
Master of Science in Engineering Cybernetics
July 2010
Øyvind Stavdahl, ITK

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Motion Analysis
Model Based Head Pose Estimation of Infants

Roald Fernandez Cuesta

Problem Description
Analysis of infant movements has proved to be relevant for early diagnosis of disorders such as
cerebral palsy. There are indications that head movements are particularly relevant for this kind of
analysis. There are approximately 100 recordings available of infants' fidgety movements. In a
previous student project, relevant methods for head pose estimation have been studied.

1. Identify methods for combining physics based constraints (equations of motion, kinematics etc.)
with video based head pose estimation in order to improve and robustify the overall head pose
tracking. The work can be based on methods from the literature and/or methods developed for this
particular project by the student.

2. Implement a suitable subset of the methods studied in the previous student project. The
implementation should be tailored to the task of estimating head pose of infants based on the
available video footage, and preferably be able to perform in real time.

3. Integrate results from point 1 with those of point 2 above.

4. Assess the properties of the resulting system by comparison with available kinematic sensor
data, graphical overlaying of tracking data on the video image and/or similar. The assessment
should preferably include quantitative measures.

Assignment given: 25. January 2010
Supervisor: Øyvind Stavdahl, ITK

Abstract

This thesis presents a method for performing tracking and estimation of
head position and orientation by means of template based particle filtering.
The implementation is designed to withstand high levels of occlusion and
noise, and allow for system dynamics to be accounted for. To accelerate the
computation, GPGPU techniques are used to enable the GPU to function
a co-processor, resulting in real-time performance. A method is devised to
allow for dynamic creation of feature points used in the particle filter. Fur-
thermore, the graphics pipeline is used to overlay and visualize the tracking,
as well as play a key role in the dynamic template functionality. Finally, a
benchmarking system is suggested and developed for carrying out controlled
evaluation of tracking methods in general.

Preface
This thesis is written as part of my degree in Engineering Cybernetics at
the Norwegian University for Science and Technology (NTNU), Trondheim.
It follows as a continuation to the term project, [1], submitted in December
2009, which was mainly a literature study on face pose estimation methods
in general terms.

The thesis focuses on a particular method for performing head pose esti-
mation, and its implementation. In a broader sense, it is related to a project
on on automatic detection of Cerebral Palsy (CP). In which, and briefly told,
the goal is to create an automatic system capable of assessing the likelihood
of an infant suffering from CP, based on the movement of the infant. Ex-
tracting this movement data from video has been the focus of several theses.
The main distinction to these theses, is that tracking has been done in the
image plane, while here it is done in 6 dimensions. In space (x,y,z) as well
as orientation.

I’ve thoroughly enjoyed working on this project, as it has been very open,
allowing me to approach the problem according to my own interests. I would
like to extend my sincere gratitude to my advisor Øyvind Stavdahl (A/prof.,
NTNU) for the enjoyable meetings, encouraging my ideas, and being a source
of good advice and motivation.

Trondheim, July 2010
Roald Fernández Cuesta

i

Contents

1 Introduction 1
1.1 CIMA Project and Background 2
1.2 Focus of Thesis . 3
1.3 Desired Characteristics of Algorithm 4
1.4 CIMA Video Data . 5
1.5 Motivation . 6

1.5.1 Biological & Anthropological 6
1.5.2 Applications . 8

1.6 Own Contributions . 10
1.7 Structure of Thesis . 11

2 Background 13
2.1 Graphics Pipeline . 14

2.1.1 OpenGL . 14
2.1.2 Using OpenGL for non-graphic purposes 14
2.1.3 Graphics Terminology 14
2.1.4 Rendering Pipeline . 16
2.1.5 Projection Models . 18
2.1.6 GLSL and Rendering Normals 21

2.2 GPGPU & OpenCL . 23
2.2.1 GPGPU . 23
2.2.2 Comparison of GPGPU APIs 24
2.2.3 OpenCL . 25
2.2.4 GPGPU Processing Flow 26
2.2.5 Speed Comparison w/Example 26

2.3 OpenCV . 29

3 Method 31
3.1 Overview . 32

3.1.1 Terminology . 32
3.1.2 Overview of the Algorithm 34

iv CONTENTS

3.1.3 State & Particle Description 36
3.1.4 Problem Description 37
3.1.5 Feature Point & Template Description 38

3.2 Pose Initialization Alternatives 40
3.2.1 User Input Model Placement (UIMP) 40
3.2.2 Tuned Face Detection (TFD) 40
3.2.3 TFD + Active Appearance Model (AAM) 40
3.2.4 Thoughts on Choice 40

3.3 Template & Feature Points . 42
3.3.1 Projecting FP onto Image Plane 43
3.3.2 Frame Feature Consideration 44
3.3.3 Local vs. Regional Property 45
3.3.4 Determining the Number to Create 45
3.3.5 Getting Model Data 48
3.3.6 Hit Test . 51
3.3.7 Proximity Test . 53
3.3.8 Creation Process . 55

3.4 Evaluation of Particles . 56
3.4.1 Cost Function . 57
3.4.2 Correcting for � . 59
3.4.3 Other Approaches . 61

3.5 Particle Filter Iteration . 64
3.5.1 Selection . 66
3.5.2 Prediction . 67
3.5.3 Implemented Approach 68

4 Results 69
4.1 Testing Setup . 70

4.1.1 Implementation Bug 70
4.1.2 Motion Data Creation 70
4.1.3 Video Creation . 70
4.1.4 Occlusion . 71
4.1.5 Noise Creation . 74

4.2 Tracking in 2D . 74
4.2.1 Simple Background . 74
4.2.2 Regular Background 77
4.2.3 Similarity-Cluttered Background 78
4.2.4 With Noise . 80
4.2.5 Partial Occlusion . 81
4.2.6 Passing Occlusion . 81
4.2.7 Complete Occlusion . 82

CONTENTS v

4.3 Tracking in 2D + S . 83
4.3.1 Basic Test . 83
4.3.2 With Noise and Occlusion 84

4.4 Tracking in 2D + S + Rz . 84
4.4.1 Basic Test: 2D + Rz 85
4.4.2 Full dimension: 2D + S + Rz 86
4.4.3 With Noise and Occlusion 86

4.5 Overview of Tracker Performance 87
4.6 Speed Performance . 89

4.6.1 GPU Contribution (vs. CPU) 89
4.6.2 Consistency in Computation Time 90
4.6.3 Memory Consumption 90

4.7 Dynamic Template . 91

5 Concluding Remarks 93
5.1 Conclusion . 94

5.1.1 Accuracy & Robustness 94
5.1.2 Speed . 95
5.1.3 Accounting for Dynamics in System 95
5.1.4 Versatility and Customizability 95
5.1.5 Final Words . 97

5.2 Future Work . 97
References . 98

A Appendix 101
A.1 Results - Plots . 102
A.2 Content of Accompanied CD 123

vi CONTENTS

Nomenclature
CP Cerebral Palsy
PCA Principal Component Analysis
CIMA Computer-assisted Infant Movement Analysis
OpenCL Open Computing Language
OpenCV Open Computer Vision Library
CUDA Compute Unified Device Architecture
GPGPU General-Purpose Computation on Graphics Processing Units
GPU Computing Same as GPGPU
OpenGL Open Graphics Library
GLSL OpenGL Shading Language
pose Collective term for position and orientation
AAM Active Appearance Model
RGB Additive color space of red, green and blue
GPU Graphics Processing Unit
CPU Central Processing Unit
OS Operating System
API Application program interface
MTM Model Transform Matrix
VTM View Transform Matrix
World Coordinates Position in three dimensions [xW , yW , zW]
Image Coordinates Position in the image plane [pWx , p

W
y] or [qWx , q

W
y]

� Feature Point
T Template
� Particle
Ξ Particle Cloud
p.d.f. Probability distribution function

Chapter 1

Introduction

2 Introduction

1.1 CIMA Project and Background
In the mid 1990s, Lars Adde of the Physiotherapy Section in St.Olav’s Hospi-
tal in Trondheim started a project where the object was to measure movement
in infants in order to estimate the likelihood of developing the neuromuscu-
lar disease Cerebral Palsy (CP). This project (henceforth referred to as the
CIMA–project, short for Computer-assisted Infant Movement Assessment)
has been an ongoing collaboration between St. Olav’s Hospital and NT-
NU/SINTEF with several master theses being written on the subject. The
main effort has been to robustly track movement of the infants’ limbs, as
well as machine learning methods for automatic classification. For more in-
formation on the project and the work done on tracking see, [2, 3, 4].

The setup used for recording the infants is detailed in [3, 4]. In short, the
setup consists of a monocular camera, and six colored passive1 markers on the
infants’ ankles, wrists, chest and forehead. Earlier recordings also subsumed
additional sensors in these locations, directly measuring position [x, y, z] and
rotation [�, �,]. These direct sensors were, mainly due to their weight and
wiring, deemed obtrusive to the natural movements of the infants – moti-
vating the research for non-intrusive measurement systems based on video
recordings.

1Passive markers do not emit any lighting, as opposed to active markers such as LED
lights.

1.2 Focus of Thesis 3

1.2 Focus of Thesis
Prior work focused on image space tracking of the passive colored markers
attached to the infants. It is a reasonable assumption that added dimen-
sionality to the measurements has the potential of improving the accuracy
of correctly classifying the presence of CP. More particularly, going from the
[x, y] coordinate in the image space, to the [x, y, z]-position in world space,
including orientation [�, �,]. Position and orientation will throughout this
report, collectively be referred to as the pose. The rotation angles, [�, �,],
are also termed roll, pitch and yaw respectively, as depicted in figure 1.1.

x
y

z

Figure 1.1: Head pose. [3d head model from sharecg.com in human head
pack]

The main interest of this project is the estimation and tracking of head-
position as well as its orientation. The head has several facilitating properties
with respect to tracking: its rich distinctive features, lack of rapid movement,
bounded movement and fairly rigid form. Section 1.5 gives additional moti-
vation for head tracking. The desired characteristics of the tracking system
is robustness, non-obtrusiveness and real-time execution. A more compre-
hensive list is given in the next page.
The last decade has seen remarkable advances in computation power. This
has cleared the way for using methods deemed too computationally expensive
in the past. One such method is particle filtering, which searches through a
state space by simulating and evaluating a large number of states.

4 Introduction

1.3 Desired Characteristics of Algorithm
Given the application for which the head-pose estimation algorithm is to be
used, some desired characteristics are:

Autonomous
Requires little or no user input, and if so, only for initializa-
tion

Marker-less
Does not rely on active/passive markers for tracking. Com-
pletely non-intrusive.

Robustness
Robust, in the sense that it does not lose track of the object.

Monocular
Functional using a single camera as sensor.

Real-time
Fast enough for real-time applications, using a regular con-
sumer laptop.

Invariance to Image-Changing factors
Perform reasonably well in spite of factors such as lens cam-
era distortion, changing lighting conditions, difference in ap-
pearance of subject (including facial expressions)

Continuous Measurements
Able to discern orientation and position with fine granular-
ity, as opposed to a set of discrete orientations.

Noise Resistant
Perform well under reasonable amounts of noise.

Occlusion Resistant
As the head might be partially occluded by arms and feet
(infants are very flexible), the algorithm should demonstrate
some resistance to occlusion

1.4 CIMA Video Data 5

1.4 CIMA Video Data
The videos from the CIMA-project containing the infant subjects are pro-
tected by patient confidentiality concerns, required by the Norwegian Data
Inspectorate. Frames from these videos used in this report will have the eyes
redacted to hide the identity of the subject. This thesis is concerned with
head pose estimation, and although it is possible, redation becomes prob-
lematic for giving demonstrations. For this reason, an image of an infant not
part of the CIMA project was used for illustrative purposes. The demo and
test videos were created with this non-protected image, such that they can
be accompanied in the CD..

6 Introduction

1.5 Motivation

1.5.1 Biological & Anthropological

Humans have an innate ability to rapidly and effortlessly assert the orien-
tation of a human head. This allows for inference of social intentions and
comprehension of nonverbal communication. Studies have shown that by 6
months of age, infants begin to take notice of the gaze direction when it is
signaled by both eyes and head turning [5].

Head orientation conveys much information relevant to social situations. It
is used to indicate the intended target of a conversation, simply by the di-
rection. During the conversation, head gestures can intentionally be used
to indicate understanding (nods) or disaccord (shakes). Somewhat exagger-
ated head movements can also be used as a pointing mechanism (e.g. as
seen in movies where the protagonist is in a predicament disallowing verbal
communication, and vigorously jerks his head repeatedly to point the direc-
tion of impending danger, etc.). Similarly, inadvertent rapid head gestures,
can communicate surprise or alarm, and will instinctively trigger reflexive
responses in nearby onlookers.

Gaze estimation, that is, determining the percieved direction in which a
person sees, is intrinsically linked to the head pose. Head pose estimation
is intrinsically linked with gaze estimation, by which is meant the perceived
direction in which a person sees. In itself, the head pose serves as a coarse
indication (due to limited field of vision, and normalcy of looking straight
ahead). In some cases head pose is the only indication. For instance; im-
ages with low resolution, occluded eyes (shades, welding helmets, superhero
masks), rear view of head, etc. When two people focus their visual attention
on each other, there is an immediate understanding of mutual awareness.
Typically, pedestrians do this with approaching drivers before stepping onto
a crosswalk.

1.5 Motivation 7

Even when the eyes are clearly visible, the head orientation still plays an
important role in correctly estimating gaze direction. According to [6], per-
ceived gaze direction is surmised from a combination of both head pose and
eye direction (more accurately, visible sclera, the white part of the eye). An
example is given in the figure below, and it is suggested that the reader
attempt to discern the gaze direction in each image before reading on.

a. b.

Figure 1.2: Wollaston Illusion: Head pose affects the perceived gaze direction.

The image has been mirrored, except for the eyes and eyebrows, which are
exactly the same in both images. Regardless, she seems to look left in a. and
towards the camera in b.

The article [6] more precisely argues that the interpretation of gaze is skewed
in the direction of the head pose. This coincides with the assumption that
humans are more comfortable looking straight ahead, and as a consequence,
most often will do so. For a computer algorithm to correctly estimate the
gaze direction, gaining knowledge of the head pose is therefore arguably a
necessary preliminary step.

Head pose is a significant element in human–to–human communication as it
conveys a lot of subtle, yet important, information. With society constantly
more intertwined with technology, human–to–computer interaction beyond
that of the standard keyboard & mouse configuration will be fairly relevant
in the not so distant future. In fact, already, the major gaming console
platforms have developed systems for video-based user input. In particular
Sony’s PlayStation Motion Move and Microsoft’s Xbox Kinect. The next sec-
tion discusses several specific applications that rely on the detection of head
pose, based on image sequences.

8 Introduction

1.5.2 Applications

Detecting and tracking heads autonomously has a wide range of applications
beyond that of medical use. It forms the basis for many more complicated
applications (such as facial expression detection, eye gaze estimation, etc.).
Assuming a working algorithm with the characteristics listed in section 1.3,
some suggestions for suitable applications are:

Driver Awareness System
Using a classifier for facial expressions, a camera monitoring a
driver could be used to detect the alertness of the driver. This
system could then caution the driver through the speakers.

Video Surveillance / Data mining.
Creating a database of visitors’ faces, all transformed to being
captured from the same viewpoint using head pose information.
Feature extraction can be combined with this approach, giving
(e.g. police) the option of searching by features like, hair color,
accessories, etc.

Research
A system of head and pose tracking could be used in research
kinesiological research, i.e. the science of human motion.

Motion Capture
Computer Generated Imaging (CGI) often relies on capturing
movement of human actors. A system capable of robustly track-
ing all body parts from a single camera would make such tech-
niques available for amateurs and low-budget studios.

Conference monitor
In a conference with participants present in the same room around
a table, an extension could be made to record dialogue, and regis-
ter information on who spoke (by audio direction), and to whom
(gaze/head-pose) [7].

Human-Computer Interface/Visualization
Head gestures can be used to give commands to a computer (nods,
shakes, etc). Moreover, the head position of the user can be
used to displace the viewpoint on 3D-generated graphics (which
in combination with stereoscopic displays is bound to induce a
feeling of awe).

1.5 Motivation 9

Augmented Reality (AR)
One of the most important elements for believable AR is accu-
rately determining the correct viewpoint of the user. This re-
quires pose estimation methods of high robustness and accuracy,
pointing towards statistical methods.

Model Based Encoding
Video in teleconferencing can be encoded using pose knowledge
and exploiting human similarity. Similarly to speech compression
principals.

We make note that several, if not all, have been researched and in some cases
possibly implemented commercially.

10 Introduction

1.6 Own Contributions
The underlying principle of the method used in this thesis came from the pa-
per [7]. That is, the combination of a sparse template with a particle filtering
system to perform pose estimation with the help of the graphics card. How-
ever, there are several significant differences in the approach, which are either
considered general improvements, or simplifications suited for the purpose of
tracking based on the CIMA videos. Among the author’s contributions are:

Dynamic Template
A particular contribution is the dynamic template, which allows for initializa-
tion to occur in any pose, as well as continued performance and functionality
regardless of how much the subject turns his head. The dynamic template
implementation uses the traditional graphics pipeline with custom shaders
for extracting data, based on a 3D model. The 3D model itself was created
with vague features and infant-like proportions particularly suited for the
CIMA project. This also includes the implementation of an overlay system
for visualizing the tracking, as well as facilitating manual pose initialization.

Particle Filtering Implementation
The implementation of the complete particle filtering system should in itself
be considered a significant contribution, and is solely the work of the student
(with the exception of random number generation, which comes from [8]).
There are many details in the implementation which should be considered
contributions, such as the suggested evaluation function (section 3.4), as well
as an alternative based on hyperbolic tangent and its corresponding Padé
approxmation, or for instance the usage of normals to perform a hit-test
(section 3.3.6).

Testing System
A system was created to generate test videos based on user specified move-
ment data. This provides a method for evaluating the performance of the
particle filtering system in a controlled environment. A method was also
devised to extract the noise components from the CIMA videos, allowing to
replicate this effect in the generated videos. This benchmarking system can
be used for future theses to test performance against standardized test-cases.
Details in section 4.1.

1.7 Structure of Thesis 11

1.7 Structure of Thesis
A brief overview of the thesis:

Chapter 1 - Introduction:
Gives the reader an introduction to the thesis, rudimentary background
information as well as motivation for head pose estimation in general.The
background and motivation sections are largely based on the preceding
term project [1].

Chapter 2 - Background:
Covers the main technologies used in the system implementation. An
introduction to computer graphics, and using the graphics cards’ GPU
for doing parallel computation. Both are tailored for the work in this
thesis.

Chapter 3 - Method:
Presents the complete system used for solving the problem of pose es-
timation. It is structured in an attempt to give the reader an intuitive
understanding before delving into the details in the following sections.

Chapter 4 - Results:
Details the benchmarking system which was developed and used for cre-
ating test videos. The chapter also demonstrates the method’s robustness
to noise and occlusion, and accuracy in tracking and overall performance,
using the test videos. Analysis is provided alongside the results.

Chapter 5 - Concluding Remarks:
The final chapter discusses the performance and merit of the implemen-
tation. It gives suggestions for interesting future extensions to the im-
plementation, as well as a finalizing conclusion on the thesis.

Appendix:
The appendix contains the plots pertaining to chapter 4, and an overview
of the data files provided alongside this thesis.

12 Introduction

Chapter 2

Background

14 Background

2.1 Graphics Pipeline, OpenGL & GLSL

As the software implementation in this thesis is intrinsically connected to
the openGL rendering pipeline, a brief overview will be given of the tradi-
tional rendering pipeline, as well as its transition to shader programming,
and consequently development of GPGPU advancements such as openCL.

2.1.1 OpenGL

OpenGL (Open Graphics Library) is a software interface (API) to graphics-
specific hardware. OpenGL is a specification, in other words, hardware ven-
dors, such as nVidia and ATI, need to create their own drivers which con-
form to the specifications, making openGL hardware-independent and OS-
independent. As such, any openGL code written for a specific hardware is
guaranteed to function on all hardware, granted that the hardware is openGL
compliant.

An alternative to consider is Microsoft’s Direct3D; a similar graphics API.
The main difference between openGL and Direct3D is that the latter is a
proprietary API, only supported by the Windows platform. Direct3D has
also been criticized for being difficult to use in comparison. For this reason,
the OpenGL was the preferred choice for use in this thesis.

For the sake of brevity, the following description will err on the side of sim-
plicity. For a detailed introduction, the reader is directed to the OpenGL
Reference Manual [9], also known as the OpenGL Blue Book.

2.1.2 Using OpenGL for non-graphic purposes

Using openGL will allow for a neat feedback of the tracking, as the head pose
can be visualized by a 3D head model, overlaid on top of the video stream.
However, and more importantly, combining the tracking with a 3D model of
a head allows for dynamic generation of feature points (which are introduced
in chapter 3. This comes particularly in handy if the subject rotates its head
such that the initial points no longer face the camera, and become poor for
tracking.

2.1.3 Graphics Terminology

Some common terms used in graphics are introduced to make the subsequent
sections more approachable.

2.1 Graphics Pipeline 15

Vertex

Three-dimensional geometry consists mostly of triangles. The three points
which make up the triangle corners are called vertices. The term also applies
to the corners of all geometry in general.

Viewing Frustum

A viewing frustum is an enclosed region in the scene, defining the viewable
space. Only geometry inside the frustum can potentially appear on the final
rendered scene. The shape of this region varies depending on the projection
method used, but is typically a frustum of a rectangular pyramid (as shown
in figure 2.1).

Figure 2.1: Frustum.

Fragment

Similar to a pixel, but contains information beyond color and position, most
importantly for this thesis: depth information.

Rasterization

Process in which vector graphics (lines and shapes connected by coordinates
and mathematic functions with infinite resolution) are converted to pixels.

Rendering

In short, the complete process of generating an image from a model, by means
of computer graphics.

Shader

Set of software instructions which perform rendering effects.

16 Background

2.1.4 Rendering Pipeline

The process of generating a 2D pixel image, based on a model description
of 3D objects (viewpoint, geometry, texture, etc.) is called rendering. The
series of steps that are required to render a scene is collectively called the
rendering pipeline, or graphics pipeline. The term is somewhat flexible in
what it includes, however, the following introduction should suffice for the
purpose of this thesis.

Figure 2.2: Example of rendering

The three main stages of the pipeline are Application, Geometry and
Rasterization:

Application Stage

The application state is often considered to be outside the rendering pipeline,
as it is done completely on the CPU. It is where the content of the scene is
decided, and all underlying logic pertaining to the scene is determined. For
example, in the case of a scene with balls bouncing around, the application
stage would be in charge of collision detection, and calculating the position-
ing and rotation of all the geometry building up each ball. The developer
has complete control of everything done in the application stage. The output
of this stage to the geometry stage is a set of geometry (i.e. triangles, lines,
points), as well as matrices for the object as well as camera view transfor-
mation, and other shader related values (texture, lights, etc.).

Geometry Stage

The geometry stage operates on a per-vertex basis, which means that they
are processed independently from each other. It is capable of reposition-
ing the vertices, as well as calculating a corresponding color value. As the

2.1 Graphics Pipeline 17

vertices passed on by the application stage are usually in object space with
an associated model transform matrix (MTM), the vertices are repositioned
according to this matrix. After the model transform, a similar transform
is done with respect to the view transform matrix (VTM), associated with
point of view. If an object (for instance a teapot) is rotated, the only nec-
essary change would be in the MTM. Similarly, if only the point of view
changed, only the VTM would have to change.

The color of each vertex can be determined by a function based on texture
coordinates, surface normals, material properties, light position, etc, referred
to as the shading equation. The choice of this equation was limited to a few
set choices up until the introduction of programmable shaders in early 2001
1, more on this in section 2.1.6. In particular the shader in this stage is called
vertex shading.

Following the shader computation, several other steps are performed, most
notably geometry projection to transform the 3D scene to a "2.5D" scene.
The term 2.5D is used to denote that the screen coordinate of the vertices
correspond to their final image output, however the depth information is still
preserved. The two most common projection models are orthographic and
perspective projection, described in section 2.1.5.

Rasterization

In short, the purpose of the rasterization stage is to compute and set the pixel
color values which cover the geometry, based on the data from the geome-
try stage. The three vertices of the triangles passed on from the geometry
stage serve as interpolation corners for the pixels who’s center are within the
triangle area.

Figure 2.3 shows a visualization of the interpolation of color values over
the surface of a triangle. However the same is done for all parameters per-
taining to each vertex. This could for instance be vertices’ surface normal,
texture coordinate, etc. The final stage of the rasterizer is a new shading
operation similar to the vertex shader, here called pixel shader. The main
difference; instead of computing values for each vertex, it computes it for
each pixel (A better term is fragment, as it contains information such as
raster position (pixel coordinate), color, depth and alpha value, as well as
other interpolated attributes). The output of the pixel shader is a handful of
bitmaps, commonly called buffers in this context. The two most relevant are

1Nvidia’s GeForce 3 was the first graphics card with a GPU capable of programmable
shaders

18 Background

a. a.

Figure 2.3: a. Triangles with vertex colors b. Interpolation and rasterization
over triangles

the color buffer which contains the final output usually sent to the display
adapter. The second relevant buffer is the depth buffer, also called Z-buffer
containing a grayscale image representing the distance from the camera to
the visible objects.

Figure 2.4: Example of the color buffer and depth buffer of a rendered scene.

2.1.5 Projection Models

The two most common projection models are orthographic and perspective.
In the following discussion, it assumed that the scene has the Z-axis pointing

2.1 Graphics Pipeline 19

towards the viewer, Y-axis down and X-axis to the right. Projection consists
of transforming the camera frustum to a unit cube.

Perspective

Orthogonal

Figure 2.5: Example difference between perspective (top) and orthogonal
(bottom) projection.

Figure 2.6: The camera frustum for pinhole perspective (left) and ortho-
graphic (right) projection.

Orthographic

Orthographic projection can be thought of as simply omitting the depth
component. Objects remain the same size regardless of distance to camera,
and also do not change shape based on the screen position. In the openGL
pipeline, orthographic projection is used by choosing a box shaped frustum.
The sides of the box are denoted (l, r, b, t, n, f), corresponding to the left,
right, bottom, top, near and far coordinates. Translating this box so that
its center is the origin can be done with the transformation matrix T, and
scaling it to a unit cube is done by the scaling matrix S:

T =

⎡⎢⎢⎣
1 0 0 − l+r

2

0 1 0 − t+b
2

0 0 1 −f+n
2

0 0 0 1

⎤⎥⎥⎦ S =

⎡⎢⎢⎣
2

r−l 0 0 0

0 2
t−b 0 0

0 0 2
f−n 0

0 0 0 1

⎤⎥⎥⎦ (2.1)

20 Background

Portℎ = S ⋅T =

⎡⎢⎢⎣
2

r−l 0 0 − l+r
2

0 2
t−b 0 − t+b

2

0 0 2
f−n −f+n

2

0 0 0 1

⎤⎥⎥⎦ (2.2)

Portℎ in equation (2.2) is equivalent to the orthogonal projection ma-
trix generated by the OpenGL function glOrtho. The important thing to
note from the orthogonal projection matrix, Portℎ, is that it preserves the
homogeneous coordinate. To demonstrate: given a point in homogeneous co-
ordinates, q = [x0, y0, z0, w0]

T , the orthogonal projection of this point results
in:

q̂ = Portℎ q = Portℎ[x, y, z, w]T = [x̂, ŷ, ẑ, w] (2.3)

In other words, the whole process of rotating, translating, and orthogo-
nally projecting a point, q, from object space to screen space, [px, py]

T , can
equivalently be computed by equation (2.4).

[
px
py

]
= s ⋅R2×3

⎡⎣qxqy
qz

⎤⎦+

[
Tx
Ty

]
(2.4)

where px, py are the projected screen coordinates, s is a scaling parameter,
R2×3 the upper part of a rotation matrix, Tx, Ty translation values. The
importance of this function as well as its direct equivalence to the openGL
orthographic projection will become apparent in chapter 3.

Perspective

The perspective projection is a more accurate model of how cameras perceive
the world, and represents a perfect pin-hole camera model. The benefit of
using perspective projection was not considered sufficient to warrant the more
expensive computation. There are several reasons for this assessment, first
and foremost, the infant in the scene is resting his head on the table, making
the screen displacement highly limited. A comparison of the two projection
models is given in figure 2.5.

2.1 Graphics Pipeline 21

2.1.6 GLSL and Rendering Normals

The graphics pipeline described earlier had historically a very limited flexibil-
ity. The shader equations were limited to a very few choices, all hard-coded,
with only a set adjustable parameters. In 2001 the first GPU capable of
programmable shaders was introduced, and the trend ever since has been in-
creased configurability and flexibility. To program shaders for the GPU, a
shading language similar to C is used. The most common choices are HLSL, Cg
and GLSL, which are all very similar to each other. The decision fell on GLSL
(OpenGL Shading Language) as it was (as the name implies) designed to be
used with OpenGL. HLSL (High-Level Shader Language) is only supported
by Direct3D, and Cg (C for graphics) is in the author’s opinion a bit more
tedious to synchronize with the openGL rendering scene.

The purpose of using programmable shaders in this thesis is for rendering
the surface normals of the geometry. As far as shaders go, this is one of the
simplest to perform. The basic idea is to pass on the normal information
to the vertex shader, and set the RGB color of the fragment to the normal
coordinates. The vertex and pixel shader code is shown in below.

Code 2.1: Vertex Shader code

1 varying vec3 normal;
2 void main()
3 {
4 normal = normalize(gl_NormalMatrix * gl_Normal);
5 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
6 }

The gl_ModelViewProjectionMatrix is equivalent to gl_ProjectionMatrix
* gl_ModelViewMatrix, and are the matrices described in the previous sec-
tions. Even though they are equivalent, the vertex shader operates on a
per-vertex basis, while matrices are uniform throughout the render-pass. In
other words, it would be wasted effort to compute the matrix-matrix mul-
tiplication for each vertex; thus, gl_ModelViewProjectionMatrix is a better
choice.

By multiplying this matrix with the vertex, (gl_Vertex), it is positioned
correctly. Storing it in the spatial variable, gl_Position, sends it on to the
pixel shader. A similar transformation is done to the corresponding normal,
gl_Normal, as it needs to be transformed to camera space. This is done with
the gl_NormalMatrix matrix, which is the inverse-transpose of the Mod-
elView matrix. To pass the normal on to the pixel shader, a variable normal,
is declared with the special attribute of varying.

22 Background

Code 2.2: Pixel Shader code

1 varying vec3 normal;
2 void main()
3 {
4 vec3 n = normalize(normal);
5 gl_FragColor = vec4(n/2 + vec3(0.5 ,0.5 ,0.5) ,1.0);
6 }

The interpolated normals from the geometry stage are re-normalized (to cor-
rect for the interpolation). The color buffer stores values between [0, 1], while
the normal coordinates range from [−1, 1]. The normals are thus rescaled ap-
propriately before being sent to the color buffer, which is done by storing the
RGBA-value in gl_FragColor. An example output of this shader is shown
in figure 2.7. Decomposition of each color channel is shown in figure 2.8,
making it easy to see how each component of the normal is represented.

Figure 2.7: Regular rendering (left). GLSL shader outputting normals (right)

Figure 2.8: Channel decomposition for the normal render.

2.2 GPGPU & OpenCL 23

2.2 GPGPU & OpenCL
"GPUs have evolved to the point where many real-world ap-

plications are easily implemented on them and run significantly
faster than on multi-core systems. Future computing architec-
tures will be hybrid systems with parallel-core GPUs working in
tandem with multi-core CPUs."

- Jack Dongarra 2

2.2.1 GPGPU

As mentioned in the previous section, graphics hardware started out with a
very fixed rendering pipeline. The continued trend was to increase flexibility,
more settings to configure; and later on to the advancement of programmable
shaders. Due to the nature of graphics computation, the hardware was de-
signed with emphasis on processing large numbers of floating point operations
in parallel, as well as provide a large memory bandwidth. Figure 2.9 shows
the main difference between a typical CPU and GPU. Just the difference in
number of computing cores (around 4 for CPUs and >300 for GPUs at the
time of this thesis) alone reflect the CPUs’ sequential focus and the GPU’s
focus on parallelism.

Following the flexibility and the ease of programming shaders, the sci-
entific community began to use the GPU to perform non-graphics compu-
tation. This was termed GPGPU, short for General-purpose Computing on
Graphics Processing Units. The process would consist of baking computation
data into textures, which in turn were accessed by the shaders using texture
lookups. The shaders would use the data and compute results, finally pass-
ing it on to the CPU-accessible buffers (e.g. color buffer). The OpenGL
function glReadPixels can be used to access these buffers.The process was
constrained to the graphics pipeline, and required considerable effort and
"hacking" tricks to make the general algorithms look like graphics applica-
tions.

The desire to use the GPUs for GPGPU led to the development of a new GPU
architecture allowing even more ease of control than the traditional graphics
pipeline would permit, or what would be necessary for pure graphics pur-
poses. They have become fully programmable, allowing use of high-level
languages similar to C and C++. It has reached the point of abstracting
away the traditional function of the GPU, from a graphics pipeline, to a

2Director of the Innovative Computing Laboratory, University of Tennessee

24 Background

Main
Memory

Core 1 Core 2

L2 Cache

Thread Manager

Main
Memory

8x64 bit
160 GB/s

240 processing cores

64 bit
12GB/s

Core 3 Core 4

Figure 2.9: Example visualization of computing cores of CPU (left) and GPU
(right). Image from Nvidia.

dedicated hardware highly optimized for parallel algorithms requiring large
floating-point computational throughput. The GPU architectures in ques-
tion are NVIDIA’s CUDA (Compute Unified Device Architecture), and ATI’s
AMD FireStream.

The following sections will give an introduction to this architecture and pro-
gramming model from an OpenCL (Open Computing Language) point of
view. There is a lot to be said about the details in hardware and ways to
exploit this for better performance, etc. However, emphasis will be put on
implementation, and general benefits of using the GPU as a co-processor.

2.2.2 Comparison of GPGPU APIs

There are several programming APIs for doing GPGPU. Among the most
notable are OpenCL, CUDA C and DirectCompute.

Table 2.1: Overview of common GPGPU programming APIs

Proprietary OS specific Hardware specific
DirectCompute Yes (Microsoft) Yes (Windows) No
CUDA Yes (Nvidia) No Yes (Nvidia)
OpenCL No No No

2.2 GPGPU & OpenCL 25

DirectCompute

DirectCompute is part of Microsoft’s DirectX11+, as such it is limited to the
Windows Platform, thereby making it a less appealing choice.

CUDA C

NVIDIA advanced the field considerably with the introduction of CUDA in
2005, and the following C-like programming language CUDA C, or "C for
CUDA". The main restrictions here is limitation to NVIDIA hardware, as
well as being a proprietary API.

OpenCL

OpenCL is an open standard, royalty free API. Any vendor can follow the
specifications, and make their hardware OpenCL compliant. It is thus not
limited to any specific hardware vendor, or operating system. The API is also
an open standard, welcoming a broader and quicker acceptance. Because of
these benefits, OpenCL is considered by the author to be the most relevant
choice, and future of GPU computing. This thesis will therefore focus on
OpenCL for use in the software implementation.

2.2.3 OpenCL

OpenCL, short for Open Computing Language was initially proposed by Ap-
ple (then under the name Grand Central) and later passed on to the Khronos
Group, which is an industry consortium dedicated to royalty-free, open stan-
dard APIs. Khronos Group maintains several well-known APIs, such as the
previously discussed OpenGL. The specification was created based on a col-
laboration from all the big names (Nvidia, ATI, Intel, AMD, Apple, IBM,
and several others). Any vendor can adopt the specification and write their
own implementation, as it is an open standard. In other words, no single
company holds control of the specification.

Device Agnosticism

The most attractive feature of OpenCL, is what is called device agnosticism,
or device heterogeneity. Since OpenCL is only a specification, hardware ven-
dors need only create drivers conforming to the specification for it to be used.
In other words, OpenCL is not limited to GPUs, but can just as easily take
advantage of multi-core CPUs. An OpenCL code written for a graphics card
GPU can, without modification, run on any OpenCL compliant hardware,

26 Background

be it Nvidia or ATI GPUs, AMD or Intel CPUs, IBMs Cell Processor on the
Playstation3 or any of an increasing number of hand-held devices. Since the
main benefit at the time is usage on GPUs, it will remain the focus of the
following discussion.

2.2.4 GPGPU Processing Flow

A program typically starts out on the CPU, with data in Main Memory.
The GPU does not have access to this data, so the first step is to transfer
the data to the Device Memory. Typically, data needs to be gathered and
stored in C-compliant data-structures before being passed on to the GPU. In
other words, passing on C++ classes would be a bad idea, as OpenCL does
not support it as of yet. The next step is to instruct the GPU to execute
a program which processes the data, and calculates results. This program,
which runs in parallel is commonly called a kernel. Upon completion, the
CPU again initiates transfer of memory, this time to get access to the results
generated by the GPU.

1. Transfer data from CPU-accessible RAM to GPU accessible RAM.
2. Kernel Execution
3. Transfer back data from GPU-accessible RAM to CPU-accessible RAM.

Figure 2.10: GPGPU Processing Flow. Image from Wikimedia Commons
repocitory, CUDA page

2.2.5 Speed Comparison w/Example

For small computational tasks, transferring the data from the CPU to the
GPU can take many orders of magnitude longer than the computation itself,

2.2 GPGPU & OpenCL 27

if kept and done on the CPU. In other words, there is a bottleneck to consider
when transferring large chunks of data back and forth from the host memory
to device memory.

The Algorithm

Assume a core element of a computationally expensive program was the
main bottleneck in the system. One such could be the following evaluation
function:

V (x, y) =
1.25 ⋅ �(x, y)2

�(x, y)2 + 1
where � =

x− y
x+ y + 1

(2.5)

A sequential C++ code computing this function on the CPU is shown in
Code 2.3. The equivalent OpenCL code is shown in Code 2.4.

Code 2.3: Cost Function V(x,y), CPU

1 f l oa t costFnc(f l oa t x, f l oa t y){
2 f l oa t k = (x-y)/(y+x+1.0f);
3 f l oa t k2 = k*k;
4 return (1.25f*k2)/(k2+1.0f);
5 }

Code 2.4: Cost Function V(x,y), GPU

1 f l oa t costFnc(f l oa t x, f l oa t y){
2 f l oa t k = native_divide(x-y,y+x+1.0f);
3 f l oa t k2 = k*k;
4 return native_divide (1.25f*k2 , k2+1.0f);
5 }

The differences so far are not significant, and in fact the CPU code would
be completely valid. The native_divide() function is the same as the usual
floating-point division, except that it uses highly optimized device specific
routines, if available.

28 Background

GPU vs. CPU

Consider an application needing to evaluate the function n times. Intuitively,
if n is a small number, the cost of transferring memory between devices
will greatly overshadow the execution time if it were performed locally on
the CPU. Code listing 2.5 shows the obvious CPU implementation. Code
listing 2.6 shows the OpenCL implementation. This is where the difference
in programming models become apparent.

Code 2.5: CPU program

1 void runHst(f l oa t *hst_A , f l oa t *hst_B ,
2 f l oa t *hst_results , int n){
3 for (int indx = 0; indx < n ; indx ++)
4 {
5 hst_results[indx] = costFnc(hst_A[indx],hst_B[indx]);
6 }
7 }

Code 2.6: GPU kernel

1 __kernel void runGPU(__global f l oa t *dev_A ,
2 __global f l oa t *dev_B ,
3 __global f l oa t *dev_results){
4 int gid = get_global_id(0);
5 dev_results[gid] = costFnc(dev_A[gid],dev_B[gid]);
6 }

The kernel code is executed in parallel through all available cores on the GPU.
In order for the kernel to know exactly which element to process, and where to
store the result, it can get its index through the function get_global_id(0).
This index is functionally equivalent to the, indx, in the for-loop of the CPU.
When the CPU tells the GPU to execute the kernel, the number of work-items
to use (n, in this case), is specified.

Speed Comparison

A comparison was made by measuring the execution times for the CPU and
GPU code, over different values of n. Figure 2.11 shows, as expected, that for
small values of n, the CPU outperforms the GPU. This is mainly due to the
delays in transferring data between the main memory and device memory.
However, the GPU quickly outperforms the CPU by a factor 7. This factor
depends on the complexity of the kernel, as well the degree in which the
kernel is optimized to take advantage of the memory hierarchy. For the
implementation in chapter 3 a factor of up to 21 was obtained.

2.3 OpenCV 29

Execution times for CPU vs. GPU

Figure 2.11: Computation time for equivalent code on GPU and CPU.

Relative execution times (CPU/GPU)

Figure 2.12: Relative computation time

2.3 OpenCV
Open Source Computer Vision (OpenCV) is a cross-platform library initially
developed by Intel for doing real-time image processing. The first version
was released in 2000, and has grown through contributions by individuals as
well as corporations (amongst, Willow Garage, Intel and Google) ever since.
The latest version (2.1) was released in April 2010. Its free use under the
BSD-license, as well as good performance makes it very attractive for the
scientific community, and has been used in numerous research papers. A list
of some of the major functionality areas covered by openCV:

• Data Persistence: Methods for storing and loading image and video-
files.

• Image Processing: Standard CV-algorithms such as convolution,
FFT, edge detection, thresholding, filtering, etc.

30 Background

• Image Transforms and Sampling: Color space conversion; resizing,
image pyramids, warping, rotation, sub-image extraction, etc.

• Higher Level Modules: Optical flow, face detection, point tracking,
template matching, stereo vision, Kalman-filter, etc.

• Machine Learning: Support for many ML methods. Artificial Neural
Networks, Bayes Classifiers, Support Vector Machines, Decision Trees,
etc.

• Camera Support: Easy to interface with camera devices, as well as
advanced lens calibration tools.

• User Interface: Keyboard and Mouse callback functionality, as well
window management.

• Graphics Drawing: Support for drawing text and shapes on image
(e.g. for overlaying information on image).

• Data Structures & Operations: Vectors, matrices with correspond-
ing mathematical arithmetic support. Higher-level data structures such
as graphs and trees.

Chapter 3

Method

32 Method

3.1 Overview
The system implemented for performing head pose estimation of infants is
presented in this chapter. The underlying principle is Particle Filtering,
which will introduced in the process of covering this implementation. For
a general introduction to particle filtering, refer to [10], [11] and [12]. It is
desirable to give the reader an overview of the system and its functionality
before delving into details pertaining to each step. It can be benefitial for
the reader to look at the demonstration videos in the accompanied CD.

3.1.1 Terminology

Pose

The head’s particular position in world space [x, y, z], as well as its orientation
[�, �,] is collectively referred to as the pose.

3D Model

A 3D Model, or just simply mesh, is used to refer to the geometrical repre-
sentation of a head with smooth features. Figure 3.1 shows the mesh used
by the system.

Figure 3.1: Shows the 3D model used by the pose estimation system.

State

A state contains pose information, and can either refer to the actual state, x,
or a hypothesized state, x̃. The terms will sometimes be used interchange-
ably. Note that in some cases, the term particle (see below) is preferred over
state to make it clear that the state in question is a hypothesis; which is a
small abuse of terminology.

3.1 Overview 33

Particle

A particle can be thought of as a pose suggestion. In the general sense it
contains a hypothesized state, x̃, and an associated weight corresponding to
its fitness, �, i.e. likelihood of being a correct hypothesis of the actual state,
given the observational data. The symbol used for a particle is �.

� = [x̃, �] (3.1)

Particle Cloud

A collection of particles is referred to as a particle cloud.

Ξ = {�1, �2, . . . , �M} = {[x̃1, �1], [x̃2, �2], . . . , [x̃M , �M]} (3.2)

Template

In order to evaluate the correctness of a particle, there needs to be a way
to relate a pose to the actual image. This is done through template match-
ing. The template is comprised of a set of feature points, in the number of
hundreds. The template is mapped onto the underlying image based on a
particle. In the case of this thesis, the template is rotated, scaled and po-
sitioned, such that a direct similarity comparison can be made between the
template and the underlying video frame.

Feature Point

The feature points are locally defined, and contain world coordinates, q,
surface normal, n, and texture value, g. By locally defined, it is meant that
all feature points are defined in the same coordinate space. However, when
discussing the FPs normals and points, it is implied that the template has
been transposed to match the current output, even though values, strictly
speaking, never change.

34 Method

3.1.2 Overview of the Algorithm

An overview of program flow is given in figure 3.2.

Pose Initialization

 - User input

Cloud Evaluation

Particle Iteration

Pose Output

Cloud Iteration

Template Revision

- Particles evaluated w/template - Determines output
e.g. max(eval. particle)

- Selection of particles
- Prediction of distribution

- Good featurepoints counted
- New points generated if few good

Figure 3.2: Shows the sequence of the major steps the system is comprised
of.

Pose Initialization

The program starts out showing the first frame of the video. It is paused at
this frame, waiting the user to manually position and rotate a 3D head model
to match the subject in the frame. The window continuously reads the user
input, and updates an overlay of the 3D model until the user is satisfied with
the positioning. This is a quick and easy task using the mouse for input. An
example is given in figure 3.3. This model is used as the basis for creating
the template. –(section 3.2)–

Particle Cloud Evaluation

A particular positioning and rotation of the 3D model is called a particle. A
set of particles is referred to a particle cloud. The process of determining a

3.1 Overview 35

a. b.

Figure 3.3: a. Shows the initial frame with default 3D model position.
b. The model is correctly placed

particle’s correspondence with the underlying image is called particle evalu-
ation. So in short, this step consists of determining the correctness of each
suggested pose, given the current frame. – (section 3.4) –

Output

In each frame, the system outputs a single particle, corresponding to the
best suggestion given the particle evaluation in the prior step. This can for
instance be an average of the M highest evaluated particles for the current
frame.

Particle Cloud Iteration

As mentioned, each particle functions as a pose suggestion. I.e. "check to see
if this particular pose is a good choice". As the subject head moves around, it
is beneficial to update the particle cloud to improve the likelihood of finding
a good correspondence. E.g.: a simple choice would be to search near the
output of the current frame. – (section 3.5) –

Template Revision

When the subject rotates his head, the initial feature points begin to become
occluded by the face itself, and serve as poor choices. This part of the
algorithm checks to see how many feature points remain usable, and creates
new ones, based on the 3D model and current frame output particle. –
(section 3.3) –

36 Method

3.1.3 State & Particle Description

State

In terms of Particle Filtering, the state functions as the search parameters.
Since the system should estimate the pose, a natural choice is to make this
part of the state description. The state is defined as

x = (Tx, Ty, S, Rx, Ry, Rz, �) (3.3)

Tx and Ty are scalar translation coordinates, and Rx, Ry, Rz are scalar angles
denoting rotation about the x, y and z axis, respectively. There is no metric
by which to determine the distance to the head. For instance, a small head
near the camera can have the same visual size as a larger head further away
from the camera. Since the projection model used is orthogonal, the depth
coordinate (Tz) can more intuitively be represented by a scaling constant, S.
It can be considered as the reciprocal of the depth (distance from the camera
to the head). There is also an implementational reason for this choice, which
is mentioned in section 3.3.5.

Lastly, and not related to the pose is the � parameter, which is used to com-
pensate for change in lighting intensity throughout the tracking sequence.
That is, if there are subtle changes in lighting intensity, the �-value, instead
of the pose, can be used to compensate.

Particle

A particle consists of a hypothesized state, x̃, defined as above, and a corre-
sponding value, �, in the range [0, 1] corresponding to that individual particle
likelihood of being the correct hypothesis for the actual state. The complete
set of particles is called the particle cloud, represented by Ξ = {�i}.

Time Discretization

Time is discretized in terms of video frames. For instance the notation used
for a particle cloud with M particles at frame k:

Ξk = {�1:Mk } = {�1k . . . , �Mk } = {[x̃1
k, �

1
k], . . . , [x̃M

k , �
M
k]} (3.4)

3.1 Overview 37

3.1.4 Problem Description

This section gives a brief mathematical description of the tracking problem.
The tracking problem this system is meant to solve can be considered the
evolution of the state sequence xk, which is to say, determine the correspond-
ing pose to each frame throughout the image sequence.

The state sequence is constrained to be a Markov Process, meaning that the
process retains no memory, and thus only the prior state has any influence
on the next. This is represented by function shown in equation (3.5).

xk = fk(xk−1,vk−1) (3.5)

where v is a process noise sequence. This function is often called the state
state transition model.

Since we only have a video footage of the subject, direct knowledge of xk

is not available, and it thus becomes a Hidden Markov Process. The tracking
goal is to recursively estimate xk from available measurements, zk. That
is, we seek estimates of xk based on the current and prior measurements,
z1:k ≡ {z1, z2, . . . , zk}. The measurement model is defined in equation (3.6)
and is evaluated based on the image pixels from the video stream.

zk = hk(xk,wk) (3.6)

To summarize; we wish to attain the probability of a particular state being
the correct representation of reality, given all available measurements. In
other words, we wish to determine the probability density function (pdf)
p(xk∣z1:k).

The pdf for the state in the initial frame is provided by the user (through the
pose initialization step), and as such is considered known, and independent
of the measurement. I.e. p(x0∣z0) = p(x0), which is a necessary basis for the
particle filtering.

38 Method

3.1.5 Feature Point & Template Description

Feature Point Definition

A feature point (FP) is a vector comprising of position, q, surface normal,
n, and a grayscale texture value, g. � is used to represent this vector.

� = [q,n, g] = [qx, qy, qz, nx, ny, nz, g] (3.7)

Feature points are locally defined, which is to say, the positions and normals
are all defined in the same coordinate system, regardless of the frame in
which the FPs are created.

Template Definition

A template is built up of a finite number, N , of feature points (FP), as
described by equation (3.8).

T = {� 1:N} = [� 1, � 2, . . . , �N] (3.8)

Say for instance the template represented a two-dimensional flat plane. In
this simple case, the template would be a sparse representation of the image
it is based on. That is, � = [qx, qy, 0, 0, 0, 1, I(qx, qy)], where qx and qy is the
pixel coordinate, and I(qx, qy) the pixel’s intensity value. This simplifica-
tion could function reasonably well, granted that the subject does not rotate
about the x- or y-axis. Such a rotation would alter the normals’ value, and
thus affect the FP’s representational capability.

The implemented solution employs the FPs’ full expressability, and is de-
scribed in detail in section 3.3. An accurate representation takes advantage
of a FP’s surface normal, as it can be used to determine if the FP contains
valuable information. If not, the FP can be disregarded.

Dynamic vs. Static Feature Points

When discussing FPs, it is worth mentioning that upon creation, a FP re-
mains unaltered throughout the whole tracking sequence, i.e. static. The
main benefit is robustness to occlusion, and resistance to drifting. Consider
the subject partially covering his face with an arm, if the FPs where up-
dated to match the texture, the tracking might decide to follow the hand
when it moves away from the face. A related issue is the concept of drifting,
where it gradually loses track of the original template, and begins to track
the surroundings, etc.

3.1 Overview 39

Dynamic vs. Static Template

Upon initialization of the tracking system, a template consisting of N FPs
is generated before continuing past the first frame. As mentioned, FPs are
static, and remain unchanged. However, the template itself could either ad-
mit new FPs during the tracking sequence (dynamic template), or keep the
number constant at initial N (static template).

Creating new FPs present the same issues as described above for dynamic
FPs, however, the downsides of a static template are too significant to ignore.
Consider the simplistic flat template structure mentioned earlier. If for in-
stance the subject rotates more than 90 degrees about either x or y-axis, and
the template is rotated to match, then none of the normals point towards
the camera1. Thus, the template has lost all representational capability, and
continued tracking is made pointless.

A caveat of using a dynamic template on the other hand, is that its ben-
efit rests solely on the system’s ability to accurately represent the correct
pose upon the creation of new FPs. Furthermore, implementation of the dy-
namic template system is a fairly complicated procedure. Regardless, it has
been considered worth the effort to support larger deviation in pose angles.

1By which is meant that the normal’s z-coordinate is negative

40 Method

3.2 Pose Initialization Alternatives

Although only the first method listed has been implemented, it is worth men-
tioning a few alternatives to pose initialization for the sake of completeness.
The basic methods here are limited in some way, making them suitable for
initializing the pose, but not for performing the full tracking. This goes with-
out saying; if it were not the case, these methods themselves could instead
be used for tracking the head pose.

3.2.1 User Input Model Placement (UIMP)

This is the implemented method, and was described in section 3.1. In short:
manual initialization.

3.2.2 Tuned Face Detection (TFD)

A face detector, such as the Viola-Jones method (see [1] for an overview)
can be tuned to a particular orientation. The method outputs a region
containing the face, thus location and scale is acquired. The orientation can
be assumed to correspond to the tuned detector, as it will only detect a face
given a particular pose. The problem with this method is that it requires
a particular pose in order to be initialized, and consequently might have to
skip several frames.

3.2.3 TFD + Active Appearance Model (AAM)

Active Appearance Model (AAM) is a method for fitting statistical shapes
and textures to images. Having learned the variation of a face shape, and
how it correlates to texture, the AAM framework iteratively fits the statis-
tical model to match the underlying image. This method is very powerful,
but relies on a sub-region containing the face in a somewhat known pose.
The main benefit comes from having a 3D model specifically fitted to the
actual subject, making the template more accurate, and potentially improve
the tracking. The downside is the complexity of such a system. For more
information on AAM, refer to [13].

3.2.4 Thoughts on Choice

Since the 3D model’s accuracy in representing the subject is not of critical
importance, advanced methods such as AAM was not considered cost effec-
tive for this thesis. As for TFD, which is already implemented in OpenCV,

3.2 Pose Initialization Alternatives 41

it can help the user along in some cases (when it detects a face on the first
frame) by suggesting a pose that the user can further improve upon. How-
ever, the effort of doing it manually is so minute (taking about 3 seconds)
that focus was instead put on the tracking itself, leaving the initialization up
to the user.

42 Method

3.3 Template & Feature Points
To reiterate, a template is comprised of a set of feature points (FPs), which
in turn are vectors containing position, surface normal and texture value.
Sections 3.1.1 and 3.1.5 describe the principle and functionality of FPs and
template, which is important to understand before continuing. FPs can be
thought of as points on the surface of the 3D model with pertaining surface
normal, as well as texture value corresponding to the underlying pixel from
the video frame. Figure 3.4 illustrates this concept. This section covers
the details regarding how such feature points are chosen, and how they are
initialized.

a. b. c.

x
W

W

W

q

z
q

yq

n

Figure 3.4: a. 3D mesh model on which template is based. b. One fea-
ture point is shown with denoted values of qWx , qWy , qWz , nx, ny, nz.
Overlaying this on top of a grayscale image, intensity value, g, is
also extracted. c. Shows a template when fully generated. Black
FPs are bad, as they do not adequately face the camera.

The 3D head model overlays the image with the subject’s head beneath. A
FP is chosen based on the underlying image pixel coordinate. This coordinate
itself ends up becoming FP’s two first elements of the FP vector, qx and qy.
The last element, g, corresponds to the intensity of the pixel coordinate, all
remaining elements (surface normal and depth) are based on the overlaying
3D model. Figure 3.5 illustrates this.

3.3 Template & Feature Points 43

a. b.

Figure 3.5: a. Shows a conceptualization of the orthogonal rendering frus-
tum (green) with video frame rendered on top of a square polygon
in the background, with the head model overlaid. The line go-
ing straight through the model from frame to camera represents
the pixel selection from the video frame. b. Shows how that
particular render looks.

3.3.1 Projecting FP onto Image Plane

As mentioned in earlier sections, the FPs are specified in the template coor-
dinate system. Each FP has a grayscale intensity value which corresponds
to a pixel on the image frame. This correspondence is determined through
orthogonally projecting the FP onto the image plane through a state vec-
tor, x̃. In other words, when evaluating a particle, the template is translated
according to the particle’s state, and each FP’s stored grayscale value is com-
pared to that of the corresponding pixel in the current frame. Translation of
the template is shown in figure 3.6, while the projection is illustrated in 3.5.

x~

Figure 3.6: a. Template transposed to match x̃

A FP position in the template, q = [qx, qy, qz]
T, is projected to a point

44 Method

p = [px, py]
T on the image plane as given by:

[
px
py

]
= S ⋅R2×3

⎡⎣qxqy
qz

⎤⎦+

[
Tx
Ty

]
(3.9)

Rotation and scaling is done prior to translation as it necessary to pivot about
the template’s center. R2×3 is the 2 × 3 upper sub-matrix of the rotation
matrix R given by:

R =

[
R2×3

!1 !2 !3

]
= RzRyRx (3.10)

where Rx, Ry and Rz are fixed axis rotation matrices which rotates respec-
tively about the x, y and z-axis, with angles Rx, Ry and Rz.

3.3.2 Frame Feature Consideration

When determining which FPs to create, a good idea is to consider the un-
derlying frame when choosing which points to select. Regions in the image
with prominent features are more likely better choices than areas with no
contrast. There are several ways of determining which pixels are good for
tracking, one such is edge detection, in particular the Sobel edge detection.
Figure 3.7. Although edge detection is the only implemented approach, other
suggestions are color– and texture segmentation.

a. b.

Figure 3.7: Shows the Sobel operator on a frame, highlighting good choices
for creating FPs

3.3 Template & Feature Points 45

3.3.3 Local vs. Regional Property

A property to consider when determining which FPs to create, is whether the
creation process of a single FP requires knowledge of the surrounding pixels.
This becomes an important consideration when implementing FP creation.

Regional

The creation process is based on an image region. Feature consideration
requires regional knowledge, which is apparent as an edge cannot be defined
by a single pixel. Color segmentation for instance, does not require regional
knowledge, while texture segmentation on the other hand, does. The main
benefit of a regional approach is that it allows for finding good tracking
points.

Local

The creation process is only based on the particular pixel at hand. The
benefit of a local method is that it does not require retrieving and processing
a whole image region from the graphics card in order to create a particle,
which is potentially faster.

Template Window

In order to speed up regional methods, a smaller sub-image containing just
the subject’s head and overlaid 3D model is used. This is extracted using
the output state. Because of the orthogonal projection, this process is easy.

3.3.4 Determining the Number to Create

When the subject rotates about the x- or y-axis, the original FPs’ surface
normals become less directed towards the camera2. When the number of FPs
in the template which are facing the camera drop under a certain threshold,
the template becomes ill-conditioned, and new FPs are generated.

Note on Translating Normals

Normally, when geometry is rotated scaled and projected, some special con-
cern needs to be made for the normal. Consider the non-uniform scaling case

2As mentioned earlier, the FPs themselves do not change in numerical values, but it is
implied that the template has been rotated to match the current pose output.

46 Method

a. b. c.

Figure 3.8: Good FPs shown in red, bad ones shown in black. a. Well con-
ditioned template. b. Badly conditioned template. New FPs
needed. c. New FPs created. Template now well conditioned.

in figure 3.9. The resulting "normal", n′, is clearly no longer perpendicular
to the surface, s′.

s n s’ n’

Figure 3.9: Issue with preservation of surface normal after surface transfor-
mation.

In the general case, the transformation needs to be the transpose of the
inverse of the surface transform. This is shown in equation (3.11). G and
F correspond to the transform on the normal and surface, respectively, such
that perpendicularity is preserved. k is an arbitrary scaling constant.

(Gn)TFs = nTGTFs = 0
nTs=0⇒ GTF = kI ⇒ G = k(F−1)T (3.11)

If the surface transform consists of rotation, translation and/or uniform scal-
ing, there is no need to compute this inverse transpose. Translation does not
affect the surface normal. As for pure rotation, the matrix is orthogonal, and
its inverse is also its transpose. I.e. F−1 = FT and G = k(F−1)T = kF.

In the case of scaling, only the length of the normal is changed, and orthog-
onality is still preserved. The projection model used orthogonal projection
and uniform scaling. In other words, the pose itself can directly be used to
calculate the normal, if subsequently normalized.

3.3 Template & Feature Points 47

Counting Good Normals

For each FP in the template, its corresponding normal is transformed to
match the current pose output, xk. If the z-component is above a threshold,
tz, the FP is considered good. If the number of good FPs, cgood, drops below
a threshold, tf , a new batch of n FPs is created. This is shown in Algorithm
3.1.

Algorithm 3.1: Determining how many new FPs to create

1 cgood ← 0
2 for each FP ∈ T do
3 nz = recalcNormalGetZ(FP, xk)
4 if nz > tz
5 cgood ← cgood + 1
6 if cgood < tf
7 createNewBatch(n)

α cos(α)}
Figure 3.10: Shows the view direction, surface normal, and angle between

Since the surface normal has been transformed to screen space, its depth
component is directly related to its direction towards the camera. A value
of 1 corresponds to pointing directly towards the camera, -1 directly away.

Assuming no self-occlusion in the model geometry, any positive value of the
depth component indicates visibility. Self occlusion is not a large concern
as the model is fairly convex. For example: in order to only count FPs
with normals within 60∘ deviation from view angle, the threshold would be
tz = cos(60∘) = 0.5, as shown in figure 3.10.

It is beneficiary to overshoot in the number of FPs that are created; such
that the total amount becomes larger than the threshold by a margin. Which
is a consequence of it being less costly per FP to create a batch instead of
individual FPs. This is more so the case for regional methods mentioned in
section 3.3.3.

48 Method

3.3.5 Getting Model Data

Given the frame image, and an overlaid model. Creating a FP for the high-
lighted example coordinate might seem like a trivial matter. The pixel co-
ordinate and intensity is based on the frame itself, while depth and normal
values are determined using the 3D model. Figure 3.11 illustrates this. Su-
perscript notation is used to distinguish between FPs in world coordinate
system and FPs template coordinate system, shown in equations (3.12a) and
(3.12b) respectively.

�W = [qWx , q
W
y , q

W
z , n

W
x , n

W
y , n

W
z , g

W] (3.12a)
� = [qx, qy, qz, nx, ny, nz, g] (3.12b)

a. b. c.

qx
W

qy
W

qx
W

qy
W

qx
W

qy
W

g qz n , ,x ny nz

Figure 3.11: a. Frame with head model matching pose. Marked coordinate.
x,y is known, g is gathered from the image, the rest come from
the 3D model

Position (qx, qy)

The [x, y] pixel position is assumed to be known. It can be the result of a
random choice, or through a feature sensitive choice (ref. section 3.3.2).

[qWx , q
W
y]← [x, y] (3.13)

Pixel intensity (g)

Every frame is converted to a grayscale image. The pixel intensity is a
simple lookup, in the sense of getPixelValue(frame,x,y). The value is
independent of coordinate system. Thus

qz ← getPixelValue(frame,x,y) (3.14)

3.3 Template & Feature Points 49

Position (qz) – Depth

By rendering the 3D model, the z-buffer in the graphics card contains the
depth information. See section 2.1.4 for more information. The rendering
frustum used is a box with top–left–near corner at (0,0,0) and lower–right–
back corner at (height, width, 255). The width and height correspond
to the frame dimensions, such that there is a 1 : 1 correspondence. The depth
values range from 0 (near) to 255 (far), which are chosen for simplicity to
match 8–bit Z–buffer.

a. b.

Figure 3.12: a. Rendered Scene b. Depth Buffer

The state description uses a scaling value rather than z-coordinate. This
simplifies matters as the 3D model’s center’s z-distance can be set constant
at 128 from the camera (i.e. half way deep in the frustum). This allows to
set the new FP’s z-coordinate directly as:

qWz ← 128.0− getPixelValue(openGLZBuffer, x, y) (3.15)

Normals (nx, ny, nz)

In section 2.1.6 it was described how to render the 3D model, such that the
normals are displayed as color vectors. Figure 3.13 shows and example of
a regular scene, its corresponding normal render, and a decomposition of
RGB-channels. Each color channel contains 8bit information. That is, the
normal values from the color buffer range from [0, 255] ∈ ℕ0. Equation (3.16)
takes this into account when setting the values:

[n̂x, n̂y, n̂y]← getPixelValue(glslNormalRender, x, y)

[nW
x , n

W
y , n

W
z]← [n̂x, n̂y, n̂y]

127.5
− [1, 1, 1]

(3.16)

50 Method

Figure 3.13: Shows the regular render used in overlay (top left). Normal
render (top right), and its decomposition in each RGB color
channel in the lower row. This shows that the x-component
(red-channel) increases for values towards the right, downwards
for the y-component, and towards camera for the z-component.

Compensating for Model State

Thus far, the following has been aquired: [qWx , q
W
y , q

W
z , n

W
x , n

W
y , n

W
z , g]. The

current state, xk, does not affect color value g, thus g = gW . As for the rest,
they need to be made independent of the state used when placing the model.

x = [Tx, Ty, S, Rx, Ry, Rz, �] (3.17)

The process of compensation for model state is almost similar to reversing
the projection described in equation (3.9) in section 3.3.1.

⎡⎣ qx
qy
qz

⎤⎦ = S−1 ⋅RT

⎛⎜⎝
⎡⎣ qx
qy
qz

⎤⎦W

−

⎡⎣ Tx
Ty
0

⎤⎦+

⎡⎣ Cx

Cy

0

⎤⎦
⎞⎟⎠ (3.18a)

⎡⎣ nx

ny

nz

⎤⎦ = S−1 ⋅RT

⎡⎣ nx

ny

nz

⎤⎦W

(3.18b)

3.3 Template & Feature Points 51

Cx and Cy are the center coordinate of the template window (from section
3.3.3). I.e. Cx = 0.5 ⋅ width and Cy = 0.5 ⋅ height. Rotation matrices are
orthogonal, such that the transpose RT is used instead of its inverse R−1,
which are equivalent.

3.3.6 Hit Test

Determining whether a pixel is overlapped by the model is referred to as a hit
test, and are used to assure that a selected coordinate is likely to pertain to
the head in the frame. It is also desirable to have a margin distance from the
edges of the model. Two methods are proposed, the former is implemented.

Using Alpha Map (regional)

The depth–map 3 used earlier can be thresholded to produce a binary image
(also called a binary alpha map), as shown in figure 3.14.

Figure 3.14: Shows the depth map, and thresholding

By blurring this image and subsequently re-applying thresholding, a new bi-
nary image is produced with the desired characteristics. There are several
common blurring methods to choose from. Gaussian blur gives a mathemat-
ically perfect shrinkage, however, also very computationally expensive. A
more suited method is called box blur, and is much faster. A comparison of
these two methods is shown in figure 3.15.
It is assumed that this is a common and well known method for performing
area reduction, however no literature study has been made to verify. It is
also worth noting that doing multiple box blur passes approximates the result
to that of Gaussian blur, such that more accuracy can easily be acquired if
desirable, and at little extra cost. However, as can be seen on the figure, the
difference between the two methods is negligible, thus favoring the box blur.

3It should be noted that the alpha buffer is accessible from the graphics card, similar
to the depth buffer.

52 Method

Gauss Box

Figure 3.15: Shows a comparison between Gaussian and box blur to perform
area reduction. Top left shows the alpha map. The reduced area
is shown in red for the respective Gaussian blur and box blur.

Performing this kind of hit test is considered a regional method, as it relies
on kernel filtering.

Using Normal Information (local)

Surface normal information can be used to achieve a similar result as the
previous method, with the added property of being a local method (i.e. can
be computed solely from the information of a single pixel coordinate). An-
other benefit is that should it pass this hit test, it is also guaranteed for it to
be considered a good normal4. As such, this method also performs a thresh-
olding, on angle between the surface normal and view normal. The result of
this method is shown in figure 3.16.

4A good normal is considered one that passes the visibility test from section 3.3.3.

3.3 Template & Feature Points 53

Figure 3.16: Result of using normal thresholding for computing hit test. Ex-
ample shown for two angles. The reduced area is marked is red.
Compare with figure 3.15

3.3.7 Proximity Test

In order to achieve a good spread in FPs, a minimum distance between any
two FPs is required. Determining whether a suggested FP coordinate is valid
in this regard, is called a proximity test. As with the hit test, two methods
are described, one local and another regional. The former in this case has
been implemented.

Local

Local proximity test is straight forward. It is a simple match between current
suggested FP and all other existing ones in the template. This requires trans-
forming the suggested coordinate to template space, according to equation
(3.18a).

Algorithm 3.2: localProximityTest(FP,T,x)

1 q← transformToTemplateSpace(FPq,x)
2 for each F̂P in T do
3 q̂← F̂Pq

4 if distance(q̂,q) < td
5 return false
6 return true

The distance thresholding in line 4 should for correctness be the Euclidean
distance between the two points. However, for speed, this line is implemented
by checking whether q̂ is within a bounding box around q with distance td.
The approximation is considered to be reasonable.

54 Method

Regional

A regional method was not implemented, and unless the batch size is large, it
is considered to be less effective than the local method. This regional method
starts out creating a white grayscale weight image. It traverses through all
good5 FPs in the template, transforms them from template to image space,
and reduces the values of the surrounding the pixels in the weight image.
The hit test is now reduced to checking the value of the corresponding pixel
in the weight image.

Algorithm 3.3: setUpWeightImage(T,x)

1 weightImg ← createWhiteImage()
2 for each � in T do
3 �W ← transformToImageSpace(� ,x)
4 if isGood(�W)
5 [qWx , qWy]←↩ �W

6 reduceSurroundingPixels(weightImg, qWx , qWy)
7 return weightImg

Algorithm 3.4: regionalProximityTest(weightImg, qwx , qwy)

1 return getPixelValue(weightImg, x, y) > tg

5A "good FP" is a FP with a normal pointing within an threshold angle towards the
camera

3.3 Template & Feature Points 55

3.3.8 Creation Process

Algorithm 3.5 below shows the creation process of a batch of n FPs, using
the methods described earlier.

Algorithm 3.5: createNewFPs(n)

1 for i← to n do:
2 do:
3 do:
4 [qWx , qWy]← randomPixel()
5 while !passLocalHitTest(qWx , qWy) ⊳ section 3.3.6
6 [qx, qy, qz]← getPosition(qWx , qWy) ⊳ section 3.3.5
7 while !localProximityTest([qx, qy, qz],T,x) ⊳ section 3.3.7
8 ⊳ Valid point found. Now create FP:
9 [nx, ny, nz]← getNormal(qWx , qWy) ⊳ section 3.3.5

10 g ← getColorValue(qWx , qWy) ⊳ section 3.3.5
11 � new[i]← [qx, qy, qz, nx, ny, nz, g]

56 Method

3.4 Evaluation of Particles
Each particle contains a hypothesized state, x̃, which can be evaluated through
template matching. In section 3.3.1, it was described how the FPs in a tem-
plate could be projected onto the image plane through a state description.
The projection equation (3.9) is repeated below as algorithm 3.6.

Algorithm 3.6: fp2ImageProjection(� ,x)

1 [qx, qy, qz]←↩ �
2 [Tx, Ty, S,Rx, Ry, Rz]←↩ x
3 R2×3 ← createSubRotationMatrix(Rx, Ry, Rz)
4 [px, py]T ← S ⋅R2×3[qx, qy, qz]

T + [Tx, Ty]T

5 return [px, py]T

By projecting the FP onto the image plane, a comparison can be made
between a FP’s stored color value, and the corresponding color value on
the current video frame. This comparison forms the basis for evaluating a
particle, the higher the matching, the more likely the particle is a correct
representation of the actual state. Algorithm 3.7 shows the pseudocode for
how the weight of a single particle is evaluated.

Algorithm 3.7: evaluateParticle(x̃,T)

1 "← 0
2 ngood ← 0
3 for each � in T do:
4 g ←↩ �
5 �←↩ x̃
6 if isGood(� , x̃) do: ⊳ � is visible
7 ngood ← ngood + 1 ⊳ Count good FPs
8 [px, py]T ← fp2ImageProjection(� , x̃)
9 ĝ ← getPixelValue(frame, px, py)

10 "← "+ costFunction(g, ĝ, �)
11 return ngood/" ⊳ " ∕= 0 is guaranteed

The costFunction computes a matching error between the two pixel values;
ĝ from the current image frame, and g from the FP in the template. In a
sense, the particle cloud can be regarded as the search points in the state-
space. The �-value allows for accounting for constant lighting difference
between the template and frame (see section 3.4.1). The matching error, ",
is accumulated over all good FPs in the template, and the particle’s weight
is the reciprocal of this accumulated error.

3.4 Evaluation of Particles 57

The particle filtering system has a large amount of particles, of which all
should be weighted according to algorithm 3.7. This process is listed in
algorithm 3.8 below. In short, it evaluates the weight of each particle and
subsequently normalizes the weights throughout the cloud.

Algorithm 3.8: evaluateParticleCloud(Ξ,T)

1 i← 0
2 �[1 . . length(Ξ)]← 0
3 for each � in Ξ do:
4 x̃←↩ �
5 i← i+ 1
6 �[i]← evaluateParticle(x̃, T)
7 ⊳ Normalize weights:
8 sum ← sumOver(�)
9 for k ← 1 to length(Ξ) do:

10 �[k]← �[k]/sum
11 return �

In normalizing the weights, the particle cloud functions as a numerical ap-
proximation of the probability density function p(x̃k∣zk), where zk are the
measurements.

3.4.1 Cost Function

The cost function evaluates the error associated to the distance between the
color value of to pixels. There are several good ways to implement this func-
tion. It is very desirable to reduce the computation cost of evaluating this
function, as it is in the core functionality of the particle filtering system.
Given M particles and N FPs, the cost function is evaluated M ⋅ N times
each frame.

A suggested cost function, V , is given in equation (3.19):

V (g, ĝ, �) = �(�(g, ĝ, �)) (3.19)

where � and � are defined as:

�(g, ĝ, �) = 2
(1− �)g− (1 + �)ĝ

g + ĝ + 1
�(�) = 0.313

�2

�2 + 1
(3.20)

Parameters g and ĝ correspond to the grayscale color value of the FP
and image frame respectively. � is used to remedy color discrepancy due to

58 Method

change in lighting. A plot of this function for varying values of � is shown
in figure 3.17.

Figure 3.17: Cost function from equation (3.19) plotted for values of
� = {0.0, 0.3,−0.3, 1.0}.

The x and y axes correspond to g and ĝ respectively, and range from [0 . .255]
covering the complete function space. A desired property of the cost function
is to return values in the same range [0, 1], regardless of values of �. In the
current cost function, this is only strictly the case for � = 0, however, it
is fairly accurate for values near 0. It is expected that the actual �-values
in the particle cloud are close to 0, such that this is not a major concern.
However, the next section discusses a method to improve this.

3.4 Evaluation of Particles 59

3.4.2 Correcting for �

In order to determine the consequence of the cost function returning values
outside the range [0,1], a modification is made to equation (3.20), such that
it compensates for different values of �. This way, a performance comparison
can be made, an it can be determined if the correction is considered worth
the extra computation.

�(�, �) =
�2

(�(�)(�2 + 1))
(3.21)

The plot in fig. 3.18 shows the max value of the original cost function, plotted
against ranging values of �, together with a quadratic approximation. Using

Figure 3.18: Max vale of cost function from equation (3.19) plotted against
ranging values of alpℎa. A quadratic approximation is shown in
green.

the quadratic approximation, �̃(�), can be rewritten as:

�̃(�) = −0.11645�2 + 0.25∣�∣+ 0.80; (3.22)

Note that �̃(�) has been made symmetric about the y-axis, such that the
correction is good for all � in the valid range [−1, 1].

60 Method

The modified cost function is shown in figure 3.19, and shows the desired
properties:

Figure 3.19: Modified cost function using eqn. (3.21) and (3.22)

3.4 Evaluation of Particles 61

3.4.3 Other Approaches Worth Considering

Some effort was made to find good cost functions with similar properties
to the one already covered. The hyperbolic tangent function has properties
which make it of interest to cost functions.

Figure 3.20: tanh(x)

The new cost function given below, using t as subscript to distinguish from
the previous cost function. The inner function � is kept unaltered.

Vt(g, ĝ, �) = �t(�(g, ĝ, �)) (3.23)

where � and � are defined as:

�(g, ĝ, �) =
(1− �)g− (1 + �)ĝ

g + ĝ + 1
�t(�, �) =

d ⋅ tanh(a ⋅ ∣�∣+ b)− c
�̃t(�)

(3.24)
The scalars a, b, c, d are used to scale the functions, and can be modified for
different properties. �̃(�) is a symmetric linear function used to normalize
the cost function over values of �, the same as before:

�̃t(�) = e ⋅ ∣�∣+ f (3.25)

The constants e and f are found through regression in the same way as was
done for equation (3.22). Due to the nature of the cost function, � is in this
case almost perfectly approximated by a linear function.
Using values:

a = 0.01848 b = −2.0 c = 0.48201 (3.26a)
d = 0.5 e = 0.0006858 f = 0.00065615 (3.26b)

a new plot of the cost function is shown in figure 3.21, which shows to be
similar to the previous method. A difference to the previous method is the
configurability of the function – the four constants a, b, c, d control many
features of the cost function.

62 Method

Figure 3.21

3.4 Evaluation of Particles 63

Pade approximation of hyperbolic tangent

Hyperbolic tangent is defined as:

tanh(x) =
e2x − 1

e2x + 1
(3.27)

Which is considered to be fairly expensive to compute. For that reason, it
is desirable to find an approximation to hyperbolic tangent. Padé approxi-
mation showed to yield far better results than Taylor series expansion. The
Padé approximant of order (3, 4) of tanh is given in equation (3.28).

tanhp(x) =
10x3 + 105x

x4 + 45x2 + 105
(3.28)

The remarkable thing about this approximation is that for the interesting
ranges of tanh, i.e. [-�, �], the maximum error is 6.4977 ⋅ 10−3. An imple-
mentation in C++-code computed the approximation in 53% of the time of
tanh() from the cmath library.

Directly comparing the two in a plot would be meaningless, as they would
completely overlap. Instead a residue plot, ∣ tanh(x)− tanhp(x)∣, is shown in
figure 3.22.

Figure 3.22: Residue plot, ∣ tanh(x)− tanhp(x)∣

64 Method

3.5 Particle Filter Iteration
After evaluating the particle cloud, in a sense one has gained a numerical
representation of the probability density function of the current state of the
system, p(xk∣z1:k). Based on this, one should create a new particle cloud
matching the prediction for the next step, p(xk+1∣z1:k). The intuition be-
hind this is that the particle cloud functions as the search points in the state
space, and it is desirable to concentrate the search in areas more likely to
contain the correct representation. Consequently, this allows for using phys-
ical attributes of the tracking system, to improve the prediction. There are
thus many ways to approach this – many ways to simplify and model the
dynamics of the system.

The main iteration steps of the particle filtering method consists of selec-
tion, prediction and evaluation, of which the latter has been discussed in
depth in section 3.4. A brief textual description of the stages is given, with
an illustration in figure 3.23.

Selection

Given particle cloud Ξk−1 = {[x̃1
k−1, �

1
k−1], . . . , [x̃

M
k−1, �

M
k−1]}, the selection cre-

ates a new cloud Ξ̂k by a weighted resampling of the previous distribution.
That is, the weaker particles are replaced by copies of stronger ones.

Prediction

Prediction does not take into account the particle’s weight. This step consists
in relocating the particle by resampling the probability of state transition —
i.e. assuming the previous state, xk−1, corresponds to the particle at hand,
ˆ̃xk, choose the new location of x̃k by resampling

x̃k ∼ p(xk∣xk−1 = ˆ̃xk) (3.29)

where ˆ̃xk comes from Ξ̂k in the selection stage.

In other words, the prediction stage relocates particles based on the dynamics
of the system.

Evaluation

The new particle cloud, Ξk, from the prediction stage is evaluated using the
template, as described in section 3.4.

3.5 Particle Filter Iteration 65

Selection

Evaluation

Prediction
& di�usion

x , () π i
 k-1

~

x , () π i

 k
~

Figure 3.23: Overview of particle filtering iteration, showing the main steps:
selection, prediction and evaluation of particles. The top row cir-
cles repersent the particle cloud, the radius denoting its fitness.
Depending on their performance, a selected few are represented
multiple times, while lesser ones are discarded. A prediction
step relocates the particles, resulting in a new particle cloud,
which is subsequently re-evaluted.64

66 Method

3.5.1 Selection

Selection is the process of disregarding the particles which are considered to
have failed, and replacing them with copies of the more promising ones. This
is done through resampling, described in algorithm 3.9

Reshape of weights

The weights from the evaluation step need to be normalized such that

N∑
i=1

�i = 1 (3.30)

It can be worth investigating what properties can be gained from the initial
evaluated weights, prior to normalization. For instance if a connection can
be determined between drop in weight values and the tracking failing, etc.

Resampling Algorithm

The algorithm presented is an adaptation of the one suggested in [14].

Algorithm 3.9: Ξ̂ = resample(Ξ)

1 ⊳ Initialize comulative density function (CDF) of Ξ

2 C[0 . .M]← 0
3 C[0]← �0

4 for i← 1 to M do:
5 C[i]← C[i− 1] + �i

6 ⊳ Traversing through CDF:
7 u1 ← randomValue(0,M−1) ⊳ Random starting point from range [0,M−1]

8 i← 0
9 for j ← 0 to N do:

10 uj ← u1 + jN−1

11 while uj > C[i] and i < N − 1 do:
12 i← i+ 1

13 ˆ̃xj ← x̃i

14 return Ξ̂← {[ˆ̃x1, 0], . . . , [ˆ̃xM , 0]}

3.5 Particle Filter Iteration 67

3.5.2 Prediction

As mentioned, the prediction stage relocates particles based on the dynamics
of the system. To give an example, assume the system conforms to a linear
AR-process 6. The new particle state could then be generated as

x̃i
k = Aˆ̃xi

k + (I−A)x1:k−1 + Bwi
k (3.31)

where wi
k is a vector with normally distributed random values, and BBT

is the process noise covariance matrix [12]. It would be very interesting to
create a model of the kinematics of an infant’s head and joint movement in
order to create a similar model description. However, due to time-constraints,
a simpler method was implemented.

The Simplest Case

The simplest functional prediction is given as:

x̃i
k = diag(�)wi

k + xk−1 (3.32)

Which is a diffusion around the previous state output, making the preceding
selection stage obsolete (ˆ̃x was not used). wi

k is a vector containing normally
distributed random values, which are scaled according to the elements in �.
These values determine the standard deviation of the added noise, which is
added to each state parameter of the previous output.

� = [�x, �y, �z, �Rx , �Ry , �Rz , �Rx] (3.33)

The standard distribution vector, �, can be estimated through measurements
in the video stream, or using data from the recordings as mentioned in sec-
tion 1.4. Although this is a crude way of performing prediction (if "probably
close" can be called a prediction at all), it has demonstrated to work reason-
ably well. This prediction will be refered to as no prediction. Better methods
will be discussed next.

The General Case

In the general case, an arbitrary function, f , generates a new hypothesis,
x̃i
k, based on knowledge of the previous output history, x1:k−1, and current

selected particle ˆ̃xi
k. It can be written as:

x̃i
k = f(ˆ̃xi

k,x1:k−1) + diag(�)wi
k (3.34)

6A linear autoregressive (AR) model can be used to model many systems, and is defined
as Xt = c+

∑p
i=1 aiXt−i + �t

68 Method

By numerically calculating differentials on the outputs x, Runge-Kutta
methods can be used to perform prediction. For instance, a first-order pre-
diction would be:

x̃i
k = 2xk−1 − ˆ̃xi

k + diag(�)wi
k (3.35)

Which in a sense is the assumption of linear displacement of the system
state. It will be refered to as linear prediction.

3.5.3 Implemented Approach

After the selection stage, particles are considered equal. This allows for easy
simultaneous implementation of multiple prediction methods. For instance,
40% of the particles could be relocated using no prediction, while the remain-
ing particles could can perform linear prediction.

Chapter 4

Results

70 Results

4.1 Testing Setup

4.1.1 Implementation Bug

In the current version of the implementation, a bug has remained unresolved
which causes system to perform inadequately when allowing for rotation in
Rx and Ry. That is when the subject rotates in such a way that the face no
longer is directed towards the camera. It is the authors firm belief that this
bug can be resolved with a very few lines of code, as all required elements,
such as dynamic template, model based template generation, and template
rotation are implemented and functional. However, because of limitations in
time, it was deemed more important to show the functionality of the sys-
tem, focusing on the performance in tracking in dimensions Tx, Ty, S and
Rz, which do not rely on the parts of the system where the bug is present.
Tracking in these four dimensions should also not be a task taken too lightly.

In order to test the individual capabilities and performance of the track-
ing system, controlled test cases needed to be created. This involves creating
a video with a subject head conforming to a pre-determined sequence of val-
ues for Tx, Ty, S and Rz. This would allow a direct comparison between true
values, and tracked values. An attempt was made at making the test cases
somewhat similar to the video data of the infants (mentioned in section 1.4),
and as realistic as possible.

To improve readability, data plots are mostly gathered in appendix A.1, and
will be referenced through this chapter.

4.1.2 Motion Data Creation

To generate a sequence of motion data (position, scale or z-rotation), a pro-
gram was created to record the mouse movement. This way a more natural
flow of data was achieved, with different properties along the way. For in-
stance, data created for position, [Tx, Ty] is shown below in figure 4.1.
Similarly, data was created for scaling, S, and z-rotation, Rz.

4.1.3 Video Creation

Using the generatad data, an image of a head1 was moved around, scaled and
rotated to match the data accordingly. Using alpha-channel information, the

1The image used is not from the CIMA database, to avoid redaction, and thus allow
easier demonstration

4.1 Testing Setup 71

Figure 4.1: Generated movement data for position, [Tx, Ty]

head makes an immediate transition to the background. This is shown in
figure 4.2.

Figure 4.2: Alpha channel is used to properly overlay the head image onto
the background

The background can be set as desired, and is used to test the effect of dif-
ferent backgrounds. The fact that this background is static is not as big a
simplification as one might think. For instance, if the tracking was done with
optical flow, it would be an enormous simplification to keep the background
static. However, since this method is based on template matching alone, this
is considered good enough.

4.1.4 Occlusion

Using a foreground image with accompanied alpha channel, it is possible to
simulate the effects of occlusion. The intensity value of the occlusion is set
to gray clutter, similar in intensity as skin (as hands and feet are the main
source of occlusion).
The different kinds of occlusions are grouped by three key characteristics:
partial-, passing- and complete occlusion. A description of each follows.

72 Results

a.

c.

b.

d.

Figure 4.3: Illustration of the different kinds of occlusion considered. a. No
occlusion b. Partical occlusion c. Passing Occlusion d. Complete
Occlusion

Partial Occlusion

Partial occlusion, as the term indicates, occurs when part of the head is
hidden. See figure 4.3b. At no point is the face completely occluded, and
furthermore, it is implied that passing occlusion does not occur (see next
point). The foreground image passed through the alpha channel is shown in
figure 4.4.

a. b. c.

Figure 4.4: a. Foreground image used for in partial occlusion. b. Alpha
map. c. Combination of the two. White pixels here represent
transparency

4.1 Testing Setup 73

Passing Occlusion

Passing occlusion is a form of partial occlusion, however the key difference
is that the face passes by an occlusion such that the whole face has been
occluded, however not fully at any point in time (see figure 4.3c). Many
point based tracking systems fail at this test. Foreground image used shown
in figure 4.5.

Figure 4.5: Alpha map used in passing occlusion. White pixels denote trans-
parency

Complete Occlusion

The last type of occlusion is called complete occlusion. At some point in
time, the face is completely occluded, as illustrated in figure 4.3d. The
foreground image used is shown in figure 4.6 and was created such that the
head movement resulted in complete occlusion.

Figure 4.6: Alpha map used in complete occlusion. White pixels denote
transparency

74 Results

4.1.5 Noise Creation

It is desirable to test the robustness towards noise in the video stream. This
noise was extracted from the original CIMA videos. By using a region in the
video which contained static scenery, the change in pixels from one frame
to the next corresponded purely in noise elements. The noise was extracted
by first acquiring the static scene by averaging over a long period of time;
creating a noiseless sub-image. By subtracting this noiseless static image,
only noise elements remain.

4.2 Tracking in 2D

Initial testing starts out limiting the search space to two dimensions, [Tx, Ty].
Different properties will become apparent and potential weaknesses will be
made highlighted. It starts out by determining the effects of the background,
the addition of noise, and different levels of occlusion.

4.2.1 Simple Background

To test the potential accuracy given near-perfect conditions, we start out
with a very simple case of constant monotone background (see figure 4.7).
Regarding the prediction, the most rudimental method is used (equation
(3.32)). The initialization starts with the user placing the 3D head model on
top of the face to track. After this, the system tracks until the completion
of the video, and writes the output pose for each frame to a file, which is
compared with the original motion data.

Figure 4.7: The first frame from the simple background test video, and the
model initialized shown in the right

4.2 Tracking in 2D 75

Because the initial position the user considers (when initializing model posi-
tion) to be the center of the head might differ from the actual motion data,
calibration is done by subtracting the difference from the first output. In
other words

[Tx, Ty]
calib
1:k = [Tx, Ty]1:k − [Offset] = [Tx, Ty]1:k − ([Tx, Ty]1 − [Tx, Ty]1) (4.1)

Figure 4.8 shows the comparison between the true state x and calibrated
tracking output x.

Figure 4.8: Plot of 2D position tracking sequence

It was found to perform very well. The difference plot, x−x, shows that the
tracking is for the most part within the correct pixel, i.e. higher accuracy
cannot be attained. There are about 20 frames where the tracking erred with
a few pixels.
By using the slightly more advanced prediction method (equation (3.34)) for
60% of the particle cloud, an even lower error-rate can be achieved as showed
in figure 4.10.
Since the movement data is given in integers, anything within a sub-pixel
accuracy (below the dotted line, y = 0.5) is considered to be a perfect match.
This can be demonstrated by rounding the output data to the nearest integer.
The corresponding difference plot shown in figure 4.11.

76 Results

Figure 4.9: Difference plot x− x, monotone background.

Figure 4.10: Difference plot x− x, monotone background. Linear prediction
method for 60% of cloud

4.2 Tracking in 2D 77

Figure 4.11: Difference plot round(x) − x, monotone background. Linear
prediction method for 60% of cloud

It shows that in only 9 out of the 248 frames, the tracking erred by a single
pixel. In other words, given these pristine conditions, the tracking method
works almost perfectly. The performance of the tracker can be measured
in terms of average pixel offset pr frame, which will be called the tracker
performance, "TP. In other words

"TP = 1
k

k∑
i=1

∣round(x)i − xi∣ (4.2)

For the case above, "TP = 9/248 ≈ 0.03629.

4.2.2 Regular Background

To give the tracking a bit more of a challenge, the same test was done, but
with a non-uniform background. A sample frame is shown in figure 4.12.
The tracking results are very similar to that of the monotone background
test case. The performance is shown in figure A.2 in the appendix. Tracker
performance is "TP = 0.04435.

78 Results

Figure 4.12: Example frame from none fixed background image, 2D tracking
test

4.2.3 Similarity-Cluttered Background

To create a serious challenge for the tracking system. The following back-
ground image is used:

Figure 4.13: Example frame from cluttered background image, 2D tracking
test. Severe degree of clutter.

This contains several copies of the template itself, creating several highly
evaluated points. Using no prediction, the tracking fails, and latches onto
the surrounding faces. It resumes tracking when the head approaches again.
This is shown in figure 4.14.
If the same test was done with the basic linear prediction, it again works
perfectly, regardless of background clutter. The two cases (no prediction and
linear prediction) are shown in figure A.3 and A.4, respectively.

4.2 Tracking in 2D 79

Figure 4.14: Plot of 2D position tracking sequence. No prediction used. It
loses track of the correct face between frames 90 and 179, and
again at frame 223. "TP = 164.21

80 Results

4.2.4 With Noise

The examples thus far have been very ideal, in that they contained no noise
elements. For these tests, we will continue with the more realistic scenario of
a fixed background. Noise was extracted from the CIMA video files, such that
it matches the statistical properties identically. Noise intensity is measured
relative to the CIMA videos. 1X denotes the same intensity. The tracking
was tested against multiples of this noise. Although it is easier to see noise
when animated, figure 4.15 tries to show the effect of different noise levels
added onto a image.

0X 1X 5X 10X

20X 25X 30X 35X

Figure 4.15: Demonstrates the effect of noise at different factors.

Noise Factor 1X 10X 20X 25X 30X 35X
"TP 0.04839 0.44758 1.6532 4.6774 19.290 144.28

max(") 1 2 8 44 156 508

The individual tracking cases are shown in figures A.5, A.6, A.7, A.8 and
A.9 for 1X, 10X, 20X, 25X, 30X and 35X respectively. Noise levels above
30X cause the tracking to fail, as the noise to signal ratio is simply too great
for the system to overcome. However, tracking the subject at noise levels
of up 30X is fairly impressive. Very few tracking algorithms would perform
under such conditions. To get a perspecive of how significant this noise is,

4.2 Tracking in 2D 81

the reader is encouraged to view the demo videos in the accompanied CD.
This is also an indication of robustness towards change in facial expressions.
Next follows a series of occlusion robustness tests.

4.2.5 Partial Occlusion

By setting a foreground image with regions of transparency, it is possible
to assess how robust the system is to different kinds of occlusion. First off,
partial occlusion will be tested. The foreground image is chosen as neutral
values (127), to make it more realistic as it is close to skin color. Furthermore,
because the particle system is based on template matching, neutral values
are more problematic than say completely black values. The alpha mask
and resulting foreground occluded frame is shown in figure 4.16. There is a
deliberately made hole in the foreground, as the initialization starts with the
assumption of no occlusion. To make it even more of a challenge, 5X noise
has been used.

Figure 4.16: Partial occlusion map shown on the left. Sample frame on the
right

The degree of occlusion and noise is significant, however, as can be seen on
from the result in figure A.11, this had very little effect on the outcome.
Average error was "TP = 0.68548 pixels.

4.2.6 Passing Occlusion

A traditionally harder type occlusion is what was termed passing occlusion.
The example alpha map used for the foreground passing occlusion is shown
below in figure 4.17
Tracking sequence shown in figure A.12. The higher average error "TP =
1.9596 is due to a few frames where the tracker lost track. As can be seen

82 Results

Figure 4.17: Passing occlusion map shown on the left. Sample frame on the
right

from the sequence, in only 19 frames was the tracking error greater than 1
pixel. In these cases, the tracking resumes high performance within the next
frames.

4.2.7 Complete Occlusion

Under the circumstance of complete occlusion, tracking is by definition im-
possible (as it cannot be seen). However, it is of interest to see how the
system acts under such conditions, and whether it can recuperate. The al-
pha map used in this instance is shown in figure 4.18, which in certain frames,
covers the head completely.

Figure 4.18: Complete occlusion map shown on the left. Sample frame on
the right

Tracking sequence is shown in figure A.13. The failure occurs when the face
becomes fully occluded, and emerges again at a point too far from where it

4.3 Tracking in 2D + S 83

lost track. The only way it can manage to resume good tracking, is for the
state to approach the point where it lost track, in a state of no occlusion.
This can be seen happen at around frame 50, and again later at around
frame 125. It is thus apparent that to account for complete occlusion, some
additional logic needs to be added to the system – detecting the occurrence
of failed tracking, and counter measures to facilitate the resuming of good
tracking. For instance, spreading out the particle cloud upon losing track,
can help to improve this issue.

4.3 Tracking in 2D + S
In the previous section, the search space was two dimensional, as only tem-
plate position varied. In this section, the added dimension of scaling will be
tested. As mentioned in previous sections, the scaling can be seen as the
reciprocal of the distance to the camera. For perspective projection, this is a
fairly good simplification, while in orthogonal projection, the two are exactly
equivalent. Testing will not cover all the test cases that were shown for pure
2D tracking.

4.3.1 Basic Test

To start out with a simple case, only 1X noise is used and no occlusion.
Motion data was generated for scaling values, in the same way as for the
tracking. The generated values range from 0.42 to 1.60, and is shown here
in figure 4.19.

Figure 4.19: Plot of motion data for scaling used in testing

It is necessary to calibrate the scaling output of the tracker, as the user de-

84 Results

cides the initial scale, which might not be accurate in terms of data matching.
This follows the same logic as in equation (4.1), used for calibrating scale:

S
calib
1:k = [Scaling Offset] ⋅ S1:k =

S1

S1

⋅ S1:k (4.3)

As with the 2D tracking cases covered until now, video was generated based
on the motion data. This was inputted into the tracking system, which now
allows for variance in scalem i.e. the search space has been extended to three
dimensions, one of which represents scale. The first tracking case uses a 1X
noise intensity, and no occlusion. A sample frame containing the low scaling
value is shown in figure 4.20.

Figure 4.20: Sample frame of test video with varying scale.

As with the previous tests, a plot of the tracking sequence is given in the
appendix, in figure A.14. The system performs well, with an average pixel
position error of "TP = 1.3387.

4.3.2 With Noise and Occlusion

Next, 5X noise is added, and a combination of partial and passing occlusion.
The new alpha map used is shown in figure 4.21.
Tracking sequence shown in figure A.15. The system still performs well under
these circumstances. "TP = 1.4919.

4.4 Tracking in 2D + S + Rz

The performance of tracking rotation is tested in this section. The sample
data sequence was created as before using the mouse as input, and is shown in

4.4 Tracking in 2D + S + Rz 85

Figure 4.21: Masking image used for foreground occlusion in the subsequent
tests.

figure 4.22. To avoid issues with calibration, the initial angle was deliberately
set at 0 degrees. The values range from ±90 degrees.

Figure 4.22: Plot of motion data for Rz rotation used in testing.

4.4.1 Basic Test: 2D + Rz

Starting off with a simple case of 1X noise, no occlusion, and no scaling. The
tracking can be seen in figure A.16. It should be noted that the position error
is occurring mostly in the horizontal x-direction, and highly correlated to the
rotation angle. This should not be the case, and is believed to be a symptom
of the unresolved bug mentioned in section 4.1.1. When angles are present
in tracking, there is a seeming discrepancy between the internally calculated
particle position, and what is shown on the output. There is in other words
an added error due to the angle itself, which although present in the output,
does not severely compromise the internal functionality of the tracking (this
cannot be said for Rx and Rz, which compromise tracking significantly).

86 Results

Although the exact consequences of the bug remains undetermined, a
rudimentary correction can be made by redefining the x-position output as:

T̂ x = T x + 110 ⋅Rz (4.4)

The corresponding plot with this correction is shown in figure A.17. Using
this simple correction, the average error dropped from "TP = 20.254 to "TP =
4.0161. In either case, the error in rotation is consistently low, with an
average error of 0.0165 radians, less than 1 degree. The maximum error was
4.0 degrees.

4.4.2 Full dimension: 2D + S + Rz

Adding variation of scaling to the mix, the result is shown in figures A.18 and
A.19. In the latter, the translation of x was corrected for using the method
shown in equation (4.4), with a different constant. The angular correction
is no longer sufficient to account for the error in horizontal tracking. This
indicates that the scaling might also impart an adverse effect. Regardless of
the tracked position, both scaling and rotation perform well.

4.4.3 With Noise and Occlusion

The final testing case adds 5X noise and foreground occlusion using a map
shown in figure 4.23, which is similar to the one from the scaling test. Track-
ing sequence is shown in figure A.20.

Figure 4.23: Alpha map used for the foreground occlusion in the test video

Tracking in four dimensions, with 5 times regular noise levels and fore-
ground occlusion, the system performs very well. As mentioned, the error in

4.5 Overview of Tracker Performance 87

horizontal positioning is mainly due to a bug, which although present in the
output, does not affect the tracking itself. That is, if the particle cloud was
internally evaluated about the suggested horizontal coordinate, the tracking
would fail early, and certainly affect all other state outputs, and not just
the horizontal positioning. This suggests that the horizontal tracking error
paints an unjust picture as to the potential of the system, as it is simply a
matter of calibration, rather than poor tracking. The expected case would
be a similar performance for both horizontal and vertical position.

4.5 Overview of Tracker Performance
The performance of the system in each of the discussed tests is summarized
in table 4.1.

88 Results

F
ig
.

T
ra
ck
.

N
oi
se

O
C
C

T
X
.

B
G
.

P
d
.

"
T

P
a
ex

a
ey

m
ex

m
ey

a
es

m
es

a
er

m
er

A
.1

2D
0X

M
L

0.
03

62
90

0.
03

22
58

0.
00

40
32

3
1

1
-

-
-

-
A
.2

2D
0X

F
L

0.
04

43
55

0.
00

00
00

0.
04

43
54

8
0

1
-

-
-

-
A
.3

2D
0X

C
N

16
4.
20

96
78

.8
91

12
85

.3
18

54
8

39
5

35
8

-
-

-
-

A
.4

2D
0X

C
L

0.
01

20
96

0.
00

80
64

0.
00

40
32

2
1

1
-

-
-

-
A
.5

2D
1X

F
L

0.
04

83
87

0.
04

43
54

0.
00

40
32

2
1

1
-

-
-

-
A
.6

2D
10
X

F
L

0.
44

75
80

0.
39

11
29

0.
05

64
51

6
2

1
-

-
-

-
A
.7

2D
20
X

F
L

1.
65

32
26

1.
20

16
13

0.
45

16
12

9
8

3
-

-
-

-
A
.8

2D
25
X

F
L

4.
67

74
19

3.
41

93
55

1.
25

80
64

5
30

44
-

-
-

-
A
.9

2D
30
X

F
L

19
.2
90

32
10

.2
25

81
9.
06

45
16

1
10

8
15

6
-

-
-

-
A
.1
0

2D
35
X

F
L

14
4.
28

63
82

.1
77

42
62

.1
08

87
1

50
8

32
2

-
-

-
-

A
.1
1

2D
5X

P
T

F
L

0.
68

54
84

0.
46

37
10

0.
22

17
74

2
34

15
-

-
-

-
A
.1
2

2D
5X

P
S

F
L

1.
95

96
77

0.
73

38
71

1.
22

58
06

4
34

63
-

-
-

-
A
.1
3

2D
5X

C
F

L
27

0.
99

60
11

0.
00

81
16

0.
98

79
0

44
4

42
2

-
-

-
-

A
.1
4

2D
S

1X
F

L
1.
33

87
10

0.
61

29
03

0.
72

58
06

5
2

2
1.
11

68
75

4.
01

45
05

-
-

A
.1
5

2D
S

5X
P
S
P
T

F
L

1.
49

19
35

0.
61

69
35

0.
87

50
00

0
3

3
1.
42

49
60

6.
71

99
85

-
-

A
.1
6

2D
R

1X
F

L
20

.2
54

03
19

.0
56

45
1.
19

75
80

6
48

4
-

-
0.
94

76
38

3.
96

19
55

A
.1
7

2D
R

1X
Y

F
L

4.
01

61
29

2.
81

85
48

1.
19

75
80

6
9

4
-

-
0.
94

76
38

3.
96

19
55

A
.1
8

2D
S
R

1X
F

L
21

.9
47

58
20

.8
30

65
1.
11

69
35

5
78

6
3.
10

66
50

20
.0
46

28
1.
70

02
85

7.
76

32
89

A
.1
9

2D
S
R

1X
Y

F
L

6.
89

51
62

5.
77

82
26

1.
11

69
35

5
23

6
3.
10

66
50

20
.0
46

28
1.
70

02
85

7.
76

32
89

A
.2
0

2D
S
R

5X
P
S
P
T

F
L

21
.0
68

55
19

.8
42

74
1.
22

58
06

4
71

9
2.
36

39
58

12
.2
60

53
1.
54

88
91

9.
45

33
86

A
.2
1

2D
S
R

5X
P
S
P
T

Y
F

L
6.
66

53
26

5.
43

95
16

1.
22

58
06

5
33

9
2.
36

39
58

12
.2
60

53
1.
54

88
91

9.
45

33
86

T
ab

le
4.

1:
O
ve
rv
ie
w

of
tr
ac
ki
ng

pe
rf
or
m
an

ce
in

ea
ch

te
st

ca
se
.

F
ig

:
R
ef
er
en

ce
to

fig
ur
e
nu

m
be

r.
T
ra

ck
.
D
im

en
si
on

s
of

tr
ac
ki
ng

.
2D

(x
,y
).

S
(s
ca
le
).

R
(R

z
ro
ta
ti
on

)
N

oi
se

.
Fa

ct
or

of
no

is
e
us
ed

.
1X

de
no

te
s
sa
m
e
no

is
e
as

in
C
IM

A
vi
de

os
.
2X

is
tw

ic
e
th
e
in
te
ns
it
y,

et
c.

O
C

C
O
cc
lu
si
on

.
P
T

(P
ar
ti
al

O
cc
lu
si
on

).
P
S

(P
as
si
ng

O
cc
lu
si
on

).
C

(C
om

pl
et
e
O
cc
lu
si
on

)
T

X
.
P
ar
ti
al

co
rr
ec
ti
on

fo
r
T
x
er
ro
r
in
tr
od

uc
ed

by
sy
st
em

bu
g.

Y
(y
es
).

N
(n
o)
.
O
nl
y
ap

pl
ic
ab

le
fo
r

R
.

B
G

.
B
ac
kg

ro
un

d
us
ed
.

M
(m

on
ot
on

e)
.

F
(fi
xe
d
re
gu

la
r
im

ag
e)
.

C
(h
ig
h-
cl
ut
te
r
im

ag
e)
.

P
d
.
P
re
di
ct
io
n
m
et
ho

d
us
ed

.
N

(n
on

e)
.

L
(l
in
ea
r
pr
ed

ic
ti
on

).
ae

x
/

ae
y:

A
ve
ra
ge

er
ro
r
in

ho
ri
zo
nt
al
/v
er
ti
ca
lt

ra
ck
in
g

m
ex

/
m

ey
:
M
ax

im
um

er
ro
r
in

ho
ri
zo
nt
al
/v

er
ti
ca
lt
ra
ck
in
g

ae
s

/
m

es
:
A
ve
ra
ge

an
d
m
ax

im
um

er
ro
r
in

sc
al
e.

N
um

be
rs

gi
ve
n
in

pe
rc
en
ta
ge

(i
.e
.
10

0
ti
m
es

tr
ue

va
lu
e)
.

ae
x

/
m

ex
:
A
ve
ra
ge

an
d
m
ax

im
um

an
gl
e,

gi
ve
n
in

de
gr
ee
s.

4.6 Speed Performance 89

4.6 Speed Performance

The performance in terms of accuracy has been covered in the previous sec-
tions. However, no mention has been made of the speed in which the tracking
is computed. The implemented method allows for easy modulation of track-
ing accuracy by altering the number of particles, or the number of feature
points. In other words, it is a highly customizable method, allowing for ad-
justable trade-off in tracking accuracy vs. computational speed. That said,
the method requires high level of computation, which has in large been trans-
ferred to the graphics card’s GPU, functioning as a co-processor.

Throughout the testing examples discussed, the number of particles was kept
constant at 11 000. For each iteration in the tracking, each of these particles
performed a 3-axis rotation, scaling and translation of 550 feature points.
With this high number of particles and FPs, the system performed at a con-
sistent pace, with an average of 280 ms pr. frame.

Even though tracking was performed for a subset of the state space, the
implementation performed the computation as if the full state-space was be-
ing explored. To be precise, only the standard deviation for the diffusion
stage for the different parameters in the state space was set to 0. This causes
the particle to remain in the same position along the corresponding dimen-
sion.

This might seem like a waste of computation for the special cases of selec-
tive search, which, would be a correct assessment. However, the particular
task for which this method was developed employs the full range of the state
space, and as such cannot take advantage of selective search. Nevertheless,
it would not be problematic to modify the implementation such that it takes
advantage of the special cases.

4.6.1 GPU Contribution (vs. CPU)

The main computational effort with particle filters is the evaluation of the
particle cloud. Through use of GPGPU methods and OpenCL, this was
outsourced to the GPU. Since the evaluation for each particle is done inde-
pendently, this task becomes highly parallelizable, and thus well suited for
the GPU hardware architecture. To demonstrate the significance of the GPU
contribution, a separate implementation was created for evaluating particles
in the CPU, and not relying on the GPU at all.

90 Results

Using 2k particles, 550 FPs, the CPU implementation spent an average of
1060 ms per frame. Performing the exact same tracking using the GPU took
an average of only 66 ms, which is 16 times the performance. The advantage
of the GPU over the CPU lies in parallelization. Repeating the same test but
with 5k particles, the speed is 123ms to 2817ms – a factor of approximately
23. Consider a simulation task which takes one week to complete on a GPU
implementation of a particle filter of this size. The equivalent CPU solution
would take almost half a year!

It is important to note that the system on which these tests are made, is
a soon two year old personal consumer laptop. It runs on an Intel Core2Duo
2.26Ghz processor and an NVidia GeForce 9600M Gs graphics card. This
graphics card was one of the earliest models to be released with CUDA sup-
port. That said, the GPGPU has matured considerably in the past two years,
such that the difference between the GPU and CPU performance is now only
bound to be greater.

4.6.2 Consistency in Computation Time

A good quality of the method is consistency in computation time. The
task for each frame is very much predetermined throughout the sequence,
regardless of the accuracy of tracking, or variations through the video stream.
The timing consistency was shown to be significantly higher for the GPU
implementation than the CPU implementation. Since the main work load
is transferred to the GPU, while the CPU waits for the evaluation to be
complete, it can perform other duties. For the CPU only implementation,
it is much more affected by other processes running. Figure 4.24 shows the
timings for processing one of the earlier test cases.
The standard deviation for each case is 42 ms for the CPU and 1.64 ms for
the GPU. If the GPU times were scaled to match the average of the CPU,
the standard deviation of the GPU would still be half of that of the CPU.

Performing the same test with 5k particles resulted in standard deviation
times of 80 ms and 5.89 ms for the CPU and GPU respectively.

4.6.3 Memory Consumption

A quick test of the program showed consistent memory usage, indicating
no memory leakage. The memory consumption for the program using 11k
particles and video stream of dimensions 720x520, was kept constant at 52
MiBs.

4.7 Dynamic Template 91

Figure 4.24: Computation time pr frame for CPU and GPU, 2k particles 550
FPs.

Figure 4.25: Computation time pr frame for CPU and GPU, 5k particles 550
FPs.

4.7 Dynamic Template
Since the dynamic template is mostly used for the case of change in Rx

and Ry, showcasing the performance in terms of quantitative measurements
becomes difficult. However, a visualization of the template and dynamic
creation of FPs is provided in the CD accompanying this thesis. A selected
number of frames during this process is shown in figure 4.26.

92 Results

a. b. c. d.

e. f. g. h.

Figure 4.26: Selected frames during the demonstration of automatic genera-
tion of FPs. a. No points initialized. b. User input of initial
pose complete. First batch of FPs created. c. Rotation of
template. Black FPs are bad. New FPs created and shown.
d. Almost all of the initial FPs are considered bad. If not for
dynamic template, tracking would most likely fail. e-h. Rota-
tion back shows few FPs generated when enough good FPs are
present.

Chapter 5

Concluding Remarks

94 Concluding Remarks

5.1 Conclusion

This section is devoted to summarize and freely discuss the results and po-
tential of the implemented tracking system.

5.1.1 Accuracy & Robustness

Accuracy

The test cases showed that the tracking system is capable of accuracy down
to the pixel level, achieving performances of under 0.04 average pixel error
when tracking in two dimensions. When tracking in four dimensions, with
added noise 5 times that of regular strength, and adding considerable fore-
ground occlusion, it performed within 7 pixels average position error, 1.6
degree average angle error and 2.4% average scaling error.

When dealing with rotation, an unaccounted error in the system caused the
output estimation of horizontal position to err considerably. Although this
gives the impression that the system performed very bad for estimating hor-
izontal position when the state contained rotation, it is shown that this error
is directly related to the rotation angle. Since this can significantly be cor-
rected for without knowledge of the true rotation values, it implies that this
error paints an inaccurate image of the potential performance.

Robustness to Noise

Testing was done to evaluate the system performance given varying degrees
of noise. The noise was generated by extracting the noise components form
the CIMA videos, and adding this on top if the generated videos, with vary-
ing levels of strength. The tracking algorithm showed considerable level of
robustness towards noise, achieving successful tracking for noise levels up to
30 times the strength of the levels in the CIMA videos.

Robustness to Occlusion

Similarly, the system managed to perform successful tracking in spite of high
levels of both partial and passing occlusion. However, upon encountering
complete occlusion the tracking easily failed. Recovery from the failure was
achieved only if the head re-approached the state point where the tracking
was lost, and of course being non-occluded. For the case of the CIMA videos,
the main source of occlusion comes from limbs passing over the face. This
kind of occlusion is dynamic as opposed to the static occlusion in the test

5.1 Conclusion 95

videos. It is suggested that the system can more easily recover from dynamic
occlusion, as the occlusion itself will eventually disappear. If the particle
cloud remains around the point where it lost track, the true pose is likely to
be nearby.

5.1.2 Speed

The OpenCL implementation showed a 21X speed increase over the pure
CPU version. This allows for adequate particles quantities to be processed
in real time. For instance, using 5k particles and a template with 550 fea-
ture points, the system can process each frame on an average of 123ms, or
8.13 frames per second. For 2k particles, it reaches an average of 15 frames
per second. It should be mentioned that very little effort has been made in
optimizing the different routines.

As has been shown, the performance in frames per second is very consis-
tent throughout the tracking sequence. It is therefore possible to adjust the
particle count and template complexity to match a desired frame rate.

The sparse template representation makes the system scale very well in terms
of video dimension. The number of operations is mostly related to the par-
ticle and feature point count. If using local based methods for feature point
creation (see section 3.3.3), the system performs almost independently of
image dimension.

5.1.3 Accounting for Dynamics in System

The particle filtering system can easily take into account the dynamics of
the tracked subject in the prediction stage. If done well, this can greatly
improve the system performance by reducing the necessary particle count.
For instance, in the case of cluttered background, the method failed using
no prediction logic, while performed without fail using the very simple linear
prediction.

5.1.4 Versatility and Customizability

The most attractive property of the implemented is customizability. The
following is an overview of the most prominent customizable properties of
the implementation.

96 Concluding Remarks

Speed/Accuracy Trade-off

There is a direct trade-off between speed and accuracy when choosing the
particle and feature point count. In other words, the tracking can be done to
the desired level of accuracy, or conform to a desired throughput in frames
per second.

Cost Function

The cost function itself has several parameters that can be set. The effect of
different nuances in the cost function has not been explored to any significant
extent. Upon doing so, this can also be tailored for optimum performance.

Subject Invariance

The system generates the template given the image itself and subject within
the frame. This means that the system does not depend on color markers in
order to function. More precisely, whether the markers are present or not, it
is of little significance, as the creation of the template will be based on the
subject itself.

Also, although the system has been designed for tracking head pose, there
is no reason for it to not function similarly for any general tracking object,
of somewhat rigid nature. With some modification to implementation, even
rigidness is no longer a constraint, as the shape of the model can potentially
be expressed in the state representation. For instance in the case of tracking
a cylindrical object, a parameter could specify the cylinder’s bend. Similarly,
a leg can be somewhat modeled by two cylinders with the adjoining angle as
a parameter.

System Dynamics

The prediction stage can take into account the dynamics of the tracked sub-
ject. As we’ve seen, only two rudimentary general prediction methods were
used in the testing. There is great flexibility in how the prediction is per-
formed. More importantly, any number of prediction methods can be used
simultaneously. For instance use prediction method A for 20% of the particle
cloud, and method B for the remaining particles. Additionally, the choice
of prediction method can be changed dynamically throughout the tracking
sequence. In other words, if one particular type of dynamic was believed to
be dominating, the prediction best suited for representing this dynamic can

5.2 Future Work 97

be given more priority and thus determine prediction for a larger chunk of
the particle cloud.

5.1.5 Final Words

The implemented method has been shown to perform remarkably well given
the areas for which it has full functionality, showing high levels of resistance to
occlusion and noise levels. It has taken use of GPGPU methods, allowing the
system to perform in real time, where a pure CPU implementation would be
significantly slower. Also, a benchmarking system has been created, allowing
the controlled evaluation of the method. It is therefore in the author’s humble
opinion that the task this thesis was set to resolve, has been done so to
satisfactory levels.

5.2 Future Work

At time of writing, the current system implementation suffers from a small
bug, restricting functionality to tracking in the four dimensions – image po-
sition, scale and Rz rotation. The first priority would be to resolve this issue,
which should not be a considerable effort, as the complete solution is fully
implemented, it only needs to be corrected. This would allow to showcase
the strength and full functionality of the developed dynamic template.

The following list is an overview of the additional different tasks which are
suggested as a continuation on the work of this thesis:

• Test the fully functional tracking system directly on the CIMA videos.
• Invastigate the correlation between head movement and presence of CP

in the CIMA project.
• Use the system a basis for recognizing facial expressions or gaze direc-

tion. Determine if correlation to CP.
• More accurately model the dynamics of the system, and subsequently

incorporate said model into the prediction stage.
• Create logic for determining when tracking has failed, together with

recovery modes/methods to improve search and chances for resuming
tracking.

• Add functionality to dynamically adapt parameters based on the track-
ing itself. That is, methods for exploiting the high customizability of
the method should be investigated to improve tracking based on a feed-
back system.

98 Concluding Remarks

• Determine scalability of performance given more powerful hardware.
OpenCL and other GPGPU methods are known for being highly scal-
able, it is interesting to investigate how so for this particular imple-
mentation.

• Test the system for different tracking subjects. For instance cars (traf-
fic control), boats (offshore industry), other limbs like legs and arms
(CIMA project),

• In general, use the GPGPU Particle System Framework for any number
of state estimation problems relying on visual data.

Bibliography

[1] Roald Fernandez Cuesta. Model based head tracking and pose estimation in
image sequences, 2009.

[2] Svein Arne Nesset. Estimering av spedbarns bevegelser ut fra videodata [nor].
Master’s thesis, Norwegian University of Science and Technology, 2008.

[3] Odd Martin Staal. Robust video based motion tracking in young infants.
Master’s thesis, Norwegian Univsersity of Science and Technology, 2006.

[4] Parsa Rahmanpour. Features for movement based prediction of cerebral palsy.
Master’s thesis, Norwegian Univsersity of Science and Technology, 2009.

[5] George Butterworth and Edward Cochran. Towards a mechanism of joint
visual attention in human infancy. International Journal of Behavioral Devel-
opment, 3(3):253–272, September 1980.

[6] S. R. H. Langton, H. Honeyman, and E Tessler. The influence of head con-
tour and nose angle on the perception of eye-gaze direction. Perception &
Psychophysics, 2004.

[7] Oscar Mateo Lozano and Kazuhiro Otsuka. Real-time visual tracker by stream
processing. J. Signal Process. Syst., 57(2):285–295, 2009.

[8] William Press, Brian Flannery, Saul Teukolsky, and William Vetterling. Nu-
merical Recipes in C. Cambridge University Press, 1992.

[9] Dave Shreiner. OpenGL(R) 1.4 Reference Manual (4th Edition). Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

[10] Arnaud Doucet, Nando De Freitas, and Neil Gordon, editors. Sequential Monte
Carlo methods in practice. Springer, 2001.

[11] Arnaud, Doucet, and Johansen. A tutorial on particle filtering and smoothing:
Fifteen years later. Technical report, 2008.

[12] Michael Isard and Andrew Blake. Condensation - conditional density propa-
gation for visual tracking. International Journal of Computer Vision, 29:5–28,
1998.

100 BIBLIOGRAPHY

[13] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models.
Lecture Notes in Computer Science, 1407, 1998.

[14] Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tu-
torial on particle filters for on-line non-linear/non-gaussian bayesian tracking.
IEEE Transactions on Signal Processing, 50:174–188, 2001.

Appendix A

102 Appendix

A.1 Results - Plots
Plot A.1: 2D-tracking using linear prediciton, monotone back-
ground.

Figure A.1: 2D Tracking. Linear Prediction. Simplest of the test-cases. Main
purpose to demonstrate maximum accuracy given pristine con-
ditions. "TP = 0.03629

A.1 Results - Plots 103

Plot A.2: 2D-tracking using linear prediciton, fixed-image back-
ground.

Figure A.2: 2D Tracking. Linear Prediction. Fixed image background. Pur-
pose to see if background affects tracking. "TP = 0.044355

104 Appendix

Plot A.3: 2D-tracking using no prediciton, cluttered background.

Figure A.3: 2D Tracking. No Prediction. Cluttered background. Tracking
fails between frames 90 and 179, and from 223 and out."TP =
164.21

A.1 Results - Plots 105

Plot A.4: 2D-tracking using linear prediciton, cluttered background.

Figure A.4: 2D Tracking. Linear Prediction. Cluttered background. Track-
ing succedes again."TP = 0.0120

106 Appendix

Plot A.5: 2D-tracking. Noise overlay 1X.

Figure A.5: 2D Tracking. Linear Prediction. Fixed background. Noise added
with factor of 1X. "TP = 0.04839

A.1 Results - Plots 107

Plot A.6: 2D-tracking. Noise overlay 10X.

Figure A.6: 2D Tracking. Linear Prediction. Fixed background. Noise added
with factor of 10X. "TP = 0.44758

108 Appendix

Plot A.7: 2D-tracking. Noise overlay 20X.

Figure A.7: 2D Tracking. Linear Prediction. Fixed background. Noise added
with factor of 20X. "TP = 1.6532

A.1 Results - Plots 109

Plot A.8: 2D-tracking. Noise overlay 25X.

Figure A.8: 2D Tracking. Linear Prediction. Fixed background. Noise added
with factor of 25X. "TP = 4.6774

110 Appendix

Plot A.9: 2D-tracking. Noise overlay 30X.

Figure A.9: 2D Tracking. Linear Prediction. Fixed background. Noise added
with factor of 30X. "TP = 19.290

A.1 Results - Plots 111

Plot A.10: 2D-tracking. Noise overlay 35X.

Figure A.10: 2D Tracking. Linear Prediction. Fixed background. Noise
added with factor of 35X. "TP = 144.28

112 Appendix

Plot A.11: 2D-tracking. Partial Occlusion. 5X noise.

Figure A.11: 2D Tracking. 60% Linear Prediction. Fixed background. 5X
Noise. High level of partial occlusion. "TP = 0.68548

A.1 Results - Plots 113

Plot A.12: 2D-tracking. Passing Occlusion. 5X noise.

Figure A.12: 2D Tracking. 60% Linear Prediction. Fixed background. 5X
Noise. High level of passing occlusion. "TP = 1.9596. In only
19 frames was the tracking off by more than 1 pixel

114 Appendix

Plot A.13: 2D-tracking. Complete Occlusion. 5X noise.

Figure A.13: 2D Tracking. 60% Linear Prediction. Fixed background. 5X
Noise. Complete occlusion causes tracking to fail. It only re-
sumes if the subject becomes close to the state space point
where it lost track, and is not occluded. "TP = 271.00.

A.1 Results - Plots 115

Plot A.14: 2D+Scale tracking. 1X noise.

Figure A.14: 2D+Scale Tracking. Fixed background. 1X Noise. Tracking
extended to the three-dimensional search space containing po-
sition and scale. Third plot from the top shows the true values
(line) and the tracked values (circle). "TP = 1.3387.

116 Appendix

Plot A.15: 2D+Scale tracking. 5X noise. Partial Occlusion

Figure A.15: 2D+Scale Tracking. Fixed background. 5X Noise. "TP =
1.4919.

A.1 Results - Plots 117

Plot A.16: 2D+Rz tracking. 1X noise.

Figure A.16: 2D+Rz Tracking. Fixed background. 1X Noise. "TP = 20.254.

118 Appendix

Plot A.17: 2D+Rz tracking. 1X noise.

Figure A.17: 2D+Rz Tracking. Fixed background. 1X Noise. The same
tracking output as on the previous page, but Tx correction per-
formed using tracked angle output. "TP = 4.0161.

A.1 Results - Plots 119

Plot A.18: 2D+Scale+Rz tracking. 1X noise.

Figure A.18: 2D+Scale++Rz Tracking. Fixed background. 1X Noise.
"TP = 6.7339.

120 Appendix

Plot A.19: 2D+Scale+Rz tracking. 1X noise.

Figure A.19: 2D+Scale++Rz Tracking. Fixed background. 1X Noise.
"TP = 21.948.

A.1 Results - Plots 121

Plot A.20: 2D+Scale+Rz tracking. 5X noise. Occlusion

Figure A.20: 2D+Scale++Rz Tracking. Fixed background. 5X Noise.
"TP = 21.948.

122 Appendix

Plot A.21: 2D+Scale+Rz tracking. 5X noise. Occlusion

Figure A.21: 2D+Scale++Rz Tracking. Fixed background. 5X Noise.
"TP = 21.948.

A.2 Content of Accompanied CD 123

A.2 Content of Accompanied CD
Attached to the back of this thesis follows a CD. Documentation of particulars
is provided in the CD. A rough overview of the content is given:

Software [Code and Binaries]

1. Implemented particle filtering method.
2. Benchmark-video creation tools.

Demonstration [Video]

1. Overall functionality of method
2. Dynamic Template
3. Particle cloud visualization

Test Cases [Video]

1. The test cases discussed in the thesis
2. Corresponding 3D model overlaid (covering head)
3. Tracking overlaid

	Title Page
	Problem Description
	Table of contents
	Introduction
	CIMA Project and Background
	Focus of Thesis
	Desired Characteristics of Algorithm
	CIMA Video Data
	Motivation
	Biological & Anthropological
	Applications

	Own Contributions
	Structure of Thesis

	Background
	Graphics Pipeline
	OpenGL
	Using OpenGL for non-graphic purposes
	Graphics Terminology
	Rendering Pipeline
	Projection Models
	GLSL and Rendering Normals

	GPGPU & OpenCL
	GPGPU
	Comparison of GPGPU APIs
	OpenCL
	GPGPU Processing Flow
	Speed Comparison w/Example

	OpenCV

	Method
	Overview
	Terminology
	Overview of the Algorithm
	State & Particle Description
	Problem Description
	Feature Point & Template Description

	Pose Initialization Alternatives
	User Input Model Placement (UIMP)
	Tuned Face Detection (TFD)
	TFD + Active Appearance Model (AAM)
	Thoughts on Choice

	Template & Feature Points
	Projecting FP onto Image Plane
	Frame Feature Consideration
	Local vs. Regional Property
	Determining the Number to Create
	Getting Model Data
	Hit Test
	Proximity Test
	Creation Process

	Evaluation of Particles
	Cost Function
	Correcting for
	Other Approaches

	Particle Filter Iteration
	Selection
	Prediction
	Implemented Approach

	Results
	Testing Setup
	Implementation Bug
	Motion Data Creation
	Video Creation
	Occlusion
	Noise Creation

	Tracking in 2D
	Simple Background
	Regular Background
	Similarity-Cluttered Background
	With Noise
	Partial Occlusion
	Passing Occlusion
	Complete Occlusion

	Tracking in 2D + S
	Basic Test
	With Noise and Occlusion

	Tracking in 2D + S + Rz
	Basic Test: 2D + Rz
	Full dimension: 2D + S + Rz
	With Noise and Occlusion

	Overview of Tracker Performance
	Speed Performance
	GPU Contribution (vs. CPU)
	Consistency in Computation Time
	Memory Consumption

	Dynamic Template

	Concluding Remarks
	Conclusion
	Accuracy & Robustness
	Speed
	Accounting for Dynamics in System
	Versatility and Customizability
	Final Words

	Future Work
	References

	Appendix
	Results - Plots
	Content of Accompanied CD

