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Summary

TARGET tracking is an essential requirement for surveillance and control systems to
interpret the environment. This environment may contain multiple targets, and the

environmental information may be obtained by multiple sensors in a multitarget multi-
sensor tracking system. In this thesis we focus on targets which, in addition to reflecting
signals themselves, also have a trailing path behind them, called a wake. This wake
causes additional measurements to those originating from the target. When the mea-
surements are processed, the estimated track can be misled and sometimes lose the real
target because of the wake. This problem becomes even more severe in multitarget en-
vironments where targets are operating close to each other in the presence of wakes.

In this thesis a probabilistic model is developed which reflects the probability that a
false measurement originates from the wake behind a target. This wake model is inte-
grated in the probabilistic data association filter (PDAF) to improve the track continuity
for tracking single targets. The modified PDAF is further extended to handle multiple
targets in the presence of wakes by using a probabilistic wake model for each of the tar-
gets in the multitarget environment that has a wake behind it. These single wake models
are combined to form a joint wake model which augments the joint probabilistic data
association filter (JPDAF) for both coupled and decoupled filtering.

The wake-originated measurements may also cause confusion in the track initiation.
To prevent this problem, a clustering method is proposed based on morphological oper-
ators which allows tracks to be initialized based on two-point differencing of the cluster
centroids from succeeding scans.
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viii Summary

The modified PDAF is tested on data of a real scuba diver with an open breathing
system. In this case the air bubbles produced by the diver form a wake which extends
far behind the diver. The experiment showed that the above modifications of the PDAF
improved the track continuity significantly.

Finally, a relatively extensive simulation, based on real scuba diver data, is presented.
Four different multitarget multisensor tracking scenarios are simulated, considering two
targets with wakes that are:

1. Crossing each other.

2. Moving in parallel to each other.

3. One following after another.

4. Meeting and then passing each other.

The results of these simulation scenarios show that the presented modifications improve
the tracking performance, and the probability of lost tracks is significantly reduced. The
targets are observed by two sensors, and it is shown that tracks estimated in a centralized
fusion configuration are better than the local tracks estimated using data from individual
sensors only. It is also shown that applying the wake model to targets that do not generate
a wake, yields almost no deterioration of the tracking performance.
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Nomenclature

Notations

A amplitude squared (energy)
Ai amplitude squared (energy) in cell number i
A(i) amplitude squared number i in an ordered sequence (increasing values)
Aav average amplitude squared
B structuring element [paper A, Section 2.2]
βk(i) conditional probability of association event θk(i)
βk,l conditional probability of association event θk,l

c center of the joint validation region
cij cost of choosing hypothesis i when j is true
cov covariance
d distance
dmax maximum distance
Dk eigenvalue matrix [paper A, Appendix B]
δt
Θ target detection indicator (indicates if a measurement is associated to

target t in event Θ)
δΘ vector of target detection indicators (corresponding to event Θ)
δB(X) dilation of image X by structuring element B [paper A, Section 2.2]
Δt time delay
E{·} expectation
εB(X) erosion of image X by structuring element B [paper A, Section 2.2]
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x Nomenclature

f(x, k) non-linear plant equation of x at time k
fH(y) likelihood function under hypothesis H
F transition matrix
γ validation gate threshold
γ [deg] trajectory crossing angle
Γ(·) gamma function
h(x, k) non-linear measurement equation of x at time k
H measurement matrix
H hypothesis that only noise is present (null hypothesis)
I identity matrix
Inx nx × nx identity matrix
Ix
Θ block identity matrix [see Equation (45) in paper C]

jt(Θk) index of the measurement associated with target t in event Θk

k time index
K hypothesis that a target and noise are present
(l, w) measurement (l-behind and w-sideways to the predicted target

position) [paper B, Appendix A and paper C, Appendix A]
Lk number of measurement histories at time k [Part I, Section 4.1]
L(·) limit of the variable (·) (for bubble and wake models)
L(y) likelihood ratio of y, L(y) = fK(y)

fH(y)

λ spatial density of the number of false measurements
λw wake generation parameter (exponential distribution)

[paper B, Section 4]
mk number of validated measurements at time k
mk vector containing all mk up to and including time k
M measurement generation area [paper C, Section 5.3]
Mk eigenvector matrix [paper A, Appendix B]
μ mean
μF (·) pmf of the number of false measurements
n number of samples
nx dimension of vector x
N (μ, σ2) normal (Gaussian) distribution with mean μ and variance σ2

N (x;μ, σ2) pdf of a normal (Gaussian) random vector x with mean μ and
variance σ2

N(·) number of elements of the type (·)
νk combined innovation [see Equation (4.62)]
νk(i) innovation of measurement number i
νS

k (Θ) stacked innovation associated to event Θk [paper C, Section 3.4]
Ω validation matrix
ΩΘ matrix representation of the event Θ
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pW (·) wake pdf [paper B and paper C]
P{·} probability of an event
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P̃ spread of the means term
Pk|k(i) estimated covariance matrix of the state at time k given that
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PB bubble probability [paper A]
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PFT false track probability [paper A]
PG gate probability
PGB bubble gate probability [paper A]
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xii Nomenclature

σθ standard deviation of θ
σ2

θ variance of θ
σp(s) standard deviation of the process noise in the simulation model
σp(f) standard deviation of the process noise in the filter model
t target number
tj index of the target to which measurement j is associated
T time between each scan
τ constant scale factor (included in the detection threshold)
T detection threshold
τΘ(j) measurement association indicator (indicates if measurement j is

associated to a target or not in event Θ)
θk(i) association event that measurement zk(i) originates from the target
θ(j, t) event that measurement j originates from target t
θk,l event that the lth sequence of measurements is correct at time k
Θ joint association event [see Equation (5.3)]
ϑ speed
(ui, uq) in-phase and quadrature components
v process noise
v[m/s] target velocity [paper A, App. B, paper B, App. A, and paper C, App. A]
var variance
Vk(γ) measurement validation region at time k with gate threshold γ
Vk volume of the validation region at time k
V(·) volume of (·)
w measurement noise
W wake area
Wk Kalman gain (filter gain) at time k
x target state
x̂k|k(i) target state estimate at time k given measurements through

time k and that measurement i originates from the target
x̂S

k|k(Θ) stacked state estimate of the targets at time k given measurements
through time k and that the joint association event Θ is true

(x, y) position measurement in Cartesian coordinates
X image
y sample of the received signal
Y amplitude squared of the cell to be tested for detection
z measurement
z̄ predicted position measurement
z(i) measurement number i

ẑ
tj
k|k−1 predicted measurement of target tj at time k, given measurements

through time k − 1
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Zk set of all measurements up to and including time k
Zk,l lth sequence of measurements (measurement histories) at time k
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xiii

(̂·) estimate
(̃·) error corresponding to (·)
(·)−1 inverse of matrix
(·)T transposition (of a matrix or a vector)
(̄·) complement of set (or event)
(·)true true state of (·)
(·)t probability, pdf, vector or matrix associated to target t

(·)S stacked vector or matrix
(·)l vector or matrix conditioned on the lth sequence of measurements,

out of all combinations of measurement sequences, being true
(·)k (·) at time k

(·)(k|j) conditional estimate or covariance at time k given measurements
up to and including time j

(·|·) conditioning (for probabilities, estimates or covariances)
| · | magnitude (of a scalar) or determinant (of a matrix)
‖ · ‖ norm (of a vector or matrix)
[ω(j, t)] a matrix whose components at j-row t-column is ω(j, t)
[a, b] closed interval between points a and b (includes the endpoints)
f(x)|x=x̂k|k function evaluated at x = x̂k|k
∞ infinity
m → ∞ as m approaches infinity
∼ distributed as
≈ approximately equal
� equal by definition
�= not equal
≤ less than or equal to

a
K

≷
H

b choose K if a is greater than b, otherwise choose H

! factorial
∩ logical “AND” operation (set intersection)
∪ logical “OR” operation (set union)
⊕ dilation [paper A, Section 2.2]

 erosion [paper A, Section 2.2]
∅ empty set (impossible event)
⊆ subset of (included in)
∈ element of
◦ degrees (of arc)
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xiv Nomenclature

Acronyms

AWGN additive white Gaussian noise
CA-CFAR cell averaging - constant false alarm rate
CDF cumulative distribution function
CFAR constant false alarm rate
CLT central limit theorem
CMKF converted measurement Kalman filter
CPDA coupled data association filter
dB decibel
EKF extended Kalman filter
GO-CFAR greatest of - constant false alarm rate
GPS Global Positioning System
i.i.d. independent identically distributed
IMMPDAF interacting multiple model probabilistic data association filter
IPDAF integrated probabilistic data association filter
ISODATA iterative self-organizing data analysis techniques
JIPDAF joint integrated probabilistic data association filter
JPDACF joint probabilistic data association coupled filter
JPDAF joint probabilistic data association filter
KF Kalman filter
MCA-CFAR morphological cell averaging - constant false alarm rate
MDA multidimensional assignment
MHT multiple hypothesis tracking
MMSE minimum mean square error
MSE mean square error
MSJPDACF multisensor joint probabilistic data association coupled filter
MSJPDAF multisensor joint probabilistic data association filter
MSPDAF multisensor probabilistic data association filter
NP Neyman-Pearson
OBA optimal Bayesian approach
OS-CFAR ordered statistics - constant false alarm rate
PDAF probabilistic data association filter
pdf probability density function
pmf point mass function
psf point spread function
RMS root mean square
ROC receiver operating characteristic
SNR signal-to-noise ratio
SO-CFAR smallest of - constant false alarm rate
TBD track-before-detect
VTC vessel traffic control
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1
Introduction

THis thesis consists of two parts, Part I (Topics in Multitarget Multisensor Tracking)
and Part II (Publications). The purpose of Part I is to present a framework for the

research reported in the included papers in Part II, and to explain how these papers relate
to each other and to the existing theory.

This chapter gives a brief introduction of the main elements considered in this thesis.
These elements are described more thoroughly in the following chapters and in the in-
cluded papers in Part II. First, the problem description is given. Then the tracking system
is presented in Section 1.2, starting with the surveillance area containing the target, the
sensor system observing the target, the signal processing that generates measurements of
the target, and finally the information processing which processes the measurements to
obtain the target state estimate and the corresponding uncertainty. Section 1.3 shows an
example where multiple sensors are used to track multiple targets in a multitarget multi-
sensor tracking system. The included papers in this thesis are presented in Section 1.4,
and the main contributions of the thesis are listed in Section 1.5.

1.1 Problem Description

This thesis is concerned with the problem of tracking targets which, in addition to re-
flecting signals themselves, also have a trailing path behind them, called a wake. Ideally,
only the target itself would be detected in the tracking process. This is unfortunately
not true, and more or less random measurements will always appear due to a noisy back-
ground, unknown objects and noise in the sensor itself. It is therefore an important factor
in a tracking system to correctly associate each measurement to its origin. False mea-
surements may not be a problem as long as they are well separated from the target of
interest since this implies that the measurements are unlikely to originate from the tar-
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4 1 Introduction

get. More problematic are the measurements caused by the wake since they are closer to
the target. When these wake measurements are processed, the tracking system may be
misled to follow the wake instead of the target. In the worst case, these measurements
will cause a lost track. In this thesis we have developed methods to prevent this problem.

1.1.1 The Wake Phenomenon

This thesis considers target tracking in the presence of wakes, which is a phenomenon
that appears behind certain targets. This phenomenon could be air bubbles from a diver,
the wake behind a ship, or the wake from ballistic vehicles in the re-entry stage. One
possible approach to this problem is to handle both the target and the wake behind it as
an extended target. A problem with this approach is the varying and unknown size of the
wake which may reach far behind the target yielding a large bias. In this thesis the wake
is not considered as part of the target, but rather as a special kind of clutter.

When wake-originated measurements are fed to the tracking system, it becomes im-
portant to associate them correctly to prevent a lost track. If these wake-originated mea-
surements are taken as target-originated, it is likely that the track estimate will start to
follow the wake rather than the target, and in the worst case this will end up with a lost
track.

1.1.2 Diver Tracking

In recent years the surveillance of divers near marine infrastructures such as bridges,
power plants, port and harbor facilities has received renewed interest [3], [20], [24], [39],
[47], [48]. The detection of divers is considered a challenging problem in underwater
acoustics, and the target strength is the main unknown in assessing the feasibility of
using a sonar to detect them. The target strength of a diver is a complicated function of
aspect angle and frequency, where the human lungs and the oxygen tank are thought to
be the largest contributors [58]. Especially for re-breathers with a fully closed breathing
system, the target strength is particularly low. In addition, the surrounding environment
could be noisy and non-stationary especially in ports and shallow water [62].

Divers with open breathing systems have received a special focus in this thesis since
the air bubbles they produce create wakes behind them. This is illustrated in both Fig-
ure 1.1 and Figure 1.2. The bubbles behind a diver with an open breathing system was
the original motivation for the development of the tracking methods presented in this
thesis. In paper A, a tracking method that accounts for the bubbles is tested on a real
diver, and the multisensor multitarget tracking simulations in paper C are also based on
divers with open breathing systems.
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1.2 The Tracking System

Tracking is the estimation of the state of a moving object based on remote measurements
obtained by one or more sensors. An example of a traditional tracking system where a
single sensor is tracking a single target is outlined in Figure 1.1. Traditional tracking
systems may be built by using several serial processes, such as the signal processor and
information processor in Figure 1.1, where each process has the purpose of extracting
the desired information and pass it to the next process.
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Figure 1.1: Overview of the tracking system.

Another approach, which is not considered in this thesis, is the track-before-detect
(TBD) approach [34], [57] where the signal processing and information processing are
combined such that detection and track confirmation occur simultaneously. The thresh-
olding process, in which detected measurements are produced, is avoided to preserve
weak signal information in the raw sensor data.

1.2.1 Surveillance Area

The first element in a tracking system is the area in which a target can be observed, often
called the scene or the surveillance area. This area could be outer space for tracking
missiles or spacecraft, airspace for controlling air traffic, the surface of the ocean for
vessel traffic control (VTC), the ocean for underwater surveillance, or outside and inside
buildings for tracking vehicles or people of special interest. The example in Figure 1.1
illustrates an underwater tracking system where the target of interest is a diver with an
open breathing system. This is the setting of the problem discussed in paper A.
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6 1 Introduction

1.2.2 Sensors

Information of the surveillance area is obtained by the use of different types of sensors.
These sensors are analogous to our use of eyes, ears and nose to collect information
about our surroundings. Remote sensors are divided into two classes, active and passive
sensors. The active sensors transmit a signal (energy) into the scene, and then search
for signals that are reflected (or emitted) from the objects in the scene. Passive sensors
do not actively transmit any signals themselves, but are searching for signals that are
emitted from the objects (or reflected if there is another source present, such as the sun).
Examples of active sensors are radar [13] and active sonar [62], while passive sensors
can be passive sonar [62] and most optical sensors [17], [61]. The real data presented in
this thesis (paper A and paper C) is recorded by active sonar sensors.

In addition to signals reflected or emitted from the targets of interest, the sensor
will also receive energy from other objects in the scene in addition to noise from the
background and the sensor itself, resulting in false measurements. In Figure 1.1, these
false measurements are due to the background noise (measurement z(3)) and the bub-
bles/wake (measurement z(1)). Only measurement z(2) originates from the diver, the
target of interest. Note that all measurements in this thesis are defined as position mea-
surements.

1.2.3 Signal Processing

The information obtained by a sensor, often called the raw data, is transmitted to the
signal processor. The main goal for the signal processor is to extract target-originated
measurements from the raw data. In both radar and active sonar systems, the infor-
mation is divided into different cells, where each cell represents a specific location in
the surveillance area. This is done by beamforming (presented in Chapter 2) where the
different cells are specified by polar coordinates, range and bearing (angle). Each of
those cells has to be tested, and only those with signal energy above a certain threshold
are defined as detected. The detected cells (in polar coordinates) are then transformed
to position measurements in Cartesian coordinates (described in Chapter 3). It is also
possible to define measurements that contain more information than the position of the
detected cells, e.g. amplitude information [18]. However, this thesis considers position
measurements only, and the two terms “measurement” and “detection” may therefore
be used interchangeably. The position measurements are either processed further, as in
the clustering method presented in paper A, or directly fed to the next element in the
tracking system, namely the information processor. In the example in Figure 1.1, only
three measurements are obtained in the signal processor, and only one of them originates
from the target of interest.
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1.2.4 Information Processing

The information processing consists of data association and filtering. The data associator
decides which measurement (or weighted combination of measurements) is to be used
in the filter, while the tracking filter is used to estimate the state and corresponding
uncertainty of the target.

Data Association

An important part in a tracking system is to associate the data to its origin. Let a track
be defined as a state trajectory estimated from a set of measurements (the data) that
have been associated with the same target. By this definition, the data association prob-
lem may be categorized in three different groups, according to “what is associated with
what”:

1. measurement to measurement association
In the track formation procedure, measurements from different time steps are as-
sociated to each other to initialize or form a new track.

2. track to track association
In a multisensor system, one single target can be tracked by several sensors simul-
taneously, resulting in several local tracks of the same target. To fuse these local
tracks into one global track, an association method is needed to decide which
tracks are to be fused.

3. measurement to track association
This type of data association is used to maintain or update already established
tracks, and answers the question: Which measurement originates from which track
or target?

There are two fundamentally different approaches one can take in associating the
data. In non-Bayesian data association a hard decision is carried out for how to associate
the data, and the fact that this decision is not necessarily correct is ignored. In the
probabilistic (Bayesian) data association, probabilities are evaluated for each association
hypothesis.

All the above categories of data association are presented in this thesis, but the main
focus is put on the measurement to track association in a probabilistic (Bayesian) ap-
proach, which is thoroughly discussed in the included papers and in Chapter 4 and
Chapter 5.

Filtering

Filtering is the estimation of the (current) state of a dynamic system, and the term “filter”
is used since the process of obtaining the best estimate from noisy data amounts to
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filtering out the noise. That is, the filter tries to find the best weighted mean between the
associated measurements (or weighted combination of measurements) and the predicted
state at each time step. This process is based on a model of the target’s dynamics, a model
of the measuring process, and a model of the noise that corrupts the measurements. Some
of the traditional tracking filters, with and without data association, are presented in this
thesis.

1.3 Multitarget Multisensor Tracking

When multiple targets are tracked simultaneously in a tracking system including multiple
sensors, we have a multisensor multitarget tracking system. An example of such a system
is illustrated in Figure 1.2. In this example there are two radars and two active sonars
observing several types of targets. Tracking of multiple targets is discussed in Chapter 5,
and the multisensor systems are briefly described in Chapter 5.4.

Figure 1.2: Multitarget multisensor tracking system.

1.4 Publications

This thesis is based on the following publications:
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Paper A: Tracking of Divers Using a Probabilistic Data Association Filter with
a Bubble Model

A. Rødningsby and Y. Bar-Shalom, “Tracking of divers using a probabilistic data
association filter with a bubble model,” IEEE Transactions on Aerospace and
Electronic Systems, pp. 1181-1193, vol. 45, no. 3, July 2009. A preliminary ver-
sion of this paper was presented in [55]

Summary: Detection and tracking of divers have become an important factor in port
protection against underwater intruders. A problem arises from divers with open breath-
ing systems because detections of the air bubbles they produce can mislead the tracking
filter and sometimes result in a lost track. In this paper a probabilistic model is devel-
oped which reflects the probability that a false measurement originates from the bubbles.
The novel contribution of this paper is the integration of this model in the probabilistic
data association filter (PDAF) to improve the track continuity. The bubble detections
may also cause confusion in the track initiation. To prevent this problem, a clustering
method is proposed based on morphological operators which allows tracks to be ini-
tialized based on two-point differencing of the cluster centroids from succeeding scans.
This morphological clustering method is included in a cell averaging constant false alarm
rate (CA-CFAR) detector in such a way that both the point detections and their corre-
sponding clusters can be fed to the tracking filter. These techniques are implemented
and applied to real data of two divers, one with an open breathing system and the other
with a closed breathing system, operating simultaneously in a coastal area. The real data
were recorded from an active 90 kHz narrowband multibeam imaging sonar.

Paper B: Multitarget Tracking in the Presence of Wakes

A. Rødningsby, Y. Bar-Shalom, O. Hallingstad, and J. Glattetre, “Multitarget
tracking in the presence of wakes,” in Proceedings of the 11th International Con-
ference on Information Fusion, pp. 1536-1543, Cologne, Germany, July 2008.
This paper was nominated for Best Student Paper Award, Fusion 2008.

Summary: In this paper we focus on targets which, in addition to reflecting signals
themselves, also have a trailing path behind them, called a wake. When the detections
are fed to a tracking system like the Probabilistic Data Association Filter, the estimated
track can be misled and sometimes lose the real target because of the wake. This problem
becomes even more severe in multitarget environments where targets are operating close
to each other in the presence of wakes. To prevent this, we have developed a probabilistic
model of the wakes in a multitarget environment. This model is used to augment the Joint
Probabilistic Data Association Filter (JPDAF). Simulations of two crossing targets with
wakes show that this modification gives good results and the number of lost tracks is
significantly reduced.
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Paper C: Multitarget Multisensor Tracking in the Presence of Wakes

A. Rødningsby, Y. Bar-Shalom, O. Hallingstad, and J. Glattetre, “Multitarget mul-
tisensor tracking in the presence of wakes,” Journal of Advances in Information
Fusion, pp. 117-145, vol. 4, no. 2, December 2009.

Summary: In this paper we focus on targets which, in addition to reflecting signals
themselves, also have a trailing path behind them, called a wake, which causes additional
detections. When the detections are fed to a tracking system like the probabilistic data
association filter (PDAF), the estimated track can be misled and sometimes lose the
real target because of the wake. This problem becomes even more severe in multitarget
environments where targets are operating close to each other in the presence of wakes.
To prevent this, we have developed a probabilistic model of the wakes in a multitarget
environment. This model is used to augment the joint probabilistic data association filter
(JPDAF) for both coupled and decoupled filtering.

This paper provides a systematic comparison of the standard data association filters
(PDAF and JPDAF) and their modified versions presented here in a multitarget multisen-
sor environment. Simulations of two targets with wakes in four different scenarios show
that this modification gives good results and the probability of lost tracks is significantly
reduced. The targets are observed by two sensors and it is shown that tracks estimated
in a centralized fusion configuration are better than those from the local sensors. It is
also shown that applying the wake model to targets that do not generate a wake, yields
almost no deterioration of the tracking performance.

1.5 The scientific contribution of the thesis

The main contributions in this thesis are briefly presented below.

• The development of a probabilistic model which reflects the probability that a false
measurement originated from the bubbles behind a diver with an open breathing
system. This model is incorporated in the PDAF algorithm in paper A. The PDAF
is presented in Chapter 4.

• The use of mathematical morphology to form clusters used in the track initializa-
tion. Measurements that are likely to originate from the same target are grouped
together in one single cluster by the use of mathematical morphology. This allows
tracks to be initialized based on two-point differencing of the cluster centroids
from succeeding scans. Mathematical morphology and two-point differencing are
described in Chapter 2 and Chapter 3, respectively, and the use of these techniques
is presented in paper A.

• The development of a multitarget joint probabilistic model which reflects the prob-
ability that a false measurement originated from the wakes behind one or more
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• The use of mathematical morphology to form clusters used in the track initializa-
tion. Measurements that are likely to originate from the same target are grouped
together in one single cluster by the use of mathematical morphology. This allows
tracks to be initialized based on two-point differencing of the cluster centroids
from succeeding scans. Mathematical morphology and two-point differencing are
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• The development of a multitarget joint probabilistic model which reflects the prob-
ability that a false measurement originated from the wakes behind one or more
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targets. This model is incorporated in the JPDAF algorithm in paper B and paper

C. The JPDAF is presented in Chapter 5.

• The modified version of the coupled filter (JPDACF) algorithm that accounts for
partial target detections and targets in the presence of wakes, derived in paper C.

• The demonstration of four different multitarget multisensor tracking simulation
scenarios of two open breathing system divers in paper C. These simulations give
a solid background for the analysis of tracking in the presence of wakes.
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2
Measurement Extraction

THE information in the scene or surveillance area in a tracking system is embedded
in a form of energy depending on the surrounding transmission media. The form

of energy is typically electromagnetic in a radar system or acoustic in an underwater
system such as shown in Figure 1.1. This chapter focuses on active sensors since these
are the types of sensors considered in the included papers. In active sensors an electri-
cal signal is transformed into an appropriate type of energy, like acoustic for an active
sonar or electromagnetic for a radar. This energy is transmitted into the scene to im-
pose reflections from possible targets, and the reflected energy is transformed back into
an electrical signal in the sensor. Then the electrical signal is processed to extract the
desired information, which in our case are point position measurements and clusters of
closely spaced point position measurements. Ideally, these measurements should all be
originating from the true targets under consideration, but due to noise and clutter, some
of them are false alarms. The measurements are then fed to the tracker where the data
association and filtering are carried out.

This chapter briefly describes some of the main issues in signal processing, starting
with the principles for how to obtain a signal in a given distance (range) and “look”
direction (beamforming). Then a short introduction to detection theory with focus on
hypothesis testing is given. The detection method in this thesis is based on a Rayleigh
distributed background model. This model is presented and some familiar target models
are considered leading to the receiver operating characteristics (ROC) curves and the
constant false alarm rate (CFAR) processor. The final section in this chapter gives a
short introduction to clustering where detections originating from the same source are
combined in a single group or cluster.
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14 2 Measurement Extraction

2.1 Resolution Cells and Beamforming

Instead of dealing with the total amount of information in the whole scene in one oper-
ation, the scene is divided into smaller parts, called resolution cells, covering a certain
area in the surveillance region. An example of resolution cells in a two-dimensional sen-
sor system is shown in Figure 2.4(a) where each cell represents a specific range (distance
from the sensor) and bearing (direction) interval. A detector can now “look” for a target
in each of these resolution cells.

Sensor Target
s(t)

r(t)

range

Figure 2.1: Signal transmission between the sensor and a point target model. The
transmitted and reflected signals are denoted s(t) and r(t), respectively.

The time between transmission of the signal s(t) and reception of r(t) in Figure 2.1
is given by the distance to the target (range) and the speed ϑ of the signal. This delay
gives us therefore information about the target range, assuming the speed ϑ is known,
but it gives no directional information. The principles for how to obtain information
about what direction the signal is coming from, called beamforming, is illustrated in
Figure 2.2. Here, an array of Nr receivers are located with a given distance d between
them. Assuming the incoming signal has a plane wavefront with angle ϕ to the row
of receivers, as shown in Figure 2.2, this wavefront will reach the different receivers at
different times depending on the signal direction ϕ. In beamforming, these receivers
delay their inputs to observe a signal at a given “look” direction. In Figure 2.2, let
Receiver 1 have no delay (Δt1 = 0). The wavefront arrives at Receiver 2 Δt2 time units
before it arrives at Receiver 1, where Δt2 = d sin(ϕ)

ϑ . In general, Receiver n receives the
wavefront Δtn time units before Receiver 1, where

Δtn =
(n − 1)d sin(ϕ)

ϑ
(2.1)

Therefore, by delaying the signal with Δtn at Receiver n, each receiver samples the
wave from this given direction at the same phase. Since the beamformed signal is the
sum of all these samples from the individual delayed receivers, the resulting signal is
enhanced and the noise is suppressed. For further information about beamforming and
array signal processing, see [38].
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Figure 2.2: Illustration of beamforming to observe some signal at a given direction
by using an array of sensors that delay their inputs.

2.2 Detection Theory

The main problem in detection theory is deciding between two or more possible hy-
potheses. Because of this, detection theory is often associated with other names like
hypothesis testing and decision theory. For the purpose of detecting a target in a tracking
system, let the two hypotheses K and H be defined as follows:

K : A target and noise are present

H : Only noise is present

The purpose of detection theory is to use the received data from any kind of sensor as
efficiently as possible in making the decision between these two hypotheses, with the
goal of being correct most of the time. The error of declaring a detection (choosing
hypothesis K) when a target is absent is called a type I error or false alarm, and has a
probability PFA, also called the false alarm rate. The probability of correctly choosing
hypothesis K when a target is present is denoted PD or the power of the test. The main
goal for a detector is to maximize the probability of detection PD and at the same time
keep the false alarm rate as low as possible. Unfortunately, these two probabilities are
interconnected such that increasing one of them also increases the other. A practical
way to analyze the relationship between PD and PFA is by using receiver operating
characteristic (ROC) curves, presented in Section 2.5, and an example of ROC-curves is
shown in Figure 2.3.

Let y be a sample of the received signal, and define its pdf p(y) under the two
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hypotheses as:

K : y ∼ p(y|K) � fK(y) (2.2)

H : y ∼ p(y|H) � fH(y) (2.3)

where fK(y) is the likelihood function under the hypothesis K that both noise and a
target are present, and fH(y) is the likelihood function under the hypothesis H that
there is no target present, only noise. From this the detection probability PD and false
alarm rate PFA are calculated as

PD =

∞∫
T

fK(y)dy (2.4)

PFA =

∞∫
T

fH(y)dy (2.5)

where T is the detection threshold.
One of the most well-known detection methods is the Neyman-Pearson (NP) ap-

proach to hypothesis testing [42]. This test aims to maximize PD subject to a false
alarm rate constraint, where the desired false alarm rate PFA is chosen a priori. The NP
detector is then as follows:

L(y) =
fK(y)
fH(y)

K

≷
H

T (2.6)

where the threshold T is given by the false alarm constraint (2.5). If the likelihood
ratio L(y) exceeds the threshold T a detection is declared (hypothesis K is chosen).
Otherwise we assume the target is absent (hypothesis H is chosen).

Another detection method is Bayes’ test [42]. This test is similar to the NP detector,
but differs in the way the threshold is computed

L(y) =
fK(y)
fH(y)

K

≷
H

PH(cKH − cHH)
PK(cHK − cKK)

= T (2.7)

In (2.7) PK and PH are a priori probabilities for being in hypothesis K and H respec-
tively. The cij is the cost of choosing hypothesis i when j is true. For further information
about fundamental detection theory the reader is referred to [42], and for detection in
non-Gaussian noise, see [41].

2.3 Rayleigh Background Model

This section describes the statistical model of the received signal under the H hypothesis
(when there is no target present) used in this thesis. Let the sampled signal in one
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resolution cell (after complex demodulation, beamforming and matched filtering) be
represented by the in-phase ui and quadrature uq components [42]. From the central
limit theorem (CLT) [27], a sum of many independent random variables each with finite
variance tends to behave like a normal random variable. By assuming that there are
enough independent scatters in any given resolution cell contributing to the received
signal so that the CLT holds, the ui and uq components are assumed to be i.i.d. Gaussian
random variables with zero mean and variance σ2

H :
{

ui = wi wi ∼ N
(
0, σ2

)
uq = wq wq ∼ N

(
0, σ2

) (2.8)

From (2.8) the likelihood function under the H hypothesis is

fH(ui, uq) =
1

2πσ2
e−

1
2σ2 (u2

i +u2
q) (2.9)

The Gaussian signal in (2.9) can be represented as an amplitude R and a phase ξ, defined
as

R =
√

u2
i + u2

q ξ = tan−1

(
uq

ui

)
(2.10)

Then, from [52], the amplitude and phase of the received signal in one resolution cell
are distributed as

fH(R) =
R
σ2

e−
R2

2σ2 fH(ξ) =
1
2π

(2.11)

The amplitude in (2.11) is Rayleigh distributed, and by defining A = R2 as the energy
(amplitude squared) in one resolution cell, the resulting distribution is exponential with
mean μ = 2σ2

fH(A) =
1

2σ2
e−

A
2σ2 =

1
μ

e
−A

μ (2.12)

In reality the number of scatters in a resolution cell may not be high enough for the
CLT to hold. It is therefore often observed that the background is more heavy-tailed
than the Rayleigh distribution. Because of this, several non-Rayleigh distributions have
been proposed in the literature. Popular models are the K-distribution, the Rayleigh mix-
ture, the Weibull and the log-normal distributions [2], [33], [37], [45]. A comparison of
various heavy-tailed distributions can be found in [1]. These models are more complex
than the Rayleigh distribution, and it is important to be aware that more samples are
required in order to obtain an accurate estimate of the distribution parameters. On the
other hand the possibility of nonstationarity and interfering targets makes it advisable
to use few cells in the process of estimating these parameters (in Figure 2.4 these cells
are denoted “cells in the averaging process”). The potential damage from interfering
targets is actually more serious when a heavy-tailed background is assumed, since the
outliers due to a neighboring target can be misinterpreted as evidence of a much higher
degree of heavy-tailedness than what is actually the case. It should also be noted that
the tracking filters and data association algorithms discussed in the included papers are
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mainly applied to targets where the signal-to-noise ratio (SNR) is of a moderate nature.
In these situations, where the target is most likely to stand out from the background, the
demand for an accurate background model is less critical. The accuracy of the back-
ground model becomes more important when tracking very low observable targets, but
in these situations one should consider other tracking methods, like track-before-detect
(TBD) or multiple hypothesis tracking (MHT). In this thesis, however, the main focus
has been on information processing rather than signal processing, and the measurements
are therefore obtained by considering only the Rayleigh background model.

2.4 Swerling Target Models

In this section the Swerling target models [60], modeling the fluctuations of the energy
in one resolution cell under the K hypothesis, are presented. These target models are all
special cases of the following gamma distribution

fK(A) =
Am−1

Γ(m)

(
m

Aav

)m

e−
mA
Aav (2.13)

where m is often called the “shape parameter” and Aav is the average energy in one
resolution cell. Let the average energy Aav in (2.13) be described as Aav = μ + μtarget
where μ is the average energy in a resolution cell under the H hypothesis, defined in
(2.11), and μtarget is the part of the average energy due to the target. By defining the SNR
as SNR = μtarget

μ , the average energy can be written as

Aav = μ(1 + SNR) (2.14)

The Swerling I target model is obtained by setting m = 1 in (2.13)

fK(A) =
1

μ(1 + SNR)
e
− A

μ(1+SNR) (2.15)

This model applies to a target consisting of many independent reflectors, none of which
is dominant. Similar to the reasoning for the Rayleigh background model, assuming the
CLT to hold, this results in Gaussian distributed ui and uq components. The energy A in
one resolution cell (under the K hypothesis) is therefore still exponentially distributed
as under the H hypothesis in (2.12), but the mean is now scaled by the SNR. The re-
ceived energy on any scan is assumed to be constant throughout the entire scan but is
independent (uncorrelated) from scan to scan.

The pdf of a Swerling II target model is the same as for Swerling I, but the fluctua-
tions are more rapid and are assumed to be independent from pulse to pulse instead of
scan to scan. This is the case for radars that transmit several pulses within one scan, but
are not common in sonar applications where usually only one pulse is transmitted each
scan.
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In the Swerling III target model, the target can be approximated by one dominant
reflector together with several smaller reflectors. The target fluctuations are here, as in
Swerling I, independent from scan to scan with pdf obtained by setting m = 2 in (2.13)

fK(A) =
4A

μ2(1 + SNR)2
e
− 2A

μ(1+SNR) (2.16)

This model is suitable for targets such as ballistic missiles [6].
The Swerling IV target model has the same pdf as Swerling III, but the energy is

independent from pulse to pulse instead of scan to scan.
Finally, the Swerling V (or Swerling 0) target model is obtained from (2.13) in the

limit as m → ∞, and results in a non-fluctuating target model.

2.5 Receiver Operating Characteristics

The ROC curves give the relation between PD and PFA for a detector. By using the
background model given in (2.12) in (2.5), the false alarm probability is

PFA = P{A > T |H} =

∞∫
T

1
μ

e
−A

μ dA = e
−T

μ (2.17)

where T is the detection threshold. The sensors considered in the included papers are ac-
tive sonars, where only a single pulse is transmitted each scan. In this case the Swerling
I and III are the most appropriate fluctuating target models. The detection probabilities,
calculated from (2.4), and the corresponding relations to PFA are for these two models:

• Swerling I

PD = P{A > T |K} =

∞∫
T

1
μ(1 + SNR)

e
− A

μ(1+SNR) dA = e
− T

μ(1+SNR) (2.18)

PD = P
( 1

1+SNR)
FA (2.19)

• Swerlling III

PD = P{A > T |K} =

∞∫
T

4A

μ2(1 + SNR)2
e
− 2A

μ(1+SNR) dA

=
(

1 +
2T

μ(1 + SNR)

)
e
− 2T

μ(1+SNR) (2.20)

PD =
(

1 − 2 lnPFA

1 + SNR

)
P

( 2
1+SNR)

FA (2.21)
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The ROC curves for the Swerling I and Swerling III target models, obtained from (2.19)
and (2.21) respectively, are shown for different SNRs in Figure 2.3. These ROC curves
are in fact valid only when the noise parameter μ is known (perfectly estimated). As
shown in the next section, the local μ is estimated using a given number n of samples
of the surrounding cells. In practice, by using say n > 20, the resulting ROC curves
would not be far from Figure 2.3. In the included papers, the chosen PD and PFA are
in the intervals [0.6, 0.7] and

[
5 · 10−4, 5 · 10−3

]
respectively. Assuming the targets to

be somewhere between a Swerling I and a Swerling III target, the above values of PD

and PFA correspond to targets with SNR about 8-13 dB. This corresponds to the results
in [19], where the SNR of human divers was estimated to 10-12 dB.
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20 2 Measurement Extraction

The ROC curves for the Swerling I and Swerling III target models, obtained from (2.19)
and (2.21) respectively, are shown for different SNRs in Figure 2.3. These ROC curves
are in fact valid only when the noise parameter μ is known (perfectly estimated). As
shown in the next section, the local μ is estimated using a given number n of samples
of the surrounding cells. In practice, by using say n > 20, the resulting ROC curves
would not be far from Figure 2.3. In the included papers, the chosen PD and PFA are
in the intervals [0.6, 0.7] and

[
5 · 10−4, 5 · 10−3

]
respectively. Assuming the targets to

be somewhere between a Swerling I and a Swerling III target, the above values of PD

and PFA correspond to targets with SNR about 8-13 dB. This corresponds to the results
in [19], where the SNR of human divers was estimated to 10-12 dB.

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Receiver operating characteristic (ROC) curves

PF A
P

D

Swerling I

Swerling III

20 dB

16 dB

14 dB

12 dB

10 dB

8 dB

5 dB

0 dB

−∞
dB

20 dB

16 dB

14 dB

12 dB

10 dB

8 dB

5 dB

0 dB
−∞

dB

Figure 2.3: ROC curves for different SNR assuming a Swerling I target model
(blue solid line) and Swerling III target model (red dashed line).

20 2 Measurement Extraction

The ROC curves for the Swerling I and Swerling III target models, obtained from (2.19)
and (2.21) respectively, are shown for different SNRs in Figure 2.3. These ROC curves
are in fact valid only when the noise parameter μ is known (perfectly estimated). As
shown in the next section, the local μ is estimated using a given number n of samples
of the surrounding cells. In practice, by using say n > 20, the resulting ROC curves
would not be far from Figure 2.3. In the included papers, the chosen PD and PFA are
in the intervals [0.6, 0.7] and

[
5 · 10−4, 5 · 10−3

]
respectively. Assuming the targets to

be somewhere between a Swerling I and a Swerling III target, the above values of PD

and PFA correspond to targets with SNR about 8-13 dB. This corresponds to the results
in [19], where the SNR of human divers was estimated to 10-12 dB.

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Receiver operating characteristic (ROC) curves

PF A

P
D

Swerling I

Swerling III

20 dB

16 dB

14 dB

12 dB

10 dB

8 dB

5 dB

0 dB

−∞
dB

20 dB

16 dB

14 dB

12 dB

10 dB

8 dB

5 dB

0 dB
−∞

dB

Figure 2.3: ROC curves for different SNR assuming a Swerling I target model
(blue solid line) and Swerling III target model (red dashed line).

20 2 Measurement Extraction

The ROC curves for the Swerling I and Swerling III target models, obtained from (2.19)
and (2.21) respectively, are shown for different SNRs in Figure 2.3. These ROC curves
are in fact valid only when the noise parameter μ is known (perfectly estimated). As
shown in the next section, the local μ is estimated using a given number n of samples
of the surrounding cells. In practice, by using say n > 20, the resulting ROC curves
would not be far from Figure 2.3. In the included papers, the chosen PD and PFA are
in the intervals [0.6, 0.7] and

[
5 · 10−4, 5 · 10−3

]
respectively. Assuming the targets to

be somewhere between a Swerling I and a Swerling III target, the above values of PD

and PFA correspond to targets with SNR about 8-13 dB. This corresponds to the results
in [19], where the SNR of human divers was estimated to 10-12 dB.

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Receiver operating characteristic (ROC) curves

PF A

P
D

Swerling I

Swerling III

20 dB

16 dB

14 dB

12 dB

10 dB

8 dB

5 dB

0 dB

−∞
dB

20 dB

16 dB

14 dB

12 dB

10 dB

8 dB

5 dB

0 dB
−∞

dB

Figure 2.3: ROC curves for different SNR assuming a Swerling I target model
(blue solid line) and Swerling III target model (red dashed line).



2.6 Cell Averaging - Constant False Alarm Rate Detection 21

2.6 Cell Averaging - Constant False Alarm Rate Detection

In a CFAR detector, the main issue is to keep the false alarm rate PFA constant. Because
the false alarm rate is based only on the background model, assumed to be Rayleigh
distributed as in Section 2.3, the CFAR detector does not need any knowledge about
the target model. In an environment with spatially varying noise parameter μ, the false
alarm probability stays constant by keeping the exponent T

μ in (2.17) constant. This is
achieved by letting the threshold T be proportional to μ, which yields the test

Y
K
≷
H

T = τμ (2.22)

where Y is the amplitude squared (energy) of the cell to be tested for detection and τ is
a constant scale factor to be deduced next. Since the noise parameter μ is not assumed
to be known a priori, it has to be estimated for each resolution cell.

In a cell averaging CFAR (CA-CFAR), μ is estimated by averaging over n cells with
the squared amplitudes Ai, i = 1, . . . , n, in a local neighborhood around the cell under
test Y

μ̂ =
1
n

n∑
i=1

Ai (2.23)

The CA-CFAR is according to [31], assuming the Rayleigh distributed background and a
Swerling I target, optimal in the NP sense (maximize PD subject to PFA). By assuming
the neighboring cells Ai to be independent and exponentially distributed variables, the
sum in (2.23) forms a gamma distribution

nμ̂ =
n∑

i=1

Ai = x ∼ xn−1

μn(n − 1)!
e
− x

μ (2.24)

The probability that the test cell Y exceeds the threshold is

PFA = P {Y > τμ̂} = P
{

Y >
τx

n

}

=

∞∫
0

P
{

Y >
τx

n

∣∣∣x} p(x)dx =

∞∫
0

e
− τx

nμ
xn−1

μn(n − 1)!
e
− x

μ dx (2.25)

=
1

μn
(

1
μ + τ

nμ

)n

∞∫
0

xn−1

(n − 1)!
(

1
μ + τ

nμ

)−n e
−x
(

1
μ

+ τ
nμ

)
dx

︸ ︷︷ ︸
1

=
1

μn
(

1
μ + τ

nμ

)n =
1(

1 + τ
n

)n
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where the unity in the fourth line of (2.25) results from the cumulative distribution func-
tion (CDF) of a gamma distribution. It is clear that PFA is independent of μ, and from
(2.25) the constant scale factor τ in (2.22) can for a desired PFA be calculated as

τ = nP
− 1

n
FA − n (2.26)

In the CA-CFAR detector it is assumed that the resolution cells used to estimate
the noise parameter μ are free of targets. This may not be true for extended targets or
when there are several adjacent targets. Therefore, in practical implementations of the
CA-CFAR, the cells nearest to the one under test are often defined as a guard band, see
Figure 2.4. These cells are not included in the cells used to estimate the noise parameter
μ.
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Figure 2.4: Resolution cells used to estimate the noise parameter μ in the CA-
CFAR detector. The resolution cells are shown in a Cartesian coordinate system
(a), and in the corresponding range-bearing coordinate system (b). In this example
one cell in bearing and three cells in range are used as guard band.

An alternative is using order statistics in the CFAR process, called OS(l)-CFAR [30],
where the cells (A1, A2, . . . , An) are first ordered (A(1), A(2), . . . , A(n)), and then cell
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number l in the ordered sequence is used in the test

Y
K
≷
H

τA(l) (2.27)

This specific cell A(l) is usually one of those with largest amplitudes to reduce the false
alarms, but to avoid using cells that are target-originated, l is set lower than n.

Two other CFAR alternatives are obtained by first ordering the cells as in the OS-
CFAR, and then divide them into two groups (e.g., of the same size). After choosing
either the greatest of them (GO-CFAR), or the smallest of them (SO-CFAR), the estimate
is calculated as the average of the chosen cells such as in the CA-CFAR [30]. The GO-
CFAR processor is specifically designed to control the false alarm rate during clutter
power transition, but fails to detect closely spaced targets. On the other hand, the SO-
CFAR processor proposed to resolve multiple targets is unable to prevent excessive false
alarms in the presence of clutter edges.

2.7 Clustering

The point detections resulting from a CFAR detector may be directly fed into a tracking
algorithm, but for targets that yield several point detections, it is sometimes desirable to
gather these detections in a single cluster. In that way the assumption that each target
yields only one single measurement, which is a common assumption in many track-
ing algorithms, becomes more appropriate. Many possible algorithms for clustering are
available, such as ISODATA and the K-means [26]. However, most of these suffer from
the problem of requiring knowledge of the number of clusters a priori. A technique
from image analysis that does not require this is called mathematical morphology [59].
This approach has been mainly concerned with image analysis to extract shape infor-
mation from digital images [36]. Additional applications include low signal amplitude
detection and pattern recognition [49], [54]. More interesting is the application of group
tracking [46], where the morphological operators are used to cluster measurements into
groups with a common activity. In paper A this method is used to create clusters of
the detections from an open breathing system diver and the bubbles he produces. The
clusters are used in the track initiation to avoid confusion of the many possibilities of
two-point differencing [11] that could have been set up among the point detections. In-
stead, two-point differencing is used for the cluster centroids from succeeding scans.
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This approach has been mainly concerned with image analysis to extract shape infor-
mation from digital images [36]. Additional applications include low signal amplitude
detection and pattern recognition [49], [54]. More interesting is the application of group
tracking [46], where the morphological operators are used to cluster measurements into
groups with a common activity. In paper A this method is used to create clusters of
the detections from an open breathing system diver and the bubbles he produces. The
clusters are used in the track initiation to avoid confusion of the many possibilities of
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3
Tracking Filters

THIS chapter starts with the tracking model before some of the basic tracking filters
are presented. These filters include the Kalman filter (KF), the extended Kalman

filter (EKF) and the converted measurement Kalman filter (CMKF). Target tracking is
often divided into three successive operations:

1. Track formation (initialization of new tracks)

2. Track maintenance or continuation (update an already established track with new
measurements at the current time)

3. Track termination (delete the track)

where the presented filters consider only the track maintenance. A short description of
how tracks are initially formed and finally terminated is given at the end of this chapter.

3.1 Tracking Model

In the process of developing a tracking filter, a mathematical model of the physical sys-
tem to which the state is being estimated is needed. This model is called the truth model1.
The purpose of the truth model is to represent the physical system from the evolution of
the state to the generation of measurements, and to evaluate the tracking filter perfor-
mance by means of simulations. The truth model may be linear or nonlinear, but since
most physical systems are nonlinear in nature, the truth model is also generally nonlin-
ear. In the tracking filters, however, it is often desirable, for practical reasons and due
to computational limitations, to have a simpler model than the truth model. The model

1In simulations, the truth model is often called simulation model.
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which the implemented equations in the tracking filter are based on, called the filter
model, is therefore typically a simplified version of the truth model (often to a linear
form). The performance of the tracking filter is usually evaluated by implementing the
truth model and the filter equations in Monte Carlo simulations2. This makes it possible
to evaluate several different filter models without testing them in real tracking systems.
To summarize, the term tracking model is actually representing two different systems:

1. The truth model, representing the physical system in real tracking scenarios, or
the truth in simulations (called simulation model in paper C).

2. The filter model, which the implemented equations in the tracking filter are based
on.

When certain filters are said to be optimal, it is with an underlying assumption that the
filter model is equal to the truth model. It is therefore important to have that separation
in mind whenever the term tracking model is used.

The standard linear discrete-time dynamic model in tracking is

xk+1 = Fxk + vk zk = Hxk + wk (3.1)

where
x : target state F : transition matrix
z : measurement H : measurement matrix
v : process noise w : measurement noise
k : time index

The plant equation in (3.1)
xk+1 = Fxk + vk (3.2)

represents the target and its dynamics, and uncertainties about the target’s dynamics are
included in the process noise vk. The measurement equation in (3.1)

zk = Hxk + wk (3.3)

describes the sensor and the way measurements are obtained. The uncertainties in the
sensor and the disturbances in the medium between the sensor and the target are in-
cluded in the measurement noise wk. The process and measurement noises are assumed
additive, independent, white and Gaussian with covariance matrices

E{vkv
T
k } = Q E{wkw

T
k } = R (3.4)

In the linear system above, a Kalman filter (KF) is optimal as long as there is no
measurement association uncertainty. Unfortunately, in real data this is not true due to
false measurements originating from the background noise. Instead, a set of measure-
ments is available at time k, which after validation is reduced to a set of mk validated

2If the truth model is linear, covariance analysis is sufficient to evaluate the performance.
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measurements Zk = {zk(1), zk(2), . . . , zk(mk)}. This set, Zk, are measurements that
have fallen inside a validation gate around the predicted target position. Because of this
uncertainty of the origin of the measurements, a form of data association is needed. Fil-
ters that include data association are presented in the following chapters, and are based
on the filters presented in this chapter.

3.2 Kalman Filter

The Kalman filter (KF), first introduced by [40], is probably the most common filtering
technique for state estimation in linear systems.

3.2.1 Assumptions

The fundamental assumptions of the KF are:

(a) The state evolves according to a known linear plant equation with additive process
noise. The process noise is zero-mean and white, with known covariance Q.

(b) Measurements are obtained from a known linear function of the state, with ad-
ditive measurement noise. The measurement noise is zero-mean and white, with
known covariance R.

(c) The initial state is assumed to be a random variable with known mean and covari-
ance.

(d) The initial errors and noises are mutually uncorrelated.

With the above assumptions, the KF is the best linear minimum mean square error
(MMSE) state estimator (best within the class of linear estimators). If in addition the
initial state and all the noises are Gaussian distributed, the KF is the MMSE state esti-
mator.

3.2.2 KF Algorithm

Define the state estimate at the current time k as

x̂k|k � E
{

xk|Zk
}

(3.5)

which is the conditional mean of the state at time k given the measurements up to and
including time k, Zk. The associated covariance matrix at time k is

Pk|k = E
{(

xk − x̂k|k
) (

xk − x̂k|k
)T |Zk

}
(3.6)
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One cycle of the KF algorithm consists of mapping the estimates at time k−1, x̂k−1|k−1

and Pk−1|k−1, into the corresponding estimates at time k, x̂k|k and Pk|k, using the fol-
lowing equations:

x̂k|k = x̂k|k−1 + Wk

(
zk − ẑk|k−1

)
(3.7)

Pk|k = Pk|k−1 − WkSkW
T
k (3.8)

where the predicted state x̂k|k−1, covariance Pk|k−1 and measurement ẑk|k−1 are

x̂k|k−1 = Fx̂k−1|k−1 (3.9)

Pk|k−1 = FPk−1|k−1F
T + Q (3.10)

ẑk|k−1 = Hx̂k|k−1 (3.11)

and the Kalman gain Wk and the predicted measurement covariance Sk are

Wk = Pk|k−1H
T S−1

k (3.12)

Sk = HPk|k−1H
T + R (3.13)

The initial values assumed to be available are x̂0|0 and P0|0.

The KF is often divided into two steps:

1. Time update (prediction).

2. Measurement update.

The first step is to predict the future, given by (3.9) - (3.11), based on our knowledge
at the current time. In the measurement update, the predicted state is adjusted by incor-
porating the new information given by the measurement zk according to (3.7), and the
uncertainty in (3.8) is reduced as a direct consequence of the fact that new information
has been added.

The key factor in the KF is the Kalman gain, Wk in (3.12), which is (in the scalar
case) proportional to the state variance and inversely proportional to the predicted mea-
surement variance. Using (3.11) in (3.7), the updated state can be written as

x̂k|k = (I − WkH) x̂k|k−1 + Wkzk (3.14)

where the updated state is clearly a weighted sum of the predicted state and the measure-
ment. From this, the Kalman gain is:

• large if the state prediction is inaccurate (large Pk|k−1) and the measurement ac-
curate (small Sk).

• small if the state prediction is accurate (small Pk|k−1) and the measurement inac-
curate (large Sk).

The Kalman filter is thoroughly discussed in the literature, and can be found in several
text books, such as [10], [11] and [32].
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The initial values assumed to be available are x̂0|0 and P0|0.

The KF is often divided into two steps:

1. Time update (prediction).

2. Measurement update.

The first step is to predict the future, given by (3.9) - (3.11), based on our knowledge
at the current time. In the measurement update, the predicted state is adjusted by incor-
porating the new information given by the measurement zk according to (3.7), and the
uncertainty in (3.8) is reduced as a direct consequence of the fact that new information
has been added.

The key factor in the KF is the Kalman gain, Wk in (3.12), which is (in the scalar
case) proportional to the state variance and inversely proportional to the predicted mea-
surement variance. Using (3.11) in (3.7), the updated state can be written as

x̂k|k = (I − WkH) x̂k|k−1 + Wkzk (3.14)

where the updated state is clearly a weighted sum of the predicted state and the measure-
ment. From this, the Kalman gain is:

• large if the state prediction is inaccurate (large Pk|k−1) and the measurement ac-
curate (small Sk).

• small if the state prediction is accurate (small Pk|k−1) and the measurement inac-
curate (large Sk).

The Kalman filter is thoroughly discussed in the literature, and can be found in several
text books, such as [10], [11] and [32].
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3.3 Extended Kalman Filter

Many of the problems encountered in practice are nonlinear in nature. A suboptimal state
estimation algorithm for nonlinear systems is the extended Kalman filter (EKF) [11].
The EKF is similar to the KF in form, and is obtained by linearization. The assump-
tions are the same as for the KF except that the plant equation and/or the measurement
equation are nonlinear functions (still assuming additive noise)

xk = f(xk−1, k − 1) + vk−1 zk = h(xk, k) + wk (3.15)

One cycle of the EKF algorithm consists of mapping the estimates at time k−1, x̂k−1|k−1

and Pk−1|k−1, into the corresponding estimates at time k, x̂k|k and Pk|k, using the fol-
lowing equations:

x̂k|k = x̂k|k−1 + Wk

(
zk − ẑk|k−1

)
(3.16)

Pk|k = Pk|k−1 − WkSkW
T
k (3.17)

where the predicted state, covariance and measurement are

x̂k|k−1 = f
(
x̂k−1|k−1, k − 1

)
(3.18)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Q (3.19)

ẑk|k−1 = h(x̂k|k−1, k) (3.20)

and the Kalman gain and the predicted measurement covariance are

Wk = Pk|k−1H
T
k S−1

k (3.21)

Sk = HkPk|k−1H
T
k + R (3.22)

The Jacobians Fk and Hk are obtained by

Fk =
∂f(x, k)

∂x

∣∣∣∣
x=x̂k|k

Hk =
∂h(x, k)

∂x

∣∣∣∣
x=x̂k|k−1

(3.23)

where the linearization (evaluation of the Jacobians) are done at the latest state estimate.
The main difference from the KF is this evaluation of the Jacobians such that Fk and Hk

take the role of the transition matrix F and measurement matrix H in the KF.
The use of linearization, where the Jacobians are evaluated at the estimated states

rather than the true states, and higher order terms are neglected, has the potential of
introducing unmodeled errors. The EKF is also very sensitive to the accuracy of the
initial conditions. However, if the initial errors and the noises are not too large, the EKF
performs well in practice [10].
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3.4 Converted Measurement Kalman Filter

The target motion in target tracking is best modeled in Cartesian coordinates. In some
practical tracking scenarios, the plant equation is linear but the measurement equation is
nonlinear because the measurements are obtained in polar coordinates (range and bear-
ing) by an active sonar or radar system. An alternative to the EKF, when only the mea-
surement equation is nonlinear, is the converted measurement Kalman filter (CMKF).
By using a proper polar to Cartesian conversion, the linearization of the nonlinear mea-
surement equation in the EKF is omitted, and a standard KF can be used. In [10] the
CMKF with debiasing is shown to be consistent (the estimation error is unbiased and the
estimated covariance matrix is compatible with the actual mean square error (MSE) co-
variance matrix). This is unlike the EKF which is consistent only for small errors. Since
the CMKF has the correct covariance, it processes the measurements with a gain that is
(nearly) optimal, and yields smaller errors than the EKF, even in the case of moderately
accurate sensors.

Define the measured range r and measured bearing ψ based on the true range rtrue

and bearing ψtrue as
r = rtrue + r̃ ψ = ψtrue + ψ̃

where r̃ and ψ̃ are the true errors. The true errors are assumed to be independent and
zero-mean with standard deviation σr and σψ in range and bearing respectively, yielding
the polar covariance matrix

Rp =
[

σ2
r 0
0 σ2

ψ

]
(3.24)

These polar measurements are converted to Cartesian by the standard coordinate conver-
sion

x = r cos ψ y = r sinψ (3.25)

The true Cartesian coordinates (xtrue, ytrue) can be approximated by taking the first order
terms of the Taylor series expansion of (3.25) at (r, ψ)

xtrue = rtrue cos ψtrue ≈ r cos ψ + cos ψ(rtrue − r) − r sinψ(ψtrue − ψ) (3.26)

ytrue = rtrue sinψtrue ≈ r sinψ + sinψ(rtrue − r) + r cos ψ(ψtrue − ψ) (3.27)

By using this, the linearized Cartesian coordinate errors (x̃L, ỹL) are defined as

x − xtrue ≈ r̃ cos ψ − ψ̃r sinψ � x̃L (3.28)

y − ytrue ≈ r̃ sinψ + ψ̃r cos ψ � ỹL (3.29)

From the assumption above, the linearized Cartesian coordinate errors (x̃L, ỹL) in (3.28)
and (3.29) are zero-mean with the corresponding covariance matrix in Cartesian coordi-
nates

Rc =
[

R11
c R12

c

R21
c R22

c

]
(3.30)
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From the assumption above, the linearized Cartesian coordinate errors (x̃L, ỹL) in (3.28)
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where

R11
c � var(x̃L) = r2σ2

ψ sin2 ψ + σ2
r cos2 ψ (3.31)

R22
c � var(ỹL) = r2σ2

ψ cos2 ψ + σ2
r sin2 ψ (3.32)

R12
c = R21

c � cov(x̃L, ỹL) = (σ2
r − r2σ2

ψ) cos ψ sinψ (3.33)

Due to the linearization in the CMKF using the standard coordinate conversion, the
converted measurements will be biased and the corresponding covariance matrices will
be optimistic. A slightly more complicated method than the standard conversion is the
debiased conversion where the bias and covariance are obtained without linearization.
This leads to the CMKF with debiasing, presented in [10]. According to [10], the de-
biased conversion is recommended whenever the limit of the validity of the standard
conversion is exceeded. The limit for when the standard conversion is valid is given as
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In the real tracking scenarios in this thesis (paper A and paper C) the above limit is not
exceeded, hence the standard conversion is used.

3.5 Track Formation and Termination

The tracking filters discussed above assume that the track is already initialized (initial
values are available), and when a track is initialized, there are no included rules for how
to terminate the track. This is also true for some of the tracking filters presented in
the following chapters, such as the probabilistic data association filter (PDAF) and the
joint probabilistic data association filter (JPDAF). Hence, procedures for formation and
termination of tracks are necessary. A simple and common method to initialize tracks
is the two-point differencing method [11]. Any successive pair of detections within
a maximum distance based on target maximum motion parameters and measurement
noise variances initiates a preliminary track. This preliminary track, containing the ini-
tial state and the corresponding covariance, can now initialize the filter. To reduce the
amount of false tracks, a “p/q” logic-based track formation procedure can be used. In
this procedure a preliminary track has to receive measurements for a minimum of p time
steps during the first q scans to become valid.

To terminate a track a logic suitable for the application is needed, and a set of rules
has to be made. As an example, some simple rules on how to terminate tracks are listed
below:

• The estimated speed exceeds a minimum or maximum threshold.

• The measurement is already associated with another target.

• There are no validated measurements during a given period of time.
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r − r2σ2

ψ) cos ψ sinψ (3.33)

Due to the linearization in the CMKF using the standard coordinate conversion, the
converted measurements will be biased and the corresponding covariance matrices will
be optimistic. A slightly more complicated method than the standard conversion is the
debiased conversion where the bias and covariance are obtained without linearization.
This leads to the CMKF with debiasing, presented in [10]. According to [10], the de-
biased conversion is recommended whenever the limit of the validity of the standard
conversion is exceeded. The limit for when the standard conversion is valid is given as

rσ2
ψ

σr
< 0.4 σψ < 0.4rad ≈ 23◦ (3.34)

In the real tracking scenarios in this thesis (paper A and paper C) the above limit is not
exceeded, hence the standard conversion is used.

3.5 Track Formation and Termination

The tracking filters discussed above assume that the track is already initialized (initial
values are available), and when a track is initialized, there are no included rules for how
to terminate the track. This is also true for some of the tracking filters presented in
the following chapters, such as the probabilistic data association filter (PDAF) and the
joint probabilistic data association filter (JPDAF). Hence, procedures for formation and
termination of tracks are necessary. A simple and common method to initialize tracks
is the two-point differencing method [11]. Any successive pair of detections within
a maximum distance based on target maximum motion parameters and measurement
noise variances initiates a preliminary track. This preliminary track, containing the ini-
tial state and the corresponding covariance, can now initialize the filter. To reduce the
amount of false tracks, a “p/q” logic-based track formation procedure can be used. In
this procedure a preliminary track has to receive measurements for a minimum of p time
steps during the first q scans to become valid.

To terminate a track a logic suitable for the application is needed, and a set of rules
has to be made. As an example, some simple rules on how to terminate tracks are listed
below:

• The estimated speed exceeds a minimum or maximum threshold.

• The measurement is already associated with another target.

• There are no validated measurements during a given period of time.



32 3 Tracking Filters

• The position moves more than a threshold between two successive scans.

• The estimation error variance exceeds a threshold.

• The estimated position has not changed during several time steps.

It should also be noted that in some filters, such as the integrated probabilistic data as-
sociation filter (IPDAF) [50], the version of the interacting multiple model probabilistic
data association filter (IMMPDAF) presented in [10], and the multiple hypothesis track-
ing (MHT) presented in Chapter 5, the track formation and termination are included.
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4
Single-Target Single-Sensor Tracking

THIS chapter considers tracking of single targets, or more precisely, targets that are
well separated in space. For well spatially separated targets, each of them can be

tracked by running several single target filters in parallel. This simple approach for mul-
titarget tracking is possible for all the presented algorithms in this chapter. The optimal
Bayesian approach (OBA), considering all possible combinations of measurement se-
quences, is presented first. Then the probabilistic data association filter (PDAF), where
only the latest set of measurements is considered, is derived. Finally, an approach of
tracking targets in the presence of a wake is presented.

4.1 Optimal Bayesian Approach

In the optimal Bayesian approach (OBA) the decomposition of the state estimate is based
on all combinations of measurements from the initial to the present time. This optimal
method is presented next, with the following assumptions:

(a) There is only one target, modeled by (3.1) and (3.4), whose track is already ini-
tialized.

(b) A validation region or gate is set up for each time step to select the candidate
measurements for association (called validated measurements).

(c) At time k there are mk validated measurements but at most one of them can be
target-originated. The remaining measurements are assumed due to i.i.d. uni-
formly spatially distributed false alarms, independent across time.

(d) Detections of the real target occur independently over time with known detection
probability PD.

33

4
Single-Target Single-Sensor Tracking

THIS chapter considers tracking of single targets, or more precisely, targets that are
well separated in space. For well spatially separated targets, each of them can be

tracked by running several single target filters in parallel. This simple approach for mul-
titarget tracking is possible for all the presented algorithms in this chapter. The optimal
Bayesian approach (OBA), considering all possible combinations of measurement se-
quences, is presented first. Then the probabilistic data association filter (PDAF), where
only the latest set of measurements is considered, is derived. Finally, an approach of
tracking targets in the presence of a wake is presented.

4.1 Optimal Bayesian Approach

In the optimal Bayesian approach (OBA) the decomposition of the state estimate is based
on all combinations of measurements from the initial to the present time. This optimal
method is presented next, with the following assumptions:

(a) There is only one target, modeled by (3.1) and (3.4), whose track is already ini-
tialized.

(b) A validation region or gate is set up for each time step to select the candidate
measurements for association (called validated measurements).

(c) At time k there are mk validated measurements but at most one of them can be
target-originated. The remaining measurements are assumed due to i.i.d. uni-
formly spatially distributed false alarms, independent across time.

(d) Detections of the real target occur independently over time with known detection
probability PD.

33

4
Single-Target Single-Sensor Tracking

THIS chapter considers tracking of single targets, or more precisely, targets that are
well separated in space. For well spatially separated targets, each of them can be

tracked by running several single target filters in parallel. This simple approach for mul-
titarget tracking is possible for all the presented algorithms in this chapter. The optimal
Bayesian approach (OBA), considering all possible combinations of measurement se-
quences, is presented first. Then the probabilistic data association filter (PDAF), where
only the latest set of measurements is considered, is derived. Finally, an approach of
tracking targets in the presence of a wake is presented.

4.1 Optimal Bayesian Approach

In the optimal Bayesian approach (OBA) the decomposition of the state estimate is based
on all combinations of measurements from the initial to the present time. This optimal
method is presented next, with the following assumptions:

(a) There is only one target, modeled by (3.1) and (3.4), whose track is already ini-
tialized.

(b) A validation region or gate is set up for each time step to select the candidate
measurements for association (called validated measurements).

(c) At time k there are mk validated measurements but at most one of them can be
target-originated. The remaining measurements are assumed due to i.i.d. uni-
formly spatially distributed false alarms, independent across time.

(d) Detections of the real target occur independently over time with known detection
probability PD.

33

4
Single-Target Single-Sensor Tracking

THIS chapter considers tracking of single targets, or more precisely, targets that are
well separated in space. For well spatially separated targets, each of them can be

tracked by running several single target filters in parallel. This simple approach for mul-
titarget tracking is possible for all the presented algorithms in this chapter. The optimal
Bayesian approach (OBA), considering all possible combinations of measurement se-
quences, is presented first. Then the probabilistic data association filter (PDAF), where
only the latest set of measurements is considered, is derived. Finally, an approach of
tracking targets in the presence of a wake is presented.

4.1 Optimal Bayesian Approach

In the optimal Bayesian approach (OBA) the decomposition of the state estimate is based
on all combinations of measurements from the initial to the present time. This optimal
method is presented next, with the following assumptions:

(a) There is only one target, modeled by (3.1) and (3.4), whose track is already ini-
tialized.

(b) A validation region or gate is set up for each time step to select the candidate
measurements for association (called validated measurements).

(c) At time k there are mk validated measurements but at most one of them can be
target-originated. The remaining measurements are assumed due to i.i.d. uni-
formly spatially distributed false alarms, independent across time.

(d) Detections of the real target occur independently over time with known detection
probability PD.

33



34 4 Single-Target Single-Sensor Tracking

Denote the measurements up to and including time k as Zk = {Z0, Z1, . . . , Zk},
where Zk = {zk(1), zk(2), . . . , zk(mk)} are the validated measurements at time k.
From Zk, let Zk,l be the lth sequence of measurements out of all combinations of mea-
surement sequences up to time k. The sequence Zk,l, also called the measurement his-
tory, is composed of the current measurement zk(i) at time k and the history Zk−1,s,
which is the prior part of the history Zk,l up to time k

Zk,l =
{

Zk−1,s, zk(i)
}

(4.1)

The total number of measurement histories at time k is

Lk =
k∏

j=1

(1 + mj) (4.2)

where mj is the number of measurements at time j. The possibility that none of the
measurements are correct is also accounted for in (4.2).

The event that the lth history at time k is the correct sequence of measurements is
denoted as θk,l, and its probability, conditioned on all the measurements up to time k, as

βk,l = P
{

θk,l|Zk
}

(4.3)

4.1.1 State and Covariance Update

The conditional mean of the state estimate at time k can, using the total probability
theorem, be written as

x̂k|k = E
{

xk|Zk
}

=
Lk∑
l=1

E
{

xk|θk,l, Zk
}

P
{

θk,l|Zk
}

=
Lk∑
l=1

x̂l
k|kβ

k,l (4.4)

since the events θk,l, for l = 1, . . . , Lk, are mutually exclusive and exhaustive. Each
history-conditioned estimate is provided by a standard filter

x̂l
k|k = x̂s

k|k−1 + W l
k

(
zk(i) − ẑs

k|k−1

)
(4.5)

where zk(i) is the latest measurement of sequence l and ẑs
k|k−1 is the predicted measure-

ment corresponding to its ancestor θk−1,s, with covariance

Ss
k = HP s

k|k−1H
T + R (4.6)

The predicted state x̂s
k|k−1, measurement ẑs

k|k−1, and state covariance P s
k|k−1, corre-

sponding to event θk−1,s, are obtained using the standard prediction equations presented
for the KF in the previous chapter. The Kalman gain in (4.5) is

W l
k = P s

k|k−1HSs
k
T (4.7)
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k|k−1

)
(4.5)

where zk(i) is the latest measurement of sequence l and ẑs
k|k−1 is the predicted measure-

ment corresponding to its ancestor θk−1,s, with covariance

Ss
k = HP s

k|k−1H
T + R (4.6)

The predicted state x̂s
k|k−1, measurement ẑs
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The covariance of the history-conditioned updated state is given by the standard equation

P l
k|k = E

{(
xk − x̂l

k|k

)(
xk − x̂l

k|k

)T
|θk,l, Zk

}
= P s

k|k−1 − W l
kS

s
kW

l
k
T

(4.8)

Finally, according to [9], the covariance associated with the combined estimate is

Pk|k =
Lk∑
l=1

βk,lP l
k|k +

Lk∑
l=1

βk,lx̂l
k|k

[
x̂l

k|k

]T
− x̂k|kx̂

T
k|k (4.9)

The combined estimates in (4.4) and (4.9) are used for output (display) and measure-
ment validation only. The measurement validation is described next.

4.1.2 Measurement Validation

At time k, prior to obtaining the latest set of measurements, Zk, the predicted state
x̂k|k−1, the associated covariance Pk|k−1, and the predicted measurement ẑk|k−1, are
calculated as in the KF. Then a set of measurements is obtained in the detection process,
but to reduce the computational load, only those measurements that fall in the validation
region set up around the predicted measurement will be used in the filter. This measure-
ment validation region, also called the validation gate, is the elliptical region

Vk(γ) =
{
z : [z − ẑk|k−1]

T S−1
k [z − ẑk|k−1] ≤ γ

}
(4.10)

where γ is the gate threshold determined by the chosen gate probability PG, and

Sk = HPk|k−1H
T + R (4.11)

is the covariance of the innovation corresponding to the true target-originated measure-
ment, calculated as in the KF. The volume of the gate is

Vk = cnz |γSk|1/2 = cnzγ
nz
2 |Sk|1/2 (4.12)

where the coefficient cnz , given by

cnz =
πnz/2

Γ(nz/2 + 1)
(4.13)

is the volume of the nz-dimensional unit hypersphere, and nz is the dimension of the
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4.1.3 Probabilities of Measurement Histories

In this section the association probabilities of the measurement histories βk,l in (4.3) are
derived. Define the association events of the latest set of measurements, Zk, as

θk(i) =

{
zk(i) originates from the target i = 1, . . . , mk

none of the measurements originate from the target i = 0
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The combined estimates in (4.4) and (4.9) are used for output (display) and measure-
ment validation only. The measurement validation is described next.
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but to reduce the computational load, only those measurements that fall in the validation
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k [z − ẑk|k−1] ≤ γ

}
(4.10)

where γ is the gate threshold determined by the chosen gate probability PG, and

Sk = HPk|k−1H
T + R (4.11)

is the covariance of the innovation corresponding to the true target-originated measure-
ment, calculated as in the KF. The volume of the gate is

Vk = cnz |γSk|1/2 = cnzγ
nz
2 |Sk|1/2 (4.12)

where the coefficient cnz , given by

cnz =
πnz/2

Γ(nz/2 + 1)
(4.13)

is the volume of the nz-dimensional unit hypersphere, and nz is the dimension of the
measurement vector.

4.1.3 Probabilities of Measurement Histories

In this section the association probabilities of the measurement histories βk,l in (4.3) are
derived. Define the association events of the latest set of measurements, Zk, as

θk(i) =

{
zk(i) originates from the target i = 1, . . . , mk

none of the measurements originate from the target i = 0
(4.14)

4.1 Optimal Bayesian Approach 35

The covariance of the history-conditioned updated state is given by the standard equation

P l
k|k = E

{(
xk − x̂l

k|k

)(
xk − x̂l

k|k

)T
|θk,l, Zk

}
= P s

k|k−1 − W l
kS

s
kW

l
k
T

(4.8)

Finally, according to [9], the covariance associated with the combined estimate is

Pk|k =
Lk∑
l=1

βk,lP l
k|k +

Lk∑
l=1

βk,lx̂l
k|k

[
x̂l

k|k

]T
− x̂k|kx̂

T
k|k (4.9)

The combined estimates in (4.4) and (4.9) are used for output (display) and measure-
ment validation only. The measurement validation is described next.

4.1.2 Measurement Validation

At time k, prior to obtaining the latest set of measurements, Zk, the predicted state
x̂k|k−1, the associated covariance Pk|k−1, and the predicted measurement ẑk|k−1, are
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where θk(i) is mutually exclusive and exhaustive for mk ≥ 1, and let mk be the vec-
tor containing the number of validated measurements at each time step up to time k,
mk = [m1, m2, . . . , mk]. Since mk follows from Zk, the probability βk,l can be
written as

βk,l = P
{

θk,l|Zk, mk
}

= P
{

θk(i), θk−1,s|Zk, mk, Z
k−1, mk−1

}
(4.15)

=
1
c
p
(
Zk|θk(i), θk−1,s, mk, Z

k−1, mk−1
)

P
{

θk(i)|θk−1,s, mk, Z
k−1, mk−1

}
βk−1,s

where the last line is obtained using Bayes’ formula, and c is a normalization constant.
The target-originated measurement at time k is assumed Gaussian distributed

p
(
zk(i)|θk(i), θk−1,s, mk, Z

k−1, mk−1
)

=
1

PG
N
(
zk(i); ẑs

k|k−1, S
s
k

)
=

1
PG

N (νs
k(i); 0, S

s
k) (4.16)

where PG is used to account for restricting the normal density to the validation gate, and
νs

k(i) = zk(i) − ẑs
k|k−1 is the innovation of measurement zk(i) corresponding to event

θk−1,s being true. The pdf of a false measurement is assumed uniform in the validation
region whose volume Vk is given in (4.12)

p(zk(i)|θk(j), j �= i) =
1
Vk

(4.17)

The conditional joint density of the validated measurements in (4.15) is the product of the
pdf of each measurement, given by (4.16) and (4.17), assuming that the measurements
are independent

p
(
Zk|θk(i), θk−1,s, mk, Z

k−1, mk−1
)

=

⎧⎪⎪⎨
⎪⎪⎩
(

1
Vk

)mk−1 N(νs
k(i);0,Ss

k)
PG

i = 1, . . . , mk

(
1
Vk

)mk

i = 0
(4.18)

Next, consider the third term of (4.15)

P
{

θk(i)|θk−1,s, mk, Z
k−1, mk−1

}
= P {θk(i)|mk} (4.19)

Here, the conditioning terms Zk−1, mk−1 and θk−1,s (the past measurements and asso-
ciation event) are omitted since the prior probability of the association event θk(i) does
not depend on them. Denote the number of measurements mk as m = m where m is the
realization and m the random variable, and let φ be the number of false measurements.
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Then (4.19) yields

P {θk(i)|mk} =P {θk(i)|m = m}

=P {θk(i)|m = m, φ = m − 1}P {φ = m − 1|m = m}
+ P {θk(i)|m = m, φ = m}P {φ = m|m = m}

=
{

1
mP {φ = m − 1|m = m} + 0P {φ = m|m = m} i = 1, . . . , m
0P {φ = m − 1|m = m} + 1P {φ = m|m = m} i = 0

=
{

1
mP {φ = m − 1|m = m} i = 1, . . . , m
P {φ = m|m = m} i = 0

(4.20)

Using Bayes’ formula one has

P {φ = m − 1|m = m} =
P {m = m|φ = m − 1}P{φ = m − 1}

P {m = m}

=
PGPDμF (m − 1)

P {m = m} (4.21)

where μF is the point mass function (pmf) of the number of false measurements, and
PDPG is the probability that the target has been detected and its measurement is inside
the validation region. Similarly,

P {φ = m|m = m} =
P {m = m|φ = m}P{φ = m}

P {m = m} =
(1 − PGPD)μF (m)

P {m = m}
(4.22)

where the denominator is

P{m = m} = PGPDμF (m − 1) + (1 − PGPD)μF (m) (4.23)

Combining (4.21), (4.22) and (4.23) into (4.20) yields

P {θk(i)|mk} =

⎧⎪⎨
⎪⎩

1
mk

PGPDμF (mk−1)
PGPDμF (mk−1)+(1−PGPD)μF (mk) i = 1, . . . , mk

(1−PGPD)μF (mk)
PGPDμF (mk−1)+(1−PGPD)μF (mk) i = 0

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
mk

PGPD

PGPD+(1−PGPD)
μF (mk)

μF (mk−1)

i = 1, . . . , mk

(1−PGPD)
μF (mk)

μF (mk−1)

PGPD+(1−PGPD)
μF (mk)

μF (mk−1)

i = 0
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=
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Using Bayes’ formula one has

P {φ = m − 1|m = m} =
P {m = m|φ = m − 1}P{φ = m − 1}

P {m = m}

=
PGPDμF (m − 1)

P {m = m} (4.21)

where μF is the point mass function (pmf) of the number of false measurements, and
PDPG is the probability that the target has been detected and its measurement is inside
the validation region. Similarly,
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(1 − PGPD)μF (m)

P {m = m}
(4.22)

where the denominator is

P{m = m} = PGPDμF (m − 1) + (1 − PGPD)μF (m) (4.23)

Combining (4.21), (4.22) and (4.23) into (4.20) yields
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Two models can be used for the pmf μF (m) in a volume of interest V :

1. The Poisson model with a spatial density λ

μF (m) = eλV (λV )m

m!
(4.25)

2. The diffuse prior model with a constant that is irrelevant since it cancels out

μF (m) = μF (m − 1) = ε (4.26)

Inserting these models in (4.24) yields

1. The Poisson model approach

P {θk(i)|mk} =

⎧⎪⎨
⎪⎩

PGPD
PGPDmk+(1−PGPD)λVk

i = 1, . . . , mk

(1−PGPD)λVk

PGPDmk+(1−PGPD)λVk
i = 0

(4.27)

2. The diffuse prior model approach

P {θk(i)|mk} =

⎧⎨
⎩

1
mk

PGPD i = 1, . . . , mk

(1 − PGPD) i = 0
(4.28)

Notice that the nonparametric model (diffuse prior) can be obtained from the parametric
model (Poisson) by setting

λ =
mk

Vk
(4.29)

The last step, assuming the nonparametric diffuse prior model approach, is to insert
(4.18) and (4.27) into βk,l in (4.15)

βk,l =p
(
Zk|θk(i), θk−1,s, mk, Z

k−1, mk−1
)

P {θk(i)|mk}βk−1,s

=
1
c
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)mk−1
N
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νS

k (i); 0, Ss
k

)
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mk
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(1 − PGPD)βk−1,s i = 0

=
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c
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mk

(
1
Vk

)mk−1
N (νs

k(i); 0, S
s
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(
1
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)mk−1
(1−PGPD)mk
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βk−1,s i = 0

(4.30)
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1

|2πSs
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2
e−

1
2
νs

k(i)T (Ss
k)−1νs

k(i)βk−1,s i = 1, . . . , mk

(1−PGPD)mk

PDVk
βk−1,s i = 0
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In the last step of (4.30) the term

PD

mk

(
1
Vk

)mk−1

(4.31)

is brought into the normalizing constant, and the Gaussian distribution N (νs
k(i); 0, S

s
k)

is substituted by the explicit expression

N (νs
k(i); 0, S

s
k) =

1∣∣2πSs
k

∣∣ 12 e−
1
2
νs

k(i)T (Ss
k)−1νs

k(i) (4.32)

The last term in (4.15), βk−1,s, is the probability of the ancestor part of history under
consideration, available from the previous sampling time.

To summarize: the association probabilities, assuming a nonparametric model, can
be calculated as

βk,l =

⎧⎨
⎩ ce−

1
2
νs

k(i)T (Ss
k)−1νs

k(i)βk−1,s i = 1, . . . , mk

c |2πSs
k|

1
2

(1−PGPD)mk

PDVk
βk−1,s i = 0

(4.33)

and by using (4.29), the parametric model approach yields

βk,l =

⎧⎨
⎩ ce−

1
2
νs

k(i)T (Ss
k)−1νs

k(i)βk−1,s i = 1, . . . , mk

c |2πSs
k|

1
2

(1−PGPD)λ
PD

βk−1,s i = 0
(4.34)

where c is a normalizing constant to ensure that
∑Lk

l=1 βk,l = 1.

4.1.4 Example of the OBA

An example of the first four time steps of the OBA is illustrated in Figure 4.1. Assume,
for simplicity, that the track is perfectly initialized at time k = 1. At time k = 2 a
validation gate is set up around the predicted measurement ẑ2|1. At this time, two mea-
surements (one true and one false) are validated. These two measurements, in addition
to the predicted measurement (accounting for the possibility that none of the validated
measurements are correct), yield three different measurement histories at k = 2. These
three history-conditioned estimates are combined to a single estimate x̂2|2, and the cor-
responding predicted measurement ẑ3|2 determines the validation region at time k = 3.
This procedure repeats for the next time steps resulting in 12 measurement histories at
time k = 4. Notice that in the case of only a single measurement at a time step (as in
k = 3 and k = 4), the number of measurement histories is doubled.
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Figure 4.1: Overview of the OBA algorithm.

4.1.5 Suboptimality

The price for optimality in the presented approach is increased memory and computa-
tional requirements. This is due to the exponentially increasing number of measurement
histories, given in (4.2). At each time step k, every measurement history is propagated
through its own tracking filter, e.g., a Kalman filter, and then these histories are saved to
the consecutive time step k + 1. Since the increasing number of histories is unpractical,
several suboptimal versions are developed to reduce the memory and computational re-
quirements. One approach is to limit the histories within a sliding window that covers
the current and the previous N sampling times, also called the N−scan memory fil-
ter [43]. The well-known PDAF, where no measurement histories are carried along and
the past is approximated by a single Gaussian distribution, corresponds to N = 0 and is
described next.
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the current and the previous N sampling times, also called the N−scan memory fil-
ter [43]. The well-known PDAF, where no measurement histories are carried along and
the past is approximated by a single Gaussian distribution, corresponds to N = 0 and is
described next.
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4.2 Probabilistic Data Association Filter

The approach of the probabilistic data association filter (PDAF) is to calculate the as-
sociation probabilities for each validated measurement at the current time to the target
of interest. Since the target’s state is assumed Gaussian distributed, each measurement,
conditioned on originating from the true target, is also Gaussian distributed. The pos-
terior track probability density is therefore a mixture of Gaussian probability density
functions (pdf), but instead of propagating all the components in the Gaussian mixture
to the next time step, as in the OBA, the Gaussian mixture is forced back to Gaussianity
by moment matching for the succeeding scan. In other words, the decomposition of the
state estimate in the PDAF is based only on the latest set of measurements, which makes
the PDAF suboptimal. The PDAF was originally developed in [12], and is derived in
this section.

4.2.1 Assumptions

At time k − 1 the state of the target of interest is estimated as x̂k−1|k−1 with associated
covariance Pk−1|k−1. The estimate is conditioned on the entire past up to time k − 1,
and the following assumptions are made:

(a) There is only one target, modeled by (3.1) and (3.4), whose track is already ini-
tialized.

(b) The past information about the target is summarized approximately by the Gaus-
sian pdf

p
(
xk|Zk−1

)
≈ N

(
xk; x̂k|k−1, Pk|k−1

)
(4.35)

where
Zk−1 = {Z0, Z1, . . . Zk−1} (4.36)

and x̂k|k−1 and Pk|k−1 is the predicted state and covariance, respectively.

(c) A validation region or gate is set up for each time step to select the candidate
measurements for association.

(d) At time k there are mk validated measurements, but at most one of them can
be target-originated. The remaining measurements are assumed due to i.i.d. uni-
formly spatially distributed false alarms, independent across time.

(e) Detections of the real target occur independently over time with known detection
probability PD.

These assumptions make it possible to obtain a state estimation scheme that is almost as
simple as the KF, but much more effective in the presence of false alarms. From assump-
tion (b), the target-originated measurement is Gaussian distributed, and a false alarm is,
according to assumption (d), uniformly distributed. This is illustrated in Figure 4.2.
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p(z|target)

p(z|false alarm)

Figure 4.2: Illustration of the pdfs in the PDAF. The pdf of the target-originated
measurement is assumed to be Gaussian, and false alarms are assumed uniformly
distributed inside the elliptical validation region.

The predictions of the target state x̂k|k−1, associated covariance Pk|k−1 and measure-
ment ẑk|k−1 at time k, based on the estimates at k − 1, are calculated as in the KF. The
validated measurements are obtained by the same procedure as for the OBA, described
in Section 4.1.2.

4.2.2 State and Covariance Update

Refresh the association events defined in Section 4.1.3:

θk(i) =

{
zk(i) originates from the target i = 1, . . . , mk

none of the measurements originate from the target i = 0
(4.37)

where θk(i) is mutually exclusive and exhaustive for mk ≥ 1. Using the total probability
theorem [52], the conditional mean of the state at time k is

x̂k|k = E
{

xk|Zk
}

=
mk∑
i=0

E
{

xk|θk(i), Zk
}

P
{

θk(i)|Zk
}

=
mk∑
i=0

x̂k|k(i)βk(i)

(4.38)
where x̂k|k(i) is the updated state conditioned on the event θk(i) being correct, and

βk(i) � P
{

θk(i)|Zk
}

(4.39)

is the conditional probability (association probability) of this event. These association
probabilities βk(i) are presented in Section 4.2.3.
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The estimate conditioned on measurement i being correct is

x̂k|k(i) = x̂k|k−1 + Wkνk(i) i = 1, . . . , mk (4.40)

where the corresponding innovation is

νk(i) = zk(i) − ẑk|k−1 (4.41)

The gain Wk is the same as in the Kalman filter

Wk = Pk|k−1H
T S−1

k (4.42)

since conditioned on the event θk(i), i �= 0, there is no measurement origin uncertainty.
For the event θk(0) that all measurements are false, or there is no validated measurement
(mk = 0), one has by definition νk(0) = 0. Using this in (4.40) yields

x̂k|k(0) = x̂k|k−1 (4.43)

The estimate can now be written as

x̂k|k =
mk∑
i=0

βk(i)x̂k(i) =
mk∑
i=0

βk(i)
(
x̂k|k−1 + Wkνk(i)

)
= x̂k|k−1 + Wkνk (4.44)

In (4.44) the identity
∑mk

i=0 βk(i) = 1 is used together with the fact that

mk∑
i=0

βk(i)νk(i) =
mk∑
i=1

βk(i)νk(i) = νk (4.45)

The covariance of the updated state is derived in the same way as the second order
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The gain Wk is the same as in the Kalman filter

Wk = Pk|k−1H
T S−1

k (4.42)

since conditioned on the event θk(i), i �= 0, there is no measurement origin uncertainty.
For the event θk(0) that all measurements are false, or there is no validated measurement
(mk = 0), one has by definition νk(0) = 0. Using this in (4.40) yields

x̂k|k(0) = x̂k|k−1 (4.43)

The estimate can now be written as

x̂k|k =
mk∑
i=0

βk(i)x̂k(i) =
mk∑
i=0

βk(i)
(
x̂k|k−1 + Wkνk(i)

)
= x̂k|k−1 + Wkνk (4.44)

In (4.44) the identity
∑mk

i=0 βk(i) = 1 is used together with the fact that

mk∑
i=0

βk(i)νk(i) =
mk∑
i=1

βk(i)νk(i) = νk (4.45)

The covariance of the updated state is derived in the same way as the second order



44 4 Single-Target Single-Sensor Tracking

moment of a Gaussian mixture [11]

Pk|k =E
{(

xk − x̂k|k
) (

xk − x̂k|k
)T |Zk

}
=

mk∑
i=0

E
{(

xk − x̂k|k
) (

xk − x̂k|k
)T |θk(i), Zk

}
βk(i)

=
mk∑
i=0

E
{(

xk − x̂k|k(i) + x̂k|k(i) − x̂k|k
)T

×
(
xk − x̂k|k(i) + x̂k|k(i) − x̂k|k

)T |θk(i), Zk
}

βk(i)

=
mk∑
i=0

E
{

[xk − x̂k|k(i)][xk − x̂k|k(i)]
T |θk(i), Zk

}
︸ ︷︷ ︸

Pk|k(i)

βk(i)

+
mk∑
i=0

[x̂k|k(i) − x̂k|k][x̂k|k(i) − x̂k|k]
T βk(i)

=
mk∑
i=0

Pk|k(i)βk(i)︸ ︷︷ ︸
P̄k|k

+
mk∑
i=0

x̂k|k(i)x̂k|k(i)
T βk(i) − x̂k|kx̂

T
k|k︸ ︷︷ ︸

P̃k

= P̄k|k + P̃k (4.46)

For i = 0 in Pk|k(i) one has the predicted covariance, while for i �= 0 one has the
updated covariance

Pk|k(0) = Pk|k−1 (4.47)

Pk|k(i) = Pk|k−1 − WkSkW
T
k for i = 1, . . . , mk (4.48)

which are the same as in the KF. By using βk(0) = 1 −
∑mk

i=1 βk(i), P̄k|k in (4.46) can
be written as

P̄k|k =
mk∑
i=0

Pk|k(i)βk(i) = βk(0)Pk|k−1 + [1 − βk(0)]
(
Pk|k−1 − WkSkW

T
k

)
(4.49)

The “spread of the means” term P̃k in (4.46) can, by using (4.40), (4.43) and (4.44),
be rewritten as follows

P̃k =
mk∑
i=0

x̂k|k(i)x̂k|k(i)
T βk(i) − x̂k|kx̂

T
k|k

=
mk∑
i=0

[
x̂k|k−1 + Wkνk(i)

] [
x̂k|k−1 + Wkνk(i)

]T
βk(i) (4.50)

−
[
x̂k|k−1 + Wkνk

] [
x̂k|k−1 + Wkνk

]T
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This becomes, by using the identity
∑mk

i=0 βk(i) = 1 and (4.45)
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Note that the updated pdf of the state is a Gaussian mixture, but is forced back to Gaus-
sianity by moment matching:

p
(
xk|Zk

)
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x; x̂k|k(i), Pk|k(i)
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(4.53)

4.2.3 Association Probabilities

In this section the association probabilities βk(i) in (4.39) are derived. By using Bayes’
formula, these probabilities can be written as

βk(i) = P
{

θk(i)|Zk
}
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k−1
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(4.54)
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P
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}

The above equation is similar to (4.15) in the OBA, except for the term βk−1,s, and can be
deduced by following the same procedure as for the OBA. The association probabilities,
assuming a nonparametric model (4.28), can be calculated as
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(4.55)

and by using (4.29), the parametric model approach (4.27) yields
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(4.56)

where c is a normalizing constant to ensure that
∑mk

i=0 βk(i) = 1.
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where c is a normalizing constant to ensure that
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4.2.4 Summary of the PDAF

In this section a summary of the PDAF algorithm is given. The following steps in the
algorithm are illustrated in Figure 4.3.

(a) The input values at time k are the estimated target state and associated covariance
from time k − 1, denoted as x̂k−1|k−1 and Pk−1|k−1, respectively.

(b) Predict the target state, associated covariance and measurement at time k based on
the estimates at k − 1:

x̂k|k−1 = Fx̂k−1|k−1

Pk|k−1 = FPk−1|k−1F
T + Q (4.57)

ẑk|k−1 = Hx̂k|k−1

(c) Compute the innovation covariance for the true target-originated measurement

Sk = HPk|k−1H
T + R (4.58)

and use Sk to form the measurement validation region.

(d) The validated measurements Zk = {zk(1), zk(2), . . . , zk(mk)} result in mk inno-
vations:

νk(i) = zk(i) − ẑk|k−1 i = 1, . . . , mk (4.59)

(e) Update the target state and covariance according to

x̂k|k = x̂k|k−1 + Wkνk (4.60)

Pk|k =βk(0)Pk|k−1 + [1 − βk(0)]
(
Pk|k−1 − WkSkW

T
k

)
+ Wk

[
mk∑
i=0

βk(i)νk(i)νk(i)T − νkν
T
k

]
W T

k (4.61)

where the Kalman gain and the combined innovation is

Wk = Pk|k−1H
T S−1

k νk =
mk∑
i=1

βk(i)νk(i) (4.62)

The association probabilities βk(i) (for the nonparametric approach) are calcu-
lated as:

βk(i) =

⎧⎨
⎩ ce−

1
2
νk(i)T S−1

k νk(i) i = 1, . . . , mk

c |2πSk|
1
2 mk

1−PGPD
VkPD

i = 0 (4.63)

(f) The track is updated, and by going back to point (a), the updated state and covari-
ance at time k can be used as input values at time k + 1.
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(f) The track is updated, and by going back to point (a), the updated state and covari-
ance at time k can be used as input values at time k + 1.
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Figure 4.3: Overview of the PDAF algorithm.
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In paper A the PDAF is modified to handle false measurements originating from the
bubbles behind a diver with an open breathing system. This is accomplished by incorpo-
rating a special probabilistic model of the bubbles, such that the false measurements can
originate from either the bubbles or from the i.i.d. uniformly distributed noise. The mo-
tivation for using such a model was the method of tracking in the presence of a wake [4].
This method is presented next.

4.3 Target Tracking in the Presence of a Wake

In this section an algorithm similar to the PDAF in Section 4.2 for the tracking of targets
in the presence of a wake is presented [4], [10]. This wake could be air bubbles from a
diver, the wake behind a ship, or the wake from ballistic vehicles in the re-entry stage.
It is assumed that a single measurement is extracted at each time step in the signal pro-
cessing, and that this measurement originates from either the target or the wake. The
corresponding events are denoted as

θk(1) = {zk originates from the target} (4.64)

θk(0) = {zk is false} (4.65)

with probabilities

βk(1) = P
{

θk(1)|Zk
}

(4.66)

βk(0) = P
{

θk(0)|Zk
}

= 1 − βk(1) (4.67)

The estimation is done by evaluating at each time the probability of the latest measure-
ment being correct and using this to update the state.

4.3.1 State and Covariance Update

The estimation equations are obtained directly from the PDAF algorithm

x̂k|k = x̂k|k−1 + βk(1)Wkνk(1) (4.68)

Pk|k = βk(0)Pk|k−1 + βk(1)
(
Pk|k−1 − WkSkW

T
k

)
+ βk(0)βk(1)Wkνk(1)νk(1)T W T

k

(4.69)
by using the “simpler” combined innovation

νk = βk(1)νk(1) = βk(1)
(
zk − ẑk|k−1

)
(4.70)

The two association probabilities, βk(0) and βk(1), are presented in the next section.
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4.3.2 Association Probabilities

The probability βk(1) is obtained as

βk(1) =P
{

θk(1)|Zk
}

= P
{

θk(1)|zk, Z
k−1
}

(4.71)

=
p
(
zk|θk(1), Zk−1

)
P {θk(1)}

p (zk|θk(0), Zk−1) P {θk(0)} + p (zk|θk(1), Zk−1)P {θk(1)} (4.72)

where P {θk(1)} and P {θk(0)} are the a priori probabilities of the measurement be-
ing correct and false, respectively. Similarly to (4.16), the pdf of a target-originated
measurement is

p
(
zk|θk(1), Zk−1

)
=

1
PG

N (νk; 0, Sk) (4.73)

Assuming that the target’s wake points away from the sensor, which measures range and
bearing, the range measurement rk can be assumed to have a linear pdf in the interval of
length Lr, starting at the predicted range r̄k

p
(
rk|θk(0), Zk−1

)
=

2
L2

r

(rk − r̄k) r̄k ≤ rk ≤ r̄k + Lr (4.74)

The bearing measurement ψk can be assumed uniformly distributed in an interval of
length 2Lψ around the predicted bearing ψ̄k

p
(
ψk|θk(0), Zk−1

)
=

1
2Lψ

ψ̄k − Lψ ≤ ψk ≤ ψ̄k + Lψ (4.75)

This way of modeling the wake-originated measurement is the motivation for the wake
models presented in the included papers, paper A, paper B and paper C, in Part II.
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5
Multitarget Multisensor Tracking

THIS chapter considers tracking algorithms that can handle multiple targets in the
surveillance region simultaneously. It should be noted that the methods presented

in Chapter 4 are not “pure” single target tracking algorithms, but can also handle multiple
targets as long as the targets’ validation regions do not overlap. This is done by running
separate filters in parallel, where each target has its own filter. The tracking algorithms
in this chapter are developed to handle situations where the validation regions from two
or more targets are overlapping. This is the requirement for a “pure” multitarget tracking
algorithm. The joint probabilistic data association filter (JPDAF) is first derived, before
a coupled version (JPDACF) assuming correlated targets is presented. Then, a brief
review of the multiple hypothesis tracking (MHT) algorithm is given.

In recent years there has been an extensive interest in using multiple sensors in
surveillance systems. The end of this chapter gives an introduction of the two funda-
mental multisensor architectures: the centralized configuration and the distributed (de-
centralized) configuration.

5.1 Joint Probabilistic Data Association Filter

In a multitarget environment the data association algorithm needs to handle situations
where a measurement could originate from different targets. For this purpose, the joint
probabilistic data association filter (JPDAF) [10], [28], [29] was developed to extend the
PDAF to a known number of targets whose tracks have been established. The JPDAF
evaluates the probabilities for all associations between the targets and the latest set of
measurements, and then combines them into the state estimates. This JPDAF algorithm
is presented next.
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5.1.1 Assumptions

At time k−1 there is a known number NT of established targets. For each target t, where
t = 1, . . . , NT , the target state is estimated as x̂t

k−1|k−1 with associated covariance
P t

k−1|k−1. The estimates are conditioned on the entire past up to time k − 1, and the
following assumptions are made:

(a) Measurements from one target can fall in the validation gate of a neighboring
target.

(b) The past information about target t is summarized approximately by the Gaussian
pdf

p
(
xt

k|Zk−1
)
≈ N

(
xt

k; x̂
t
k|k−1, P

t
k|k−1

)
(5.1)

where x̂t
k|k−1 and P t

k|k−1 is the predicted state and covariance, respectively.

(c) At time k there are mk validated measurements in the union of their validation
gates, but for each target t at most one measurement can be target-originated. The
rest are assumed to be due to i.i.d. uniformly distributed false alarms, indepen-
dently across time.

(d) Each target has a dynamic and a measurement model as in (3.1) and (3.4). The
models for the various targets do not have to be the same.

(e) Detections of the real targets occur independently over time with known detection
probabilities P t

D. The detection probabilities do not have to be the same for the
various targets.

5.1.2 Joint Association Events

Define the validation matrix Ω to represent all feasible association events at time k (the
time index k is omitted for simplicity where its omission does not cause confusion)

Ω = [ω(j, t)] j = 1, . . . , m and t = 0, . . . , NT (5.2)

Here, ω(j, t) is a binary element indicating whether measurement j lies in the validation
gate of target t. The index t = 0 means that the measurement is from none of the targets
and therefore it is a false measurement. An example where a measurement may originate
from either of two targets, i.e., it lies in both targets’ validation gates, is shown with the
corresponding validation matrix Ω in Figure 5.1.

A joint association event Θ describes an unambiguous association between the mea-
surements and the targets at time k

Θ =
m⋂

j=1

θ(j, tj) (5.3)

where
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Figure 5.1: Two targets with a measurement in the intersection of their validation
gates are shown with corresponding validation matrix Ω.

• θ(j, tj) is the event that measurement j originates from target tj .

• tj is the index of the target to which measurement j is associated in the event
under consideration.

The event Θ can also be represented by the matrix

ΩΘ = [ωΘ(j, t)] (5.4)

consisting of the units in Ω corresponding to the associations in Θ, where

ωΘ(j, t) =
{

1 if the event θ(j, t) is part of Θ
0 otherwise

(5.5)

Using this, a feasible association event needs to fulfill the following requirements:

1. A measurement can have only one source, i.e.

NT∑
t=0

ωΘ(j, t) = 1 ∀ j (5.6)

2. At most one measurement can originate from a target

δt
Θ �

m∑
j=1

ωΘ(j, t) � 1 t = 1, . . . , NT (5.7)

The binary variable δt
Θ is called the target detection indicator since it indicates whether

a measurement is associated to a target t or not in event Θ. It is also convenient to define
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Table 5.1: Specific measurement association in the 11 feasible joint association
events corresponding to Figure 5.1. Only measurement zk(2) can be associated to
both targets since it is located inside both targets’ validation gates.

Θ (hypothesis number) Target 0 (false alarm) Target 1 Target 2

1 zk(1) zk(2) zk(3) zk(4)

2 zk(2) zk(3) zk(4) zk(1)

3 zk(3) zk(4) zk(1) zk(2)

4 zk(2) zk(4) zk(1) zk(3)

5 zk(2) zk(3) zk(1) zk(4)

6 zk(1) zk(3) zk(4) zk(2)

7 zk(1) zk(4) zk(2) zk(3)

8 zk(1) zk(3) zk(2) zk(4)

9 zk(1) zk(3) zk(4) zk(2)

10 zk(1) zk(2) zk(4) zk(3)

11 zk(1) zk(2) zk(3) zk(4)

two more binary variables

τΘ(j) �
NT∑
t=1

ωΘ(j, t) (5.8)

φΘ �
m∑

j=1

[1 − τΘ(j)] (5.9)

where τΘ(j) is the measurement association indicator to indicate if measurement j is
associated to a target or not, and φΘ is the number of false (unassociated) measurements
in event Θ.

In the example of Figure 5.1 it is possible to form 11 feasible joint association events,
and the way the measurements are associated within these events is shown in Table 5.1.
For all these possible joint association events, conditional probabilities have to be de-
rived.

5.1.3 Joint Association Event Probabilities

The joint association event probabilities are derived using Bayes’ formula

P{Θk|Zk} = P{Θk|Zk, mk, Z
k−1}

=
1
c
p
(
Zk|Θk, mk, Z

k−1
)

P{Θk|Zk−1, mk}

=
1
c
p
(
Zk|Θk, mk, Z

k−1
)

P{Θk|mk} (5.10)
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where c is a normalizing constant. The prior probability of the joint association event
is independent of the past measurements, and the conditioning term Zk−1 has therefore
been omitted in the last line of the above equation.

For the purpose of deriving the joint probabilities, no individual validation gates will
be assumed for the various targets. Instead, the entire surveillance region will be used as
the validation gate for each target. This approach is adopted in order to have the pdf of
each false measurement the same, i.e., uniformly distributed in the validation region

p
(
zk(j)|θk(j, tj), Zk−1

)
=

1
V

for τΘk
(j) = 0 (5.11)

where V is the volume of the entire surveillance area. The pdf of a true target-originated
measurement is assumed Gaussian distributed as in the PDAF, but since the validation
gate coincides with the entire surveillance area, the gate probability in (4.16) is assumed
to be unity, i.e., PG = 1. The conditional pdf of a measurement given its origin is
therefore

p
(
zk(j)|θk(j, tj), Zk−1

)
=

⎧⎨
⎩ N

(
zk(j); ẑ

tj
k|k−1, S

tj
k

)
if τΘk

(j) = 1

1
V if τΘk

(j) = 0
(5.12)

where ẑ
tj
k|k−1 is the predicted measurement for target tj with associated innovation co-

variance S
tj
k . Using the above equation, the pdf of the measurements in (5.10) can be

written as

p
(
Zk|Θk, mk, Z

k−1
)

=
mk∏
j=1

p
(
zk(j)|θk(j, tj), Zk−1

)

=
mk∏
j=1

{(
1
V

)1−τΘ(j)

N
(
zk(j); ẑ

tj
k|k−1, S

tj
k

)τΘ(j)
}

(5.13)

where the states of the targets, conditioned on the past observations, are assumed mutu-
ally independent.

Next, the last term in (5.10) will be derived. Let δΘ be the vector of detection indi-
cators corresponding to event Θk

δΘ = [δ1
Θ, . . . , δNT

Θ ] (5.14)

The vector δΘ and the number of false measurements φΘ follow from the event Θ under
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1. In event Θk there are assumed mk − φΘ targets detected.

2. The number of events Θk, where the same targets are detected, is given by the
number of ways of associating mk − φΘ measurements to the detected targets
from a set of mk measurements.

By assuming each such event a priori equally likely, one has

P{Θk|δΘ, φΘ, mk} =
1

mk
Pmk−φΘ

=
φΘ!
mk!

(5.16)

The last term in (5.15) is, assuming δ and φ independent,

P{δΘ, φΘ|mk} =
NT∏
t=1

(P t
D)δt

Θ(1 − P t
D)1−δt

ΘμF (φΘ) (5.17)

where P t
D is the detection probability of target t and μF (φΘ) is the prior pmf of the

number of false measurements. The indicators δt
Θ have been used to select the probabil-

ities of detection and no-detection events according to the event Θk under consideration.
Combining (5.16) and (5.17) into (5.15) yields the prior probability of a joint association
event

P{Θk|mk} =
φΘ!
mk!

NT∏
t=1

(P t
D)δt

Θ(1 − P t
D)1−δt

ΘμF (φΘ) (5.18)

The pmf of the number of false measurements μF (φ) can, as in the case of the PDAF,
have two versions, parametric or nonparametric.

1. Parametric JPDAF uses a Poisson pmf

μF (φ) = e−λV (λV )φ

φ!
(5.19)

which requires the spatial density λ of the false measurements.

2. Nonparametric JPDAF uses a diffuse prior

μF (φ) = ε ∀φ (5.20)

which does not require the parameter λ.

Using the nonparametric model and combining (5.18) and (5.13) into (5.10) yields the
joint association event probabilities
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where the constants ε and mk! are brought into the normalization constant c.
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5.1.4 JPDAF Algorithm

Finally, marginal association probabilities are obtained by summing over all the joint
association events in which the marginal event of interest occurs

βt
k(j) � P{θk(j, t)|Zk} =

∑
Θk

P{Θk|Zk}ωΘ(j, t) (5.22)

βt
k(0) � 1 −

mk∑
j=1

βt
k(j) (5.23)

The joint association events are now decoupled into separate sets of association proba-
bilities, one set for each target, where the probabilities in one set can be used as those
association probabilities in the PDAF. By replacing the association probabilities in (4.63)
with the probabilities calculated in (5.22) and (5.23), the JPDAF algorithm is the same
as using the PDAF equations in Section 4.2.4 on each target t.

In paper B and paper C the JPDAF algorithm is modified to also handle false mea-
surements that originate from the wakes behind the targets in a multitarget environment.

5.2 Coupled Joint Probabilistic Data Association Filter

The JPDAF is based on the assumption that the targets’ states, conditioned on the past
observations, are mutually independent. Because of this assumption, the filtering can be
done decoupled. When measurements are inside the validation gates for two or more
targets at the same time, we say that the targets are “sharing” measurements. For targets
that share measurements for several sampling times, a dependence of their estimation
error ensues, and this can be taken into account by calculating the resulting error cor-
relations [15]. This leads to the joint probabilistic data association coupled filter (JP-
DACF) [7], [10], where the targets’ states, given the past, are considered as correlated.
The JPDACF algorithm does the filtering in a coupled manner, yielding a covariance
matrix with cross-covariances that reflect the correlation between the targets’ state es-
timation errors. However, this JPDACF approach does not account for situations with
partial target detections since the association events where all targets are detected are
not separated from events where only some of them are detected. This situation was ac-
counted for in the coupled probabilistic data association (CPDA) filter, derived in [16],
where the CPDA in combination with hypothesis pruning was developed to avoid track
coalescence. In paper C, however, the CPDA approach did lead to numerical prob-
lems in the covariance calculations. An equivalent solution to the CPDA, but where the
covariance calculation is in a symmetrical form, was therefore developed to avoid nu-
merical problems. This modified JPDACF, accounting for partial target detections and
the presence of wakes, is derived in paper C.
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5.3 Multiple Hypothesis Tracking

The multiple hypothesis tracking (MHT) algorithm [10], [14] can be said to be the mul-
titarget version of the OBA presented in Section 4.1, that also includes track initiation,
track termination and different techniques to reduce memory and computational require-
ments. These techniques, which includes clustering, pruning and merging of tracks, are
necessary to implement the MHT for use in practical tracking systems. In the MHT,
alternative data association hypotheses are formed whenever there are measurement-to-
track conflict situations such as shown in Figure 5.1. Then, rather than combining these
hypotheses, as in the JPDAF presented in Section 5.1, the hypotheses are propagated
in anticipation that subsequent measurements will resolve the uncertainties. Recall the
example given in Figure 5.1 where two targets have overlapping validation regions such
that one of the measurements is validated for both targets. As shown in Table 5.1, there
are 11 possible association events Θ, or hypotheses, in this example. The JPDAF uses
the hypothesis probabilities to compute measurement-to-track assignment probabilities
and then updates each track with a probabilistically weighted composite of all validated
measurements. Thus, the 11 hypotheses would be effectively combined to update the
two tracks. On the other hand, MHT will choose to maintain a subset of these 11 hy-
potheses and defer the decision so that subsequent scans of data can be used to resolve
the uncertainty at the current time. The 11 hypotheses can be further expanded to include
new tracks that can be formed by the measurements that are not used by the hypotheses
for track update. When new measurements are validated in the next scan, each of the
hypotheses from the current scan may spawn another set of hypotheses, and so on for
subsequent scans. This creates the potential for an explosion in the number of hypothe-
ses.

5.3.1 Assumptions

The following assumptions are made in the MHT approach:

(a) There is an unknown number of targets, and tracks have not necessarily been ini-
tialized.

(b) At each sampling time any measurement could have originated from either:

– an established track

– a new target

– a false alarm

(c) A measurement could have originated from at most one target.

(d) There can be at most one measurement from a target.

(e) Measurements associated with a track are Gaussian distributed around the corre-
sponding predicted measurement.
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(f) False measurements are uniformly distributed in the surveillance region, and ap-
pear according to a Poisson process with a certain rate.

(g) New targets can appear at each sampling time, uniformly distributed in the surveil-
lance region (or according to some other pdf), and appear according to a Poisson
process with a certain rate.

5.3.2 MHT Techniques to Limit the Number of Hypotheses

Hypotheses are collections of tracks that do not share measurements. To reduce the
potential explosion of the number of hypotheses in the MHT, a number of techniques
have been developed. The main techniques are:

1. Clustering

Clusters are collections of tracks that share measurements, either directly or via
other tracks. As an example, if Track 1 shares a measurement with Track 2, and
Track 2 shares a measurement with Track 3, all three tracks are in the same cluster.
Once clustering has been performed, the formation and evaluation of hypotheses
within each cluster can be done independently from other clusters. In this way
the processing of each cluster can be assigned to separate processors in a parallel
processing implementation.

2. Pruning

Hypotheses (and tracks) with probabilities lower than a given threshold are deleted.

3. Merging

Hypotheses with similar effects, e.g., the same number of targets but with slightly
different state estimates, can be combined. Another typical rule would be to merge
tracks that have the last N observations in common, where N ≥ 3.

5.3.3 Track-Oriented vs. Hypothesis-Oriented Algorithms

There are two basic approaches to MHT implementation. The original MHT method,
denoted Reid’s algorithm [56], is a hypothesis-oriented approach that maintains the hy-
pothesis structure from scan to scan and continually expands and cuts back (prunes) the
hypotheses as new data is received. At each scan, a set of hypotheses will be carried over
from the previous scan and composed of one or more tracks that do not share measure-
ments with each other in the hypotheses. Then, on the receipt of new data, each hypoth-
esis is expanded into a set of new hypotheses by considering all measurement-to-track
assignments for the tracks within the hypotheses. On the other hand, the track-oriented
approach [44] does not maintain hypotheses from scan to scan. The tracks formed on
each scan are reformed into hypotheses and the tracks that survive pruning are predicted
to the next scan where the process continues. The latter approach is, according to [5], the
preferred one, since it is simpler and conveniently implementable via multidimensional
assignment (MDA), using Lagrangian relaxation [53].
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5.3.4 Optimality

The MHT is “optimal” in the sense that it makes no overt approximations or simplifica-
tions, but in order to implement it, hidden approximations and simplifications have to be
made. This method is therefore not a panacea, and has to be treated cautiously and with
a clear understanding of all its assumptions, like any other approach [10].

5.4 Multisensor Configurations

When more than one sensor is used to obtain measurements, there are several possible
configurations or overall system architectures that relate to the sequence in which the
data association and tracking are carried out [10], [35]. The key issue here is whether
or not all measurements (from the multiple sensors) should be sent directly to a fusion
center for track formation. In the centralized configuration, which gives the best per-
formance,1 all measurements are transmitted from the local sensors to a fusion center
where the information processing is carried out. Primarily due to bandwidth constraints
in real systems, the centralized configuration is sometimes not feasible because of its
requirement to transmit all measurement information to a fusion center. This is the
motivation for the interest in distributed configuration where each sensor has its own in-
formation processing system, and the processed data (including less information) at the
local sensors is transmitted to the fusion center for further processing. Notice that the
terms “distributed” and “decentralized” are often used interchangeably. In a distributed
system the information processing is done at different locations, and if the information
processors at these different locations do not all share the same information, the system
is also decentralized. The centralized and distributed configurations have been compared
in [21], [22].

5.4.1 Centralized Tracking

In a completely centralized tracking system, the fusion center has access to all measure-
ments, yielding the best performance. However, the total amount of data received at
the fusion center can be large, which increases the requirements for the communication
system. An approach to make the centralized tracking more feasible for real systems,
is to compress the measurement data in the local sensors before it is transmitted [23].
When the measurements are transmitted to a fusion center in the centralized tracking,
there are two different schemes for the way the state is updated. In parallel filtering
the measurements from all sensors (if synchronized) are taken into account at the same
time. The other alternative is sequential filtering, where measurements from each sensor
is processed one sensor at a time [10]. The first sensor updates the state (and covariance)
based on predictions from the previous time step as in a single-sensor algorithm. Then,
this new updated state is used as a zero-time prediction to update with the measurements

1It is assumed that the sensors are properly registered and have no biases.
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from the second sensor and so on. A fundamental principle stated in [25] is that similar,
properly aligned sources should be combined first. In [51] the sequential and parallel
filtering schemes are compared in a multisensor JPDAF approach, and it is shown that
sequential filtering is less computationally complex as the number of sensors increases.
According to [51], the sequential method yields better tracking performance on the aver-
age when data association is needed. This is primarily due to the fact that better filtered
estimates are available after processing each sensor’s data. The centralized configuration
with sequential update is used in the multisensor scenarios presented in paper C.

5.4.2 Distributed Tracking

In a distributed (decentralized) configuration, the local sensors are doing track estimation
themselves. These local estimates are then transmitted to a fusion center (at a reduced
rate), and a track to track association followed by track fusion is carried out. The track to
track association decides whether two tracks from different systems represent the same
target. If it is decided that these two tracks represent the same target, the track fusion
combines their estimates.

In general there are S sensors, s = 1, . . . ,S, where each sensor has Ns local tracks.
The different sensors have typically independent measurement noise, but due to the com-
mon process noise, the local estimates at the different sensors representing the same
target should not be assumed independent. This dependence is characterized by the
cross-covariance of the local estimation errors given by the Lyapunov equation. A track
to track association method, using a likelihood-ratio based cost function in a S-D as-
signment, was derived for tracks with dependent errors in [8]. This cost function allows
simultaneous consideration of S tracks corresponding to the same target (one from each
source) or any subset of this.

When the assignment algorithm has determined which tracks are going to be fused,
the track fusion, assuming dependent track estimation errors, is done with the equations
given in [22].
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6
Concluding Remarks

IN this first part we have presented a framework for the research reported in this thesis.
The aim has been to explain how the papers in Part II relate to each other and to

the existing theory. The conclusions are given in Section 6.1, and some of the many
interesting ideas for future research are discussed in Section 6.2.

6.1 Conclusions

The work presented in this thesis has mainly dealt with the association of measurements
to their origin. This type of data association, called measurement to track association, is
an important factor in practical tracking systems whenever false, non-target-originated
measurements are likely to appear. These false measurements are due to noise and clut-
ter. In this thesis we have introduced the measurements originating from the wake behind
a target as a special kind of clutter. These wake-originated measurements are modeled
with a probabilistic model which reflects the probability that a false measurement origi-
nated from the wake.

In paper A, a probabilistic model of the bubbles behind a diver is developed and in-
corporated in the PDAF algorithm presented in Chapter 4. The modified PDAF prevents
measurements originating from the bubbles behind the diver to mislead the tracking al-
gorithm by giving these measurements lower weights than in a regular PDAF. A linearly
increasing bubble model was implemented, which results in an analytical expression for
the probability that there are bubbles in the validation gate. The reported model was
used in a real tracking scenario of two divers, and showed to be a valuable modification
of the PDAF to maintain track continuity. A similar solution may be effective for the
wake behind a ship or other vehicles with a wake effect.
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64 6 Concluding Remarks

In paper B, a probabilistic model is developed to account for multiple wakes in a
multitarget scenario. This multitarget wake model is incorporated in the JPDAF algo-
rithm presented in Chapter 5, and is formed by the sum of single models each linearly
increasing behind their associated targets. Simulations of two crossing targets with vari-
ous trajectory crossing angles between the targets show that this wake model is a useful
modification of the JPDAF, especially when the trajectory crossing angle is small. The
wake model is also necessary for higher trajectory crossing angles, but in these situations
it seems to be enough to use a modified PDAF (developed in paper A) on each of the
targets in parallel.

Four different simulation scenarios are examined in paper C, using the models de-
veloped in paper A and paper B, where two targets in the presence of wakes are:

1. Crossing each other.

2. Moving in parallel to each other.

3. One following after another.

4. Meeting and then passing each other.

The simulation scenarios consider two sensors, and the data association filters at the local
sensors are compared with multisensor filters in a centralized tracking configuration with
sequential updating (see Chapter 5.4). The results show that the data fusion provides sig-
nificant improvement in the tracking performance. This paper also presents the coupled
version of the JPDAF (JPDACF) presented in Chapter 5, and a modified JPDACF (with
a wake model) is developed and tested, without showing any improvements compared
to the modified JPDAF. Paper C also examines the effect of applying the wake model
on point-targets without wakes. The results show that the modified JPDAF and JPDACF
perform almost the same as the standard JPDAF. This makes the modification practical
for real systems where both targets with wakes and targets without wakes are operating
in the same environment.

6.2 Future Research

The wake models developed in this thesis are based on the assumption of a nearly con-
stant velocity target. This leads to a wake model following a straight line behind the
target. Further research should address robustness of this wake model in situations when
a target is turning or performing different maneuvers. A suggestion is to make the proba-
bilistic wake model adaptive to the trajectory of the target by following the last estimated
positions rather than a straight line.

Due to continuously increasing sensor resolution, the problem of tracking extended
targets becomes more and more important. An interesting idea would be to include the
wake models developed in this thesis in an extended target tracking framework. This
should be helpful especially for larger targets, like ships, that also have a wake.
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6.2 Future Research 65

In most classical tracking systems the detector and the tracker operate independently.
An interesting approach would be to introduce a coordination between these two systems
to improve the performance in the presence of a wake. For this purpose a CA-CFAR
detector, presented in Chapter 2, with an adaptive window (the cells used to estimate the
local noise parameter) could cooperate with a modified PDAF or JPDAF that informs
the detector of the estimated target position and velocity. The averaging window should
use the position and velocity information from the estimated track to exclude the wake-
affected cells in the cell averaging process.
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Abstract

Detection and tracking of divers have become an important factor in port protection
against underwater intruders. A problem arises from divers with open breathing systems
because detections of the air bubbles they produce can mislead the tracking filter and
sometimes result in a lost track. In this paper a probabilistic model is developed which
reflects the probability that a false measurement originates from the bubbles. The novel
contribution of this paper is the integration of this model in the probabilistic data asso-
ciation filter (PDAF) to improve the track continuity. The bubble detections may also
cause confusion in the track initiation. To prevent this problem, a clustering method is
proposed based on morphological operators which allows tracks to be initialized based
on two-point differencing of the cluster centroids from succeeding scans. This mor-
phological clustering method is included in a cell averaging constant false alarm rate
(CA-CFAR) detector in such a way that both the point detections and their correspond-
ing clusters can be fed to the tracking filter. These techniques are implemented and
applied to real data of two divers, one with an open breathing system and the other with
a closed breathing system, operating simultaneously in a coastal area. The real data were
recorded from an active 90 kHz narrowband multibeam imaging sonar.
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1 Introduction

IN recent years the surveillance of divers near marine infrastructures such as bridges,
power plants, port and harbor facilities has received renewed interest [2], [8], [9],

[14], [16], [17]. The detection of divers is considered a challenging problem in under-
water acoustics, and the target strength is the main unknown in assessing the feasibility
of using a sonar to detect them. The target strength of a diver is a complicated function of
aspect angle and frequency, where the human lungs and the oxygen tank are thought to
be the largest contributors [22]. Especially for rebreathers with a fully closed breathing
system, the target strength is particularly low. In addition, the surrounding environment
could be noisy and nonstationary especially in ports and shallow water [24].

In a traditional tracking system only a small part of the information from the sonar
signal processor is utilized in the tracking filter. This extraction of information is done
by a detection process where only the most likely measurements that stand out from the
background are passed on. In this paper we do not distinguish between noise, reverber-
ation and clutter, but use the term background noise to include them all. It is often con-
venient to have some control on the measurements that originate from the background
noise. For this purpose, a cell averaging constant false alarm rate (CA-CFAR) detector
is frequently used in radar and sonar systems [11]. The detections resulting from a CA-
CFAR detector are point measurements. However, some targets have a larger extent or
they leave footprints (e.g. bubbles) which may result in more than one point detection.
Sometimes it is desirable to gather these detections in a single cluster. Many possible
algorithms for clustering are available, such as ISODATA and the K-means [10]. How-
ever, most of these suffer from the problem of requiring the knowledge of the number
of clusters a priori. A technique from image analysis that does not requires this is called
mathematical morphology [23]. This method may be used to connect or fill the empty
space between several point detections to create a cluster. Mathematical morphology
consists of set operations in Euclidean space for quantitative description of geometri-
cal structures. This approach has been mainly concerned with image analysis to extract
shape information from digital images [13]. Additional applications include low signal
amplitude detection and pattern recognition [18], [20]. More interesting is the applica-
tion of group tracking [15], where the morphological operators are used to cluster mea-
surements into groups with a common activity. In this paper this method has been added
to the CA-CFAR detector to create (in addition to single point measurements) clusters
of the detections from the open breathing system diver and the bubbles he produces.
We have therefore called this extended detection method as morphological CA-CFAR
(MCA-CFAR). The clusters from the MCA-CFAR are used in the track initiation to
avoid confusion of the many possibilities of two-point differencing [5] that could have
been set up among the point detections. Instead, a two-point differencing is used for the
cluster centroids from succeeding scans.

A sequence of sonar images from the data analyzed in this paper is shown in Figure 1.
The two divers are pointed out and the detections are shown as black dots. To empha-
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Figure 1: Sequence of sonar images showing amplitude (logarithmically scaled)
of signal return in a nonhomogenous background. Each resolution cell is about
0.8 m in range and 0.7◦ in bearing. Two divers, one with open breathing system
and the other with closed breathing system, are pointed out by black arrows. The
open breathing system diver and the cloud of bubbles behind him are circled. The
detections are shown as black dots. Note that both divers are detected in images (a)
and (b), but the closed breathing system diver is not detected in image (c). Moving
directions are south-east for the open breathing system diver (circled) and east for
the closed breathing system diver. Horizontal edges are due to interference from a
fishing sonar operating at the same frequency as imaging sonar.

size the time variation and nonhomogeneity in the background, the images have been
logarithmically scaled. A low detection threshold is often required to achieve enough
detections of the real targets in a nonhomogenous background. This results in a higher
false alarm rate which makes it easier for false tracks to persist since there are more
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spurious (false) measurements that are associated to these tracks. Especially in tracking
of dim targets the higher false alarm rate is something that is almost impossible to avoid
when the main goal is to have a continuous track of the real target.

For the purpose of tracking a target, there are several well-known methods [4], [5],
[7]. However, the analysis and application of tracking methods applied to divers in the
literature is rather scarce. Tracking is the estimation of the state of a moving target, and
an important part is to determine which measurements to use in the estimation, i.e., data
association. A well-known data association method is the probabilistic data associa-
tion filter (PDAF) [4], [6] where the measurements are weighted according to how likely
they originated from the target in a probabilistic sense. In the case when the diver uses an
open breathing system, the produced bubbles may also stand out from the background
and yield several detections. An example of this is shown in Figure 1. This makes it
important to model the origination of the measurements to separate false measurements
from target-originated ones. A similar problem has been discussed for a radar tracking
a target in the presence of a wake [3], where a probabilistic editing method is used to
handle the wake-dominated measurements in the tracking algorithm. This probabilistic
editing method is based on a single measurement extracted for each time-step, and that
this measurement originates from either the target or the wake. In this paper we have
developed a method that does not restrict the number of measurements, but takes into
account a set of measurements for each time-step, just as in the PDAF. Our method aug-
ments the regular PDAF to incorporate an additional probabilistic model for the bubbles
behind the diver. The result is a lower weighting for bubble-originated measurements
than what a regular PDAF would give. This makes it easier for the tracking algorithm to
hold on to the true target and not lose it as a standard PDAF. A preliminary version of
this work was presented in [21].

In Section 2 we describe the detection method, and how these detections can be
clustered by using mathematical morphology. These measurements and corresponding
clusters are handed over to the PDAF which is described in Section 3. In Section 4 we
develop the modified PDAF to include a probabilistic model of the bubbles. The PDAF
and the modified PDAF are applied to real data in Section 5, before conclusions are
given in Section 6.

2 Morphological Cell Averaging Constant False Alarm
Rate

In this section the detection method, and how these detections can be clustered by use of
mathematical morphology, are described.

2.1 Detection

One of the most common detection methods in radar and sonar systems is the CA-CFAR
processor [11]. By assuming that there are enough independent and identically dis-
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tributed (i.i.d.) scatters contributing to the received signal in any given resolution cell
(after beamforming and matched filtering) so that the central limit theorem (CLT) holds
and the bandpass signal is Gaussian, the resulting amplitude is Rayleigh distributed [1].
This results in a Swerling I target model where the signal amplitude squared A is expo-
nentially distributed as

p(A|noise) =
1
μ

exp
(
−A

μ

)
(1)

for cells that originate from the background noise and

p(A|target) =
1

μ(1 + SNR)
exp
(
− A

μ(1 + SNR)

)
(2)

when the signal is reflected from a target [12]. Here the SNR is the signal-to-noise ratio
in magnitude (not dB). Define Y as the amplitude squared of the cell to be tested for
possibly detection. Then, the background noise parameter μ is estimated by averaging
over n cells Ai (amplitude squared), i = 1, . . . , n, in a local neighborhood around the
cell under test Y

μ̂ =
1
n

n∑
i=1

Ai (3)

If the test signal cell has large enough signal intensity compared with the noise parameter
estimate μ̂ in the following sense

Y

μ̂
> τ (4)

then a detection will be declared. Let PFA be the average false alarm rate (probability of
false alarm in a resolution cell). Based on [12] and the above assumptions, PFA is given
by

PFA =
1(

1 + τ
n

)n (5)

where n is the number of cells used to estimate μ. It is clear that PFA is independent of
μ, and from (5) the constant scale factor τ in (4) can be calculated as

τ = nP
− 1

n
FA − n (6)

2.2 Mathematical Morphology

The resulting detections may be directly fed into a tracking algorithm as point measure-
ments, but for targets that yield several detections, a form of clustering is useful. In this
paper a clustering method based on mathematical morphology is included in the detec-
tion process such that both single point measurements and clusters of them are fed to the
tracking system. This combined detection and clustering method is called MCA-CFAR.
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(a) (b) (c) (d)

: Structuring element : Detection

Figure 2: Clustering of detections by use of closing operation with specific 5 × 5
structuring element. (a) Detection image. (b) Expanded image after dilation.
(c) Erosion of expanded image. (d) Cluster of detections.

Mathematical morphology was originally developed in [23] and is principally based
on the two set operations, erosion and dilation. These transformations involve the inter-
action between an image X and a structuring set B, called the structuring element. Let
Bx be the translation of B by x defined as

Bx = {z : z = b + x, for b ∈ B} (7)

Then dilation is defined as

δB(X) = X ⊕ B = {x : Bx ∩ X �= ∅} (8)

where B is usually a symmetric set around the origin and will expand the set X depend-
ing on the form and size of the structuring element B. The erosion will shrink the set X
and is defined as

εB(X) = X 
 B = {x : Bx ⊆ X} (9)

An important application of these two operations is called closing. It is produced by the
dilation of X by B, followed by the erosion of this result by B

φB(X) = εB(δB(X)) = (X ⊕ B) 
 B (10)

An example of clustering point measurements by use of the closing operation with a
given structuring element is shown in Figure 2.

The important elements in the closing operation are the size and form of the structur-
ing element. A larger structuring element will cluster together measurements that have
a longer distance from each other. The size of the actual target should therefore be taken
into account. If the orientation of the target is also known, a structuring element with the
same shape and orientation as the target would be a good choice.
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3 Probabilistic Data Association Filter

In this section the tracking model and the PDAF is described. The different steps in the
PDAF are shown at the end.

3.1 Model of Tracking

The standard discrete linear model in tracking is

xk+1 = Fxk + vk zk = Hxk + wk (11)

where
x : target state F : transition matrix
z : measurement H : measurement matrix
v : process noise w : measurement noise
k : time index

The process and measurement noises are assumed independent, white, and Gaussian
with covariance matrices

E{vkv
T
k } = Qk E{wkw

T
k } = Rk (12)

In this system a Kalman filter would be optimal as long as there is only one single mea-
surement zk at each time k. In real data this is unfortunately not true due to false mea-
surements originating from the background noise. Instead, a set of mk measurements
Zk = {zk(1), zk(2), . . . , zk(mk)} is available at time k and a form of data association
is needed. A simple and effective method to solve this problem is the PDAF [4], [6].

3.2 Standard PDAF

The approach of the PDAF is to calculate the association probabilities for each validated
measurement (that falls in a gate around the predicted measurement) at the current time
to the target of interest. The posterior track probability density is therefore a mixture of
Gaussian probability density functions (pdf), but is then forced back to Gaussianity by
moment matching for the succeeding scan. For a derivation of the PDAF see [4]. In the
following a brief overview of the PDAF is given.

Assume that the target state at time k − 1 is estimated as x̂k−1|k−1 with associated
covariance Pk−1|k−1. This means that the estimate is conditioned on the entire past up
to time k − 1. Then the following assumptions are made.

(a) The track is already initialized.

(b) The past information about the target is summarized approximately by the Gaus-
sian distribution

p
(
xk|Zk−1

)
≈ N

(
xk; x̂k|k−1, Pk|k−1

)
(13)
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where
Zk−1 = {Z0, Z1, . . . Zk−1} (14)

(c) A validation region or gate is set up for each time step to select the candidate
measurements for association.

(d) At time k there are mk validated measurements but at most one of them can be
target-originated. The remaining measurements are assumed due to i.i.d. uni-
formly spatially distributed false alarms, independent across time.

(e) Detections of the real target occur independently over time with known detection
probability PD.

At each time k, the algorithm goes through the following steps.

1. Predict the target state, associated covariance, and measurement at time k based
on the estimates at k − 1:

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k + Qk (15)

ẑk|k−1 = Hkx̂k|k−1

2. Compute the innovation covariance for the true target-originated measurement

Sk = HkPk|k−1H
T
k + Rk (16)

and use Sk to form the measurement validation gate where the validated measure-
ments Zk result in mk innovations:

νk(i) = zk(i) − ẑk|k−1 i = 1, . . . , mk (17)

3. Calculate the association probabilities βk(i), i = 1, . . . , mk that measurement
zk(i) originates from the true target, and βk(0) as the probability that all measure-
ments are false alarms:

βk(i) =

⎧⎨
⎩ ce−

1
2
νk(i)T S−1

k νk(i) i = 1, . . . , mk

c |2πSk|
1
2 mk

1−PGPD
VkPD

i = 0 (18)

Here c is the normalizing constant to ensure that
∑mk

i=0 βk(i) = 1, Vk is the volume
of the gate and PG is the probability that the true measurement falls inside the gate.
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4. Calculate the Kalman gain and the combined innovation

Wk = Pk|k−1H
T
k S−1

k νk =
mk∑
i=1

βk(i)νk(i) (19)

to update the track according to

x̂k|k = x̂k|k−1 + Wkνk (20)

5. The estimation covariance is updated by

Pk|k =βk(0)Pk|k−1 + [1 − βk(0)]
(
Pk|k−1 − WkSkW

T
k

)
+ Wk

[
mk∑
i=0

βk(i)νk(i)νk(i)T − νkν
T
k

]
W T

k (21)

where the last term in (21) is the “spread of the innovations."

4 PDAF with a Bubble Model

As mentioned earlier a diver with an open circuit breathing system will produce bubbles
which may mislead the tracking algorithm. To prevent this, an extension of the regular
PDAF incorporating a special probabilistic model of the bubbles is developed. In the
PDAF each measurement that is not target-originated is modeled as i.i.d. uniformly spa-
tially distributed inside the validation region. In a real sonar image a diver swimming in
a given direction will often look like he is trailing a “cloud" behind him. The cloud is due
to reflections from the bubbles he produces. This motivates the use of a pdf that reflects
the increasing probability to get bubble-originated measurements behind the diver. The
“bubble" pdf is the novelty added to the PDAF and is illustrated in Figure 3.

The PDAF with the bubble model takes into account that every false measurement
can originate from either bubbles with a priori probability PB or from the background
noise with a priori probability 1 − PB . Note that the a priori probability PB that a false
measurement originates from bubbles is conditioned on a diver with an open breathing
system being present. The assumptions for the bubble model PDAF are the same as in
the standard PDAF as stated before with modification of point (d):

(d) At time k there are mk validated measurements but at most one of them can be
target-originated. The remaining measurements are assumed due to i.i.d. bubbles
with pdf pB(·) and a priori probability PB , or from i.i.d. uniformly distributed
background noise with a priori probability 1 − PB , independent across time.
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Figure 3: Illustration of pdfs for measurements originating from target, background
noise, or bubbles. (a) In regular PDAF. (b) In modified PDAF with special bubble
model.

This modification will affect the PDAF in the calculation of the βk(i), which is derived
in Appendix A, yielding
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Here c is the normalizing constant to ensure that
∑mk

i=0 βk(i) = 1. In (22) a diffuse
prior [4] is used for the point mass function (pmf) of the number of false measurements
in the validation region. The denominator in βk(i) for i = 1, . . . , mk is the pdf for a
false measurement

p(zk(i)|θk(j), j �= i) =
1 − PB

Vk
+

PB

PGB
pB(zk(i)) (23)

where PGB is used to account for restricting the density of the bubble model pB(zk(i))
to the validation gate. The calculation of PGB for a linear pB(·) is presented in detail in
Appendix B.

5 Results

In this section the methods described previously have been implemented and applied to
real data recorded in the Oslo-fjord, Norway, during summer 2006.
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5.1 Experimental Setup

The active sonar used in this experiment has a 180◦ field of view and a maximum range
of 800 m, with resolution 0.703◦ (256 cells) and 0.793 m (1009 cells) in bearing and
range respectively. The time T between each scan is 1.089 s, and the experiment lasted
for 1792 scans (about 32.5 min) in a single continuous run. Two divers, one with an
open and the other with a closed breathing system, were located at two different posi-
tions in the water simultaneously. The divers are both attached to a GPS system, and
are swimming well separated in a nearly straight line toward the sonar. In this case a
two-dimensional direct discrete time nearly constant velocity model [5] is used in (11)
and (12):

F =

⎡
⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦ H =

[
1 0 0 0
0 0 1 0

]
(24)

Rc =

⎡
⎣ σ2

x σ2
xy

σ2
xy σ2

y

⎤
⎦ Rp =

⎡
⎣ σ2

r 0

0 σ2
ψ

⎤
⎦ (25)

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4T 4 1

2T 3 0 0

1
2T 3 T 2 0 0

0 0 1
4T 4 1

2T 3

0 0 1
2T 3 T 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

σ2
p (26)

For a target with bubbles behind it, situations may occur where the target is undetected
but at the same time there are one or more detections of the bubbles. In these situations
it is very hard to avoid that the track will accept the bubble-originated measurements
and follow them even with the bubble model applied. It is therefore necessary to have
a validation gate that is sufficiently large in the direction the target moves when a diver
with bubbles behind it is tracked. To achieve this a larger measurement noise is used for
the modified PDAF than the regular PDAF. Because the targets are moving toward the
sonar, this difference is only in the range direction. The specifications of the parameters
are given in Table 1.

The position measurements are originally in polar coordinates (r, ψ) with (time-
invariant) measurement noise covariance Rp, but are transformed to Cartesian coordi-
nates (x, y) with corresponding measurement noise covariance Rc using the standard
conversion [5]. This results in a purely linear model hence a standard Kalman filter can
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be used in the tracking algorithm. In the detection process the MCA-CFAR detector is
used with following parameters:

1. The average false alarm rate (probability of a false detection in a resolution cell)
is set to PFA = 0.0005 which corresponds to about 130 false detections in each
scan (there are 1009 · 256 = 258304 cells).

2. The window of cells used to estimate the background noise parameter μ in (3)
is shown in Figure 4a. There are 24 cells used to estimate μ in the averaging
process for a given cell under test. To avoid the signal from the test cell affecting
the estimation of μ, some cells are defined as guard bands. It is critical that this
window be sufficiently small due to the nonhomogenous background. The authors
found the given size to be convenient.

3. The structuring element in the closing operation has size 5 × 5; see Figure 4(b).
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Figure 4: (a) Averaging window of cells used to estimate the background noise
parameter μ. (b) Structuring element. Resolution of each cell is about 0.8 m in
range and 0.7◦ in bearing.

The measurements and corresponding clusters for each scan are handed over to the
tracking algorithm. Tracks are initialized by two-point differencing of the cluster cen-
troids. Any successive pair of clusters within a maximum distance based on target maxi-
mum motion parameters and cluster measurement noise variances initiates a preliminary
track. For the motion parameters, a maximum distance dmax = 0.5 m together with
the process noise matrix Q in (12) is used. The measurement noise for the clusters is
computed from the different cells included in the cluster as a Gaussian mixture [5]. A
preliminary track then has to receive measurements for a minimum of 4 time steps during
the first 6 scans to become a confirmed track. This is also referred to as a “4/6" logic-
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based track formation procedure. In Table 1 the filter design parameters are specified
with values and comments.

Table 1: Specification of parameters

Parameter Value Specification

T 1.089 s Scan length

NS 1792 Number of scans

PD 0.65 Detection probability

PFA 0.0005 False alarm probability

PG 0.999 Gate probability

PB 0.95 Bubble probability

σ2
p 0.0025 m2/s4 Process noise

σ2
r 0.2 m2 Measurement noise (range) for PDAF

σ2
r 4.2 m2 For the PDAF with a bubble model

σ2
ψ 5 · 10−5 rad2 Measurement noise (bearing)

To terminate a track one of following events (termination events) must occur.

1. The estimated speed is outside the interval [0.005, 2] m/s.

2. The average of the last 50 estimated speeds is lower than 0.05 m/s.
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k before the bubble model is applied. A more sophisticated test could
have been implemented, but this simple test worked well.
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Figure 5: Estimated tracks of open breathing system diver using a regular PDAF
(left) and PDAF with included bubble model (middle). Estimated tracks of both
divers with GPS signal overlayed (right). The sonar is located in position (0,0), and
both divers are recorded simultaneously in a single run.

First a standard PDAF was tested on the data and it worked well on the closed breath-
ing system diver. For the diver with the open breathing system the PDAF had problems
when the real diver became undetected while at the same time false detections from the
bubbles behind him showed up. This resulted in a lost track, and a new track had to be
started. When the bubble model is included in the PDAF, the filter is able to handle this
problem, and a lasting track is established. Figure 5 illustrates the difference between
including the bubble model or not, and it shows how the track from the regular PDAF is
broken into six segments. The first and longest track segment is terminated in position
(−130, 435) due to high velocity variance (termination event 4). The second segment
loses the diver at position (−85, 375). In that position the sonar return from the real
diver becomes weaker and the detections from the bubbles start to affect the track. This
makes the track turn around and move backwards through the cloud of bubbles. At posi-
tion (−90, 390) the bubbles are absent and the track terminates due to termination event
6. The third segment stops at position (−45, 325) due to the weaker target and several
bubble detections, and it “jumps" around in the local area between bubble detections for
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broken into six segments. The first and longest track segment is terminated in position
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First a standard PDAF was tested on the data and it worked well on the closed breath-
ing system diver. For the diver with the open breathing system the PDAF had problems
when the real diver became undetected while at the same time false detections from the
bubbles behind him showed up. This resulted in a lost track, and a new track had to be
started. When the bubble model is included in the PDAF, the filter is able to handle this
problem, and a lasting track is established. Figure 5 illustrates the difference between
including the bubble model or not, and it shows how the track from the regular PDAF is
broken into six segments. The first and longest track segment is terminated in position
(−130, 435) due to high velocity variance (termination event 4). The second segment
loses the diver at position (−85, 375). In that position the sonar return from the real
diver becomes weaker and the detections from the bubbles start to affect the track. This
makes the track turn around and move backwards through the cloud of bubbles. At posi-
tion (−90, 390) the bubbles are absent and the track terminates due to termination event
6. The third segment stops at position (−45, 325) due to the weaker target and several
bubble detections, and it “jumps" around in the local area between bubble detections for
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a longer period before it terminates due to termination event 2. The fourth segment ter-
minates for the same reason as the second (too large error variance). The fifth segment
also stops by the bubble cloud and terminates due to a low speed (termination event 1),
and the last is terminated by termination event 2. The linear bubble model pdf pB(·)
used in the modified PDAF is described in Appendix B.

The GPS systems supplied to the divers were floating on the surface attached to a
rope about 15 m long connected to the divers. There is no further information about
the position of the GPS relative to the diver so the GPS reported locations have been
matched to the estimated tracks. Also since there is a bias between the GPS and the real
diver, the GPS locations should not be considered as a ground truth but rather as helpful
information to verify the accepted tracks, see Figure 5.
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Figure 6: Histogram of track life length for all tracks. The two divers with life
length 1217 scans (closed breathing system diver) and 1524 scans (open breathing
system diver) are highlighted.

In Figure 6 track life is illustrated for all tracks during the experiment. As can be
seen, there are several tracks from unknown objects that have a long life length and the
question arises as to whether they are false or not. Due to the nonhomogenous back-
ground a relatively low threshold (i.e., high false alarm rate) has to be used for the track-
ing algorithm to receive enough detections for the real diver tracks. The disadvantage
of the high false alarm rate is that it makes it easier for false tracks to continue since
there are several detections that may arise inside a validation region. Some of these false
tracks are very difficult to exclude since they act similar to the targets of interest. As an
example, the false track with longest life length, more than 1000 scans, has the following
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behavior: It initializes by two spurious successive detections, and then “jumps" on false
detections for a relatively far distance. At one point the track stops in an area with high
background noise that yields constant detections which keep the track alive for a long
time. Tracks that start in a position with high background noise are easier to exclude
since they are standing still from the beginning.

The average length for a track was about 28 scans, and at average there are 51 active
tracks at each scan. Defining only the two divers as real targets one could state that
the average false track life length is also about 28 scans. Then, to indicate the average
frequency of a false track in a particular cell PFT , we approximate this probability as

PFT ≈ 51 − 2
number of cells

=
49

256 · 1009
= 2 · 10−4 (27)

This is not very clear due to the fact that there could be other “targets" like fish in the area.
There is also a question of how to define a target. This would be more of a classification
problem, and is a topic for future work. By requiring a track to move a certain distance
before declaring it a track, in this case 20 m, most of the false tracks are excluded. In
that case, on the average, there are only 9 existing tracks at each scan, but still there are
tracks from unknown objects or noise that would last for a long time due to the high false
alarm rate and the nonhomogenous background. The focus of this paper has not been
to minimize the number of false tracks. In state of the art sonar systems this problem is
often solved by using target recognition.

6 Conclusions

An important factor in a tracking system is to correctly associate the measurements re-
ceived from a detector to its origin. The PDAF has been a solution to this problem in
many implemented systems due to its effectiveness and low computational demands.
One assumption in the PDAF is that false measurements are due to i.i.d. uniformly spa-
tially distributed background noise. In some situations such as in this paper this assump-
tion is not adequate. The presented solution extends this to incorporate a model of the
bubbles behind a diver. A similar solution may be effective for the wake behind a ship
or other vehicles with a wake effect. Due to numerous detections from the bubbles be-
hind the target, the tracking algorithm may be mislead and sometimes lose the target. To
prevent this, the bubble model PDAF will weight these measurements behind the target
lower than in a regular PDAF. It is important that the weights be sufficiently small so
that the track is not forced to turn into the bubble cloud. To achieve this, we presented a
bubble model with sufficient mass density behind the target. The model also includes an
a priori probability for the bubble model conditioned on an open breathing system diver
being present. A linearly increasing bubble model has been implemented, which results
in an analytical expression for the probability that there are bubbles in the validation
gate. The reported bubble model is shown to be a valuable modification of the PDAF to
maintain track continuity, and the approach is a novel contribution to the state of the art
sonar tracking systems.
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before declaring it a track, in this case 20 m, most of the false tracks are excluded. In
that case, on the average, there are only 9 existing tracks at each scan, but still there are
tracks from unknown objects or noise that would last for a long time due to the high false
alarm rate and the nonhomogenous background. The focus of this paper has not been
to minimize the number of false tracks. In state of the art sonar systems this problem is
often solved by using target recognition.
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many implemented systems due to its effectiveness and low computational demands.
One assumption in the PDAF is that false measurements are due to i.i.d. uniformly spa-
tially distributed background noise. In some situations such as in this paper this assump-
tion is not adequate. The presented solution extends this to incorporate a model of the
bubbles behind a diver. A similar solution may be effective for the wake behind a ship
or other vehicles with a wake effect. Due to numerous detections from the bubbles be-
hind the target, the tracking algorithm may be mislead and sometimes lose the target. To
prevent this, the bubble model PDAF will weight these measurements behind the target
lower than in a regular PDAF. It is important that the weights be sufficiently small so
that the track is not forced to turn into the bubble cloud. To achieve this, we presented a
bubble model with sufficient mass density behind the target. The model also includes an
a priori probability for the bubble model conditioned on an open breathing system diver
being present. A linearly increasing bubble model has been implemented, which results
in an analytical expression for the probability that there are bubbles in the validation
gate. The reported bubble model is shown to be a valuable modification of the PDAF to
maintain track continuity, and the approach is a novel contribution to the state of the art
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Appendix A: The Association Probabilities in the Bubble
PDAF

In this section the way the βk(i) are calculated in the modified PDAF is derived. Define
the association events as

θk(i) =

{
zk(i) originates from the target i = 1, . . . , mk

all measurements are false i = 0
(28)

where θk(i) is mutually exclusive and exhaustive for the number of measurements mk ≥ 1.
Using the total probability theorem, the conditional mean of the state at time k is

x̂k|k = E
{

xk|Zk
}

=
mk∑
i=0

E
{

xk|θk(i), Zk
}

P
{

θk(i)|Zk
}

=
mk∑
i=0

x̂k|k(i)βk(i) (29)

Here x̂k|k(i), i �= 0, is the updated state conditioned on the event that the i-th validated
measurement is the correct target-originated one, and

βk(i) � P
{

θk(i)|Zk
}

for i = 1, . . . , mk (30)

is the conditional probability of this event. For the event that all measurements are false,
event i = 0, the predicted state is used

x̂k|k(0) = x̂k|k−1 (31)

with the corresponding weight βk(0).
To derive the conditional probabilities, use Bayes’ formula

βk(i) = P
{

θk(i)|Zk
}

= P
{

θk(i)|Zk, mk, Z
k−1
}

(32)

=
1
c
p
(
Zk|θk(i), mk, Z

k−1
)

P
{

θk(i)|mk, Z
k−1
}

The pdf of the target-originated measurement is

p
(
zk(i)|θk(i), mk, Z

k−1
)

=
1

PG
N
(
zk(i); ẑk|k−1, Sk

)
=

1
PG

N (νk(i); 0, Sk) (33)

where PG is used to account for restricting the normal density to the validation gate.
Denote the events that a measurement originates from a target, background noise or

6 Conclusions 93

Acknowledgements

The authors would like to thank Dr. John H. Glattetre of Kongsberg Maritime for pro-
viding the sonar data recorded by the active 90 kHz narrowband SM2000 multibeam
imaging sonar from Kongsberg Simrad Mesotech Ltd.

Appendix A: The Association Probabilities in the Bubble
PDAF

In this section the way the βk(i) are calculated in the modified PDAF is derived. Define
the association events as

θk(i) =

{
zk(i) originates from the target i = 1, . . . , mk

all measurements are false i = 0
(28)

where θk(i) is mutually exclusive and exhaustive for the number of measurements mk ≥ 1.
Using the total probability theorem, the conditional mean of the state at time k is

x̂k|k = E
{

xk|Zk
}

=
mk∑
i=0

E
{

xk|θk(i), Zk
}

P
{

θk(i)|Zk
}

=
mk∑
i=0

x̂k|k(i)βk(i) (29)

Here x̂k|k(i), i �= 0, is the updated state conditioned on the event that the i-th validated
measurement is the correct target-originated one, and

βk(i) � P
{

θk(i)|Zk
}

for i = 1, . . . , mk (30)

is the conditional probability of this event. For the event that all measurements are false,
event i = 0, the predicted state is used

x̂k|k(0) = x̂k|k−1 (31)

with the corresponding weight βk(0).
To derive the conditional probabilities, use Bayes’ formula

βk(i) = P
{

θk(i)|Zk
}

= P
{

θk(i)|Zk, mk, Z
k−1
}

(32)

=
1
c
p
(
Zk|θk(i), mk, Z

k−1
)

P
{

θk(i)|mk, Z
k−1
}

The pdf of the target-originated measurement is

p
(
zk(i)|θk(i), mk, Z

k−1
)

=
1

PG
N
(
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bubbles as T , N , and B, respectively, where these events are mutually exhaustive and
exclusive. Then the pdf for a false measurement, with the time index k omitted for
simplicity, is given by the total probability theorem

p
(
z|T
)

= p
(
z, N |T

)
+ p
(
z, B|T

)
= P

{
N |T

}
p
(
z|T ,N

)
+ P

{
B|T

}
p
(
z|T , B

)
(34)

where T is the complement [19] of T . Defining pB(·) as the pdf for the bubble-originated
measurements, and taking the time index k into account, (34) yields

p(zk(i)|θk(j), j �= i) = (1 − PB)
1
Vk

+ PB
pB(zk(i))

PGB
(35)

Here 1
Vk

is the uniform pdf for the background noise originated measurements and PGB

is used to account for restricting the density of the bubble model to the validation gate.
(The calculation of PGB for a linear pB(·) is presented in detail in Appendix B.)

The joint density of the validated measurements conditioned on θk(i) in (32) is the
product of the pdf for each measurement, given by (33) and (35), assuming that the
measurements are independent

p
(
Zk|θk(i), mk, Z

k−1
)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∏mk
j=1
j �=i

[
1−PB

Vk
+ PB

PGB
pB(zk(j))

]
× 1

PG
N (νk(i); 0, Sk) i = 1, . . . , mk

∏mk
j=1

[
1−PB

Vk
+ PB

PGB
pB(zk(j))

]
i = 0

(36)
The third term of (32) is the same as in the standard PDAF using a nonparametric model
(diffuse prior) [4]

P {θk(i)|mk} =

⎧⎨
⎩

1
mk

PGPD i = 1, . . . , mk

(1 − PGPD) i = 0
(37)

The last step is to insert (36) and (37) into βk(i) in (32)
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βk(i) =
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p
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Zk|θk(i), mk, Z
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In the last step of (38) the product
mk∏
j=1

[
1 − PB

Vk
+

PB

PGB
pB(zk(j))

]
PD

mk
(39)

is brought into the constant c′, and the Gaussian distribution N (νk(i); 0, Sk) is substi-
tuted by the explicit expression

N (νk(i); 0, Sk) =
1

|2πSk|
1
2

e−
1
2
νk(i)T S−1

k νk(i) (40)

To summarize on the same form as (18)

βk(i) =

⎧⎪⎨
⎪⎩

c e
− 1

2 νk(i)T S−1
k

νk(i)[
1−PB

Vk
+

PB
PGB

pB(zk(i))
] i = 1, . . . , mk

c |2πSk|
1
2 mk

1−PGPD
PD

i = 0
(41)

where c is a normalizing constant to ensure that
∑mk

i=0 βk(i) = 1. Note that this is valid
for the nonparametric PDAF, not for a parametric PDAF.
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where c is a normalizing constant to ensure that
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i=0 βk(i) = 1. Note that this is valid
for the nonparametric PDAF, not for a parametric PDAF.

6 Conclusions 95

βk(i) =
1
c
p
(
Zk|θk(i), mk, Z

k−1
)

P
{

θk(i)|mk, Z
k−1
}

=
1
c

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∏mk

j=1
j �=i

[
1−PB

Vk
+ PB

PGB
pB(zk(j))

]
PDN (νk(i);0,Sk)

mk
i = 1, . . . , mk

∏mk
j=1

[
1−PB

Vk
+ PB

PGB
pB(zk(j))

]
(1 − PGPD) i = 0

(38)

=
1
c

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∏mk

j=1

[
1−PB

Vk
+ PB

PGB
pB(zk(j))

]
PD
mk

N (νk(i);0,Sk)[
1−PB

Vk
+

PB
PGB

pB(zk(i))
] i = 1, . . . , mk

∏mk
j=1

[
1−PB

Vk
+ PB

PGB
pB(zk(j))

]
PD
mk

mk(1−PGPD)
PD

i = 0

=
1
c′

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

|2πSk|
1
2

e
− 1

2 νk(i)T S−1
k

νk(i)

[
1−PB

Vk
+

PB
PGB

pB(zk(i))
] i = 1, . . . , mk

mk(1−PGPD)
PD

i = 0

In the last step of (38) the product
mk∏
j=1

[
1 − PB

Vk
+

PB

PGB
pB(zk(j))

]
PD

mk
(39)

is brought into the constant c′, and the Gaussian distribution N (νk(i); 0, Sk) is substi-
tuted by the explicit expression

N (νk(i); 0, Sk) =
1

|2πSk|
1
2

e−
1
2
νk(i)T S−1

k νk(i) (40)

To summarize on the same form as (18)

βk(i) =

⎧⎪⎨
⎪⎩

c e
− 1

2 νk(i)T S−1
k

νk(i)[
1−PB

Vk
+

PB
PGB

pB(zk(i))
] i = 1, . . . , mk

c |2πSk|
1
2 mk

1−PGPD
PD

i = 0
(41)

where c is a normalizing constant to ensure that
∑mk

i=0 βk(i) = 1. Note that this is valid
for the nonparametric PDAF, not for a parametric PDAF.

6 Conclusions 95

βk(i) =
1
c
p
(
Zk|θk(i), mk, Z

k−1
)

P
{

θk(i)|mk, Z
k−1
}

=
1
c

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∏mk

j=1
j �=i

[
1−PB

Vk
+ PB

PGB
pB(zk(j))

]
PDN (νk(i);0,Sk)

mk
i = 1, . . . , mk

∏mk
j=1

[
1−PB

Vk
+ PB

PGB
pB(zk(j))

]
(1 − PGPD) i = 0

(38)

=
1
c

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∏mk

j=1

[
1−PB

Vk
+ PB

PGB
pB(zk(j))

]
PD
mk

N (νk(i);0,Sk)[
1−PB

Vk
+

PB
PGB

pB(zk(i))
] i = 1, . . . , mk

∏mk
j=1

[
1−PB

Vk
+ PB

PGB
pB(zk(j))

]
PD
mk

mk(1−PGPD)
PD

i = 0

=
1
c′

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

|2πSk|
1
2

e
− 1

2 νk(i)T S−1
k

νk(i)

[
1−PB

Vk
+

PB
PGB

pB(zk(i))
] i = 1, . . . , mk

mk(1−PGPD)
PD

i = 0

In the last step of (38) the product
mk∏
j=1

[
1 − PB

Vk
+

PB

PGB
pB(zk(j))

]
PD

mk
(39)

is brought into the constant c′, and the Gaussian distribution N (νk(i); 0, Sk) is substi-
tuted by the explicit expression

N (νk(i); 0, Sk) =
1

|2πSk|
1
2

e−
1
2
νk(i)T S−1

k νk(i) (40)

To summarize on the same form as (18)

βk(i) =

⎧⎪⎨
⎪⎩

c e
− 1

2 νk(i)T S−1
k

νk(i)[
1−PB

Vk
+

PB
PGB

pB(zk(i))
] i = 1, . . . , mk

c |2πSk|
1
2 mk

1−PGPD
PD

i = 0
(41)

where c is a normalizing constant to ensure that
∑mk

i=0 βk(i) = 1. Note that this is valid
for the nonparametric PDAF, not for a parametric PDAF.



96 A Tracking of Divers Using a Probabilistic Data Association Filter with a Bubble Model

Appendix B: Specification of the Bubble Model and
Calculation of its Gate Probability

(a) (b)

1
PGB

pB(zk)

pB(zk)

vk

vk

Vk(γ)
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pB(zk) with boundaries Lρ and Lα, the pdf 1

PGB
pB(zk) restricted by validation

region Vk(γ), the target velocity vk, its predicted measurement ẑk|k−1, and a mea-
surement zk defined by its distances ρ and α).

The probability PGB in (23), used to restrict the density of the bubble model pB(zk)
to the validation region, has to be calculated for each track at each scan. Let vk be the
normalized target velocity with unit norm

vk =
[

vkx

vky

]
where ‖vk‖ = 1 (42)

and define the measurement validation region as

Vk(γ) =
{
z : [z − ẑk|k−1]

T S−1
k [z − ẑk|k−1] ≤ γ

}
(43)

where γ is the gate threshold determined by the chosen gate probability PG. To calculate
PGB an integration of pB(zk) inside the validation region Vk(γ) has to be done. The pdf
pB(zk) is assumed linear increasing in the direction opposite to vk and uniform in the
direction perpendicular to vk. Define the distances ρ = −νT

k vk as the negative inner
product of the innovation and the target velocity, and α =

∣∣νT
k v∗k
∣∣ as the absolute value

of the inner product of the innovation and v∗k, where v∗k is perpendicular to vk. Then

pB(zk) = pρ(ρ)pα(α) =
ρ

L2
ρLα

(44)
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where

pρ(ρ) =
2
L2

ρ

ρ 0 ≤ ρ ≤ Lρ (45)

pα(α) =
1

2Lα
0 ≤ α ≤ Lα (46)

Reference to Figure 7 may be helpful here. The next step is to calculate the eigenvalue
and eigenvector matrices Dk and Mk of Sk so that

Dk = MkSkM
T
k =

(
σx 0
0 σy

)
(47)

and define the transformed velocity vk as vk = Mkvk. If Lρ and Lα are large enough to
cover the whole validation region, PGB is found analytically by the following equation
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Abstract

In this paper we focus on targets which, in addition to reflecting signals themselves,
also have a trailing path behind them, called a wake. When the detections are fed to a
tracking system like the Probabilistic Data Association Filter, the estimated track can be
misled and sometimes lose the real target because of the wake. This problem becomes
even more severe in multitarget environments where targets are operating close to each
other in the presence of wakes. To prevent this, we have developed a probabilistic model
of the wakes in a multitarget environment. This model is used to augment the Joint
Probabilistic Data Association Filter (JPDAF). Simulations of two crossing targets with
wakes show that this modification gives good results and the number of lost tracks is
significantly reduced.

Keywords: Multitarget, tracking, data association, wake.

103

Multitarget Tracking

in the Presence of Wakes

Anders Rødningsby1 Yaakov Bar-Shalom2 Oddvar Hallingstad1 John Glattetre3

1University Graduate Center, NO-2027 Kjeller, Norway
2University of Connecticut, U-2157 Storrs, CT, USA

3Kongsberg Maritime, NO-3191 Horten, Norway

Abstract

In this paper we focus on targets which, in addition to reflecting signals themselves,
also have a trailing path behind them, called a wake. When the detections are fed to a
tracking system like the Probabilistic Data Association Filter, the estimated track can be
misled and sometimes lose the real target because of the wake. This problem becomes
even more severe in multitarget environments where targets are operating close to each
other in the presence of wakes. To prevent this, we have developed a probabilistic model
of the wakes in a multitarget environment. This model is used to augment the Joint
Probabilistic Data Association Filter (JPDAF). Simulations of two crossing targets with
wakes show that this modification gives good results and the number of lost tracks is
significantly reduced.

Keywords: Multitarget, tracking, data association, wake.

103

Multitarget Tracking

in the Presence of Wakes

Anders Rødningsby1 Yaakov Bar-Shalom2 Oddvar Hallingstad1 John Glattetre3

1University Graduate Center, NO-2027 Kjeller, Norway
2University of Connecticut, U-2157 Storrs, CT, USA

3Kongsberg Maritime, NO-3191 Horten, Norway

Abstract

In this paper we focus on targets which, in addition to reflecting signals themselves,
also have a trailing path behind them, called a wake. When the detections are fed to a
tracking system like the Probabilistic Data Association Filter, the estimated track can be
misled and sometimes lose the real target because of the wake. This problem becomes
even more severe in multitarget environments where targets are operating close to each
other in the presence of wakes. To prevent this, we have developed a probabilistic model
of the wakes in a multitarget environment. This model is used to augment the Joint
Probabilistic Data Association Filter (JPDAF). Simulations of two crossing targets with
wakes show that this modification gives good results and the number of lost tracks is
significantly reduced.

Keywords: Multitarget, tracking, data association, wake.

103

Multitarget Tracking

in the Presence of Wakes

Anders Rødningsby1 Yaakov Bar-Shalom2 Oddvar Hallingstad1 John Glattetre3

1University Graduate Center, NO-2027 Kjeller, Norway
2University of Connecticut, U-2157 Storrs, CT, USA

3Kongsberg Maritime, NO-3191 Horten, Norway

Abstract

In this paper we focus on targets which, in addition to reflecting signals themselves,
also have a trailing path behind them, called a wake. When the detections are fed to a
tracking system like the Probabilistic Data Association Filter, the estimated track can be
misled and sometimes lose the real target because of the wake. This problem becomes
even more severe in multitarget environments where targets are operating close to each
other in the presence of wakes. To prevent this, we have developed a probabilistic model
of the wakes in a multitarget environment. This model is used to augment the Joint
Probabilistic Data Association Filter (JPDAF). Simulations of two crossing targets with
wakes show that this modification gives good results and the number of lost tracks is
significantly reduced.

Keywords: Multitarget, tracking, data association, wake.



104 B Multitarget Tracking in the Presence of Wakes

1 Introduction

TARGETS in real tracking scenarios may be detected by their reflection of signals
emitted from a radar [6], a sonar [14], or by the use of optical sensors [8], [13].

In addition to target-originated measurements there will also be a number of detections
due to noise and clutter, called false alarms. A well-known tracking method to han-
dle targets in clutter is the Probabilistic Data Association Filter (PDAF) [3], [5]. The
PDAF accounts for the measurement origin uncertainty by calculating for each validated
measurement at the current time the association probabilities to the target of interest.

In a multitarget environment [2] the association of measurements is more problem-
atic because the individual targets no longer can be considered separately as in the PDAF.
For this purpose the Joint Probabilistic Data Association Filter (JPDAF) [3], [10], [9] was
developed to consider a known number of targets in the data association simultaneously.
This method evaluates the measurement-to-target association probabilities for the latest
set of measurements and then combines them into the state estimates.

A more powerful source of false measurements is the wake phenomenon that ap-
pears behind certain targets. This could be air bubbles from a diver, the wake behind a
ship, or the wake from ballistic vehicles in the reentry stage. One possible approach to
this problem is to handle both the target and the wake behind it as an extended target.
A problem with this approach is the varying and unknown size of the wake which may
reach far behind the target yielding a large bias. In this paper it is emphasized that the
wake-dominated measurements should not be considered as part of the target, but rather
as a special kind of clutter. When these measurements are fed to the tracking system, it
becomes important to associate them correctly to prevent a lost track. In [1] a probabilis-
tic editing method is used to handle the wake-dominated measurements in the tracking
algorithm. This probabilistic editing method is based on a single measurement extracted
for each time-step, and that this measurement originates from either the target or the
wake. In [12] a modified PDAF is developed to handle false measurements originating
from the bubbles behind a diver (the wake). This modified single target tracking method
does not restrict the number of false measurements for each time-step, but assumes a set
of measurements where each false measurement originates from either random clutter or
the wake. In this paper we extend the modified PDAF to handle multiple targets in the
presence of wakes. A probabilistic wake model is used for each target in the multitarget
environment that has a wake behind it. These single wake models are combined to form
a joint wake model, and the modified JPDAF is developed to incorporate this additional
joint wake model.

In Section 2 the tracking model and data association is presented for a single tar-
get. In Section 3 the modified JPDAF is developed for a multitarget environment. The
data association methods are then compared in Section 5 by simulations of two crossing
targets, before conclusions are given in Section 6.
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developed to consider a known number of targets in the data association simultaneously.
This method evaluates the measurement-to-target association probabilities for the latest
set of measurements and then combines them into the state estimates.

A more powerful source of false measurements is the wake phenomenon that ap-
pears behind certain targets. This could be air bubbles from a diver, the wake behind a
ship, or the wake from ballistic vehicles in the reentry stage. One possible approach to
this problem is to handle both the target and the wake behind it as an extended target.
A problem with this approach is the varying and unknown size of the wake which may
reach far behind the target yielding a large bias. In this paper it is emphasized that the
wake-dominated measurements should not be considered as part of the target, but rather
as a special kind of clutter. When these measurements are fed to the tracking system, it
becomes important to associate them correctly to prevent a lost track. In [1] a probabilis-
tic editing method is used to handle the wake-dominated measurements in the tracking
algorithm. This probabilistic editing method is based on a single measurement extracted
for each time-step, and that this measurement originates from either the target or the
wake. In [12] a modified PDAF is developed to handle false measurements originating
from the bubbles behind a diver (the wake). This modified single target tracking method
does not restrict the number of false measurements for each time-step, but assumes a set
of measurements where each false measurement originates from either random clutter or
the wake. In this paper we extend the modified PDAF to handle multiple targets in the
presence of wakes. A probabilistic wake model is used for each target in the multitarget
environment that has a wake behind it. These single wake models are combined to form
a joint wake model, and the modified JPDAF is developed to incorporate this additional
joint wake model.

In Section 2 the tracking model and data association is presented for a single tar-
get. In Section 3 the modified JPDAF is developed for a multitarget environment. The
data association methods are then compared in Section 5 by simulations of two crossing
targets, before conclusions are given in Section 6.
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2.1 Model of Tracking

The standard discrete linear model in tracking is

xk+1 = Fxk + vk and zk = Hxk + wk (1)

where
x : target state F : transition matrix
z : measurement H : measurement matrix
v : process noise w : measurement noise
k : time index

The process and measurement noises are assumed independent, white and Gaussian with
covariance matrices

E{vkv
T
k } = Q and E{wkw

T
k } = R (2)

In this system, assuming equal process and filter model, a Kalman filter would be optimal
as long as there is only one single measurement zk at each time k. In real data this
is unfortunately not true due to false measurements originating from noise and clutter.
Instead, a set of mk measurements Zk = {zk(1), zk(2), . . . , zk(mk)} is available at time
k and a form of data association is needed.

2.2 Standard PDAF

The approach of the PDAF is to calculate the association probabilities for each validated
measurement at the current time to the target of interest. The posterior track probability
density is therefore a mixture of Gaussian probability density functions (pdf), but is
then forced back to Gaussianity by moment-matching for the succeeding scan. For a
derivation of the PDAF see [3], and in the following a brief overview of the PDAF will
be given.

Assume that the target state at time k − 1 is estimated as x̂k−1|k−1 with associated
covariance Pk−1|k−1. This means that the estimate is conditioned on the entire past up
to time k − 1. Then the following assumptions are made:

(a) The track is already initialized.

(b) The past information about the target is summarized approximately by the Gaus-
sian distribution

p
(
xk|Zk−1

)
≈ N

(
xk; x̂k|k−1, Pk|k−1

)
(3)

where
Zk−1 = {Z0, Z1, . . . Zk−1} (4)
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(c) A validation region or gate is set up for each time step to select the candidate
measurements for association.

(d) At time k there are mk validated measurements but at most one of them can be
target-originated. The rest are assumed due to i.i.d. uniformly spatially distributed
false alarms, independent across time.

(e) Detections of the real target occur independently over time with known detection
probability PD.

At each time k, the algorithm goes through the following steps:

1. Predict the target state, associated covariance and measurement at time k based on
the estimates at k − 1:

x̂k|k−1 = Fx̂k−1|k−1

Pk|k−1 = FPk−1|k−1F
T + Q (5)

ẑk|k−1 = Hx̂k|k−1

2. Compute the innovation covariance for the true (target-originated) measurement

Sk = HPk|k−1H
T + R (6)

and use Sk to form the measurement validation gate where the validated measure-
ments Zk result in mk innovations:

νk(i) = zk(i) − ẑk|k−1 i = 1, . . . , mk (7)

3. Calculate the association probabilities βk(i), i = 1 . . . mk that measurement
zk(i) originates from the true target, and βk(0) as the probability that all measure-
ments are false alarms

βk(i) =

⎧⎨
⎩ ce−

1
2
νk(i)T S−1

k νk(i) i = 1, . . . , mk

c |2πSk|
1
2 mk

1−PGPD
VkPD

i = 0 (8)

Here c is a normalizing constant to ensure that
∑mk

i=0 βk(i) = 1, Vk is the volume
of the gate and PG is the probability that the true measurement falls inside the
gate. In (8) a diffuse prior [3] is used for the point mass function (pmf) of the
number of false measurements in the validation region.

4. Calculate the Kalman gain and the combined innovation

Wk = Pk|k−1H
T S−1

k and νk =
mk∑
i=1

βk(i)νk(i) (9)

to update the track according to

x̂k|k = x̂k|k−1 + Wkνk (10)
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(a) Regular PDAF (b) Modified PDAF with wake model

p(z|target) p(z|target)

p(z|wake)

p(z|noise) p(z|noise)

Figure 1: Illustration of the pdfs for the measurements originating from the target,
noise or wake in: (a) regular PDAF, and (b) modified PDAF with special wake
model.

5. The state estimation covariance is updated by1

Pk|k =βk(0)Pk|k−1 + [1 − βk(0)]
(
Pk|k−1 − WkSkW

T
k

)
+ Wk

[
mk∑
i=0

βk(i)νk(i)νk(i)T − νkν
T
k

]
W T

k (11)

where the last term in (11) is the “spread of the innovations."

2.3 Modified PDAF

Targets with a wake behind them may cause detections from the wake that mislead the
tracking algorithm and are likely to result in a lost track. To prevent this, an extension of
the regular PDAF incorporating a special probabilistic model of the wake was developed
in [12].

The PDAF with the wake model is illustrated in Figure 1, and takes into account
that false measurements can originate from either the wake with pdf pW (·) and a priori
probability PW , or from i.i.d. uniformly distributed noise/clutter with a priori probability
1−PW , independently across time. This modification affects the PDA in the calculation
of the βk(i) in (8) and yields

βk(i) =

⎧⎪⎪⎨
⎪⎪⎩

c e
− 1

2 νk(i)T S−1
k

νk(i)[
1−PW

Vk
+

PW
PGW

pW (zk(i))
] i = 1, . . . , mk

c |2πSk|
1
2 mk

1−PGPD
PD

i = 0

(12)

1The incorrect term S−1
k used in the original paper is replaced with the correct term Sk in (11).

2 Background 107

(a) Regular PDAF (b) Modified PDAF with wake model

p(z|target) p(z|target)

p(z|wake)

p(z|noise) p(z|noise)

Figure 1: Illustration of the pdfs for the measurements originating from the target,
noise or wake in: (a) regular PDAF, and (b) modified PDAF with special wake
model.

5. The state estimation covariance is updated by1

Pk|k =βk(0)Pk|k−1 + [1 − βk(0)]
(
Pk|k−1 − WkSkW

T
k

)
+ Wk

[
mk∑
i=0

βk(i)νk(i)νk(i)T − νkν
T
k

]
W T

k (11)

where the last term in (11) is the “spread of the innovations."

2.3 Modified PDAF

Targets with a wake behind them may cause detections from the wake that mislead the
tracking algorithm and are likely to result in a lost track. To prevent this, an extension of
the regular PDAF incorporating a special probabilistic model of the wake was developed
in [12].

The PDAF with the wake model is illustrated in Figure 1, and takes into account
that false measurements can originate from either the wake with pdf pW (·) and a priori
probability PW , or from i.i.d. uniformly distributed noise/clutter with a priori probability
1−PW , independently across time. This modification affects the PDA in the calculation
of the βk(i) in (8) and yields

βk(i) =

⎧⎪⎪⎨
⎪⎪⎩

c e
− 1

2 νk(i)T S−1
k

νk(i)[
1−PW

Vk
+

PW
PGW

pW (zk(i))
] i = 1, . . . , mk

c |2πSk|
1
2 mk

1−PGPD
PD

i = 0

(12)

1The incorrect term S−1
k used in the original paper is replaced with the correct term Sk in (11).

2 Background 107

(a) Regular PDAF (b) Modified PDAF with wake model

p(z|target) p(z|target)

p(z|wake)

p(z|noise) p(z|noise)

Figure 1: Illustration of the pdfs for the measurements originating from the target,
noise or wake in: (a) regular PDAF, and (b) modified PDAF with special wake
model.

5. The state estimation covariance is updated by1

Pk|k =βk(0)Pk|k−1 + [1 − βk(0)]
(
Pk|k−1 − WkSkW

T
k

)
+ Wk

[
mk∑
i=0

βk(i)νk(i)νk(i)T − νkν
T
k

]
W T

k (11)

where the last term in (11) is the “spread of the innovations."

2.3 Modified PDAF

Targets with a wake behind them may cause detections from the wake that mislead the
tracking algorithm and are likely to result in a lost track. To prevent this, an extension of
the regular PDAF incorporating a special probabilistic model of the wake was developed
in [12].

The PDAF with the wake model is illustrated in Figure 1, and takes into account
that false measurements can originate from either the wake with pdf pW (·) and a priori
probability PW , or from i.i.d. uniformly distributed noise/clutter with a priori probability
1−PW , independently across time. This modification affects the PDA in the calculation
of the βk(i) in (8) and yields

βk(i) =

⎧⎪⎪⎨
⎪⎪⎩

c e
− 1

2 νk(i)T S−1
k

νk(i)[
1−PW

Vk
+

PW
PGW

pW (zk(i))
] i = 1, . . . , mk

c |2πSk|
1
2 mk

1−PGPD
PD

i = 0

(12)

1The incorrect term S−1
k used in the original paper is replaced with the correct term Sk in (11).

2 Background 107

(a) Regular PDAF (b) Modified PDAF with wake model

p(z|target) p(z|target)

p(z|wake)

p(z|noise) p(z|noise)

Figure 1: Illustration of the pdfs for the measurements originating from the target,
noise or wake in: (a) regular PDAF, and (b) modified PDAF with special wake
model.

5. The state estimation covariance is updated by1

Pk|k =βk(0)Pk|k−1 + [1 − βk(0)]
(
Pk|k−1 − WkSkW

T
k

)
+ Wk

[
mk∑
i=0

βk(i)νk(i)νk(i)T − νkν
T
k

]
W T

k (11)

where the last term in (11) is the “spread of the innovations."

2.3 Modified PDAF

Targets with a wake behind them may cause detections from the wake that mislead the
tracking algorithm and are likely to result in a lost track. To prevent this, an extension of
the regular PDAF incorporating a special probabilistic model of the wake was developed
in [12].

The PDAF with the wake model is illustrated in Figure 1, and takes into account
that false measurements can originate from either the wake with pdf pW (·) and a priori
probability PW , or from i.i.d. uniformly distributed noise/clutter with a priori probability
1−PW , independently across time. This modification affects the PDA in the calculation
of the βk(i) in (8) and yields

βk(i) =

⎧⎪⎪⎨
⎪⎪⎩

c e
− 1

2 νk(i)T S−1
k

νk(i)[
1−PW

Vk
+

PW
PGW

pW (zk(i))
] i = 1, . . . , mk

c |2πSk|
1
2 mk

1−PGPD
PD

i = 0

(12)

1The incorrect term S−1
k used in the original paper is replaced with the correct term Sk in (11).



108 B Multitarget Tracking in the Presence of Wakes

The denominator in βk(i) for i = 1, . . . , mk is the pdf of a false measurement

p(zk(i)|measurement i is false) =
1 − PW

Vk
+

PW

PGW
pW (zk(i)) (13)

where PGW is used to account for restricting the density of the wake model pW (zk(i))
to the validation gate. The calculation of PGW for a linear pW (·) is presented in detail
in [12]. As expected, in the limit as PW goes to zero, (12) becomes (8).

3 Probabilistic Data Association for Multiple Targets in
the Presence of Wakes

In a multitarget environment the data association algorithm needs to handle situations
where a measurement could originate from different targets. For this purpose, the JPDAF
was developed, and a derivation of this standard algorithm is given in [3]. Another
problem arises when these targets have wakes behind them that result in misleading
wake detections. In this section we will modify the JPDAF to handle this problem.

3.1 Assumptions

Assume there are a known number NT of established targets at time k − 1. For each
target t, where t = 1, . . . , NT , the target state is estimated as x̂t

k−1|k−1 with associated
covariance P t

k−1|k−1. Then the following assumptions are made:

(a) Measurements from one target can fall in the validation gate of a neighboring
target.

(b) The past information about target t is summarized approximately by the Gaussian
distribution

p
(
xt

k|Zk−1
)
≈ N

(
xt

k; x̂
t
k|k−1, P

t
k|k−1

)
(14)

(c) At time k there are mk validated measurements in the union of their validation
gates, but for each target t at most one measurement can be target-originated. The
rest are assumed due to the wakes with pdf pW (·) and a priori probability PW ,
or from i.i.d. uniformly distributed noise/clutter with a priori probability 1 − PW ,
independent across time.

In Figure 2 an example of the pdf’s for two targets that are starting to cross each other is
shown. Here both targets have a wake behind them, and the joint wake model (the sum
of each target’s single wake model) increases linearly behind the targets inside the joint
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Figure 2: Probability density functions for two targets with crossing trajectories.
The distribution of the targets are Gaussian and overlap each other. The wakes
behind the targets are modeled as linear increasing pdf’s, and the noise/clutter is
uniformly spatially distributed inside the joint validation region.

ẑ1
k|k−1

ẑ2
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3.2 Joint Association Events

Define the validation matrix Ω to represent all feasible association events at time k (the
time index k is omitted for simplicity where it does not cause confusion)

Ω = [ω(j, t)] j = 1, . . . , m and t = 0, . . . , NT (15)

Here, ω(j, t) is a binary element indicating if measurement j lies in the validation gate
of target t. The index t = 0 means that the measurement is from none of the targets and
therefore it is a false measurement. An example where a measurement may originate
from two targets, i.e., it lies in both targets’ validation gates, is shown with the corre-
sponding validation matrix Ω in Figure 3. For all these possible joint association events,
conditional probabilities have to be derived.

A joint association event2 Θ describes an unambiguous association between the mea-
surements and the targets at time k

Θ =
m⋂

j=1

θ(j, tj) (16)

where

• θ(j, t) is the event that measurement j originates from target t, where j = 1, . . . , m
and t = 0, 1, . . . , NT .

• tj is the index of the target to which measurement j is associated in the event
under consideration.

Θ can also be represented by the event matrix

ΩΘ = [ωΘ(j, t)] (17)

consisting of the units in Ω corresponding to the associations in Θ

ωΘ(j, t) =
{

1 if the event θ(j, t) is part of Θ
0 otherwise

(18)

Using this, a feasible association event needs to fulfill the following requirements:

1. a measurement can have only one source, i.e.

NT∑
t=0

ωΘ(j, t) = 1 ∀ j (19)

2. at most one measurement can originate from a target

δt
Θ �

m∑
j=1

ωΘ(j, t) � 1 t = 1, . . . , NT (20)

2The joint association event was denoted θ in the original paper, but is substituted with the term Θ
throughout this paper. This is done to agree with the notation in this thesis.
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The binary variable δt
Θ is called the target detection indicator since it indicates whether

a measurement is associated to a target t or not in event Θ. It is also convenient to define
two more binary variables

τΘ(j) �
NT∑
t=1

ωΘ(j, t) (21)

φΘ �
m∑

j=1

[1 − τΘ(j)] (22)

where τΘ(j) is the measurement association indicator to indicate if measurement j is
associated to a target or not, and φΘ is the number of false (unassociated) measurements
in event Θ.

3.3 Modified JPDAF Including a Wake Model

The joint association event probabilities are derived using Bayes’ formula

P{Θk|Zk} = P{Θk|Zk, mk, Z
k−1}

=
1
c
p[Zk|Θk, mk, Z

k−1]P{Θk|Zk−1, mk}

=
1
c
p[Zk|Θk, mk, Z

k−1]P{Θk|mk} (23)

where c is a normalizing constant. In the last line of the above equation the irrelevant
conditioning term Zk−1 has been omitted. The likelihood function of the measurements
in (23) is derived by assuming that the states of the targets, conditioned on the past
observations, are mutually independent

p[Zk|Θk, mk, Z
k−1] =

mk∏
j=1

p[zk(j)|θk(j, tj), Zk−1] (24)

Measurements not associated with a target are assumed either from the wakes with pdf
pW (zk(j)) and a priori probability PW , or from uniformly distributed noise/clutter with
a priori probability (1−PW ). Defining Vk as the volume of the joint validation gate, the
pdf of a measurement given its origin is

p[zk(j)|θk(j, tj), Zk−1] =

⎧⎨
⎩

N
[
zk(j); ẑ

tj
k|k−1, S

tj
k

]
if τΘk

(j) = 1

PW
pW (zk(j))

PGW
+ (1 − PW ) 1

Vk
if τΘk

(j) = 0
(25)

where ẑ
tj
k|k−1 is the predicted measurement for target tj with associated innovation co-

variance S
tj
k . The constant PGW is used for restricting pW (zk(j)) to the joint validation
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region, and has an analytical expression derived in Appendix A. Using the above equa-
tion, (24) can be written as

p[Zk|Θk, mk, Z
k−1] =

mk∏
j=1

{
N
[
zk(j); ẑ

tj
k|k−1, S

tj
k

]}τ(j)

×
{

PW
pW (zk(j))

PGW
+ (1 − PW )

1
Vk

}1−τ(j)

(26)

Next, the last term in (23) will be derived. Let δΘ be the vector of detection indicators
corresponding to event Θk

δΘ = [δ1
Θ, . . . , δNT

Θ ] (27)

The vector δΘ and the number of false measurements φΘ are both completely defined
when Θ is given. This yields using the definition of conditional probabilities [11]

P{Θk|mk} = P{Θk, δΘ, φΘ|mk} = P{Θk|δΘ, φΘ, mk}P{δΘ, φΘ|mk} (28)

The first term in (28) is obtained using combinatorics:

1. In event Θk there are assumed mk − φΘ targets detected.

2. The number of events Θk, where the same targets are detected, is given by the
number of ways of associating mk − φΘ measurements to the detected targets
from a set of mk measurements.

By assuming each such event a priori equally likely, one has 3

P{Θk|δΘ, φΘ, mk} =
1

mk
Pmk−φΘ

=
φΘ!
mk!

(29)

The last term in (28) is, assuming δ and φ independent,

P{δΘ, φΘ|mk} =
NT∏
t=1

(P t
D)δt

Θ(1 − P t
D)1−δt

ΘμF (φ) (30)

where P t
D is the detection probability of target t and μF (φ) is the prior pmf of the number

of false measurements. The indicators δt
Θ have been used to select the probabilities

of detection and no detection events according to the event Θk under consideration.
Combining (29) and (30) into (28) yields the prior probability of a joint association
event

P{Θk|mk} =
φΘ!
mk!

NT∏
t=1

(P t
D)δt

Θ(1 − P t
D)1−δt

ΘμF (φ) (31)

The pmf of the number of false measurements μF (φ) can, as in the case of the PDA,
have two versions, parametric or non-parametric.

3The incorrect term P{δΘ, φΘ|mk} used in the original paper is corrected to P{Θk|δΘ, φΘ, mk} in
(29).

112 B Multitarget Tracking in the Presence of Wakes

region, and has an analytical expression derived in Appendix A. Using the above equa-
tion, (24) can be written as

p[Zk|Θk, mk, Z
k−1] =

mk∏
j=1

{
N
[
zk(j); ẑ
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1. Parametric JPDA uses a Poisson pmf

μF (φ) = e−λV (λV )φ

φ!
(32)

which requires the spatial density λ of the false measurements.

2. Nonparametric JPDA uses a diffuse prior

μF (φ) = ε ∀φ (33)

which does not require the parameter λ.

Using the nonparametric model and combining (31) and (26) into (23) yields the joint
association event probabilities

P{Θk|Zk} =
φΘ!
c

NT∏
t=1

(P t
D)δt

Θ(1 − P t
D)1−δt

Θ

×
mk∏
j=1

{
N
[
zk(j); ẑ

tj
k|k−1, S

tj
k

]}τ(j)
(34)

×
{

PW
pW (zk(j))

PGW
+ (1 − PW )

1
Vk

}1−τ(j)

where the constants ε and mk! are brought into the normalization constant c. For com-
parison, the joint association event probabilities derived in [3] for the standard JPDAF
is

P{Θk|Zk} =
φΘ! · V −φΘ

k

c

NT∏
t=1

(P t
D)δt

Θ(1 − P t
D)1−δt

Θ

mk∏
j=1

{
N
[
zk(j); ẑ

tj
k|k−1, S

tj
k

]}τ(j)

(35)
where the third line in (34) is substituted with V −φΘ

k . As for the modified PDAF, (34)
reduces to (35) in the limit as PW goes to zero. Finally, marginal association probabili-
ties are obtained by summing over all the joint association events in which the marginal
event of interest occurs

βt
k(j) � P{θk(j, t)|Zk} =

∑
Θk

P{Θk|Zk}ωΘ(j, t) (36)

βt
k(0) � 1 −

mk∑
j=1

βt
k(j) (37)

By using these association probabilities in (8), the state estimation equations are exactly
the same as in the PDAF, (5) - (11).
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Figure 4: Trajectory crossing angle γ between Target 1 and Target 2.

4 Simulation Results

In this section we compare the data association methods described previously (PDAF,
Modified PDAF, JPDAF and Modified JPDAF). To do this, a multitarget tracking prob-
lem of two crossing targets in the presence of wakes are simulated for varying trajectory
crossing angles γ, see Figure 4. For both targets a two-dimensional direct discrete time
nearly constant velocity model [4] is used in (1) and (2):

F =

⎡
⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦ H =

[
1 0 0 0
0 0 1 0

]

(38)

Q =

⎡
⎢⎢⎢⎣

T 4

4
T 3

2 0 0
T 3

2 T 2 0 0
0 0 T 4

4
T 3

2

0 0 T 3

2 T 2

⎤
⎥⎥⎥⎦σ2

p R =

⎡
⎣ σ2

r 0

0 σ2
r

⎤
⎦

The parameters in (38) and other simulation design parameters are given in Table 1, and
a standard Kalman filter is used as the tracking algorithm. Both targets are initialized
with speed 0.5 m/s and a course according to the trajectory crossing angle γ. To ensure
a controlled crossing for the true trajectories, the added process noise Q is set low, but
not to zero. The small amount of process noise is used to exploit situations where the
targets’ positions are not totally overlapping at the crossing point, but where one target
will cross in the wake from the other target. The measurements in real sonar and radar
applications are obtained in polar coordinates yielding range dependent cross-range er-
rors. By assuming a uniform measurement error inside a resolution cell, the variance is
given by the squared size of the cell divided by 12. This error can be approximated as
Gaussian with the same variance. In this paper, the measurement noise is assumed con-
stant over the surveillance area, with an approximately size of a resolution cell as 1.8 m2.
This size is comparable to e.g a sonar system. Target-originated measurements are gen-
erated by adding measurement noise to the true trajectories, and then clutter and wake
measurements (false alarms) are added. Denote the surveillance area covering the full
trajectories of the targets as S, the wake area as W , and their respective volumes VS and
VW . Then, the number of clutter and wake measurements are both Poisson distributed
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4
T 3

2

0 0 T 3

2 T 2

⎤
⎥⎥⎥⎦σ2

p R =

⎡
⎣ σ2

r 0

0 σ2
r

⎤
⎦

The parameters in (38) and other simulation design parameters are given in Table 1, and
a standard Kalman filter is used as the tracking algorithm. Both targets are initialized
with speed 0.5 m/s and a course according to the trajectory crossing angle γ. To ensure
a controlled crossing for the true trajectories, the added process noise Q is set low, but
not to zero. The small amount of process noise is used to exploit situations where the
targets’ positions are not totally overlapping at the crossing point, but where one target
will cross in the wake from the other target. The measurements in real sonar and radar
applications are obtained in polar coordinates yielding range dependent cross-range er-
rors. By assuming a uniform measurement error inside a resolution cell, the variance is
given by the squared size of the cell divided by 12. This error can be approximated as
Gaussian with the same variance. In this paper, the measurement noise is assumed con-
stant over the surveillance area, with an approximately size of a resolution cell as 1.8 m2.
This size is comparable to e.g a sonar system. Target-originated measurements are gen-
erated by adding measurement noise to the true trajectories, and then clutter and wake
measurements (false alarms) are added. Denote the surveillance area covering the full
trajectories of the targets as S, the wake area as W , and their respective volumes VS and
VW . Then, the number of clutter and wake measurements are both Poisson distributed
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Table 1: Specification of parameters

Parameter Value Specification

T 1.0 s Sampling period

PD 0.6 Detection probability

PG 0.999 Gate probability

PW 0.9 Wake probability

PFA 0.005 False alarm probability

σ2
p 10−6 m2/s4 Process noise (acceleration)

σ2
r 0.15 m2 Measurement noise

σ2
w 0.25 m2 Wake generation parameter, width

λw 10 m Wake generation parameter, length

S 200 × 100 m Surveillance area

W 5 × 50 m Wake area

VS 20000 m2 Volume of surveillance area

VW 250 m2 Volume of wake area

with parameters

λclutter = PFAVS (39)

λwake =
PW

1 − PW
PFAVW (40)

where PFA is the probability of false alarm in a unit volume. The clutter measurements
are located uniformly in S, and wake measurements are distributed exponentially de-
creasing behind the target and Gaussian distributed sideways with parameters λw and
σ2

w, respectively. One simulation run consists of 300 time-steps, and the true target-
originated measurements are detected with probability PD, independently over this pe-
riod.

To reduce the computational load, the different versions of the multitarget tracking
algorithms are substituted with their analogous single target tracking algorithms as long
as targets are not “sharing” measurements. In other words, the standard PDAF is used
instead of the JPDAF, and the modified PDAF is used instead of the modified JPDAF
when the targets are apart.

Tracks are declared as lost if the position error exceeds 3 meters in front and to both
sides of the true target, but are extended to 10 meters in the direction behind the target.
This extension is to allow tracks with a small bias behind the true target due to the wake-
originated measurements. The relatively low threshold at 3 meters is needed for small
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Figure 5: Lost tracks in % for various trajectory crossing angles γ from 5000
Monte Carlo runs.

trajectory crossing angles γ so that tracks following the wrong target are declared as
lost. At the same time 3 meters are sufficient not to declare tracks as lost in cases where
they are able to get back on track again. The results of lost tracks after 5000 Monte
Carlo runs for trajectory crossing angles γ between 5◦ and 30◦, with 1◦ spacing, are
shown in Figure 5. The standard filters (PDAF and JPDAF) have serious problems, and
the JPDAF shows no improvement compared to the PDAF during the crossing period.
For low trajectory crossing angles, γ below 25◦, the modified JPDAF performs best.
This is comparable to situations where two targets are moving almost together, and the
targets are “sharing” measurements for a longer period of time. For γ above 25◦ the
modified single target tracking algorithm (PDAF) is preferable due to its equally good
performance and lower computational load.

In Figure 6 the average position errors are shown for the different filters for Target 1
at trajectory crossing angle γ = 15◦ (similar results for Target 2). These results are
based only on tracks that are not declared as lost. The standard filters are outperformed
by the modified filters, which are close to the filter with perfect data association (using
only the true target-originating measurements). The different modified filters perform
similarly, and only during the crossing period does the multitarget tracking algorithm
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Figure 6: Position estimation error for Target 1 at trajectory crossing angle γ = 15◦

from 50000 Monte Carlo runs.

perform slightly better than the single target tracking filter. It is also interesting to see
the RMS error in the directions parallel and perpendicular to the target’s true velocity.
This is shown in Figure 7 for γ = 15◦. As expected, the error is much higher in the di-
rection parallel to the velocity because this is the direction of the wakes. False detections
from the wake, if not sufficiently accounted for, will draw the estimated position behind
the target and into the wake, and create a bias in the estimate. The error in the direction
perpendicular to the velocity is much smaller compared to the parallel direction, but dur-
ing the crossing period the estimate for one target will be drawn towards the other target,
also known as track coalescence [7]. This is most problematic for the modified single
target tracking algorithm because it accounts for the wake behind its own target, but has
no information about the nearby target which also has a wake behind it. Also notice
that the perpendicular error before crossing is actually lower for the “non-perfect” data
association filters, especially the standard filters, than the perfect data association filter.
The reason for this is the high density of the wake measurements normally distributed
(zero mean) in the direction perpendicular to the target’s velocity. When these measure-
ments are taken into the probabilistic data association, the weighted sum of all candidate
measurements will give a smaller error in the perpendicular direction than using only the
true target-originated measurement.
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Figure 7: Position RMS error in the direction parallel and perpendicular to the
target’s true velocity from 50000 Monte Carlo runs. The trajectory crossing angle
is γ = 15◦.
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Figure 7: Position RMS error in the direction parallel and perpendicular to the
target’s true velocity from 50000 Monte Carlo runs. The trajectory crossing angle
is γ = 15◦.
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Figure 7: Position RMS error in the direction parallel and perpendicular to the
target’s true velocity from 50000 Monte Carlo runs. The trajectory crossing angle
is γ = 15◦.
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Figure 7: Position RMS error in the direction parallel and perpendicular to the
target’s true velocity from 50000 Monte Carlo runs. The trajectory crossing angle
is γ = 15◦.
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5 Conclusions

An important factor in a multitarget tracking system is to correctly associate each mea-
surement received from a detector to its origin. The JPDAF has been a solution to this
problem in many implemented systems due to its effectiveness and low computational
demand. In the JPDAF all false measurements are assumed due to i.i.d. uniformly spa-
tially distributed noise or clutter. This assumption is not adequate for targets in the pres-
ence of wakes, because detections originating from the wake may result in a lost track if
they are not properly accounted for. The solution presented extends this to incorporate a
model of the wakes behind the targets in a multitarget environment. The purpose of this
wake model is to weight wake-originated measurements lower than in a regular JPDAF
to avoid the tracks following these measurements and therefore be forced to turn into the
wake. To achieve this, we presented a model formed by the sum of single models each
linearly increasing behind their associated targets. Simulations of two crossing targets
shows that the wake model presented is a useful modification of the JPDAF, especially
when the trajectory crossing angle between the targets is small. The wake model is also
necessary for higher trajectory crossing angles, but in these situations it seems to be
enough with a modified single target tracking filter (PDAF).

Appendix A: Specification of the Joint Wake Model

The probability PGW in (25), used to restrict the density of the joint wake model pW (zk)
to the joint validation region, has to be calculated for each scan by integration of pW (zk)
inside the region. The joint wake model is the sum of all single wake models pt

W (zk)
behind each target t under consideration. Hence, the P t

GW has to be calculated for each
target and then summed up

PGW =
NT∑
t=1

P t
GW and pW (zk) =

1
NT

NT∑
t=1

pt
W (zk) (41)

In this section an analytical expression for the integration of a single wake model inside
the joint validation region will be derived. Let z̄ be the position of the predicted mea-
surement of target t with velocity v. The wake model is linear increasing with length L
behind the predicted position of the target, i.e., the direction opposite to v, and uniform
with width W in the direction perpendicular to the target’s velocity v.

pt
W (zk) = pl(l)pw(w) =

2l

L2W
(42)

where

pl(l) =
2l

L2
0 ≤ l ≤ L pw(w) =

1
W

0 ≤ w ≤ W

2
(43)
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Figure 8: Specification of variables for integration of the wake model, with length
L and width W , inside the joint validation region with center c and radius r. The
wake has front corners [α ρ] and [β ρ] and is oriented behind the target with position
z̄ and velocity v.

and l and w are the respective distances behind and sideways (relative to v) to the target.
The joint validation region containing all candidate measurements in the multitarget en-
vironment is a circle with radius r and center c. Assume a Cartesian coordinate system
with origin at position c and y-axis parallel to v but in the opposite direction, see Fig-
ure 8. Define the two front corners of the wake model with elements α and β for the
x-axis, and ρ for the y-axis

ρ = (c − z̄)T v/|v|

α =
√
|c − z̄|2 − ρ2 − w/2 (44)

β =
√
|c − z̄|2 − ρ2 + w/2

The integration depends on if the front corners [α ρ]T and [β ρ]T are inside or outside
the joint validation region (circle), and will be broken into one, two or three parts. To do
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this, define three binary variables δρ, δα and δβ as follows:

δρ =
{

1 if ρ < 0
0 otherwise

(45)

δα =
{

1 if
√

α2 + ρ2 > r
0 otherwise

(46)

δβ =
{

1 if
√

β2 + ρ2 > r
0 otherwise

(47)

Then the integral can be written as

P t
GW =

2
L2W

⎧⎪⎪⎨
⎪⎪⎩δρδα

−
√

r2−ρ2∫
max(α,−r)

√
r2−x2∫

−
√

r2−x2

(y − ρ)dydx

+

β(1−δβ)+δβ

√
r2−ρ2∫

α(1−δα)−δα

√
r2−ρ2

√
r2−x2∫
ρ

(y − ρ)dydx (48)

+ δρδβ

min(β,r)∫
√

r2−ρ2

√
r2−x2∫

−
√

r2−x2

(y − ρ)dydx

⎫⎪⎪⎬
⎪⎪⎭

For simplicity we substitute the limits of integration along the x-axis as follows:

a = max(α,−r)

b = −
√

r2 − ρ2

c = α(1 − δα) − δα

√
r2 − ρ2 (49)

d = β(1 − δβ) + δβ

√
r2 − ρ2

e =
√

r2 − ρ2

f = min(β, r)
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=
1

L2W
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arcsin
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d
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c3 − d3

3
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Abstract

In this paper we focus on targets which, in addition to reflecting signals themselves,
also have a trailing path behind them, called a wake, which causes additional detections.
When the detections are fed to a tracking system like the probabilistic data association
filter (PDAF), the estimated track can be misled and sometimes lose the real target be-
cause of the wake. This problem becomes even more severe in multitarget environments
where targets are operating close to each other in the presence of wakes. To prevent this,
we have developed a probabilistic model of the wakes in a multitarget environment. This
model is used to augment the joint probabilistic data association filter (JPDAF) for both
coupled and decoupled filtering.

This paper provides a systematic comparison of the standard data association filters
(PDAF and JPDAF) and their modified versions presented here in a multitarget multisen-
sor environment. Simulations of two targets with wakes in four different scenarios show
that this modification gives good results and the probability of lost tracks is significantly
reduced. The targets are observed by two sensors and it is shown that tracks estimated
in a centralized fusion configuration are better than those from the local sensors. It is
also shown that applying the wake model to targets that do not generate a wake, yields
almost no deterioration of the tracking performance.
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1 Introduction

TARGETS in real tracking scenarios may be detected by their reflection of signals
emitted from a radar [6], a sonar [26], or by the use of optical sensors [24]. In

addition to target-originated measurements there will also be a number of detections
due to noise and clutter, called false alarms. A well-known tracking method to handle
targets in clutter is the probabilistic data association filter (PDAF) [4, ch. 3.4]. The
PDAF accounts for the measurement origin uncertainty by calculating for each validated
measurement at the current time the association probabilities to the target of interest.

In a multitarget environment [2] the association of measurements is more problem-
atic because the individual targets no longer can be considered separately as in the PDAF.
For this purpose the joint probabilistic data association filter (JPDAF) [4, ch. 6.2], [14]
was developed to consider a known number of targets in the data association simul-
taneously. This method evaluates the measurement-to-target association probabilities
for the latest set of measurements and then combines them into the state estimates. In
the JPDAF the targets’ states, conditioned on the past, are assumed independently dis-
tributed so that filtering can be done decoupled. As an alternative, the targets’ states,
given the past, can be considered as correlated. This leads to the joint probabilistic data
association coupled filter (JPDACF) [3], [4, pp. 328-329], where the correlation between
the targets’ estimation errors is accounted for. A modified version of the JPDACF, called
coupled data association filter (CPDA), was presented in [9] to also account for partial
target detections. In this paper an equivalent filter to the CPDA, but where the covari-
ance calculation is in symmetrical form (to avoid numerical problems experienced by
the CPDA), is modified to also account for targets in the presence of wakes. This filter
is called modified JPDACF.

A more powerful source of false measurements than those due to noise and clutter,
is the wake phenomenon that appears behind certain targets. This could be air bubbles
from a diver, the wake behind a ship, or the wake from ballistic vehicles in the re-
entry stage. One possible approach to this problem is to handle both the target and the
wake behind it as an extended target. A problem with this approach is the varying and
unknown size of the wake which may reach far behind the target yielding a large bias. In
this paper the wake is not considered as part of the target, but rather as a special kind of
clutter. When these measurements are fed to the tracking system, it becomes important
to associate them correctly to prevent a lost track. In [1] a probabilistic editing method
is used to handle the wake-dominated measurements in the tracking algorithm. This
probabilistic editing method is based on a single measurement extracted for each time
step, and that this measurement originates from either the target or the wake. In [21] a
modified PDAF is developed to handle false measurements originating from the bubbles
behind a diver (the wake). This modified single target tracking method does not restrict
the number of false measurements for each time step, but assumes a set of measurements
where each false measurement originates from either random clutter or the wake. In this
paper we extend the modified PDAF to handle multiple targets in the presence of wakes.
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A probabilistic wake model is used for each target in the multitarget environment that has
a wake behind it. These single wake models are combined to form a joint wake model,
and the modified JPDAF and JPDACF are developed to incorporate this additional joint
wake model.

In recent years there has been an extensive interest in using multiple sensors in
surveillance systems. This leads to data fusion where there exist several possible con-
figurations [4, ch. 8.2]. Primarily due to the bandwidth constraints in real systems, it is
sometimes not feasible to transmit all measurement information to a fusion center (cen-
tralized configuration). Instead, only local estimates are transmitted to a fusion center
(at a reduced rate), and a track-to-track association followed by track fusion is carried
out (decentralized configuration). However, the best performance is achieved using the
centralized configurations where all measurements are transmitted from the local sen-
sors to a fusion center. In this paper we use the centralized configuration with sequential
filtering [4, p. 88] where the global estimate is updated by the measurements from each
local sensor, one sensor at the time.

In Section 2 the tracking problem in the presence of a wake is reviewed for a single
target. In Section 3 the modified JPDAF is developed for a multitarget environment,
and the modified version of the JPDACF, which accounts for partial target detections, is
derived. In Section 4 a brief review of multisensor tracking is given. The data association
methods are then compared in Section 5 by simulations of two targets with wakes in four
different multisensor scenarios, before conclusions are given in Section 6.

2 Background

2.1 Model of Tracking

The standard discrete linear model in tracking is

xk+1 = Fxk + vk zk = Hxk + wk (1)

where
x : target state F : transition matrix
z : measurement H : measurement matrix
v : process noise w : measurement noise
k : time index

The process and measurement noises are assumed independent, white and Gaussian with
covariance matrices

E{vkv
T
k } = Q and E{wkw

T
k } = R (2)

For this system, a Kalman filter is optimal as long as the measurement zk originates from
the target at each time k. In many real world problems this is unfortunately not true due
to the presence of false measurements originating from noise and clutter. Instead, a set
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of mk measurements Zk = {zk(1), zk(2), . . . , zk(mk)} is available at time k so that
data association is needed. A simple and efficient method to solve this problem is the
PDAF.

2.2 Standard PDAF

The approach of the PDAF is to calculate the association probabilities for each validated
measurement (that falls in a gate around the predicted measurement) at the current time
to the target of interest. The posterior track probability density is therefore a mixture of
Gaussian probability density functions (pdf), but is then forced back to Gaussianity by
moment-matching for the succeeding scan. For a derivation of the PDAF see [4, ch. 3.4],
and in the following a brief overview of the PDAF will be given.

Assume that the target state at time k − 1 is estimated as x̂k−1|k−1 with associated
covariance Pk−1|k−1. This means that the estimate is conditioned on the entire past up
to time k − 1. Then the following assumptions are made:

(a) The track is already initialized.

(b) The past information about the target is summarized approximately by the Gaus-
sian pdf

p
(
xk|Zk−1

)
≈ N

(
xk; x̂k|k−1, Pk|k−1

)
(3)

where
Zk−1 = {Z0, Z1, . . . Zk−1} (4)

(c) A validation region or gate is set up for each time step to select the candidate
measurements for association.

(d) At time k there are mk validated measurements but at most one of them can be
target-originated. The rest are assumed to be due to i.i.d. uniformly spatially dis-
tributed false alarms, independently across time.

(e) Detections of the real target occur independently over time with known detection
probability PD.

At each time k, the algorithm goes through the following steps:

1. Predict the target state, associated covariance and measurement at time k based on
the estimates at k − 1:

x̂k|k−1 = Fx̂k−1|k−1

Pk|k−1 = FPk−1|k−1F
T + Q (5)

ẑk|k−1 = Hx̂k|k−1
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2. Compute the innovation covariance for the true (target-originated) measurement

Sk = HPk|k−1H
T + R (6)

and use Sk to form the measurement validation gate where the validated measure-
ments Zk result in mk innovations:

νk(i) = zk(i) − ẑk|k−1 i = 1, . . . , mk (7)

3. Calculate the association probabilities βk(i), i = 1 . . . mk that measurement
zk(i) originates from the true target, and βk(0) as the probability that all measure-
ments are false alarms

βk(i) =

⎧⎨
⎩ ce−

1
2
νk(i)T S−1

k νk(i) i = 1, . . . , mk

c |2πSk|
1
2 mk

1−PGPD
VkPD

i = 0 (8)

Here c is a normalizing constant to ensure that
∑mk

i=0 βk(i) = 1, Vk is the volume
of the gate and PG is the probability that the true measurement falls inside the
gate. In (8) a diffuse prior [4, p. 135] is used for the point mass function (pmf) of
the number of false measurements in the validation region.

4. Calculate the Kalman gain and the combined innovation

Wk = Pk|k−1H
T S−1

k and νk =
mk∑
i=1

βk(i)νk(i) (9)

to update the track according to

x̂k|k = x̂k|k−1 + Wkνk (10)

5. The state estimation covariance is updated by

Pk|k =βk(0)Pk|k−1 + [1 − βk(0)]
(
Pk|k−1 − WkSkW

T
k

)
+ Wk

[
mk∑
i=0

βk(i)νk(i)νk(i)T − νkν
T
k

]
W T

k (11)

where the last term in (11) is the “spread of the innovations."

2.3 Modified PDAF

Targets with a wake behind them may cause detections from the wake that mislead the
tracking algorithm and are likely to result in a lost track. This is because the uniform
distribution assumption for the false measurements (assumption (d) in Section 2.2) is
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Figure 1: Illustration of the pdfs for the measurements originating from the target,
noise or wake in: (a) regular PDAF, and (b) modified PDAF with special wake
model.

violated. To prevent this, an extension of the regular PDAF incorporating a special prob-
abilistic model of the wake was developed in [21]. The PDAF with the wake model is
illustrated in Figure 1. The modified PDAF takes into account that the false measure-
ments can originate from either the wake with pdf pW (·) with a priori probability PW ,
or from i.i.d. uniformly distributed noise/clutter with a priori probability 1 − PW , inde-
pendently across time. This modification affects the PDA in the calculation of the βk(i)
in (8) and yields

βk(i) =

⎧⎪⎪⎨
⎪⎪⎩

c e
− 1

2 νk(i)T S−1
k

νk(i)

Vk

[
1−PW

Vk
+

PW
PGW

pW (zk(i))
] i = 1, . . . , mk

c |2πSk|
1
2 mk

1−PGPD
VkPD

i = 0
(12)

The bracketed parenthesis in the denominator in βk(i) for i = 1, . . . , mk is the pdf of a
false measurement

p(zk(i)|measurement i is false) =
1 − PW

Vk
+

PW

PGW
pW (zk(i)) (13)

where PGW is used to account for restricting the density of the wake model pW (zk(i))
to the validation gate. The calculation of PGW for a linear pW (·) is presented in detail
in [21]. As expected, in the limit as PW goes to zero, (12) becomes (8).

2.4 Track Formation and Termination

The data association filters discussed above assume that the track is already initialized,
and when a track is established, there are no included rules for how to terminate the track.
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where PGW is used to account for restricting the density of the wake model pW (zk(i))
to the validation gate. The calculation of PGW for a linear pW (·) is presented in detail
in [21]. As expected, in the limit as PW goes to zero, (12) becomes (8).

2.4 Track Formation and Termination
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and when a track is established, there are no included rules for how to terminate the track.
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Hence, procedures for formation and termination of tracks are necessary. A simple and
common method to initialize tracks is the two-point differencing method [5, p. 247].
Any successive pair of detections within a maximum distance based on target maximum
motion parameters and measurement noise variances initiates a preliminary track. This
preliminary track, containing the initial state and the corresponding covariance, can now
initialize the PDAF. To reduce the amount of false tracks, a “p/q” logic-based track
formation procedure can be used. In this procedure a preliminary track has to receive
measurements for a minimum of p time steps during the first q scans to become valid.

To terminate a track a logic suitable for the application is needed, and a set of rules
has to be made. The rules used in this paper, called termination events, are described in
Section 5.4. It should also be noted that in some filters, such as the integrated probabilis-
tic data association filter (IPDAF) [18] or the version of the interacting multiple model
probabilistic data association filter (IMMPDAF) presented in [4, ch. 4.4], the track for-
mation and termination are included.

3 Probabilistic Data Association for Multiple Targets in
the Presence of Wakes

In a multitarget environment the data association algorithm needs to handle situations
where a measurement could originate from different targets. For this purpose, the JPDAF
was developed, and a derivation of this standard algorithm is given in [4, ch. 6.2]. An-
other problem arises when these targets have wakes behind them that result in misleading
wake detections. In this section we will modify the JPDAF to handle this problem.

3.1 Assumptions

Assume there is a known number NT of established targets at time k − 1. Notice that
these targets are already initialized, e.g., by the method in Section 2.2. For each tar-
get t, where t = 1, . . . , NT , the target state is estimated as x̂t

k−1|k−1 with associated
covariance P t

k−1|k−1. Then the following assumptions are made:

(a) Measurements from one target can fall in the validation gate of a neighboring
target.

(b) The past information about target t is summarized approximately by the Gaussian
pdf
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(c) At time k there are mk validated measurements in the union of their validation
gates, but for each target t at most one measurement can be target-originated. The
rest are assumed to be due to the wakes with pdf pW (·) with a priori probabil-
ity PW , or from i.i.d. uniformly distributed noise/clutter with a priori probability
1 − PW , independently across time.
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Figure 2: Probability density functions for two targets with crossing trajectories.
The distributions of the targets are Gaussian and overlap each other. Each wake
behind the two targets is modeled as a pdf, linearly increasing from the target and
backwards, and the sum of each single target’s wake model forms the joint wake
model. The noise/clutter is uniformly spatially distributed inside the joint validation
region.

In Figure 2 an example of the pdfs for two targets that are starting to cross each other is
shown. Here both targets have a wake behind them, and the joint wake model (the sum
of each target’s single wake model) increases linearly behind the targets inside the joint
validation region. The joint validation region contains all the candidate measurements,
and restricts the spatially uniform distribution representing the noise/clutter. It should
be noted that the linearly increasing wake models are not developed to approach the
true density of the wake since the wake density would seemingly be higher close to the
targets rather than farther away. Such an approach would easily misassociate true target-
originated measurements as wake-originated ones. At the same time, in practice, a false
wake-originated measurement is less detrimental when it is very close to the true target
than farther behind. The adopted wake model is therefore a pragmatic approach to let
the probability of having a wake-originated measurement instead of a target-originated
one increase with the distance behind the true target. Further details about the joint wake
model and the validation region are given in Appendix A.
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Figure 3: Two targets with a measurement in the intersection of their validation
gates are shown with corresponding validation matrix Ω.

3.2 Joint Association Events

Define the validation matrix Ω to represent all feasible association events at time k (the
time index k is omitted for simplicity where it does not cause confusion)

Ω = [ω(j, t)] j = 1, . . . , m and t = 0, . . . , NT (15)

Here, ω(j, t) is a binary element indicating whether measurement j lies in the validation
gate of target t. The index t = 0 means that the measurement is from none of the targets
and therefore it is a false measurement. An example where a measurement may originate
from either of two targets, i.e., it lies in both targets’ validation gates, is shown with the
corresponding validation matrix Ω in Figure 3. For all these possible joint association
events, conditional probabilities have to be derived.

A joint association event Θ describes an unambiguous association between the mea-
surements and the targets at time k

Θ =
m⋂

j=1

θ(j, tj) (16)

where

• θ(j, tj) is the event that measurement j originates from target tj .

• tj is the index of the target to which measurement j is associated in the event
under consideration.

The event Θ can also be represented by the matrix

ΩΘ = [ωΘ(j, t)] (17)

consisting of the units in Ω corresponding to the associations in Θ

ωΘ(j, t) =
{

1 if the event θ(j, t) is part of Θ
0 otherwise

(18)
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Using this, a feasible association event needs to fulfill the following requirements:

1. A measurement can have only one source, i.e.

NT∑
t=0

ωΘ(j, t) = 1 ∀ j (19)

2. At most one measurement can originate from a target

δt
Θ �

m∑
j=1

ωΘ(j, t) � 1 t = 1, . . . , NT (20)

The binary variable δt
Θ is called the target detection indicator since it indicates whether

a measurement is associated to a target t or not in event Θ. It is also convenient to define
two more binary variables

τΘ(j) �
NT∑
t=1

ωΘ(j, t) (21)

φΘ �
m∑

j=1

[1 − τΘ(j)] (22)

where τΘ(j) is the measurement association indicator to indicate if measurement j is
associated to a target or not, and φΘ is the number of false (unassociated) measurements
in event Θ.

3.3 Modified JPDAF with a Wake Model

The joint association event probabilities are derived using Bayes’ formula

P{Θk|Zk} = P{Θk|Zk, mk, Z
k−1}

=
1
c
p
(
Zk|Θk, mk, Z

k−1
)

P{Θk|Zk−1, mk}

=
1
c
p
(
Zk|Θk, mk, Z

k−1
)

P{Θk|mk} (23)

where c is a normalizing constant. In the last line of the above equation the irrelevant
conditioning term Zk−1 has been omitted. The pdf of the measurements in (23) is de-
rived by assuming that the states of the targets, conditioned on the past observations, are
mutually independent

p
(
Zk|Θk, mk, Z

k−1
)

=
mk∏
j=1

p
(
zk(j)|θk(j, tj), Zk−1

)
(24)
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(
Zk|Θk, mk, Z
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P{Θk|Zk−1, mk}

=
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c
p
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k−1
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where c is a normalizing constant. In the last line of the above equation the irrelevant
conditioning term Zk−1 has been omitted. The pdf of the measurements in (23) is de-
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mk∏
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p
(
zk(j)|θk(j, tj), Zk−1
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Measurements not associated to a target are assumed either from the wakes with pdf
pW (zk(j)) with a priori probability PW , or from uniformly distributed noise/clutter with
a priori probability (1−PW ). Defining Vk as the volume of the joint validation gate, the
pdf of a measurement given its origin is

p
(
zk(j)|θk(j, tj), Zk−1

)
=

⎧⎨
⎩

N
(
zk(j); ẑ

tj
k|k−1, S

tj
k

)
if τΘk

(j) = 1

PW
pW (zk(j))

PGW
+ (1 − PW ) 1

Vk
if τΘk

(j) = 0
(25)

where ẑ
tj
k|k−1 is the predicted measurement for target tj with associated innovation co-

variance S
tj
k . The constant PGW is used for restricting pW (zk(j)) to the joint validation

region, and has an analytical expression derived in Appendix A. Using the above equa-
tion, (24) can be written as

p
(
Zk|Θk, mk, Z

k−1
)

=
mk∏
j=1

{
N
(
zk(j); ẑ

tj
k|k−1, S

tj
k

)}τΘ(j)

×
{

PW
pW (zk(j))

PGW
+ (1 − PW )

1
Vk

}1−τΘ(j)

(26)

Next, the last term in (23) will be derived. Let δΘ be the vector of detection indicators
corresponding to event Θk

δΘ = [δ1
Θ, . . . , δNT

Θ ] (27)

The vector δΘ and the number of false measurements φΘ follow from the event Θ under
consideration. Using the definition of conditional probabilities [20, p. 28], this yields

P{Θk|mk} = P{Θk, δΘ, φΘ|mk} = P{Θk|δΘ, φΘ, mk}P{δΘ, φΘ|mk} (28)

The first term in (28) is obtained using combinatorics:

1. In event Θk there are assumed mk − φΘ targets detected.

2. The number of events Θk, where the same targets are detected, is given by the
number of ways of associating mk − φΘ measurements to the detected targets
from a set of mk measurements.

By assuming each such event a priori equally likely, one has

P{Θk|δΘ, φΘ, mk} =
1

mk
Pmk−φΘ

=
φΘ!
mk!

(29)

The last term in (28) is, assuming δ and φ independent,

P{δΘ, φΘ|mk} =
NT∏
t=1

(P t
D)δt

Θ(1 − P t
D)1−δt

ΘμF (φΘ) (30)
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where P t
D is the detection probability of target t and μF (φΘ) is the prior pmf of the

number of false measurements. The indicators δt
Θ have been used to select the probabil-

ities of detection and no detection events according to the event Θk under consideration.
Combining (29) and (30) into (28) yields the prior probability of a joint association event

P{Θk|mk} =
φΘ!
mk!

NT∏
t=1

(P t
D)δt

Θ(1 − P t
D)1−δt

ΘμF (φΘ) (31)

The pmf of the number of false measurements μF (φ) can, as in the case of the PDA,
have two versions, parametric or nonparametric.

1. Parametric JPDA uses a Poisson pmf

μF (φ) = e−λV (λV )φ

φ!
(32)

which requires the spatial density λ of the false measurements.

2. Nonparametric JPDA uses a diffuse prior

μF (φ) = ε ∀φ (33)

which does not require the parameter λ.

Using the nonparametric model and combining (31) and (26) into (23) yields the joint
association event probabilities

P{Θk|Zk} =
φΘ!
c

NT∏
t=1

(P t
D)δt

Θ(1 − P t
D)1−δt

Θ

×
mk∏
j=1

{
N
(
zk(j); ẑ

tj
k|k−1, S

tj
k

)}τΘ(j)
(34)

×
{

PW
pW (zk(j))

PGW
+ (1 − PW )

1
Vk

}1−τΘ(j)

where the constants ε and mk! are brought into the normalization constant c. For com-
parison, the joint association event probabilities derived in [4, p. 318] for the standard
JPDAF is

P{Θk|Zk} =
φΘ! · V −φΘ

k

c

NT∏
t=1

(P t
D)δt

Θ(1−P t
D)1−δt

Θ

mk∏
j=1

{
N
(
zk(j); ẑ

tj
k|k−1, S

tj
k

)}τΘ(j)

(35)
where the third line in (34) is replaced by V −φΘ

k . As for the modified PDAF, (34) reduces
to (35) in the limit as PW goes to zero. Finally, marginal association probabilities are
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obtained by summing over all the joint association events in which the marginal event of
interest occurs

βt
k(j) � P{θk(j, t)|Zk} =

∑
Θk

P{Θk|Zk}ωΘ(j, t) (36)

βt
k(0) � 1 −

mk∑
j=1

βt
k(j) (37)

By using these association probabilities in (8), the state estimation equations are exactly
the same as in the PDAF, (5) - (11).

3.4 Modified JPDACF

The state estimation above is based on the assumption that the targets, conditioned on
the past observations, are mutually independent. When measurements are inside the val-
idation gates for two or more targets at the same time, we say that the targets are “shar-
ing” measurements. For targets that share measurements for several sampling times, a
dependence of their estimation error ensues, and this can be taken into account by calcu-
lating the resulting error correlations [7]. The resulting JPDACF algorithm [4, pp. 328-
329] does the filtering in a coupled manner, yielding a covariance matrix with cross-
covariances that reflect the correlation between the targets’ state estimation errors. The
effectiveness of the JPDACF approach in combination with the IMM was demonstrated
on splitting targets in [3]. This JPDACF approach does not account for situations with
partial target detections since the association events where all targets are detected are
not separated from events where only some of them are detected. The association events
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updated state estimate is

x̂S
k|k = x̂S

k|k−1 +
∑
Θk

P{Θk|Zk}Ix
ΘWS

k Iz
ΘνS

k (Θ) (39)

where
νS

k (Θ) = zS
k (Θ) − ẑS

k|k−1 (40)

zS
k (Θ) =

[
zk(j1(Θ))
zk(j2(Θ))

]
(41)

ẑS
k|k−1 = HS x̂S

k|k−1 (42)

and jt(Θk) is the index of the measurement associated with target t in the event Θk at
time k. The filter gain in (39) is

WS
k = PS

k|k−1H
ST
[
HSPS

k|k−1H
ST

+ RS
]−1

(43)

where

HS =
[

H1 0
0 H2

]
and RS =

[
R1 0
0 R2

]
(44)

The matrices Ix
Θ and Iz

Θ in (39) are used to choose only the innovation from the target(s)
that are detected, given by the detection indicator in (20), such that

Ix
Θ =

[
δ1
ΘInx 0
0 δ2

ΘInx

]
Iz
Θ =

[
δ1
ΘInz 0
0 δ2

ΘInz

]
(45)

Here, Inx and Inz are nx × nx and nz × nz identity matrices, where nx and nz are the
dimensions of a single target state vector and a single target measurement, respectively.
Notice that if a target is undetected in the joint association event Θk under consideration,
the corresponding part of the innovation vector needs to be set to zero even though Ix

Θ is
multiplied to the Kalman gain WS

k . This is accomplished by Iz
Θ.

The updated stacked covariance PS
k|k, conditioned on all measurements up to time k,

Zk, is derived in Appendix B and yields
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The joint association event probabilities P{Θk|Zk} are calculated as for the decoupled
filter in Section 3.3, and the prediction step is as in (5), but with stacked state and co-
variance.

4 Multisensor Tracking

The best performance in multisensor data fusion is achieved using centralized configura-
tions where all measurements are transmitted from the local sensors to a fusion center.1

Primarily due to the bandwidth constraints in real systems, the centralized configuration
is sometimes not feasible because its requirement to transmit all measurement informa-
tion to a fusion center. This is the motivation for the interest in decentralized tracking,
with track-to-track association followed by track fusion, which has been compared to
centralized tracking in [10], [11]. To make the centralized tracking more feasible for
real systems, the measurement data can be compressed in the local sensors before they
are transmitted [12]. When the measurements are transmitted to a fusion center in the
centralized tracking, there are two different schemes for the way the state is updated. In
parallel filtering the measurements from all sensors (if synchronized) are taken into ac-
count at the same time. The other alternative is sequential filtering where measurements
from each sensor is processed one sensor at a time. The first sensor updates the state
(and covariance) based on predictions from the previous time step as in a single-sensor
algorithm. Then, this new updated state is used as a zero-time prediction to update with
the measurements from the second sensor and so on. In [19] the sequential and parallel
filtering schemes are compared in a multisensor JPDAF approach, and it is shown that
sequential filtering is less computationally expensive as the number of sensors increases.
According to [19], the sequential method yields better tracking performance on the aver-
age when data association is needed. This is primarily due to the fact that better filtered
estimates are available after processing each sensor’s data.

Another problem regarding multisensor systems is the positioning of the sensors,
where there are several aspects to consider:

• The sensors’ joint ability to cover the required area.

• The sensor specifications.

• The most likely target locations and trajectories.

• The possibility of tracking the targets from various view angles.

These factors, among others, have to be considered separately and in light of the main
purpose of each specific tracking problem.

1It is assumed that the sensors are properly registered and have no biases.
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According to [19], the sequential method yields better tracking performance on the aver-
age when data association is needed. This is primarily due to the fact that better filtered
estimates are available after processing each sensor’s data.

Another problem regarding multisensor systems is the positioning of the sensors,
where there are several aspects to consider:

• The sensors’ joint ability to cover the required area.

• The sensor specifications.

• The most likely target locations and trajectories.

• The possibility of tracking the targets from various view angles.

These factors, among others, have to be considered separately and in light of the main
purpose of each specific tracking problem.

1It is assumed that the sensors are properly registered and have no biases.
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5 Simulations and Results
In this section the data association methods described previously (PDAF, Modified PDAF,
JPDAF, Modified JPDAF and Modified JPDACF) are compared in four different mul-
titarget simulation scenarios in the presence of wakes. These simulations consider an
underwater surveillance system with active sonar sensors and scuba divers as the targets.
The wakes are generated by the air bubbles from the divers. Results are shown using two
sensors, working both as independent single sensors and together in a centralized track-
ing system. When the filters discussed above are used in multisensor (MS) situations
in the centralized tracking configuration, they will be denoted as MSPDAF, Modified
MSPDAF, MSJPDAF, Modified MSJPDAF and Modified MSJPDACF.

5.1 Simulation Scenarios
The four simulation scenarios are shown in Figure 4, and are in the sequel denoted as:

1. Crossing scenario:
The targets are starting in positions (25, 32.5) m and (25, 67.5) m with speed
1 m/s and course according to the trajectory crossing angle γ = 20◦, see Fig-
ure 4. The nearly straight trajectories are crossing the 200 s run midway. In [22]
a similar scenario with varying trajectory crossing angle γ = [5◦, 6◦, . . . , 30◦] is
simulated for a single sensor, showing significant reduction of track loss for the
modified filters.

2. Parallel scenario:
The targets are starting in positions (25, 40) m and (25, 60) m with speed 1 m/s
and course according to the trajectory crossing angle γ = 15◦. When the distance
between the targets is less than 3 m, their velocities are both set to [1, 0] m/s,
creating parallel trajectories with 3 m spacing. Then, after 130 s they separate in
the same way as they joined each other.

3. Sequential scenario:
The targets are starting in positions (22.5, 40) m and (27.5, 60) m with speed
1 m/s and course according to the trajectory crossing angle γ = 15◦. When the
distance between the targets is less than 0.5 m in the y-direction their velocities
are both set to [1, 0] m/s. Since the first target started 5 m behind the second target
in the x-direction, they will now move after each other in the same direction with
about 5 m spacing. Then, after 130 s they separate in the same way as they joined
each other. Note that Target 1 is moving inside the wake created by Target 2 before
they separate.

4. Meeting scenario:
The targets are starting in positions (25, 50) m and (225, 50) m with speed 1 m/s
and course directly towards each other. The targets are passing each other without
changing course. Note that both targets are moving inside the wake of the other
one after the passing.
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Figure 4: Simulation scenarios of two targets observed by two sensors. Four dif-
ferent scenarios are shown: (a) Crossing trajectories with trajectory crossing angle
γ = 20◦; (b) Parallel trajectories where the targets are moving side by side with
spacing d = 3 m; (c) Sequential trajectories where Target 1 is moving behind in
the wake created by Target 2, with spacing d = 5 m; and (d) Meeting trajectories
where the targets are moving towards each other, and passing each other inside the
wake of the other target.
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5.2 Simulation Setup

Two sensors, with the same specifications, are located in the positions (0, 0) m and
(250, 100) m respectively. The sensors have 180◦ field of view with resolution about 0.7◦

in bearing (256 non-overlapping beams) and 0.2 m in range. Their maximum range of
250 m is assumed large enough to cover the targets throughout the 200 s long runs, con-
sisting of 200 scans with sampling period T = 1 s. For both targets a two-dimensional
direct discrete time nearly constant velocity model [5] is used in (1) and (2):

F =

⎡
⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦ H =

[
1 0 0 0
0 0 1 0

]
(47)

Rc =

⎡
⎣ σ2

x σ2
xy

σ2
xy σ2

y

⎤
⎦ Rp =

⎡
⎣ σ2

r 0

0 σ2
ψ

⎤
⎦ (48)

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4T 4 1

2T 3 0 0

1
2T 3 T 2 0 0

0 0 1
4T 4 1

2T 3

0 0 1
2T 3 T 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

σ2
p (49)

The parameters in (47)-(49) and other simulation design parameters are given in Table 1.
Originally, the position measurements are in polar coordinates (r, ψ) with (time in-

variant) measurement noise covariance Rp, but are transformed to Cartesian coordinates
(x, y) with corresponding measurement noise covariance Rc using the standard con-
version [5, pp. 397-399]. This results in a purely linear model so that a Kalman filter
can be used in the tracking algorithm. The measurement noise matrix Rp is calculated
assuming a uniformly distributed position error inside the resolution cell. Hence, the
variance of the uniformly distributed error is given by the resolution, and this variance
is heuristically used as the variance in the Gaussian distributed Rp

σ2
r =

0.22

12
m2 and σ2

ψ =
(π/256)2

12
rad2 (50)

Due to the high resolution in range (0.2 m), the targets will cover several resolution cells
in the range direction, resulting in extended targets. Because of this, the actual range
resolution is used as the standard deviation (σr = 0.2 m) instead of the calculation in
(50). This modification of σr in the simulations seems more reasonable since the targets
(scuba divers) are extended in the range direction. To ensure controlled trajectories for
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Table 1: Specification of parameters

Parameter Value Specification

T 1.0 s Sampling period

PD 0.7 Detection probability

PG 0.99999 Gate probability

PW 0.9 Wake probability

PFA 0.001 False alarm probability

σ2
p(s)

(
0.001 m/s2

)2 Process noise (simulation model)

σ2
p(f)

(
0.05 m/s2

)2 Process noise (filter model)

σ2
r (0.2 m)2 Measurement noise (range)

σ2
ψ (3.5 · 10−3 rad)2 Measurement noise (bearing)

N 256 × 1250 Number of resolution cells

S 180◦, 250 m range Sensor coverage area

M 250 × 40 m Measurement generation area

W 5 × 30 m Wake area

VS 98174 m2 Volume of S

VM 10000 m2 Volume of M

VW 150 m2 Volume of W
λclutter 16.3 Expected number of

correlated clutter measurements

the true targets, the added process noise in the simulation model σ2
p(s) =

(
0.001 m/s2

)2
is set low, but not to zero. The process noise in the filter model σ2

p(f) =
(
0.05 m/s2

)2 is
set to approximate about 5 cm/s change in the velocity components between each scan.

When the targets are following after each other in the sequential scenario, there will
be a problem using the filter modifications as described above. This problem especially
affects the target following behind the first target, because there will be wake detections
surrounding this target both in front and behind it. If the wake model is used in this
situation, the wake-dominated measurements behind the target will get lower weights
than the wake-dominated measurements in front. These measurements in front, which
originate from the wake of the first target, will mislead the tracker, and the estimated
track will speed up until it catches up with the target in front. It is therefore likely that
this target will be lost. An approach to prevent this is to only apply the wake model to
the target in front, and use a regular data association filter for the target that is following
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the first one. By handling the two targets separately in two single-target tracking filters,
the track of the target behind the first one will have better chance to survive in this hard
situation. In the simulations a target following behind another one will therefore not use
the wake model if the following criteria are fulfilled:

1. The target is inside the wake area W of the target in front. The wake area W
is defined as a rectangle, Lw wide and reaching Ll backwards from the target
(Lw = 5 m, Ll = 30 m).

2. The target is at least 2 m behind the target in front.

3. The difference between the moving direction of the following target and the target
in front is less than 10◦.

To reduce the computational load, the different versions of the multitarget tracking
algorithms are substituted with their analogous single target tracking algorithms as long
as targets are not “sharing” measurements. In other words, the standard PDAF is used
instead of the JPDAF, and the modified PDAF is used instead of the modified JPDAF
and JPDACF when the targets are apart. The multisensor (MS) filters are treated in the
same way, i.e., the MSPDAF is used instead of the MSJPDAF.

5.3 Measurement Generation

The directional information (bearing) in an active sonar is given by the beamforming.
Since no beamforming can achieve an ideal directivity pattern, there will be a leakage or
scattering of the signal in one beam to the neighboring beams [16, ch. 5.3]. This is also
known as the point spread function (psf) [25], and may yield detections from a point
target in more than one bearing cell. In [22] the true target-originated measurements
are simulated as single point detections, which, as described above, is a simplification
of the real world. To generate measurements from the targets and their wakes in this
paper, detections from a real data set of a scuba diver with an open breathing system
are used. The data set consists of 500 scans, and is recorded by an active sonar with the
same specifications as the sensors used in the simulations. The diver is swimming in a
nearly straight line, and its trajectory is estimated mainly by using a modified PDAF [21],
but some manual corrections are done to get better position estimates. For each scan a
cell averaging - constant false alarm rate (CA-CFAR) detector [15] is used to obtain the
detections. The parameters of the CA-CFAR algorithm are the same as in [21], except
for the following parameters:

• The average false alarm rate (probability of a false detection in a resolution cell)
is set to PFA = 0.001.

• The size of the averaging window used to estimate the local background noise
parameter is increased to 51 cells in the range direction due to the increased reso-
lution of the sensors used in this paper.
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Target trajectory

A : d behind, -1 bearing cell offset

B : d behind, 0 bearing cell offset

C : d behind, 1 bearing cell offset

D : d behind, 2 bearing cells offset
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Figure 5: Illustration of how each detection is specified by using the distance be-
hind the target d and a bearing offset. The bearing offset describes the number of
cells in the bearing direction between a detected cell and the cell where the target
trajectory passes through, and with the same range as the detected one. As an ex-
ample, the four detections marked with A, B, C and D are the same distance behind
the target, but with offsets -1, 0, 1 and 2 respectively.

For each scan, the detections are stored and specified by a distance d behind the true
target position and a bearing offset, see Figure 5. The bearing offset describes the num-
ber of cells in the bearing direction between a detected cell and the cell where the target
trajectory passes through, and with the same range as the detected one. As an example,
the four detections marked with A, B, C and D in Figure 5 are the same distance be-
hind the target, but with bearing offsets -1, 0, 1 and 2 respectively. Finally, after going
through the 500 scans in the real data set, this gives 500 different sets of detections of
the true target and its wake, where the scattering in the bearing-direction is accounted
for. In the simulations the detections originating from the target and its wake are gen-
erated by drawing from these 500 sets according to a first order Markov model. If set s
was drawn at scan k, the probability of drawing the succeeding set s + 1 at time k + 1
is πs,s+1 = 0.7, and the probability of a random drawing u ∈ [1, 500] (uniformly dis-
tributed) is πs,u = 1 − πs,s+1 = 0.3. The targets’ states are generated directly from (1),
and with the position and velocity known, the target and wake originated measurements
are added.

Another part of the measurements is the clutter or false measurements, and a stan-
dard assumption in simulations is that clutter is uniformly distributed in the surveillance
area. In this paper the generation of clutter is done in two steps. The first step is under
the standard assumption, where the probability of generating a clutter measurement in a
resolution cell is PFA

2 = 0.005, uniformly distributed across all cells in range and bear-

5 Simulations and Results 147

A B C
D

d

2D Sensor
Detected cell at current time
Current target position

Target trajectory

A : d behind, -1 bearing cell offset

B : d behind, 0 bearing cell offset

C : d behind, 1 bearing cell offset

D : d behind, 2 bearing cells offset

Sensor

Figure 5: Illustration of how each detection is specified by using the distance be-
hind the target d and a bearing offset. The bearing offset describes the number of
cells in the bearing direction between a detected cell and the cell where the target
trajectory passes through, and with the same range as the detected one. As an ex-
ample, the four detections marked with A, B, C and D are the same distance behind
the target, but with offsets -1, 0, 1 and 2 respectively.

For each scan, the detections are stored and specified by a distance d behind the true
target position and a bearing offset, see Figure 5. The bearing offset describes the num-
ber of cells in the bearing direction between a detected cell and the cell where the target
trajectory passes through, and with the same range as the detected one. As an example,
the four detections marked with A, B, C and D in Figure 5 are the same distance be-
hind the target, but with bearing offsets -1, 0, 1 and 2 respectively. Finally, after going
through the 500 scans in the real data set, this gives 500 different sets of detections of
the true target and its wake, where the scattering in the bearing-direction is accounted
for. In the simulations the detections originating from the target and its wake are gen-
erated by drawing from these 500 sets according to a first order Markov model. If set s
was drawn at scan k, the probability of drawing the succeeding set s + 1 at time k + 1
is πs,s+1 = 0.7, and the probability of a random drawing u ∈ [1, 500] (uniformly dis-
tributed) is πs,u = 1 − πs,s+1 = 0.3. The targets’ states are generated directly from (1),
and with the position and velocity known, the target and wake originated measurements
are added.

Another part of the measurements is the clutter or false measurements, and a stan-
dard assumption in simulations is that clutter is uniformly distributed in the surveillance
area. In this paper the generation of clutter is done in two steps. The first step is under
the standard assumption, where the probability of generating a clutter measurement in a
resolution cell is PFA

2 = 0.005, uniformly distributed across all cells in range and bear-

5 Simulations and Results 147

A B C
D

d

2D Sensor
Detected cell at current time
Current target position

Target trajectory

A : d behind, -1 bearing cell offset

B : d behind, 0 bearing cell offset

C : d behind, 1 bearing cell offset

D : d behind, 2 bearing cells offset

Sensor

Figure 5: Illustration of how each detection is specified by using the distance be-
hind the target d and a bearing offset. The bearing offset describes the number of
cells in the bearing direction between a detected cell and the cell where the target
trajectory passes through, and with the same range as the detected one. As an ex-
ample, the four detections marked with A, B, C and D are the same distance behind
the target, but with offsets -1, 0, 1 and 2 respectively.

For each scan, the detections are stored and specified by a distance d behind the true
target position and a bearing offset, see Figure 5. The bearing offset describes the num-
ber of cells in the bearing direction between a detected cell and the cell where the target
trajectory passes through, and with the same range as the detected one. As an example,
the four detections marked with A, B, C and D in Figure 5 are the same distance be-
hind the target, but with bearing offsets -1, 0, 1 and 2 respectively. Finally, after going
through the 500 scans in the real data set, this gives 500 different sets of detections of
the true target and its wake, where the scattering in the bearing-direction is accounted
for. In the simulations the detections originating from the target and its wake are gen-
erated by drawing from these 500 sets according to a first order Markov model. If set s
was drawn at scan k, the probability of drawing the succeeding set s + 1 at time k + 1
is πs,s+1 = 0.7, and the probability of a random drawing u ∈ [1, 500] (uniformly dis-
tributed) is πs,u = 1 − πs,s+1 = 0.3. The targets’ states are generated directly from (1),
and with the position and velocity known, the target and wake originated measurements
are added.

Another part of the measurements is the clutter or false measurements, and a stan-
dard assumption in simulations is that clutter is uniformly distributed in the surveillance
area. In this paper the generation of clutter is done in two steps. The first step is under
the standard assumption, where the probability of generating a clutter measurement in a
resolution cell is PFA

2 = 0.005, uniformly distributed across all cells in range and bear-

5 Simulations and Results 147

A B C
D

d

2D Sensor
Detected cell at current time
Current target position

Target trajectory

A : d behind, -1 bearing cell offset

B : d behind, 0 bearing cell offset

C : d behind, 1 bearing cell offset

D : d behind, 2 bearing cells offset

Sensor

Figure 5: Illustration of how each detection is specified by using the distance be-
hind the target d and a bearing offset. The bearing offset describes the number of
cells in the bearing direction between a detected cell and the cell where the target
trajectory passes through, and with the same range as the detected one. As an ex-
ample, the four detections marked with A, B, C and D are the same distance behind
the target, but with offsets -1, 0, 1 and 2 respectively.

For each scan, the detections are stored and specified by a distance d behind the true
target position and a bearing offset, see Figure 5. The bearing offset describes the num-
ber of cells in the bearing direction between a detected cell and the cell where the target
trajectory passes through, and with the same range as the detected one. As an example,
the four detections marked with A, B, C and D in Figure 5 are the same distance be-
hind the target, but with bearing offsets -1, 0, 1 and 2 respectively. Finally, after going
through the 500 scans in the real data set, this gives 500 different sets of detections of
the true target and its wake, where the scattering in the bearing-direction is accounted
for. In the simulations the detections originating from the target and its wake are gen-
erated by drawing from these 500 sets according to a first order Markov model. If set s
was drawn at scan k, the probability of drawing the succeeding set s + 1 at time k + 1
is πs,s+1 = 0.7, and the probability of a random drawing u ∈ [1, 500] (uniformly dis-
tributed) is πs,u = 1 − πs,s+1 = 0.3. The targets’ states are generated directly from (1),
and with the position and velocity known, the target and wake originated measurements
are added.

Another part of the measurements is the clutter or false measurements, and a stan-
dard assumption in simulations is that clutter is uniformly distributed in the surveillance
area. In this paper the generation of clutter is done in two steps. The first step is under
the standard assumption, where the probability of generating a clutter measurement in a
resolution cell is PFA

2 = 0.005, uniformly distributed across all cells in range and bear-



148 C Multitarget Multisensor Tracking in the Presence of Wakes

ing. The second step is to generate spatially correlated clutter. These measurements are
generated from a multimodal Gaussian pdf with equal weights for the different modes.
This is an approach to reflect that some areas in the surveillance region yields more
clutter, due to, e.g., a rough surface of the sea bed, banks, hills, large stones and other
objects that creates variation in the surveillance area. The multimodal Gaussian pdf is
regenerated for each run, and the number of modes is drawn as a uniform discrete vari-
able between 1 and 10. The mean of each Gaussian mode is drawn uniformly in the
surveillance area, and the covariance matrix is diagonal with standard deviations in the
x and y directions drawn as uniform variables between 0 and 10. The number of cor-
related clutter measurements for each scan is Poisson distributed with parameter λclutter.
Denote the coverage area for a sensor as S (180◦, 250 m range), and the measurement
area covering the full trajectories of the targets as M (250× 40 m), with volume VS and
VM respectively. The Poisson parameter λclutter is then given by

λclutter = 0.5PFAN
VM

VS
≈ 16.3 (51)

where PFA is the probability of a false alarm in a resolution cell, and N is the number
of resolution cells in S. Hence, in average there will be 16.3 correlated clutter measure-
ments in M for each scan. An example of all measurements in one time frame for the
crossing scenario is given in Figure 6. Notice that the detections of the targets are more
spread out sideways in Sensor 2 than in Sensor 1. At this time the targets are closer to
Sensor 1 than Sensor 2, and they are therefore better resolved by Sensor 1. The targets
are also moving towards Sensor 2, and because of the scattering of the signal to the
neighboring beams, the detections will be spread out more sideways from the direction
of motion. Also notice how in some places the detections are located in groups due to
the non-uniform spatial distribution of the clutter measurements. It is also possible that
a target can be undetected, which is the case for the lower target at Sensor 1 in Figure 6.

5.4 Track Formation and Termination

As can be seen in Figure 6, the targets are often determined by a cluster of detections
rather than a single point detection. In the simulations the tracks are initialized by two-
point differencing [5], p. 247] of the cluster centroids from succeeding scans. The reason
for this is to avoid confusion due to the many possibilities of two-point differencing that
could have been set up among the point detections from one single target. The clustering
method of the single point detections is described in [21], and is based on mathematical
morphology [23]. Any successive pair of clusters within a maximum distance based on
target maximum motion parameters and cluster measurement noise variances initiates a
preliminary track. For the motion parameters, a maximum distance dmax = 1 m together
with the process noise matrix Q in (2) is used. The measurement noise for the clusters is
computed from the different cells included in the cluster as a Gaussian mixture [5, pp. 55-
56]. A preliminary track has to receive measurements for a minimum of 4 time steps
during the first 6 scans to become a confirmed track. This is also referred to as a “4/6"
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ments in M for each scan. An example of all measurements in one time frame for the
crossing scenario is given in Figure 6. Notice that the detections of the targets are more
spread out sideways in Sensor 2 than in Sensor 1. At this time the targets are closer to
Sensor 1 than Sensor 2, and they are therefore better resolved by Sensor 1. The targets
are also moving towards Sensor 2, and because of the scattering of the signal to the
neighboring beams, the detections will be spread out more sideways from the direction
of motion. Also notice how in some places the detections are located in groups due to
the non-uniform spatial distribution of the clutter measurements. It is also possible that
a target can be undetected, which is the case for the lower target at Sensor 1 in Figure 6.

5.4 Track Formation and Termination

As can be seen in Figure 6, the targets are often determined by a cluster of detections
rather than a single point detection. In the simulations the tracks are initialized by two-
point differencing [5], p. 247] of the cluster centroids from succeeding scans. The reason
for this is to avoid confusion due to the many possibilities of two-point differencing that
could have been set up among the point detections from one single target. The clustering
method of the single point detections is described in [21], and is based on mathematical
morphology [23]. Any successive pair of clusters within a maximum distance based on
target maximum motion parameters and cluster measurement noise variances initiates a
preliminary track. For the motion parameters, a maximum distance dmax = 1 m together
with the process noise matrix Q in (2) is used. The measurement noise for the clusters is
computed from the different cells included in the cluster as a Gaussian mixture [5, pp. 55-
56]. A preliminary track has to receive measurements for a minimum of 4 time steps
during the first 6 scans to become a confirmed track. This is also referred to as a “4/6"

148 C Multitarget Multisensor Tracking in the Presence of Wakes

ing. The second step is to generate spatially correlated clutter. These measurements are
generated from a multimodal Gaussian pdf with equal weights for the different modes.
This is an approach to reflect that some areas in the surveillance region yields more
clutter, due to, e.g., a rough surface of the sea bed, banks, hills, large stones and other
objects that creates variation in the surveillance area. The multimodal Gaussian pdf is
regenerated for each run, and the number of modes is drawn as a uniform discrete vari-
able between 1 and 10. The mean of each Gaussian mode is drawn uniformly in the
surveillance area, and the covariance matrix is diagonal with standard deviations in the
x and y directions drawn as uniform variables between 0 and 10. The number of cor-
related clutter measurements for each scan is Poisson distributed with parameter λclutter.
Denote the coverage area for a sensor as S (180◦, 250 m range), and the measurement
area covering the full trajectories of the targets as M (250× 40 m), with volume VS and
VM respectively. The Poisson parameter λclutter is then given by

λclutter = 0.5PFAN
VM

VS
≈ 16.3 (51)

where PFA is the probability of a false alarm in a resolution cell, and N is the number
of resolution cells in S. Hence, in average there will be 16.3 correlated clutter measure-
ments in M for each scan. An example of all measurements in one time frame for the
crossing scenario is given in Figure 6. Notice that the detections of the targets are more
spread out sideways in Sensor 2 than in Sensor 1. At this time the targets are closer to
Sensor 1 than Sensor 2, and they are therefore better resolved by Sensor 1. The targets
are also moving towards Sensor 2, and because of the scattering of the signal to the
neighboring beams, the detections will be spread out more sideways from the direction
of motion. Also notice how in some places the detections are located in groups due to
the non-uniform spatial distribution of the clutter measurements. It is also possible that
a target can be undetected, which is the case for the lower target at Sensor 1 in Figure 6.

5.4 Track Formation and Termination

As can be seen in Figure 6, the targets are often determined by a cluster of detections
rather than a single point detection. In the simulations the tracks are initialized by two-
point differencing [5], p. 247] of the cluster centroids from succeeding scans. The reason
for this is to avoid confusion due to the many possibilities of two-point differencing that
could have been set up among the point detections from one single target. The clustering
method of the single point detections is described in [21], and is based on mathematical
morphology [23]. Any successive pair of clusters within a maximum distance based on
target maximum motion parameters and cluster measurement noise variances initiates a
preliminary track. For the motion parameters, a maximum distance dmax = 1 m together
with the process noise matrix Q in (2) is used. The measurement noise for the clusters is
computed from the different cells included in the cluster as a Gaussian mixture [5, pp. 55-
56]. A preliminary track has to receive measurements for a minimum of 4 time steps
during the first 6 scans to become a confirmed track. This is also referred to as a “4/6"

148 C Multitarget Multisensor Tracking in the Presence of Wakes

ing. The second step is to generate spatially correlated clutter. These measurements are
generated from a multimodal Gaussian pdf with equal weights for the different modes.
This is an approach to reflect that some areas in the surveillance region yields more
clutter, due to, e.g., a rough surface of the sea bed, banks, hills, large stones and other
objects that creates variation in the surveillance area. The multimodal Gaussian pdf is
regenerated for each run, and the number of modes is drawn as a uniform discrete vari-
able between 1 and 10. The mean of each Gaussian mode is drawn uniformly in the
surveillance area, and the covariance matrix is diagonal with standard deviations in the
x and y directions drawn as uniform variables between 0 and 10. The number of cor-
related clutter measurements for each scan is Poisson distributed with parameter λclutter.
Denote the coverage area for a sensor as S (180◦, 250 m range), and the measurement
area covering the full trajectories of the targets as M (250× 40 m), with volume VS and
VM respectively. The Poisson parameter λclutter is then given by

λclutter = 0.5PFAN
VM

VS
≈ 16.3 (51)

where PFA is the probability of a false alarm in a resolution cell, and N is the number
of resolution cells in S. Hence, in average there will be 16.3 correlated clutter measure-
ments in M for each scan. An example of all measurements in one time frame for the
crossing scenario is given in Figure 6. Notice that the detections of the targets are more
spread out sideways in Sensor 2 than in Sensor 1. At this time the targets are closer to
Sensor 1 than Sensor 2, and they are therefore better resolved by Sensor 1. The targets
are also moving towards Sensor 2, and because of the scattering of the signal to the
neighboring beams, the detections will be spread out more sideways from the direction
of motion. Also notice how in some places the detections are located in groups due to
the non-uniform spatial distribution of the clutter measurements. It is also possible that
a target can be undetected, which is the case for the lower target at Sensor 1 in Figure 6.

5.4 Track Formation and Termination

As can be seen in Figure 6, the targets are often determined by a cluster of detections
rather than a single point detection. In the simulations the tracks are initialized by two-
point differencing [5], p. 247] of the cluster centroids from succeeding scans. The reason
for this is to avoid confusion due to the many possibilities of two-point differencing that
could have been set up among the point detections from one single target. The clustering
method of the single point detections is described in [21], and is based on mathematical
morphology [23]. Any successive pair of clusters within a maximum distance based on
target maximum motion parameters and cluster measurement noise variances initiates a
preliminary track. For the motion parameters, a maximum distance dmax = 1 m together
with the process noise matrix Q in (2) is used. The measurement noise for the clusters is
computed from the different cells included in the cluster as a Gaussian mixture [5, pp. 55-
56]. A preliminary track has to receive measurements for a minimum of 4 time steps
during the first 6 scans to become a confirmed track. This is also referred to as a “4/6"



5 Simulations and Results 149

0 50 100 150 200 250
0

20

40

60

80

100
Sensor 1

x (m)

y
(m

)

0 50 100 150 200 250
0

20

40

60

80

100
Sensor 2

x (m)

y
(m

)
Sensor position Measurement Target position Target trajectory

Sensor position Measurement Target position Target trajectory

Figure 6: Snapshot of all detections/measurements at Sensor 1 and Sensor 2 during
a run in the crossing scenario.

logic-based track formation procedure. Note that the clustering method is only used for
the two-point differencing in the track initialization.

In the centralized tracking the multisensor filtering is described in Section 4, first up-
dating with measurements from Sensor 1 and then with measurements from Sensor 2 in a
sequential updating scheme. The track initialization in the centralized tracking algorithm
is based on measurements that also contain velocity information. First, the two-point dif-
ferencing is used at Sensor 1 to make an initial state. Then, the two-point differencing is
used at Sensor 2, but these initial states are now used as measurements (including both
position and velocity) to update the initial state from Sensor 1. The updating is done as
in a regular PDAF, but since these measurements are formed by two-point differencing
of cluster centroids from succeeding scans, they will not have the same measurement
noise, yielding a varying innovation covariance (Sk in (6)). The innovation covariance
is normally used to form the measurement validation gate in the PDAF, but in this case
a fixed matrix

Sfix =

⎡
⎢⎢⎣

σ2
pos 0 0 0
0 σ2

pos 0 0
0 0 σ2

vel 0
0 0 0 σ2

vel

⎤
⎥⎥⎦ (52)

is used instead of the non-constant innovation covariance to form a constant measure-
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ment validation gate. The values used in Sfix is set based on the assumption that the
standard deviation for these measurements are about 1 m for the position elements, and
0.5 m for the velocity elements (σpos = 1 m and σvel = 0.5 m).

In the modified filters, the wake assumption also affects the track initialization in the
way that measurements inside the wake area W (defined in Section 5.2) are excluded in
the initialization procedure.

To terminate a track one of the following events (termination events) must occur:

1. The estimated speed is outside the interval [vmin, vmax], where vmin = 0.1 m/s
and vmax = 3 m/s.

2. The estimate moves more than 5 m between two scans.

3. The position state estimation variance exceeds σ2
posmax, where σ2

posmax = 50 m2.

4. There are no validated measurements received in a track within 5 successive scans.

5. The track is closer than dmin to another older track during 10 succeeding scans,
where dmin = 0.5 m.

These track termination criteria are adopted rather than using more rigorous meth-
ods, such as the joint version of the IPDAF [17], because of their sensitivity to inaccurate
estimates of the clutter density. In real sensor measurements, the signal is often scattered
resulting in more than one target-originated detection. This will increase the clutter den-
sity resulting in an unrealistic low probability for the track to survive. This may be
solved by the use of clustering, but for targets in the presence of wakes it is undesirable
to blend the wake-originated detections together with the target-originated ones. The
above termination criteria are more strict than those used in [21] due to the higher sensor
resolution used in this paper.

5.5 Performance Analysis

The performance evaluation of a multitarget tracking system is always a difficult prob-
lem, and the quality of the results is difficult to quantify in terms of a few variables.
When the evaluation is based on real data, where not all parameters are known, this
problem becomes even harder. The results also depend on the simulation scenarios, and
the performance of the JPDAF may, according to [13], show large local maxima and
minima as a function of scenario parameters. However, by considering the basic scenar-
ios described above and using a relatively large set of measures of performance (MOP),
a certain amount of meaningful information should be obtained. The MOP considered
are the following:

1. The percentage of lost tracks among all true tracks.

2. The percentage of swapped tracks among all true tracks (measured only when the
targets are closer than 10 m).
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3. The average fraction of each trajectory’s total duration where the target is tracked
(by a true track).

4. The average life length of a true track relative to its true target’s life length.

5. The average time for target acquisition.

6. The number of false tracks per scan.

7. The average life length of a false track.

8. The position RMS error.

This section describes how these MOP are obtained before the corresponding results,
based on 500 Monte Carlo runs for each of the four given scenarios, are shown. At a
given time k there might exist several tracks, but for each target, at most one of them can
be defined as true. The rest of the tracks are therefore by definition false. A track is first
defined as true if the position estimation error is less than 1 m during the next 5 scans,
and at the same time there are no other true track associated to the target. If there is
more than one track fulfilling these requirements at the same time, the track with lowest
average position estimation error during these 5 scans is defined as the true one. The
true track will stay as such until either the position estimation error exceeds 5 m, or the
position estimation error associated to a neighboring target is less than 1 m during the
next 5 scans. In both situations the track will be declared as lost, but in the latter case it
will also be defined as a swapped track.

The percentage of lost tracks among all true tracks

In Figure 7 the percentage of lost tracks is shown. The standard filters (PDAF and
JPDAF) have the highest track loss percentage, and the JPDAF shows no improvement
compared to the PDAF. The modified single target tracking algorithm (PDAF) performs
better than the standard filters, but the best performance is achieved with the modified
JPDAF and JPDACF. The difference between the standard filters and the modified PDAF
is largest in the meeting and crossing scenarios where the targets are close to each other
during a short time. When the targets stay together for a longer period of time, the
modified PDAF is not significantly better than the standard filters because it does not
account for the neighboring target and its wake like the modified JPDAF and JPDACF
do. Also notice that there is almost no difference between the decoupled and coupled
modified JPDAF, which indicates that the correlation between the targets’ estimation
errors is insignificant.

In the different scenarios considered the best performance is achieved for the meeting
scenario. This is maybe a bit surprising since the density of the joint wake model after
the passing is lowest between the targets, the area opposite to their moving direction.
However, the high wake density in the whole joint validation region will at the same time
give more confidence in the predicted target motion than the measurements. Because
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average position estimation error during these 5 scans is defined as the true one. The
true track will stay as such until either the position estimation error exceeds 5 m, or the
position estimation error associated to a neighboring target is less than 1 m during the
next 5 scans. In both situations the track will be declared as lost, but in the latter case it
will also be defined as a swapped track.

The percentage of lost tracks among all true tracks

In Figure 7 the percentage of lost tracks is shown. The standard filters (PDAF and
JPDAF) have the highest track loss percentage, and the JPDAF shows no improvement
compared to the PDAF. The modified single target tracking algorithm (PDAF) performs
better than the standard filters, but the best performance is achieved with the modified
JPDAF and JPDACF. The difference between the standard filters and the modified PDAF
is largest in the meeting and crossing scenarios where the targets are close to each other
during a short time. When the targets stay together for a longer period of time, the
modified PDAF is not significantly better than the standard filters because it does not
account for the neighboring target and its wake like the modified JPDAF and JPDACF
do. Also notice that there is almost no difference between the decoupled and coupled
modified JPDAF, which indicates that the correlation between the targets’ estimation
errors is insignificant.

In the different scenarios considered the best performance is achieved for the meeting
scenario. This is maybe a bit surprising since the density of the joint wake model after
the passing is lowest between the targets, the area opposite to their moving direction.
However, the high wake density in the whole joint validation region will at the same time
give more confidence in the predicted target motion than the measurements. Because

5 Simulations and Results 151

3. The average fraction of each trajectory’s total duration where the target is tracked
(by a true track).

4. The average life length of a true track relative to its true target’s life length.

5. The average time for target acquisition.

6. The number of false tracks per scan.

7. The average life length of a false track.

8. The position RMS error.

This section describes how these MOP are obtained before the corresponding results,
based on 500 Monte Carlo runs for each of the four given scenarios, are shown. At a
given time k there might exist several tracks, but for each target, at most one of them can
be defined as true. The rest of the tracks are therefore by definition false. A track is first
defined as true if the position estimation error is less than 1 m during the next 5 scans,
and at the same time there are no other true track associated to the target. If there is
more than one track fulfilling these requirements at the same time, the track with lowest
average position estimation error during these 5 scans is defined as the true one. The
true track will stay as such until either the position estimation error exceeds 5 m, or the
position estimation error associated to a neighboring target is less than 1 m during the
next 5 scans. In both situations the track will be declared as lost, but in the latter case it
will also be defined as a swapped track.

The percentage of lost tracks among all true tracks

In Figure 7 the percentage of lost tracks is shown. The standard filters (PDAF and
JPDAF) have the highest track loss percentage, and the JPDAF shows no improvement
compared to the PDAF. The modified single target tracking algorithm (PDAF) performs
better than the standard filters, but the best performance is achieved with the modified
JPDAF and JPDACF. The difference between the standard filters and the modified PDAF
is largest in the meeting and crossing scenarios where the targets are close to each other
during a short time. When the targets stay together for a longer period of time, the
modified PDAF is not significantly better than the standard filters because it does not
account for the neighboring target and its wake like the modified JPDAF and JPDACF
do. Also notice that there is almost no difference between the decoupled and coupled
modified JPDAF, which indicates that the correlation between the targets’ estimation
errors is insignificant.

In the different scenarios considered the best performance is achieved for the meeting
scenario. This is maybe a bit surprising since the density of the joint wake model after
the passing is lowest between the targets, the area opposite to their moving direction.
However, the high wake density in the whole joint validation region will at the same time
give more confidence in the predicted target motion than the measurements. Because



152 C Multitarget Multisensor Tracking in the Presence of Wakes

of this, and the fact that the velocities of the two targets are totally opposite to each
other, the tracks will be less affected by the false measurements. The percentage of
the lost tracks in the crossing scenario is the next best, and the good performance in
both the meeting and crossing scenarios is as expected since the targets are only close
to each other a short time. In these scenarios the results from the single sensor filters
are almost as good as from the multisensor filters in the centralized tracking. This is not
true for the parallel scenario where the performance is significantly improved by fusing
the sensors’ data in the modifed MSJPDAF and MSJPDACF. In this scenario the targets
are separated by only 3 m, which is close to the limit for having multiple targets in a
single resolution cell (unresolved targets). By using two sensors in this situation, Sensor
1 resolves the targets relatively good in the beginning of the run, and Sensor 2 does the
same at the end of the run. Because of this, the fusion of these two sensors data improves
the performance significantly.

The most difficult scenario is the sequential, where a target is moving behind another
target, surrounded by the wake. In this case the centralized tracking performs best, and a
track loss under 40% is achieved by the modified MSJPDAF and MSJPDACF. In practice
this means that, even in a hard case like this, at least one track will be kept throughout
the run.

The percentage of swapped tracks among all true tracks (measured only
when the targets are closer than 10 m)

The percentage of the swapped tracks, shown in Figure 8, is only measured when the
distance between the targets is less than 10 m. The reason for this is to find the percentage
of swapping among only the tracks where the two associated targets are close to each
other. The swapping is, as expected, highest in the parallel scenario where the tracks
are moving in parallel for a longer period of time. In this situation it is easy for a track
to switch over to the neighboring target only 3 m away. In the meeting scenario the
swapping phenomenon is totally absent for the modified filters, and practically absent
for the standard filters (PDAF and JPDAF). The reason for this is the same as discussed
under the previous MOP.

The modified PDAF has the most problems, especially in the parallel scenario, since
it accounts for its own wake, but does not take into consideration that there is another
target in the surrounding area. The standard filters, which do not consider the wakes,
are more disposed to turn into their own wake than to swap to the neighboring target.
Therefore, even if their track loss is higher, they have a lower swapping percentage than
the modified PDAF.

The best performance is achieved by the modified MSJPDAF and MSJPDACF in
the centralized tracking. This improvement is most significant in the parallel scenario,
where the percentage of swapped tracks are almost halved for the modified MSJPDAF
and MSJPDACF compared to the other filters.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 7: Average percentage of lost tracks in the four simulation scenarios: (a)
crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 7: Average percentage of lost tracks in the four simulation scenarios: (a)
crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 7: Average percentage of lost tracks in the four simulation scenarios: (a)
crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 7: Average percentage of lost tracks in the four simulation scenarios: (a)
crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 8: Average percentage of swapped tracks in the three simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 8: Average percentage of swapped tracks in the three simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 8: Average percentage of swapped tracks in the three simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories

0

20

40

60

80

100
Swapped tracks

%

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

M
SP

DAF

M
od

ifie
d
M
SP

DAF

M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AC

F
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(d) Scenario 4: Meeting trajectories

Figure 8: Average percentage of swapped tracks in the three simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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The average fraction of each trajectory’s total duration where the target is
tracked (by a true track)

In Figure 9 the average percentage of the tracked part of the trajectories’ duration is
shown. Also here the modified JPDAF and JPDACF perform best, and by using the
modified MSJPDAF or MSJPDACF in the centralized tracking, about 90% of the trajec-
tories are tracked. Notice that the percentage of the tracked trajectory can be very good
even with a high track loss percentage if tracks are quickly reacquired after a loss. It is
therefore important to consider other MOP to get the total picture.

The average life length of a true track relative to its true target’s life length

In Figure 10 the average life length (in %) of the true tracks is shown. It is clear that the
track length is significantly increased by the modified filters, and most by the modified
multitarget tracking filters (JPDAF and JPDACF). The best performance is achieved by
the modified filters in the meeting scenario, where the average track length is about 80%
of the true target’s life length, more than twice as long as for the standard PDAF and
JPDAF. The improvement by using multiple sensors is most significant for the modified
MSJPDAF and MSJPDACF in the parallel scenario. In this situation the combination of
both using the multitarget wake model, and for the targets to be well resolved by at least
one sensor all the time throughout the run, is vital. In the sequential scenario the best
track length is almost 60% for the same modified multisensor filters. This is due to the
fact that when a track is first lost inside the wake of another target in front, it is very hard
to reacquire a track on the rear target.

The average time for target acquisition

In many situations it is important to quickly initiate tracks and reacquire them once lost.
Let the time for target acquisition be the time before a track is defined as true either in
the beginning of a run or after a track was lost. The average time for target acquisition
(or reacquisition) is shown in Figure 11. For the crossing, the parallel and the meeting
scenarios, the modified filters perform slightly better than the standard filters. At the se-
quential scenario the behavior is different in the way that the standard filters outperform
the modified filters. This is due to the assumption that the measurements behind a target
originate from a wake and not a target. Therefore, when the target following the target
in front is lost, the real target-originated measurements will not be considered for a new
track as long as they are inside the wake area W of the target in front.

In the first three scenarios it is harder to initiate/reacquire true tracks at Sensor 2 than
for Sensor 1. The reason for this is that tracks are starting close to Sensor 1, and far from
Sensor 2, and the detections of the targets (and wakes) will therefore be more spread out
in the view of Sensor 2. This can be seen in Figure 6, and makes it harder to acquire
tracks in the two-point differencing of the cluster centroids from succeeding scans.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 9: Average percentage of tracked trajectory in the four simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(d) Scenario 4: Meeting trajectories

Figure 9: Average percentage of tracked trajectory in the four simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(d) Scenario 4: Meeting trajectories

Figure 9: Average percentage of tracked trajectory in the four simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(d) Scenario 4: Meeting trajectories

Figure 9: Average percentage of tracked trajectory in the four simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories

0

20

40

60

80

100
Average life length of a true track

%

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

M
SP

DAF

M
od

ifie
d
M
SP

DAF

M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AC

F

(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 10: Average life length of a true track relative to its true target’s life length
in the four simulation scenarios: (a) crossing trajectories, (b) parallel trajectories,
(c) sequential trajectories, and (d) meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 10: Average life length of a true track relative to its true target’s life length
in the four simulation scenarios: (a) crossing trajectories, (b) parallel trajectories,
(c) sequential trajectories, and (d) meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 10: Average life length of a true track relative to its true target’s life length
in the four simulation scenarios: (a) crossing trajectories, (b) parallel trajectories,
(c) sequential trajectories, and (d) meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 10: Average life length of a true track relative to its true target’s life length
in the four simulation scenarios: (a) crossing trajectories, (b) parallel trajectories,
(c) sequential trajectories, and (d) meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 11: Average time for target acquisition in the four simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories

0

10

20

30

40

50

60

70
Average time for target acquisition

T
im

e
(s

)

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

M
SP

DAF

M
od

ifie
d
M
SP

DAF

M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AC

F

(c) Scenario 3: Sequential trajectories

0

10

20

30

40

50

60

70
Average time for target acquisition

T
im

e
(s

)

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

M
SP

DAF

M
od

ifie
d
M
SP

DAF

M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AC

F

(d) Scenario 4: Meeting trajectories

Figure 11: Average time for target acquisition in the four simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 11: Average time for target acquisition in the four simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 11: Average time for target acquisition in the four simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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The average life length of a false track

As mentioned above, all tracks that are not defined as true, are considered false. The
average life length of a false track is shown in Figure 12, and the performance is almost
the same for all filters, with an insignificant tendency for shorter life length of the false
tracks in the modified filters.

The number of false tracks per scan

Another MOP considering the false tracks, is the average number of false tracks per scan,
shown in Figure 13. This number is higher for the standard filters than for the modified
ones because the standard filters do not restrict the track formation inside the wake areas
behind the targets. Also, there are more false tracks for the centralized tracking due to
the fact that this tracking algorithm takes into account false measurements from both
sensors.

The position RMS error

The last MOP in this analysis is the position RMS error, given in Figure 14. The RMS
error is based only on the true tracks in the simulation scenarios. In all scenarios the
position RMS error is larger for the standard filters than for the modified filters. This is
because the standard filters do not consider the wake-originated measurements like the
modified filters do, and the state estimate is therefore likely to be drawn into the wake.
It can also be seen that the RMS error, at least for the modified JPDAF and JPDACF, is
slightly reduced in the centralized tracking.

In the two first scenarios (crossing and parallel), the error increases during the peri-
ods when the targets are close to each other. For the crossing scenario this is seen as a
“jump” in the error when the targets are crossing between 80 s and 120 s. In the parallel
scenario, this jump starts at about 60 s and ends at 140 s, which are the period the targets
are moving in parallel. In these situations the estimate for one target will be drawn to-
wards the other target, also known as track coalescence [8]. Among the modified filters,
this is most problematic for the single target tracking algorithm because it accounts for
the wake behind its own target, but has no information about the nearby target which
also has a wake behind it. The modified multitarget filters perform similarly, and their
RMS errors are almost constant throughout the run.

In the meeting scenario only a small tendency of the jump phenomenon is noticeable
shortly after the passing. As discussed above, the totally opposite velocities of the two
targets and the high wake density in the whole joint validation region, make the targets’
passing relatively easy.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories

0

5

10

15

20
Average life length of a false track

T
im

e
(s

)

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

M
SP

DAF

M
od

ifie
d
M
SP

DAF

M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AC

F

(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 12: Average track length for a false track in the four simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.

160 C Multitarget Multisensor Tracking in the Presence of Wakes

Swapped tracksSensor 1 Sensor 2 Centralized fusion

0

5

10

15

20
Average life length of a false track

T
im

e
(s

)

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

M
SP

DAF

M
od

ifie
d
M
SP

DAF

M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AC

F

(a) Scenario 1: Crossing trajectories
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(d) Scenario 4: Meeting trajectories

Figure 12: Average track length for a false track in the four simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(d) Scenario 4: Meeting trajectories

Figure 12: Average track length for a false track in the four simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories

0

5

10

15

20
Average life length of a false track

T
im

e
(s

)

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

M
SP

DAF

M
od

ifie
d
M
SP

DAF

M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AC

F

(b) Scenario 2: Parallel trajectories

0

5

10

15

20
Average life length of a false track

T
im

e
(s

)

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

PD
AF

M
od

ifie
d
PD

AF

JP
DAF

M
od

ifie
d
JP

DAF

M
od

ifie
d
JP

DAC
F

M
SP

DAF

M
od

ifie
d
M
SP

DAF

M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AF

M
od

ifie
d
M
SJ

PD
AC

F
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(d) Scenario 4: Meeting trajectories

Figure 12: Average track length for a false track in the four simulation scenarios:
(a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and (d)
meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(c) Scenario 3: Sequential trajectories
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(d) Scenario 4: Meeting trajectories

Figure 13: Average number of false tracks per scan in the four simulation scenar-
ios: (a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and
(d) meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(d) Scenario 4: Meeting trajectories

Figure 13: Average number of false tracks per scan in the four simulation scenar-
ios: (a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and
(d) meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(b) Scenario 2: Parallel trajectories
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(d) Scenario 4: Meeting trajectories

Figure 13: Average number of false tracks per scan in the four simulation scenar-
ios: (a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and
(d) meeting trajectories.
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(a) Scenario 1: Crossing trajectories
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(d) Scenario 4: Meeting trajectories

Figure 13: Average number of false tracks per scan in the four simulation scenar-
ios: (a) crossing trajectories, (b) parallel trajectories, (c) sequential trajectories, and
(d) meeting trajectories.
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(b) Scenario 1: Crossing trajectories
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(c) Scenario 2: Parallel trajectories
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(d) Scenario 3: Sequential trajectories
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(e) Scenario 4: Meeting trajectories

Figure 14: Position RMS error from 500 Monte Carlo runs in: (a) crossing trajecto-
ries, (b) parallel trajectories, (c) sequential trajectories, and (d) meeting trajectories.
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(b) Scenario 1: Crossing trajectories
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(c) Scenario 2: Parallel trajectories
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(d) Scenario 3: Sequential trajectories
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(e) Scenario 4: Meeting trajectories

Figure 14: Position RMS error from 500 Monte Carlo runs in: (a) crossing trajecto-
ries, (b) parallel trajectories, (c) sequential trajectories, and (d) meeting trajectories.
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(b) Scenario 1: Crossing trajectories
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(c) Scenario 2: Parallel trajectories
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(d) Scenario 3: Sequential trajectories
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(e) Scenario 4: Meeting trajectories

Figure 14: Position RMS error from 500 Monte Carlo runs in: (a) crossing trajecto-
ries, (b) parallel trajectories, (c) sequential trajectories, and (d) meeting trajectories.
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(b) Scenario 1: Crossing trajectories
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(c) Scenario 2: Parallel trajectories
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(d) Scenario 3: Sequential trajectories
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(e) Scenario 4: Meeting trajectories

Figure 14: Position RMS error from 500 Monte Carlo runs in: (a) crossing trajecto-
ries, (b) parallel trajectories, (c) sequential trajectories, and (d) meeting trajectories.
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In the sequential scenario the targets are never closer than about 5 m, so the RMS er-
ror does not increase much during the period the tracks are following after each other. In
this scenario, the modified single target tracking filter performs better than the modified
multitarget tracking filters. The reason for this is because the RMS error is measured
only among the true tracks, not when they become lost. In this scenario, where the tar-
gets are following after each other, the estimation error is larger for the target behind the
one in front, because it is surrounded by wakes. From the percentage of lost tracks in
Figure 7, the modified single target filter will lose the target more often than the modified
multitarget filters, and it is most likely that the lost target is the one with largest estima-
tion error. Therefore, when the RMS error is calculated, the modified multitarget filters
are based on tracks with larger estimation error than what the modified single target filter
is based on, only because these tracks were not lost.

5.6 Usage of the Wake Model on Targets Without Wakes

In this section the erroneous use of wake models on targets without wakes is considered.
The crossing scenario (see Figure 4) is used as before, but without wakes behind the tar-
gets.2 Each target is simulated as a point-target (only one measurement) with detection
probability PD = 0.7, independently across time. The results after 500 Monte Carlo
runs are shown in Figure 15, and the performance is clearly better than in the wake-
scenario due to the fact that each target is never simulated by more than one detection
at a time. This shows that the scattering effect in real sensors, due to the beamforming,
makes the tracking problem considerably harder and is an important element in further
research.

It is also interesting to see that even though the modified PDAF performs worse than
the standard PDAF, the modified multitarget algorithms perform almost the same as the
standard JPDAF. This indicates that applying the modified JPDAF or JPDACF on targets
without wakes will not degrade the tracking performance. For tracking in environments
with different kinds of targets, with and without wakes, this is a desirable property.

Another issue worth mentioning is the increasing trend of the position RMS error for
Sensor 1, and the decreasing trend for Sensor 2. This is due to the fact that the estimated
position error increases with the distance to the sensors, and the targets are starting close
to Sensor 1, and moving towards Sensor 2. Notice how these trends in the single sensors
are averaged out in the centralized tracking where the sensors’ data are fused.

It is also shown that the use of multiple sensors is more effective in preventing lost
tracks in this special case than in the previous cases where the targets had wakes. This
gives an another justification of using multiple sensors when tracking targets in the pres-
ence of wakes, because a target could be mistaken for having a wake even when it does
not have one.

2This would correspond to “closed breathing system” scuba divers or mechanical underwater vehicles.
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Figure 15: Simulation results from the crossing scenario where the probabilistic
wake model is erroneous applied to targets without wakes. Each target is simulated
as point detections with detection probability PD = 0.7, independent across time.
The different features discussed in Section 5.5 are shown.
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Figure 15: Simulation results from the crossing scenario where the probabilistic
wake model is erroneous applied to targets without wakes. Each target is simulated
as point detections with detection probability PD = 0.7, independent across time.
The different features discussed in Section 5.5 are shown.
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Figure 15: Simulation results from the crossing scenario where the probabilistic
wake model is erroneous applied to targets without wakes. Each target is simulated
as point detections with detection probability PD = 0.7, independent across time.
The different features discussed in Section 5.5 are shown.
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Figure 15: Simulation results from the crossing scenario where the probabilistic
wake model is erroneous applied to targets without wakes. Each target is simulated
as point detections with detection probability PD = 0.7, independent across time.
The different features discussed in Section 5.5 are shown.
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6 Conclusions

An important factor in a multitarget tracking system is to correctly associate each mea-
surement received from a detector to its origin. The JPDAF has been a solution to this
problem due to its effectiveness and low computational demand. In the JPDAF all false
measurements are assumed due to i.i.d. uniformly spatially distributed noise or clutter.
This assumption is not adequate for targets that generate wakes, because detections orig-
inating from the wake are not uniformly distributed and may result in a lost track if they
are not properly modelled. The solution presented incorporates a model of the wakes
behind the targets in a multitarget environment. The purpose of this wake model is to
weight wake-originated measurements lower than in a regular JPDAF to avoid the tracks
following these measurements and therefore be forced to turn into the wake. To achieve
this, we presented a model formed by the sum of single models each linearly increasing
behind their associated targets.

A systematic comparison of the standard data association filters (PDAF and JPDAF)
and their corresponding modified versions are presented in a multitarget multisensor
environment. Four different simulation scenarios are examined where two targets in
the presence of wakes are crossing, moving in parallel to each other, one following after
another, and finally meeting and then passing each other. It is shown that the wake model
presented is a useful modification of the JPDAF in all four scenarios. The only stated
drawback using the wake model is when a target is moving after another one, surrounded
by the wake from the target in front. In that case, if the rear target is lost, it is harder
to reacquire the track because the measurements are assumed originating from the wake
and not the true target.

This paper also presents the coupled version of the JPDAF, called JPDACF, and a
modified JPDACF (with a wake model) is developed and tested. The simulations show
that the modified JPDACF is not improving the performance compared to the simpler
modified JPDAF, indicating that there is no significant correlation between the targets’
estimation errors.

The simulation scenarios consider two sensors, and the data association filters at
the local sensors are compared with multisensor (MS) filters in a centralized tracking
configuration. A sequential state updating scheme is used in the multisensor filters, and
the results show that the data fusion provides significant improvement in the tracking
performance.

This paper also examines the effect of applying the wake model on point-targets
without wakes. The results show that the modified JPDAF and JPDACF perform al-
most the same as the standard JPDAF. This makes the modification practical for real
systems where both targets with wakes and targets without wakes are operating in the
same environment.
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are not properly modelled. The solution presented incorporates a model of the wakes
behind the targets in a multitarget environment. The purpose of this wake model is to
weight wake-originated measurements lower than in a regular JPDAF to avoid the tracks
following these measurements and therefore be forced to turn into the wake. To achieve
this, we presented a model formed by the sum of single models each linearly increasing
behind their associated targets.

A systematic comparison of the standard data association filters (PDAF and JPDAF)
and their corresponding modified versions are presented in a multitarget multisensor
environment. Four different simulation scenarios are examined where two targets in
the presence of wakes are crossing, moving in parallel to each other, one following after
another, and finally meeting and then passing each other. It is shown that the wake model
presented is a useful modification of the JPDAF in all four scenarios. The only stated
drawback using the wake model is when a target is moving after another one, surrounded
by the wake from the target in front. In that case, if the rear target is lost, it is harder
to reacquire the track because the measurements are assumed originating from the wake
and not the true target.

This paper also presents the coupled version of the JPDAF, called JPDACF, and a
modified JPDACF (with a wake model) is developed and tested. The simulations show
that the modified JPDACF is not improving the performance compared to the simpler
modified JPDAF, indicating that there is no significant correlation between the targets’
estimation errors.

The simulation scenarios consider two sensors, and the data association filters at
the local sensors are compared with multisensor (MS) filters in a centralized tracking
configuration. A sequential state updating scheme is used in the multisensor filters, and
the results show that the data fusion provides significant improvement in the tracking
performance.

This paper also examines the effect of applying the wake model on point-targets
without wakes. The results show that the modified JPDAF and JPDACF perform al-
most the same as the standard JPDAF. This makes the modification practical for real
systems where both targets with wakes and targets without wakes are operating in the
same environment.
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Appendix A: Specification of the Joint Wake Model

In this appendix the joint wake model pW (zk) introduced in Section 3 is presented, and
an analytical expression for the probability PGW is derived. The joint wake model is the
sum of all NT single wake models pt

W (zk) behind each target t under consideration

pW (zk) =
1

NT

NT∑
t=1

pt
W (zk) (53)

Next, consider the single wake model pt
W (zk) of target t, and let z̄ and v be the predicted

position and velocity of the target, respectively. Reference to Figure 16 may be helpful
in the following.

r
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Figure 16: Specification of variables for integration of the wake model, with length
Ll and width Lw, inside the joint validation region with center c and radius r. The
wake has front corners [α ρ] and [β ρ] and is oriented behind the target with position
z̄ and velocity v.
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The single wake model is assumed linearly increasing with length Ll behind the pre-
dicted position of the target, i.e., in the direction opposite to v, and uniform with width
Lw in the direction perpendicular to the target’s velocity v. This model can be expressed
by defining the independent variables l and w as the respective distances behind and
sideways (relative to v) to the target. From the above assumption, l and w have the
following densities

pl(l) =
2l

L2
l

0 ≤ l ≤ Ll pw(w) =
1

Lw
0 ≤ w ≤ Lw

2
(54)

which yields

pt
W (zk) = pl(l)pw(w) =

2l

L2
l Lw

(55)

Notice that even though a current estimate of the velocity v is available in the filter, a
better way in practice is to use an average of the latest estimates since the wake will not
change direction as rapidly as the current target velocity estimate. In the simulations an
average of the latest 6 estimates is used.

The joint validation region containing all candidate measurements in the multitarget
environment is defined as a circle with radius r and center c. The center c is calculated
as the average between all the predicted target positions, and the radius r is defined as
the distance to the farthest validated measurement.

The probability PGW in (25), used to restrict the density of the joint wake model
pW (zk) to the joint validation region, has to be calculated for each scan by integration of
pW (zk) inside the region. Since pW (zk) is the sum of all single wake models pt

W (zk),
PGW is obtained by calculating P t

GW for each target t and then summing them up

PGW =
NT∑
t=1

P t
GW (56)

The calculation of P t
GW is derived next. Assume a Cartesian coordinate system with

origin at position c and y-axis parallel to v but in the opposite direction, see Figure 16.
Define the two front corners of the wake model with elements α and β for the x-axis,
and ρ for the y-axis

ρ = (c − z̄)T v/|v|

α =
√
|c − z̄|2 − ρ2 − w/2 (57)

β =
√
|c − z̄|2 − ρ2 + w/2

The integration depends on if the front corners [α ρ]T and [β ρ]T are inside or outside
the joint validation region (circle), and will be broken into one, two or three parts. To do
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this, define three binary variables δρ, δα and δβ as follows:

δρ =
{

1 if ρ < 0
0 otherwise

(58)

δα =
{

1 if
√

α2 + ρ2 > r
0 otherwise

(59)

δβ =
{

1 if
√

β2 + ρ2 > r
0 otherwise

(60)

Then the integral can be written as

P t
GW =

2
L2

l Lw

⎧⎪⎪⎨
⎪⎪⎩δρδα

−
√

r2−ρ2∫
max(α,−r)

√
r2−x2∫

−
√

r2−x2

(y − ρ)dydx

+

β(1−δβ)+δβ

√
r2−ρ2∫

α(1−δα)−δα

√
r2−ρ2

√
r2−x2∫
ρ

(y − ρ)dydx (61)

+ δρδβ

min(β,r)∫
√

r2−ρ2

√
r2−x2∫

−
√

r2−x2

(y − ρ)dydx

⎫⎪⎪⎬
⎪⎪⎭

For simplicity we substitute the limits of integration along the x-axis as follows:

a = max(α,−r)

b = −
√

r2 − ρ2

c = α(1 − δα) − δα

√
r2 − ρ2 (62)

d = β(1 − δβ) + δβ

√
r2 − ρ2

e =
√

r2 − ρ2

f = min(β, r)
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which yields

P t
GW =

2
L2

l Lw

⎧⎪⎨
⎪⎩δρδα

b∫
a

√
r2−x2∫

−
√

r2−x2

(y − ρ)dydx

+

d∫
c

√
r2−x2∫
ρ

(y − ρ)dydx

+ δρδβ

f∫
e

√
r2−x2∫

−
√

r2−x2

(y − ρ)dydx

⎫⎪⎬
⎪⎭ (63)

=
1

L2
l Lw

{
ρr2

(
arcsin

c

r
− arcsin

d

r

)
+

c3 − d3

3

+ 2ρδαδρ

(
a
√

r2 − a2 − b
√

r2 − b2
)
− c(ρ2 + r2)

+ 2ρδβδρ

(
e
√

r2 − e2 − f
√

r2 − f2
)

+ d(ρ2 + r2)

+ 2ρδαδρr
2

(
arcsin

a

r
− arcsin

b

r

)
+ ρc

√
r2 − c2

+ 2ρδβδρr
2

(
arcsin

e

r
− arcsin

f

r

)
− ρd

√
r2 − d2

}

Appendix B: Covariance Update in the Modified JPDACF

In this section the updated stacked covariance for the JPDACF in (46) is derived. The
updated covariance PS

k|k, conditioned on all measurements up to time k, Zk, is

PS
k|k = E

{[
xS

k − x̂S
k|k

] [
xS

k − x̂S
k|k

]T ∣∣∣∣Zk

}
(64)

This can be expressed as a weighted sum of all joint association event conditioned esti-
mation error covariances by using the total probability theorem

PS
k|k =

∑
Θk

P{Θk|Zk} (65)

× E

{[
xS

k − x̂S
k|k

] [
xS

k − x̂S
k|k

]T ∣∣∣∣Zk,Θk

}
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Let x̂S
k|k(Θ) be the state estimate conditioned on the joint association event Θk. By using

this, (65) can be rewritten as

PS
k|k =

∑
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P{Θk|Zk}E
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xS
k − x̂S

k|k(Θ) + x̂S
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k|k

)]T
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xS
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k|k(Θ) + x̂S
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k|k

)]T ∣∣∣∣Zk, Θk
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)(
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x̂S

k|k(Θ) − x̂S
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)T
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)(
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k − x̂S
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x̂S
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∣∣∣∣Zk, Θk
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P{Θk|Zk}E
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k − x̂S

k|k(Θ)
)(

xS
k − x̂S

k|k(Θ)
)T
∣∣∣∣Zk,Θk

}
(66)

+
∑
Θk

P{Θk|Zk}
(
x̂S

k|k(Θ) − x̂S
k|k

)(
x̂S

k|k(Θ) − x̂S
k|k

)T

=
∑
Θk

P{Θk|Zk}E
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xS

k − x̂S
k|k(Θ)

)(
xS

k − x̂S
k|k(Θk)

)T
∣∣∣∣Zk,Θk

}
︸ ︷︷ ︸

PΘ

+
∑
Θk

P{Θk|Zk}x̂S
k|k(Θ)x̂S

k|k(Θ)
T − x̂S

k|kx̂
S
k|k

T

︸ ︷︷ ︸
P̃

=
∑
Θk

P{Θk|Zk}PΘ + P̃

where the identity ∑
Θk

P{Θk|Zk} = 1 (67)

is used together with the fact that

x̂S
k|k(Θ) = E

{
xS

k |Zk, Θk

}
(68)

x̂S
k|k =

∑
Θk

P{Θk|Zk}x̂S
k|k(Θ) (69)

Next, PΘ in the first term of (66) will be derived

PΘ = E

{(
xS

k − x̂S
k|k(Θ)

)(
xS

k − x̂S
k|k(Θ)

)T
∣∣∣∣Zk, Θ

}
(70)
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where the conditioned estimation error is

x̃S
k (Θ) =xS

k − x̂S
k|k(Θ) (71)

=FSxS
k−1 + vS

k−1 − FS x̂S
k−1|k−1 − Ix

ΘWS
k Iz

ΘνS
k (Θ)

Substituting (under the assumption that all targets are observed)

νS
k (Θ) =zS

k (Θ) − HSFS x̂S
k−1|k−1

=HSFSxS
k−1 + HSvS

k−1 + wS
k − HSFS x̂S

k−1|k−1

=HSFS x̃S
k−1 + HSvS

k−1 + wS
k (72)

in (71) yields

x̃S
k (Θ) =

(
I − Ix

ΘWS
k Iz

ΘHS
)
FS x̃S

k−1

+
(
I − Ix

ΘWS
k Iz

ΘHS
)
vS
k−1 − Ix

ΘWS
k Iz

ΘwS
k (73)

Using this in (70) gives

PΘ =
(
I − Ix

ΘWS
k Iz

ΘHS
)
PS

k|k−1

(
I − Ix

ΘWS
k Iz

ΘHS
)T

+ Ix
ΘWS

k Iz
ΘRSIz

ΘWS
k

T
Ix
Θ (74)

where
PS

k|k−1 = FSPS
k−1|k−1F

ST
+ QS (75)

In (74) the assumptions in (2) are used together with the following independence as-
sumptions between the estimation error and the two noises

E
{
x̃S

k vS
k

T |Zk, Θk

}
= 0 (76)

E
{
x̃S

k−1w
S
k

T |Zk, Θk

}
= 0 (77)

The last term P̃ in (66) is

P̃ =
∑
Θk

P{Θk|Zk}x̂S
k|k(Θ)x̂S

k|k(Θ)
T − x̂S

k|kx̂
S
k|k

T

=
∑
Θk

P{Θk|Zk}
(
x̂S

k|k−1 + Ix
ΘWS

k Iz
ΘνS

k (Θ)
)

×
(
x̂S

k|k−1 + Ix
ΘWS

k Iz
ΘνS

k (Θ)
)T

(78)

−

⎛
⎝x̂S

k|k−1 +
∑
Θk

P{Θk|Zk}Ix
ΘWS

k Iz
ΘνS

k (Θ)

⎞
⎠

×

⎛
⎝x̂S

k|k−1 +
∑
Θk

P{Θk|Zk}Ix
ΘWS

k Iz
ΘνS

k (Θ)

⎞
⎠T
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which after cancellations becomes the spread of innovations
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