||·||1-cone in R3 |x|+ |y| ≤ μ|z|

b) ||·||∞-cone in R3 max{x, y} ≤ η|z|

Figure 10.2: Different convex cones in R3. The cone defined by the 2-norm is self dual (setting
μ = 1). The cone defined by the ∞-norm is the dual of the cone defined by the 1-norm. The
illustrations of the∞- and 1-norms are good approximations for small rotations.

rotation about the z-axis followed by a rotation about the new y-axis. Thus, the differ-
ence in the direction between the new and the old central axis is given by the rotation
about the y-axis only. For the XYZ-sequence, however, this difference is given by the first
two rotations. For both sequences the last degree of freedom is given by a rotation about
the central axis itself and does not change its direction. Finally, the quaternion volume is
given by restricting the allowed rotations of each quaternion.

We use norms in R3 to define the directions of the central axis. We consider the three
cones given in Fig. 10.2. The cones are defined by the degree of the norm, representing
the shape of the cone, and by a parameter ξ representing the size of the cone by

||x1, x2, . . . , xn−1|| ≤ ξ|xn|. (10.16)
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We are mainly concerned with the z-axis, so in R3 we write

||x, y|| ≤ ξ|z|. (10.17)

Example 12. Given a ||·||2-cone with the parameter ν restricting the direction of the z-axis,
i.e. √

x2 + y2 ≤ ν|z|. (10.18)

Then the maximum rotation allowed by this cone is βlim = arctan ν around any axis in
the xy-plane. This is obtained by the ZYZ-sequence and can be visualised in Fig. 10.2a).

Example 13. Given a ||·||∞-cone with the parameter η restricting the direction of the z-
axis, i.e.

max{x, y} ≤ η|z|. (10.19)

Then the maximum rotation allowed by this cone is βlim = arctan η around the coordinate
axes (x- and y-axes) and βlim = arctan

√
2η around the axes x = ±y. This is obtained

by the XYZ-sequence and can be visualised in Fig. 10.2b) for small rotations.

Example 14. Given a ||·||1-cone with the parameter μ restricting the direction of the z-axis,
i.e.

|x|+ |y| ≤ μ|z|. (10.20)

Then the maximum rotation allowed by this cone is βlim = arctanμ around the coordinate
axes (x- and y-axes) and βlim = arctan μ√

2
around the axes x = ±y. This is the dual of

the ||·||∞-cone and is visualised in Fig. 10.2c) for small rotations.
We note that the results are valid for rotations around globally defined x- and y-axes

while the XYZ-sequence rotates about the rotated coordinate axes. For the ∞- and 1-
norms this is thus an approximation and only valid for small rotations.

We will represent the desired orientations as the continuous set of directions of the cen-
tral axis as described by the cones and a free rotation about the central axis itself. This set
can be composed by a rotation sequence of quaternion volumes. Two rotation sequences
are discussed in detail, the ZYZ-sequence, also considered in Alpern et al. (1993) and
Hanson (2006), and the XYZ-sequence.

2-cone

The ZYZ-sequence allows the desired orientation to be defined as a set of vectors that
span out a ||·||2-cone about the reference z-axis and all orientations about these vectors.
Let Qs(α, β) = Q(β,y) ∗ Q(α, z) where Q(α, z) =

[
cos (α2 ) 0 0 sin (α2 )

]T
and

Q(β,y) =
[
cos (β2 ) 0 sin (β2 ) 0

]T
so that

Qs(α, β) =

⎡⎢⎢⎣
cos (α2 ) cos (

β
2 )

sin (α2 ) sin (
β
2 )

cos (α2 ) sin (
β
2 )

sin (α2 ) cos (
β
2 )

⎤⎥⎥⎦ . (10.21)

α represents the allowed orientations about the z-axis of the first rotation while β is the
allowed orientation about the new y-axis. If α has no restrictions, β defines the size of a
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cone with the z-axis at the centre, illustrated in Fig. 10.2a). We let γ restrict the orientation
about the z-axis itself and the corresponding quaternion volume is then given by

Q⊗
d = Q⊗

z ∗Q⊗
s =

⎡⎢⎢⎣
cos(β2 ) cos(

γ
2 + α

2 )

sin(β2 ) sin(
α
2 − γ

2 )

sin(β2 ) cos(
γ
2 − α

2 )

cos(β2 ) sin(
γ
2 + α

2 )

⎤⎥⎥⎦ (10.22)

and the restrictions

−αlim ≤ α ≤ αlim (10.23)

0 ≤ β ≤ βlim (10.24)

−γlim ≤ γ ≤ γlim (10.25)

Example 15. Assume that the central axis is to point in the opposite direction of the z-axis
of FI . Further assume that a small error βlim in the direction is allowed and no restrictions
on the rotation about the z-axis. The set of frames describing these orientations is given
by (10.22) and the restrictions

−π < α ≤ π (10.26)

π ≤ β ≤ π + βlim (10.27)

−π < γ ≤ π (10.28)

We can also substitute β ← π + β and α ← −α into (10.22)

Q⊗
d = Q⊗

z ∗Q⊗
s =

⎡⎢⎢⎣
− sin(β2 ) cos(

γ
2 − α

2 )

cos(β2 ) sin(
γ
2 + α

2 )

cos(β2 ) cos(
γ
2 + α

2 )

− sin(β2 ) sin(
α
2 − γ

2 )

⎤⎥⎥⎦ (10.29)

and restrictions (10.23)-(10.25). Note that Equation (10.29) can also be obtained by ro-
tating the quaternion volume in (10.22) by π radians about the y-axis, i.e. by Equation

(10.9) with P =
[
0 0 1 0

]T
and Q⊗ =

[
q0 q1 q2 q3

]T
as in (10.22) so that

Q⊗
d =

[
−q2 q3 q0 −q1

]T
, which is the same as (10.29).

∞-cone
The XYZ-sequence defines the ||·||∞-cone, or a square cone of allowed directions where
the allowed orientations about the x-axis and the (new) y-axis are restricted. This is a good
estimation of restricting the orientation about the globally defined x- and y-axes whenever
the angles are kept small. Qs(α, β) is then given by

Qs(α, β) =

⎡⎢⎢⎣
cos(α2 ) cos(

β
2 )

sin(α2 ) cos(
β
2 )

cos(α2 ) sin(
β
2 )

− sin(α2 ) sin(
β
2 )

⎤⎥⎥⎦ . (10.30)
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The orientation is given by the quaternion volume

Q⊗
d = Q⊗

z ∗Q⊗
s (10.31)

and the restrictions

−αlim ≤ α ≤ αlim (10.32)

−βlim ≤ β ≤ βlim (10.33)

−γlim ≤ γ ≤ γlim (10.34)

10.5.5 Quaternion Volume Test

We now derive a test to verify if a quaternion lies inside the desired quaternion volume.
We will in turn use this to transform these restrictions into constraints that can be handled
directly in convex optimisation problems. Consider a quaternion volume defined by the
ZYZ-sequence. We show how to use the analytic expression of the quaternion volume to

find test to verify if a query quaternion Qqry =
[
q0 q1 q2 q3

]T
is an element of the

quaternion volume. Equation (10.22) gives⎡⎢⎢⎣
cos(β2 ) cos(

γ
2 + α

2 )

sin(β2 ) sin(
α
2 − γ

2 )

sin(β2 ) cos(
γ
2 − α

2 )

cos(β2 ) sin(
γ
2 + α

2 )

⎤⎥⎥⎦ =

⎡⎢⎢⎣
q0
q1
q2
q3

⎤⎥⎥⎦
(I)
(II)
(III)
(IV )

(10.35)

Then, from the Appendix we get

α = arctan(
q3
q0

) + arctan(
q1
q2

), (10.36)

β = 2arcsin
√
q21 + q22 , (10.37)

γ = arctan(
q3
q0

)− arctan(
q1
q2

), (10.38)

which gives

α+ γ = 2arctan(
q3
q0

). (10.39)

An alternative formulation is given by (From and Gravdahl, 2007b)

α = arctan2

(
q2q3 + q0q1
q0q2 − q1q3

)
, (10.40)

β = 2arccos
√
q20 + q23 , (10.41)

γ = arctan2

(
q2q3 − q0q1
q0q2 + q1q3

)
. (10.42)

240



10.5. RESTRICTIONS ON ORIENTATION ERROR

10.5.6 Transformed Quaternion Volumes

The easiest way to verify if a query quaternion lies inside a quaternion volume transformed
by Equation (10.9) is to transform the query quaternion by the opposite transformation P
so that both the quaternion volume and the query quaternion are presented in the reference
frame. Hence, the two problems below are identical.

Qqry ∈ Q⊗ ∗ P ? (10.43)

Qqry ∗ P ∗ ∈ Q⊗ ? (10.44)

This operation is computationally demanding. In the special case when an analytical ex-
pression of the transformed quaternion volume is given, as in Equation (10.9), the ori-
entation should be found by a set of parameters similar to the ones found in Equations
(10.40)-(10.42). We can obtain this when the quaternion volume is on a simple form, for
example as in Equation (10.29) where the quaternion volume is rotated 180◦ around the
y-axis. Then the query quaternion may be tested against the restrictions in (10.23)-(10.25)
directly. By following the mathematics of Equations (10.35)-(10.42), α, β and γ are found

with respect to the coordinate system of P =
[
0 0 1 0

]T
by

αP = arctan2

(
q0q1 + q2q3
q0q2 − q1q3

)
, (10.45)

βP = 2arcsin
√
q20 + q23 , (10.46)

γP = arctan2

(
q0q1 − q2q3
q0q2 + q1q3

)
. (10.47)

Hence, as expected we get βP = β − π, αP = α and γP = −γ.

10.6 Restrictions on Orientation Error in a Convex Opti-
misation Setting

In this section we show how the formalism of quaternion volumes naturally leads to for-
mulating restrictions on the orientation as LMIs and barrier functions.

10.6.1 2-norm

Assume that we would like to restrict the z-axis of FQ to point in approximately the same
direction as the z-axis of the reference frame FI . This can be visualised by a cone of
directions restricted by |β| ≤ βlim where 0 ≤ βlim ≤ π. The orientation error β can be
found from q1 and q2 by (10.37), i.e.

β = 2arcsin
√

q21 + q22 . (10.48)

A test to verify if the z-axis of FQ does not deviate from the z-axis of FI by more than
βlim is given in the following.
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Proposition 10.2. Given a maximum allowed deviation in the direction of the z-axis, rep-

resented by the rotation βlim. Then the z-axis of FQ rotated by Q =
[
q0 q1 q2 q3

]T
from the reference frame FI lies within the ||·||2-cone defined by βlim if and only if

P =

⎡⎣ η 0 q1
0 η q2
q1 q2 η

⎤⎦ � 0 (10.49)

where η = sin βlim

2 , 0 ≤ βlim ≤ π and� means positive semi-definiteness of the symmet-
ric matrix P .

Proof. As η ≥ 0 and η2 ≥ 0, from Lemma 10.1 we have that P � 0 if det(P ) ≥ 0. The
determinant of P is given by

det(P ) = η(η2 − q21 − q22). (10.50)

Note that 0 ≤ βlim < π ⇒ η ≥ 0 so that det(P ) ≥ 0 can be written as

η2 − q21 − q22 ≥ 0

sin
βlim

2
≥

√
q21 + q22 (10.51)

As 0 ≤
√
q21 + q22 ≤ 1 ⇒ 0 ≤ arcsin

√
q21 + q22 , we have

0 ≤ 2 arcsin
√

q21 + q22 ≤ βlim. (10.52)

Then Equation (10.48) concludes the proof as

0 ≤ β ≤ βlim. (10.53)

Note that the restrictions in Proposition 10.2 are on the directions of the z-axis only
and that rotations about the z-axis itself are not restricted (the pointing task). Note also that
P is symmetric and affine in Q. This is an important property as it allows us to represent
the constraints as LMIs. The following follows directly from Proposition 10.2 and allows
us to formulate the restrictions as a barrier function.

Corollary 10.1. Given a maximum allowed deviation in the direction of the z-axis, repre-
sented by the rotation βlim and let η = sin βlim

2 . Then the barrier function

φ = − log(η2 − q21 − q22) (10.54)

increases exponentially to infinity as the orientation approaches the orientation limit forc-

ing the z-axis of FQ rotated by Q =
[
q0 q1 q2 q3

]T
from the reference frame FI to

lie within the restrictions given by βlim.

The proof of Corollary 10.1 follows directly from the proof of Proposition 10.2.
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10.6.2 ∞-norm
Assume instead that we would like to restrict the allowed rotation differently around dif-
ferent axes. For example, if the set of allowed orientations is given by restrictions on
the rotation about the x-axis followed by a rotation about the y-axis, this will result in
a pyramid-shaped set of allowed directions. The following observations are important in
this section.

Rotating the vector v̄1 =
[
0 0 1

]T
by α about the x-axis of the reference frame

followed by a rotation β about the y-axis, also of the reference frame, gives the new vector

v̄I =

⎡⎣cosα sinβ
− sinα

cosα cosβ

⎤⎦ . (10.55)

For a rotation α about the x-axis of the reference frame followed by a rotation β about the
y-axis of the rotated coordinate system, the rotated vector is given by

v̄R =

⎡⎣ sinβ
− sinα cosβ
cosα sinβ

⎤⎦ . (10.56)

This can also be written as a quaternion Q. Let the vector v̄1 be rotated by Q into v2 =
Q ∗ v1 ∗Q∗. Then v2 is written as

v2 =

⎡⎢⎢⎣
0

2(q0q2 + q1q3)
2(q2q3 − q0q1)

q20 − q21 − q22 + q23

⎤⎥⎥⎦ . (10.57)

Proposition 10.3. Given a restriction αlim in the orientation error about the x-axis of the
reference frame and βlim in the orientation error about the y-axis of the rotated coordinate

frame. Then the z-axis of FQ rotated by the quaternion Q =
[
q0 q1 q2 q3

]T
with

respect to the reference frameFI lies within the restrictions given by βlim where βlim ≥ 0,
if and only if

P1 =

⎡⎣ η 0 q1
0 η q0
q3 q2 η

⎤⎦ ≥ 0 (10.58)

where η =
√

sin βlim

2 and ≥ means positive semi-definiteness for the non-symmetric ma-
trix P1.

Proof. The determinant of P1 is given by

det(P1) = η(η2 − q0q2 − q1q3). (10.59)

Assume det(P1) ≥ 0

η2 − q0q2 − q1q3 ≥ 0

sinβlim ≥ 2(q0q2 + q1q3). (10.60)
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As βlim ≥ 0, comparing Equations (10.56) and (10.57) gives

β = arcsin (2(q0q2 + q1q3)), (10.61)

and the initial requirement is obtained by

β ≤ βlim (10.62)

where β is the angle between the new z-axis and the yz-plane. Similarly for the lower
bound.

Proposition 10.4. Given a restriction αlim in the orientation error about the x-axis and
βlim in the orientation error about the y-axis, both in the reference frame. Then the z-

axis of frame FQ rotated by the quaternion Q =
[
q0 q1 q2 q3

]T
with respect to the

reference frame FI lies within the restrictions given by αlim if

P2 =

⎡⎣ ξ q2q3 0
q2q3 ξ q0q1
2ξ q0q1 ξ

⎤⎦ ≥ 0 (10.63)

where ξ = sinαlim

2 .

Proof. We start with the principal minors and see that we need to add the constraint

ξ2 − q22q
2
3 > 0. (10.64)

The determinant of P2 is given by

det(P2) = ξ(ξ2 − (q0q1)
2 − (q2q3)

2 + 2q0q1q2q3). (10.65)

Then det(P1) ≥ 0 becomes

ξ2 − (q0q1)
2 − (q2q3)

2 + 2q0q1q2q3 ≥ 0

ξ2 ≥ (q2q3 − q0q1)
2

sinαlim ≥ 2|q2q3 − q0q1|. (10.66)

As αlim ≥ 0, comparing Equations (10.57) and (10.55) gives

α = arcsin (2(q2q3 − q0q1)), (10.67)

and the initial requirement is obtained by

−αlim ≤ α ≤ αlim. (10.68)

Note that in Proposition 10.3 the second rotation is with respect to the rotated co-
ordinate frame and the constraints restrict only the rotations about the y-axis while in
Proposition 10.4 the second rotation is with respect to the rotated coordinate frame and the
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constraints restrict the allowed rotations about the x-axis only. This simplifies the compu-
tations substantially and is a good approximation to rotating around the x- and y-axes of
FI . We also note that the matrices given in Propositions 10.3 and 10.4 are not symmetric
and that P2 in (10.63) is not affine. Hence, the constraints cannot be represented as LMIs.
They can, however, be represented as barrier functions given as the negative logarithm of
the determinant for which we also omit the additional constraint (10.64).

Example 16. Given a restriction αlim in the orientation error about the x-axis and βlim

in the orientation error about the y-axis. Then the z-axis of frame FQ rotated by the

quaternion Q =
[
q0 q1 q2 q3

]T
with respect to the reference frame FQ lies within

the restrictions given by αlim and βlim if

P =

[
P1 0
0 P2

]
≥ 0 (10.69)

where P1 and P2 are given as in Propositions 10.3 and 10.4 respectively.

Alternatively, an accurate solution can be found by restricting the orientation about the
x-axis followed by the orientation about the y-axis, also in FI . This can be achieved by
writing α = arctan2( q2q3+q0q1

q0q2−q1q3
) and substituting

η =

√
cosα sinβlim

2
(10.70)

for η in Equation (10.58).

10.6.3 Restriction on the Orientation about the Central Axis

We now turn to the pointing task problem, i.e. to determine the rotation about the central
axis itself. This will not change the direction of the central axis and thus not influence
the orientation error. Assume we want the x-axis to point in one given direction in order
to improve performance. This direction may be different at every time step. Also for the
x-axis we may allow a small error from the desired direction. For the ZYZ-sequence the
direction of the x-axis is given by both α, β and γ. We assume the error of the direction of
the z-axis is restricted as in Section 10.6.1. When this is constrained to be relatively small,
the error in the direction of the x-axis can be approximated by the error in the orientation
about the central axis. This error is given by (10.39) as

ε = α+ γ. (10.71)

Proposition 10.5. Assume that the error in the direction of the z-axis is small. Given a
restriction in the orientation error εlim around the central axis, the x-axis of FQ rotated

by Q =
[
q0 q1 q2 q3

]T
from the reference frame FI lies within the restrictions given

by εlim ≥ 0 if and only if

P =

[
κ q3

q0
q3
q0

κ

]
� 0 (10.72)

where κ = tan εlim
2 .
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Proof. The determinant of P is given by

det(P ) = κ2 − q23
q20

. (10.73)

As εlim is positive, we have 0 ≤ tan εlim
2 for 0 ≤ εlim ≤ π and det(P ) ≥ 0 can be

written as

κ2 ≥ q23
q20

εlim ≥ |2 arctan (q3
q0

)| (10.74)

Then Equation (10.39) concludes that

−εlim ≤ ε ≤ εlim. (10.75)

Also for Proposition 10.5 we can reformulate the result and obtain a barrier function.

Corollary 10.2. Assume that the orientation error of the direction of the z-axis is small
and the orientation error about the central axis is restricted to εlim and let κ = tan ( εlim2 ).
Then the barrier function

φ = − log

(
κ2 − q23

q20

)
(10.76)

increases exponentially to infinity as the orientation approaches the orientation limit, forc-

ing the x-axis of FQ rotated by Q =
[
q0 q1 q2 q3

]T
from the reference frame FI to

lie within the restrictions given by εlim.

10.6.4 Direction of the x-axis

Alternatively, one might want to restrict the direction of the x-axis directly. Note that the
matrix given in the previous section is not affine and cannot be written as an LMI. Hence,
another matrix that is both symmetric and affine is proposed in the following. Assume that
the direction of the x-axis is to be restricted. Similarly to Equation (10.49), the requirement
that the body frame x-axis is to point in the direction of the reference frame x-axis is given
by

P2 =

⎡⎣ ξ 0 q2
0 ξ q3
q2 q3 ξ

⎤⎦ � 0 (10.77)

where ξ = sin εlim
2 . This will restrict the x-axis of FQ to lie within a cone with the x-axis

of FI at the centre.
This quaternion volume can also be transformed by Equation (10.9). Assume that the

direction of the body frame x-axis is to point in the direction given by the direction of the

x-axis of Qd =
[
d0 d1 d2 d3

]T
. In order to apply the restriction given by (10.77),
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Figure 10.3: The path of the tool centre point (TCP) in the xy-plane. The direction of the central
axis is determined from θ by the quaternion Qd(θ) and the rotation around the central axis itself is
determined from ψ.

but to the direction of the x-axis of FQd
and not that of FI ,Q is transformed back into the

reference frame and the test is performed on the transformed quaternion

Qt = Q ∗Q∗
d =

⎡⎢⎢⎣
∗
∗

−q0d2 + q2d0 − q3d1 + q1d3
−q0d3 + q3d0 − q1d2 + q2d1

⎤⎥⎥⎦ (10.78)

Note that when Qt is substituted into (10.77), P2 is still symmetric and affine in Q.

10.7 Spray Painting

We now show an example where the direction of the z-axis is determined by two cone-
shaped sets of orientations. The direction given by the two sets at each time step is in
general conflicting and the solution is the minimum of a cost function given by the sum of
the two orientation errors. There are two main criteria that will guarantee uniform paint
coating, the orientation of the spray gun with respect to the surface and its velocity. The
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first restriction is ensured by the constraint

η2 − q21 − q22 > 0 (10.79)

where η = sin (βlim

2 ) and βlim is the maximum allowed orientation error for which the
quality of the paint job is satisfying. The paint gun should always be orthogonal to the
surface, but in general an orientation error of about 20◦ guarantees uniform paint coating.
We will assume a manipulator that is to paint a surface in the xy-plane following the path
in Fig. 10.3. The restrictions on the orientation is visualised by a cone. The cross section
of this cone is given by the circle in Fig. 10.3.

The second restriction is on the velocity of the paint gun and can be improved by a
similar constraint. The general idea is to reduce the displacement of the paint gun by
choosing a desired orientation at each time step which forces the position of the paint gun
to remain at the centre of the surface. This will reduce the torques in the main axes as these
are mainly used for positioning the end effector. Assume we want to paint the surface in
the xy-plane with a constant distance zdes between the tool and the surface. Let c be the
vector from the centre of the surface, at height zdes, denoted pcent, to the current position
ptcp on the surface

c = ptcp − pcent. (10.80)

This is the direction of the central axis for which the main axes don’t need to move at all,
i.e. pure rotation of the wrist. We choose this as the desired direction of the central axis
when the orientation error is not considered, represented by Qd. We now introduce the
same freedom in this constraint as we did with the orientation error, forcing the orientation
to lie inside a quaternion volume with the z-axis of Qd at the centre.

First we transform the quaternion back into the reference frame and perform the test
on the transformed quaternion in the reference frame. The transformed quaternion is given
by

Qp(t)=

⎡⎢⎢⎣
p0
p1
p2
p3

⎤⎥⎥⎦= Q ∗Q∗
d(t)=

⎡⎢⎢⎣
∗

−q0d1 + q1d0 − q2d3 + q3d2
−q0d2 + q2d0 − q3d1 + q1d3

∗

⎤⎥⎥⎦. (10.81)

The constraint that forces the end effector to point in the direction of Qd with a maximum
orientation error αlim is given by Proposition 10.2 as

ξ2 − p21 − p22 > 0 (10.82)

where ξ = sin (αlim

2 ). Thus, we use the same constraint as for the reference frame, but on
the transformed quaternion Qp(t).

We now turn to the problem of spray painting the surface in the xy-plane in Fig. 10.3,
also addressed in From and Gravdahl (2007a). The surface is to be painted from above, so
the set representing the orientation error needs to be rotated 180◦ so that it points down-
wards. This can be done by to Equation (10.9) with P =

[
0 0 1 0

]T
or the approach

that we will take here, instead of the restriction η2 ≥ q21+q22 , which we used in Proposition
10.2, we write

η2 ≤ q21 + q22 , (10.83)
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and replace βlim ← π − βlim in η = sin(βlim

2 ). This will guarantee that the set of
orientations points in exactly the opposite direction of the set of Equation (10.82). The
barrier function is then the sum of the two constraints representing the orientation error
and the velocity and is given by

φ = kerrφerr + ktcpφtcp (10.84)

= −kerr log(q
2
1 + q22 − η2)− ktcp log(ξ

2 − p21 − p22).

where φerr guarantees that the orientation error lies within the limits and φtcp allows the
end effector to follow the path with a higher velocity. The weights kerr and ktcp weighs the
importance of the two restrictions and should be chosen so that the end-effector velocity
is constant and as high as possible.

10.7.1 The gradient Method and Implementation

In this section we show how to solve the optimisation problem by the gradient method.
The partial derivatives are given by

∂φerr

∂q0
= 0,

∂φerr

∂q1
= − 2q1

q21 + q22 − η2
, (10.85)

∂φerr

∂q3
= 0,

∂φerr

∂q2
= − 2q2

q21 + q22 − η2
, (10.86)

and

∂φtcp

∂q0
= −2(d21 + d22)q0 − 2(d0d1 + d2d3)q1 + 2(d1d3 − d0d2)q2

ξ2 − p21 − p22
, (10.87)

∂φtcp

∂q1
= −2(d20 + d23)q1 − 2(d0d1 + d2d3)q0 + 2(d0d2 − d1d3)q3

ξ2 − p21 − p22
, (10.88)

∂φtcp

∂q2
= −2(d20 + d23)q2 + 2(d1d3 − d0d2)q0 − 2(d2d3 + d0d1)q3

ξ2 − p21 − p22
, (10.89)

∂φtcp

∂q3
= −2(d21 + d22)q3 + 2(d0d2 − d1d3)q1 − 2(d2d3 + d0d1)q2

ξ2 − p21 − p22
. (10.90)

The gradient is then given by

∇φ =

⎡⎢⎢⎢⎣
kerr

∂φerr

∂q0
+ ktcp

∂φtcp

∂q0

kerr
∂φerr

∂q1
+ ktcp

∂φtcp

∂q1

kerr
∂φerr

∂q2
+ ktcp

∂φtcp

∂q2

kerr
∂φerr

∂q3
+ ktcp

∂φtcp

∂q3

⎤⎥⎥⎥⎦ . (10.91)

The problem is solved by the gradient method

φk+1 = φk − a∇φ. (10.92)

For a feasible initial condition and for a relatively small and constant step size a the sta-
bility and convergence of the method is good. Due to the low computational burden of
this approach, a constant step is used instead of a search. This requires that a is chosen
conservatively which may lead to slower convergence.
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10.7.2 The Pointing Task

By the approach described in the previous section, the orientation about the central axis (z-
axis) is not determined. In this section we show how to utilise the last degree of freedom to
improve performance further. We will present three different approaches for implementing
the solution to the pointing task problem. The orientations found do not differ very much,
but the implementations are quite different.

From and Gravdahl (2007a)

The first approach presented is the intuitive approach given in From and Gravdahl (2007a).
The orientation about the central axis at point i is set as

ψ(t) = kψ arctan2

(
y(t)

x(t)− xcent

)
(10.93)

for kψ ∈ (0, 1] and where x(t) and y(t) give the position of the end effector at time t in
the xy-plane and xcent is the centre of the surface in the x-direction. ψ(t) is shown in Fig.
10.3. It was shown in From and Gravdahl (2007a) that will reduce the displacement of the
main axes.

Direction of the x-axis (Section 10.6.4)

A similar approach is to force the end effector x-axis to point in the direction of the base of
the manipulator. By projecting the end-effector x-axis into the xy-plane and force this to
point in the direction of the base will have approximately the same effect as the approach
in the previous section, but this constraint can easily be written on the form of (10.78) as

Qr(t) =

⎡⎢⎢⎣
r0
r1
r2
r3

⎤⎥⎥⎦ = Q ∗Q∗
e(t) =

⎡⎢⎢⎣
∗
∗

−q0e2 + q2e0 − q3e1 + q1e3
−q0e3 + q3e0 − q1e2 + q2e1

⎤⎥⎥⎦ , (10.94)

where Qe(t) is time varying and takes the end-effector x-axis into the desired direction.
Further, we want the end-effector x-axis to point in the opposite direction of the global
x-axis, so we let γlim ← π − γlim and write the corresponding cost function as

φx = − log(r22 + r23 − ν2), (10.95)
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where ν = sin(γlim

2 ) and γlim is the maximum error allowed in the direction of the x-axis.
The partial derivatives are given by

∂φx

∂q0
= −2(e22 + e23)q0 − 2(e0e2 + e1e3)q2 + 2(e1e2 − e0e3)q3

r22 + r23 − ν2
, (10.96)

∂φx

∂q1
= −2(e22 + e23)q1 + 2(e0e3 − e1e2)q2 − 2(e1e3 + e0e2)q3

r22 + r23 − ν2
, (10.97)

∂φx

∂q2
= −2(e20 + e21)q2 − 2(e0e2 + e1e3)q0 + 2(e0e3 − e1e2)q1

r22 + r23 − ν2
, (10.98)

∂φx

∂q3
= −2(e20 + e21)q3 + 2(e1e2 − e0e3)q0 − 2(e1e3 + e0e2)q1

r22 + r23 − ν2
. (10.99)

Thus, the search direction for every time step is given by

∇φ =

⎡⎢⎢⎢⎣
kerr

∂φerr

∂q0
+ ktcp

∂φtcp

∂q0
+ kx

∂φx

∂q0

kerr
∂φerr

∂q1
+ ktcp

∂φtcp

∂q1
+ kx

∂φx

∂q1

kerr
∂φerr

∂q2
+ ktcp

∂φtcp

∂q2
+ kx

∂φx

∂q2

kerr
∂φerr

∂q3
+ ktcp

∂φtcp

∂q3
+ kx

∂φx

∂q3

⎤⎥⎥⎥⎦ . (10.100)

Applying the gradient method will find the minimum of a cost function given by the
sum of three in general conflicting objectives. φerr guarantees that the orientation error is
within its limits, φtcp increases the velocity of the paint gun and φx exploits the pointing
task to increase the velocity further.

Restrictions of the Rotation about the central axis (Section 10.6.3)

By Proposition 10.5, we get that the rotation about the z-axis can be forced to zero by the
cost function

φx = −kx log(κ
2 − q23

q20
). (10.101)

The partial derivatives are given by

∂φx

∂q1
= 0,

∂φx

∂q0
= − 2q23

q0(κ2q20 − q23)
,

∂φx

∂q2
= 0,

∂φx

∂q3
=

2q3
κ2q20 − q23

.

We would like the x-axis to point in the direction of the base, which we obtain by a

rotation about the z-axis by Qe =
[
e0 0 0 e3

]T
. Again we use Qr = Q ∗Q∗

e and

φx = − log(κ2 − r23
r20

) (10.102)

where

Qr(t) =

⎡⎢⎢⎣
r0
r1
r2
r3

⎤⎥⎥⎦ = Q ∗Q∗
e(t) =

⎡⎢⎢⎣
q0e0 + q3e3

∗
∗

−q0e3 + q3e0

⎤⎥⎥⎦ . (10.103)
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The partial derivatives are then given by

∂φx

∂q1
= 0,

∂φx

∂q2
= 0, (10.104)

∂φx

∂q0
=

2(e43 − e40)q0q
2
3 − 2(q33 − q20q3)(e

3
0e3 + e0e

3
3)

r20(κ
2r20 − r23)

,

∂φx

∂q3
=

2(e40 − e43)q
2
0q3 − 2(q30 − q0q

2
3)(e0e

3
3 + e30e3)

r20(κ
2r20 − r23)

.

Then by choosing Qe such that the x-axis points in the direction of the base by a rotation
about the z-axis, we obtain the desired motion characteristics. Note that in (10.102) the
central axis is assumed to be orthogonal to the surface. Hence, the results are only valid
when a small orientation error in the direction of the z-axis is allowed.

10.7.3 LMIs

We now turn to the problem of how to formulate the constraints on the orientation as LMIs
and how to solve this when several constraints are present. The problem

minimise φ(x) = log detG(x)−1

subject to G(x) � 0
(10.105)

where
G(x) = G0 + x1G1 + x2G2 + · · ·+ xmGm, (10.106)

is known as the analytic centering problem. This formulation allows us to formulate the
restrictions on the z- and x-axes in one big block diagonal matrix and solve this very
efficiently. If the feasible set X = {x | G(x) � 0} is non-empty and bounded, the
matrices Gi, i = 1, ...,m are linearly independent and the objective function is strictly
convex on X (Vandenberghe et al., 1996). In this case, it can be guaranteed that the
optimality condition∇φ(x∗) = 0, for an optimal solution x∗, can be reached.

In our case, the constraints on the z-axis are written as:

minimise φ(x) = log detP (x)−1

subject to P (x) � 0
(10.107)

where P is given by Equation (10.49) and can be written as

P (x) = P0 + x1P1 + x2P2 + x3P3 + x4P4, (10.108)

where
x1 = q0, x2 = q1, x3 = q2, x4 = q3, (10.109)

P0 =

⎡⎣η 0 0
0 η 0
0 0 η

⎤⎦ , P1 = P4 =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ ,

P2 =

⎡⎣0 0 1
0 0 0
1 0 0

⎤⎦ , P3 =

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦ .
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q0 and q3 do not affect the solution and can be eliminated from the equations.
To apply the time varying constraints on the transformed x-axis, substitute (10.78) into

(10.77), denote the resulting matrix F , and write it on the form of (10.108) so that

F (x) = F0 + x1F1 + x2F2 + x3F3 + x4F4, (10.110)

x1 = q0, x2 = q1, x3 = q2, x4 = q3, (10.111)

F0 =

⎡⎣ξ 0 0
0 ξ 0
0 0 ξ

⎤⎦ , F1(t) =

⎡⎣ 0 0 −d2
0 0 −d3

−d2 −d3 0

⎤⎦ ,

F2(t) =

⎡⎣ 0 0 −d3
0 0 d2

−d3 d2 0

⎤⎦ , F3(t) =

⎡⎣ 0 0 d0
0 0 −d1
d0 −d1 0

⎤⎦ ,

F4(t) =

⎡⎣ 0 0 d1
0 0 d0
d1 d0 0

⎤⎦ .

To combine the restrictions of the x- and z-axes we use Lemma 10.2 and formulate the
problem as

minimise φ(x) = log det

[
P (x) 0
0 F (x)

]−1

subject to

[
P (x) 0
0 F (x)

]
� 0

(10.112)

for which the solution is the orientation which minimises the error both of the x-axis and
the z-axis with a “metric” that increases exponentially with the angular distance from the
desired directions of the x- and z-axes. Also note that for two conflicting constraints on the
direction of the z-axis, the constraints given by Equation (10.82) can be written similarly
by substituting (10.81) into (10.49).

10.7.4 Normalisation

The optimisation algorithms described optimise freely over all quaternions, and it is thus
not guaranteed, nor likely, that the resulting quaternion is of unit length. One simple and
very effective, though not very mathematically sound solution, is to optimise freely over
all quaternions and then normalise the result afterwards. This turns out to work very well
in practice. Another option is to add the constraint |Q| = 1 in the optimisation algorithm
which guarantees that the search space is only the set of quaternions of unit length.

10.7.5 Optimality and Existence of the Solutions

We note that the quaternion volumes must be chosen so that a solution exists. The quater-
nion volume representing the orientation error should be chosen according to the maxi-
mum allowed error. For the quaternion volume constructed to increase velocity we have
more freedom in choosing the size of the volume. This should thus be chosen big enough
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so that a solution always exists. This can then be compensated for by increasing ktcp in
Equations (10.84) or (10.91).

The optimal orientation at every time step can be found in real time given the velocity
of the paint gun. However, the optimal velocity is not found in real time. This is achieved
by increasing the velocity until the simulations show that the joint torques reach the limits.
Thus, to find the optimal velocity, we need to perform several simulations or test runs to
find this. In this sense the solution is not found in real time. On the other hand, if the
manipulator is to follow a trajectory for which the maximum velocity is not found by test
runs, we can use information about the curvature of the path and the maximum orientation
error to choose a velocity that is far higher than for the conventional approach. In this
sense, the solution is optimal for the chosen velocity.

The main strength of this method lies in its simplicity. The low computation time al-
lows us to run the problem several times to find a solution very close to the optimal one.
There are many alternative approaches well suited to find an optimal or closer to optimal
solution. A learning approach may find a more optimal solution, but this would require
far more computational effort. One might also construct an optimisation problem that
optimises the torques given a freedom in the orientation, but to find an optimal global so-
lution to this problem is extremely complex. The short computation time for the proposed
algorithm makes it a good alternative to the computationally more demanding approaches.

10.7.6 Curved Surfaces

The approach presented is not limited to planar surfaces. For curved surfaces such as
the hood of a car, we can use the exact same approach. The desired direction of the
end effector used in (10.81) can be chosen as the same as the planar case. However,
the quaternion volume representing the orientation error must be transformed similarly to
(10.81) so that the centre of the volume is orthogonal to the surface at every point on the
trajectory. For curved surfaces we expect the performance to improve more than for a
plane as the orientation of the paint gun does not have to follow the optimal orientation
(orthogonal to the surface) as tightly and can sweep over the surface more smoothly and
with less variation in the orientation.

10.8 Numerical Examples

10.8.1 Convergence

Table 10.1 shows the computational efficiency of the algorithms presented. The conver-
gence is in general very good and a solution is found in 10-20 iterations. In some cases
a few more iterations are needed, but for all the tests performed, about 50 iterations is
sufficient, as a worst-case measure. No information from the previous solution is used in
choosing the initial conditions. The simulations were performed on an Intel T7200 2GHz
processor. We can see that the time needed for each iteration is very low. Even for the
worst case of 50 iterations the time needed to find a solution is less than one millisecond.
This makes all the algorithms presented suitable for on-line implementation.

The three algorithms presented were compared in terms of computational efficiency.
The algorithms tested were i) z-axis cone restrictions as presented in Section 10.7.1; ii)
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Figure 10.4: Torques for joint 1 and 2 for the four different approaches presented.

z-axis cone restrictions as presented in Section 10.7.1 with additional cone restriction on
the direction of the x-axis as presented in Section 10.7.2; and iii) z-axis cone restrictions
as presented in Section 10.7.1 with additional restriction on the rotation about the z-axis
as presented in Section 10.7.2.

Algoritm Iteration time Max its Max time
[ms] needed [ms]

i) z-axis cone 0.00232 50 0.116
ii) z-axis cone & x-axis cone 0.00268 50 0.1608
iii) z-axis cone & restr x-axis 0.00605 50 0.363

Table 10.1: Speed for one iteration, number of iterations needed to "guarantee" an optimal solution
(worst case), and time needed to obtain optimal solution.

10.8.2 Trajectory Speed

The same algorithms were tested for trajectory following. The manipulator was to follow
the path given in Fig. 10.3 with a constant speed of 1m/s. The torques of joints 1 and
2 for each case is shown in Fig. 10.4 together with the torque limits of each joint. We
can see that all the approaches improve performance substantially. The approach that
only adds constraints on the direction of the z-axis performs very well and is very easy to
implement. For large allowed orientation errors of the z-axis the x-axis cone will reduce
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the orientation error not only of the x-axis but also the z-axis. This may be considered
a side-effect of this cone constraint as the main motivation behind this restriction is to
change the direction of the x-axis and not the z-axis. This side-effect is not present for
the last approach which determines the direction of the x-axis by restricting the rotation
around the end-effector z-axis. This approach will thus perform better in some cases
as the orientation error of the z-axis, which is our main concern, is not reduced. This
approach does, however, have a numerical singularity when q0 approaches zero. This
must be handled in the implementation.

Table 10.2 shows the maximum speed for which the manipulator can follow the path
for each algorithm. The speed increases for all the approaches presented. Table 10.2 also
shows the maximum orientation error of the z-axis in each case. The maximum allowed
orientation error is set to 20◦ for all approaches. We see that the maximum orientation
error when both the z- and x-axes are restricted by a cone is lower than for the two other
cases. This is because, as described above, the restriction on the x-axis cone will also
affect direction of the z-axis. As the direction of the z-axis is our main tool to improve
performance, this approach does not perform as well as the other two when large orienta-
tion errors are allowed.

Algorithm Max vel [m/s] Max or. error [◦]
Conventional 0.91 0
i) z-axis cone 1.35 20
ii) z-axis cone & x-axis cone 1.28 12
iii) z-axis cone & restr x-axis 1.37 20

Table 10.2: The maximum speed the manipulator can follow the path for the four different ap-
proaches and the corresponding orientation errors.

10.9 Conclusion

In this paper we have shown how to transform a constraint on a continuous set of orienta-
tions into a convex constraint. By representing the constraints as LMIs or barrier functions
the optimal solution for a given cost function can be found in real time at every time step.
For spray paint applications this allows us to exploit the fact that a small orientation error
can be utilised to increase the velocity of the paint gun during turn, guaranteeing uniform
paint coating and substantially decreasing the time needed to paint a surface.

10.10 Appendix

The quaternion volume is given by Equation (10.22), i.e.⎡⎢⎢⎣
cos(β2 ) cos(

α
2 + γ

2 )

sin(β2 ) sin(
α
2 − γ

2 )

sin(β2 ) cos(
α
2 − γ

2 )

cos(β2 ) sin(
α
2 + γ

2 )

⎤⎥⎥⎦ =

⎡⎢⎢⎣
q0
q1
q2
q3

⎤⎥⎥⎦
(I)
(II)
(III)
(IV )

(10.113)
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By substituting (II) into (III), (III) becomes

sin(
β

2
)

√
1− q21

sin2(β2 )
= q2 (10.114)

and β = 2arcsin
√
q21 + q22 is positive by definition. α and γ are found by dividing (II)

by (III) and (IV) by (I):

tan(
α

2
− γ

2
) =

q1
q2

, tan(
γ

2
+

α

2
) =

q3
q0

. (10.115)

We write

α

2
− γ

2
= arctan(

q1
q2

),
γ

2
+

α

2
= arctan(

q3
q0

), (10.116)

so that α, β and γ are given by Equations (10.36)-(10.38).
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Chapter 11

Optimal Paint Gun Orientation
in Spray Paint Applications -
Experimental Results

11.1 Abstract

In this paper we present the experimental results of a new spray paint algorithm
presented in previous publications. Both theory and simulations indicate that the
proposed method allows a robotic manipulator to paint a given surface using sub-
stantially lower joint torques than with conventional approaches. In this paper we
confirm this by implementing the algorithm on an ABB robot and we find that the
joint torques needed to follow the trajectory are substantially lower than for the con-
ventional approach.
The approach presented is based on the observation that a small error in the ori-

entation of the end effector does not affect the quality of the paint job. It is far more
important to maintain constant velocity for the entire trajectory. We thus propose
to allow a small error in the specification of the end-effector orientation and show
how this allows us to obtain a higher constant speed throughout the trajectory. In
addition to improve the uniformity of the paint coating we are able perform the paint
job in less time.
Note to Practitioners—This paper is motivated by the observation that uniform

paint coating cannot be achieved in steep turns. Even if the manipulator possesses
the necessary actuator torques to maintain constant speed for a straight line tra-
jectory the torques needed to maintain constant velocity during turn are far higher.
Thus, the operator has to lower the trajectory speed, also in the straight line segments
where this would normally not be necessary, or accept a thicker layer of paint in the
turns. The method proposed in this paper is to implement a slightly different plan-
ning algorithm in turns allowing the paint gun to follow the trajectory with a higher
constant velocity.

Keywords—Spray painting, assembly-line manufacturing, modelling, empirical stud-
ies.
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11.2 Introduction

In robotics research empirical studies are extremely important in order to validate algo-
rithms and simulation results. Even though simulation tools are becoming increasingly
accurate, they can never compare to real-world experiments. In this paper we present the
empirical data obtained by implementing three different spray paint algorithms and run-
ning these on a robot manipulator in our lab. The algorithms compute a trajectory in joint
space for which the end-effector follows a pre-defined path. The joint torques are then
measured for the different approaches and compared to the conventional approach. The
details of the proposed approach and the expressions to be implemented are found in From
and Gravdahl (2010b).

In Potkonjak et al. (2000) the idea of introducing the paint quality as a constraint and
minimise some additional cost function was presented. This opens for the possibility of
allowing a small error in the orientation of the end effector in order to increase the velocity
of the paint gun, reduce torques, and so on. In Buss et al. (1996) the problem of friction
force limit constraints was transformed into a problem of testing for positive definiteness
of a certain matrix and in From and Gravdahl (2008d) the same ideas were used to convert
the problem of orientation error constraints into a test of positive definiteness of a matrix.
For different types of orientation errors, a suitable matrix was found and it was shown that
positive definiteness of this matrix is equivalent to an orientation satisfying the given re-
strictions. By transforming the non-linear orientation constraints into positive definiteness
constraints imposed on certain matrices we transformed the problem of finding the optimal
orientation into an optimisation problem on the smooth manifold of linearly constrained
positive definite matrices (From and Gravdahl, 2010b).

In From and Gravdahl (2010b) we showed that by allowing an orientation error of
about 20◦ we are able to 1) reduce the torques required to follow a path by about 50% and
2) increase the speed at which the end effector can follow the trajectory with about 50%.
These results were found through simulations. It is, however, important to confirm these
results also through empirical studies in the lab. In this paper we have implemented the
same algorithms on a robot and measured the torques needed to follow a typical path for
painting a flat and a curved surface.

11.3 Problem Statement

There are two main factors that play important roles in obtaining uniform paint coating
in automotive manufacturing. The first is to move the paint gun with constant velocity
throughout the trajectory. This is in general an easy task in following straight lines but
can be a challenge in turns where high accelerations are required. The second factor is the
orientation of the paint gun with respect to the surface, which should be orthogonal.

It can be shown that the velocity of the paint gun is far more important than the ori-
entation when it comes to uniform paint coating. A small error (<20◦) in the paint gun
orientation does not affect the quality of the coating to the same extent as changes in the
velocity. Based on these observations we represent the orientation not as one frame, but as
a constrained continuous set of frames. The problem treated in this paper is then formu-
lated as follows:
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Given a maximum allowed orientation error of the paint gun and a trajectory on the
surface that the paint gun is to follow with constant velocity and with a fixed distance from
the paint gun to the surface. Then the problem is to find the orientation of the paint gun at
every point on the trajectory that allows it to follow the trajectory with the highest possible
constant velocity.

We consider a standard industrial manipulator. The first three joints are referred to as
the main axes, or the main joints. These are the strongest joints and also the ones that
require the most torque. While the main axes are mainly used for positioning the paint
gun, the last three joints, referred to as the wrist joints, determine the orientation of the
paint gun. We fix the inertial reference frame to the base of the manipulator. We also
attach a frame to the end effector of the manipulator, in our case the paint gun. This is
attached so that the end-effector z-axis is aligned with the direction of the paint flow. This
axis is referred to as the central axis.

We thus follow the standard approach for defining the reference frames of the manip-
ulator but instead of specifying only one frame, we can define a continuous set of frames
that lie close to the original frame by some metric. The algorithm is then free to choose
any frame that lies sufficiently close to the original frame. At each point in the path, the
proposed algorithm then chooses the frame that results in the highest possible constant
speed of the end effector.

For a spray paint robot following a path as the one in Fig. 11.1 the main work load is
on the main axes of the robot, i.e., joints 1, 2, and 3. We observe that the work load on
the wrist axes is very small compared to the main axes. The proposed algorithm will thus
endeavour to move some of the work load from the main axes to the wrist axes. Because
the joint torques of the main axes are very close to the torque limits, this should allow us to
follow the trajectory with a higher velocity. Increasing the torques of the wrist axes should
not pose any problems as these are very small for this type of trajectory.

11.4 Experimental Set-up

All the experiments were performed in ABB’s robot lab in Oslo, Norway on the ABB
IRB-4400 industrial robot. The robot was equipped with an end effector of approximately
the same weight as a spray paint gun. The optimal trajectories were computed off-line to
allow for analysis, but as far as the computation time is concerned, the computations could
have been performed on-line. The resulting optimal trajectories were implemented in joint
space feeding the joint positions for each joint at constant time intervals.

During the experiments the positions, velocities, and torques of each joint were saved.
All signals are scaled so that the maximum value equals 1. The measurements for the
three different approaches are scaled by the same factor, so the plots presented in the next
section are comparable and illustrate well the difference between the different approaches.

The robot was set to follow a path as the one shown in Fig. 11.1 which consists of
four straight line segments and three turns. ptcp denotes a position at the surface and at
every time t the spray gun must point in the direction of ptcp(t). This is the path of the
tool centre point (TCP). We perform the experiments for two different surfaces: 1) a flat
surface in the xy-plane, and 2) a curved surface. The surfaces are illustrated in Fig. 11.1.
All the experiments are performed with a constant TCP velocity of 0.9 m/s.
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Figure 11.1: The path of the tool centre point (TCP) for the flat surface in the xy-plane and the
curved surface.

11.5 Experimental Results

In this section we present the experimental results when the trajectory is computed using
the following algorithms:

1. Conventional - the orientation error is zero and the optimal orientation around the
central axis is not utilized to improve performance.

2. Pointing Task - the orientation error is zero and the optimal orientation around the
central axis is found. The rotation about the central axis can be chosen freely.

3. Quaternion Volume - an orientation error of 20◦ is allowed and the optimal orien-
tation is found. We also optimise around the central axis, as in 2).

11.5.1 Flat Surface

The joint positions for the main and wrist axes are found in Fig. 11.2. We can see that
the joint trajectories found by the three algorithms are quite different even though the
end-effector position is basically the same and the orientation differs only slightly for
the different approaches. The trajectories in joint space are quite similar for joint 2 and
3, which is due to the kinematic coupling between these joints in the IRB-4400. The
corresponding joint velocities are found in Fig. 11.3. Fig. 11.4 shows the power for all the
joints. We see clearly that the energy used is reduced for the main axes and that the wrist
axes take more of the work load. The largest reduction is found in the first joint, which
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Figure 11.2: Joint positions. All positions are scaled.

corresponds well with the position and velocity plots. We also note that for the wrist axes
we use considerably more energy when an orientation error is allowed.

Conventional Pointing Task Quat Volume

1 0.363 0.162 0.066
2 1.000 0.881 0.518
3 0.416 0.410 0.212
4 0.010 0.012 0.021
5 0.017 0.053 0.032
6 0.011 0.014 0.011

Table 11.1: The square of the torques for each joint. All values are scaled.

We use the square of the torque over the trajectory as a metric to compare the amount
of torque needed to follow the three paths. This is given for each joint in Table 11.1.
We see that the torques needed to follow the trajectory for the main axes decrease for the
pointing task and even further for the quaternion volume. To show this more clearly, Table
11.2 shows the average torques for the main and wrist axes. We see that for the main axes
the torques needed to follow the trajectory are reduced by 18% for the pointing task and
55% for the quaternion volume. This shows that the proposed algorithms work well and,
as anticipated, the work load on the main axes are reduced substantially. For the wrist
axes, however, the torques increase. This is as expected, since the main objective was to
move the work load from the main axes to the wrist axes. However, as the wrist torques
needed to follow the trajectory for the conventional approach were so small, these are
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still well inside the torque limits and can still be considered very small, even though they
increase by 117% and 83% for the pointing task and the quaternion volume, respectively.
The average joint torque is shown in Table 11.3.

Conventional Pointing Task Quat Volume

Main 0.593 0.484 (-18.4%) 0.265 (-55.3%)
Wrist 0.012 0.026 (+116.6%) 0.022 (+83.3%)

Table 11.2: The average of the square of the torques for the main and wrist axes.

Conventional Pointing Task Quat Volume
All Joints 0.303 0.255 0.143

Table 11.3: The average of the square of the torques for all the joints.

The maximum and minimum torques are shown in Table 11.4. We see that for the
main axes also the maximum values decrease for the pointing task and quaternion volume.
As for the average torques, the maximum torques increase for the wrist axes. Again, these
results are as expected and the work load is moved from the main axes to the wrist axes.

Conventional Pointing Task Quat Volume
Joint Max Min Max Min Max Min

1 1.000 -0.483 0.752 -0.355 0.555 -0.211
2 0.791 -0.553 0.789 -0.667 0.700 -0.647
3 0.452 -0.486 0.520 -0.592 0.329 -0.495
4 0.087 -0.066 0.174 -0.053 0.176 -0.290
5 0.065 -0.069 0.433 -0.100 0.191 -0.160
6 0.043 -0.069 0.158 -0.047 0.075 -0.073

Table 11.4: The average of the maximum and minimum joint torques for the different approaches.
All values are normalised.

Conventional Pointing Task Quat Volume
Max Min Max Min Max Min

Main 0.745 -0.507 0.682 -0.540 0.528 -0.418
Wrist 0.065 -0.061 0.255 -0.067 0.147 -0.175

Table 11.5: The average of the maximum and minimum of the main and wrist axes.

The maximum velocities for which we can follow the trajectory in Fig. 11.1 are shown
in Table 11.7. We see that by optimising the orientation around the central axis (the point-
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Figure 11.3: Joint velocities. All velocities are scaled.

ing task) at every time step, we can increase the maximum speed slightly without al-
lowing an orientation error. Any planning algorithm should thus include an optimisation
around the central axis to be able to increase the maximum speed or simply reduce the
joint torques. However, if we allow an orientation error of about 20◦ we see that we can
increase the maximum speed with 50% compared to the convetional approach. Allthough
the numbers are slightly different from the simulation results, the ratio between the num-
bers are approximately the same and the experimental results thus confirm the simulations
presented in From and Gravdahl (2010b).

Conventional Pointing Task Quat Volume
Max Min Max Min Max Min

All Joints 0.406 -0.284 0.471 -0.302 1.337 -0.296

Table 11.6: The average of the maximum and minimum torques.

11.5.2 Curved Surface

The approach presented is not limited to planar surfaces. For curved surfaces such as the
hood of a car, we can use the same approach. The path of the tool centre point is the same
and the direction of the end effector, assuming no orientation error, is set orthogonal to the
surface at each point in the TCP-path.

We see from Tables 11.8 and 11.9 that for the curved surfaces we can reduce the torques
needed to follow the path even more than for flat surfaces. The torques needed to follow
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Max vel [m/s] Max or. error [◦]
Conventional 0.94 0
Pointing Task 0.98 0
Quaternion Volume 1.41 20

Table 11.7: The maximum speed the manipulator can follow the path and the corresponding orien-
tation errors.

Conventional Pointing Task Quat Volume

Main 0.623 0.509 (-18.3%) 0.271 (-56.5%)
Wrist 0.152 0.232 (+52.6%) 0.202 (+32.9%)

Table 11.8: The average of the square of the torques for the main joints and the wrist joints when
applied to a curved surface.

Conventional Pointing Task Quat Volume
Max Min Max Min Max Min

Main 0.904 -0.677 0.792 -0.702 0.596 -0.520
Wrist 0.277 -0.223 0.288 -0.167 0.224 -0.201

Table 11.9: The average of the maximum and minimum of the main and wrist axes when applied to
a curved surface.

a curved path are somewhat larger than for flat surfaces using the conventional approach,
but at the same time the gain that we get from allowing an orientation error is larger and
the torques needed to follow the trajectory on a flat and curved surface are more or less the
same when an orientation error of 20◦ is allowed.

As expected the performance of the algorithm improves for a curved surface compared
to the plane. This is mainly because for the curved surface the orientation of the paint
gun changes over the path. Allowing a freedom in the specifications of the end-effector
orientation allows us to “even out” these changes in the orientation and thus sweep over
the surface more smoothly.

11.6 Conclusion

The algorithm in this paper is based on the observation that a small error in the end-effector
orientation does not decrease the quality of the paint job to a large extent. To guarantee
uniform paint coating, it is far more important to maintain constant velocity throughout
the trajectory. We thus propose to use the freedom that arises when we allow a small
orientation error to increase the velocity of the end effector.

Previous publications have shown that one should be able to reduce the maximum
torques and the energy needed to follow a specific path by about 50% by allowing a small
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Figure 11.4: The power of each joint. All plots are scaled.

orientation error in the specification of the end effector. The need to confirm these promis-
ing simulation results through experiments is thus apparent. In this paper we have vali-
dated the theory and simulations presented previously and shown that we can substantially
reduce the joint torques needed for a spray paint robot to follow a specific end-effector
trajectory. We have shown that both the energy used and the maximum torques are re-
duced. This allows us to paint the surface considerably quicker than with the conventional
approach.

In this paper we have also investigated how the algorithm performs on curved surfaces.
As expected we are able to reduce the torques even more than for flat surfaces. This shows
that the approach is versatile and can be applied to a wide variety of problems.
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Chapter 12

Iterative Solutions to the Inverse
Geometric Problem for
Manipulators with no Closed
Form Solution

12.1 Abstract

A set of new iterative solutions to the inverse geometric problem is presented. The
approach is general and does not depend on intersecting axes or calculation of the
Jacobian. The solution can be applied to any manipulator and is well suited for
manipulators for which convergence is poor for conventional Jacobian-based itera-
tive algorithms. For kinematically redundant manipulators, weights can be applied
to each joint to introduce stiffness and for collision avoidance. The algorithm uses
the unit quaternion to represent the position of each joint and calculates analytically
the optimal position of the joint when only the respective joint is considered. This
sub-problem is computationally very efficient due to the analytical solution. Several
algorithms based on the solution of this sub-problem are presented. For difficult
problems, for which the initial condition is far from a solution or the geometry of the
manipulator makes the solution hard to reach, it is shown that the algorithm finds a
solution fairly close to the solution in only a few iterations.

12.2 Introduction

In general, motion control is performed in operational space or joint space (Khalil and
Dombre, 2002). Operational space control has the advantage that the end-effector posi-
tion and orientation are given in the Cartesian space. For operational space control, the
transformation from operational to joint space is obtained by solving the inverse kinematic
problem, which finds the joint velocities from the desired end-effector velocities. Oper-
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ational space control has many advantages and is fast to compute. A drawback is that it
strongly depends on the inverse Jacobian and that the transformation from operational to
joint space is performed inside the feedback loop so that the time-step of the controller
strongly depends of the complexity of this transformation (Perdereau et al., 2002).

For joint space control, the transformation from operational space to joint space is ob-
tained by solving the inverse geometric problem, i.e. to find the joint positions from the
desired end-effector position/orientation. Then some joint space control scheme, indepen-
dent of the task, can be designed. The disadvantage of this approach is that the inverse
geometrics is a time-consuming problem to solve. The advantage is that the transforma-
tion from operational to joint space is moved outside the control loop. When kinematic
redundancy is present, the inverse geometric approach also allows for optimising a general
secondary criteria, and does not depend on finding a suitable inverse of the Jacobian, such
as the Moore-Penrose generalised inverse, as for the inverse kinematic problem.

Another advantage of the inverse geometric approach is that each joint can be con-
trolled more directly and given the desired characteristics such as joint stiffness, energy
consumption, maximum velocity and obstacle avoidance. For the inverse Jacobian ap-
proach these characteristics must be added through the choice of the Jacobian. In some
cases, such as the minimisation of energy through the Moore-Penrose, this is both efficient
and elegant, but for other characteristics such an inverse Jacobian may be very hard or
impossible to find.

Closed-form solutions to the inverse geometric problem are only known for certain
types of robotic manipulators, so numerical approaches are widely studied and in many
cases, such as for most redundant manipulators, represent the only solution to the problem.
Numerical solutions are in general more time-consuming than closed-form solutions and
are hence more suitable for off-line path planning. The results presented in this paper are
based on the preliminary results presented in From and Gravdahl (2007a). Here the inverse
geometric problem is treated as a pure optimisation problem. This allows the programmer
to include a secondary objective which is used to give the manipulator motion the desired
characteristics (Grudic and Lawrence, 1993; Wang and Chen, 1991; Luenberger, 2003).
When redundancy is present, the redundant degrees of freedom are used to optimise this
objective.

The novelty of the method presented is that the minimum of the cost function with
respect to each joint is found analytically and this is exploited to develop a set of compu-
tationally efficient algorithms. The solution is shown for a cost function representing the
position and orientation error of the end effector but can be expanded to include a general
class of cost functions representing both global and local objectives.

Six algorithms are presented. The first three use coordinate descent which looks at
one joint at the time. It is well known that the convergence of coordinate descent is slower
than steepest descent and Newton’s method. The advantage is that the analytic solution
presented is a lot faster to solve than search algorithms in general. The last three methods
can be looked upon as approximations of steepest descent where the gradient is estimated.
It is argued that the step size can be set as a constant. Hence, an analytic and computa-
tionally efficient alternative to both the search direction and the step size of the steepest
descent is presented.

It is shown that the algorithms that approximate the steepest descent have very good
convergence and reliability for difficult problems. However, for easy problems, when the
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initial guess is close to the solution, the convergence is better for conventional Jacobian-
based algorithms than the algorithms presented in this paper. For problems for which the
Jacobian-based algorithms have poor convergence or reliability, the algorithms presented
are a better choice. A combination of the algorithms presented may give good and reli-
able performance for difficult problems but also reasonably good convergence close to the
solution.

12.3 Representing Rotations

12.3.1 The Unit Quaternion

Any positive rotation φ about a fixed unit vector n can be represented by the quadruple
(Kuipers, 2002)

Q =

[
q0
q

]
, (12.1)

where q0 ∈ R is known as the scalar part and q ∈ R3 as the vector part. The unit
quaternion Q(φ,n) is written in terms of φ and n by

q0 = cos (
φ

2
), q = sin (

φ

2
)n, (12.2)

where n is unitary. Note that Q and −Q represent the same rotation. This is referred

to as the dual covering. The quaternion identity is given by QI =
[
1 0 0 0

]T
. A

multiplication of two quaternions is given by a quaternion product and is written in vector
algebra notations as

P ∗Q =

[
p0q0 − p · q

p0q + q0p+ p× q

]
. (12.3)

Let P =
[
p0 p1 p2 p3

]T
and Q =

[
q0 q1 q2 q3

]T
. A multiplication of two

quaternions can then be written as the quaternion product as

P ∗Q =

⎡⎢⎢⎣
p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 + p2q0 + p3q1 − p1q3
p0q3 + p3q0 + p1q2 − p2q1

⎤⎥⎥⎦ . (12.4)

A pure quaternion is a quaternion with zero scalar part. Any vector, v̄ =
[
x y z

]T
can be represented by a pure quaternion v =

[
0 v̄T

]T
. The conjugate of a quaternion is

defined as
Q∗ =

[
q0 −q1 −q2 −q3

]T
. (12.5)

12.3.2 Quaternions and Rotations

Let a vector, v̄1, be represented by the pure quaternion v1. This vector can be rotated the
angle φ about the axis n by (Kuipers, 2002)

v2 = Q ∗ v1 ∗Q∗. (12.6)
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Every vector v̄ ∈ R3 can be represented by a pure quaternion, hence v is not necessarily a
unit quaternion. The quaternionQ(φ,n) however is unitary. This represents the angle and
the axis that the vector v̄1 is to be rotated about. The resulting vector, v̄2, is then of the
same length as v̄1 if and only ifQ is a unit quaternion. The quaternion representation also
leads to a useful formula for finding the shortest rotation from one orientation to another.
Let P and Q be two orientations. Then, by taking

E = P ∗ ∗Q, (12.7)

E will rotate P into Q by the shortest rotation. That is, E is the quaternion, out of all the
quaternions that take P into Q, with the largest scalar part and thus the smallest angle.

Note that Equation (12.7) rotates one frame into another frame. By a frame is meant
a coordinate system in R3 using Cartesian coordinates. One frame with respect to another
frame represents three degrees of freedom and is referred to as an orientation. Equation
(12.6) rotates one vector into another vector and has two degrees of freedom, in the same
way as a point on a sphere can be defined by two coordinates. A unit vector with respect
to a unit reference vector is referred to as a direction. Henceforth, when referred to direc-
tion, this is the direction of the z-axis of the body frame with respect to the z-axis of the
reference frame, as the z-axis of the end effector is our main concern in this paper.

12.4 Quaternion Space Metric

The axis of a revolute joint, represented in the coordinate frame of the joint, is always
constant. This is used in the following to simplify the computations. First the proximity
of two frames is discussed, then this is applied to each joint to find the optimal position
of the joint. By optimal position is meant the position of the joint that minimises the end
effector orientation error, position error, or both.

There are many ways to represent the proximity or distance between two orientations
(Yuan, 1988; Wen and Kreutz-Delgado, 1991; Hanson, 2006). One example which is
proportional to the length of the geodesic path on the 4-dimensional unit sphere is

Ψr = arccos (e0) (12.8)

where e0 is taken from E = P ∗ ∗ Q. The cost function in (12.8) can be identified with
a physical property and is a metric function. The formal proof that (12.8) is a metric
function is given in the Appendix. The geodesic path describes the shortest path from
one orientation to another. Choosing that path on the 4-dimensional unit sphere gives a
well-defined and computationally efficient metric.

A computationally more efficient cost function representing the rotational part is given
simply by

Ψr = 1− e0. (12.9)

This cost function lacks the property that it can be identified with a physical property
directly and it is not a metric function. Also, its minimum is given by e0 = ±1, for
which the two orientations are identical, and the maximum is given by zero, for which
the orientations point in the opposite directions. However, due to the light computational
complexity, this cost function turns out to be very efficient.
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A cost function on SE(3) will depend on the weighing of the rotational and transla-
tional part. On its general form, it is given by

Ψ = wtΨt + wrΨr (12.10)

where wt and wr are the weights, the translational part, Ψt is chosen as the standard
Euclidean norm and the rotational part is the metric in (12.8)

Ψ = wt ||p0 − p1||+ wr arccos (e0). (12.11)

or alternatively the cost function in (12.9)

Ψ = wt ||p0 − p1||+ wr(1− e0). (12.12)

Definition 12.1 (Quaternion Space Proximity). Given two orientations represented by the
two quaternions P and Q. Let the error quaternion be denoted

E = P ∗ ∗Q. (12.13)

Then the scalar part of E, e0, describes the proximity of the two frames.

Definition 12.2 (Minimal Rotation). The bigger (closer to 1)1 the error quaternion scalar
part e0, the closer are the two orientations P and Q.

That this is a perfectly good description of the proximity of two frames even though it
does not represent a physical property directly. The geodesic path can, however, be found
through Equation (12.8) .

Consider the set of orientations for which the identity frame is rotated about the z-
axis. The problem to find the orientation Pz from this set that is closest to some arbitrary
orientation Q is considered.

Proposition 12.1 (Optimal Rotation). Consider an orientation Q =
[
q0 q1 q2 q3

]T
.

The orientation described by the quaternion Pz =
[
p0 0 0 p3

]T
that is closest to Q

(by Definitions 12.1 and 12.2) is given by

p0 =
±sq0√
q20 + q23

(12.14)

p3 =
±sq3√
q20 + q23

(12.15)

where the two ±s have the same sign.

Proof. E = P ∗ ∗Q can be written[
e0
e3

]
=

[
p0 p3
−p3 p0

] [
q0
q3

]
(12.16)

1Note that an equally good description of proximity is given when e0 approaches−1. As cos(
ψ
2
) is positive

for ψ in the chosen interval (−π, π), the positive value of e0 is chosen.
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[
e1
e2

]
=

[
p0 p3
−p3 p0

] [
q1
q2

]
(12.17)

By Definitions 12.1 and 12.2, the quaternion Pz that is closest to Q is found by the
error quaternion with e0 closest to 1.

e0 = p0q0 + p3q3 (12.18)

= q0 cos(
ψ

2
) + q3 sin(

ψ

2
). (12.19)

de0
dψ0

= −q0
2
sin(

ψ

2
) +

q3
2
cos(

ψ

2
). (12.20)

Let de0
dψ0

= 0. Then

tan(
ψ

2
) =

q3
q0

. (12.21)

Then by using arctan(x) = arcsin
(

x√
1+x2

)
(Bronshtein et al., 2003), ψ is written as

ψ = 2arctan(
q3
q0

) (12.22)

= 2arcsin

⎛⎝ q3
q0√

1 + ( q3
q0
)2

⎞⎠ (12.23)

= 2arcsin

(
q3√

q20 + q23

)
. (12.24)

From the definition of the quaternion

ψ = 2arcsin(p3). (12.25)

By comparing Equations (12.24) and (12.25), Equation (12.15) is given. Similarly, by

arctan(x) = arccos
(

1√
1+x2

)
sgn(x),

ψ = 2arctan(
q3
q0

) (12.26)

= 2arccos

⎛⎝ 1√
1 + ( q3

q0
)2

⎞⎠ sgn(
q3
q0

) (12.27)

= 2arccos

(
q0√

q20 + q23

)
sgn(

q3
q0

). (12.28)

Note that the sign of ψ = 2arccos(p0)sgn(ψ) is given by Equation (12.25). Hence,
Equation (12.14) is found. For ψ to be in the interval (−π, π), the sign ±s is chosen so
that e0 is positive.
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Similar results are found when P rotates about the x- and y-axis. The largest rotation
is given when e0 is close to zero.

e0 = p0q0 + p3q3 (12.29)

= q0 cos(
ψ

2
) + q3 sin(

ψ

2
) = 0. (12.30)

tan(
ψ

2
) = −q0

q3
. (12.31)

Similar to the proof of Proposition 12.1, the orientation Pz furthest away from Q is given
by

p0 =
±sq3√
q20 + q23

(12.32)

p3 =
±tq0√
q20 + q23

(12.33)

where the ±s and ±t have opposite signs.

12.5 Optimisation Algorithms

12.5.1 Descent Methods

This section presents some important approaches to solve a general optimisation problem
by iterative algorithms (Luenberger, 2003).

Definition 12.3 (Descent Algorithm). An algorithm that for every new point generated,
decreases the corresponding value of some function, is called a descent algorithm.

If an algorithm is not descent, it is not guaranteed that the cost function decreases at
every iteration. This property is desirable, but not required. Luenberger (2003) shows that
the first order necessary condition is satisfied (∇f = 0) for descent algorithms. A similar
proof cannot be given for algorithms that are not descent.

12.5.2 Steepest Descent

The most common method for the minimisation of a function of several variables is the
steepest decent, or the gradient method. The steepest descent is given by the iterative
algorithm

xk+1 = xk − αk∇f(xk)T (12.34)

where αk is a non-negative scalar minimising f(xk−αk∇f(xk)). αk is found by a search
in the direction of the negative gradient for a minimum of this line. Convergence to a point
where ∇f(x) = 0 can be proven (Luenberger, 2003).
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12.5.3 Coordinate Descent Methods

The coordinate descent algorithm optimises a given cost function f(x), x ∈ Rn, by se-
quentially minimising with respect to each of the components, xi, for i = 1 . . . n. The
convergence of coordinate descent is in general poorer than the steepest descent. Coor-
dinate descent is, however, easy to implement and, as the gradient is not required, a fast
solution to the sub-problem makes these algorithms relatively fast.

12.5.4 Position and Orientation Error

This section presents a set of algorithms that solve the inverse geometric problem as seen
from one joint. The solution of this sub-problem is the basis for all the algorithms pre-
sented in the next sections. Assume that only one joint can be moved, and consider the
problem of finding the joint position which minimises the given cost function. All the
algorithms presented are based on the analytical solution of a minimisation problem on
SE(3). This analytical solution guarantees that every sub-problem is computationally
very efficient.

In the following, the principal cost function, representing the position and orientation
error is presented. All cost functions presented are well-defined. If the cost function is
extended to also include some secondary objective, this will depend on the task, and must
be worked out in each case. The problem is solved for revolute joints only.

The algorithms in this section are based on two different optimisation problems. One
with the position and orientation treated separately, and one where the cost function rep-
resents the sum of the position and orientation error. In this case the solution depends on
the choice of units. As angles and lengths cannot simply be added together, care must be
taken.

Position Cost Function

Let the desired positionPd =
[
0 xd yd zd

]T
and current positionPc =

[
0 xc yc zc

]T
of the end effector be given in the frame of joint i. Assume that the current position can be
rotated about the z-axis, and hence represents one degree of freedom, given by all quater-

nions on the formQz =
[
cos (ψ2 ) 0 0 sin (ψ2 )

]T
for−π < ψ < π. Then, the solution

to the problem of finding the quaternion that takes Pc as close to Pd as possible is given
by minimising

gp(ψ) = (xd − x̂c)
2 + (yd − ŷc)

2 + (zd − ẑc)
2, (12.35)

where

P̂c = Qz ∗ Pc ∗Q∗
z. (12.36)

By noting that

P̂c =

⎡⎢⎢⎣
0
x̂c

ŷc
ẑc

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0

xc cosψ − yc sinψ
yc cosψ + xc sinψ

zc

⎤⎥⎥⎦ for− π < ψ < π, (12.37)
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gp(ψ) can be written as

gp(ψ) = Kψ + aψ cos (ψ) + bψ sin (ψ), (12.38)

where

Kψ = x2
d + y2d + z2d + x2

c + y2c + z2c − 2zdzc, (12.39)

aψ = −2(xdxc + ydyc), (12.40)

bψ = 2(xdyc − ycxd). (12.41)

Similarly when the freedom is given about the y-axis, gp(θ) is given by

gp(θ) = Kθ + aθ cos (θ) + bθ sin (θ), (12.42)

where

Kθ = x2
d + y2d + z2d + x2

c + y2c + z2c − 2ydyc, (12.43)

aθ = −2(xdxc + zdzc), (12.44)

bθ = 2(zdxc − xdzd). (12.45)

The rotation that minimises the position error of the end effector is given by setting
dgp(ψ)
dψ = 0 and dgp(θ)

dθ = 0:

ψmin = arctan 2

(
bψ
aψ

)
± π, (12.46)

θmin = arctan 2

(
bθ
aθ

)
± π (12.47)

for a rotation about the z- and y-axes, respectively. In order to choose the solution that
corresponds to the minimum and not the maximum value of g, choose the solution for
which

d2gp(θ)
dθ2

> 0. (12.48)

Which solution to choose can also be determined by the following lemma.

Lemma 12.1. Given a function g(θ) on the form

g(θ) = K + a cos (θ) + b sin (θ), (12.49)

evaluated on −π < θ < π. Let θmin minimise g(θ). Then the following is always true

b > 0 ⇒ θmin < 0, (12.50)

b < 0 ⇒ θmin > 0. (12.51)

Proof. The lemma is proved by contradiction. Let θmin minimise g(θ). Assume that
b > 0 and θmin > 0. Then on the interval −π < θ < π, we have that a cos (θmin) =
a cos (−θmin) and b sin (θmin) > b sin (−θmin). Thus we have that g(θmin) > g(−θmin)
which is a contradiction as θmin was assumed to minimise g(θ). Similarly for b < 0.
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Orientation Cost Function

Similarly, the orientation error can be given by the difference between the desired orienta-
tion D and the current orientation C. Let D and C be given in the frame of joint i and let
Ĉ = Qz ∗ C represent all the reachable orientations by rotating about the z-axis.

Ĉ = Qz ∗ C =

⎡⎢⎢⎣
c0 cos (

ψ
2 )− c3 sin (

ψ
2 )

c1 cos (
ψ
2 )− c2 sin (

ψ
2 )

c2 cos (
ψ
2 ) + c1 sin (

ψ
2 )

c3 cos (
ψ
2 ) + c0 sin (

ψ
2 )

⎤⎥⎥⎦ , (12.52)

for − π < ψ < π

The orientation error is then given by

go(ψ) =(d0 − ĉ0(ψ))
2 + (d1 − ĉ1(ψ))

2 + (d2 − ĉ2(ψ))
2 + (d3 − ĉ3(ψ))

2

=2− 2(c0d0 + c1d1 + c2d2 + c3d3) cos (
ψ

2
)

+ 2(c3d0 + c2d1 − c1d2 − c0d3) sin (
ψ

2
). (12.53)

go(ψ) can be written as

go(ψ) = Kψ + cψ cos (
ψ

2
) + dψ sin (

ψ

2
), (12.54)

where

Kψ = 2, (12.55)

cψ = −2(c0d0 + c1d1 + c2d2 + c3d3), (12.56)

dψ = 2(c3d0 + c2d1 − c1d2 − c0d3). (12.57)

Similarly when the y-axis is the revolute axis.

go(θ) =2− 2(c0d0 + c1d1 + c2d2 + c3d3) cos (
θ

2
)

+ 2(c2d0 − c3d1 − c0d2 + c1d3) sin (
θ

2
). (12.58)

go(θ) can then be written as

go(θ) = Kθ + cθ cos (
θ

2
) + dθ sin (

θ

2
), (12.59)

where

Kθ = 2, (12.60)

cθ = −2(c0d0 + c1d1 + c2d2 + c3d3), (12.61)

dθ = 2(c3d0 + c2d1 − c1d2 − c0d3). (12.62)

The advantage of this approach is that the cost function can be used as an error measure
directly. The quaternion representation also allows the optimal rotation to be computed
somewhat faster, but then the error function needs to be calculated separately as in Johnson
(1995) and From (2006).
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12.5.5 Orientation and Position Cost Function

The total position and orientation error can be given by g(ψ) = gp(ψ)+go(ψ). gp(ψ) and
go(ψ) are taken from Equations (12.38) and (12.54), respectively, so that the minimum of
g(ψ) is given by

dg(ψ)

dψ
= 0 (12.63)

where

dg(ψ)

dψ
= bψ cos (ψ) + dψ cos (

ψ

2
)− aψ sin (ψ)− cψ sin (

ψ

2
). (12.64)

This can be turned into an equation of degree four which can be solved analytically, for
example by Ferrari’s method. This will give four solutions. The solution that results in the
smallest value of g(ψ) is then chosen.

However, by avoiding the half angles in Equation (12.64), the solution is found simply
by the inverse tangent and the computational complexity is reduced. In Wang and Chen
(1991) a ψ is found by maximising g(ψ). In the following, a cost function, representing
the sum of the position and orientation error is presented. This cost function can then be
used as a threshold limit directly, which was not the case in Wang and Chen (1991). The
approach resembles the one in Ahuactzin and Gupka (1999), but allows the programmer
to weigh the importance of the position and orientation error.

The cost function can be written as a function of ψ by representing the desired orien-
tation of each joint by a rotation of the three unit vectors by xQd = Qd ∗ei ∗Q∗

e .
yQd and

zQd are constructed similarly from ej and ek where ei, ej , ek are the unitary axes. Then
the unitary axes are transformed by the quaternion Qd into

xQd = Qd ∗ ei ∗Q∗
d =

⎡⎢⎢⎣
0

q20 + q21 − q22 − q23
2(q1q2 + q0q3)
2(q1q3 − q0q2)

⎤⎥⎥⎦ , (12.65)

yQd = Qd ∗ ej ∗Q∗
d =

⎡⎢⎢⎣
0

2(q1q2 − q0q3)
q20 − q21 + q22 − q23
2(q0q1 + q2q3)

⎤⎥⎥⎦ , (12.66)

zQd = Qd ∗ ek ∗Q∗
d =

⎡⎢⎢⎣
0

2(q0q2 + q1q3)
2(q2q3 − q0q1)

q20 − q21 − q22 + q23

⎤⎥⎥⎦ . (12.67)

Then the cost function can be written as

g(ψ) = wpgp(ψ) + wogo(ψ) (12.68)
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where wp and wo are constant weights, gp(ψ) is given by Equation (12.38) and gp(ψ) is
found similarly by representing the difference between the desired position of the unitary
axes and the current position of the same axes. The desired position for the x-axis is
given by xQd =

[
0 xxd

xyd
xzd

]
. Assume that the z-axis is the revolute axis. Then

the position of the unitary x-axis is given by xQc =
[
0 cos (ψ) sin (ψ) 0

]
and the

difference is written as

xgo(ψ) =(xxd−cos (ψ))2 + (xyd−sin (ψ))2 + (xzd−0)2

= 2− 2xxd cos (ψ)− 2xyd sin (ψ), (12.69)

and similarly for the y- and z-axes. By adding these three to Equation (12.38), g(ψ) can
be written as

g(ψ) = wpgp(ψ) + wo(
xgo(ψ) +

ygo(ψ) +
zgo(ψ))

= Kψ + aψ cos (ψ) + bψ sin (ψ) (12.70)

where

Kψ = wp

(
x2
d + y2d + z2d + x2

c + y2c + z2c − 2zdzc
)
+ wo (6− 2zzd) ,

aψ = −2wp(xdxc + ydyc)− 2wo(
xxd +

yyd),

bψ = 2wp(xdyc − ydxc) + 2wo(
yxd − xyd).

Similarly when the y-axis is the revolute axis

g(θ) = Kθ + aθ cos (θ) + bθ sin (θ) (12.71)

where

Kθ = wp

(
x2
d + y2d + z2d + x2

c + y2c + z2c − 2ydyc
)
+ wo (6− 2yyd) ,

aθ = −2wp(xdxc + zdzc)− 2wo(
xxd +

zzd),

bθ = 2wp(zdxc − xdzc) + 2wo(
xzd − zxd).

The minimum of the cost function, with respect to each joint, is given by Equation (12.46)
and the error is given by E = K + a (set ψ = θ = 0 in (12.70) and (12.71)).

For redundant manipulators, the cost function can be expanded to include an addition
term

g(ψ) = wpgp(ψ) + wogo(ψ) + wrgr(ψ). (12.72)

Whenever gr can be written on the form of (12.70) the same analytical solution to the sub-
problem can be found. This is a large class of cost functions that allows a great variety of
secondary objectives to be included in the cost function, such as distance to obstacles and
elbow position.

Note also that for the pointing task, Equation (12.70) reduces to

g(ψ) = wpgp(ψ) + wo
zgo(ψ) (12.73)

which is widely used in applications such as spray painting, welding and high pressure
water jets. In this case only the direction of the end-effector tool is considered and thus
the computational complexity is reduced.
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12.6 Solutions to the Inverse Geometric Problem

12.6.1 Algorithm 1 - Coordinate Descent

The coordinate descent algorithm optimises a cost function with respect to each of the
variables of the cost function (Wang and Chen, 1991). That is, for each joint in the chain,
the minimum of the cost function, when only the respective joint is moved, is found.

There are several different ways the algorithm can work its way through the chain:

• Start from the end and work its way towards the base.

• Start from the base and work its way towards the end.

• Start from one end and sweep its way towards the other and then back (Aitken
double sweep method).

• If the gradient is known, select the coordinate (in this case the joint) that corresponds
to the largest (in absolute value) component of the gradient vector (Gauss-Southwell
Method, presented in the Section 12.6.2).

The cost function must be objective, i.e. independent of the coordinate frame in which it
is measured (Lin and Burdick, 2000), and preferably describing some physical property,
as the sum of the position and orientation error. Objectivity is important because all the
calculations are done in local coordinates, and thus the coordinate frame changes for each
iteration. Objectivity is in this case sufficient to guarantee that the algorithm is descent
and convergent (to a point satisfying the first order necessary condition). The cost function
should also be computationally efficient, i.e. the minimum of the cost function should be
found analytically.

The cost function presented in Section 12.5.5 have these properties. This cost function,
together with an algorithm that starts from the end and moves its way towards the base,
is a fast and stable algorithm. The cost functions representing rotation or orientation error
only are also well-defined on SO(3) and R3, respectively. They can also be combined as
described in Section 12.5.5 to a metric function on SE(3). Caution must be taken when
dealing with metrics on SE(3), as it will depend on the choice of units and an unfortunate
implementation of the algorithm may cause the algorithm to fail to converge. This is,
as will be clear in the following, for example the case when iteratively optimising with
respect to orientation and position error.

Three different approaches are presented:
Algorithm 1a: Loop until the error is under a threshold limit or a maximum number of
iterations is performed.

• for each joint, in a pre-defined order, find the joint position that locally minimises
the position error of the end-effector, as in Section 12.5.4.

• for each joint, in a pre-defined order, find the joint position that locally minimises
the orientation error of the end-effector, as in Section 12.5.4.
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Algorithm 1b: Loop until the error is under a threshold limit or a maximum number of
iterations is performed. For each joint, in a pre-defined order

• find the joint position that locally minimises the position error of the end-effector,
as in Section 12.5.4.

• find the joint position that locally minimises the orientation error of the end-
effector, as in Section 12.5.4.

Algorithm 1c: Loop until the error is under a threshold limit or a maximum number of
iterations is performed. For each joint, in a pre-defined order

• Minimise a cost function representing the sum of the position and orientation error,
as in Section 12.5.5.

The change of reference frame on the cost function must be studied. The cost function
needs to be objective, as defined in Lin and Burdick (2000), if not, the algorithm may
fail to converge. A well defined metric function will guarantee that the the value of the
cost function does not change with the change of reference frame which again means that
it does not change with the joint. The cost function must also be so that the total error
decreases when iterating between SO(3) and R3 such as in Algorithms 1a and 1b. This is
not guaranteed by just successively iterating between position and orientation as a decrease
in the orientation error might cause an increase in the position error and vice versa. There
is no guarantee that the total error decreases for every iteration.

12.6.2 Algorithm 2 - Modified Gauss-Southwell

The Gauss-Southwell Method determines the largest component of the gradient ∇g(x)
and chooses this for descent. This sub-section presents an alternative approach, where
the minimum of the cost function is found for each joint. The joint that corresponds to
the smallest possible value of the cost function is then chosen. This is found simply by
Equation (12.46). This approach is computationally more efficient than to compute the
gradient. It will also converge faster (at least in the beginning) because the joint that
corresponds to the maximum possible decrease of the cost function is always chosen. This
algorithm is descent.

12.6.3 Algorithm 3 - Gauss-Southwell

The method presented above can be modified somewhat so that each joint is chosen by the
steepest descent instead of maximum possible descent. Assume that the position of each
joint that results in the minimum of the cost function g(x) is found. Denote this by x̂k

i for
joint i and iteration k. The rate of decrease with respect to this joint is estimated by

∂g(xk
i )

∂xk
i

≈ g(x̂k
i )− g(xk

i )∣∣x̂k
i − xk

i

∣∣ , for i = 1 . . . n. (12.74)

This is a good estimate only when
∣∣x̂k

i − xk
i

∣∣ is small. Then the joint with the largest
corresponding absolute value of the “gradient” is chosen. This approach is different from
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Figure 12.1: General structure of a robotic manipulator.

the solution given in Section 12.6.2 in that not only the absolute minimum is taken into
account, but also how much the manipulator has to move reflects the choice of search
direction, which leads to a more energy preserving solution. The joint update is then given
by

xk+1
i = xk

i + wi(x̂
k
i − xk

i ), with 0 < wi ≤ 1. (12.75)

12.6.4 Algorithm 4 - Steepest Descent

Equation (12.74) gives information about all the joints. This information can be exploited
by applying (12.75) to all the joints for every iteration. As the optimal position of each joint
is found, assuming that all the other joints are fixed, the weights 0 < wi ≤ 1 need to be
chosen conservatively. As this approach requires approximately the same computational
burden as the approach in the previous section but all joints are moved, the convergence
can be improved substantially. The algorithm is not descent, and convergence cannot be
proven. This is due to the fact that Equation (12.74) is an estimate of the gradient and not
the actual gradient. In some cases the wi’s must be chosen very small which makes the
convergence very slow.

12.6.5 Algorithm 5 - Manipulator Dependent Steepest Descent

The manipulator structure can be taken into account to improve convergence. For instance
if two joints work in the same “direction” in the operational space, they should be scaled
down so that the sum of the two joints will result in the desired movement, and not each
one looked at separately. By studying the structure of the manipulator in Figure 12.1,
joint 1 is seen to be very much decoupled from the others when it comes to the effect on
the end-effector position and orientation, and thus xk+1

1 is set close to x̂k
1 . Joint 2 and 3,

however, are strongly coupled, so w2,3 should be set to about 0,5. The three wrist joints
should also be scaled due to coupling. In addition, this scaling vector should be scaled
down somewhat by a factor 0 < ws ≤ 1, to ensure convergence. The following scaling
vector is suggested for a manipulator with a structure similar to the one in Figure 12.1:

W = ws

[
1 0.5 0.5 0.3 0.3 0.3

]
. (12.76)
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As the previous algorithm, this algorithm is not descent. However, ws can be set so that
the behaviour of the algorithm resembles that of a descent algorithm. This is done at the
cost of fast convergence. A simple approach to make the algorithm behave like a descent
algorithm is to perform a test for every iteration to check whether the cost function has
decreased or not. Then, if it has not, ws should be reduced until a decrease in the cost
function is obtained. For the steepest descent, a decrease of the cost function can be
guaranteed as w → 0. As ∇g(x) is only an approximation of the gradient, this cannot be
guaranteed in this case.

12.6.6 Algorithm 6 - Steepest Descent with Gradient Estimate

Equation (12.74) can also be used to make an estimate of the gradient of the cost function.
If the absolute sign is removed, the gradient of g(xk) can be estimated as

∇̂g(xk) ≈

⎡⎢⎢⎢⎣
g(x̂k

1 )−g(xk
1 )

x̂k
1−xk

1

...
g(x̂k

n)−g(xk
n)

x̂k
n−xk

n

⎤⎥⎥⎥⎦ (12.77)

As g(x) is on the form of (12.70),
∣∣∣∇̂g(xk

i )
∣∣∣ ≤

∣∣∇g(xk
i )
∣∣ for all i so that ∇̂g(x) is a

conservative estimate of∇g(x).
Now, Equation (12.77) can be applied to Equation (12.34) directly. The “step size” can

be set similar to Equation (12.76) with (somewhat conservatively)ws = mini=1...n

∣∣x̂k
i − xk

i

∣∣.
When the solution approaches zero, the it can be simplified to ws =

∣∣x̂k
1 − xk

1

∣∣.
It should be noted that when Equation (12.75) is applied to all joints, or the estimate of

the gradient is applied in Equation (12.34), the algorithm is not descent. Again, however,
the behaviour of the algorithm can be made descent by choosing the weights conserva-
tively.

The steepest descent with gradient estimate differs from Algorithm 4 steepest descent
in that for the steepest descent the optimal solution for each joint looked at separately is
found, and then the update is done for all joints. For the steepest descent with the gradient
estimate is the well known steepest descent method, but with an estimate of the gradient.

12.7 Numerical Examples

All the inverse geometric algorithms have been tested for a great variety of problems with
the cost functions given in Sections 12.5.4 and 12.5.5. For comparison, the same test has
also been done for a Jacobian-based inverse geometric algorithm. The Jacobian-based
algorithm used in the simulations is an iterative algorithm based on the pseudo-inverse
of the manipulator Jacobian, as the one presented in Robotics Toolbox (Corke, 1996).
The convergence of the algorithms are tested for very difficult problems and very easy
problems. Difficult problems are problems for which the solution is very far from the
initial guess or the geometric considerations makes it difficult to “move” the manipulator
from the initial condition to the solutions. For the easy problems the initial guess is chosen
close to one of the solutions. 20 difficult and 20 easy problems are chosen and convergence
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is investigated for the two cases for all algorithms presented. The convergence for easy
and difficult problems for all algorithms presented are plotted with respect to iterations
and time in Figures 12.4-12.7.

12.7.1 Algorithm 1 - Coordinate Descent

The conventional CCD presented in Section 12.6.1 is computationally fast. The conver-
gence of the CCD algorithms can be found in Figures 12.2-12.3. The following algorithms
are tested:

• Alg1a (6 → 1)

• Alg1b (6 → 1)

• Alg1c (6 → 1)

• Alg1c (1 → 6)

• Alg1c (double sweep)

where Alg1x refers to the algorithms in Section 12.6.1 and (6 → 1) means that the algo-
rithm works its way through the chain from the end effector to the base.

It is clear that the first two algorithms that optimise iteratively between orientation and
rotation error are not descent and convergence is poor. It is found that optimising with
respect to one criteria, while disregarding the other, will not necessarily decrease the sum
of the two cost functions.

The three algorithms presented that are based on a cost function representing the sum
of the orientation and position error are all descent algorithms and convergence is reason-
ably good due to the analytical solution of each sub-problem. The algorithm that starts
at the base and works its way towards the end of the chain has fastest convergence in
the beginning an also finds the most accurate solution. The fast analytical solution to the
sub-problem, presented in Section 12.5.5 makes this algorithm reasonably good. Alg1c
(6 → 1) is chosen to compare convergence in Figures 12.4-12.7.

12.7.2 Algorithm 2 - Modified Gauss-Southwell

Gauss-Southwell is computationally slower as it finds the minimum for all the joints but
only one joint is chosen for decrease. As theModified Gauss-Southwell finds the minimum
possible value of the cost function by moving one joint only, it has the best convergence
in the beginning among the algorithms that move only one joint at the time. This makes
this algorithm a very good choice when an approximate solution to the problem is needed.
Convergence is very good for 5-10 iterations. After this the convergence flattens out and
one should switch to another algorithm to find an exact solution.

12.7.3 Algorithm 3 - Gauss-Southwell

Also the Gauss-Southwell has good convergence in the beginning, but only for about 5
iterations. Then it flattens out and the closest solution found is farther from the desired
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solution than for the Modified Gauss-Southwell. The algorithm easily gets stuck, and for
the majority of the problems, it does not converge toward a correct solution. The algorithm
can only be said to perform satisfactory for the first few iterations.

12.7.4 Algorithm 4 - Steepest Descent

The Steepest Descent moves all joints for every iteration which results in very good con-
vergence. For a weight w ≈ 0.5, the behaviour of the algorithm is very stable and a very
accurate solution is found reasonably fast. This is the algorithm presented that best com-
petes with the Jacobian approach when the initial condition is close to a solution. Also for
more difficult problems, this is the algorithm that finds the most accurate solution if many
iterations are allowed.

12.7.5 Algorithm 5 - Manipulator Dependent Steepest Descent

The convergence of the Manipulator Dependent Steepest Descent is about the same as the
Steepest Descent, but convergence is better in the beginning for difficult problems. An al-
gorithm that applies a few (5-10) iterations of theManipulator Dependent Steepest Descent
and then changes to Steepest Descent will give a fast and reliable algorithm which is easy
to implement as the two algorithms are almost equal when it comes to implementation.

12.7.6 Algorithm 6 - Steepest Descent with Gradient Estimate

The Steepest Descent with Gradient Estimate is hard to tune and the weights need to be
chosen relatively small for the algorithm to behave stable. This results poor convergence.
The convergence is about the same as the Coordinate Descent methods, but the computa-
tional complexity makes this algorithm slower. The weight used in the simulations was
ws = 0.05.

12.7.7 Iteration Speed

The simulations were performed on an 2GHz processor. Table 12.1 shows the iteration
speed of each algorithm. For algorithms 1-6, this is the time needed to analytically solve
the optimisation problem and to update the joint position and the value of the objective
function.

12.8 Conclusions

A new class of solutions to the inverse geometric problem is presented. Convergence is
found to be very good for problems which cannot be solved efficiently or cannot be solved
at all with Jacobian-based algorithms. For all tests, an approximate solution was found in
only a few iterations. The analytical solution to the sub-problem guarantees computational
efficiency. A combination of the algorithms presented will give a stable and fast solution
to any inverse geometrics problem. For problems with initial condition close to a solution,
conventional Jacobian-based algorithms converge faster. The algorithms presented are
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Algoritm Iteration Speed [ms]
Alg0 3.85
Alg1 2.62
Alg2 12.36
Alg3 12.46
Alg4 18.87
Alg5 18.88
Alg6 15.27

Table 12.1: Iteration speed of each algorithm

thus well suited to find an initial condition for the Jacobian-based algorithms in order to
improve convergence and guarantee that a solution is found.

Appendix I

Formal Metric Proof

A metric on a set X is a function

Ψ : X ×X → R (12.78)

which for all x, y, z ∈ X satisfy the following conditions

1. Ψ(x, y) ≥ 0

2. Ψ(x, y) = 0 if and only if x = y

3. Ψ(x, y) = Ψ(y, x)

4. Ψ(x, z) ≤ Ψ(x, y) + Ψ(y, z)

Let U define the set of all quaternions of unit length

U={(q0, q1, q2, q3)|q0, q1, q2, q3 ∈ R, q20 + q21 + q22 + q23 = 1} (12.79)

Further let e0 be the scalar part of E = P ∗Q∗ given by

e0 = p0q0 + p1q1 + p2q2 + p3q3. (12.80)

We will, without loss of generality, assume that all angles are in the interval −π ≤ φ ≤ π.

Proposition 12.2. The function

Ψr = U× U → R (12.81)

given by Ψr = arccos(e0), is a metric function.

Proof. For all P,Q,R ∈ U we have
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1. Ψ(P,Q) ≥ 0
We have

−1 ≤ e0 ≤ 1 ⇒ arccos(e0) ≥ 0. (12.82)

2. Ψ(P,Q) = 0 if and only if P = Q
We have

arccos(e0) = 0 (12.83)

if and only if
e0 = 1 (12.84)

for which P = Q.

3. Ψ(P,Q) = Ψ(Q,P )

Ψ(P,Q) = arccos(p0q0 + p1q1 + p2q2 + p3q3)

= arccos(q0p0 + q1p1 + q2p2 + q3p3) = Ψ(Q,P ). (12.85)

4. Ψ(P,R) ≤ Ψ(P,Q) + Ψ(Q,R)
By definition the rotation E = P ∗R∗ takes P into R by the shortest rotation. This
is obtained by the rotation

φPR = 2arccos (ePR
0 ) (12.86)

where ePR
0 is the scalar part of P ∗Q∗. Thus we have that

φPR ≤ φPQ + φQR. (12.87)

Because the rotation from P to Q followed by the rotation from Q to R also take P
into R, and from (12.86) and (12.87) we have

φPR ≤ φPQ + φQR

1

2
φPR ≤ 1

2
φPQ +

1

2
φQR

arccos (ePR
0 ) ≤ arccos (ePQ

0 ) + arccos (eQR
0 )

Ψ(P,R) ≤ Ψ(P,Q) + Ψ(Q,R) (12.88)

which concludes the proof.

Finally we show, by contradiction that the function

Ψr = U× U → R (12.89)

given by Ψr = 1− e0, is not a metric function.
Given the triangular inequality
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Ψ(P,R) ≤ Ψ(P,Q) + Ψ(Q,R))

(1− ePR
0 ) ≤ (1− ePQ

0 ) + (1− eQR
0 )

−ePR
0 ≤ −(ePQ

0 + eQR
0 − 1)

ePR
0 ≥ ePQ

0 + eQR
0 − 1 (12.90)

Consider the following rotations

P =
[
1 0 0 0

]T
Q =

[
cos (φ2 ) 0 sin (φ2 ) 0

]T
R =

[
cos ( 2φ2 ) 0 sin ( 2φ2 ) 0

]T
(12.91)

Then we have that both P ∗R∗ and P ∗Q∗ followed by Q ∗R∗ will take P into R. If we
set φ = 0.1 we have

ePQ
0 = 0.9988

eQR
0 = 0.9988

ePR
0 = 0.9950 (12.92)

and we have

0.9950 ≥ 0.9988 + 0.9988− 1

0.9950 ≥ 0.9975 (12.93)

and thus a contradiction.
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Alg1a − Coordinate Descent, 6−>1
Alg1b − Coordinate Descent, 6−>1
Alg1c − Coordinate Descent, 6−>1
Alg1c − Coordinate Descent, 1−>6
Alg1c − Coordinate Descent, double sweep
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Figure 12.2: Convergence of Coordinate Cyclic Descent Algorithms that move one joint at the time.
Initial conditions is set far from a solution.

Alg1a − Coordinate Descent, 6−>1
Alg1b − Coordinate Descent, 6−>1
Alg1c − Coordinate Descent, 6−>1
Alg1c − Coordinate Descent, 1−>6
Alg1c − Coordinate Descent, double sweep
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Figure 12.3: Convergence of Coordinate Cyclic Descent Algorithms that move one joint at the time.
Initial conditions is set close to a solution.
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Alg0 − Jacobian
Alg1 − Coordinate Descent
Alg2 − Gauss−Southwell
Alg3 − Gauss−Southwell with Gradient
Alg4 − Steepest Descent (w=0.55)
Alg5 − Manipulator Dependent Steepest Descent
Alg6 − Steepest Descent with Gradient Estimate
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Figure 12.4: Convergence of algorithms with initial conditions far from a solution.

Alg0 − Jacobian
Alg1 − Coordinate Descent
Alg2 − Gauss−Southwell
Alg3 − Gauss−Southwell with Gradient
Alg4 − Steepest Descent (w=0.55)
Alg5 − Manipulator Dependent Steepest Descent
Alg6 − Steepest Descent with Gradient Estimate
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Figure 12.5: Convergence of algorithms with initial conditions far from a solution with respect to
time.
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Alg0 − Jacobian
Alg1 − Coordinate Descent
Alg2 − Gauss−Southwell
Alg3 − Gauss−Southwell with Gradient
Alg4 − Steepest Descent (w=0.55)
Alg5 − Manipulator Dependent Steepest Descent
Alg6 − Steepest Descent with Gradient Estimate
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Figure 12.6: Convergence of algorithms with initial conditions close to solution.

Alg0 − Jacobian
Alg1 − Coordinate Descent
Alg2 − Gauss−Southwell
Alg3 − Gauss−Southwell with Gradient
Alg4 − Steepest Descent (w=0.55)
Alg5 − Manipulator Dependent Steepest Descent
Alg6 − Steepest Descent with Gradient Estimate
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Figure 12.7: Convergence of algorithms with initial conditions close to solution with respect to
time.
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Concluding Remarks
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Chapter 13

Conclusion

In this thesis we have addressed several issues that need to be solved before autonomous
operation of off-shore oil and gas fields can see the light of day. The diversity in topics cov-
ered illustrates well how the transition from humanly operated platforms to autonomous
operation requires advances in several different fields of research related to robotics. The
problems that need to be solved are not only related to several different research areas: the
solutions also need to represent considerable advances when it comes to robustness and
efficiency, compared to today’s technology. The transition to complete autonomous oper-
ation of off-shore platforms thus requires considerable effort in a wide variety of research
areas and there is a need for considerable advances in almost all these areas before this
transition can take place.

Today there are several processes that are automated on oil platforms. These are,
however, mainly internal processes such as the control and operation of the “factory floor”.
The external processes, such as observation and maintenance, have not yet reached this
level of automation. The main topic of this thesis is how to close this gap so that also the
external processes can be automated.

Closing this gap will require advances also in areas not directly related to robotics. One
example is a fundamental change to the platform design. Because tasks such as observation
and maintenance up until now have been performed by humans, existing oil platforms are
not built for robotic operation. The oil platforms of the future will thus be quite different
from what we see today. Designing the next generation platforms is currently a very active
research area and the final product will depend heavily on the different types of robotic
solutions we choose. The platforms need to be constructed so that the robots can move
around freely and have access to every part of the platform. The platforms will also be
considerably smaller as the living facilities are removed. Platform design has not been
treated in this dissertation, but the robotic solutions discussed will certainly affect the
design of the platforms of the future.

In this thesis we have introduced some problems that we believe need to be addressed
in order to obtain autonomous operation. For the topics addressed there are still a lot of
work that needs to be done. In this sense we have not presented the final solution or the
“right answer” to these problems and we have certainly not addressed all the topics that
need to be addressed. We do believe, however, that we have addressed some important

297



CONCLUSION

topics and that we have made some contributions—some small and in some cases bigger—
to these topics.

We have put considerable effort into making the theory presented as robust as possible.
We believe this to be one of the main challenges when operating platforms located in
remote areas. This is also one of the most difficult topics in robotics—maybe in any kind of
engineering. Solutions need to work, if not, no-one will invest in them. Also, the systems
need to work when unforeseen events occur. This is considerably more challenging than
making solutions that work in structured environments. This is a very active research area
that has been addressed in great depth in this thesis.

The first part of the thesis discussed robust mathematical representations of the dynam-
ics of vehicle-manipulator systems. These models are used in simulation and control of
the robots where a mathematically robust representation is important. We have presented
the dynamic equations of these systems without the presence of singularities and in a com-
putationally efficient way. This makes the proposed approach well suited for model-based
control and implementation in simulation software. We have also presented solutions for
robust operation of parallel or cooperating robots. The approach can be used in the design
process, where we have shown how to design parallel manipulators that are fault tolerant
with respect to torque failure. The approach can also be used during operation if a joint
failure occurs in order to prevent damage to the surrounding robots or equipment.

Another aspect of developing solutions that the oil companies will invest in is to make
the systems economically viable. This requires efficient solutions that can lower the overall
operational costs. This is a great challenge because the one-time investment of installing
a robotic system is extremely high compared to human operation. Efficient and optimal
solutions that can lower the operational costs compared to human operation is thus vital.

We have presented several contributions that will increase the productivity and effi-
ciency of the robotic operation of the platform. In Part III we presented a new approach
that allows the manipulator to perform several different maintenance tasks such as spray
painting, high-pressure water blasting, and welding in a lot shorter time and using less
actuator torque. This part comes as a direct result of a desire from the oil companies who
have recognised these tasks as the most important and time-consuming tasks expected to
be performed by robots. We also presented solutions that allow the manipulator to take
advantage of the motion of the base in the case when this is large enough to affect the
manipulator dynamics. This will also save actuator torque and decrease the wear and tear
on the robot.

We have also put considerable effort into verifying the theoretical results in the lab. The
industry is only interested in solutions that work—not only in theory, but also in real life.
We have thus presented several empirical studies from the lab that verify the theoretical
studies. We have had access to a well equipped lab where we have performed experiments
that illustrate, for the first time, how the inertial forces of a moving platform affect the
manipulator. We have used this to show that the inertial forces acting on a robot mounted
on a ship in only 1 meter wave height affect the robot dynamics and, if accounted for, can
be used to improve the motion planner. We have also collected motion data from a real
ship. This allows us to get valuable information about how well we can predict the future
motion of a ship. This is important information when we use the predicted ship motion in
the motion planner of robot. Finally we have performed several experiments that illustrate
how the approach in Part III increases the efficiency of spray paint, welding, and high
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pressure water blasting applications—not only in simulations, but also on an industrial
robot in the lab. All these empirical studies strengthen the theoretical results presented
throughout the thesis.

Future Work

As already noted, there is still a long way to go before off-shore oil platforms can be
completely operated by robots. There are thus several interesting research topics that
still need to be investigated. We believe the most challenging aspects of autonomous
operation are related to robustness. Unfortunately, the oil fields that have not yet been
explored are mostly in sensitive areas where the consequences of oil spill are enormous.
This, combined with the fact that these areas are remotely located and often in extremely
harsh environments, makes the robustness of the utilised systems a very interesting and a
challenging research area that will require a lot of attention in the future. Robustness is
also a major concern for the oil companies as unplanned shut-down of the platforms are
extremely costly and should be avoided.

Also when it comes to the robotic manipulator we can expect several advances. Indus-
trial robots are not built for extreme weather conditions. The robots will thus need to be
manufactured for extreme conditions such as salt water environments, extreme tempera-
tures, strong winds, explosive gases, and so on. New materials will probably have to be
used, as well as improved coating to protect against low temperatures and salt water.

Finally we point out intelligent solutions as an important research area. Autonomous
operation requires solutions that can take the right action also when unplanned or un-
foreseen events occur. Even though we cannot rely entirely on decisions made by the
robotic systems, a large part of the decision-making process should be executed without
the involvement of humans. This will require that the robotic system can make intelligent
decisions on its own. The robotic system is also the eyes, ears, and nose of the on-shore
human supervisor. The robotic system thus needs to make decisions on what information
to pass on to the supervisor. Such intelligent decision-making also requires advances in
areas such as machine learning and artificial intelligence.

One of the main goals of the TAIL IO project when it started four years ago was to
study the feasibility of autonomously operated off-shore oil platforms. The time span was
set to 15 years to build the first autonomous platform. Now, four years later, we believe
that we can maintain this goal, i.e. that we will be able to build the first autonomous oil
platform eleven years from now. A lot of research still remains, but the investment from
both robotic manufacturers and oil companies, both when it comes to financial investment
and the number of research projects on the area, suggests that this progress will continue
and that relatively soon, the first fully autonomous off-shore oil platform will see the light
of day.
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