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Train-track-bridge modelling and review of parameters 

This paper gathers into one single document all the necessary information to 

construct a model to calculate the coupled dynamic response of train–track–

bridge systems. Each component of the model is presented in detail together with 

a review of possible sources for the parameter values, including a collection of 

vehicle models, a variety of track configurations and general railway bridge 

properties. Descriptions of the most important track irregularity representations 

are also included. The presented model is implemented in Matlab and validated 

against a commercially available finite element package for a range of speeds, 

paying particular attention to a resonant speed. Finally, the potential of the 

described model is illustrated with two numerical studies that address interesting 

aspects of train and bridge dynamic responses. In particular, the effect of the 

presence of a vehicle on the bridge’s fundamental frequency is studied, as well as 

the influence of the wavelength of the rail irregularities on the dynamic effects of 

the bridge and the vehicle. 

Keywords: railway, bridge, dynamics, irregularity, wavelength, frequency 

  



 

 

1. Introduction 

Modelling the dynamic behaviour of bridges due to traversing traffic is a complex 

problem. Not only are correct representations of vehicle and bridge systems needed, but 

also the interaction between these systems has to be taken into account. The magnitude 

of dynamic effects varies greatly depending on the length of the bridge and the type of 

traffic loading. In railway bridges these effects can be considerably greater than for their 

road counterparts. In particular, for high-speed railway lines, the dynamic effects are 

major contributors to the total load effects developed in the structure during a vehicle 

passage. The repeated loading of the bridge due to a regular load configuration (long 

trains composed of wagons with identical axle spacings) combined with its traversing 

speed introduces loading frequencies that can lead to resonant behaviour in the bridge. 

This is a fundamental difference from road bridges, which are loaded by traffic with a 

mixture of axle configurations and separated by arbitrary gaps between vehicles. Even 

multiple vehicle events in road bridges do not produce resonant behaviour to the same 

extent as in railway bridges. 

According to the European design codes (Eurocodes, 2003) a numerical 

simulation is needed when the bridge’s fundamental frequency is outside of certain 

frequency bounds or if the speed of the traversing vehicle exceeds 200 km/h. In these 

cases, the designer is required to check the effect of the design code load model HSLM 

(High Speed train Load Model) or, as an alternative, real trains with axle loads and 

spacings should be specified for each individual project. There are many limiting design 

criteria, but in practice the vertical deck acceleration criterion will, in most cases, be the 

decisive factor (Zacher & Baeßler, 2009; UIC, 2009). The Eurocode (2003) limits the 

maximum deck acceleration for ballasted tracks to 3.5 m/s2 to avoid ballast instability. 

In this context, there is a lack of codes dedicated to the assessment of existing structures 



 

 

(Johansson, Ní Nualláin, Pacoste & Andersson, 2014) with alternative checks of the 

dynamic behaviour of the bridge.  

As a result, dynamic analysis of railway bridges due to traversing trains is often 

required. The consideration of Vehicle–Bridge Interaction (VBI) and the load 

distribution provided by the track can lead to reduced bridge responses, and can thus be 

advantageous, for example, when assessing the capacity of existing bridges. However, 

there is a lack of commercially available software that is able to calculate the bridge’s 

dynamic response while correctly accounting for the interaction between vehicle and 

structure. Only some software packages allow for the calculation of simple moving 

loads. Thus, there is the need for fast and reliable numerical models that consider the 

VBI. This paper gathers into one document all the necessary information needed to 

construct such a model. A Finite Element (FE) planar model that incorporates the 

behaviour of the train, ballasted track and bridge is presented together with a 

comprehensive list of sources for particular values of the model parameters for each of 

the subsystems considered. The vehicle is described as a combination of lumped 

masses, rigid bars, springs and dashpots. The track is modelled as a beam (that 

represents the rail) resting on periodically spaced sprung mass systems (that represent 

pads, sleepers, ballast and sub-ballast). The bridge is modelled as a beam. The coupling 

of each subsystem into one model correctly accounts for the interaction between the 

vehicle and the infrastructure. The irregularities of the railway track are also considered. 

This is termed Train–Track–Bridge (TTB) model in this document. 

Compared to the simple moving load models, the model presented here gives 

more accurate results because it includes the VBI. It has been shown in (Doménech, 

Museros & Martínez-Rodrigo, 2014a) that moving load models generally overestimate 

the dynamic effects, thus VBI should be included when more realistic calculations are 



 

 

required. The importance of VBI is generally higher for short-span bridges (< 30 m) but 

is in fact related to a number of relations between the train and the bridge (Arvidsson & 

Karoumi, 2014). The greatest difference in results between a moving load model and a 

VBI model is seen for high mass ratios and bogie frequencies close to the bridge 

fundamental frequency. In addition, including the vehicle behaviour in the model 

provides an estimate of the vehicle response, which may be used to evaluate passenger 

comfort, and the wheel–rail forces which may be used to evaluate running safety 

(Doménech, Museros & Martínez-Rodrigo, 2014a). Furthermore, the consideration of 

the rail–sleeper–ballast system in the TTB model distributes the load of each axle of the 

train along the bridge. This load distribution is particularly important for short span 

bridges as investigated by a number of studies (ERRI, 1999; Museros, Romero, Poy & 

Alarcón, 2002; Johansson et al., 2011; Axelsson, Syk, Ülker-Kaustell & Battini, 2014), 

which consistently show that the dynamic response significantly reduces for bridges 

with high fundamental frequency. The Eurocode (2003) suggests the use of load 

distribution patterns and recommends it for bridges with a span of less than 10 m, which 

avoids the definition of a track model. However, there are advantages in introducing a 

track model, as is done in the model presented in this paper. The approximate 

description of the track provides a more realistic load distribution compared to the 

simple load distribution patterns suggested by the Eurocode (2003), as well as it adds 

the ability of the track to filter high-frequency vibrations (Rebelo, Simões da Silva, 

Rigueiro & Pircher). 

There are many levels of modelling complexity when considering trains 

travelling over bridges, depending on the assumptions made and the simplifications 

considered. Once the model is defined, the engineer is faced with the problem of 

selecting the correct model parameters. These values should ideally be derived from 



 

 

structural measurements and material experimentation, which are generally difficult to 

obtain. Therefore, the presented model is a trade-off between accuracy, model 

complexity, number of parameters and computational cost. Commercial FE software 

packages have the advantage of bypassing limitations in geometry and type of FE 

idealisation as well as the manual re-derivation of the system equations for the multi-

body vehicle models  in case of changed vehicle type. However, a specific purpose 

model can prove valuable for maximum computational efficiency. The TTB model 

presented in this paper is shown to be more computationally efficient than a 

corresponding implementation in ABAQUS, which is an essential feature when it 

comes to the ability to perform parametric studies.  

A planar model is certainly less accurate than more complex 3D models. Good 

examples of 3D models can be found in (Yang, Yau & Wu, 2004; Zhang, Xia & Guo, 

2008; Dinh, Kim & Warnitchai, 2009; Zhang, 2010) amongst others. These 3D models 

provide the lateral response of the infrastructure, which is important for the analysis of 

wind (Xia, Guo, Zhang & Sun, 2008) or earthquake loading (Yang, Yau & Wu, 2004) 

and also for traffic loading in curved bridges (Yang, Yau & Wu, 2004). However, 3D 

models are computationally very expensive and require the definition of many 

additional parameters, for which the exact numerical values are difficult to determine. 

Furthermore, it is known that a planar representation provides valid results when there 

are no significant 3D effects. Thus, the TTB model is valid for the analysis of bridges 

having beam-like behaviour. 

The content of this paper has been divided into three distinct parts: model 

description, validation and numerical studies. First, the model description presents the 

sub-models for each of the TTB system components and provides a review of possible 

sources for the model parameters. Next, the TTB model is validated by direct 



 

 

comparison to the results of a commercial FE package. The model is then used to 

perform two different numerical studies that highlight important aspects of the VBI that 

are not often discussed in the literature. The first one investigates the change of the 

bridge’s fundamental frequency during a train passage. The second study examines the 

influence of different track irregularity wavelength ranges on the responses of the 

bridge and the vehicle.  

2. Model description 

This section provides a detailed description of each component of the TTB model. They 

are presented in separate subsections as follows: vehicle, track irregularity, track and 

bridge. In addition, there is a comprehensive list of possible sources for each of the 

model parameters. The coupling of all the components together in the TTB model is 

summarized in an additional section followed by different alternatives for numerical 

solvers. 

2.1 Vehicle 

The vehicle model consists of a combination of lumped masses, rigid bars, springs and 

dashpots as presented in Figure 1. Each wheel, represented as a mass (mw), is connected 

to the bogie by a primary suspension made of a spring (kp) and a viscous damper (cp) in 

parallel. The bogies are modelled as rigid bars with mass (mb) and moment of inertia 

(Ib). Similarly, the main body of the vehicle is represented as a rigid bar with mass (m) 

and moment of inertia (Iv). The secondary suspension links the bogies and the main 

body together by means of springs (ks) and viscous dampers (cs). The geometrical 

configuration of the vehicle is defined mainly by the distance between the bogie centres 

(Lv) and the separations between wheels in each bogie (Lb). Finally, the distances from 

the first bogie to the front of the vehicle (Lf) and from the second bogie to the back of 



 

 

the vehicle (Lb) are important when defining a convoy of trains made of multiple 

wagons and locomotives. The total number of Degrees Of Freedom (DOF) of this 

multibody system is ten and corresponds to seven vertical displacements for the masses 

and three rotations of the rigid bars. Assuming small rotations, we can neglect the 

nonlinear geometric relations and quadratic terms leading to a linearized system of 

equations of motion (Nguyen, Goicolea & Galbadon, 2014). This model has been 

extensively reported in the literature and the equations of motion can be found in many 

sources: (Lei & Noda, 2002; Sun & Dhanasekar, 2002; Wu & Yang, 2003; Azimi, 

2011; Ferrara, 2013), amongst others. 

(Suggested location for Figure 1) 

Figure 1: Sketch of vehicle model. 

 

A train set can be defined as a succession of individual vehicles. By providing 

the correct dimensions and properties for each vehicle, it is possible to model 

locomotives and wagons, for passenger trains or freight traffic. The actual geometric 

and mechanical properties depend on the particular vehicle to be modelled. However, 

selecting the correct properties for a vehicle model is not a trivial issue. Geometric 

properties are generally accessible from various sources. The masses of the vehicle 

components can be estimated with a certain degree of confidence from maximum 

permitted axle loads and assumptions on passenger occupancy or freight load or can be 

weighed using weigh-in-motion systems (Sekula & Kolakowski, 2012). However, it is 

more difficult to define the properties of the suspension systems since they are not 

generally publically available. 

The authors have compiled a list of sources (Table 1) where geometrical and 

mechanical properties of various types of vehicle can be found. Amongst the vehicles 



 

 

included are various high-speed trains and also some passenger vehicles for 

conventional speeds. It is noteworthy that the number of references that provide the 

properties of freight trains is very sparse, and Table 1 provides only two, namely the 

Swedish Steel Arrow and a bulk cement wagon from Irish Rail. Finally, the list also 

includes the properties of the Manchester benchmark which was defined to assess the 

suitability of various software packages for investigating vehicle dynamic behaviour. It 

is acknowledged that real train vehicles are very complex systems that have non-linear 

suspensions (Chu, Garg & Bhatti, 1985; Zhai, Wang & Cai, 2009; Bruni, Vinolas, Berg, 

Polach & Stichel, 2011). However, for the purpose of infrastructure assessment, simpler 

planar models like that presented here are generally accepted. 

Table 1: Sources of vehicle model parameters. 

(Suggested location for Table 1) 

2.2 Track irregularities 

Track irregularities are deviations from the ideal perfectly smooth track geometry. As 

the unsprung axle masses travel over the irregular profile, variations in the wheel–rail 

forces arise, providing an additional excitation of the TTB system. Random track 

irregularities are often idealized as stationary random processes, described by Power 

Spectral Density (PSD) functions. Various different PSD functions are used by different 

railway authorities, generally derived from field measurements. The PSD functions 

describe the severity of the irregularities as a function of the spatial frequency 𝜔 = 1/𝜆 

(where λ is the wavelength) or the circular spatial frequency Ω = 2π𝜔. Three of the 

most commonly used PSD functions in the railway-infrastructure research field are 

presented in Figure 2a and their formulations are provided in the following list: 



 

 

• The SNCF (Société Nationale des Chemins de Fer français) spectrum is defined 

by Eq. (1) where ωr = 0.0489 m-1 and A = 550 m2/m-1 for poor track and 

A = 160 m2/m-1 for good track. Eq. (1) can be used to describe wavelengths in 

the range, 2–40 m (UIC, 1971; Frýba, 1996; Berawi, 2013; Rocha, Henriques & 

Calçada, 2014). 

𝑆(𝜔) =
𝐴

(1 +
𝜔
𝜔r

)
3 

Eq. (1) 

• The German track spectrum is defined in Eq. (2), where Ωr = 0.0206 rad/m and 

Ωc = 0.8246 rad/m. The quality of the track is defined by the parameter Ap that 

ranges from Ap = 4.03210-7 m2/(rad/m) for good track to Ap = 10.8010-

7 m2/(rad/m) for poor track (Guo, Xia, De Roeck & Liu, 2012; Berawi , 2013). 

𝑆(Ω) =
𝐴pΩc

2

(Ω2 + Ωr
2)(Ω2 + Ωc

2)
 Eq. (2) 

• The FRA (Federal Railroad Administration) spectrum is defined by Eq. (3), 

where ω1 = 23.29410-3 m-1 and ω2 = 13.12310-2 m-1, and can be used to 

describe wavelengths in the range, 1.5–305 m. The scale factor Av is used to 

define track class with Av = 15.5310-8 m2/m-1 for Class 1 and Av = 0.9810-

8 m2/m-1 for class 6 (Hamid, Rasmussen, Baluja & Yang, 1983; Garg & 

Dukkipati, 1984; Frýba, 1996). Alternative formulations of the FRA spectrum 

can be found in (Wu &Yang, 2003; Dinh, Kim & Warnitchai, 2009; Berawi, 

2013; Ferrara, 2013). 



 

 

𝑆(𝜔) =
𝐴v𝜔2

2(𝜔2 + 𝜔1
2)

𝜔4(𝜔2 + 𝜔2
2)

 Eq. (3) 

Other PSD functions that have been used in recent studies are the Chinese PSD 

(Lua, Kennedy, Williams & Lin, 2008; Zhai, Wang & Cai, 2009; Berawi, 2013) and the 

ISO 3095 (2013) in (Berggren, Li & Spännar, 2008; Ferrara, 2013). Frýba (1996) 

presents a collection of additional PSD functions together with a mathematical 

formulation that describes typical local isolated irregularities such as rail joints, hanging 

sleepers or bridge abutments. 

The Eurocode EN 13848-5 (2010) prescribes limits for the maximum allowed 

track irregularities for running safety and track maintenance. It defines values for the 

range of wavelengths, 3–150 m subdivided into three wavelength ranges, namely D1 

(3–25 m), D2 (25–70 m) and D3 (70–150 m). Limits are given for standard deviations 

over a defined length, as well as for isolated defects. However, no guidance is given in 

the Eurocode on what wavelength ranges should be adopted for the numerical analysis 

of bridges. In Section 4.2, the effect on the vehicle and the bridge of each of the 

wavelength ranges is analysed. 

For time domain analyses, realisations of the PSD functions are obtained by 

performing inverse Fourier transforms with random phases. Detailed explanations on 

how to generate profile realisations from a PSD can be found for instance in (Claus & 

Schiehlen, 1998; Dinh, Kim & Warnitchai, 2009; Nguyen, 2013). Examples of profile 

realisations from the German track spectra containing wavelengths, 3–25 m, 3–70 m 

and 3–150 m are shown in Figure 2b. 

a) 

(Suggested location for Figure 2a) 

b) 

(Suggested location for Figure 2b) 



 

 

Figure 2: a) Common PSD functions; b) a realisation of the German (good) track 

spectra considering various wavelength ranges. 

2.3 Track 

Ballasted railway tracks generally consist of rails, pads, sleepers, ballast and sub-ballast. 

It is possible to represent the track with various levels of complexity that can essentially 

be classified according to the number of sprung layers considered (Arvidsson & 

Karoumi, 2014). There are interesting examples of two-layer analyses in (Lei & Noda, 

2002; Berggren, Li & Spännar, 2008; Savini, 2010; Kouroussis, Verlinden & Conti, 

2014) and even four-layer models in (Sun & Dhanasekar, 2009; Nguyen, 2013). The 

model presented here is a three-layer system, which is recommended by the UIC (2009) 

to check the design requirements of railway bridges due to the dynamic interaction 

between train, track and bridge. 

In the TTB model the track is modelled as a beam resting on evenly spaced 

sprung mass systems as illustrated in Figure 3. In particular, the rail is modelled as an 

Euler-Bernoulli beam using an FE discretization. The behaviour of the beam is defined 

by four parameters, namely the Young’s modulus (Er), sectional area (Ar), second 

moment of area (Ir) and its mass per unit length (µr). The sleepers are represented as 

masses (ms) separated by a regular spacing (Ls) and connected to the rail by a spring and 

dashpot system with stiffness (kp) and viscous damping (cp) that represents the pad. The 

ballast is represented as a lumped mass (mba) that interacts with the sleeper by means of 

a spring (kba) and a dashpot (cba). Finally, the third sprung layer represents the dynamic 

properties of the sub-ballast with another spring and dashpot system in parallel with 

stiffness (ksb) and viscous damping (csb) respectively. 

(Suggested location for Figure 3) 



 

 

Figure 3: Sketch of track model. 

 

In reality the track is a complex 3D system that combines granular and fine-

grained materials interacting continuously. It is not straightforward to find the 

equivalent properties of such a system to be modelled using the three-layer track model. 

However, (Zhai, Wang & Lin, 2004) suggest a clear methodology to find the correct 

equivalent model parameters. Nevertheless, it was found that the particular values to be 

used differ significantly, depending on the source. Table 2 shows a compilation of 

model properties found in the literature. 

Table 2: Mechanical properties of three-layer track models. 

(Suggested location for Table 2) 

In contrast, the properties of the rail are better defined because it is a standard 

component. The majority of numerical studies model the UIC60 rail, because it is the 

most common profile used in high-speed railway lines. For completeness, the properties 

are provided in Table 3 that can be found in (ERRI, 1999). Note that the properties in 

Table 3 are for one single rail. In order to include both rails in the planar TTB model, 

the mechanical properties need to be doubled. 

Table 3: Mechanical properties of rail. 

(Suggested location for Table 3) 

2.4 Bridge 

The bridge is represented in the TTB model as an Euler-Bernoulli beam with elastic 

supports, which have vertical and rotational stiffness as shown in Figure 4. This 

configuration allows for the definition of a variety of bridge supports, from simply 

supported to fixed-fixed. The behaviour of the beam of length (L) is described by four 



 

 

parameters, namely the material’s elastic modulus (E), cross-sectional area (A), second 

moment of area (I) and mass per unit length (µ). At the supports there is vertical 

stiffness (kv) and rotational stiffness (kr). The bridge has been implemented using an FE 

formulation using beam elements. The elemental matrices have been described in many 

publications and the reader can refer to (Kwon & Bang, 1997; Zienkiewicz & Taylor, 

2000; Yang, Yau & Wu, 2004), amongst many others. The arrangement of these 

matrices into global form provides the set of equations of motion that describe the 

bridge’s dynamic behaviour. 

(Suggested location for Figure 4) 

Figure 4: Sketch of bridge model. 

 

Once the model of the bridge is defined it is paramount to select the correct 

model parameters. There are many examples in the literature that provide the properties 

of particular bridges. However, it is difficult to find properties of large bridge 

catalogues to describe railway bridges in general. This is why a compendium of bridge 

properties from various references is provided here in order to be able to describe the 

dynamic behaviour of bridges in general. This information is useful to draw general 

conclusions and provide recommendations on the design and assessment of railway 

bridges. Thus, this information has to be taken with caution when used for the analysis 

of one particular structure. In that case the engineer should refer to the nominal 

properties of the specific bridge under consideration. 

The fundamental frequency (no) of a bridge is generally expressed in terms of 

span. In particular for railway bridges, the Eurocode (2003) provides upper (curve 1) 

and lower (curve 2) limits, as seen in Figure 5, which mark the typical bounds of no. 

When the fundamental frequency of the bridge under consideration is outside these 



 

 

bounds, additional checks and detailed numerical analysis are required in order to 

comply with the code. The study of a large railway bridge stock in Sweden in (Johanson 

et al., 2010), led to the definition of various interpolation curves depending on the 

bridge typology. Curve 3 in Figure 5 shows the resulting curve for concrete bridges. 

Also (Frýba, 1996) provides a comprehensive list of railway bridge fundamental 

frequencies and curve 4 in Figure 5 is the suggested curve for concrete bridges. 

(Suggested location for Figure 5) 

Figure 5: Fundamental frequency of railway bridges, 1) Upper bound (Eurocode, 2003), 

2) Lower bound (Eurocode, 2003), 3) Concrete bridges (Johanson et al., 2010), 4) 

Concrete bridges (Frýba, 1996). 

 

To completely describe the dynamic behaviour of a bridge it is necessary to 

know something more about the structure. For a full description either the mass of the 

structure (µ) or its bending stiffness (E I) is required. There is an evident lack of sources 

that provide these properties for railway bridges in general. Only for the mass per unit 

length of the bridge can some useful sources be found. In (Doménech, 2014) a study of 

a large catalogue of isostatic bridges for high speed lines was done, which allows for the 

definition of upper (curve 1) and lower (curve 2) limits (Figure 6). Also (Johanson et 

al., 2010) provides interpolating curves to define the bridge mass of various types of 

bridge. Curve 3 in Figure 6 shows the resulting curve for single track concrete bridges. 

(Suggested location for Figure 6) 

Figure 6: Mass of bridges per unit length, 1) Upper limit (Doménech, 2014), 2) Lower 

limit (Doménech, 2014), 3) Single track concrete bridges (Johanson et al., 2010). 

 



 

 

Finally, some energy dissipation has been modelled in the TTB system as 

Rayleigh damping, which assumes that the damping matrix is proportional to a linear 

combination of the mass and stiffness matrices of the bridge (Zienkiewicz & Taylor, 

2000). The Eurocode (2003) (Figure 7) provides the design damping for various types 

of bridge as a function of span. These lines represent the lower bound of a series of 

measured damping ratios for a wide range of bridges. Therefore, it is a source of 

conservatism to assume these damping values since, in general, higher damping is 

observed. 

(Suggested location for Figure 7) 

Figure 7: Bridge damping according to (Eurocode, 2003) for bridge type: 1) Steel and 

composite, 2) Pre-stressed concrete, 3) Concrete. 

2.5 Coupling of systems 

All the presented subsystems are combined together into one TTB model. An overview 

of the complete model is given in Figure 8 and can be summarized as follows. A train 

convoy is made up of several consecutive individual vehicles. The vehicles move on a 

rail that is resting over three layers of spring and dashpot systems that represent the pad, 

ballast and sub-ballast. The track is then resting either on the bridge or on a stiff 

foundation. The track is sufficiently long to ensure that the vehicle does not reach the 

bridge until after it has achieved dynamic equilibrium. It is also sufficiently long for the 

vehicle to leave the bridge completely. 

(Suggested location for Figure 8) 

Figure 8: Overview of TTB model. 

 



 

 

As mentioned in previous sections, each of the subsystems is defined by a set of 

equations of motion. These second order differential equations can be represented in a 

general matrix form in terms of the mass (M), damping (C) and stiffness (K) matrices 

together with the vector of external forces (F) and solved for the vector of DOF (X). 

The coupled equations of motion of the complete model can be expressed in terms of 

block matrices (Eq. (4)) adopting the subscripts V, T and B to indicate vehicle, track 

and bridge subsystems respectively. The coupling of the subsystems is expressed 

mathematically with additional off-diagonal block matrices in Eq. (4). These coupling 

terms depend on the shape function of the beam element and the mechanical properties 

of the system. For a detailed derivation of these mathematical expressions, the reader is 

referred to (Lou, 2007). 

(
𝑀V 0 0
0 𝑀T 0
0 0 𝑀B

) {

�̈�V

�̈�T

�̈�B

} + (

𝐶V 𝐶V,T 0

𝐶T,V 𝐶T 𝐶T,B

0 𝐶B,T 𝐶B

) {

�̇�V

�̇�T

�̇�B

}

+ (

𝐾V 𝐾V,T 0

𝐾T,V 𝐾T 𝐾T,B

0 𝐾B,T 𝐾B

) {
𝑋V

𝑋T

𝑋B

} = {
𝐹V

𝐹T

𝐹B

} 

Eq. (4) 

The coupling terms between the vehicle and the track depend on the vehicle’s 

position; thus these terms are time dependent and need to be recalculated for every time 

step. On the other hand, the coupling terms between track and bridge remain constant, 

since there is no change in their configuration during one simulation. It is important to 

note also that when the vehicle and track are linked together, some of the DOF’s of the 

vehicle are merged with those of the track. The DOF’s of the wheels are no longer free 

to move; they are now combined together with the DOF of the rail. As a result, the mass 

matrix of the track (MT) needs to be updated as well with the additional masses of the 

wheels at every time step. This is a commonly adopted coupling procedure, used in e.g. 



 

 

(Lin & Trethewey, 1990; Lou, 2007). Alternatively, a contact spring can be introduced 

to simulate the wheel–rail contact (Rocha, Henriques & Calçada, 2014; Dinh, Kim & 

Warnitchai, 2009). In (Antolín, Zhang, Goicolea, Xia, Astiz, & Oliva, 2013) the rigid 

contact assumption is compared to both linear and non-linear Hertzian contact springs. 

It is concluded that the vertical vehicle–bridge dynamics can be studied using rigid 

contact, while the lateral dynamics requires the consideration of a wheel–rail contact 

element. They demonstrate that, due to the non-suspended wheel mass running over the 

uneven track profile, the vertical bridge deck acceleration has a slightly larger high 

frequency content using rigid contact than using Hertzian contact. 

The external force vector (F) includes the contributions due to gravity and the 

excitation due to the rail irregularities. This is one advantage of treating the problem as 

a coupled system; it is not necessary to calculate the contact forces between vehicle and 

track since they are inherent in the formulation as internal forces. This is an important 

point since the contact forces consist of the combined contribution of the gravity 

loading and dynamic effects. Amongst the dynamic effects are the inertial, centripetal 

and Coriolis forces that develop as the wheel masses move over a flexible beam, in this 

case the rail. Centripetal forces relate to the curvature of deflection of the beam, while 

Coriolis forces relate to the rate of inclination of the beam. The centripetal and Coriolis 

forces can be neglected for a mass moving over a comparatively stiff and massive beam 

(Michaltsos, 2001; Yang, Yau & Wu, 2004). The curvature and rate of inclination of the 

beam are then small, making the contribution from the centripetal and Coriolis forces 

much smaller than those from the inertial forces. This is generally the case for models 

where the wheel loads are assumed to be moving directly on the smooth bridge beam. 

However, in the presence of a track with an irregular profile, the centripetal and Coriolis 

forces have to be considered in the external force vector and in the coupling terms 



 

 

between the vehicle and the track, as shown by (Lou & Au, 2013). For an exact 

formulation of these terms, the reader is referred again to (Lou, 2007). 

2.6 Numerical solution 

The coupled equations of motion need to be solved by numerical integration. There are 

many different methods available, and the reader can find in-depth discussion and 

descriptions of the algorithms in (Wilson, 1995; Xie, 1996; Zienkiewicz & Taylor, 

2000). One method in particular is often used in the field of VBI, namely the Newmark-

β method, which can also be found in (Lei & Noda, 2002; Yang, Yau & Wu, 2004; 

Dinh, Kim & Warnitchai, 2009). It is an unconditionally stable numerical scheme, 

which means that convergence of the solver is assured, regardless of the size of the 

chosen time step. However, stability does not ensure accuracy. The time step has to be 

sufficiently small in order to correctly calculate the dynamic effects up to the desired 

maximum frequency. It is generally recommended (Zienkiewicz & Taylor, 2000) to set 

the step size to ten times the maximum frequency of interest. 

The implementation of the TTB model and its numerical integration was done in 

Matlab (2013). The time-variant system matrices have to be updated for every time step. 

This is achieved in an efficient manner by generating, only once, the uncoupled terms of 

the equations of motion. The coupling terms are recalculated for every time step and the 

global system matrices are then assembled as a combination of coupled and uncoupled 

terms. The total number of DOF’s varies with the desired configuration and grows with 

the number of wagons considered or the desired length of track. Thus the final system 

matrices can be large, but many of the matrix elements are zero. Matlab allows for 

efficient management of these sparse matrices with enhanced and faster algorithms for 

matrix handling, multiplication and factorization. 



 

 

3. Validation 

The TTB model has been validated numerically and the results are presented in this 

section. As a preliminary check, the vehicle model alone was first validated, using the 

results from the Manchester benchmark (Iwnick, 1998). It showed good agreement with 

natural frequencies and modes of vibration. However, validating the whole model 

proved to be more difficult. There is no commercially available software that readily 

preforms VBI analysis. For this reason, a model including the train, track and bridge 

was developed in the multi-purpose FE software ABAQUS (2011) and additional 

routines were implemented to couple the moving vehicle with the rest of the model. 

The ABAQUS model is equivalent to the TTB model, with the exception of the 

wheel–rail contact formulation. In ABAQUS a sliding surface-to-surface contact 

definition was used between the vehicle wheel nodes and the rail nodes, with no loss of 

contact allowed (Saleeb & Kumar ,2011; Arvidsson, Karoumi & Pacoste, 2014). The 

model is solved using the Hilber-Hughes-Taylor integration method with numerical 

damping, as opposed to the undamped Newmark method used in the TTB model. The 

required CPU time for the ABAQUS model is more than 20 times that of the TTB 

model. 

For the numerical validation, the Skidträsk Bridge in Sweden (Ülker-Kaustell & 

Karoumi, 2012) is adopted. This 36 m simply supported composite steel/concrete bridge 

has bending stiffness, EI = 172.2 MNm2, mass per unit length, µ = 15575 kg/m 

(excluding the track structure) and damping ratio, ζ = 0.5 %. The track structure has 

properties according to the ballasted track described in (Zhai, Wang & Lin, 2004) so 

that the fundamental frequency of the bridge, including the track structure, is 3.86 Hz. 

The vehicle consists of the ICE 2 train in a 12 passenger carriage configuration with a 

front and rear power car, with properties according to (Doménech, Museros & 



 

 

Martínez-Rodrigo, 2014b). The rail profile is assumed to be smooth and a track length 

of 30 m is considered before the bridge. The TTB model is discretised with a mesh size 

of 0.6 m for the bridge, 0.2 m for the rail, and a time step of 0.0005 s. Rayleigh damping 

coefficients are chosen so as to achieve the damping ratio of 0.5 % at the first and 

second bridge modes.  

The results of the ABAQUS model were compared to the results provided by the 

TTB model. Both models have been studied for a wide range of speeds and the 

maximum bridge deck accelerations compared. Then, the time history responses of 

vehicle and bridge are inspected at the particular speeds that result in resonant 

behaviour of the bridge. There was good agreement between the results which validates 

the TTB model. 

3.1 Range of speeds 

The bridge mid-span acceleration in the speed range 100–400 km/h is shown in 

Figure 9. As can be seen the agreement between the TTB and ABAQUS results is very 

good. The marginally lower accelerations that are obtained at resonance from the 

ABAQUS model can be attributed to the numerical damping associated with the 

integration scheme. 

(Suggested location for Figure 9) 

Figure 9: Bridge deck mid-span vertical acceleration. 

 

For comparison, a moving load analysis using the TTB model is also included in 

Figure 9, i.e., an analysis where VBI is not considered. For this particular example, the 

effect of including VBI is considerable. This is due to the closeness of the bogie 

frequency to the bridge frequency, and the relatively high bogie–bridge mass ratio and 



 

 

bridge–carriage length ratio (Arvidsson & Karoumi, 2014; Doménech, Museros & 

Martínez-Rodrigo, 2014b). 

3.2 Resonant behaviour 

The system behaviour at resonant speeds is of great interest. Regularly spaced axles 

produce repetitive loading on the structure that at certain speeds lead to significantly 

greater dynamic effects. In particular, for the 36 m bridge traversed by the ICE 2 train, 

the resonant speed is 365 km/h, as can be seen in Figure 9. Time histories for the bridge 

mid-span acceleration and the car body acceleration for the last passenger carriage are 

shown in Figure 10. Both models provide almost identical responses at the critical 

speed, not only for the bridge but also for the vehicle. 

a) 

(Suggested location for Figure 10a) 

b) 

(Suggested location for Figure 10b) 

Figure 10: For the resonant train speed of 365 km/h: a) bridge deck mid-span vertical 

acceleration; b) car body vertical acceleration of the last ICE 2 passenger carriage. 

4. Numerical studies 

The TTB model is powerful, versatile and efficient software that can be used to study 

the dynamic behaviour of TTB systems. It allows the user to study the response of the 

vehicle and the infrastructure for a wide range of model configurations. In this section, 

the model is used to perform two numerical studies. First, the change of the bridge’s 

fundamental frequency is investigated for various locations of a locomotive on the 

structure. The second study examines the influence of track irregularity wavelength 

ranges on the responses of the bridge and the vehicle. 



 

 

4.1 Change of fundamental frequency 

It is known that the fundamental frequency of a bridge changes when additional masses 

are located on it, as is the case during the traversing of a train. It has been reported in 

(Liu, Reynders, De Roeck & Lombaert, 2009) that the frequencies of a particular bridge 

are different when it is in forced, as opposed to free, vibration. The extent of the 

variation in frequency depends on the position of the vehicle and the (vehicle to bridge) 

mass ratio. This had been explained for the case of a moving mass by Frýba (1996, 

1999) who provides an approximate analytical expression. More recently there have 

been new analytical (Yang, Cheng & Chang, 2013) and numerical (Cantero and OBrien, 

2013) studies on the change of the bridge’s fundamental frequency that consider simple 

1-DOF sprung vehicles. However, the available studies deal only with very simple 

vehicle configurations (moving masses or 1-DOF vehicles). With the TTB model it is 

possible to study the change of the system frequencies of more complex and realistic 

vehicle–track–bridge configurations. 

The change in the bridge’s fundamental frequency is studied for the particular 

case where big changes in frequency can be expected, that is, for the situation with a 

high mass ratio. The locomotive of the Steel Arrow (Arvidsson & Karoumi,2014) (an 

84 t vehicle) is modelled traversing the 36 m single track Skidträsk Bridge from Section 

3 (with an approximate total mass of 612 t, including the track). This situation features a 

high mass ratio because it consists of a heavy vehicle and a relatively light bridge, a 

combination that gives a mass ratio of 0.14. This has been modelled using the TTB 

model for various locations of the vehicle and the change in the fundamental frequency 

of the bridge is shown in Figure 11, where the vehicle position refers to the position of 

the first axle with respect to the first support of the bridge. The results show clearly that 

the fundamental frequency of the bridge changes with the position of the vehicle on the 



 

 

structure. The maximum difference in beam frequencies is found when the centre of 

gravity of the vehicle is exactly at mid-span. In that case the frequency of the bridge is 

3.743 Hz while the original frequency of the bridge without the vehicle is 3.865 Hz, a 

variation of -3.16 %. Note that the rest of the system frequencies also change but to a 

lesser extent. Compared to the approximate expression for the moving mass case in 

(Frýba, 1996), the actual variation in frequencies is much smaller. The approximate 

expression gives a fundamental frequency when the vehicle is at mid-span of 3.386 Hz, 

a difference of -12.40 % with respect to the original value. This is because the 

expression assumes that the entire weight of the vehicle is concentrated into a single 

load, which is then resolved into a Fourier series and added to the self-weight of the 

bridge. 

(Suggested location of Figure 11) 

Figure 11: Bridge’s fundamental frequency as a function of the vehicle’s position. No 

vehicle (dotted), coupled vehicle–track–bridge (solid), approximate expression (dashed) 

(Frýba, 1996). 

 

Figure 12 shows the maximum change in the bridge fundamental frequency for a 

range of mass ratios. The mass of a locomotive located at the centre of the bridge is 

changed in order to achieve the indicated mass ratio. Again, the results from the 

numerical TTB model and the approximate analytical solution in (Frýba, 1996) are 

directly compared. The results clearly show that the approximate analytical expression 

of a concentrated mass significantly overestimates the effect of the vehicle on the bridge 

frequency. 

(Suggested location for Figure 12) 



 

 

Figure 12: Maximum change in bridge fundamental frequency. Coupled vehicle–track–

bridge (solid), approximate expression (dashed) (Frýba, 1996) 

 

However, it is found that the study of the bridge’s fundamental frequency 

becomes a rather complex problem when complicated vehicle models are considered 

like in the TTB model. The change in frequency does not depend only on the location 

and mass ratios, but also on frequency ratios between vehicle and bridge. For this 

reason, in Figure 12, the moments of inertia and suspension stiffness properties of the 

vehicle have been adapted in order to maintain constant frequency ratios between 

systems. 

The results presented in this section clearly show that changes in a bridge’s 

fundamental frequency do occur and can be of significant magnitude. This is a fact that 

is generally overseen when engineers study the dynamic responses of structures in 

forced vibration. As in the example in Figure 11 a change of -3.16 % in frequency could 

lead to the wrong conclusion that the structure is damaged with a stiffness reduction of 

10 % approximately. It is acknowledged that a better understanding of this phenomenon 

is needed. A detailed analysis of the bridge’s fundamental frequency in terms of mass 

and frequency ratios using TTB model will address this issue in future studies, but is out 

of the scope of this document. 

4.2 Track irregularity and wavelength 

It is well-known in railway vehicle dynamics that the ride comfort is affected by track 

irregularities, and that also longer wavelengths could significantly affect the car body 

response. However, which wavelengths are most important for the bridge response is 

not often discussed. An example on the effect of different wavelength ranges on bridge 

displacement was given by (Dinh, Kim & Warnitchai, 2009). In this section, the effect 



 

 

on bridge deck acceleration, as well as on vehicle response and wheel–rail contact 

forces, will be exemplified. Three ranges were considered for the track profile, namely 

3–25 m, 3–70 m and 3–150 m, which were chosen according to the Eurocode EN 

13848-5 (2010) that defines wavelength ranges D1 (3–25 m), D2 (25–70 m) and D3 

(70–150 m). The German PSD function was adopted and scaled to obtain a track quality 

class A for design speeds 230–300 km/h according to EN 13848-6 (2014), which 

corresponds to a standard deviation of 0.4 mm within the wavelength range, D1. 

Realisations of this profile have been included in the same TTB configuration as used in 

the validation section, i.e. the ICE 2 vehicle traversing a simply supported 36 m span 

bridge. The only differences are the length of the track and the additional irregularities. 

Here a 300 m long track section is considered at the approach to allow the vehicle to 

reach dynamic equilibrium, as well as a 50 m track section after the bridge. 

The results presented in Figure 13 and Figure 14 provide the statistical summary 

of the analysis on 15 profile realisations in the range 100–400 km/h. The solid lines 

correspond to the average result, whereas the shaded areas indicate the dispersion of 

values in terms of one standard deviation above and below the mean. From the results it 

can be seen that the bridge deck acceleration, presented in Figure 13a, increases slightly 

with a D1 profile as compared to the smooth profile (no irregularity). The addition of 

longer wavelengths (D2) has a small effect on the bridge deck acceleration and the 

addition of even longer wavelengths (D3) has no discernible effect. Moreover, it can be 

observed that the standard deviation of the acceleration increases at resonance. 

 

a) 

(Suggested location for Figure 13a) 

b) 

(Suggested location for Figure 13b) 



 

 

Figure 13: Effect of track irregularity wavelengths 3–25 m, 3–70 m, 3–150 m and a 

smooth profile. Mean value (solid line) and standard deviation (shaded area) of 15 

profile realisations, a) bridge deck mid-span vertical acceleration, b) minimum and 

maximum wheel–rail contact forces for the fourth wheel of the last passenger carriage. 

 

The maximum and minimum wheel–rail forces are plotted in Figure 13b. It can 

be seen that the presence of track irregularities D1 has a significant effect on the wheel–

rail forces, while the addition of longer wavelengths (D2 and D3) has a negligible 

effect. This is unsurprising as the majority of the energy content in the contact forces 

originate from higher frequencies and it is thus affected mostly by the shorter 

wavelengths, D1. It is important to note that TTB uses a rigid contact model between 

wheel and rail. Thus, the high-frequency energy content of the calculated contact force 

is not as accurate as with other more complex contact representations. If a detailed 

analysis of the contact force is required a more realistic contact model should be used. 

However, for the analysis of bridge responses the use of the rigid contact model is 

sufficiently accurate. 

The vertical car body acceleration provides an estimate of the passenger 

comfort. The vertical acceleration of the last passenger carriage of the ICE 2 is plotted 

in Figure 14a. It can be observed that the car body acceleration increases only slightly 

with the introduction of D1 track irregularities, as compared to a smooth profile. On the 

other hand, the addition of wavelength ranges D2 and D3 has a considerable effect, 

especially so for the longest wavelengths (D3). The car body bounce natural frequency 

is 0.64 Hz. Thus, the car body frequency lies within the range of the frequencies 

induced by the D3 wavelengths in the speed range 100–400 km/h (0.2–1.6 Hz). A 

comparison between the car body acceleration in Figure 14a and the bogie acceleration 

in Figure 14b shows that the vehicle suspension system effectively filters the high 



 

 

frequencies (short wavelengths), while the lower frequencies close to the vertical car 

body frequency are not as effectively filtered. 

 

a) 

(Suggested location for Figure 14a) 

b) 

(Suggested location for Figure 14b) 

Figure 14: Effect of track irregularity wavelengths 3–25 m, 3–70 m, 3–150 m and a 

smooth profile. Mean value (solid line) and standard deviation (shaded area) of 10 

profile realisations, a) car body vertical acceleration, b) bogie vertical acceleration of 

the first bogie of the last passenger carriage. 

 

The results from this example supports the conclusion that the shorter 

wavelengths are important for safety analyses (wheel–rail forces), while the longer 

wavelengths (D3) are more related to vehicle ride quality (EN 13848-5, 2010). It should 

be stressed, though, that the frequencies induced from each wavelength range increase 

with speed. Therefore, for high speeds the effects on safety measures from the longer 

wavelengths may still be important. 

5. Conclusions 

This paper has presented in detail a Matlab model to simulate the dynamic interaction 

that occurs between a train and the infrastructure (track and bridge). The paper provides 

a review of sources for model parameters, track irregularity representations and 

numerical solvers. The model has been validated against ABAQUS showing that it is 

accurate, versatile and efficient.  

The TTB model was then used to perform numerical studies on two aspects of 

the train-bridge interaction problem. The results clearly show that changes in the 

bridge’s fundamental frequency occur during train passages and that they can be of 



 

 

significant magnitude. These changes are due to the sole presence of a vehicle on the 

bridge. Furthermore, an analysis of the influence of various wavelength ranges confirms 

that shorter wavelengths are important for safety analyses (wheel–rail forces) and 

structural assessment, while the longer wavelengths are more relevant to vehicle ride 

quality. 
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