
Doctoral theses at NTNU, 2010:201

Francesco Scibilia
Explicit Model Predictive Control:
Solutions Via Computational
Geometry

ISBN 978-82-471-2381-2 (printed ver.)
ISBN 978-82-471-2382-9 (electronic ver.)

ISSN 1503-8181

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f

Sc
ie

nc
e

an
d

Te
ch

no
lo

gy
Th

es
is

 fo
r

th
e

de
gr

ee
 o

f
ph

ilo
so

ph
ia

e
do

ct
or

Fa
cu

lt
y

of
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

, M
at

he
m

at
ic

s
an

d
El

ec
tr

ic
al

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f E
ng

in
ee

ri
ng

 C
yb

er
ne

tic
sD

octoral theses at N
TN

U
, 2010:201

Francesco Scibilia

Francesco Scibilia

Explicit Model Predictive Control:

Solutions Via Computational

Geometry

Thesis for the degree of philosophiae doctor

Trondheim, November 2010

Norwegian University of

Science and Technology

Faculty of Information Technology, Mathematics and Electrical

Engineering

Department of Engineering Cybernetics

Francesco Scibilia

Explicit Model Predictive Control:

Solutions Via Computational

Geometry

Thesis for the degree of philosophiae doctor

Trondheim, November 2010

Norwegian University of

Science and Technology

Faculty of Information Technology, Mathematics and Electrical

Engineering

Department of Engineering Cybernetics

Francesco Scibilia

Explicit Model Predictive Control:

Solutions Via Computational

Geometry

Thesis for the degree of philosophiae doctor

Trondheim, November 2010

Norwegian University of

Science and Technology

Faculty of Information Technology, Mathematics and Electrical

Engineering

Department of Engineering Cybernetics

Francesco Scibilia

Explicit Model Predictive Control:

Solutions Via Computational

Geometry

Thesis for the degree of philosophiae doctor

Trondheim, November 2010

Norwegian University of

Science and Technology

Faculty of Information Technology, Mathematics and Electrical

Engineering

Department of Engineering Cybernetics

NTNU
Norwegian University of Science and Technology

Thesis for the degree of philosophiae doctor

Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Engineering Cybernetics

©Francesco Scibilia

ISBN 978-82-471-2381-2 (printed ver.)

ISBN 978-82-471-2382-9 (electronic ver.)

ISSN 1503-8181

Doctoral Theses at NTNU, 2010:201

Printed by Tapir Uttrykk

NTNU
Norwegian University of Science and Technology

Thesis for the degree of philosophiae doctor

Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Engineering Cybernetics

©Francesco Scibilia

ISBN 978-82-471-2381-2 (printed ver.)

ISBN 978-82-471-2382-9 (electronic ver.)

ISSN 1503-8181

Doctoral Theses at NTNU, 2010:201

Printed by Tapir Uttrykk

NTNU
Norwegian University of Science and Technology

Thesis for the degree of philosophiae doctor

Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Engineering Cybernetics

©Francesco Scibilia

ISBN 978-82-471-2381-2 (printed ver.)

ISBN 978-82-471-2382-9 (electronic ver.)

ISSN 1503-8181

Doctoral Theses at NTNU, 2010:201

Printed by Tapir Uttrykk

NTNU
Norwegian University of Science and Technology

Thesis for the degree of philosophiae doctor

Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Engineering Cybernetics

©Francesco Scibilia

ISBN 978-82-471-2381-2 (printed ver.)

ISBN 978-82-471-2382-9 (electronic ver.)

ISSN 1503-8181

Doctoral Theses at NTNU, 2010:201

Printed by Tapir Uttrykk

Summary

The thesis is mainly focused on issues involved with explicit model predictive con-

trol approaches. Conventional model predictive control (MPC) implementation re-

quires at each sampling time the solution of an open-loop optimal control problem

with the current state as the initial condition of the optimization. Formulating the

MPC problem as a multi-parametric programming problem, the online optimization

effort can be moved offline and the optimal control law given as an explicitly de-

fined piecewise affine (PWA) function with dependence on the current state. The

domain where the PWA function is defined corresponds to the feasible set which

is partitioned into convex regions. This makes explicit MPC solutions into promis-

ing approaches to extend the scope of applicability of MPC schemes. The online

computation reduces to simple evaluations of a PWA function, allowing implemen-

tations on simple hardware and with fast sampling rates. Furthermore, the closed

form of the MPC solutions allows offline analysis of the performance, providing

additional insight of the controller behavior.

However, explicit MPC implementations may still be prohibitively costly for large

optimization problems. The offline computational effort needed to solve the multi-

parametric optimization problem may be discouraging, and even the online com-

putation needed to evaluate a complex PWA controller may cause difficulties if

low-cost hardware is used.

The first contribution of this thesis is to propose a technique for computing approxi-

mate explicit MPC solutions for the cases where optimal explicit MPC solutions are

impractical due to the offline computational effort needed and their complexity for

online evaluations. This technique is based on computational geometry, a branch

of computer science which focuses heavily on computational complexity since the

algorithms are intended to be used on large data-sets. The approximate solution is

suboptimal only over the subregion of the feasible set where constraints are active.

In this subregion, the ineffective optimal explicit MPC solution is replaced by an

approximation based on Delaunay tessellations and is computed from a finite num-

ber of samples of the exact solution. Finer tessellations can be obtained in order to

achieve a desired level of accuracy.

i

Summary

The thesis is mainly focused on issues involved with explicit model predictive con-

trol approaches. Conventional model predictive control (MPC) implementation re-

quires at each sampling time the solution of an open-loop optimal control problem

with the current state as the initial condition of the optimization. Formulating the

MPC problem as a multi-parametric programming problem, the online optimization

effort can be moved offline and the optimal control law given as an explicitly de-

fined piecewise affine (PWA) function with dependence on the current state. The

domain where the PWA function is defined corresponds to the feasible set which

is partitioned into convex regions. This makes explicit MPC solutions into promis-

ing approaches to extend the scope of applicability of MPC schemes. The online

computation reduces to simple evaluations of a PWA function, allowing implemen-

tations on simple hardware and with fast sampling rates. Furthermore, the closed

form of the MPC solutions allows offline analysis of the performance, providing

additional insight of the controller behavior.

However, explicit MPC implementations may still be prohibitively costly for large

optimization problems. The offline computational effort needed to solve the multi-

parametric optimization problem may be discouraging, and even the online com-

putation needed to evaluate a complex PWA controller may cause difficulties if

low-cost hardware is used.

The first contribution of this thesis is to propose a technique for computing approxi-

mate explicit MPC solutions for the cases where optimal explicit MPC solutions are

impractical due to the offline computational effort needed and their complexity for

online evaluations. This technique is based on computational geometry, a branch

of computer science which focuses heavily on computational complexity since the

algorithms are intended to be used on large data-sets. The approximate solution is

suboptimal only over the subregion of the feasible set where constraints are active.

In this subregion, the ineffective optimal explicit MPC solution is replaced by an

approximation based on Delaunay tessellations and is computed from a finite num-

ber of samples of the exact solution. Finer tessellations can be obtained in order to

achieve a desired level of accuracy.

i

Summary

The thesis is mainly focused on issues involved with explicit model predictive con-

trol approaches. Conventional model predictive control (MPC) implementation re-

quires at each sampling time the solution of an open-loop optimal control problem

with the current state as the initial condition of the optimization. Formulating the

MPC problem as a multi-parametric programming problem, the online optimization

effort can be moved offline and the optimal control law given as an explicitly de-

fined piecewise affine (PWA) function with dependence on the current state. The

domain where the PWA function is defined corresponds to the feasible set which

is partitioned into convex regions. This makes explicit MPC solutions into promis-

ing approaches to extend the scope of applicability of MPC schemes. The online

computation reduces to simple evaluations of a PWA function, allowing implemen-

tations on simple hardware and with fast sampling rates. Furthermore, the closed

form of the MPC solutions allows offline analysis of the performance, providing

additional insight of the controller behavior.

However, explicit MPC implementations may still be prohibitively costly for large

optimization problems. The offline computational effort needed to solve the multi-

parametric optimization problem may be discouraging, and even the online com-

putation needed to evaluate a complex PWA controller may cause difficulties if

low-cost hardware is used.

The first contribution of this thesis is to propose a technique for computing approxi-

mate explicit MPC solutions for the cases where optimal explicit MPC solutions are

impractical due to the offline computational effort needed and their complexity for

online evaluations. This technique is based on computational geometry, a branch

of computer science which focuses heavily on computational complexity since the

algorithms are intended to be used on large data-sets. The approximate solution is

suboptimal only over the subregion of the feasible set where constraints are active.

In this subregion, the ineffective optimal explicit MPC solution is replaced by an

approximation based on Delaunay tessellations and is computed from a finite num-

ber of samples of the exact solution. Finer tessellations can be obtained in order to

achieve a desired level of accuracy.

i

Summary

The thesis is mainly focused on issues involved with explicit model predictive con-

trol approaches. Conventional model predictive control (MPC) implementation re-

quires at each sampling time the solution of an open-loop optimal control problem

with the current state as the initial condition of the optimization. Formulating the

MPC problem as a multi-parametric programming problem, the online optimization

effort can be moved offline and the optimal control law given as an explicitly de-

fined piecewise affine (PWA) function with dependence on the current state. The

domain where the PWA function is defined corresponds to the feasible set which

is partitioned into convex regions. This makes explicit MPC solutions into promis-

ing approaches to extend the scope of applicability of MPC schemes. The online

computation reduces to simple evaluations of a PWA function, allowing implemen-

tations on simple hardware and with fast sampling rates. Furthermore, the closed

form of the MPC solutions allows offline analysis of the performance, providing

additional insight of the controller behavior.

However, explicit MPC implementations may still be prohibitively costly for large

optimization problems. The offline computational effort needed to solve the multi-

parametric optimization problem may be discouraging, and even the online com-

putation needed to evaluate a complex PWA controller may cause difficulties if

low-cost hardware is used.

The first contribution of this thesis is to propose a technique for computing approxi-

mate explicit MPC solutions for the cases where optimal explicit MPC solutions are

impractical due to the offline computational effort needed and their complexity for

online evaluations. This technique is based on computational geometry, a branch

of computer science which focuses heavily on computational complexity since the

algorithms are intended to be used on large data-sets. The approximate solution is

suboptimal only over the subregion of the feasible set where constraints are active.

In this subregion, the ineffective optimal explicit MPC solution is replaced by an

approximation based on Delaunay tessellations and is computed from a finite num-

ber of samples of the exact solution. Finer tessellations can be obtained in order to

achieve a desired level of accuracy.

i

Successively, the thesis presents a twofold contribution concerned with the compu-

tation of feasible sets for MPC and their suitable approximations. First, an alterna-

tive approach is suggested for computing the feasible set which uses set relations in-

stead of the conventional orthogonal projection. The approach can be implemented

incrementally on the length of the MPC prediction horizon, and proves to be compu-

tationally less demanding than the standard approach. Thereafter, an algorithm for

computing suitable inner approximations of the feasible set is proposed, which con-

stitutes the main contribution. Such approximations are characterized by simpler

representations and preserve the essential properties of the feasible set as convexity,

positive invariance, inclusion of the set of expected initial states. This contribution

is particularly important in the context of finding less complex suboptimal explicit

MPC solutions, where the complexity of the feasible set plays a decisive role.

The last part of the thesis is concerned with robustness of nominal explicit MPC

solutions to model uncertainty. In the presence of model mismatch, when the con-

troller designed using the nominal model is applied to the real plant, the feasible

set may lose its invariance property, and this means violation of constraints. Also,

since the PWA control law is designed only over the feasible set, there is the techni-

cal problem that the control action is undefined if the state moves outside of this set.

To deal with this issue, a tool is proposed to analyze how uncertainty on the model

affects the PWA control law computed using the nominal model. Given the linear

system describing the plant and the PWA control law, the algorithm presented con-

siders the polytopic model uncertainty and constructs the maximal robust feasible

set, i.e. the largest subset of the feasible set which is guaranteed to be feasible for

any model in the family of models described by the polytopic uncertainty.

The appendix of the thesis contains two additional contributions which are only

marginally related to the main theme of the thesis. MPC approaches are often im-

plemented as state feedback controllers. The state variables are not always mea-

sured, and in these cases a state estimation approach has to be adopted to obtain

the state from the measurements. The two contributions deal with state estimation

in two different applications, but not with the explicit goal of being used in MPC

approaches.

ii

Successively, the thesis presents a twofold contribution concerned with the compu-

tation of feasible sets for MPC and their suitable approximations. First, an alterna-

tive approach is suggested for computing the feasible set which uses set relations in-

stead of the conventional orthogonal projection. The approach can be implemented

incrementally on the length of the MPC prediction horizon, and proves to be compu-

tationally less demanding than the standard approach. Thereafter, an algorithm for

computing suitable inner approximations of the feasible set is proposed, which con-

stitutes the main contribution. Such approximations are characterized by simpler

representations and preserve the essential properties of the feasible set as convexity,

positive invariance, inclusion of the set of expected initial states. This contribution

is particularly important in the context of finding less complex suboptimal explicit

MPC solutions, where the complexity of the feasible set plays a decisive role.

The last part of the thesis is concerned with robustness of nominal explicit MPC

solutions to model uncertainty. In the presence of model mismatch, when the con-

troller designed using the nominal model is applied to the real plant, the feasible

set may lose its invariance property, and this means violation of constraints. Also,

since the PWA control law is designed only over the feasible set, there is the techni-

cal problem that the control action is undefined if the state moves outside of this set.

To deal with this issue, a tool is proposed to analyze how uncertainty on the model

affects the PWA control law computed using the nominal model. Given the linear

system describing the plant and the PWA control law, the algorithm presented con-

siders the polytopic model uncertainty and constructs the maximal robust feasible

set, i.e. the largest subset of the feasible set which is guaranteed to be feasible for

any model in the family of models described by the polytopic uncertainty.

The appendix of the thesis contains two additional contributions which are only

marginally related to the main theme of the thesis. MPC approaches are often im-

plemented as state feedback controllers. The state variables are not always mea-

sured, and in these cases a state estimation approach has to be adopted to obtain

the state from the measurements. The two contributions deal with state estimation

in two different applications, but not with the explicit goal of being used in MPC

approaches.

ii

Successively, the thesis presents a twofold contribution concerned with the compu-

tation of feasible sets for MPC and their suitable approximations. First, an alterna-

tive approach is suggested for computing the feasible set which uses set relations in-

stead of the conventional orthogonal projection. The approach can be implemented

incrementally on the length of the MPC prediction horizon, and proves to be compu-

tationally less demanding than the standard approach. Thereafter, an algorithm for

computing suitable inner approximations of the feasible set is proposed, which con-

stitutes the main contribution. Such approximations are characterized by simpler

representations and preserve the essential properties of the feasible set as convexity,

positive invariance, inclusion of the set of expected initial states. This contribution

is particularly important in the context of finding less complex suboptimal explicit

MPC solutions, where the complexity of the feasible set plays a decisive role.

The last part of the thesis is concerned with robustness of nominal explicit MPC

solutions to model uncertainty. In the presence of model mismatch, when the con-

troller designed using the nominal model is applied to the real plant, the feasible

set may lose its invariance property, and this means violation of constraints. Also,

since the PWA control law is designed only over the feasible set, there is the techni-

cal problem that the control action is undefined if the state moves outside of this set.

To deal with this issue, a tool is proposed to analyze how uncertainty on the model

affects the PWA control law computed using the nominal model. Given the linear

system describing the plant and the PWA control law, the algorithm presented con-

siders the polytopic model uncertainty and constructs the maximal robust feasible

set, i.e. the largest subset of the feasible set which is guaranteed to be feasible for

any model in the family of models described by the polytopic uncertainty.

The appendix of the thesis contains two additional contributions which are only

marginally related to the main theme of the thesis. MPC approaches are often im-

plemented as state feedback controllers. The state variables are not always mea-

sured, and in these cases a state estimation approach has to be adopted to obtain

the state from the measurements. The two contributions deal with state estimation

in two different applications, but not with the explicit goal of being used in MPC

approaches.

ii

Successively, the thesis presents a twofold contribution concerned with the compu-

tation of feasible sets for MPC and their suitable approximations. First, an alterna-

tive approach is suggested for computing the feasible set which uses set relations in-

stead of the conventional orthogonal projection. The approach can be implemented

incrementally on the length of the MPC prediction horizon, and proves to be compu-

tationally less demanding than the standard approach. Thereafter, an algorithm for

computing suitable inner approximations of the feasible set is proposed, which con-

stitutes the main contribution. Such approximations are characterized by simpler

representations and preserve the essential properties of the feasible set as convexity,

positive invariance, inclusion of the set of expected initial states. This contribution

is particularly important in the context of finding less complex suboptimal explicit

MPC solutions, where the complexity of the feasible set plays a decisive role.

The last part of the thesis is concerned with robustness of nominal explicit MPC

solutions to model uncertainty. In the presence of model mismatch, when the con-

troller designed using the nominal model is applied to the real plant, the feasible

set may lose its invariance property, and this means violation of constraints. Also,

since the PWA control law is designed only over the feasible set, there is the techni-

cal problem that the control action is undefined if the state moves outside of this set.

To deal with this issue, a tool is proposed to analyze how uncertainty on the model

affects the PWA control law computed using the nominal model. Given the linear

system describing the plant and the PWA control law, the algorithm presented con-

siders the polytopic model uncertainty and constructs the maximal robust feasible

set, i.e. the largest subset of the feasible set which is guaranteed to be feasible for

any model in the family of models described by the polytopic uncertainty.

The appendix of the thesis contains two additional contributions which are only

marginally related to the main theme of the thesis. MPC approaches are often im-

plemented as state feedback controllers. The state variables are not always mea-

sured, and in these cases a state estimation approach has to be adopted to obtain

the state from the measurements. The two contributions deal with state estimation

in two different applications, but not with the explicit goal of being used in MPC

approaches.

ii

Preface

This thesis is submitted to the Norwegian University of Science and Technology

(NTNU) for the partial fulfillment of the requirements for the degree of philosophiae

doctor.

This doctoral work has been mainly performed at the Department of Engineering

Cybernetics, NTNU, Trondheim, Norway, during the period from August 2006 to

May 2010, with Professor Morten Hovd as supervisor.

Professor Robert R. Bitmead has been advisor during my six-month visit to the

UCSD Jacobs School of Engineering, San Diego, California, USA, from August

2008 to February 2009.

Professor Sorin Olaru has been advisor during my two two-week visits to the Auto-

matic Control Department of SUPELEC Systems Sciences, Paris, France, in April

2008 and in May-April 2009.

The work has been funded by the Research Council of Norway (NFR) through the

Enhanced Model Predictive Control project, and partially by the Design of Ad-

vanced Controllers for Economic, Robust and Safe Manufacturing Performance

(CONNECT) european project.

iii

Preface

This thesis is submitted to the Norwegian University of Science and Technology

(NTNU) for the partial fulfillment of the requirements for the degree of philosophiae

doctor.

This doctoral work has been mainly performed at the Department of Engineering

Cybernetics, NTNU, Trondheim, Norway, during the period from August 2006 to

May 2010, with Professor Morten Hovd as supervisor.

Professor Robert R. Bitmead has been advisor during my six-month visit to the

UCSD Jacobs School of Engineering, San Diego, California, USA, from August

2008 to February 2009.

Professor Sorin Olaru has been advisor during my two two-week visits to the Auto-

matic Control Department of SUPELEC Systems Sciences, Paris, France, in April

2008 and in May-April 2009.

The work has been funded by the Research Council of Norway (NFR) through the

Enhanced Model Predictive Control project, and partially by the Design of Ad-

vanced Controllers for Economic, Robust and Safe Manufacturing Performance

(CONNECT) european project.

iii

Preface

This thesis is submitted to the Norwegian University of Science and Technology

(NTNU) for the partial fulfillment of the requirements for the degree of philosophiae

doctor.

This doctoral work has been mainly performed at the Department of Engineering

Cybernetics, NTNU, Trondheim, Norway, during the period from August 2006 to

May 2010, with Professor Morten Hovd as supervisor.

Professor Robert R. Bitmead has been advisor during my six-month visit to the

UCSD Jacobs School of Engineering, San Diego, California, USA, from August

2008 to February 2009.

Professor Sorin Olaru has been advisor during my two two-week visits to the Auto-

matic Control Department of SUPELEC Systems Sciences, Paris, France, in April

2008 and in May-April 2009.

The work has been funded by the Research Council of Norway (NFR) through the

Enhanced Model Predictive Control project, and partially by the Design of Ad-

vanced Controllers for Economic, Robust and Safe Manufacturing Performance

(CONNECT) european project.

iii

Preface

This thesis is submitted to the Norwegian University of Science and Technology

(NTNU) for the partial fulfillment of the requirements for the degree of philosophiae

doctor.

This doctoral work has been mainly performed at the Department of Engineering

Cybernetics, NTNU, Trondheim, Norway, during the period from August 2006 to

May 2010, with Professor Morten Hovd as supervisor.

Professor Robert R. Bitmead has been advisor during my six-month visit to the

UCSD Jacobs School of Engineering, San Diego, California, USA, from August

2008 to February 2009.

Professor Sorin Olaru has been advisor during my two two-week visits to the Auto-

matic Control Department of SUPELEC Systems Sciences, Paris, France, in April

2008 and in May-April 2009.

The work has been funded by the Research Council of Norway (NFR) through the

Enhanced Model Predictive Control project, and partially by the Design of Ad-

vanced Controllers for Economic, Robust and Safe Manufacturing Performance

(CONNECT) european project.

iii

iv iv

iv iv

Acknowledgements

I owe my deepest gratitude to a lot of people, perhaps too many to exhaustively

mention, who have contributed with generous friendship, collaboration and support

in a number of ways to make possible this journey, an extraordinary work and life

experience.

First of all, I would like to thank my supervisor, Professor Morten Hovd. I offer

him my sincerest gratitude for having granted me, in the first place, the possibility

to pursue a Ph.D. degree, and then for his varied support and encouragement during

my studies. He has taken an active interest in my work, being always keen to shares

his ideas and knowledge, and offer his insight, constructive suggestions, comments

and criticism.

The environment at the Department of Engineering Cybernetics at NTNU has been

wonderful and enjoyable. This is thanks to the many good colleagues and great

friends, with whom I have had the privilege and the pleasure of working with and

doing a lot of extra-activities. I would like to express my profound gratitude to all

of them, particularly to Giancarlo Marafioti, my mate in many adventures, Luca

Pivano and Ilaria Canova Calori, who have given me invaluable friendship since the

beginning, and Johannes Tjønnås, Aksel Andreas Transeth, Alexey Pavlov, Hardy

Bonatua Siahaan, Roberto Galeazzi, Mernout Burger, Milan Milovanovic, Esten

Grøtli, Christian Holden, Jørgen Spjøtvold, Vidar Gunnerud.

My gratitude goes also to the capable staff at the department for never making all

the administrative procedures and paper work never an issue.

I would also like to acknowledge and thank Stewart Clark at NTNU for his editorial

assistance on this thesis.

In San Diego, I received the warmest welcome from Professor Robert Bitmead, my

advisor at UCSD, and his kind wife, Jan. I heartily thank them for the generous

hospitality, all the support and friendship. I am grateful for all the inspiring and

invaluable conversations with Robert, who always willingly shared his deep and

vast knowledge with me. I feel honored to have worked with him.

I was also fortunate to meet great friends and colleagues there at UCSD, with whom

I have shared lot of unforgettable moments. Particularly, I would like to thank

v

Acknowledgements

I owe my deepest gratitude to a lot of people, perhaps too many to exhaustively

mention, who have contributed with generous friendship, collaboration and support

in a number of ways to make possible this journey, an extraordinary work and life

experience.

First of all, I would like to thank my supervisor, Professor Morten Hovd. I offer

him my sincerest gratitude for having granted me, in the first place, the possibility

to pursue a Ph.D. degree, and then for his varied support and encouragement during

my studies. He has taken an active interest in my work, being always keen to shares

his ideas and knowledge, and offer his insight, constructive suggestions, comments

and criticism.

The environment at the Department of Engineering Cybernetics at NTNU has been

wonderful and enjoyable. This is thanks to the many good colleagues and great

friends, with whom I have had the privilege and the pleasure of working with and

doing a lot of extra-activities. I would like to express my profound gratitude to all

of them, particularly to Giancarlo Marafioti, my mate in many adventures, Luca

Pivano and Ilaria Canova Calori, who have given me invaluable friendship since the

beginning, and Johannes Tjønnås, Aksel Andreas Transeth, Alexey Pavlov, Hardy

Bonatua Siahaan, Roberto Galeazzi, Mernout Burger, Milan Milovanovic, Esten

Grøtli, Christian Holden, Jørgen Spjøtvold, Vidar Gunnerud.

My gratitude goes also to the capable staff at the department for never making all

the administrative procedures and paper work never an issue.

I would also like to acknowledge and thank Stewart Clark at NTNU for his editorial

assistance on this thesis.

In San Diego, I received the warmest welcome from Professor Robert Bitmead, my

advisor at UCSD, and his kind wife, Jan. I heartily thank them for the generous

hospitality, all the support and friendship. I am grateful for all the inspiring and

invaluable conversations with Robert, who always willingly shared his deep and

vast knowledge with me. I feel honored to have worked with him.

I was also fortunate to meet great friends and colleagues there at UCSD, with whom

I have shared lot of unforgettable moments. Particularly, I would like to thank

v

Acknowledgements

I owe my deepest gratitude to a lot of people, perhaps too many to exhaustively

mention, who have contributed with generous friendship, collaboration and support

in a number of ways to make possible this journey, an extraordinary work and life

experience.

First of all, I would like to thank my supervisor, Professor Morten Hovd. I offer

him my sincerest gratitude for having granted me, in the first place, the possibility

to pursue a Ph.D. degree, and then for his varied support and encouragement during

my studies. He has taken an active interest in my work, being always keen to shares

his ideas and knowledge, and offer his insight, constructive suggestions, comments

and criticism.

The environment at the Department of Engineering Cybernetics at NTNU has been

wonderful and enjoyable. This is thanks to the many good colleagues and great

friends, with whom I have had the privilege and the pleasure of working with and

doing a lot of extra-activities. I would like to express my profound gratitude to all

of them, particularly to Giancarlo Marafioti, my mate in many adventures, Luca

Pivano and Ilaria Canova Calori, who have given me invaluable friendship since the

beginning, and Johannes Tjønnås, Aksel Andreas Transeth, Alexey Pavlov, Hardy

Bonatua Siahaan, Roberto Galeazzi, Mernout Burger, Milan Milovanovic, Esten

Grøtli, Christian Holden, Jørgen Spjøtvold, Vidar Gunnerud.

My gratitude goes also to the capable staff at the department for never making all

the administrative procedures and paper work never an issue.

I would also like to acknowledge and thank Stewart Clark at NTNU for his editorial

assistance on this thesis.

In San Diego, I received the warmest welcome from Professor Robert Bitmead, my

advisor at UCSD, and his kind wife, Jan. I heartily thank them for the generous

hospitality, all the support and friendship. I am grateful for all the inspiring and

invaluable conversations with Robert, who always willingly shared his deep and

vast knowledge with me. I feel honored to have worked with him.

I was also fortunate to meet great friends and colleagues there at UCSD, with whom

I have shared lot of unforgettable moments. Particularly, I would like to thank

v

Acknowledgements

I owe my deepest gratitude to a lot of people, perhaps too many to exhaustively

mention, who have contributed with generous friendship, collaboration and support

in a number of ways to make possible this journey, an extraordinary work and life

experience.

First of all, I would like to thank my supervisor, Professor Morten Hovd. I offer

him my sincerest gratitude for having granted me, in the first place, the possibility

to pursue a Ph.D. degree, and then for his varied support and encouragement during

my studies. He has taken an active interest in my work, being always keen to shares

his ideas and knowledge, and offer his insight, constructive suggestions, comments

and criticism.

The environment at the Department of Engineering Cybernetics at NTNU has been

wonderful and enjoyable. This is thanks to the many good colleagues and great

friends, with whom I have had the privilege and the pleasure of working with and

doing a lot of extra-activities. I would like to express my profound gratitude to all

of them, particularly to Giancarlo Marafioti, my mate in many adventures, Luca

Pivano and Ilaria Canova Calori, who have given me invaluable friendship since the

beginning, and Johannes Tjønnås, Aksel Andreas Transeth, Alexey Pavlov, Hardy

Bonatua Siahaan, Roberto Galeazzi, Mernout Burger, Milan Milovanovic, Esten

Grøtli, Christian Holden, Jørgen Spjøtvold, Vidar Gunnerud.

My gratitude goes also to the capable staff at the department for never making all

the administrative procedures and paper work never an issue.

I would also like to acknowledge and thank Stewart Clark at NTNU for his editorial

assistance on this thesis.

In San Diego, I received the warmest welcome from Professor Robert Bitmead, my

advisor at UCSD, and his kind wife, Jan. I heartily thank them for the generous

hospitality, all the support and friendship. I am grateful for all the inspiring and

invaluable conversations with Robert, who always willingly shared his deep and

vast knowledge with me. I feel honored to have worked with him.

I was also fortunate to meet great friends and colleagues there at UCSD, with whom

I have shared lot of unforgettable moments. Particularly, I would like to thank

v

Javier Urzay, Baldomero Alonso-Latorre, Marco Antonio Escobar Acevedo, Sergi

Hernandez, Pablo Martinez-Legazpi Aguiló.

My sincerest thanks go to Professor Sorin Olaru, my advisor at SUPELEC, Paris.

He has willingly shared with me his knowledge, and has been always helpful and

supporting in many ways. I am deeply grateful for all the interesting discussions

and exchange of ideas, which have been of great importance for my understanding

and work. Beyond the work cooperation, I am grateful we also got to share a good

friendship.

During my visits at SUPELEC I met many colleagues who have helped me and have

made my stays enjoyable. Particularly, I would like to thank Anamaria Luca.

I would like to thank all my good old friends from Italy, particularly Salvatore

Marafioti, Francesco Cristofaro, Davide Cristofaro, Francesco Maragno, Antonio

Sanso. My sincerest gratitude also goes to my close friend Anna Macedonio for

having listened and been a supporter when I needed it.

Last, but not least, I would like to thank my whole family for having been always

my secure harbor, where to recover the consciousness of what really matters in life.

Mamma and Papà, this is for you, for all the efforts in the last 30 years!

Of course, I cannot complete these few lines without explicitly express my deepest

gratitude to my two little sisters, Filomena and Sofia, and to my brother, Girolamo,

for having always believed in me and encouraged. All the time we have chatted via

the Internet, distances between us became meaningless, and I was home.

Francesco Scibila
Trondheim, October 2010

vi

Javier Urzay, Baldomero Alonso-Latorre, Marco Antonio Escobar Acevedo, Sergi

Hernandez, Pablo Martinez-Legazpi Aguiló.

My sincerest thanks go to Professor Sorin Olaru, my advisor at SUPELEC, Paris.

He has willingly shared with me his knowledge, and has been always helpful and

supporting in many ways. I am deeply grateful for all the interesting discussions

and exchange of ideas, which have been of great importance for my understanding

and work. Beyond the work cooperation, I am grateful we also got to share a good

friendship.

During my visits at SUPELEC I met many colleagues who have helped me and have

made my stays enjoyable. Particularly, I would like to thank Anamaria Luca.

I would like to thank all my good old friends from Italy, particularly Salvatore

Marafioti, Francesco Cristofaro, Davide Cristofaro, Francesco Maragno, Antonio

Sanso. My sincerest gratitude also goes to my close friend Anna Macedonio for

having listened and been a supporter when I needed it.

Last, but not least, I would like to thank my whole family for having been always

my secure harbor, where to recover the consciousness of what really matters in life.

Mamma and Papà, this is for you, for all the efforts in the last 30 years!

Of course, I cannot complete these few lines without explicitly express my deepest

gratitude to my two little sisters, Filomena and Sofia, and to my brother, Girolamo,

for having always believed in me and encouraged. All the time we have chatted via

the Internet, distances between us became meaningless, and I was home.

Francesco Scibila
Trondheim, October 2010

vi

Javier Urzay, Baldomero Alonso-Latorre, Marco Antonio Escobar Acevedo, Sergi

Hernandez, Pablo Martinez-Legazpi Aguiló.

My sincerest thanks go to Professor Sorin Olaru, my advisor at SUPELEC, Paris.

He has willingly shared with me his knowledge, and has been always helpful and

supporting in many ways. I am deeply grateful for all the interesting discussions

and exchange of ideas, which have been of great importance for my understanding

and work. Beyond the work cooperation, I am grateful we also got to share a good

friendship.

During my visits at SUPELEC I met many colleagues who have helped me and have

made my stays enjoyable. Particularly, I would like to thank Anamaria Luca.

I would like to thank all my good old friends from Italy, particularly Salvatore

Marafioti, Francesco Cristofaro, Davide Cristofaro, Francesco Maragno, Antonio

Sanso. My sincerest gratitude also goes to my close friend Anna Macedonio for

having listened and been a supporter when I needed it.

Last, but not least, I would like to thank my whole family for having been always

my secure harbor, where to recover the consciousness of what really matters in life.

Mamma and Papà, this is for you, for all the efforts in the last 30 years!

Of course, I cannot complete these few lines without explicitly express my deepest

gratitude to my two little sisters, Filomena and Sofia, and to my brother, Girolamo,

for having always believed in me and encouraged. All the time we have chatted via

the Internet, distances between us became meaningless, and I was home.

Francesco Scibila
Trondheim, October 2010

vi

Javier Urzay, Baldomero Alonso-Latorre, Marco Antonio Escobar Acevedo, Sergi

Hernandez, Pablo Martinez-Legazpi Aguiló.

My sincerest thanks go to Professor Sorin Olaru, my advisor at SUPELEC, Paris.

He has willingly shared with me his knowledge, and has been always helpful and

supporting in many ways. I am deeply grateful for all the interesting discussions

and exchange of ideas, which have been of great importance for my understanding

and work. Beyond the work cooperation, I am grateful we also got to share a good

friendship.

During my visits at SUPELEC I met many colleagues who have helped me and have

made my stays enjoyable. Particularly, I would like to thank Anamaria Luca.

I would like to thank all my good old friends from Italy, particularly Salvatore

Marafioti, Francesco Cristofaro, Davide Cristofaro, Francesco Maragno, Antonio

Sanso. My sincerest gratitude also goes to my close friend Anna Macedonio for

having listened and been a supporter when I needed it.

Last, but not least, I would like to thank my whole family for having been always

my secure harbor, where to recover the consciousness of what really matters in life.

Mamma and Papà, this is for you, for all the efforts in the last 30 years!

Of course, I cannot complete these few lines without explicitly express my deepest

gratitude to my two little sisters, Filomena and Sofia, and to my brother, Girolamo,

for having always believed in me and encouraged. All the time we have chatted via

the Internet, distances between us became meaningless, and I was home.

Francesco Scibila
Trondheim, October 2010

vi

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Model Predictive Control . 1

1.1.1 MPC Idea . 2

1.1.2 Implicit MPC Implementation 3

1.1.3 Explicit MPC Implementation 5

1.2 Computational Geometry . 7

1.2.1 Surface Reconstruction via Delaunay Triangulation 10

1.2.2 Point Location . 11

1.2.3 Convex Hull . 12

1.3 Thesis Organization and Contributions 14

1.4 List of Publications . 16

2 Background 19
2.1 Model Setup . 19

2.2 Positively Invariant Sets . 21

2.3 Polyhedral Sets . 22

2.4 Model Predictive Control . 25

2.4.1 Stability in MPC . 29

2.4.2 Quadratic Program Formulation 29

2.4.3 Multi-parametric Quadratic Program Formulation 33

2.4.4 Extensions . 36

3 Approximate Explicit MPC via Delaunay Tessellations 37
3.1 Introduction . 37

3.2 Problem Formulation . 40

vii

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Model Predictive Control . 1

1.1.1 MPC Idea . 2

1.1.2 Implicit MPC Implementation 3

1.1.3 Explicit MPC Implementation 5

1.2 Computational Geometry . 7

1.2.1 Surface Reconstruction via Delaunay Triangulation 10

1.2.2 Point Location . 11

1.2.3 Convex Hull . 12

1.3 Thesis Organization and Contributions 14

1.4 List of Publications . 16

2 Background 19
2.1 Model Setup . 19

2.2 Positively Invariant Sets . 21

2.3 Polyhedral Sets . 22

2.4 Model Predictive Control . 25

2.4.1 Stability in MPC . 29

2.4.2 Quadratic Program Formulation 29

2.4.3 Multi-parametric Quadratic Program Formulation 33

2.4.4 Extensions . 36

3 Approximate Explicit MPC via Delaunay Tessellations 37
3.1 Introduction . 37

3.2 Problem Formulation . 40

vii

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Model Predictive Control . 1

1.1.1 MPC Idea . 2

1.1.2 Implicit MPC Implementation 3

1.1.3 Explicit MPC Implementation 5

1.2 Computational Geometry . 7

1.2.1 Surface Reconstruction via Delaunay Triangulation 10

1.2.2 Point Location . 11

1.2.3 Convex Hull . 12

1.3 Thesis Organization and Contributions 14

1.4 List of Publications . 16

2 Background 19
2.1 Model Setup . 19

2.2 Positively Invariant Sets . 21

2.3 Polyhedral Sets . 22

2.4 Model Predictive Control . 25

2.4.1 Stability in MPC . 29

2.4.2 Quadratic Program Formulation 29

2.4.3 Multi-parametric Quadratic Program Formulation 33

2.4.4 Extensions . 36

3 Approximate Explicit MPC via Delaunay Tessellations 37
3.1 Introduction . 37

3.2 Problem Formulation . 40

vii

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Model Predictive Control . 1

1.1.1 MPC Idea . 2

1.1.2 Implicit MPC Implementation 3

1.1.3 Explicit MPC Implementation 5

1.2 Computational Geometry . 7

1.2.1 Surface Reconstruction via Delaunay Triangulation 10

1.2.2 Point Location . 11

1.2.3 Convex Hull . 12

1.3 Thesis Organization and Contributions 14

1.4 List of Publications . 16

2 Background 19
2.1 Model Setup . 19

2.2 Positively Invariant Sets . 21

2.3 Polyhedral Sets . 22

2.4 Model Predictive Control . 25

2.4.1 Stability in MPC . 29

2.4.2 Quadratic Program Formulation 29

2.4.3 Multi-parametric Quadratic Program Formulation 33

2.4.4 Extensions . 36

3 Approximate Explicit MPC via Delaunay Tessellations 37
3.1 Introduction . 37

3.2 Problem Formulation . 40

vii

viii Contents

3.3 Approximate Explicit MPC . 42

3.4 Delaunay Tessellation . 43

3.5 Approximate Controller . 44

3.6 Approximation Error . 45

3.6.1 Approximation error estimated via a lower bound on the

optimal cost function . 46

3.6.2 Approximation error estimated via an upper bound on the

suboptimal cost function 47

3.7 The Algorithm . 49

3.8 Stability . 52

3.9 Complexity . 54

3.10 Online Implementation . 56

3.11 Numerical Illustrations . 57

3.12 Conclusion . 67

4 Feasible Sets for MPC and their Approximations 69
4.1 Introduction . 69

4.2 Model Predictive Control . 71

4.3 The Feasible Set . 72

4.3.1 Computing the Feasible Set: Standard Approach 73

4.3.2 Computing the Feasible Set: Alternative Approach 73

4.3.3 The Operating Set . 76

4.4 Approximation of Feasible Sets . 77

4.4.1 Preserving Positive Invariance 79

4.4.2 The Operating Set Condition 81

4.4.3 Removing Vertices . 81

4.4.4 Discussion on the Complexity Indexes 82

4.5 Discussion on Computational Complexity 82

4.6 Numerical Illustrations . 85

4.6.1 Feasible Set Computation 85

4.6.2 Feasible Set Approximation 86

4.6.3 Application to Approximate Explicit MPC 91

4.7 Discussion and Conclusions . 91

5 Robust Feasibility for Constrained Linear Systems with PWA Controllers 95
5.1 Introduction . 96

5.2 Basic Notions . 99

5.2.1 Polytopic Uncertainty . 99

5.2.2 Definitions . 99

5.3 Problem Formulation . 100

5.4 Algorithm . 104

viii Contents

3.3 Approximate Explicit MPC . 42

3.4 Delaunay Tessellation . 43

3.5 Approximate Controller . 44

3.6 Approximation Error . 45

3.6.1 Approximation error estimated via a lower bound on the

optimal cost function . 46

3.6.2 Approximation error estimated via an upper bound on the

suboptimal cost function 47

3.7 The Algorithm . 49

3.8 Stability . 52

3.9 Complexity . 54

3.10 Online Implementation . 56

3.11 Numerical Illustrations . 57

3.12 Conclusion . 67

4 Feasible Sets for MPC and their Approximations 69
4.1 Introduction . 69

4.2 Model Predictive Control . 71

4.3 The Feasible Set . 72

4.3.1 Computing the Feasible Set: Standard Approach 73

4.3.2 Computing the Feasible Set: Alternative Approach 73

4.3.3 The Operating Set . 76

4.4 Approximation of Feasible Sets . 77

4.4.1 Preserving Positive Invariance 79

4.4.2 The Operating Set Condition 81

4.4.3 Removing Vertices . 81

4.4.4 Discussion on the Complexity Indexes 82

4.5 Discussion on Computational Complexity 82

4.6 Numerical Illustrations . 85

4.6.1 Feasible Set Computation 85

4.6.2 Feasible Set Approximation 86

4.6.3 Application to Approximate Explicit MPC 91

4.7 Discussion and Conclusions . 91

5 Robust Feasibility for Constrained Linear Systems with PWA Controllers 95
5.1 Introduction . 96

5.2 Basic Notions . 99

5.2.1 Polytopic Uncertainty . 99

5.2.2 Definitions . 99

5.3 Problem Formulation . 100

5.4 Algorithm . 104

viii Contents

3.3 Approximate Explicit MPC . 42

3.4 Delaunay Tessellation . 43

3.5 Approximate Controller . 44

3.6 Approximation Error . 45

3.6.1 Approximation error estimated via a lower bound on the

optimal cost function . 46

3.6.2 Approximation error estimated via an upper bound on the

suboptimal cost function 47

3.7 The Algorithm . 49

3.8 Stability . 52

3.9 Complexity . 54

3.10 Online Implementation . 56

3.11 Numerical Illustrations . 57

3.12 Conclusion . 67

4 Feasible Sets for MPC and their Approximations 69
4.1 Introduction . 69

4.2 Model Predictive Control . 71

4.3 The Feasible Set . 72

4.3.1 Computing the Feasible Set: Standard Approach 73

4.3.2 Computing the Feasible Set: Alternative Approach 73

4.3.3 The Operating Set . 76

4.4 Approximation of Feasible Sets . 77

4.4.1 Preserving Positive Invariance 79

4.4.2 The Operating Set Condition 81

4.4.3 Removing Vertices . 81

4.4.4 Discussion on the Complexity Indexes 82

4.5 Discussion on Computational Complexity 82

4.6 Numerical Illustrations . 85

4.6.1 Feasible Set Computation 85

4.6.2 Feasible Set Approximation 86

4.6.3 Application to Approximate Explicit MPC 91

4.7 Discussion and Conclusions . 91

5 Robust Feasibility for Constrained Linear Systems with PWA Controllers 95
5.1 Introduction . 96

5.2 Basic Notions . 99

5.2.1 Polytopic Uncertainty . 99

5.2.2 Definitions . 99

5.3 Problem Formulation . 100

5.4 Algorithm . 104

viii Contents

3.3 Approximate Explicit MPC . 42

3.4 Delaunay Tessellation . 43

3.5 Approximate Controller . 44

3.6 Approximation Error . 45

3.6.1 Approximation error estimated via a lower bound on the

optimal cost function . 46

3.6.2 Approximation error estimated via an upper bound on the

suboptimal cost function 47

3.7 The Algorithm . 49

3.8 Stability . 52

3.9 Complexity . 54

3.10 Online Implementation . 56

3.11 Numerical Illustrations . 57

3.12 Conclusion . 67

4 Feasible Sets for MPC and their Approximations 69
4.1 Introduction . 69

4.2 Model Predictive Control . 71

4.3 The Feasible Set . 72

4.3.1 Computing the Feasible Set: Standard Approach 73

4.3.2 Computing the Feasible Set: Alternative Approach 73

4.3.3 The Operating Set . 76

4.4 Approximation of Feasible Sets . 77

4.4.1 Preserving Positive Invariance 79

4.4.2 The Operating Set Condition 81

4.4.3 Removing Vertices . 81

4.4.4 Discussion on the Complexity Indexes 82

4.5 Discussion on Computational Complexity 82

4.6 Numerical Illustrations . 85

4.6.1 Feasible Set Computation 85

4.6.2 Feasible Set Approximation 86

4.6.3 Application to Approximate Explicit MPC 91

4.7 Discussion and Conclusions . 91

5 Robust Feasibility for Constrained Linear Systems with PWA Controllers 95
5.1 Introduction . 96

5.2 Basic Notions . 99

5.2.1 Polytopic Uncertainty . 99

5.2.2 Definitions . 99

5.3 Problem Formulation . 100

5.4 Algorithm . 104

Contents ix

5.5 Numerical Illustrations . 109

5.5.1 Robust Feasibility for Optimal Explicit MPC 110

5.5.2 Robust Feasibility for Approximate Explicit MPC 112

5.5.3 Relation to Existing Robust MPC Approaches 112

5.6 Conclusions . 116

6 Conclusions and Recommendation for Further Work 119
6.1 Final Remarks and Possible Future Research Directions 119

6.1.1 Approximate Explicit MPC via Dealunay Tessellations . . . 120

6.1.2 Computation of Feasible Sets and of Suitable Approximations122

6.1.3 Maximal Robust Feasible Sets for PWA controllers under

Polytopic Model Uncertainty 123

References 125

A Secondary Papers 135
A.1 Multi-Rate MHE with Erroneous Infrequent Measurements Recovery137

A.2 Stabilization of Gas-Lift Oil Wells Using Topside Measurements . . 145

Contents ix

5.5 Numerical Illustrations . 109

5.5.1 Robust Feasibility for Optimal Explicit MPC 110

5.5.2 Robust Feasibility for Approximate Explicit MPC 112

5.5.3 Relation to Existing Robust MPC Approaches 112

5.6 Conclusions . 116

6 Conclusions and Recommendation for Further Work 119
6.1 Final Remarks and Possible Future Research Directions 119

6.1.1 Approximate Explicit MPC via Dealunay Tessellations . . . 120

6.1.2 Computation of Feasible Sets and of Suitable Approximations122

6.1.3 Maximal Robust Feasible Sets for PWA controllers under

Polytopic Model Uncertainty 123

References 125

A Secondary Papers 135
A.1 Multi-Rate MHE with Erroneous Infrequent Measurements Recovery137

A.2 Stabilization of Gas-Lift Oil Wells Using Topside Measurements . . 145

Contents ix

5.5 Numerical Illustrations . 109

5.5.1 Robust Feasibility for Optimal Explicit MPC 110

5.5.2 Robust Feasibility for Approximate Explicit MPC 112

5.5.3 Relation to Existing Robust MPC Approaches 112

5.6 Conclusions . 116

6 Conclusions and Recommendation for Further Work 119
6.1 Final Remarks and Possible Future Research Directions 119

6.1.1 Approximate Explicit MPC via Dealunay Tessellations . . . 120

6.1.2 Computation of Feasible Sets and of Suitable Approximations122

6.1.3 Maximal Robust Feasible Sets for PWA controllers under

Polytopic Model Uncertainty 123

References 125

A Secondary Papers 135
A.1 Multi-Rate MHE with Erroneous Infrequent Measurements Recovery137

A.2 Stabilization of Gas-Lift Oil Wells Using Topside Measurements . . 145

Contents ix

5.5 Numerical Illustrations . 109

5.5.1 Robust Feasibility for Optimal Explicit MPC 110

5.5.2 Robust Feasibility for Approximate Explicit MPC 112

5.5.3 Relation to Existing Robust MPC Approaches 112

5.6 Conclusions . 116

6 Conclusions and Recommendation for Further Work 119
6.1 Final Remarks and Possible Future Research Directions 119

6.1.1 Approximate Explicit MPC via Dealunay Tessellations . . . 120

6.1.2 Computation of Feasible Sets and of Suitable Approximations122

6.1.3 Maximal Robust Feasible Sets for PWA controllers under

Polytopic Model Uncertainty 123

References 125

A Secondary Papers 135
A.1 Multi-Rate MHE with Erroneous Infrequent Measurements Recovery137

A.2 Stabilization of Gas-Lift Oil Wells Using Topside Measurements . . 145

x Contents x Contents

x Contents x Contents

Chapter 1

Introduction

Here the reader is introduced to the thematic content discussed in this thesis. In-

tentionally, the presentation of ideas and concepts in this chapter is kept at a rather

colloquial level, rather than being mathematically rigorous and theoretical. The

reader will also notice the absence of any literature references in this chapter, since

all the information presented is quite general and easily available, for example, us-

ing a simple search on the Internet. Complete references to the literature will be

given in the following chapters.

1.1 Model Predictive Control

Imagine yourself as a student in a classroom following a lecture. The professor

has just finished teaching, and it is time to head home. To do so, you have to exit

the classroom through the exit door on the other side of the classroom. A pretty

straightforward task that you would likely do without thinking too much about it.

However, this simple goal comprises several issues that you, more or less uncon-

sciously, consider: reasonably you want to walk towards the door minimizing the

distance; on the way, you do not want to walk over desks or chairs, neither to crash

into your classmates; you take into account the physical limitations of your body,

like the fact that in one step you can cover one meter or so. The intrinsic mental

mechanism used to do this is “prediction”: you predict the behavior of your body

moving in the room and based on your observation of the surrounding environment

you decide and adjust your actions. In other words, you face an objective which

you want to achieve in some sense optimally, while satisfying some constraints and

limitations. You achieve this objective by deciding and adjusting your optimal ac-

1

Chapter 1

Introduction

Here the reader is introduced to the thematic content discussed in this thesis. In-

tentionally, the presentation of ideas and concepts in this chapter is kept at a rather

colloquial level, rather than being mathematically rigorous and theoretical. The

reader will also notice the absence of any literature references in this chapter, since

all the information presented is quite general and easily available, for example, us-

ing a simple search on the Internet. Complete references to the literature will be

given in the following chapters.

1.1 Model Predictive Control

Imagine yourself as a student in a classroom following a lecture. The professor

has just finished teaching, and it is time to head home. To do so, you have to exit

the classroom through the exit door on the other side of the classroom. A pretty

straightforward task that you would likely do without thinking too much about it.

However, this simple goal comprises several issues that you, more or less uncon-

sciously, consider: reasonably you want to walk towards the door minimizing the

distance; on the way, you do not want to walk over desks or chairs, neither to crash

into your classmates; you take into account the physical limitations of your body,

like the fact that in one step you can cover one meter or so. The intrinsic mental

mechanism used to do this is “prediction”: you predict the behavior of your body

moving in the room and based on your observation of the surrounding environment

you decide and adjust your actions. In other words, you face an objective which

you want to achieve in some sense optimally, while satisfying some constraints and

limitations. You achieve this objective by deciding and adjusting your optimal ac-

1

Chapter 1

Introduction

Here the reader is introduced to the thematic content discussed in this thesis. In-

tentionally, the presentation of ideas and concepts in this chapter is kept at a rather

colloquial level, rather than being mathematically rigorous and theoretical. The

reader will also notice the absence of any literature references in this chapter, since

all the information presented is quite general and easily available, for example, us-

ing a simple search on the Internet. Complete references to the literature will be

given in the following chapters.

1.1 Model Predictive Control

Imagine yourself as a student in a classroom following a lecture. The professor

has just finished teaching, and it is time to head home. To do so, you have to exit

the classroom through the exit door on the other side of the classroom. A pretty

straightforward task that you would likely do without thinking too much about it.

However, this simple goal comprises several issues that you, more or less uncon-

sciously, consider: reasonably you want to walk towards the door minimizing the

distance; on the way, you do not want to walk over desks or chairs, neither to crash

into your classmates; you take into account the physical limitations of your body,

like the fact that in one step you can cover one meter or so. The intrinsic mental

mechanism used to do this is “prediction”: you predict the behavior of your body

moving in the room and based on your observation of the surrounding environment

you decide and adjust your actions. In other words, you face an objective which

you want to achieve in some sense optimally, while satisfying some constraints and

limitations. You achieve this objective by deciding and adjusting your optimal ac-

1

Chapter 1

Introduction

Here the reader is introduced to the thematic content discussed in this thesis. In-

tentionally, the presentation of ideas and concepts in this chapter is kept at a rather

colloquial level, rather than being mathematically rigorous and theoretical. The

reader will also notice the absence of any literature references in this chapter, since

all the information presented is quite general and easily available, for example, us-

ing a simple search on the Internet. Complete references to the literature will be

given in the following chapters.

1.1 Model Predictive Control

Imagine yourself as a student in a classroom following a lecture. The professor

has just finished teaching, and it is time to head home. To do so, you have to exit

the classroom through the exit door on the other side of the classroom. A pretty

straightforward task that you would likely do without thinking too much about it.

However, this simple goal comprises several issues that you, more or less uncon-

sciously, consider: reasonably you want to walk towards the door minimizing the

distance; on the way, you do not want to walk over desks or chairs, neither to crash

into your classmates; you take into account the physical limitations of your body,

like the fact that in one step you can cover one meter or so. The intrinsic mental

mechanism used to do this is “prediction”: you predict the behavior of your body

moving in the room and based on your observation of the surrounding environment

you decide and adjust your actions. In other words, you face an objective which

you want to achieve in some sense optimally, while satisfying some constraints and

limitations. You achieve this objective by deciding and adjusting your optimal ac-

1

2 Introduction

tion “online” based on your observation. Many circumstances in our lives can be

seen similarly, and we solve them naturally without having too much awareness.

Model predictive control is an advanced control approach which offers a framework

where the control problem can be formulated and solved in a similar “natural” fash-

ion. A model of the system to be controlled is used to predict the future behavior

of the system, the control action is obtained as the optimizer of a suitable objective

cost function which is minimized such that certain constraints are satisfied, the con-

trol action is adjusted online observing some measured variables.

Suppose now you are still in the classroom and the fire alarm goes off, you need to

exit the building quickly (do not panic, it is only a fire drill). There are several exits,

but of course you want to go to the nearest emergency exit, following the shortest

path. This is a situation where you do not have much time to think about how to ob-

tain your goal optimally. Indeed, it would be helpful to have an emergency plan of

the building: once you have located the room you are in, then you can simply look at

the optimal way to the nearest emergency exit. In this situation, the emergency plan

of the building represents an “explicit” optimal solution to your objective, which

has been solved beforehand (“offline”) for all the possible rooms where you could

be in the building so that the only online effort is to look it up on a map.

In a similar fashion, explicit model predictive control approaches explicitly pro-

vide the optimal solutions to the control problem. The model predictive control

optimization problem is formulated parametrically in the measured variables and

solved offline. The optimal control action is then given as an explicit function of

the measured variables, so that the online effort reduces to just look at the optimal

control law for the current measurements and evaluate it.

1.1.1 MPC Idea

Model predictive control (MPC), or receding horizon control, is one of the most ad-

vanced control approaches which, in the last few decades, has became the leading

industrial control technology for systems with constraints.

MPC approaches determine a sequence of optimal control actions (inputs) over a

future time horizon in order to optimize the performance of the controlled system,

expressed in terms of a cost function. The optimization is based on an internal

mathematical model which, given the current measurements, predict the future be-

havior of the real system with respect to changes in the control inputs. Once the

sequence of optimal control inputs has been determined, only the first element is

actually implemented and the optimization is repeated at the next time interval with

the new measurements and over the shifted horizon. This feedback mechanism of

the MPC compensates for the prediction error due to structural mismatch between

2 Introduction

tion “online” based on your observation. Many circumstances in our lives can be

seen similarly, and we solve them naturally without having too much awareness.

Model predictive control is an advanced control approach which offers a framework

where the control problem can be formulated and solved in a similar “natural” fash-

ion. A model of the system to be controlled is used to predict the future behavior

of the system, the control action is obtained as the optimizer of a suitable objective

cost function which is minimized such that certain constraints are satisfied, the con-

trol action is adjusted online observing some measured variables.

Suppose now you are still in the classroom and the fire alarm goes off, you need to

exit the building quickly (do not panic, it is only a fire drill). There are several exits,

but of course you want to go to the nearest emergency exit, following the shortest

path. This is a situation where you do not have much time to think about how to ob-

tain your goal optimally. Indeed, it would be helpful to have an emergency plan of

the building: once you have located the room you are in, then you can simply look at

the optimal way to the nearest emergency exit. In this situation, the emergency plan

of the building represents an “explicit” optimal solution to your objective, which

has been solved beforehand (“offline”) for all the possible rooms where you could

be in the building so that the only online effort is to look it up on a map.

In a similar fashion, explicit model predictive control approaches explicitly pro-

vide the optimal solutions to the control problem. The model predictive control

optimization problem is formulated parametrically in the measured variables and

solved offline. The optimal control action is then given as an explicit function of

the measured variables, so that the online effort reduces to just look at the optimal

control law for the current measurements and evaluate it.

1.1.1 MPC Idea

Model predictive control (MPC), or receding horizon control, is one of the most ad-

vanced control approaches which, in the last few decades, has became the leading

industrial control technology for systems with constraints.

MPC approaches determine a sequence of optimal control actions (inputs) over a

future time horizon in order to optimize the performance of the controlled system,

expressed in terms of a cost function. The optimization is based on an internal

mathematical model which, given the current measurements, predict the future be-

havior of the real system with respect to changes in the control inputs. Once the

sequence of optimal control inputs has been determined, only the first element is

actually implemented and the optimization is repeated at the next time interval with

the new measurements and over the shifted horizon. This feedback mechanism of

the MPC compensates for the prediction error due to structural mismatch between

2 Introduction

tion “online” based on your observation. Many circumstances in our lives can be

seen similarly, and we solve them naturally without having too much awareness.

Model predictive control is an advanced control approach which offers a framework

where the control problem can be formulated and solved in a similar “natural” fash-

ion. A model of the system to be controlled is used to predict the future behavior

of the system, the control action is obtained as the optimizer of a suitable objective

cost function which is minimized such that certain constraints are satisfied, the con-

trol action is adjusted online observing some measured variables.

Suppose now you are still in the classroom and the fire alarm goes off, you need to

exit the building quickly (do not panic, it is only a fire drill). There are several exits,

but of course you want to go to the nearest emergency exit, following the shortest

path. This is a situation where you do not have much time to think about how to ob-

tain your goal optimally. Indeed, it would be helpful to have an emergency plan of

the building: once you have located the room you are in, then you can simply look at

the optimal way to the nearest emergency exit. In this situation, the emergency plan

of the building represents an “explicit” optimal solution to your objective, which

has been solved beforehand (“offline”) for all the possible rooms where you could

be in the building so that the only online effort is to look it up on a map.

In a similar fashion, explicit model predictive control approaches explicitly pro-

vide the optimal solutions to the control problem. The model predictive control

optimization problem is formulated parametrically in the measured variables and

solved offline. The optimal control action is then given as an explicit function of

the measured variables, so that the online effort reduces to just look at the optimal

control law for the current measurements and evaluate it.

1.1.1 MPC Idea

Model predictive control (MPC), or receding horizon control, is one of the most ad-

vanced control approaches which, in the last few decades, has became the leading

industrial control technology for systems with constraints.

MPC approaches determine a sequence of optimal control actions (inputs) over a

future time horizon in order to optimize the performance of the controlled system,

expressed in terms of a cost function. The optimization is based on an internal

mathematical model which, given the current measurements, predict the future be-

havior of the real system with respect to changes in the control inputs. Once the

sequence of optimal control inputs has been determined, only the first element is

actually implemented and the optimization is repeated at the next time interval with

the new measurements and over the shifted horizon. This feedback mechanism of

the MPC compensates for the prediction error due to structural mismatch between

2 Introduction

tion “online” based on your observation. Many circumstances in our lives can be

seen similarly, and we solve them naturally without having too much awareness.

Model predictive control is an advanced control approach which offers a framework

where the control problem can be formulated and solved in a similar “natural” fash-

ion. A model of the system to be controlled is used to predict the future behavior

of the system, the control action is obtained as the optimizer of a suitable objective

cost function which is minimized such that certain constraints are satisfied, the con-

trol action is adjusted online observing some measured variables.

Suppose now you are still in the classroom and the fire alarm goes off, you need to

exit the building quickly (do not panic, it is only a fire drill). There are several exits,

but of course you want to go to the nearest emergency exit, following the shortest

path. This is a situation where you do not have much time to think about how to ob-

tain your goal optimally. Indeed, it would be helpful to have an emergency plan of

the building: once you have located the room you are in, then you can simply look at

the optimal way to the nearest emergency exit. In this situation, the emergency plan

of the building represents an “explicit” optimal solution to your objective, which

has been solved beforehand (“offline”) for all the possible rooms where you could

be in the building so that the only online effort is to look it up on a map.

In a similar fashion, explicit model predictive control approaches explicitly pro-

vide the optimal solutions to the control problem. The model predictive control

optimization problem is formulated parametrically in the measured variables and

solved offline. The optimal control action is then given as an explicit function of

the measured variables, so that the online effort reduces to just look at the optimal

control law for the current measurements and evaluate it.

1.1.1 MPC Idea

Model predictive control (MPC), or receding horizon control, is one of the most ad-

vanced control approaches which, in the last few decades, has became the leading

industrial control technology for systems with constraints.

MPC approaches determine a sequence of optimal control actions (inputs) over a

future time horizon in order to optimize the performance of the controlled system,

expressed in terms of a cost function. The optimization is based on an internal

mathematical model which, given the current measurements, predict the future be-

havior of the real system with respect to changes in the control inputs. Once the

sequence of optimal control inputs has been determined, only the first element is

actually implemented and the optimization is repeated at the next time interval with

the new measurements and over the shifted horizon. This feedback mechanism of

the MPC compensates for the prediction error due to structural mismatch between

1.1. Model Predictive Control 3

the internal model and the real system as well as for disturbances and measurement

noise.

The main advantage which makes MPC industrially desirable is that it can routinely

take into account constraints in the control problem. This feature is important for

several reasons.

• The possibility to explicitly express constraints in the problem formulation

offers a natural way to state complex control objectives.

• Often the best performance, which may correspond to the most efficient or

profitable operation, is obtained when the system is made to operate near the

constraints.

• In the presence of actuator saturations, a control approach that is aware of the

constraints never generates control inputs beyond the saturation values, and

this removes the wind-up problem.

In addition, MPC approaches have the advantage of naturally handling multivari-

able control problems and systems with complex dynamics (like systems with long

time delays, for example). MPC approaches are powerful and robust (more than the

standard PID control), and their relative ease to configure and tune allows remark-

ably short pay-back time.

The idea underlying MPC is illustrated in Figure 1.1 where a single-input single-

output system is considered. At the current time t, the measured output of the

system is y(t). The output is required to follow the reference signal yr. The figure

also gives the previous history of the output trajectory and of the applied input,

which is supposed to be subject to a saturation constraint. The prediction horizon

length is N . Along the horizon the predicted output is yk, obtained applying the

optimal input sequence u∗
k, k = t+1, ..., t+N to the internal model. Only the first

element of the optimal input sequence, i.e. u∗
t+1, is applied to the system, and a new

optimal input sequence is computed at the next time interval starting from the new

measurement y(t+ 1) and over the shifted horizon t+N + 1.

1.1.2 Implicit MPC Implementation

The traditional implementation approach for MPC relies on the use of a real-time

optimization solver, which is required to compute the updated optimal control in-

put sequence for each new set of measurements. Real-time optimization solvers are

in general complex computing machines. Although computational speed and op-

timization algorithms are continuously improving, traditionally such solvers have

1.1. Model Predictive Control 3

the internal model and the real system as well as for disturbances and measurement

noise.

The main advantage which makes MPC industrially desirable is that it can routinely

take into account constraints in the control problem. This feature is important for

several reasons.

• The possibility to explicitly express constraints in the problem formulation

offers a natural way to state complex control objectives.

• Often the best performance, which may correspond to the most efficient or

profitable operation, is obtained when the system is made to operate near the

constraints.

• In the presence of actuator saturations, a control approach that is aware of the

constraints never generates control inputs beyond the saturation values, and

this removes the wind-up problem.

In addition, MPC approaches have the advantage of naturally handling multivari-

able control problems and systems with complex dynamics (like systems with long

time delays, for example). MPC approaches are powerful and robust (more than the

standard PID control), and their relative ease to configure and tune allows remark-

ably short pay-back time.

The idea underlying MPC is illustrated in Figure 1.1 where a single-input single-

output system is considered. At the current time t, the measured output of the

system is y(t). The output is required to follow the reference signal yr. The figure

also gives the previous history of the output trajectory and of the applied input,

which is supposed to be subject to a saturation constraint. The prediction horizon

length is N . Along the horizon the predicted output is yk, obtained applying the

optimal input sequence u∗
k, k = t+1, ..., t+N to the internal model. Only the first

element of the optimal input sequence, i.e. u∗
t+1, is applied to the system, and a new

optimal input sequence is computed at the next time interval starting from the new

measurement y(t+ 1) and over the shifted horizon t+N + 1.

1.1.2 Implicit MPC Implementation

The traditional implementation approach for MPC relies on the use of a real-time

optimization solver, which is required to compute the updated optimal control in-

put sequence for each new set of measurements. Real-time optimization solvers are

in general complex computing machines. Although computational speed and op-

timization algorithms are continuously improving, traditionally such solvers have

1.1. Model Predictive Control 3

the internal model and the real system as well as for disturbances and measurement

noise.

The main advantage which makes MPC industrially desirable is that it can routinely

take into account constraints in the control problem. This feature is important for

several reasons.

• The possibility to explicitly express constraints in the problem formulation

offers a natural way to state complex control objectives.

• Often the best performance, which may correspond to the most efficient or

profitable operation, is obtained when the system is made to operate near the

constraints.

• In the presence of actuator saturations, a control approach that is aware of the

constraints never generates control inputs beyond the saturation values, and

this removes the wind-up problem.

In addition, MPC approaches have the advantage of naturally handling multivari-

able control problems and systems with complex dynamics (like systems with long

time delays, for example). MPC approaches are powerful and robust (more than the

standard PID control), and their relative ease to configure and tune allows remark-

ably short pay-back time.

The idea underlying MPC is illustrated in Figure 1.1 where a single-input single-

output system is considered. At the current time t, the measured output of the

system is y(t). The output is required to follow the reference signal yr. The figure

also gives the previous history of the output trajectory and of the applied input,

which is supposed to be subject to a saturation constraint. The prediction horizon

length is N . Along the horizon the predicted output is yk, obtained applying the

optimal input sequence u∗
k, k = t+1, ..., t+N to the internal model. Only the first

element of the optimal input sequence, i.e. u∗
t+1, is applied to the system, and a new

optimal input sequence is computed at the next time interval starting from the new

measurement y(t+ 1) and over the shifted horizon t+N + 1.

1.1.2 Implicit MPC Implementation

The traditional implementation approach for MPC relies on the use of a real-time

optimization solver, which is required to compute the updated optimal control in-

put sequence for each new set of measurements. Real-time optimization solvers are

in general complex computing machines. Although computational speed and op-

timization algorithms are continuously improving, traditionally such solvers have

1.1. Model Predictive Control 3

the internal model and the real system as well as for disturbances and measurement

noise.

The main advantage which makes MPC industrially desirable is that it can routinely

take into account constraints in the control problem. This feature is important for

several reasons.

• The possibility to explicitly express constraints in the problem formulation

offers a natural way to state complex control objectives.

• Often the best performance, which may correspond to the most efficient or

profitable operation, is obtained when the system is made to operate near the

constraints.

• In the presence of actuator saturations, a control approach that is aware of the

constraints never generates control inputs beyond the saturation values, and

this removes the wind-up problem.

In addition, MPC approaches have the advantage of naturally handling multivari-

able control problems and systems with complex dynamics (like systems with long

time delays, for example). MPC approaches are powerful and robust (more than the

standard PID control), and their relative ease to configure and tune allows remark-

ably short pay-back time.

The idea underlying MPC is illustrated in Figure 1.1 where a single-input single-

output system is considered. At the current time t, the measured output of the

system is y(t). The output is required to follow the reference signal yr. The figure

also gives the previous history of the output trajectory and of the applied input,

which is supposed to be subject to a saturation constraint. The prediction horizon

length is N . Along the horizon the predicted output is yk, obtained applying the

optimal input sequence u∗
k, k = t+1, ..., t+N to the internal model. Only the first

element of the optimal input sequence, i.e. u∗
t+1, is applied to the system, and a new

optimal input sequence is computed at the next time interval starting from the new

measurement y(t+ 1) and over the shifted horizon t+N + 1.

1.1.2 Implicit MPC Implementation

The traditional implementation approach for MPC relies on the use of a real-time

optimization solver, which is required to compute the updated optimal control in-

put sequence for each new set of measurements. Real-time optimization solvers are

in general complex computing machines. Although computational speed and op-

timization algorithms are continuously improving, traditionally such solvers have

4 Introduction

Output

Time

yr

y �t �
yk

t Time

Input

t�N

u �t � uk
�

constraint

Figure 1.1: Model predictive control idea.

4 Introduction

Output

Time

yr

y �t �
yk

t Time

Input

t�N

u �t � uk
�

constraint

Figure 1.1: Model predictive control idea.

4 Introduction

Output

Time

yr

y �t �
yk

t Time

Input

t�N

u �t � uk
�

constraint

Figure 1.1: Model predictive control idea.

4 Introduction

Output

Time

yr

y �t �
yk

t Time

Input

t�N

u �t � uk
�

constraint

Figure 1.1: Model predictive control idea.

1.1. Model Predictive Control 5

only been able to handle relatively low control input update rates. Therefore, con-

ventional MPC applications have been limited to situations which, in some sense,

justify the cost of such hardware and software and which allow a sufficient time

span for solving the overall optimization problem. For example, MPC approaches

have been very successful in the chemical process industry, where it is common

to find complex constrained multivariable control problems with typical time con-

stants of the systems ranging from hours to days, or even weeks.

However, cost and technical reasons prevent the use of real-time optimization solvers

in several application areas where it is as well possible to find control problems

which could be conveniently formulated as MPC problems. For example, in auto-

motive and aerospace industries often the control strategy has to deal with systems

subject to actuator limitations, which need to be sampled and controlled in the range

of milli- or microseconds. These short time spans usually limit the complexity of

the overall optimization problem (only short horizon and/or simple internal models

can be considered) or prohibit the use of MPC approaches at all. Even if mod-

ern advances in computing technology allow always faster sampling rates, a critical

issue remains the reliability and verifiability of the control algorithm. The main

problem here is given by the “implicit” nature of such MPC implementation: the

optimal values of the control action are determined as numerical values at each time

interval, without any physical or mathematical knowledge of the governing control

law. This is undesirable in situations where the possibility to analyze and verify the

controller offline is a key issue, like in critical safety applications (for example, the

anti-lock braking system, or ABS, in the automotive industry).

Moreover, the implementations via real-time solvers are not well suited for all the

situations which require portable and/or embedded control devices.

1.1.3 Explicit MPC Implementation

A different and more recent MPC implementation approach is based on multi-

parametric programming. Multi-parametric programming is an optimization tech-

nology that allows the optimal solution of an optimization problem to be determined

as an explicit function of certain varying parameters. Therefore, multi-parametric

programming avoids the need to solve a new optimization problem when the pa-

rameter changes, since the optimal solution can readily be updated using the pre-

computed function.

In the context of MPC, multi-parametric programming can be used to obtain the op-

timal control inputs as an explicit function of the measurements, considering these

as the parameters of the optimization problem. This allows the online computa-

tional effort to be reduced to a series of function evaluations, eliminating the need

1.1. Model Predictive Control 5

only been able to handle relatively low control input update rates. Therefore, con-

ventional MPC applications have been limited to situations which, in some sense,

justify the cost of such hardware and software and which allow a sufficient time

span for solving the overall optimization problem. For example, MPC approaches

have been very successful in the chemical process industry, where it is common

to find complex constrained multivariable control problems with typical time con-

stants of the systems ranging from hours to days, or even weeks.

However, cost and technical reasons prevent the use of real-time optimization solvers

in several application areas where it is as well possible to find control problems

which could be conveniently formulated as MPC problems. For example, in auto-

motive and aerospace industries often the control strategy has to deal with systems

subject to actuator limitations, which need to be sampled and controlled in the range

of milli- or microseconds. These short time spans usually limit the complexity of

the overall optimization problem (only short horizon and/or simple internal models

can be considered) or prohibit the use of MPC approaches at all. Even if mod-

ern advances in computing technology allow always faster sampling rates, a critical

issue remains the reliability and verifiability of the control algorithm. The main

problem here is given by the “implicit” nature of such MPC implementation: the

optimal values of the control action are determined as numerical values at each time

interval, without any physical or mathematical knowledge of the governing control

law. This is undesirable in situations where the possibility to analyze and verify the

controller offline is a key issue, like in critical safety applications (for example, the

anti-lock braking system, or ABS, in the automotive industry).

Moreover, the implementations via real-time solvers are not well suited for all the

situations which require portable and/or embedded control devices.

1.1.3 Explicit MPC Implementation

A different and more recent MPC implementation approach is based on multi-

parametric programming. Multi-parametric programming is an optimization tech-

nology that allows the optimal solution of an optimization problem to be determined

as an explicit function of certain varying parameters. Therefore, multi-parametric

programming avoids the need to solve a new optimization problem when the pa-

rameter changes, since the optimal solution can readily be updated using the pre-

computed function.

In the context of MPC, multi-parametric programming can be used to obtain the op-

timal control inputs as an explicit function of the measurements, considering these

as the parameters of the optimization problem. This allows the online computa-

tional effort to be reduced to a series of function evaluations, eliminating the need

1.1. Model Predictive Control 5

only been able to handle relatively low control input update rates. Therefore, con-

ventional MPC applications have been limited to situations which, in some sense,

justify the cost of such hardware and software and which allow a sufficient time

span for solving the overall optimization problem. For example, MPC approaches

have been very successful in the chemical process industry, where it is common

to find complex constrained multivariable control problems with typical time con-

stants of the systems ranging from hours to days, or even weeks.

However, cost and technical reasons prevent the use of real-time optimization solvers

in several application areas where it is as well possible to find control problems

which could be conveniently formulated as MPC problems. For example, in auto-

motive and aerospace industries often the control strategy has to deal with systems

subject to actuator limitations, which need to be sampled and controlled in the range

of milli- or microseconds. These short time spans usually limit the complexity of

the overall optimization problem (only short horizon and/or simple internal models

can be considered) or prohibit the use of MPC approaches at all. Even if mod-

ern advances in computing technology allow always faster sampling rates, a critical

issue remains the reliability and verifiability of the control algorithm. The main

problem here is given by the “implicit” nature of such MPC implementation: the

optimal values of the control action are determined as numerical values at each time

interval, without any physical or mathematical knowledge of the governing control

law. This is undesirable in situations where the possibility to analyze and verify the

controller offline is a key issue, like in critical safety applications (for example, the

anti-lock braking system, or ABS, in the automotive industry).

Moreover, the implementations via real-time solvers are not well suited for all the

situations which require portable and/or embedded control devices.

1.1.3 Explicit MPC Implementation

A different and more recent MPC implementation approach is based on multi-

parametric programming. Multi-parametric programming is an optimization tech-

nology that allows the optimal solution of an optimization problem to be determined

as an explicit function of certain varying parameters. Therefore, multi-parametric

programming avoids the need to solve a new optimization problem when the pa-

rameter changes, since the optimal solution can readily be updated using the pre-

computed function.

In the context of MPC, multi-parametric programming can be used to obtain the op-

timal control inputs as an explicit function of the measurements, considering these

as the parameters of the optimization problem. This allows the online computa-

tional effort to be reduced to a series of function evaluations, eliminating the need

1.1. Model Predictive Control 5

only been able to handle relatively low control input update rates. Therefore, con-

ventional MPC applications have been limited to situations which, in some sense,

justify the cost of such hardware and software and which allow a sufficient time

span for solving the overall optimization problem. For example, MPC approaches

have been very successful in the chemical process industry, where it is common

to find complex constrained multivariable control problems with typical time con-

stants of the systems ranging from hours to days, or even weeks.

However, cost and technical reasons prevent the use of real-time optimization solvers

in several application areas where it is as well possible to find control problems

which could be conveniently formulated as MPC problems. For example, in auto-

motive and aerospace industries often the control strategy has to deal with systems

subject to actuator limitations, which need to be sampled and controlled in the range

of milli- or microseconds. These short time spans usually limit the complexity of

the overall optimization problem (only short horizon and/or simple internal models

can be considered) or prohibit the use of MPC approaches at all. Even if mod-

ern advances in computing technology allow always faster sampling rates, a critical

issue remains the reliability and verifiability of the control algorithm. The main

problem here is given by the “implicit” nature of such MPC implementation: the

optimal values of the control action are determined as numerical values at each time

interval, without any physical or mathematical knowledge of the governing control

law. This is undesirable in situations where the possibility to analyze and verify the

controller offline is a key issue, like in critical safety applications (for example, the

anti-lock braking system, or ABS, in the automotive industry).

Moreover, the implementations via real-time solvers are not well suited for all the

situations which require portable and/or embedded control devices.

1.1.3 Explicit MPC Implementation

A different and more recent MPC implementation approach is based on multi-

parametric programming. Multi-parametric programming is an optimization tech-

nology that allows the optimal solution of an optimization problem to be determined

as an explicit function of certain varying parameters. Therefore, multi-parametric

programming avoids the need to solve a new optimization problem when the pa-

rameter changes, since the optimal solution can readily be updated using the pre-

computed function.

In the context of MPC, multi-parametric programming can be used to obtain the op-

timal control inputs as an explicit function of the measurements, considering these

as the parameters of the optimization problem. This allows the online computa-

tional effort to be reduced to a series of function evaluations, eliminating the need

6 Introduction

of a real-time optimization solver. Commonly, explicit MPC formulations provide

the explicit optimal solution as a piecewise function of the system state variables1.

The typical domain of interest is a subset of the state space, which is partitioned in

a finite number of regions (referred to as critical regions). For each critical region,

a particular state feedback control law yields the optimal value of the control input.

All together these control laws form the piecewise function which represents the

explicit optimal MPC solution.

Therefore, for the online implementation such an explicit MPC solution only needs

to store the piecewise function and, iteratively for each new measurement, locate

which critical region contains the current state vector and evaluate the correspond-

ing feedback control law.

Figure 1.2 illustrates an example of a system with a 2-dimensional state vector and

a 1-dimensional control input. The planar domain of the function is partitioned into

polygons, each with an associated pre-computed control law.

The concept extends analogously for the general n-dimensional state vector and r-

dimensional control input vector (the n-dimensional domain is partitioned in poly-

topes).

The potential advantages of explicit MPC formulations are extremely promising to

extend the scope of applicability of MPC approaches.

• Once the explicit optimal solution has been computed offline, it can be im-

plemented into simple hardware such as a microchip, and can be replicated

cheaply for mass production.

• The explicit form of the solution enables MPC to be used on systems which

need high control update rates, since function evaluation is usually a very fast

operation (compared to solving an optimization problem).

• In contrast to the implicit nature of standard MPC implementations, explicit

MPC solutions provide a more accurate and deep intuitive understanding of

the control behavior and properties, allowing analysis of performance such as

safety verifications.

However, explicit MPC implementation approaches also entail disadvantages. Ob-

taining the explicit optimal MPC solution amounts to solving (offline) a parametric

optimization problem, which is in general a difficult task. Although the problem is

tractable and practically solvable for many interesting control applications, the of-

fline computational effort grows fast as the problem size increases. This is the case

1State estimation techniques may be used in the situations where the state variables are not fully

measured, and explicit MPC solutions that are based on these estimates may be derived.

6 Introduction

of a real-time optimization solver. Commonly, explicit MPC formulations provide

the explicit optimal solution as a piecewise function of the system state variables1.

The typical domain of interest is a subset of the state space, which is partitioned in

a finite number of regions (referred to as critical regions). For each critical region,

a particular state feedback control law yields the optimal value of the control input.

All together these control laws form the piecewise function which represents the

explicit optimal MPC solution.

Therefore, for the online implementation such an explicit MPC solution only needs

to store the piecewise function and, iteratively for each new measurement, locate

which critical region contains the current state vector and evaluate the correspond-

ing feedback control law.

Figure 1.2 illustrates an example of a system with a 2-dimensional state vector and

a 1-dimensional control input. The planar domain of the function is partitioned into

polygons, each with an associated pre-computed control law.

The concept extends analogously for the general n-dimensional state vector and r-

dimensional control input vector (the n-dimensional domain is partitioned in poly-

topes).

The potential advantages of explicit MPC formulations are extremely promising to

extend the scope of applicability of MPC approaches.

• Once the explicit optimal solution has been computed offline, it can be im-

plemented into simple hardware such as a microchip, and can be replicated

cheaply for mass production.

• The explicit form of the solution enables MPC to be used on systems which

need high control update rates, since function evaluation is usually a very fast

operation (compared to solving an optimization problem).

• In contrast to the implicit nature of standard MPC implementations, explicit

MPC solutions provide a more accurate and deep intuitive understanding of

the control behavior and properties, allowing analysis of performance such as

safety verifications.

However, explicit MPC implementation approaches also entail disadvantages. Ob-

taining the explicit optimal MPC solution amounts to solving (offline) a parametric

optimization problem, which is in general a difficult task. Although the problem is

tractable and practically solvable for many interesting control applications, the of-

fline computational effort grows fast as the problem size increases. This is the case

1State estimation techniques may be used in the situations where the state variables are not fully

measured, and explicit MPC solutions that are based on these estimates may be derived.

6 Introduction

of a real-time optimization solver. Commonly, explicit MPC formulations provide

the explicit optimal solution as a piecewise function of the system state variables1.

The typical domain of interest is a subset of the state space, which is partitioned in

a finite number of regions (referred to as critical regions). For each critical region,

a particular state feedback control law yields the optimal value of the control input.

All together these control laws form the piecewise function which represents the

explicit optimal MPC solution.

Therefore, for the online implementation such an explicit MPC solution only needs

to store the piecewise function and, iteratively for each new measurement, locate

which critical region contains the current state vector and evaluate the correspond-

ing feedback control law.

Figure 1.2 illustrates an example of a system with a 2-dimensional state vector and

a 1-dimensional control input. The planar domain of the function is partitioned into

polygons, each with an associated pre-computed control law.

The concept extends analogously for the general n-dimensional state vector and r-

dimensional control input vector (the n-dimensional domain is partitioned in poly-

topes).

The potential advantages of explicit MPC formulations are extremely promising to

extend the scope of applicability of MPC approaches.

• Once the explicit optimal solution has been computed offline, it can be im-

plemented into simple hardware such as a microchip, and can be replicated

cheaply for mass production.

• The explicit form of the solution enables MPC to be used on systems which

need high control update rates, since function evaluation is usually a very fast

operation (compared to solving an optimization problem).

• In contrast to the implicit nature of standard MPC implementations, explicit

MPC solutions provide a more accurate and deep intuitive understanding of

the control behavior and properties, allowing analysis of performance such as

safety verifications.

However, explicit MPC implementation approaches also entail disadvantages. Ob-

taining the explicit optimal MPC solution amounts to solving (offline) a parametric

optimization problem, which is in general a difficult task. Although the problem is

tractable and practically solvable for many interesting control applications, the of-

fline computational effort grows fast as the problem size increases. This is the case

1State estimation techniques may be used in the situations where the state variables are not fully

measured, and explicit MPC solutions that are based on these estimates may be derived.

6 Introduction

of a real-time optimization solver. Commonly, explicit MPC formulations provide

the explicit optimal solution as a piecewise function of the system state variables1.

The typical domain of interest is a subset of the state space, which is partitioned in

a finite number of regions (referred to as critical regions). For each critical region,

a particular state feedback control law yields the optimal value of the control input.

All together these control laws form the piecewise function which represents the

explicit optimal MPC solution.

Therefore, for the online implementation such an explicit MPC solution only needs

to store the piecewise function and, iteratively for each new measurement, locate

which critical region contains the current state vector and evaluate the correspond-

ing feedback control law.

Figure 1.2 illustrates an example of a system with a 2-dimensional state vector and

a 1-dimensional control input. The planar domain of the function is partitioned into

polygons, each with an associated pre-computed control law.

The concept extends analogously for the general n-dimensional state vector and r-

dimensional control input vector (the n-dimensional domain is partitioned in poly-

topes).

The potential advantages of explicit MPC formulations are extremely promising to

extend the scope of applicability of MPC approaches.

• Once the explicit optimal solution has been computed offline, it can be im-

plemented into simple hardware such as a microchip, and can be replicated

cheaply for mass production.

• The explicit form of the solution enables MPC to be used on systems which

need high control update rates, since function evaluation is usually a very fast

operation (compared to solving an optimization problem).

• In contrast to the implicit nature of standard MPC implementations, explicit

MPC solutions provide a more accurate and deep intuitive understanding of

the control behavior and properties, allowing analysis of performance such as

safety verifications.

However, explicit MPC implementation approaches also entail disadvantages. Ob-

taining the explicit optimal MPC solution amounts to solving (offline) a parametric

optimization problem, which is in general a difficult task. Although the problem is

tractable and practically solvable for many interesting control applications, the of-

fline computational effort grows fast as the problem size increases. This is the case

1State estimation techniques may be used in the situations where the state variables are not fully

measured, and explicit MPC solutions that are based on these estimates may be derived.

1.2. Computational Geometry 7

for long prediction horizon, large number of constraints and high dimensional state

and input vectors. Moreover, as the optimization complexity grows, the explicit

solution complexity also commonly grows in terms of the number of control laws

forming the piecewise function. This means that the storage space needed for the

explicit MPC implementation increases and the online function evaluation problem

becomes more complex.

The possible advantages deriving from explicit MPC approaches have attracted a

lot the interest in the research community and considerable effort has been put into

the development of techniques to deal with the entailed disadvantages.

One research direction is trying to find efficient solutions analyzing the explicit

MPC problem from a geometric point of view. This thesis follows this direction.

1.2 Computational Geometry

Many engineering problems embody inherent geometric features, for example dis-

tances can be seen as line segments, lands can be represented by polygons, computer

networks can be seen as graphs, real objects can be approximated by geometric ob-

jects like points, spheres or polyhedra. Therefore, it is often natural to think of

solutions from a geometric point of view.

Computational geometry is a subfield of computer science that involves the de-

sign and analysis of efficient algorithms for the solution of computational problems

which can be stated in terms of geometric objects (points, line segments, polygons,

polyhedra, etc.).

Computational geometric techniques are applied in different areas. Some of the

application domains where computational geometry has a major impact are briefly

described in the following.

• Computer graphics − Computer graphics is a wide area which also encom-

passes computer animation and image processing. This application area is

concerned with creating and manipulating images of real or virtual objects,

by a computer. Nowadays, computer graphics touch many aspects of daily

life, for example on television or on the Internet. Computer graphics is also

used to visualize and analyze data, such as underground oil and gas reservoirs

for the oil industry.

• Robotics − Robotics is concerned with the design, manufacture, application,

and structural disposition of robots. As robots can be seen as geometric ob-

jects operating in 3-dimensional space (the real world), many related prob-

1.2. Computational Geometry 7

for long prediction horizon, large number of constraints and high dimensional state

and input vectors. Moreover, as the optimization complexity grows, the explicit

solution complexity also commonly grows in terms of the number of control laws

forming the piecewise function. This means that the storage space needed for the

explicit MPC implementation increases and the online function evaluation problem

becomes more complex.

The possible advantages deriving from explicit MPC approaches have attracted a

lot the interest in the research community and considerable effort has been put into

the development of techniques to deal with the entailed disadvantages.

One research direction is trying to find efficient solutions analyzing the explicit

MPC problem from a geometric point of view. This thesis follows this direction.

1.2 Computational Geometry

Many engineering problems embody inherent geometric features, for example dis-

tances can be seen as line segments, lands can be represented by polygons, computer

networks can be seen as graphs, real objects can be approximated by geometric ob-

jects like points, spheres or polyhedra. Therefore, it is often natural to think of

solutions from a geometric point of view.

Computational geometry is a subfield of computer science that involves the de-

sign and analysis of efficient algorithms for the solution of computational problems

which can be stated in terms of geometric objects (points, line segments, polygons,

polyhedra, etc.).

Computational geometric techniques are applied in different areas. Some of the

application domains where computational geometry has a major impact are briefly

described in the following.

• Computer graphics − Computer graphics is a wide area which also encom-

passes computer animation and image processing. This application area is

concerned with creating and manipulating images of real or virtual objects,

by a computer. Nowadays, computer graphics touch many aspects of daily

life, for example on television or on the Internet. Computer graphics is also

used to visualize and analyze data, such as underground oil and gas reservoirs

for the oil industry.

• Robotics − Robotics is concerned with the design, manufacture, application,

and structural disposition of robots. As robots can be seen as geometric ob-

jects operating in 3-dimensional space (the real world), many related prob-

1.2. Computational Geometry 7

for long prediction horizon, large number of constraints and high dimensional state

and input vectors. Moreover, as the optimization complexity grows, the explicit

solution complexity also commonly grows in terms of the number of control laws

forming the piecewise function. This means that the storage space needed for the

explicit MPC implementation increases and the online function evaluation problem

becomes more complex.

The possible advantages deriving from explicit MPC approaches have attracted a

lot the interest in the research community and considerable effort has been put into

the development of techniques to deal with the entailed disadvantages.

One research direction is trying to find efficient solutions analyzing the explicit

MPC problem from a geometric point of view. This thesis follows this direction.

1.2 Computational Geometry

Many engineering problems embody inherent geometric features, for example dis-

tances can be seen as line segments, lands can be represented by polygons, computer

networks can be seen as graphs, real objects can be approximated by geometric ob-

jects like points, spheres or polyhedra. Therefore, it is often natural to think of

solutions from a geometric point of view.

Computational geometry is a subfield of computer science that involves the de-

sign and analysis of efficient algorithms for the solution of computational problems

which can be stated in terms of geometric objects (points, line segments, polygons,

polyhedra, etc.).

Computational geometric techniques are applied in different areas. Some of the

application domains where computational geometry has a major impact are briefly

described in the following.

• Computer graphics − Computer graphics is a wide area which also encom-

passes computer animation and image processing. This application area is

concerned with creating and manipulating images of real or virtual objects,

by a computer. Nowadays, computer graphics touch many aspects of daily

life, for example on television or on the Internet. Computer graphics is also

used to visualize and analyze data, such as underground oil and gas reservoirs

for the oil industry.

• Robotics − Robotics is concerned with the design, manufacture, application,

and structural disposition of robots. As robots can be seen as geometric ob-

jects operating in 3-dimensional space (the real world), many related prob-

1.2. Computational Geometry 7

for long prediction horizon, large number of constraints and high dimensional state

and input vectors. Moreover, as the optimization complexity grows, the explicit

solution complexity also commonly grows in terms of the number of control laws

forming the piecewise function. This means that the storage space needed for the

explicit MPC implementation increases and the online function evaluation problem

becomes more complex.

The possible advantages deriving from explicit MPC approaches have attracted a

lot the interest in the research community and considerable effort has been put into

the development of techniques to deal with the entailed disadvantages.

One research direction is trying to find efficient solutions analyzing the explicit

MPC problem from a geometric point of view. This thesis follows this direction.

1.2 Computational Geometry

Many engineering problems embody inherent geometric features, for example dis-

tances can be seen as line segments, lands can be represented by polygons, computer

networks can be seen as graphs, real objects can be approximated by geometric ob-

jects like points, spheres or polyhedra. Therefore, it is often natural to think of

solutions from a geometric point of view.

Computational geometry is a subfield of computer science that involves the de-

sign and analysis of efficient algorithms for the solution of computational problems

which can be stated in terms of geometric objects (points, line segments, polygons,

polyhedra, etc.).

Computational geometric techniques are applied in different areas. Some of the

application domains where computational geometry has a major impact are briefly

described in the following.

• Computer graphics − Computer graphics is a wide area which also encom-

passes computer animation and image processing. This application area is

concerned with creating and manipulating images of real or virtual objects,

by a computer. Nowadays, computer graphics touch many aspects of daily

life, for example on television or on the Internet. Computer graphics is also

used to visualize and analyze data, such as underground oil and gas reservoirs

for the oil industry.

• Robotics − Robotics is concerned with the design, manufacture, application,

and structural disposition of robots. As robots can be seen as geometric ob-

jects operating in 3-dimensional space (the real world), many related prob-

8 Introduction

Figure 1.2: Partition of the planar domain into polygons. The piecewise function

f(x) defined over this domain comprises different (linear) feedback control laws,

one for each polygon of the partition.

8 Introduction

Figure 1.2: Partition of the planar domain into polygons. The piecewise function

f(x) defined over this domain comprises different (linear) feedback control laws,

one for each polygon of the partition.

8 Introduction

Figure 1.2: Partition of the planar domain into polygons. The piecewise function

f(x) defined over this domain comprises different (linear) feedback control laws,

one for each polygon of the partition.

8 Introduction

Figure 1.2: Partition of the planar domain into polygons. The piecewise function

f(x) defined over this domain comprises different (linear) feedback control laws,

one for each polygon of the partition.

1.2. Computational Geometry 9

lems are naturally seen and solved by a geometric point of view, like for

example the motion planning problem, where a robot is asked to find a path

in an environment with obstacles.

• Geographic information systems − Geographic information systems (GIS)

are information systems which store, analyze, and present geographical data.

GIS allows users to analyze location information, edit data, maps, and vi-

sualize the results of such operations. For example, automotive navigation

systems based on the global positioning system (GPS) are nowadays popular

applications of GIS.

• Computer aided design − Computer aided design (CAD) is concerned with

the design of objects by using computer technology. In general, the solutions

given by CAD involve more than just shapes, conveying also information

such as materials, processes, dimensions, and tolerances. For example, CAD

is important in the manufacturing industry where it is also used to assist the

manufacturing processes.

Naturally, geometric problems occur in many more application areas. Generally,

in all situations where the computational problem possesses a certain geometric

nature, geometric algorithms, data structures and techniques from computational

geometry may represent the key for efficient and effective solutions.

Explicit model predictive control approaches are concerned with computing a piece-

wise function with the optimal control input as dependent variables and the sys-

tem state vector as independent variables. This function is defined over a domain

which is partitioned into polygons in the planar case, polyhedra in the 3-dimensional

spatial case, and polytopes in the general case. The online implementation effort

amounts to locating the polytope of the partition which the current state value lies

in, and to evaluating the corresponding feedback law.

A geometric nature is therefore clear.

Devising successful solutions to computational problems with a recognized geo-

metric nature is mostly based on a careful insight into the geometric properties of

the problem and on a proper application of geometric concepts, algorithmic tech-

niques and data structures.

To illustrate these principles, three practical problems arising in the application ar-

eas mentioned before are discussed in the following. The examples introduce and

motivate the importance of fundamental concepts in computational geometry which

are particularly relevant for the work in this thesis.

1.2. Computational Geometry 9

lems are naturally seen and solved by a geometric point of view, like for

example the motion planning problem, where a robot is asked to find a path

in an environment with obstacles.

• Geographic information systems − Geographic information systems (GIS)

are information systems which store, analyze, and present geographical data.

GIS allows users to analyze location information, edit data, maps, and vi-

sualize the results of such operations. For example, automotive navigation

systems based on the global positioning system (GPS) are nowadays popular

applications of GIS.

• Computer aided design − Computer aided design (CAD) is concerned with

the design of objects by using computer technology. In general, the solutions

given by CAD involve more than just shapes, conveying also information

such as materials, processes, dimensions, and tolerances. For example, CAD

is important in the manufacturing industry where it is also used to assist the

manufacturing processes.

Naturally, geometric problems occur in many more application areas. Generally,

in all situations where the computational problem possesses a certain geometric

nature, geometric algorithms, data structures and techniques from computational

geometry may represent the key for efficient and effective solutions.

Explicit model predictive control approaches are concerned with computing a piece-

wise function with the optimal control input as dependent variables and the sys-

tem state vector as independent variables. This function is defined over a domain

which is partitioned into polygons in the planar case, polyhedra in the 3-dimensional

spatial case, and polytopes in the general case. The online implementation effort

amounts to locating the polytope of the partition which the current state value lies

in, and to evaluating the corresponding feedback law.

A geometric nature is therefore clear.

Devising successful solutions to computational problems with a recognized geo-

metric nature is mostly based on a careful insight into the geometric properties of

the problem and on a proper application of geometric concepts, algorithmic tech-

niques and data structures.

To illustrate these principles, three practical problems arising in the application ar-

eas mentioned before are discussed in the following. The examples introduce and

motivate the importance of fundamental concepts in computational geometry which

are particularly relevant for the work in this thesis.

1.2. Computational Geometry 9

lems are naturally seen and solved by a geometric point of view, like for

example the motion planning problem, where a robot is asked to find a path

in an environment with obstacles.

• Geographic information systems − Geographic information systems (GIS)

are information systems which store, analyze, and present geographical data.

GIS allows users to analyze location information, edit data, maps, and vi-

sualize the results of such operations. For example, automotive navigation

systems based on the global positioning system (GPS) are nowadays popular

applications of GIS.

• Computer aided design − Computer aided design (CAD) is concerned with

the design of objects by using computer technology. In general, the solutions

given by CAD involve more than just shapes, conveying also information

such as materials, processes, dimensions, and tolerances. For example, CAD

is important in the manufacturing industry where it is also used to assist the

manufacturing processes.

Naturally, geometric problems occur in many more application areas. Generally,

in all situations where the computational problem possesses a certain geometric

nature, geometric algorithms, data structures and techniques from computational

geometry may represent the key for efficient and effective solutions.

Explicit model predictive control approaches are concerned with computing a piece-

wise function with the optimal control input as dependent variables and the sys-

tem state vector as independent variables. This function is defined over a domain

which is partitioned into polygons in the planar case, polyhedra in the 3-dimensional

spatial case, and polytopes in the general case. The online implementation effort

amounts to locating the polytope of the partition which the current state value lies

in, and to evaluating the corresponding feedback law.

A geometric nature is therefore clear.

Devising successful solutions to computational problems with a recognized geo-

metric nature is mostly based on a careful insight into the geometric properties of

the problem and on a proper application of geometric concepts, algorithmic tech-

niques and data structures.

To illustrate these principles, three practical problems arising in the application ar-

eas mentioned before are discussed in the following. The examples introduce and

motivate the importance of fundamental concepts in computational geometry which

are particularly relevant for the work in this thesis.

1.2. Computational Geometry 9

lems are naturally seen and solved by a geometric point of view, like for

example the motion planning problem, where a robot is asked to find a path

in an environment with obstacles.

• Geographic information systems − Geographic information systems (GIS)

are information systems which store, analyze, and present geographical data.

GIS allows users to analyze location information, edit data, maps, and vi-

sualize the results of such operations. For example, automotive navigation

systems based on the global positioning system (GPS) are nowadays popular

applications of GIS.

• Computer aided design − Computer aided design (CAD) is concerned with

the design of objects by using computer technology. In general, the solutions

given by CAD involve more than just shapes, conveying also information

such as materials, processes, dimensions, and tolerances. For example, CAD

is important in the manufacturing industry where it is also used to assist the

manufacturing processes.

Naturally, geometric problems occur in many more application areas. Generally,

in all situations where the computational problem possesses a certain geometric

nature, geometric algorithms, data structures and techniques from computational

geometry may represent the key for efficient and effective solutions.

Explicit model predictive control approaches are concerned with computing a piece-

wise function with the optimal control input as dependent variables and the sys-

tem state vector as independent variables. This function is defined over a domain

which is partitioned into polygons in the planar case, polyhedra in the 3-dimensional

spatial case, and polytopes in the general case. The online implementation effort

amounts to locating the polytope of the partition which the current state value lies

in, and to evaluating the corresponding feedback law.

A geometric nature is therefore clear.

Devising successful solutions to computational problems with a recognized geo-

metric nature is mostly based on a careful insight into the geometric properties of

the problem and on a proper application of geometric concepts, algorithmic tech-

niques and data structures.

To illustrate these principles, three practical problems arising in the application ar-

eas mentioned before are discussed in the following. The examples introduce and

motivate the importance of fundamental concepts in computational geometry which

are particularly relevant for the work in this thesis.

10 Introduction

Figure 1.3: A reconstruction of the relief of a terrestrial surface via Delaunay trian-
gulation (www.esri.com).

1.2.1 Surface Reconstruction via Delaunay Triangulation

Consider the common problem in geographic information systems of building a
computer model of a terrain (terrestrial surface relief). This problem is impor-
tant for many reasons: terrains are used to study water flow and distribution; they
are also used to analyze the possibility of human settlements and constructions
(streets, bridges, buildings) in a region; over large areas, terrains can give insight
into weather and climate patterns.
A terrain can be seen as the 3-dimensional plot of a particular function which as-
signs an elevation for each point on the area of interest (the domain). In practice,
we can assume that the value of the function (the elevation) is known only for the
limited number of points in the domain where it is measured. Then, the problem is
building a model, based only on sampled points, which provides a suitable approx-
imation of the elevation of all the points in the domain.
One of the most successful approaches to the problem comes from computational
geometry, and is based on triangulation. The planar domain is divided into triangles
whose vertices are the sample points2. Then, each sample point is lifted to its actual
height mapping every triangle in the domain to a triangle in 3-dimensional space.
The result is a piecewise (linear) function whose plot approximates the original ter-
rain (Figure 1.3).

2It is assumed that the set of sample points is such that can make the triangulation to entirely
cover the domain.

10 Introduction

Figure 1.3: A reconstruction of the relief of a terrestrial surface via Delaunay trian-
gulation (www.esri.com).

1.2.1 Surface Reconstruction via Delaunay Triangulation

Consider the common problem in geographic information systems of building a
computer model of a terrain (terrestrial surface relief). This problem is impor-
tant for many reasons: terrains are used to study water flow and distribution; they
are also used to analyze the possibility of human settlements and constructions
(streets, bridges, buildings) in a region; over large areas, terrains can give insight
into weather and climate patterns.
A terrain can be seen as the 3-dimensional plot of a particular function which as-
signs an elevation for each point on the area of interest (the domain). In practice,
we can assume that the value of the function (the elevation) is known only for the
limited number of points in the domain where it is measured. Then, the problem is
building a model, based only on sampled points, which provides a suitable approx-
imation of the elevation of all the points in the domain.
One of the most successful approaches to the problem comes from computational
geometry, and is based on triangulation. The planar domain is divided into triangles
whose vertices are the sample points2. Then, each sample point is lifted to its actual
height mapping every triangle in the domain to a triangle in 3-dimensional space.
The result is a piecewise (linear) function whose plot approximates the original ter-
rain (Figure 1.3).

2It is assumed that the set of sample points is such that can make the triangulation to entirely
cover the domain.

10 Introduction

Figure 1.3: A reconstruction of the relief of a terrestrial surface via Delaunay trian-
gulation (www.esri.com).

1.2.1 Surface Reconstruction via Delaunay Triangulation

Consider the common problem in geographic information systems of building a
computer model of a terrain (terrestrial surface relief). This problem is impor-
tant for many reasons: terrains are used to study water flow and distribution; they
are also used to analyze the possibility of human settlements and constructions
(streets, bridges, buildings) in a region; over large areas, terrains can give insight
into weather and climate patterns.
A terrain can be seen as the 3-dimensional plot of a particular function which as-
signs an elevation for each point on the area of interest (the domain). In practice,
we can assume that the value of the function (the elevation) is known only for the
limited number of points in the domain where it is measured. Then, the problem is
building a model, based only on sampled points, which provides a suitable approx-
imation of the elevation of all the points in the domain.
One of the most successful approaches to the problem comes from computational
geometry, and is based on triangulation. The planar domain is divided into triangles
whose vertices are the sample points2. Then, each sample point is lifted to its actual
height mapping every triangle in the domain to a triangle in 3-dimensional space.
The result is a piecewise (linear) function whose plot approximates the original ter-
rain (Figure 1.3).

2It is assumed that the set of sample points is such that can make the triangulation to entirely
cover the domain.

10 Introduction

Figure 1.3: A reconstruction of the relief of a terrestrial surface via Delaunay trian-
gulation (www.esri.com).

1.2.1 Surface Reconstruction via Delaunay Triangulation

Consider the common problem in geographic information systems of building a
computer model of a terrain (terrestrial surface relief). This problem is impor-
tant for many reasons: terrains are used to study water flow and distribution; they
are also used to analyze the possibility of human settlements and constructions
(streets, bridges, buildings) in a region; over large areas, terrains can give insight
into weather and climate patterns.
A terrain can be seen as the 3-dimensional plot of a particular function which as-
signs an elevation for each point on the area of interest (the domain). In practice,
we can assume that the value of the function (the elevation) is known only for the
limited number of points in the domain where it is measured. Then, the problem is
building a model, based only on sampled points, which provides a suitable approx-
imation of the elevation of all the points in the domain.
One of the most successful approaches to the problem comes from computational
geometry, and is based on triangulation. The planar domain is divided into triangles
whose vertices are the sample points2. Then, each sample point is lifted to its actual
height mapping every triangle in the domain to a triangle in 3-dimensional space.
The result is a piecewise (linear) function whose plot approximates the original ter-
rain (Figure 1.3).

2It is assumed that the set of sample points is such that can make the triangulation to entirely
cover the domain.

1.2. Computational Geometry 11

Given a set of points, there are several ways to build a triangulation of them. How-

ever, in our problem the interest is to establish proper neighborhood relations among

the sample points. It is intuitively correct to think that the approximate height of a

general point in the domain should be determined by the relatively closest sample

points. In this sense, a triangulation with extremely thin triangles (small minimum

angle of the triangulation) is likely to lead to a poorer approximation than a trian-

gulation with more regular triangles. A data structure that is extremely well suited

for the approximation purpose is the Delaunay triangulation of the sample points.

One of the main reasons is that the Delaunay triangulation maximizes the minimum

angle in the triangulation.

Reconstruction of 3-dimensional terrain is an instance of the wider concept of sur-

face reconstruction via Delaunay structures, which extends to spaces of higher di-

mension (triangles are generalized by simplices).

The geometric concepts introduced in this section will be considered again in Chap-

ter 3.

1.2.2 Point Location

Consider a dispatch system that is to assign forest rangers to a certain natural park

which is partitioned in different regions. The problem considered here is, given a

certain point (query point) in the park, which can be, for example, where suspicious

smoke has been detected, identify which region of the park contains the point, such

that the rangers in that region can be called and sent to check.

The general point location query can be stated as: given a partition of the space

into disjoint regions, determine the region where a query point resides. It arises in

several application areas like computer graphics, geographic information systems,

motion planning, and computer aided design, and often is needed as an ingredient

to solve larger geometrical problems.

Suppose here that the surface of the park has been subdivided in triangles (c.f. Sec-

tion 1.2.1), then the problem is to find the triangle containing the query point. A

very simple technique to find such a triangle consists of first selecting a starting tri-

angle and then moving in an iterative way towards the query point. After the starting

triangle is given, the technique chooses one of the neighboring triangles in such a

way that the distance to the query point decreases. This can be achieved consider-

ing the dot products of the normal vectors of the bounding line segments and the

vector from the in-circle center of the starting triangle to the query point. Once the

new triangle is found, then the procedure is repeated considering this as the start-

ing triangle, until the triangle containing the query point is identified. Figure 1.4

illustrates the idea. This technique is known as Jump&Walk, and has the advantages

1.2. Computational Geometry 11

Given a set of points, there are several ways to build a triangulation of them. How-

ever, in our problem the interest is to establish proper neighborhood relations among

the sample points. It is intuitively correct to think that the approximate height of a

general point in the domain should be determined by the relatively closest sample

points. In this sense, a triangulation with extremely thin triangles (small minimum

angle of the triangulation) is likely to lead to a poorer approximation than a trian-

gulation with more regular triangles. A data structure that is extremely well suited

for the approximation purpose is the Delaunay triangulation of the sample points.

One of the main reasons is that the Delaunay triangulation maximizes the minimum

angle in the triangulation.

Reconstruction of 3-dimensional terrain is an instance of the wider concept of sur-

face reconstruction via Delaunay structures, which extends to spaces of higher di-

mension (triangles are generalized by simplices).

The geometric concepts introduced in this section will be considered again in Chap-

ter 3.

1.2.2 Point Location

Consider a dispatch system that is to assign forest rangers to a certain natural park

which is partitioned in different regions. The problem considered here is, given a

certain point (query point) in the park, which can be, for example, where suspicious

smoke has been detected, identify which region of the park contains the point, such

that the rangers in that region can be called and sent to check.

The general point location query can be stated as: given a partition of the space

into disjoint regions, determine the region where a query point resides. It arises in

several application areas like computer graphics, geographic information systems,

motion planning, and computer aided design, and often is needed as an ingredient

to solve larger geometrical problems.

Suppose here that the surface of the park has been subdivided in triangles (c.f. Sec-

tion 1.2.1), then the problem is to find the triangle containing the query point. A

very simple technique to find such a triangle consists of first selecting a starting tri-

angle and then moving in an iterative way towards the query point. After the starting

triangle is given, the technique chooses one of the neighboring triangles in such a

way that the distance to the query point decreases. This can be achieved consider-

ing the dot products of the normal vectors of the bounding line segments and the

vector from the in-circle center of the starting triangle to the query point. Once the

new triangle is found, then the procedure is repeated considering this as the start-

ing triangle, until the triangle containing the query point is identified. Figure 1.4

illustrates the idea. This technique is known as Jump&Walk, and has the advantages

1.2. Computational Geometry 11

Given a set of points, there are several ways to build a triangulation of them. How-

ever, in our problem the interest is to establish proper neighborhood relations among

the sample points. It is intuitively correct to think that the approximate height of a

general point in the domain should be determined by the relatively closest sample

points. In this sense, a triangulation with extremely thin triangles (small minimum

angle of the triangulation) is likely to lead to a poorer approximation than a trian-

gulation with more regular triangles. A data structure that is extremely well suited

for the approximation purpose is the Delaunay triangulation of the sample points.

One of the main reasons is that the Delaunay triangulation maximizes the minimum

angle in the triangulation.

Reconstruction of 3-dimensional terrain is an instance of the wider concept of sur-

face reconstruction via Delaunay structures, which extends to spaces of higher di-

mension (triangles are generalized by simplices).

The geometric concepts introduced in this section will be considered again in Chap-

ter 3.

1.2.2 Point Location

Consider a dispatch system that is to assign forest rangers to a certain natural park

which is partitioned in different regions. The problem considered here is, given a

certain point (query point) in the park, which can be, for example, where suspicious

smoke has been detected, identify which region of the park contains the point, such

that the rangers in that region can be called and sent to check.

The general point location query can be stated as: given a partition of the space

into disjoint regions, determine the region where a query point resides. It arises in

several application areas like computer graphics, geographic information systems,

motion planning, and computer aided design, and often is needed as an ingredient

to solve larger geometrical problems.

Suppose here that the surface of the park has been subdivided in triangles (c.f. Sec-

tion 1.2.1), then the problem is to find the triangle containing the query point. A

very simple technique to find such a triangle consists of first selecting a starting tri-

angle and then moving in an iterative way towards the query point. After the starting

triangle is given, the technique chooses one of the neighboring triangles in such a

way that the distance to the query point decreases. This can be achieved consider-

ing the dot products of the normal vectors of the bounding line segments and the

vector from the in-circle center of the starting triangle to the query point. Once the

new triangle is found, then the procedure is repeated considering this as the start-

ing triangle, until the triangle containing the query point is identified. Figure 1.4

illustrates the idea. This technique is known as Jump&Walk, and has the advantages

1.2. Computational Geometry 11

Given a set of points, there are several ways to build a triangulation of them. How-

ever, in our problem the interest is to establish proper neighborhood relations among

the sample points. It is intuitively correct to think that the approximate height of a

general point in the domain should be determined by the relatively closest sample

points. In this sense, a triangulation with extremely thin triangles (small minimum

angle of the triangulation) is likely to lead to a poorer approximation than a trian-

gulation with more regular triangles. A data structure that is extremely well suited

for the approximation purpose is the Delaunay triangulation of the sample points.

One of the main reasons is that the Delaunay triangulation maximizes the minimum

angle in the triangulation.

Reconstruction of 3-dimensional terrain is an instance of the wider concept of sur-

face reconstruction via Delaunay structures, which extends to spaces of higher di-

mension (triangles are generalized by simplices).

The geometric concepts introduced in this section will be considered again in Chap-

ter 3.

1.2.2 Point Location

Consider a dispatch system that is to assign forest rangers to a certain natural park

which is partitioned in different regions. The problem considered here is, given a

certain point (query point) in the park, which can be, for example, where suspicious

smoke has been detected, identify which region of the park contains the point, such

that the rangers in that region can be called and sent to check.

The general point location query can be stated as: given a partition of the space

into disjoint regions, determine the region where a query point resides. It arises in

several application areas like computer graphics, geographic information systems,

motion planning, and computer aided design, and often is needed as an ingredient

to solve larger geometrical problems.

Suppose here that the surface of the park has been subdivided in triangles (c.f. Sec-

tion 1.2.1), then the problem is to find the triangle containing the query point. A

very simple technique to find such a triangle consists of first selecting a starting tri-

angle and then moving in an iterative way towards the query point. After the starting

triangle is given, the technique chooses one of the neighboring triangles in such a

way that the distance to the query point decreases. This can be achieved consider-

ing the dot products of the normal vectors of the bounding line segments and the

vector from the in-circle center of the starting triangle to the query point. Once the

new triangle is found, then the procedure is repeated considering this as the start-

ing triangle, until the triangle containing the query point is identified. Figure 1.4

illustrates the idea. This technique is known as Jump&Walk, and has the advantages

12 Introduction

Figure 1.4: Point location algorithm. Pq denotes the query point, Pc is the in-

circle point of the starting triangle. To determine which neighboring triangle is

closest to Pq, the dot products of the vector from Pc to Pq and the normal vectors of

all bounding line segments are computed. The line segment whose normal vector

results in the largest dot product is chosen, and the corresponding triangle is taken

as the next step towards the query point.

of being extremely simple to implement and not requiring any preprocessing of the

partition or complex supporting data structures.

The geometric concepts introduced in this section will be considered again in Chap-

ter 3.

1.2.3 Convex Hull

Consider the problem of obtaining a certain color by mixing some basic colors. This

is a problem that can arise in image processing or computer-aided design, even if

probably the first thought that comes to mind is the less technological scene of a

painter mixing his/her colors on a palette.

According to the theory of colors, all the colors can be obtained by mixing different

proportions of the three primal spectral colors: red, green and blue. Assume that

we have the colors red and green, then the color yellow can be obtained mixing

them with an equal proportion. How geometry comes into play becomes clear from

12 Introduction

Figure 1.4: Point location algorithm. Pq denotes the query point, Pc is the in-

circle point of the starting triangle. To determine which neighboring triangle is

closest to Pq, the dot products of the vector from Pc to Pq and the normal vectors of

all bounding line segments are computed. The line segment whose normal vector

results in the largest dot product is chosen, and the corresponding triangle is taken

as the next step towards the query point.

of being extremely simple to implement and not requiring any preprocessing of the

partition or complex supporting data structures.

The geometric concepts introduced in this section will be considered again in Chap-

ter 3.

1.2.3 Convex Hull

Consider the problem of obtaining a certain color by mixing some basic colors. This

is a problem that can arise in image processing or computer-aided design, even if

probably the first thought that comes to mind is the less technological scene of a

painter mixing his/her colors on a palette.

According to the theory of colors, all the colors can be obtained by mixing different

proportions of the three primal spectral colors: red, green and blue. Assume that

we have the colors red and green, then the color yellow can be obtained mixing

them with an equal proportion. How geometry comes into play becomes clear from

12 Introduction

Figure 1.4: Point location algorithm. Pq denotes the query point, Pc is the in-

circle point of the starting triangle. To determine which neighboring triangle is

closest to Pq, the dot products of the vector from Pc to Pq and the normal vectors of

all bounding line segments are computed. The line segment whose normal vector

results in the largest dot product is chosen, and the corresponding triangle is taken

as the next step towards the query point.

of being extremely simple to implement and not requiring any preprocessing of the

partition or complex supporting data structures.

The geometric concepts introduced in this section will be considered again in Chap-

ter 3.

1.2.3 Convex Hull

Consider the problem of obtaining a certain color by mixing some basic colors. This

is a problem that can arise in image processing or computer-aided design, even if

probably the first thought that comes to mind is the less technological scene of a

painter mixing his/her colors on a palette.

According to the theory of colors, all the colors can be obtained by mixing different

proportions of the three primal spectral colors: red, green and blue. Assume that

we have the colors red and green, then the color yellow can be obtained mixing

them with an equal proportion. How geometry comes into play becomes clear from

12 Introduction

Figure 1.4: Point location algorithm. Pq denotes the query point, Pc is the in-

circle point of the starting triangle. To determine which neighboring triangle is

closest to Pq, the dot products of the vector from Pc to Pq and the normal vectors of

all bounding line segments are computed. The line segment whose normal vector

results in the largest dot product is chosen, and the corresponding triangle is taken

as the next step towards the query point.

of being extremely simple to implement and not requiring any preprocessing of the

partition or complex supporting data structures.

The geometric concepts introduced in this section will be considered again in Chap-

ter 3.

1.2.3 Convex Hull

Consider the problem of obtaining a certain color by mixing some basic colors. This

is a problem that can arise in image processing or computer-aided design, even if

probably the first thought that comes to mind is the less technological scene of a

painter mixing his/her colors on a palette.

According to the theory of colors, all the colors can be obtained by mixing different

proportions of the three primal spectral colors: red, green and blue. Assume that

we have the colors red and green, then the color yellow can be obtained mixing

them with an equal proportion. How geometry comes into play becomes clear from

1.2. Computational Geometry 13

Figure 1.5: Color triangle. The primal spectral colors are red, green and blue.
Mixing with different ratios the primary colors all the other colors can be produced.

associating a point in the plane for each primary color, namely R, G and B (vertices
of the triangle in Figure 1.5). Then, mixing red and green with a ratio of 1 : 1 gives
the color yellow represented by the point Y := 0.5R + 0.5G (which is the point
on the segment RG such that dist(R, Y) : dist(Y,G) = 1 : 1, where dist refers
to the distance between two points). For different ratios of the component R and
G, different colors can be produced (all the colors represented by points on the line
segment RG). Adding to the mixing colors the blue (point B), all the colors in the
visible-color spectrum can be produced mixing with different ratios R, G and B, as
illustrated in Figure 1.5. The triangle with vertices R, G and B is called the convex
hull of the points R, G and B.
In general, we can have n base components represented by points P1, P2, ..., Pn

which can be mixed with ratio r1 : r2 : ... : rn. Consider R =
∑n

i=1 ri and the
coefficients λi = ri/R, which by construction satisfy

∑n
i=1 λi = 1 and λi ≥ 0

for all i. Then, the mixture produced by a given ratio is represented by Pd =∑n
i=1 λiPi, which is called convex combination. The union of all possible convex

combinations of a set of points is the convex hull of the points. Therefore, the
convex hull represents all the possible mixtures that can be produced by mixing the
base components.
An intuitive picture of what constitutes the convex hull of a general set of points
can be visualized by thinking of the points like nails sticking out of a planar piece
of wood. If an elastic rubber band is held around the nails, and then released, it
will snap around minimizing its length. Then, the area enclosed by the rubber band
represents the convex hull of the points/nails.
Finding the convex hull of a set of points, in general dimension, is one of the basic

1.2. Computational Geometry 13

Figure 1.5: Color triangle. The primal spectral colors are red, green and blue.
Mixing with different ratios the primary colors all the other colors can be produced.

associating a point in the plane for each primary color, namely R, G and B (vertices
of the triangle in Figure 1.5). Then, mixing red and green with a ratio of 1 : 1 gives
the color yellow represented by the point Y := 0.5R + 0.5G (which is the point
on the segment RG such that dist(R, Y) : dist(Y,G) = 1 : 1, where dist refers
to the distance between two points). For different ratios of the component R and
G, different colors can be produced (all the colors represented by points on the line
segment RG). Adding to the mixing colors the blue (point B), all the colors in the
visible-color spectrum can be produced mixing with different ratios R, G and B, as
illustrated in Figure 1.5. The triangle with vertices R, G and B is called the convex
hull of the points R, G and B.
In general, we can have n base components represented by points P1, P2, ..., Pn

which can be mixed with ratio r1 : r2 : ... : rn. Consider R =
∑n

i=1 ri and the
coefficients λi = ri/R, which by construction satisfy

∑n
i=1 λi = 1 and λi ≥ 0

for all i. Then, the mixture produced by a given ratio is represented by Pd =∑n
i=1 λiPi, which is called convex combination. The union of all possible convex

combinations of a set of points is the convex hull of the points. Therefore, the
convex hull represents all the possible mixtures that can be produced by mixing the
base components.
An intuitive picture of what constitutes the convex hull of a general set of points
can be visualized by thinking of the points like nails sticking out of a planar piece
of wood. If an elastic rubber band is held around the nails, and then released, it
will snap around minimizing its length. Then, the area enclosed by the rubber band
represents the convex hull of the points/nails.
Finding the convex hull of a set of points, in general dimension, is one of the basic

1.2. Computational Geometry 13

Figure 1.5: Color triangle. The primal spectral colors are red, green and blue.
Mixing with different ratios the primary colors all the other colors can be produced.

associating a point in the plane for each primary color, namely R, G and B (vertices
of the triangle in Figure 1.5). Then, mixing red and green with a ratio of 1 : 1 gives
the color yellow represented by the point Y := 0.5R + 0.5G (which is the point
on the segment RG such that dist(R, Y) : dist(Y,G) = 1 : 1, where dist refers
to the distance between two points). For different ratios of the component R and
G, different colors can be produced (all the colors represented by points on the line
segment RG). Adding to the mixing colors the blue (point B), all the colors in the
visible-color spectrum can be produced mixing with different ratios R, G and B, as
illustrated in Figure 1.5. The triangle with vertices R, G and B is called the convex
hull of the points R, G and B.
In general, we can have n base components represented by points P1, P2, ..., Pn

which can be mixed with ratio r1 : r2 : ... : rn. Consider R =
∑n

i=1 ri and the
coefficients λi = ri/R, which by construction satisfy

∑n
i=1 λi = 1 and λi ≥ 0

for all i. Then, the mixture produced by a given ratio is represented by Pd =∑n
i=1 λiPi, which is called convex combination. The union of all possible convex

combinations of a set of points is the convex hull of the points. Therefore, the
convex hull represents all the possible mixtures that can be produced by mixing the
base components.
An intuitive picture of what constitutes the convex hull of a general set of points
can be visualized by thinking of the points like nails sticking out of a planar piece
of wood. If an elastic rubber band is held around the nails, and then released, it
will snap around minimizing its length. Then, the area enclosed by the rubber band
represents the convex hull of the points/nails.
Finding the convex hull of a set of points, in general dimension, is one of the basic

1.2. Computational Geometry 13

Figure 1.5: Color triangle. The primal spectral colors are red, green and blue.
Mixing with different ratios the primary colors all the other colors can be produced.

associating a point in the plane for each primary color, namely R, G and B (vertices
of the triangle in Figure 1.5). Then, mixing red and green with a ratio of 1 : 1 gives
the color yellow represented by the point Y := 0.5R + 0.5G (which is the point
on the segment RG such that dist(R, Y) : dist(Y,G) = 1 : 1, where dist refers
to the distance between two points). For different ratios of the component R and
G, different colors can be produced (all the colors represented by points on the line
segment RG). Adding to the mixing colors the blue (point B), all the colors in the
visible-color spectrum can be produced mixing with different ratios R, G and B, as
illustrated in Figure 1.5. The triangle with vertices R, G and B is called the convex
hull of the points R, G and B.
In general, we can have n base components represented by points P1, P2, ..., Pn

which can be mixed with ratio r1 : r2 : ... : rn. Consider R =
∑n

i=1 ri and the
coefficients λi = ri/R, which by construction satisfy

∑n
i=1 λi = 1 and λi ≥ 0

for all i. Then, the mixture produced by a given ratio is represented by Pd =∑n
i=1 λiPi, which is called convex combination. The union of all possible convex

combinations of a set of points is the convex hull of the points. Therefore, the
convex hull represents all the possible mixtures that can be produced by mixing the
base components.
An intuitive picture of what constitutes the convex hull of a general set of points
can be visualized by thinking of the points like nails sticking out of a planar piece
of wood. If an elastic rubber band is held around the nails, and then released, it
will snap around minimizing its length. Then, the area enclosed by the rubber band
represents the convex hull of the points/nails.
Finding the convex hull of a set of points, in general dimension, is one of the basic

14 Introduction

problems in computational geometry.

The geometric concepts introduced in this section will be used in several places in

the thesis, and particularly in Chapter 5.

1.3 Thesis Organization and Contributions

The organization of the remaining part of the thesis and the main contributions are

stated in the following.

This thesis is written on the basis of a collection of papers. A preliminary chapter

provides the common theoretical background, thereafter emphasis has been put on

keeping each chapter self-contained. Therefore, some repetition is necessary.

• Chapter 2 − This chapter provides a common theoretical framework neces-

sary for the arguments in the thesis. It introduces the class of systems de-

scriptions considered, the class of linear systems with constraints, which is

probably the most important and widely used one in practice. For the control

and analysis of this class of systems, the theory of positive invariant sets has

been shown to be particularly important, and the relevant concepts used in the

thesis are given here. The chapter thereafter gives a background on polyhe-

dral sets, and in particular polytopic sets, which are the geometrical objects

playing the major role in the work in this thesis. Finally, an overview of the

MPC problem is given. It is shown how to formulate MPC as a quadratic

program and as a multi-parametric quadratic program. Possible extensions of

the basic MPC problem considered are also briefly discussed.

• Chapter 3 − A relevant problem with explicit MPC approaches is that for

large dimensional problems, coding and implementing the exact explicit solu-

tion may be excessively demanding for the hardware available. In these cases,

approximation is the practical way for effective implementations. The main

contribution given in this chapter is to propose a technique for computing an

approximate piecewise control law which draws its methods from computa-

tional geometry. The approximate explicit control law is suboptimal only over

the subregion of the feasible set where constraints are active. In this subre-

gion, the problem of computing a suitable suboptimal piecewise control law is

related to an important problem in computer aided geometric design, surface

reconstruction. Indeed, the technique is based on a fundamental structure in

computational geometry theory, Delaunay tessellation, which has been par-

ticularly successful in dealing with the surface reconstruction problem. The

possible solutions that the approach allows for the point location problem are

also discussed.

14 Introduction

problems in computational geometry.

The geometric concepts introduced in this section will be used in several places in

the thesis, and particularly in Chapter 5.

1.3 Thesis Organization and Contributions

The organization of the remaining part of the thesis and the main contributions are

stated in the following.

This thesis is written on the basis of a collection of papers. A preliminary chapter

provides the common theoretical background, thereafter emphasis has been put on

keeping each chapter self-contained. Therefore, some repetition is necessary.

• Chapter 2 − This chapter provides a common theoretical framework neces-

sary for the arguments in the thesis. It introduces the class of systems de-

scriptions considered, the class of linear systems with constraints, which is

probably the most important and widely used one in practice. For the control

and analysis of this class of systems, the theory of positive invariant sets has

been shown to be particularly important, and the relevant concepts used in the

thesis are given here. The chapter thereafter gives a background on polyhe-

dral sets, and in particular polytopic sets, which are the geometrical objects

playing the major role in the work in this thesis. Finally, an overview of the

MPC problem is given. It is shown how to formulate MPC as a quadratic

program and as a multi-parametric quadratic program. Possible extensions of

the basic MPC problem considered are also briefly discussed.

• Chapter 3 − A relevant problem with explicit MPC approaches is that for

large dimensional problems, coding and implementing the exact explicit solu-

tion may be excessively demanding for the hardware available. In these cases,

approximation is the practical way for effective implementations. The main

contribution given in this chapter is to propose a technique for computing an

approximate piecewise control law which draws its methods from computa-

tional geometry. The approximate explicit control law is suboptimal only over

the subregion of the feasible set where constraints are active. In this subre-

gion, the problem of computing a suitable suboptimal piecewise control law is

related to an important problem in computer aided geometric design, surface

reconstruction. Indeed, the technique is based on a fundamental structure in

computational geometry theory, Delaunay tessellation, which has been par-

ticularly successful in dealing with the surface reconstruction problem. The

possible solutions that the approach allows for the point location problem are

also discussed.

14 Introduction

problems in computational geometry.

The geometric concepts introduced in this section will be used in several places in

the thesis, and particularly in Chapter 5.

1.3 Thesis Organization and Contributions

The organization of the remaining part of the thesis and the main contributions are

stated in the following.

This thesis is written on the basis of a collection of papers. A preliminary chapter

provides the common theoretical background, thereafter emphasis has been put on

keeping each chapter self-contained. Therefore, some repetition is necessary.

• Chapter 2 − This chapter provides a common theoretical framework neces-

sary for the arguments in the thesis. It introduces the class of systems de-

scriptions considered, the class of linear systems with constraints, which is

probably the most important and widely used one in practice. For the control

and analysis of this class of systems, the theory of positive invariant sets has

been shown to be particularly important, and the relevant concepts used in the

thesis are given here. The chapter thereafter gives a background on polyhe-

dral sets, and in particular polytopic sets, which are the geometrical objects

playing the major role in the work in this thesis. Finally, an overview of the

MPC problem is given. It is shown how to formulate MPC as a quadratic

program and as a multi-parametric quadratic program. Possible extensions of

the basic MPC problem considered are also briefly discussed.

• Chapter 3 − A relevant problem with explicit MPC approaches is that for

large dimensional problems, coding and implementing the exact explicit solu-

tion may be excessively demanding for the hardware available. In these cases,

approximation is the practical way for effective implementations. The main

contribution given in this chapter is to propose a technique for computing an

approximate piecewise control law which draws its methods from computa-

tional geometry. The approximate explicit control law is suboptimal only over

the subregion of the feasible set where constraints are active. In this subre-

gion, the problem of computing a suitable suboptimal piecewise control law is

related to an important problem in computer aided geometric design, surface

reconstruction. Indeed, the technique is based on a fundamental structure in

computational geometry theory, Delaunay tessellation, which has been par-

ticularly successful in dealing with the surface reconstruction problem. The

possible solutions that the approach allows for the point location problem are

also discussed.

14 Introduction

problems in computational geometry.

The geometric concepts introduced in this section will be used in several places in

the thesis, and particularly in Chapter 5.

1.3 Thesis Organization and Contributions

The organization of the remaining part of the thesis and the main contributions are

stated in the following.

This thesis is written on the basis of a collection of papers. A preliminary chapter

provides the common theoretical background, thereafter emphasis has been put on

keeping each chapter self-contained. Therefore, some repetition is necessary.

• Chapter 2 − This chapter provides a common theoretical framework neces-

sary for the arguments in the thesis. It introduces the class of systems de-

scriptions considered, the class of linear systems with constraints, which is

probably the most important and widely used one in practice. For the control

and analysis of this class of systems, the theory of positive invariant sets has

been shown to be particularly important, and the relevant concepts used in the

thesis are given here. The chapter thereafter gives a background on polyhe-

dral sets, and in particular polytopic sets, which are the geometrical objects

playing the major role in the work in this thesis. Finally, an overview of the

MPC problem is given. It is shown how to formulate MPC as a quadratic

program and as a multi-parametric quadratic program. Possible extensions of

the basic MPC problem considered are also briefly discussed.

• Chapter 3 − A relevant problem with explicit MPC approaches is that for

large dimensional problems, coding and implementing the exact explicit solu-

tion may be excessively demanding for the hardware available. In these cases,

approximation is the practical way for effective implementations. The main

contribution given in this chapter is to propose a technique for computing an

approximate piecewise control law which draws its methods from computa-

tional geometry. The approximate explicit control law is suboptimal only over

the subregion of the feasible set where constraints are active. In this subre-

gion, the problem of computing a suitable suboptimal piecewise control law is

related to an important problem in computer aided geometric design, surface

reconstruction. Indeed, the technique is based on a fundamental structure in

computational geometry theory, Delaunay tessellation, which has been par-

ticularly successful in dealing with the surface reconstruction problem. The

possible solutions that the approach allows for the point location problem are

also discussed.

1.3. Thesis Organization and Contributions 15

Most of the material in this chapter has been published or submitted for publi-

cation in Scibilia et al. (2010a), Scibilia et al. (2009b) and Hovd et al. (2009).

• Chapter 4 − In the theoretical framework of MPC, the feasible set plays a

decisive role. In fact, explicit MPC approaches provide the optimal solution

as a piecewise function over the feasible set. However, computing the feasi-

ble set may turn out to be a computationally demanding problem. Moreover,

the complexity of representation of the feasible set may constitute a problem

in certain situations, particularly, in the context of finding simpler subopti-

mal explicit solutions. The contributions given by this chapter are in tackling

the problems of computing feasible sets and finding suitable approximations

thereof. An alternative approach for computing the feasible set is presented,

based on set relations and not on the conventional orthogonal projection. The

approach can be implemented incrementally on the length of the prediction

horizon. This is exploited to design an algorithm to compute suitable inner

approximations, which is the main contribution. Such approximations are

characterized by simpler representations, and preserve the essential proper-

ties of the feasible set such as convexity, positive invariance, inclusion of the

set of expected initial states.

Most of the material in this chapter has been accepted for publication in Sci-

bilia et al. (2010b).

• Chapter 5 − Piecewise affine feedback control laws represent an important

class of controller for linear systems subject to linear constraints, with explicit

MPC approaches being probably the most popular techniques to obtain such

control laws. In the presence of model mismatch, when the explicit MPC law

designed using the nominal model is applied to the real system, the nominal

feasible set may lose its invariance property, and this can result in violation

of constraints. Moreover, since the controller is designed only over the fea-

sible set, there is the technical problem that the control action is undefined

if the state moves outside of the feasible set. The main contribution of this

chapter is to present a tool to analyze how uncertainty in the model affects

the piecewise affine control law computed using the nominal model. Given

the linear system describing the plant and the piecewise affine control law, the

algorithm presented considers a polytopic model uncertainty defined by the

user and constructs the maximal robust feasible set, i.e. the largest subset of

the feasible set which is guaranteed to be feasible for any model in the family

of models described by the polytopic uncertainty.

Most of the material in this chapter has been published in Scibilia et al.

(2009a).

• Chapter 6 − In this chapter conclusions and possible directions for future

1.3. Thesis Organization and Contributions 15

Most of the material in this chapter has been published or submitted for publi-

cation in Scibilia et al. (2010a), Scibilia et al. (2009b) and Hovd et al. (2009).

• Chapter 4 − In the theoretical framework of MPC, the feasible set plays a

decisive role. In fact, explicit MPC approaches provide the optimal solution

as a piecewise function over the feasible set. However, computing the feasi-

ble set may turn out to be a computationally demanding problem. Moreover,

the complexity of representation of the feasible set may constitute a problem

in certain situations, particularly, in the context of finding simpler subopti-

mal explicit solutions. The contributions given by this chapter are in tackling

the problems of computing feasible sets and finding suitable approximations

thereof. An alternative approach for computing the feasible set is presented,

based on set relations and not on the conventional orthogonal projection. The

approach can be implemented incrementally on the length of the prediction

horizon. This is exploited to design an algorithm to compute suitable inner

approximations, which is the main contribution. Such approximations are

characterized by simpler representations, and preserve the essential proper-

ties of the feasible set such as convexity, positive invariance, inclusion of the

set of expected initial states.

Most of the material in this chapter has been accepted for publication in Sci-

bilia et al. (2010b).

• Chapter 5 − Piecewise affine feedback control laws represent an important

class of controller for linear systems subject to linear constraints, with explicit

MPC approaches being probably the most popular techniques to obtain such

control laws. In the presence of model mismatch, when the explicit MPC law

designed using the nominal model is applied to the real system, the nominal

feasible set may lose its invariance property, and this can result in violation

of constraints. Moreover, since the controller is designed only over the fea-

sible set, there is the technical problem that the control action is undefined

if the state moves outside of the feasible set. The main contribution of this

chapter is to present a tool to analyze how uncertainty in the model affects

the piecewise affine control law computed using the nominal model. Given

the linear system describing the plant and the piecewise affine control law, the

algorithm presented considers a polytopic model uncertainty defined by the

user and constructs the maximal robust feasible set, i.e. the largest subset of

the feasible set which is guaranteed to be feasible for any model in the family

of models described by the polytopic uncertainty.

Most of the material in this chapter has been published in Scibilia et al.

(2009a).

• Chapter 6 − In this chapter conclusions and possible directions for future

1.3. Thesis Organization and Contributions 15

Most of the material in this chapter has been published or submitted for publi-

cation in Scibilia et al. (2010a), Scibilia et al. (2009b) and Hovd et al. (2009).

• Chapter 4 − In the theoretical framework of MPC, the feasible set plays a

decisive role. In fact, explicit MPC approaches provide the optimal solution

as a piecewise function over the feasible set. However, computing the feasi-

ble set may turn out to be a computationally demanding problem. Moreover,

the complexity of representation of the feasible set may constitute a problem

in certain situations, particularly, in the context of finding simpler subopti-

mal explicit solutions. The contributions given by this chapter are in tackling

the problems of computing feasible sets and finding suitable approximations

thereof. An alternative approach for computing the feasible set is presented,

based on set relations and not on the conventional orthogonal projection. The

approach can be implemented incrementally on the length of the prediction

horizon. This is exploited to design an algorithm to compute suitable inner

approximations, which is the main contribution. Such approximations are

characterized by simpler representations, and preserve the essential proper-

ties of the feasible set such as convexity, positive invariance, inclusion of the

set of expected initial states.

Most of the material in this chapter has been accepted for publication in Sci-

bilia et al. (2010b).

• Chapter 5 − Piecewise affine feedback control laws represent an important

class of controller for linear systems subject to linear constraints, with explicit

MPC approaches being probably the most popular techniques to obtain such

control laws. In the presence of model mismatch, when the explicit MPC law

designed using the nominal model is applied to the real system, the nominal

feasible set may lose its invariance property, and this can result in violation

of constraints. Moreover, since the controller is designed only over the fea-

sible set, there is the technical problem that the control action is undefined

if the state moves outside of the feasible set. The main contribution of this

chapter is to present a tool to analyze how uncertainty in the model affects

the piecewise affine control law computed using the nominal model. Given

the linear system describing the plant and the piecewise affine control law, the

algorithm presented considers a polytopic model uncertainty defined by the

user and constructs the maximal robust feasible set, i.e. the largest subset of

the feasible set which is guaranteed to be feasible for any model in the family

of models described by the polytopic uncertainty.

Most of the material in this chapter has been published in Scibilia et al.

(2009a).

• Chapter 6 − In this chapter conclusions and possible directions for future

1.3. Thesis Organization and Contributions 15

Most of the material in this chapter has been published or submitted for publi-

cation in Scibilia et al. (2010a), Scibilia et al. (2009b) and Hovd et al. (2009).

• Chapter 4 − In the theoretical framework of MPC, the feasible set plays a

decisive role. In fact, explicit MPC approaches provide the optimal solution

as a piecewise function over the feasible set. However, computing the feasi-

ble set may turn out to be a computationally demanding problem. Moreover,

the complexity of representation of the feasible set may constitute a problem

in certain situations, particularly, in the context of finding simpler subopti-

mal explicit solutions. The contributions given by this chapter are in tackling

the problems of computing feasible sets and finding suitable approximations

thereof. An alternative approach for computing the feasible set is presented,

based on set relations and not on the conventional orthogonal projection. The

approach can be implemented incrementally on the length of the prediction

horizon. This is exploited to design an algorithm to compute suitable inner

approximations, which is the main contribution. Such approximations are

characterized by simpler representations, and preserve the essential proper-

ties of the feasible set such as convexity, positive invariance, inclusion of the

set of expected initial states.

Most of the material in this chapter has been accepted for publication in Sci-

bilia et al. (2010b).

• Chapter 5 − Piecewise affine feedback control laws represent an important

class of controller for linear systems subject to linear constraints, with explicit

MPC approaches being probably the most popular techniques to obtain such

control laws. In the presence of model mismatch, when the explicit MPC law

designed using the nominal model is applied to the real system, the nominal

feasible set may lose its invariance property, and this can result in violation

of constraints. Moreover, since the controller is designed only over the fea-

sible set, there is the technical problem that the control action is undefined

if the state moves outside of the feasible set. The main contribution of this

chapter is to present a tool to analyze how uncertainty in the model affects

the piecewise affine control law computed using the nominal model. Given

the linear system describing the plant and the piecewise affine control law, the

algorithm presented considers a polytopic model uncertainty defined by the

user and constructs the maximal robust feasible set, i.e. the largest subset of

the feasible set which is guaranteed to be feasible for any model in the family

of models described by the polytopic uncertainty.

Most of the material in this chapter has been published in Scibilia et al.

(2009a).

• Chapter 6 − In this chapter conclusions and possible directions for future

16 Introduction

work are given.

• Appendix A − This part contains two particular problems treated during the

doctoral studies, but only marginally related to the main theme of the thesis.

MPC approaches are often implemented as state feedback controllers. The

state variables are not always measured, and in these cases a state estimation

approach has to be adopted to obtain the state from the measurements. The

two works in this chapter deal with state estimation, but not with the explicit

goal to be used in MPC approaches.

The first work regards the moving horizon state estimation (MHE), which is

considered to be the dual problem in the state estimation area of the MPC

problem. A practical issue arising with this approach in industrial applica-

tions is discussed and a solution is proposed. This work has been published

in Scibilia and Hovd (2009).

The second work considers a particular system in the oil industry: gas-lifted

oil well. For control purposes, the state needs to be estimated from the avail-

able measurements. The state estimation solution proposed is the use of a

nonlinear observer tailored on the particular system under consideration. This

work has been published in Scibilia et al. (2008).

1.4 List of Publications

Most of the material presented in this thesis has been published or recently submit-

ted for publication.

The following lists contain the author publications and submitted works produced

during the doctoral studies.

Journal papers

a. [Scibilia et al. (2010a)] − F. Scibilia, M. Hovd and S. Olaru “An Algorithm

for Approximate Explicit Model Predictive Control via Delaunay Tessella-

tions”. Submitted to the European Journal of Control, August 2010.

b. [Scibilia et al. (2010b)] − F. Scibilia, S. Olaru and M. Hovd “On Feasible Sets

for MPC and their Approximations”. Automatica, accepted for publication,

August 2010.

16 Introduction

work are given.

• Appendix A − This part contains two particular problems treated during the

doctoral studies, but only marginally related to the main theme of the thesis.

MPC approaches are often implemented as state feedback controllers. The

state variables are not always measured, and in these cases a state estimation

approach has to be adopted to obtain the state from the measurements. The

two works in this chapter deal with state estimation, but not with the explicit

goal to be used in MPC approaches.

The first work regards the moving horizon state estimation (MHE), which is

considered to be the dual problem in the state estimation area of the MPC

problem. A practical issue arising with this approach in industrial applica-

tions is discussed and a solution is proposed. This work has been published

in Scibilia and Hovd (2009).

The second work considers a particular system in the oil industry: gas-lifted

oil well. For control purposes, the state needs to be estimated from the avail-

able measurements. The state estimation solution proposed is the use of a

nonlinear observer tailored on the particular system under consideration. This

work has been published in Scibilia et al. (2008).

1.4 List of Publications

Most of the material presented in this thesis has been published or recently submit-

ted for publication.

The following lists contain the author publications and submitted works produced

during the doctoral studies.

Journal papers

a. [Scibilia et al. (2010a)] − F. Scibilia, M. Hovd and S. Olaru “An Algorithm

for Approximate Explicit Model Predictive Control via Delaunay Tessella-

tions”. Submitted to the European Journal of Control, August 2010.

b. [Scibilia et al. (2010b)] − F. Scibilia, S. Olaru and M. Hovd “On Feasible Sets

for MPC and their Approximations”. Automatica, accepted for publication,

August 2010.

16 Introduction

work are given.

• Appendix A − This part contains two particular problems treated during the

doctoral studies, but only marginally related to the main theme of the thesis.

MPC approaches are often implemented as state feedback controllers. The

state variables are not always measured, and in these cases a state estimation

approach has to be adopted to obtain the state from the measurements. The

two works in this chapter deal with state estimation, but not with the explicit

goal to be used in MPC approaches.

The first work regards the moving horizon state estimation (MHE), which is

considered to be the dual problem in the state estimation area of the MPC

problem. A practical issue arising with this approach in industrial applica-

tions is discussed and a solution is proposed. This work has been published

in Scibilia and Hovd (2009).

The second work considers a particular system in the oil industry: gas-lifted

oil well. For control purposes, the state needs to be estimated from the avail-

able measurements. The state estimation solution proposed is the use of a

nonlinear observer tailored on the particular system under consideration. This

work has been published in Scibilia et al. (2008).

1.4 List of Publications

Most of the material presented in this thesis has been published or recently submit-

ted for publication.

The following lists contain the author publications and submitted works produced

during the doctoral studies.

Journal papers

a. [Scibilia et al. (2010a)] − F. Scibilia, M. Hovd and S. Olaru “An Algorithm

for Approximate Explicit Model Predictive Control via Delaunay Tessella-

tions”. Submitted to the European Journal of Control, August 2010.

b. [Scibilia et al. (2010b)] − F. Scibilia, S. Olaru and M. Hovd “On Feasible Sets

for MPC and their Approximations”. Automatica, accepted for publication,

August 2010.

16 Introduction

work are given.

• Appendix A − This part contains two particular problems treated during the

doctoral studies, but only marginally related to the main theme of the thesis.

MPC approaches are often implemented as state feedback controllers. The

state variables are not always measured, and in these cases a state estimation

approach has to be adopted to obtain the state from the measurements. The

two works in this chapter deal with state estimation, but not with the explicit

goal to be used in MPC approaches.

The first work regards the moving horizon state estimation (MHE), which is

considered to be the dual problem in the state estimation area of the MPC

problem. A practical issue arising with this approach in industrial applica-

tions is discussed and a solution is proposed. This work has been published

in Scibilia and Hovd (2009).

The second work considers a particular system in the oil industry: gas-lifted

oil well. For control purposes, the state needs to be estimated from the avail-

able measurements. The state estimation solution proposed is the use of a

nonlinear observer tailored on the particular system under consideration. This

work has been published in Scibilia et al. (2008).

1.4 List of Publications

Most of the material presented in this thesis has been published or recently submit-

ted for publication.

The following lists contain the author publications and submitted works produced

during the doctoral studies.

Journal papers

a. [Scibilia et al. (2010a)] − F. Scibilia, M. Hovd and S. Olaru “An Algorithm

for Approximate Explicit Model Predictive Control via Delaunay Tessella-

tions”. Submitted to the European Journal of Control, August 2010.

b. [Scibilia et al. (2010b)] − F. Scibilia, S. Olaru and M. Hovd “On Feasible Sets

for MPC and their Approximations”. Automatica, accepted for publication,

August 2010.

1.4. List of Publications 17

Conference papers

c. [Scibilia et al. (2008)] − F. Scibilia, M. Hovd and R. R. Bitmead “Stabiliza-

tion of Gas-Lift Oil Wells Using Topside Measurements”. The 17th IFAC

World Congress, Seoul, South Korea, July 6-11, 2008.

d. [Scibilia and Hovd (2009)] − F. Scibilia and M. Hovd “Multi-Rate Mov-

ing Horizon Estimation with Erroneous Infrequent Measurements Recovery”.

The 7th IFAC Symposium on Fault Detection, Supervision and Safety of

Technical Processes, Barcelona, Spain, June 30-July 3, 2009.

e. [Scibilia et al. (2009b)] − F. Scibilia, S. Olaru and M. Hovd “Approximate

Explicit Linear MPC via Delaunay Tessellation”. The 10th European Control

Conference, Budapest, Hungary, August 23-26, 2009.

f. [Scibilia et al. (2009a)] − F. Scibilia, R. R. Bitmead, S. Olaru and M. Hovd

“Maximal Robust Feasible Sets for Constrained Linear Systems Controlled

by Piecewise Affine Feedback Laws”. The 7th IEEE International Conference

on Control and Automation, Christchurch, New Zealand, December 9-11,

2009.

g. [Hovd et al. (2009)] − M. Hovd, F. Scibilia, J. Maciejowski and S. Olaru

“Verifying stability of approximate explicit MPC”. The 48th IEEE Confer-

ence on Decision and Control, Shanghai, China, December 16-18, 2009.

Publications c. and d. are only marginally related to the main theme of this thesis

and thus they are reported as secondary work in the appendix.

1.4. List of Publications 17

Conference papers

c. [Scibilia et al. (2008)] − F. Scibilia, M. Hovd and R. R. Bitmead “Stabiliza-

tion of Gas-Lift Oil Wells Using Topside Measurements”. The 17th IFAC

World Congress, Seoul, South Korea, July 6-11, 2008.

d. [Scibilia and Hovd (2009)] − F. Scibilia and M. Hovd “Multi-Rate Mov-

ing Horizon Estimation with Erroneous Infrequent Measurements Recovery”.

The 7th IFAC Symposium on Fault Detection, Supervision and Safety of

Technical Processes, Barcelona, Spain, June 30-July 3, 2009.

e. [Scibilia et al. (2009b)] − F. Scibilia, S. Olaru and M. Hovd “Approximate

Explicit Linear MPC via Delaunay Tessellation”. The 10th European Control

Conference, Budapest, Hungary, August 23-26, 2009.

f. [Scibilia et al. (2009a)] − F. Scibilia, R. R. Bitmead, S. Olaru and M. Hovd

“Maximal Robust Feasible Sets for Constrained Linear Systems Controlled

by Piecewise Affine Feedback Laws”. The 7th IEEE International Conference

on Control and Automation, Christchurch, New Zealand, December 9-11,

2009.

g. [Hovd et al. (2009)] − M. Hovd, F. Scibilia, J. Maciejowski and S. Olaru

“Verifying stability of approximate explicit MPC”. The 48th IEEE Confer-

ence on Decision and Control, Shanghai, China, December 16-18, 2009.

Publications c. and d. are only marginally related to the main theme of this thesis

and thus they are reported as secondary work in the appendix.

1.4. List of Publications 17

Conference papers

c. [Scibilia et al. (2008)] − F. Scibilia, M. Hovd and R. R. Bitmead “Stabiliza-

tion of Gas-Lift Oil Wells Using Topside Measurements”. The 17th IFAC

World Congress, Seoul, South Korea, July 6-11, 2008.

d. [Scibilia and Hovd (2009)] − F. Scibilia and M. Hovd “Multi-Rate Mov-

ing Horizon Estimation with Erroneous Infrequent Measurements Recovery”.

The 7th IFAC Symposium on Fault Detection, Supervision and Safety of

Technical Processes, Barcelona, Spain, June 30-July 3, 2009.

e. [Scibilia et al. (2009b)] − F. Scibilia, S. Olaru and M. Hovd “Approximate

Explicit Linear MPC via Delaunay Tessellation”. The 10th European Control

Conference, Budapest, Hungary, August 23-26, 2009.

f. [Scibilia et al. (2009a)] − F. Scibilia, R. R. Bitmead, S. Olaru and M. Hovd

“Maximal Robust Feasible Sets for Constrained Linear Systems Controlled

by Piecewise Affine Feedback Laws”. The 7th IEEE International Conference

on Control and Automation, Christchurch, New Zealand, December 9-11,

2009.

g. [Hovd et al. (2009)] − M. Hovd, F. Scibilia, J. Maciejowski and S. Olaru

“Verifying stability of approximate explicit MPC”. The 48th IEEE Confer-

ence on Decision and Control, Shanghai, China, December 16-18, 2009.

Publications c. and d. are only marginally related to the main theme of this thesis

and thus they are reported as secondary work in the appendix.

1.4. List of Publications 17

Conference papers

c. [Scibilia et al. (2008)] − F. Scibilia, M. Hovd and R. R. Bitmead “Stabiliza-

tion of Gas-Lift Oil Wells Using Topside Measurements”. The 17th IFAC

World Congress, Seoul, South Korea, July 6-11, 2008.

d. [Scibilia and Hovd (2009)] − F. Scibilia and M. Hovd “Multi-Rate Mov-

ing Horizon Estimation with Erroneous Infrequent Measurements Recovery”.

The 7th IFAC Symposium on Fault Detection, Supervision and Safety of

Technical Processes, Barcelona, Spain, June 30-July 3, 2009.

e. [Scibilia et al. (2009b)] − F. Scibilia, S. Olaru and M. Hovd “Approximate

Explicit Linear MPC via Delaunay Tessellation”. The 10th European Control

Conference, Budapest, Hungary, August 23-26, 2009.

f. [Scibilia et al. (2009a)] − F. Scibilia, R. R. Bitmead, S. Olaru and M. Hovd

“Maximal Robust Feasible Sets for Constrained Linear Systems Controlled

by Piecewise Affine Feedback Laws”. The 7th IEEE International Conference

on Control and Automation, Christchurch, New Zealand, December 9-11,

2009.

g. [Hovd et al. (2009)] − M. Hovd, F. Scibilia, J. Maciejowski and S. Olaru

“Verifying stability of approximate explicit MPC”. The 48th IEEE Confer-

ence on Decision and Control, Shanghai, China, December 16-18, 2009.

Publications c. and d. are only marginally related to the main theme of this thesis

and thus they are reported as secondary work in the appendix.

18 Introduction 18 Introduction

18 Introduction 18 Introduction

Chapter 2

Background

This chapter provides the mathematical background needed for the successive chap-

ters. Most of the definitions and results are well established and can be found in the

the literature. Other definitions are slightly adapted for the framework of this thesis.

2.1 Model Setup

This thesis considers systems described by the following discrete-time linear time-

invariant model

x(t+ 1) = Ax(t) + Bu(t) (2.1)

y(t) = Cx(t) (2.2)

where x ∈ R
n is the state vector, u ∈ R

r is the control input and y ∈ R
m is the

output vector, A ∈ R
n×n, B ∈ R

n×r and C ∈ R
m×n, and the pair (A,B) is stabi-

lizable.

Full state measurement and no disturbances or model uncertainty are assumed, un-

less explicitly specified.

The plant is required to satisfy the following output and input constraints

y(t) ∈ Y ⊂ R
m (2.3)

u(t) ∈ U ⊂ R
r (2.4)

for all times. The sets Y , U are considered to be described by linear inequalities on

the respective variables. The origin is assumed to be an interior point for both sets.

19

Chapter 2

Background

This chapter provides the mathematical background needed for the successive chap-

ters. Most of the definitions and results are well established and can be found in the

the literature. Other definitions are slightly adapted for the framework of this thesis.

2.1 Model Setup

This thesis considers systems described by the following discrete-time linear time-

invariant model

x(t+ 1) = Ax(t) + Bu(t) (2.1)

y(t) = Cx(t) (2.2)

where x ∈ R
n is the state vector, u ∈ R

r is the control input and y ∈ R
m is the

output vector, A ∈ R
n×n, B ∈ R

n×r and C ∈ R
m×n, and the pair (A,B) is stabi-

lizable.

Full state measurement and no disturbances or model uncertainty are assumed, un-

less explicitly specified.

The plant is required to satisfy the following output and input constraints

y(t) ∈ Y ⊂ R
m (2.3)

u(t) ∈ U ⊂ R
r (2.4)

for all times. The sets Y , U are considered to be described by linear inequalities on

the respective variables. The origin is assumed to be an interior point for both sets.

19

Chapter 2

Background

This chapter provides the mathematical background needed for the successive chap-

ters. Most of the definitions and results are well established and can be found in the

the literature. Other definitions are slightly adapted for the framework of this thesis.

2.1 Model Setup

This thesis considers systems described by the following discrete-time linear time-

invariant model

x(t+ 1) = Ax(t) + Bu(t) (2.1)

y(t) = Cx(t) (2.2)

where x ∈ R
n is the state vector, u ∈ R

r is the control input and y ∈ R
m is the

output vector, A ∈ R
n×n, B ∈ R

n×r and C ∈ R
m×n, and the pair (A,B) is stabi-

lizable.

Full state measurement and no disturbances or model uncertainty are assumed, un-

less explicitly specified.

The plant is required to satisfy the following output and input constraints

y(t) ∈ Y ⊂ R
m (2.3)

u(t) ∈ U ⊂ R
r (2.4)

for all times. The sets Y , U are considered to be described by linear inequalities on

the respective variables. The origin is assumed to be an interior point for both sets.

19

Chapter 2

Background

This chapter provides the mathematical background needed for the successive chap-

ters. Most of the definitions and results are well established and can be found in the

the literature. Other definitions are slightly adapted for the framework of this thesis.

2.1 Model Setup

This thesis considers systems described by the following discrete-time linear time-

invariant model

x(t+ 1) = Ax(t) + Bu(t) (2.1)

y(t) = Cx(t) (2.2)

where x ∈ R
n is the state vector, u ∈ R

r is the control input and y ∈ R
m is the

output vector, A ∈ R
n×n, B ∈ R

n×r and C ∈ R
m×n, and the pair (A,B) is stabi-

lizable.

Full state measurement and no disturbances or model uncertainty are assumed, un-

less explicitly specified.

The plant is required to satisfy the following output and input constraints

y(t) ∈ Y ⊂ R
m (2.3)

u(t) ∈ U ⊂ R
r (2.4)

for all times. The sets Y , U are considered to be described by linear inequalities on

the respective variables. The origin is assumed to be an interior point for both sets.

19

20 Background

Remark 1. The state space model (2.1-2.2), commonly used in control theory, often

represents only an approximation of the real system, which reasonably behaves in a

more complicated nonlinear fashion. Consider the state vector x of the real system

to evolve according to the following nonlinear differential equation, and the output

vector y to be determined from the state with the successive static nonlinear equation

dx

dt
= f(x, u) (2.5)

y = g(x) (2.6)

where u is the input vector. Assume that the system is planned to operate at a

certain state x = x0, with a certain input u = u0, and output y = y0 = g(x0). This is

actually a common case in practice, and allows a continuous-time linear model to

be obtained by linearization around the operating conditions

dx

dt
= f(x0 + x, u0 + u) ≈ f(x0, u0) +

∂f

∂x

∣∣∣∣
(x0,u0)

x+
∂f

∂u

∣∣∣∣
(x0,u0)

u (2.7)

y = g(x0 + x) ≈ g(x0) +
∂g

∂x

∣∣∣∣
(x0)

x (2.8)

where ∂f
∂x

, ∂f
∂u

and ∂g
∂x

are the matrices of partial derivatives (Jacobian). Quadratic

and higher-order terms in x and u are neglected.

Since x = x0 + x and x0 is a particular value of the state, we have dx
dt

= dx
dt

, and

therefore
dx

dt
= A0x+B0u+ f(x0, u0) (2.9)

y = C0x (2.10)

where the relation y = y0+y is considered, and the Jacobian matrices ∂f
∂x

, ∂f
∂u

and ∂g
∂x

are denoted by A0, B0 and C0, respectively. Often the operating point (x0, u0) is an

equilibrium point such that the model (2.9-2.10) reduces to the popular continuous-

time linear state space model

dx

dt
= A0x+B0u (2.11)

y = C0x (2.12)

Then, the discrete-time model (2.1-2.2) can be obtained by discretization of the lin-

earized differential equation (2.11-2.12), usually assuming that the input is constant

between sampling intervals.

For the cases where the equations (2.5-2.6) are unknown, the state space model

(2.1-2.2) can also be obtained via identification of a parameterized black-box model

(Ljung (2006), Ikonen and Najim (2002)).

20 Background

Remark 1. The state space model (2.1-2.2), commonly used in control theory, often

represents only an approximation of the real system, which reasonably behaves in a

more complicated nonlinear fashion. Consider the state vector x of the real system

to evolve according to the following nonlinear differential equation, and the output

vector y to be determined from the state with the successive static nonlinear equation

dx

dt
= f(x, u) (2.5)

y = g(x) (2.6)

where u is the input vector. Assume that the system is planned to operate at a

certain state x = x0, with a certain input u = u0, and output y = y0 = g(x0). This is

actually a common case in practice, and allows a continuous-time linear model to

be obtained by linearization around the operating conditions

dx

dt
= f(x0 + x, u0 + u) ≈ f(x0, u0) +

∂f

∂x

∣∣∣∣
(x0,u0)

x+
∂f

∂u

∣∣∣∣
(x0,u0)

u (2.7)

y = g(x0 + x) ≈ g(x0) +
∂g

∂x

∣∣∣∣
(x0)

x (2.8)

where ∂f
∂x

, ∂f
∂u

and ∂g
∂x

are the matrices of partial derivatives (Jacobian). Quadratic

and higher-order terms in x and u are neglected.

Since x = x0 + x and x0 is a particular value of the state, we have dx
dt

= dx
dt

, and

therefore
dx

dt
= A0x+B0u+ f(x0, u0) (2.9)

y = C0x (2.10)

where the relation y = y0+y is considered, and the Jacobian matrices ∂f
∂x

, ∂f
∂u

and ∂g
∂x

are denoted by A0, B0 and C0, respectively. Often the operating point (x0, u0) is an

equilibrium point such that the model (2.9-2.10) reduces to the popular continuous-

time linear state space model

dx

dt
= A0x+B0u (2.11)

y = C0x (2.12)

Then, the discrete-time model (2.1-2.2) can be obtained by discretization of the lin-

earized differential equation (2.11-2.12), usually assuming that the input is constant

between sampling intervals.

For the cases where the equations (2.5-2.6) are unknown, the state space model

(2.1-2.2) can also be obtained via identification of a parameterized black-box model

(Ljung (2006), Ikonen and Najim (2002)).

20 Background

Remark 1. The state space model (2.1-2.2), commonly used in control theory, often

represents only an approximation of the real system, which reasonably behaves in a

more complicated nonlinear fashion. Consider the state vector x of the real system

to evolve according to the following nonlinear differential equation, and the output

vector y to be determined from the state with the successive static nonlinear equation

dx

dt
= f(x, u) (2.5)

y = g(x) (2.6)

where u is the input vector. Assume that the system is planned to operate at a

certain state x = x0, with a certain input u = u0, and output y = y0 = g(x0). This is

actually a common case in practice, and allows a continuous-time linear model to

be obtained by linearization around the operating conditions

dx

dt
= f(x0 + x, u0 + u) ≈ f(x0, u0) +

∂f

∂x

∣∣∣∣
(x0,u0)

x+
∂f

∂u

∣∣∣∣
(x0,u0)

u (2.7)

y = g(x0 + x) ≈ g(x0) +
∂g

∂x

∣∣∣∣
(x0)

x (2.8)

where ∂f
∂x

, ∂f
∂u

and ∂g
∂x

are the matrices of partial derivatives (Jacobian). Quadratic

and higher-order terms in x and u are neglected.

Since x = x0 + x and x0 is a particular value of the state, we have dx
dt

= dx
dt

, and

therefore
dx

dt
= A0x+B0u+ f(x0, u0) (2.9)

y = C0x (2.10)

where the relation y = y0+y is considered, and the Jacobian matrices ∂f
∂x

, ∂f
∂u

and ∂g
∂x

are denoted by A0, B0 and C0, respectively. Often the operating point (x0, u0) is an

equilibrium point such that the model (2.9-2.10) reduces to the popular continuous-

time linear state space model

dx

dt
= A0x+B0u (2.11)

y = C0x (2.12)

Then, the discrete-time model (2.1-2.2) can be obtained by discretization of the lin-

earized differential equation (2.11-2.12), usually assuming that the input is constant

between sampling intervals.

For the cases where the equations (2.5-2.6) are unknown, the state space model

(2.1-2.2) can also be obtained via identification of a parameterized black-box model

(Ljung (2006), Ikonen and Najim (2002)).

20 Background

Remark 1. The state space model (2.1-2.2), commonly used in control theory, often

represents only an approximation of the real system, which reasonably behaves in a

more complicated nonlinear fashion. Consider the state vector x of the real system

to evolve according to the following nonlinear differential equation, and the output

vector y to be determined from the state with the successive static nonlinear equation

dx

dt
= f(x, u) (2.5)

y = g(x) (2.6)

where u is the input vector. Assume that the system is planned to operate at a

certain state x = x0, with a certain input u = u0, and output y = y0 = g(x0). This is

actually a common case in practice, and allows a continuous-time linear model to

be obtained by linearization around the operating conditions

dx

dt
= f(x0 + x, u0 + u) ≈ f(x0, u0) +

∂f

∂x

∣∣∣∣
(x0,u0)

x+
∂f

∂u

∣∣∣∣
(x0,u0)

u (2.7)

y = g(x0 + x) ≈ g(x0) +
∂g

∂x

∣∣∣∣
(x0)

x (2.8)

where ∂f
∂x

, ∂f
∂u

and ∂g
∂x

are the matrices of partial derivatives (Jacobian). Quadratic

and higher-order terms in x and u are neglected.

Since x = x0 + x and x0 is a particular value of the state, we have dx
dt

= dx
dt

, and

therefore
dx

dt
= A0x+B0u+ f(x0, u0) (2.9)

y = C0x (2.10)

where the relation y = y0+y is considered, and the Jacobian matrices ∂f
∂x

, ∂f
∂u

and ∂g
∂x

are denoted by A0, B0 and C0, respectively. Often the operating point (x0, u0) is an

equilibrium point such that the model (2.9-2.10) reduces to the popular continuous-

time linear state space model

dx

dt
= A0x+B0u (2.11)

y = C0x (2.12)

Then, the discrete-time model (2.1-2.2) can be obtained by discretization of the lin-

earized differential equation (2.11-2.12), usually assuming that the input is constant

between sampling intervals.

For the cases where the equations (2.5-2.6) are unknown, the state space model

(2.1-2.2) can also be obtained via identification of a parameterized black-box model

(Ljung (2006), Ikonen and Najim (2002)).

2.2. Positively Invariant Sets 21

2.2 Positively Invariant Sets

The concept of invariant sets has been shown to play an important role in the control

and analysis of constrained systems (Blanchini and Miani (2008), Blanchini (1999),

Kerrigan and Maciejowski (2000), Gilbert and Tan (1991)). Given an autonomous

dynamic system, a subset of the state space is said to be positively invariant if it has

the property that if it contains the system state at some time, then it will contain it

also at all future times. The presence of constraints on the state variables defines an

admissible set in the state space, i.e., the set of states that satisfies the constraints

at the present time. Due to the system dynamics not all the trajectories originating

from admissible initial states will remain in such a set. Conversely, for any initial

condition which belongs to a positively invariant subset of the admissible domain,

constraints violations are avoided at future times.

The idea of positive invariance can be formally given considering the autonomous

system corresponding to (2.1).

Definition 1 (Positive invariance). The set S ⊂ R
n is said to be positively invariant

with respect to the autonomous system x(t + 1) = Ax(t) if for all x(0) ∈ S the

system evolution x(t) ∈ S for t > 0.

The set S is maximal if it also contains all the other positively invariant sets.

In this thesis we are mostly interested in the control implication that such a char-

acterization has. Since model predictive controllers belong to the class of state-

feedback controllers, we refer to the following class of control laws

u(t) = Φ(x(t)) (2.13)

where Φ : Rn → R
r. As will be clear later on the chapter, model predictive con-

trollers can be expressed in closed form as piecewise affine functions of the state.

The concept of positive invariance extends naturally to systems like (2.1), providing

the concept of controlled positive invariance.

Definition 2 (Controlled positive invariance). The set S ⊂ R
n is said to be con-

trolled positively invariant with respect to the system (2.1) if there exists a controller

of the form (2.13) such that S is positively invariant for the closed-loop system

x(t+ 1) = Ax(t) + BΦ(x(t)).

2.2. Positively Invariant Sets 21

2.2 Positively Invariant Sets

The concept of invariant sets has been shown to play an important role in the control

and analysis of constrained systems (Blanchini and Miani (2008), Blanchini (1999),

Kerrigan and Maciejowski (2000), Gilbert and Tan (1991)). Given an autonomous

dynamic system, a subset of the state space is said to be positively invariant if it has

the property that if it contains the system state at some time, then it will contain it

also at all future times. The presence of constraints on the state variables defines an

admissible set in the state space, i.e., the set of states that satisfies the constraints

at the present time. Due to the system dynamics not all the trajectories originating

from admissible initial states will remain in such a set. Conversely, for any initial

condition which belongs to a positively invariant subset of the admissible domain,

constraints violations are avoided at future times.

The idea of positive invariance can be formally given considering the autonomous

system corresponding to (2.1).

Definition 1 (Positive invariance). The set S ⊂ R
n is said to be positively invariant

with respect to the autonomous system x(t + 1) = Ax(t) if for all x(0) ∈ S the

system evolution x(t) ∈ S for t > 0.

The set S is maximal if it also contains all the other positively invariant sets.

In this thesis we are mostly interested in the control implication that such a char-

acterization has. Since model predictive controllers belong to the class of state-

feedback controllers, we refer to the following class of control laws

u(t) = Φ(x(t)) (2.13)

where Φ : Rn → R
r. As will be clear later on the chapter, model predictive con-

trollers can be expressed in closed form as piecewise affine functions of the state.

The concept of positive invariance extends naturally to systems like (2.1), providing

the concept of controlled positive invariance.

Definition 2 (Controlled positive invariance). The set S ⊂ R
n is said to be con-

trolled positively invariant with respect to the system (2.1) if there exists a controller

of the form (2.13) such that S is positively invariant for the closed-loop system

x(t+ 1) = Ax(t) + BΦ(x(t)).

2.2. Positively Invariant Sets 21

2.2 Positively Invariant Sets

The concept of invariant sets has been shown to play an important role in the control

and analysis of constrained systems (Blanchini and Miani (2008), Blanchini (1999),

Kerrigan and Maciejowski (2000), Gilbert and Tan (1991)). Given an autonomous

dynamic system, a subset of the state space is said to be positively invariant if it has

the property that if it contains the system state at some time, then it will contain it

also at all future times. The presence of constraints on the state variables defines an

admissible set in the state space, i.e., the set of states that satisfies the constraints

at the present time. Due to the system dynamics not all the trajectories originating

from admissible initial states will remain in such a set. Conversely, for any initial

condition which belongs to a positively invariant subset of the admissible domain,

constraints violations are avoided at future times.

The idea of positive invariance can be formally given considering the autonomous

system corresponding to (2.1).

Definition 1 (Positive invariance). The set S ⊂ R
n is said to be positively invariant

with respect to the autonomous system x(t + 1) = Ax(t) if for all x(0) ∈ S the

system evolution x(t) ∈ S for t > 0.

The set S is maximal if it also contains all the other positively invariant sets.

In this thesis we are mostly interested in the control implication that such a char-

acterization has. Since model predictive controllers belong to the class of state-

feedback controllers, we refer to the following class of control laws

u(t) = Φ(x(t)) (2.13)

where Φ : Rn → R
r. As will be clear later on the chapter, model predictive con-

trollers can be expressed in closed form as piecewise affine functions of the state.

The concept of positive invariance extends naturally to systems like (2.1), providing

the concept of controlled positive invariance.

Definition 2 (Controlled positive invariance). The set S ⊂ R
n is said to be con-

trolled positively invariant with respect to the system (2.1) if there exists a controller

of the form (2.13) such that S is positively invariant for the closed-loop system

x(t+ 1) = Ax(t) + BΦ(x(t)).

2.2. Positively Invariant Sets 21

2.2 Positively Invariant Sets

The concept of invariant sets has been shown to play an important role in the control

and analysis of constrained systems (Blanchini and Miani (2008), Blanchini (1999),

Kerrigan and Maciejowski (2000), Gilbert and Tan (1991)). Given an autonomous

dynamic system, a subset of the state space is said to be positively invariant if it has

the property that if it contains the system state at some time, then it will contain it

also at all future times. The presence of constraints on the state variables defines an

admissible set in the state space, i.e., the set of states that satisfies the constraints

at the present time. Due to the system dynamics not all the trajectories originating

from admissible initial states will remain in such a set. Conversely, for any initial

condition which belongs to a positively invariant subset of the admissible domain,

constraints violations are avoided at future times.

The idea of positive invariance can be formally given considering the autonomous

system corresponding to (2.1).

Definition 1 (Positive invariance). The set S ⊂ R
n is said to be positively invariant

with respect to the autonomous system x(t + 1) = Ax(t) if for all x(0) ∈ S the

system evolution x(t) ∈ S for t > 0.

The set S is maximal if it also contains all the other positively invariant sets.

In this thesis we are mostly interested in the control implication that such a char-

acterization has. Since model predictive controllers belong to the class of state-

feedback controllers, we refer to the following class of control laws

u(t) = Φ(x(t)) (2.13)

where Φ : Rn → R
r. As will be clear later on the chapter, model predictive con-

trollers can be expressed in closed form as piecewise affine functions of the state.

The concept of positive invariance extends naturally to systems like (2.1), providing

the concept of controlled positive invariance.

Definition 2 (Controlled positive invariance). The set S ⊂ R
n is said to be con-

trolled positively invariant with respect to the system (2.1) if there exists a controller

of the form (2.13) such that S is positively invariant for the closed-loop system

x(t+ 1) = Ax(t) + BΦ(x(t)).

22 Background

Analogously, the set is maximal if it also contains all the other controlled positively

invariant sets.

The presence of constraints like (2.3-2.4) allows the introduction of a further rele-

vant set characterization.

Definition 3 (Feasible controlled positive invariance). A set SF ⊂ X
n is said to

be feasibly controlled positively invariant if it is controlled positively invariant and

u(t) ∈ U and y(t) ∈ Y for all t ≥ 0.

2.3 Polyhedral Sets

Convex polyhedral sets, and in particular polytopic sets (Blanchini and Miani (2008),

Mount (2002), Kvasnica et al. (2006)), are the family of sets which plays the major

role in this thesis. The reason is that polyhedral sets arise as natural expressions of

physical and/or safety constraints on the system input and output.

Definition 4 (Convex set). A set S ⊂ R
n is said to be convex if for all x1, x2 ∈ S

then: αx1 + (1− α)x2 ∈ S, for all 0 ≤ α ≤ 1.

Definition 5 (Convex hull). The convex hull of a set V ⊂ R
n is the smallest convex

set containing V. If V = V =
{
v(1), ..., v(nv)

}
represents a finite collection of

points in R
n, then the convex hull is given by

conv (V) =

{
nv∑
i=1

λiv
(i) | λi ≥ 0,

nv∑
i=1

λi = 1

}
. (2.14)

Definition 6 (Polyhedral set). A convex polyhedral set (or polyhedron) is a set

which can be expressed as the intersection of a finite number of half-spaces

P = {x ∈ R
n|Dx ≤ d} (2.15)

where D ∈ R
nH×n and d ∈ R

nH , nH is the number of half-spaces.

Commonly (2.15) is called the H-representation of the set.

22 Background

Analogously, the set is maximal if it also contains all the other controlled positively

invariant sets.

The presence of constraints like (2.3-2.4) allows the introduction of a further rele-

vant set characterization.

Definition 3 (Feasible controlled positive invariance). A set SF ⊂ X
n is said to

be feasibly controlled positively invariant if it is controlled positively invariant and

u(t) ∈ U and y(t) ∈ Y for all t ≥ 0.

2.3 Polyhedral Sets

Convex polyhedral sets, and in particular polytopic sets (Blanchini and Miani (2008),

Mount (2002), Kvasnica et al. (2006)), are the family of sets which plays the major

role in this thesis. The reason is that polyhedral sets arise as natural expressions of

physical and/or safety constraints on the system input and output.

Definition 4 (Convex set). A set S ⊂ R
n is said to be convex if for all x1, x2 ∈ S

then: αx1 + (1− α)x2 ∈ S, for all 0 ≤ α ≤ 1.

Definition 5 (Convex hull). The convex hull of a set V ⊂ R
n is the smallest convex

set containing V. If V = V =
{
v(1), ..., v(nv)

}
represents a finite collection of

points in R
n, then the convex hull is given by

conv (V) =

{
nv∑
i=1

λiv
(i) | λi ≥ 0,

nv∑
i=1

λi = 1

}
. (2.14)

Definition 6 (Polyhedral set). A convex polyhedral set (or polyhedron) is a set

which can be expressed as the intersection of a finite number of half-spaces

P = {x ∈ R
n|Dx ≤ d} (2.15)

where D ∈ R
nH×n and d ∈ R

nH , nH is the number of half-spaces.

Commonly (2.15) is called the H-representation of the set.

22 Background

Analogously, the set is maximal if it also contains all the other controlled positively

invariant sets.

The presence of constraints like (2.3-2.4) allows the introduction of a further rele-

vant set characterization.

Definition 3 (Feasible controlled positive invariance). A set SF ⊂ X
n is said to

be feasibly controlled positively invariant if it is controlled positively invariant and

u(t) ∈ U and y(t) ∈ Y for all t ≥ 0.

2.3 Polyhedral Sets

Convex polyhedral sets, and in particular polytopic sets (Blanchini and Miani (2008),

Mount (2002), Kvasnica et al. (2006)), are the family of sets which plays the major

role in this thesis. The reason is that polyhedral sets arise as natural expressions of

physical and/or safety constraints on the system input and output.

Definition 4 (Convex set). A set S ⊂ R
n is said to be convex if for all x1, x2 ∈ S

then: αx1 + (1− α)x2 ∈ S, for all 0 ≤ α ≤ 1.

Definition 5 (Convex hull). The convex hull of a set V ⊂ R
n is the smallest convex

set containing V. If V = V =
{
v(1), ..., v(nv)

}
represents a finite collection of

points in R
n, then the convex hull is given by

conv (V) =

{
nv∑
i=1

λiv
(i) | λi ≥ 0,

nv∑
i=1

λi = 1

}
. (2.14)

Definition 6 (Polyhedral set). A convex polyhedral set (or polyhedron) is a set

which can be expressed as the intersection of a finite number of half-spaces

P = {x ∈ R
n|Dx ≤ d} (2.15)

where D ∈ R
nH×n and d ∈ R

nH , nH is the number of half-spaces.

Commonly (2.15) is called the H-representation of the set.

22 Background

Analogously, the set is maximal if it also contains all the other controlled positively

invariant sets.

The presence of constraints like (2.3-2.4) allows the introduction of a further rele-

vant set characterization.

Definition 3 (Feasible controlled positive invariance). A set SF ⊂ X
n is said to

be feasibly controlled positively invariant if it is controlled positively invariant and

u(t) ∈ U and y(t) ∈ Y for all t ≥ 0.

2.3 Polyhedral Sets

Convex polyhedral sets, and in particular polytopic sets (Blanchini and Miani (2008),

Mount (2002), Kvasnica et al. (2006)), are the family of sets which plays the major

role in this thesis. The reason is that polyhedral sets arise as natural expressions of

physical and/or safety constraints on the system input and output.

Definition 4 (Convex set). A set S ⊂ R
n is said to be convex if for all x1, x2 ∈ S

then: αx1 + (1− α)x2 ∈ S, for all 0 ≤ α ≤ 1.

Definition 5 (Convex hull). The convex hull of a set V ⊂ R
n is the smallest convex

set containing V. If V = V =
{
v(1), ..., v(nv)

}
represents a finite collection of

points in R
n, then the convex hull is given by

conv (V) =

{
nv∑
i=1

λiv
(i) | λi ≥ 0,

nv∑
i=1

λi = 1

}
. (2.14)

Definition 6 (Polyhedral set). A convex polyhedral set (or polyhedron) is a set

which can be expressed as the intersection of a finite number of half-spaces

P = {x ∈ R
n|Dx ≤ d} (2.15)

where D ∈ R
nH×n and d ∈ R

nH , nH is the number of half-spaces.

Commonly (2.15) is called the H-representation of the set.

2.3. Polyhedral Sets 23

We indicate with D(i,j) the (i, j)-element of the matrix D, and d(i) the i-th element

of the vector d. Each row D(i,·) and component d(i), i = 1, .., nH, define the half-

space D(i,·)x ≤ d(i). A half-space D(i,·)x ≤ d(i) is said to be redundant if the

omission of D(i,·) from D and d(i) from d does not change P . A H-representation

is minimal if there are no redundant half-spaces.

A polyhedral set P ⊂ R
n is said to be full-dimensional if there exist ε > 0, xc ∈ R

n

such that βε(xc) ⊂ P , where βε(xc) is the n-dimensional ε-ball in R
n centered at

xc: βε(xc) = {x ∈ R
n|‖x− xc‖ < ε}.

A point x ∈ P is called an interior point of P if there exists an ε > 0 such that

βε(x) is contained in P . The set of all interior points of P is called the interior of

P and is denoted with int(P).

Definition 7 (Partition of a polyhedron). The collection of polyhedral sets {Ri}nr

i=1

is called partition of a polyhedron R if R =
⋃nr

i=1 Ri and int(Ri)∩int(Rj) = ∅
for all i �= j. Each Ri is referred as region of the partition.

Definition 8 (Polytope). A bounded polyhedral set is called a polytope.

A full-dimensional polytope P ⊂ R
n characterized by nH irredundant half-spaces,

is bounded by nH full-dimensional polytopes in R
n−1 called facets. Each irredun-

dant half-space is associated with a facet, represented as

fi =
{
x ∈ P|D(i,·)x = d(i)

}
(2.16)

where the index i refers to the particular half-space. Facets are polytopes which have

facets themselves in R
n−2 called ridges of P . Every ridge arises as the intersection

of two facets (but the intersection of two facets is not in general a ridge). Ridges

are once again polytopes whose facets give rise to boundaries of P in R
n−3, and so

on. These bounding sub-polytopes are usually referred to as faces, specifically k-

dimensional faces indicating with k the space R
k where they are full-dimensional.

A 0-dimensional face is called a vertex, and consists of a single point in R
n.

The Minkowski-Weyl theorem (Motzkin et al. (1953)) states that every polytope can

equivalently be represented as the convex hull of its vertices V =
{
v(1), ..., v(nV)

}
P = conv (V) (2.17)

where nV is the number of vertices.

Commonly (2.17) is called the V-representation of the set.

Analogously, a vertex v(i) is said to be redundant if the omission of v(i) from V does

not change P . A V-representation is minimal if there are no redundant vertices.

2.3. Polyhedral Sets 23

We indicate with D(i,j) the (i, j)-element of the matrix D, and d(i) the i-th element

of the vector d. Each row D(i,·) and component d(i), i = 1, .., nH, define the half-

space D(i,·)x ≤ d(i). A half-space D(i,·)x ≤ d(i) is said to be redundant if the

omission of D(i,·) from D and d(i) from d does not change P . A H-representation

is minimal if there are no redundant half-spaces.

A polyhedral set P ⊂ R
n is said to be full-dimensional if there exist ε > 0, xc ∈ R

n

such that βε(xc) ⊂ P , where βε(xc) is the n-dimensional ε-ball in R
n centered at

xc: βε(xc) = {x ∈ R
n|‖x− xc‖ < ε}.

A point x ∈ P is called an interior point of P if there exists an ε > 0 such that

βε(x) is contained in P . The set of all interior points of P is called the interior of

P and is denoted with int(P).

Definition 7 (Partition of a polyhedron). The collection of polyhedral sets {Ri}nr

i=1

is called partition of a polyhedron R if R =
⋃nr

i=1 Ri and int(Ri)∩int(Rj) = ∅
for all i �= j. Each Ri is referred as region of the partition.

Definition 8 (Polytope). A bounded polyhedral set is called a polytope.

A full-dimensional polytope P ⊂ R
n characterized by nH irredundant half-spaces,

is bounded by nH full-dimensional polytopes in R
n−1 called facets. Each irredun-

dant half-space is associated with a facet, represented as

fi =
{
x ∈ P|D(i,·)x = d(i)

}
(2.16)

where the index i refers to the particular half-space. Facets are polytopes which have

facets themselves in R
n−2 called ridges of P . Every ridge arises as the intersection

of two facets (but the intersection of two facets is not in general a ridge). Ridges

are once again polytopes whose facets give rise to boundaries of P in R
n−3, and so

on. These bounding sub-polytopes are usually referred to as faces, specifically k-

dimensional faces indicating with k the space R
k where they are full-dimensional.

A 0-dimensional face is called a vertex, and consists of a single point in R
n.

The Minkowski-Weyl theorem (Motzkin et al. (1953)) states that every polytope can

equivalently be represented as the convex hull of its vertices V =
{
v(1), ..., v(nV)

}
P = conv (V) (2.17)

where nV is the number of vertices.

Commonly (2.17) is called the V-representation of the set.

Analogously, a vertex v(i) is said to be redundant if the omission of v(i) from V does

not change P . A V-representation is minimal if there are no redundant vertices.

2.3. Polyhedral Sets 23

We indicate with D(i,j) the (i, j)-element of the matrix D, and d(i) the i-th element

of the vector d. Each row D(i,·) and component d(i), i = 1, .., nH, define the half-

space D(i,·)x ≤ d(i). A half-space D(i,·)x ≤ d(i) is said to be redundant if the

omission of D(i,·) from D and d(i) from d does not change P . A H-representation

is minimal if there are no redundant half-spaces.

A polyhedral set P ⊂ R
n is said to be full-dimensional if there exist ε > 0, xc ∈ R

n

such that βε(xc) ⊂ P , where βε(xc) is the n-dimensional ε-ball in R
n centered at

xc: βε(xc) = {x ∈ R
n|‖x− xc‖ < ε}.

A point x ∈ P is called an interior point of P if there exists an ε > 0 such that

βε(x) is contained in P . The set of all interior points of P is called the interior of

P and is denoted with int(P).

Definition 7 (Partition of a polyhedron). The collection of polyhedral sets {Ri}nr

i=1

is called partition of a polyhedron R if R =
⋃nr

i=1 Ri and int(Ri)∩int(Rj) = ∅
for all i �= j. Each Ri is referred as region of the partition.

Definition 8 (Polytope). A bounded polyhedral set is called a polytope.

A full-dimensional polytope P ⊂ R
n characterized by nH irredundant half-spaces,

is bounded by nH full-dimensional polytopes in R
n−1 called facets. Each irredun-

dant half-space is associated with a facet, represented as

fi =
{
x ∈ P|D(i,·)x = d(i)

}
(2.16)

where the index i refers to the particular half-space. Facets are polytopes which have

facets themselves in R
n−2 called ridges of P . Every ridge arises as the intersection

of two facets (but the intersection of two facets is not in general a ridge). Ridges

are once again polytopes whose facets give rise to boundaries of P in R
n−3, and so

on. These bounding sub-polytopes are usually referred to as faces, specifically k-

dimensional faces indicating with k the space R
k where they are full-dimensional.

A 0-dimensional face is called a vertex, and consists of a single point in R
n.

The Minkowski-Weyl theorem (Motzkin et al. (1953)) states that every polytope can

equivalently be represented as the convex hull of its vertices V =
{
v(1), ..., v(nV)

}
P = conv (V) (2.17)

where nV is the number of vertices.

Commonly (2.17) is called the V-representation of the set.

Analogously, a vertex v(i) is said to be redundant if the omission of v(i) from V does

not change P . A V-representation is minimal if there are no redundant vertices.

2.3. Polyhedral Sets 23

We indicate with D(i,j) the (i, j)-element of the matrix D, and d(i) the i-th element

of the vector d. Each row D(i,·) and component d(i), i = 1, .., nH, define the half-

space D(i,·)x ≤ d(i). A half-space D(i,·)x ≤ d(i) is said to be redundant if the

omission of D(i,·) from D and d(i) from d does not change P . A H-representation

is minimal if there are no redundant half-spaces.

A polyhedral set P ⊂ R
n is said to be full-dimensional if there exist ε > 0, xc ∈ R

n

such that βε(xc) ⊂ P , where βε(xc) is the n-dimensional ε-ball in R
n centered at

xc: βε(xc) = {x ∈ R
n|‖x− xc‖ < ε}.

A point x ∈ P is called an interior point of P if there exists an ε > 0 such that

βε(x) is contained in P . The set of all interior points of P is called the interior of

P and is denoted with int(P).

Definition 7 (Partition of a polyhedron). The collection of polyhedral sets {Ri}nr

i=1

is called partition of a polyhedron R if R =
⋃nr

i=1 Ri and int(Ri)∩int(Rj) = ∅
for all i �= j. Each Ri is referred as region of the partition.

Definition 8 (Polytope). A bounded polyhedral set is called a polytope.

A full-dimensional polytope P ⊂ R
n characterized by nH irredundant half-spaces,

is bounded by nH full-dimensional polytopes in R
n−1 called facets. Each irredun-

dant half-space is associated with a facet, represented as

fi =
{
x ∈ P|D(i,·)x = d(i)

}
(2.16)

where the index i refers to the particular half-space. Facets are polytopes which have

facets themselves in R
n−2 called ridges of P . Every ridge arises as the intersection

of two facets (but the intersection of two facets is not in general a ridge). Ridges

are once again polytopes whose facets give rise to boundaries of P in R
n−3, and so

on. These bounding sub-polytopes are usually referred to as faces, specifically k-

dimensional faces indicating with k the space R
k where they are full-dimensional.

A 0-dimensional face is called a vertex, and consists of a single point in R
n.

The Minkowski-Weyl theorem (Motzkin et al. (1953)) states that every polytope can

equivalently be represented as the convex hull of its vertices V =
{
v(1), ..., v(nV)

}
P = conv (V) (2.17)

where nV is the number of vertices.

Commonly (2.17) is called the V-representation of the set.

Analogously, a vertex v(i) is said to be redundant if the omission of v(i) from V does

not change P . A V-representation is minimal if there are no redundant vertices.

24 Background

Any full-dimensional polytope has a unique minimal V-representation and a unique
minimal H-representation.

The volume of a polytope P , vol (P) =
∫
P dx, indicates the Lebesque measure of

P . A full-dimensional polytope in R
n is characterized by a positive volume (Gritz-

mann and Klee (1994a)).

Some relevant basic operations with polytopes are defined in the following. Matlab

implementations of all the operations mentioned are found in the Multi-Parametric

Toolbox (MPT) (Kvasnica et al. (2004)).

Definition 9 (Orthogonal projection). The orthogonal projection of a polytope P ⊂
R

n × R
d onto R

n is defined as

Πn(P) =
{
x ∈ R

n|∃z ∈ R
d,
[
xT zT

]T ∈ P
}

(2.18)

Definition 10 (Minkowski sum). The Minkowski sum of two polytopes P and Q is

defined as

P ⊕Q = {x = p+ q| p ∈ P , q ∈ Q} . (2.19)

Definition 11 (Erosion). The erosion (or Pontryagin difference) of two polytopes

P and Q is defined as

P �Q = {x| x+ q ∈ P , ∀q ∈ Q} . (2.20)

Definition 12 (Set difference). The set difference of two polytopes P and Q is

defined as the set

P \ Q = {x| x ∈ P , x /∈ Q} . (2.21)

Note that by definition, polytopes are closed sets, i.e. they contain their own bound-

aries. Rigorously speaking, the set difference of two intersecting polytopes P and

Q is not a closed set. However, in this work we always refer to the closure of the

set difference.

While the orthogonal projection, the Minkowski sum and the erosion are closed

operations over the class of convex polyhedral sets, the polyhedral set difference is

not. This means that the resulting set might not be a polyhedral region (convex).

However, it can always be expressed as a finite union of convex polyhedral regions.

The polyhedral sets considered in this paper result from constraints on the out-

put and input variables expressed as linear inequalities, thus they are naturally

24 Background

Any full-dimensional polytope has a unique minimal V-representation and a unique
minimal H-representation.

The volume of a polytope P , vol (P) =
∫
P dx, indicates the Lebesque measure of

P . A full-dimensional polytope in R
n is characterized by a positive volume (Gritz-

mann and Klee (1994a)).

Some relevant basic operations with polytopes are defined in the following. Matlab

implementations of all the operations mentioned are found in the Multi-Parametric

Toolbox (MPT) (Kvasnica et al. (2004)).

Definition 9 (Orthogonal projection). The orthogonal projection of a polytope P ⊂
R

n × R
d onto R

n is defined as

Πn(P) =
{
x ∈ R

n|∃z ∈ R
d,
[
xT zT

]T ∈ P
}

(2.18)

Definition 10 (Minkowski sum). The Minkowski sum of two polytopes P and Q is

defined as

P ⊕Q = {x = p+ q| p ∈ P , q ∈ Q} . (2.19)

Definition 11 (Erosion). The erosion (or Pontryagin difference) of two polytopes

P and Q is defined as

P �Q = {x| x+ q ∈ P , ∀q ∈ Q} . (2.20)

Definition 12 (Set difference). The set difference of two polytopes P and Q is

defined as the set

P \ Q = {x| x ∈ P , x /∈ Q} . (2.21)

Note that by definition, polytopes are closed sets, i.e. they contain their own bound-

aries. Rigorously speaking, the set difference of two intersecting polytopes P and

Q is not a closed set. However, in this work we always refer to the closure of the

set difference.

While the orthogonal projection, the Minkowski sum and the erosion are closed

operations over the class of convex polyhedral sets, the polyhedral set difference is

not. This means that the resulting set might not be a polyhedral region (convex).

However, it can always be expressed as a finite union of convex polyhedral regions.

The polyhedral sets considered in this paper result from constraints on the out-

put and input variables expressed as linear inequalities, thus they are naturally

24 Background

Any full-dimensional polytope has a unique minimal V-representation and a unique
minimal H-representation.

The volume of a polytope P , vol (P) =
∫
P dx, indicates the Lebesque measure of

P . A full-dimensional polytope in R
n is characterized by a positive volume (Gritz-

mann and Klee (1994a)).

Some relevant basic operations with polytopes are defined in the following. Matlab

implementations of all the operations mentioned are found in the Multi-Parametric

Toolbox (MPT) (Kvasnica et al. (2004)).

Definition 9 (Orthogonal projection). The orthogonal projection of a polytope P ⊂
R

n × R
d onto R

n is defined as

Πn(P) =
{
x ∈ R

n|∃z ∈ R
d,
[
xT zT

]T ∈ P
}

(2.18)

Definition 10 (Minkowski sum). The Minkowski sum of two polytopes P and Q is

defined as

P ⊕Q = {x = p+ q| p ∈ P , q ∈ Q} . (2.19)

Definition 11 (Erosion). The erosion (or Pontryagin difference) of two polytopes

P and Q is defined as

P �Q = {x| x+ q ∈ P , ∀q ∈ Q} . (2.20)

Definition 12 (Set difference). The set difference of two polytopes P and Q is

defined as the set

P \ Q = {x| x ∈ P , x /∈ Q} . (2.21)

Note that by definition, polytopes are closed sets, i.e. they contain their own bound-

aries. Rigorously speaking, the set difference of two intersecting polytopes P and

Q is not a closed set. However, in this work we always refer to the closure of the

set difference.

While the orthogonal projection, the Minkowski sum and the erosion are closed

operations over the class of convex polyhedral sets, the polyhedral set difference is

not. This means that the resulting set might not be a polyhedral region (convex).

However, it can always be expressed as a finite union of convex polyhedral regions.

The polyhedral sets considered in this paper result from constraints on the out-

put and input variables expressed as linear inequalities, thus they are naturally

24 Background

Any full-dimensional polytope has a unique minimal V-representation and a unique
minimal H-representation.

The volume of a polytope P , vol (P) =
∫
P dx, indicates the Lebesque measure of

P . A full-dimensional polytope in R
n is characterized by a positive volume (Gritz-

mann and Klee (1994a)).

Some relevant basic operations with polytopes are defined in the following. Matlab

implementations of all the operations mentioned are found in the Multi-Parametric

Toolbox (MPT) (Kvasnica et al. (2004)).

Definition 9 (Orthogonal projection). The orthogonal projection of a polytope P ⊂
R

n × R
d onto R

n is defined as

Πn(P) =
{
x ∈ R

n|∃z ∈ R
d,
[
xT zT

]T ∈ P
}

(2.18)

Definition 10 (Minkowski sum). The Minkowski sum of two polytopes P and Q is

defined as

P ⊕Q = {x = p+ q| p ∈ P , q ∈ Q} . (2.19)

Definition 11 (Erosion). The erosion (or Pontryagin difference) of two polytopes

P and Q is defined as

P �Q = {x| x+ q ∈ P , ∀q ∈ Q} . (2.20)

Definition 12 (Set difference). The set difference of two polytopes P and Q is

defined as the set

P \ Q = {x| x ∈ P , x /∈ Q} . (2.21)

Note that by definition, polytopes are closed sets, i.e. they contain their own bound-

aries. Rigorously speaking, the set difference of two intersecting polytopes P and

Q is not a closed set. However, in this work we always refer to the closure of the

set difference.

While the orthogonal projection, the Minkowski sum and the erosion are closed

operations over the class of convex polyhedral sets, the polyhedral set difference is

not. This means that the resulting set might not be a polyhedral region (convex).

However, it can always be expressed as a finite union of convex polyhedral regions.

The polyhedral sets considered in this paper result from constraints on the out-

put and input variables expressed as linear inequalities, thus they are naturally

2.4. Model Predictive Control 25

given in the H-representation. Finding all the vertices of a given polytope in H-

representation is a well-know operation called vertex enumeration, and is dual to

the convex hull computation (Fukuda (2004)).

Further details and algorithmic implementations of the operations introduced can

be found for example in de Berg et al. (2008) or Mount (2002).

Piecewise affine (PWA) functions defined over partitions of polyhedral sets are rel-

evant for this work, particularly PWA functions which are continuous.

Definition 13 (PWA functions over polyhedra). Given a polyhedral set R ⊆ R
nx

partitioned in polyhedral regions R =
⋃nr

i=1 Ri, the function μ(x) : R → R
nμ is

called piecewise affine (PWA) if

μ(x) = Lix+ gi ∀ x ∈ Ri, (2.22)

where Li ∈ R
nμ×nx , gi ∈ R

nμ and i = 1, ..., nr.

Definition 14 (Continuous PWA function). The PWA function μ(x) is called con-
tinuous if

Lix+ gi = Ljx+ gj ∀ x ∈ Ri ∩Rj, i �= j (2.23)

In the following this thesis is restricted to PWA functions defined over polytopes.

2.4 Model Predictive Control

Consider the problem of regulating the discrete-time system (2.1) to the origin. The

desired objective is to optimize the performance by minimizing the infinite horizon

cost

J(x(t), {uk}k=0,...,∞) =
∞∑
k=0

xT
kQxk + uT

kRuk (2.24)

where xk denotes the predicted state vector at time t + k obtained by applying to

(2.1) the k first elements of the input sequence u0, ..., u∞, starting from x0 = x(t).
The tuning parameters are the symmetric matrices Q � 0 (positive semidefinite)

and R � 0 (positive definite) corresponding to weights on state and input. It is

2.4. Model Predictive Control 25

given in the H-representation. Finding all the vertices of a given polytope in H-

representation is a well-know operation called vertex enumeration, and is dual to

the convex hull computation (Fukuda (2004)).

Further details and algorithmic implementations of the operations introduced can

be found for example in de Berg et al. (2008) or Mount (2002).

Piecewise affine (PWA) functions defined over partitions of polyhedral sets are rel-

evant for this work, particularly PWA functions which are continuous.

Definition 13 (PWA functions over polyhedra). Given a polyhedral set R ⊆ R
nx

partitioned in polyhedral regions R =
⋃nr

i=1 Ri, the function μ(x) : R → R
nμ is

called piecewise affine (PWA) if

μ(x) = Lix+ gi ∀ x ∈ Ri, (2.22)

where Li ∈ R
nμ×nx , gi ∈ R

nμ and i = 1, ..., nr.

Definition 14 (Continuous PWA function). The PWA function μ(x) is called con-
tinuous if

Lix+ gi = Ljx+ gj ∀ x ∈ Ri ∩Rj, i �= j (2.23)

In the following this thesis is restricted to PWA functions defined over polytopes.

2.4 Model Predictive Control

Consider the problem of regulating the discrete-time system (2.1) to the origin. The

desired objective is to optimize the performance by minimizing the infinite horizon

cost

J(x(t), {uk}k=0,...,∞) =
∞∑
k=0

xT
kQxk + uT

kRuk (2.24)

where xk denotes the predicted state vector at time t + k obtained by applying to

(2.1) the k first elements of the input sequence u0, ..., u∞, starting from x0 = x(t).
The tuning parameters are the symmetric matrices Q � 0 (positive semidefinite)

and R � 0 (positive definite) corresponding to weights on state and input. It is

2.4. Model Predictive Control 25

given in the H-representation. Finding all the vertices of a given polytope in H-

representation is a well-know operation called vertex enumeration, and is dual to

the convex hull computation (Fukuda (2004)).

Further details and algorithmic implementations of the operations introduced can

be found for example in de Berg et al. (2008) or Mount (2002).

Piecewise affine (PWA) functions defined over partitions of polyhedral sets are rel-

evant for this work, particularly PWA functions which are continuous.

Definition 13 (PWA functions over polyhedra). Given a polyhedral set R ⊆ R
nx

partitioned in polyhedral regions R =
⋃nr

i=1 Ri, the function μ(x) : R → R
nμ is

called piecewise affine (PWA) if

μ(x) = Lix+ gi ∀ x ∈ Ri, (2.22)

where Li ∈ R
nμ×nx , gi ∈ R

nμ and i = 1, ..., nr.

Definition 14 (Continuous PWA function). The PWA function μ(x) is called con-
tinuous if

Lix+ gi = Ljx+ gj ∀ x ∈ Ri ∩Rj, i �= j (2.23)

In the following this thesis is restricted to PWA functions defined over polytopes.

2.4 Model Predictive Control

Consider the problem of regulating the discrete-time system (2.1) to the origin. The

desired objective is to optimize the performance by minimizing the infinite horizon

cost

J(x(t), {uk}k=0,...,∞) =
∞∑
k=0

xT
kQxk + uT

kRuk (2.24)

where xk denotes the predicted state vector at time t + k obtained by applying to

(2.1) the k first elements of the input sequence u0, ..., u∞, starting from x0 = x(t).
The tuning parameters are the symmetric matrices Q � 0 (positive semidefinite)

and R � 0 (positive definite) corresponding to weights on state and input. It is

2.4. Model Predictive Control 25

given in the H-representation. Finding all the vertices of a given polytope in H-

representation is a well-know operation called vertex enumeration, and is dual to

the convex hull computation (Fukuda (2004)).

Further details and algorithmic implementations of the operations introduced can

be found for example in de Berg et al. (2008) or Mount (2002).

Piecewise affine (PWA) functions defined over partitions of polyhedral sets are rel-

evant for this work, particularly PWA functions which are continuous.

Definition 13 (PWA functions over polyhedra). Given a polyhedral set R ⊆ R
nx

partitioned in polyhedral regions R =
⋃nr

i=1 Ri, the function μ(x) : R → R
nμ is

called piecewise affine (PWA) if

μ(x) = Lix+ gi ∀ x ∈ Ri, (2.22)

where Li ∈ R
nμ×nx , gi ∈ R

nμ and i = 1, ..., nr.

Definition 14 (Continuous PWA function). The PWA function μ(x) is called con-
tinuous if

Lix+ gi = Ljx+ gj ∀ x ∈ Ri ∩Rj, i �= j (2.23)

In the following this thesis is restricted to PWA functions defined over polytopes.

2.4 Model Predictive Control

Consider the problem of regulating the discrete-time system (2.1) to the origin. The

desired objective is to optimize the performance by minimizing the infinite horizon

cost

J(x(t), {uk}k=0,...,∞) =
∞∑
k=0

xT
kQxk + uT

kRuk (2.24)

where xk denotes the predicted state vector at time t + k obtained by applying to

(2.1) the k first elements of the input sequence u0, ..., u∞, starting from x0 = x(t).
The tuning parameters are the symmetric matrices Q � 0 (positive semidefinite)

and R � 0 (positive definite) corresponding to weights on state and input. It is

26 Background

assumed that the pair
(√

Q,A
)

is detectable.

We note that here, as in the following in this thesis, a stage cost xT
kQxk + uT

kRuk

quadratic in the variables xk and uk is considered (2-norm). Stage costs linear in xk

and uk (1-norm and ∞-norm) have also been investigated in the literature (Rossiter

et al. (1995), Jones and Morari (2008), Bemporad et al. (2002a)) as opposed to the

quadratic one. This change may lead to some advantages like a reduction in the

computational load for the control implementation, however the typical control is

not smooth and quadratic cost functions like (2.24) remain the most attractive in

practice.

When no constraints are considered, the infinite horizon objective function (2.24) is

minimized by the time-invariant state feedback (Naidu (2003))

uk = −Kxk (2.25)

where the matrix K is given by the solution of the discrete-time algebraic Riccati

equation (DARE) obtainable by

P = (A+BK)T P (A+BK) +KTRK +Q (2.26)

K =
(
R +BTPB

)−1
BTPA. (2.27)

With the control law (2.25), commonly known as the linear quadratic regulator

(LQR), the optimal cost function is given by

∞∑
k=0

xT
kQxk + uT

kRuk =
∞∑
k=0

xT
k (Q+KTRK)xk = xT

0 Px0 (2.28)

When constraints on the output and input like (2.3-2.4) are considered, an analytical

form of the optimal control law such as (2.27) minimizing the cost function (2.24)

does not exist. Therefore, to achieve feedback the (open-loop) minimization of the

cost function needs to be performed at each sampling instant when x(t) becomes

available, and apply only the first part of the optimal input. The main issue here

is that the resulting optimization problem is generally intractable due to the infinite

number of optimization variables.

However, it has been shown (Chmielewski and Manousiouthakis (1996), Muske and

Rawlings (1993)) that it is possible to optimize the performance over the infinite

26 Background

assumed that the pair
(√

Q,A
)

is detectable.

We note that here, as in the following in this thesis, a stage cost xT
kQxk + uT

kRuk

quadratic in the variables xk and uk is considered (2-norm). Stage costs linear in xk

and uk (1-norm and ∞-norm) have also been investigated in the literature (Rossiter

et al. (1995), Jones and Morari (2008), Bemporad et al. (2002a)) as opposed to the

quadratic one. This change may lead to some advantages like a reduction in the

computational load for the control implementation, however the typical control is

not smooth and quadratic cost functions like (2.24) remain the most attractive in

practice.

When no constraints are considered, the infinite horizon objective function (2.24) is

minimized by the time-invariant state feedback (Naidu (2003))

uk = −Kxk (2.25)

where the matrix K is given by the solution of the discrete-time algebraic Riccati

equation (DARE) obtainable by

P = (A+BK)T P (A+BK) +KTRK +Q (2.26)

K =
(
R +BTPB

)−1
BTPA. (2.27)

With the control law (2.25), commonly known as the linear quadratic regulator

(LQR), the optimal cost function is given by

∞∑
k=0

xT
kQxk + uT

kRuk =
∞∑
k=0

xT
k (Q+KTRK)xk = xT

0 Px0 (2.28)

When constraints on the output and input like (2.3-2.4) are considered, an analytical

form of the optimal control law such as (2.27) minimizing the cost function (2.24)

does not exist. Therefore, to achieve feedback the (open-loop) minimization of the

cost function needs to be performed at each sampling instant when x(t) becomes

available, and apply only the first part of the optimal input. The main issue here

is that the resulting optimization problem is generally intractable due to the infinite

number of optimization variables.

However, it has been shown (Chmielewski and Manousiouthakis (1996), Muske and

Rawlings (1993)) that it is possible to optimize the performance over the infinite

26 Background

assumed that the pair
(√

Q,A
)

is detectable.

We note that here, as in the following in this thesis, a stage cost xT
kQxk + uT

kRuk

quadratic in the variables xk and uk is considered (2-norm). Stage costs linear in xk

and uk (1-norm and ∞-norm) have also been investigated in the literature (Rossiter

et al. (1995), Jones and Morari (2008), Bemporad et al. (2002a)) as opposed to the

quadratic one. This change may lead to some advantages like a reduction in the

computational load for the control implementation, however the typical control is

not smooth and quadratic cost functions like (2.24) remain the most attractive in

practice.

When no constraints are considered, the infinite horizon objective function (2.24) is

minimized by the time-invariant state feedback (Naidu (2003))

uk = −Kxk (2.25)

where the matrix K is given by the solution of the discrete-time algebraic Riccati

equation (DARE) obtainable by

P = (A+BK)T P (A+BK) +KTRK +Q (2.26)

K =
(
R +BTPB

)−1
BTPA. (2.27)

With the control law (2.25), commonly known as the linear quadratic regulator

(LQR), the optimal cost function is given by

∞∑
k=0

xT
kQxk + uT

kRuk =
∞∑
k=0

xT
k (Q+KTRK)xk = xT

0 Px0 (2.28)

When constraints on the output and input like (2.3-2.4) are considered, an analytical

form of the optimal control law such as (2.27) minimizing the cost function (2.24)

does not exist. Therefore, to achieve feedback the (open-loop) minimization of the

cost function needs to be performed at each sampling instant when x(t) becomes

available, and apply only the first part of the optimal input. The main issue here

is that the resulting optimization problem is generally intractable due to the infinite

number of optimization variables.

However, it has been shown (Chmielewski and Manousiouthakis (1996), Muske and

Rawlings (1993)) that it is possible to optimize the performance over the infinite

26 Background

assumed that the pair
(√

Q,A
)

is detectable.

We note that here, as in the following in this thesis, a stage cost xT
kQxk + uT

kRuk

quadratic in the variables xk and uk is considered (2-norm). Stage costs linear in xk

and uk (1-norm and ∞-norm) have also been investigated in the literature (Rossiter

et al. (1995), Jones and Morari (2008), Bemporad et al. (2002a)) as opposed to the

quadratic one. This change may lead to some advantages like a reduction in the

computational load for the control implementation, however the typical control is

not smooth and quadratic cost functions like (2.24) remain the most attractive in

practice.

When no constraints are considered, the infinite horizon objective function (2.24) is

minimized by the time-invariant state feedback (Naidu (2003))

uk = −Kxk (2.25)

where the matrix K is given by the solution of the discrete-time algebraic Riccati

equation (DARE) obtainable by

P = (A+BK)T P (A+BK) +KTRK +Q (2.26)

K =
(
R +BTPB

)−1
BTPA. (2.27)

With the control law (2.25), commonly known as the linear quadratic regulator

(LQR), the optimal cost function is given by

∞∑
k=0

xT
kQxk + uT

kRuk =
∞∑
k=0

xT
k (Q+KTRK)xk = xT

0 Px0 (2.28)

When constraints on the output and input like (2.3-2.4) are considered, an analytical

form of the optimal control law such as (2.27) minimizing the cost function (2.24)

does not exist. Therefore, to achieve feedback the (open-loop) minimization of the

cost function needs to be performed at each sampling instant when x(t) becomes

available, and apply only the first part of the optimal input. The main issue here

is that the resulting optimization problem is generally intractable due to the infinite

number of optimization variables.

However, it has been shown (Chmielewski and Manousiouthakis (1996), Muske and

Rawlings (1993)) that it is possible to optimize the performance over the infinite

2.4. Model Predictive Control 27

horizon with a finite number of optimization variables if the cost function is viewed

as composed by two parts:

∞∑
k=0

xT
kQxk + uT

kRuk =
N−1∑
k=0

xT
kQxk + uT

kRuk +
∞∑

k=N

xT
kQxk + uT

kRuk (2.29)

where N < ∞ corresponds to a chosen horizon. Noticing that after some time the

constraints are resolved naturally, and assuming that this happens within the horizon

N , the control inputs in the first part are the only optimization variables needed to

be considered, since the control inputs in the second part are given by the LQR.

Therefore

∞∑
k=0

xT
kQxk + uT

kRuk =
N−1∑
k=0

xT
kQxk + uT

kRuk + xT
NPxN . (2.30)

The term xT
NPxN is known as the terminal cost function.

The presence of the constraints in the optimization problem results in the concept of

feasible set (Nocedal and Wright (2006), Boyd and Vandenberghe (2004), Scibilia

et al. (2010b)).

Definition 15 (Feasible set). The feasible set, indicated here as XF , is the largest

subset of the state space such that a control action satisfying all the constraints does

exist.

Since the constraints considered are expressed by linear inequalities, the feasible set

is a polyhedral set.

An optimal input satisfying the constraints is guaranteed to exist for any initial state

inside the feasible set.

One of the advantages of having an infinite horizon is that if the detectability as-

sumption on the state is satisfied and if the initial state is chosen inside the feasible

set, then nominal closed-loop (exponential) asymptotic stability is ensured (Mayne

et al. (2000)). The fact that the infinite horizon cost function can be written as

(2.30), allows achieving asymptotic stability by means of a tractable optimization

problem also in the presence of constraints, as long as the constraints will not be

violated after the end of the chosen horizon N . Therefore, guaranteeing stability is

equivalent to guaranteeing that constraints will be respected on the infinite horizon,

and not only on the horizon where they are enforced.

One possibility is to select the horizon N that is long enough to guarantee that con-

straints will not be violated afterwards (Chmielewski and Manousiouthakis (1996)).

2.4. Model Predictive Control 27

horizon with a finite number of optimization variables if the cost function is viewed

as composed by two parts:

∞∑
k=0

xT
kQxk + uT

kRuk =
N−1∑
k=0

xT
kQxk + uT

kRuk +
∞∑

k=N

xT
kQxk + uT

kRuk (2.29)

where N < ∞ corresponds to a chosen horizon. Noticing that after some time the

constraints are resolved naturally, and assuming that this happens within the horizon

N , the control inputs in the first part are the only optimization variables needed to

be considered, since the control inputs in the second part are given by the LQR.

Therefore

∞∑
k=0

xT
kQxk + uT

kRuk =
N−1∑
k=0

xT
kQxk + uT

kRuk + xT
NPxN . (2.30)

The term xT
NPxN is known as the terminal cost function.

The presence of the constraints in the optimization problem results in the concept of

feasible set (Nocedal and Wright (2006), Boyd and Vandenberghe (2004), Scibilia

et al. (2010b)).

Definition 15 (Feasible set). The feasible set, indicated here as XF , is the largest

subset of the state space such that a control action satisfying all the constraints does

exist.

Since the constraints considered are expressed by linear inequalities, the feasible set

is a polyhedral set.

An optimal input satisfying the constraints is guaranteed to exist for any initial state

inside the feasible set.

One of the advantages of having an infinite horizon is that if the detectability as-

sumption on the state is satisfied and if the initial state is chosen inside the feasible

set, then nominal closed-loop (exponential) asymptotic stability is ensured (Mayne

et al. (2000)). The fact that the infinite horizon cost function can be written as

(2.30), allows achieving asymptotic stability by means of a tractable optimization

problem also in the presence of constraints, as long as the constraints will not be

violated after the end of the chosen horizon N . Therefore, guaranteeing stability is

equivalent to guaranteeing that constraints will be respected on the infinite horizon,

and not only on the horizon where they are enforced.

One possibility is to select the horizon N that is long enough to guarantee that con-

straints will not be violated afterwards (Chmielewski and Manousiouthakis (1996)).

2.4. Model Predictive Control 27

horizon with a finite number of optimization variables if the cost function is viewed

as composed by two parts:

∞∑
k=0

xT
kQxk + uT

kRuk =
N−1∑
k=0

xT
kQxk + uT

kRuk +
∞∑

k=N

xT
kQxk + uT

kRuk (2.29)

where N < ∞ corresponds to a chosen horizon. Noticing that after some time the

constraints are resolved naturally, and assuming that this happens within the horizon

N , the control inputs in the first part are the only optimization variables needed to

be considered, since the control inputs in the second part are given by the LQR.

Therefore

∞∑
k=0

xT
kQxk + uT

kRuk =
N−1∑
k=0

xT
kQxk + uT

kRuk + xT
NPxN . (2.30)

The term xT
NPxN is known as the terminal cost function.

The presence of the constraints in the optimization problem results in the concept of

feasible set (Nocedal and Wright (2006), Boyd and Vandenberghe (2004), Scibilia

et al. (2010b)).

Definition 15 (Feasible set). The feasible set, indicated here as XF , is the largest

subset of the state space such that a control action satisfying all the constraints does

exist.

Since the constraints considered are expressed by linear inequalities, the feasible set

is a polyhedral set.

An optimal input satisfying the constraints is guaranteed to exist for any initial state

inside the feasible set.

One of the advantages of having an infinite horizon is that if the detectability as-

sumption on the state is satisfied and if the initial state is chosen inside the feasible

set, then nominal closed-loop (exponential) asymptotic stability is ensured (Mayne

et al. (2000)). The fact that the infinite horizon cost function can be written as

(2.30), allows achieving asymptotic stability by means of a tractable optimization

problem also in the presence of constraints, as long as the constraints will not be

violated after the end of the chosen horizon N . Therefore, guaranteeing stability is

equivalent to guaranteeing that constraints will be respected on the infinite horizon,

and not only on the horizon where they are enforced.

One possibility is to select the horizon N that is long enough to guarantee that con-

straints will not be violated afterwards (Chmielewski and Manousiouthakis (1996)).

2.4. Model Predictive Control 27

horizon with a finite number of optimization variables if the cost function is viewed

as composed by two parts:

∞∑
k=0

xT
kQxk + uT

kRuk =
N−1∑
k=0

xT
kQxk + uT

kRuk +
∞∑

k=N

xT
kQxk + uT

kRuk (2.29)

where N < ∞ corresponds to a chosen horizon. Noticing that after some time the

constraints are resolved naturally, and assuming that this happens within the horizon

N , the control inputs in the first part are the only optimization variables needed to

be considered, since the control inputs in the second part are given by the LQR.

Therefore

∞∑
k=0

xT
kQxk + uT

kRuk =
N−1∑
k=0

xT
kQxk + uT

kRuk + xT
NPxN . (2.30)

The term xT
NPxN is known as the terminal cost function.

The presence of the constraints in the optimization problem results in the concept of

feasible set (Nocedal and Wright (2006), Boyd and Vandenberghe (2004), Scibilia

et al. (2010b)).

Definition 15 (Feasible set). The feasible set, indicated here as XF , is the largest

subset of the state space such that a control action satisfying all the constraints does

exist.

Since the constraints considered are expressed by linear inequalities, the feasible set

is a polyhedral set.

An optimal input satisfying the constraints is guaranteed to exist for any initial state

inside the feasible set.

One of the advantages of having an infinite horizon is that if the detectability as-

sumption on the state is satisfied and if the initial state is chosen inside the feasible

set, then nominal closed-loop (exponential) asymptotic stability is ensured (Mayne

et al. (2000)). The fact that the infinite horizon cost function can be written as

(2.30), allows achieving asymptotic stability by means of a tractable optimization

problem also in the presence of constraints, as long as the constraints will not be

violated after the end of the chosen horizon N . Therefore, guaranteeing stability is

equivalent to guaranteeing that constraints will be respected on the infinite horizon,

and not only on the horizon where they are enforced.

One possibility is to select the horizon N that is long enough to guarantee that con-

straints will not be violated afterwards (Chmielewski and Manousiouthakis (1996)).

28 Background

However this may result in an excessive computational burden needed to solve the

corresponding open-loop optimization problem.

A preferred approach is to modify the open-loop optimization problem introducing

a terminal state constraint
xN ∈ Ω (2.31)

where Ω is called the terminal set. Generally, the terminal set is chosen to be the

maximal output admissible set (MOAS) (Gilbert and Tan (1991)) for the system

x(t+ 1) = (A− BK)x(t). (2.32)

Given the nature of the constraints (2.3-2.4), this set is an easily computable poly-

tope, and corresponds to the largest positively invariant set within the state space

where the LQR satisfies the constraints.

By means of (2.31), asymptotic stability can be guaranteed for any horizon length.

The introduction of the terminal constraint turns the length of the horizon into a

tuning parameter, since this sets the degrees of freedom in the optimization. It fol-

lows that the size of the feasible set increases with longer horizons, until the horizon

is long enough that the constraints are resolved naturally without the need for the

terminal constraint.

We can now formally state the finite horizon MPC optimization problem as follows.

min
u�[u0,...,uN−1]

{
J (u, x (t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(2.33)

s.t. x0 = x (t) ,
xk+1 = Axk +Buk

yk = Cxk k = 0, 1, ..., N
yk ∈ Y , k = 1, 2, ..., N
uk ∈ U , k = 0, 1, ..., N − 1
xN ∈ Ω

(2.34)

For the problem (2.33-2.34), the feasible set is given by

XF = {x ∈ R
n| ∃ u satisfying (2.34)} . (2.35)

The polyhedral set described by (2.35) is actually a polytope due to the nature of

the constraints (Scibilia et al. (2010b)).

28 Background

However this may result in an excessive computational burden needed to solve the

corresponding open-loop optimization problem.

A preferred approach is to modify the open-loop optimization problem introducing

a terminal state constraint
xN ∈ Ω (2.31)

where Ω is called the terminal set. Generally, the terminal set is chosen to be the

maximal output admissible set (MOAS) (Gilbert and Tan (1991)) for the system

x(t+ 1) = (A− BK)x(t). (2.32)

Given the nature of the constraints (2.3-2.4), this set is an easily computable poly-

tope, and corresponds to the largest positively invariant set within the state space

where the LQR satisfies the constraints.

By means of (2.31), asymptotic stability can be guaranteed for any horizon length.

The introduction of the terminal constraint turns the length of the horizon into a

tuning parameter, since this sets the degrees of freedom in the optimization. It fol-

lows that the size of the feasible set increases with longer horizons, until the horizon

is long enough that the constraints are resolved naturally without the need for the

terminal constraint.

We can now formally state the finite horizon MPC optimization problem as follows.

min
u�[u0,...,uN−1]

{
J (u, x (t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(2.33)

s.t. x0 = x (t) ,
xk+1 = Axk +Buk

yk = Cxk k = 0, 1, ..., N
yk ∈ Y , k = 1, 2, ..., N
uk ∈ U , k = 0, 1, ..., N − 1
xN ∈ Ω

(2.34)

For the problem (2.33-2.34), the feasible set is given by

XF = {x ∈ R
n| ∃ u satisfying (2.34)} . (2.35)

The polyhedral set described by (2.35) is actually a polytope due to the nature of

the constraints (Scibilia et al. (2010b)).

28 Background

However this may result in an excessive computational burden needed to solve the

corresponding open-loop optimization problem.

A preferred approach is to modify the open-loop optimization problem introducing

a terminal state constraint
xN ∈ Ω (2.31)

where Ω is called the terminal set. Generally, the terminal set is chosen to be the

maximal output admissible set (MOAS) (Gilbert and Tan (1991)) for the system

x(t+ 1) = (A− BK)x(t). (2.32)

Given the nature of the constraints (2.3-2.4), this set is an easily computable poly-

tope, and corresponds to the largest positively invariant set within the state space

where the LQR satisfies the constraints.

By means of (2.31), asymptotic stability can be guaranteed for any horizon length.

The introduction of the terminal constraint turns the length of the horizon into a

tuning parameter, since this sets the degrees of freedom in the optimization. It fol-

lows that the size of the feasible set increases with longer horizons, until the horizon

is long enough that the constraints are resolved naturally without the need for the

terminal constraint.

We can now formally state the finite horizon MPC optimization problem as follows.

min
u�[u0,...,uN−1]

{
J (u, x (t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(2.33)

s.t. x0 = x (t) ,
xk+1 = Axk +Buk

yk = Cxk k = 0, 1, ..., N
yk ∈ Y , k = 1, 2, ..., N
uk ∈ U , k = 0, 1, ..., N − 1
xN ∈ Ω

(2.34)

For the problem (2.33-2.34), the feasible set is given by

XF = {x ∈ R
n| ∃ u satisfying (2.34)} . (2.35)

The polyhedral set described by (2.35) is actually a polytope due to the nature of

the constraints (Scibilia et al. (2010b)).

28 Background

However this may result in an excessive computational burden needed to solve the

corresponding open-loop optimization problem.

A preferred approach is to modify the open-loop optimization problem introducing

a terminal state constraint
xN ∈ Ω (2.31)

where Ω is called the terminal set. Generally, the terminal set is chosen to be the

maximal output admissible set (MOAS) (Gilbert and Tan (1991)) for the system

x(t+ 1) = (A− BK)x(t). (2.32)

Given the nature of the constraints (2.3-2.4), this set is an easily computable poly-

tope, and corresponds to the largest positively invariant set within the state space

where the LQR satisfies the constraints.

By means of (2.31), asymptotic stability can be guaranteed for any horizon length.

The introduction of the terminal constraint turns the length of the horizon into a

tuning parameter, since this sets the degrees of freedom in the optimization. It fol-

lows that the size of the feasible set increases with longer horizons, until the horizon

is long enough that the constraints are resolved naturally without the need for the

terminal constraint.

We can now formally state the finite horizon MPC optimization problem as follows.

min
u�[u0,...,uN−1]

{
J (u, x (t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(2.33)

s.t. x0 = x (t) ,
xk+1 = Axk +Buk

yk = Cxk k = 0, 1, ..., N
yk ∈ Y , k = 1, 2, ..., N
uk ∈ U , k = 0, 1, ..., N − 1
xN ∈ Ω

(2.34)

For the problem (2.33-2.34), the feasible set is given by

XF = {x ∈ R
n| ∃ u satisfying (2.34)} . (2.35)

The polyhedral set described by (2.35) is actually a polytope due to the nature of

the constraints (Scibilia et al. (2010b)).

2.4. Model Predictive Control 29

Since 0 ∈ int(Y) and 0 ∈ int(U), the origin is of course an interior point in the

feasible set.

2.4.1 Stability in MPC

MPC stability analysis necessitates the use of Lyapunov theory (Khalil (2000)),

since the presence of the constraints makes the closed-loop system nonlinear. As

discussed in Mayne et al. (2000), the main idea is to modify the basic MPC concept

such that the cost function can be used as Lyapunov function to establish stability.

Essentially, the modifications proposed correspond to employing a terminal cost

function and/or a terminal constraint (which can be either a terminal equality con-

straint or a terminal set constraint with an appropriate local stabilizing controller)

(Sznaier and Damborg (1987), Keerthi and Gilbert (1988), Rawlings and Muske

(1993), Scokaert and Rawlings (1998), Chmielewski and Manousiouthakis (1996),

Maciejowski (2002)).

The MPC problem (2.33-2.34) considered in this thesis uses both a terminal cost

function and a terminal set constraint, and is the version which attracts most of the

attention in the MPC literature. It generally offers better performance when com-

pared with other MPC versions and allows a wider range of control problems to be

handled.

Closed-loop stability for the MPC problem (2.33-2.34) is guaranteed by the follow-

ing theorem.

Theorem 1. The origin of the system (2.1) in closed-loop with the MPC given by
(2.33-2.34) is exponentially stable with domain of attraction the feasible set (2.35).

Proof. The proof, which can be found in Mayne et al. (2000), demonstrates that

the terminal cost function xT
NPxN , P defined by (2.26), and the terminal constraint

xN ∈ Ω, Ω chosen as the maximal output admissible set for the system (2.1) in

closed-loop with the LQR (2.27) (Gilbert and Tan (1991)), with this LQR as the

local stabilizing controller inside Ω, make the cost function a Lyapunov function,

establishing exponential stability.

2.4.2 Quadratic Program Formulation

The cost function in (2.30) can be written as

J (x(t), u) = xT Q̂x + uT R̂u (2.36)

2.4. Model Predictive Control 29

Since 0 ∈ int(Y) and 0 ∈ int(U), the origin is of course an interior point in the

feasible set.

2.4.1 Stability in MPC

MPC stability analysis necessitates the use of Lyapunov theory (Khalil (2000)),

since the presence of the constraints makes the closed-loop system nonlinear. As

discussed in Mayne et al. (2000), the main idea is to modify the basic MPC concept

such that the cost function can be used as Lyapunov function to establish stability.

Essentially, the modifications proposed correspond to employing a terminal cost

function and/or a terminal constraint (which can be either a terminal equality con-

straint or a terminal set constraint with an appropriate local stabilizing controller)

(Sznaier and Damborg (1987), Keerthi and Gilbert (1988), Rawlings and Muske

(1993), Scokaert and Rawlings (1998), Chmielewski and Manousiouthakis (1996),

Maciejowski (2002)).

The MPC problem (2.33-2.34) considered in this thesis uses both a terminal cost

function and a terminal set constraint, and is the version which attracts most of the

attention in the MPC literature. It generally offers better performance when com-

pared with other MPC versions and allows a wider range of control problems to be

handled.

Closed-loop stability for the MPC problem (2.33-2.34) is guaranteed by the follow-

ing theorem.

Theorem 1. The origin of the system (2.1) in closed-loop with the MPC given by
(2.33-2.34) is exponentially stable with domain of attraction the feasible set (2.35).

Proof. The proof, which can be found in Mayne et al. (2000), demonstrates that

the terminal cost function xT
NPxN , P defined by (2.26), and the terminal constraint

xN ∈ Ω, Ω chosen as the maximal output admissible set for the system (2.1) in

closed-loop with the LQR (2.27) (Gilbert and Tan (1991)), with this LQR as the

local stabilizing controller inside Ω, make the cost function a Lyapunov function,

establishing exponential stability.

2.4.2 Quadratic Program Formulation

The cost function in (2.30) can be written as

J (x(t), u) = xT Q̂x + uT R̂u (2.36)

2.4. Model Predictive Control 29

Since 0 ∈ int(Y) and 0 ∈ int(U), the origin is of course an interior point in the

feasible set.

2.4.1 Stability in MPC

MPC stability analysis necessitates the use of Lyapunov theory (Khalil (2000)),

since the presence of the constraints makes the closed-loop system nonlinear. As

discussed in Mayne et al. (2000), the main idea is to modify the basic MPC concept

such that the cost function can be used as Lyapunov function to establish stability.

Essentially, the modifications proposed correspond to employing a terminal cost

function and/or a terminal constraint (which can be either a terminal equality con-

straint or a terminal set constraint with an appropriate local stabilizing controller)

(Sznaier and Damborg (1987), Keerthi and Gilbert (1988), Rawlings and Muske

(1993), Scokaert and Rawlings (1998), Chmielewski and Manousiouthakis (1996),

Maciejowski (2002)).

The MPC problem (2.33-2.34) considered in this thesis uses both a terminal cost

function and a terminal set constraint, and is the version which attracts most of the

attention in the MPC literature. It generally offers better performance when com-

pared with other MPC versions and allows a wider range of control problems to be

handled.

Closed-loop stability for the MPC problem (2.33-2.34) is guaranteed by the follow-

ing theorem.

Theorem 1. The origin of the system (2.1) in closed-loop with the MPC given by
(2.33-2.34) is exponentially stable with domain of attraction the feasible set (2.35).

Proof. The proof, which can be found in Mayne et al. (2000), demonstrates that

the terminal cost function xT
NPxN , P defined by (2.26), and the terminal constraint

xN ∈ Ω, Ω chosen as the maximal output admissible set for the system (2.1) in

closed-loop with the LQR (2.27) (Gilbert and Tan (1991)), with this LQR as the

local stabilizing controller inside Ω, make the cost function a Lyapunov function,

establishing exponential stability.

2.4.2 Quadratic Program Formulation

The cost function in (2.30) can be written as

J (x(t), u) = xT Q̂x + uT R̂u (2.36)

2.4. Model Predictive Control 29

Since 0 ∈ int(Y) and 0 ∈ int(U), the origin is of course an interior point in the

feasible set.

2.4.1 Stability in MPC

MPC stability analysis necessitates the use of Lyapunov theory (Khalil (2000)),

since the presence of the constraints makes the closed-loop system nonlinear. As

discussed in Mayne et al. (2000), the main idea is to modify the basic MPC concept

such that the cost function can be used as Lyapunov function to establish stability.

Essentially, the modifications proposed correspond to employing a terminal cost

function and/or a terminal constraint (which can be either a terminal equality con-

straint or a terminal set constraint with an appropriate local stabilizing controller)

(Sznaier and Damborg (1987), Keerthi and Gilbert (1988), Rawlings and Muske

(1993), Scokaert and Rawlings (1998), Chmielewski and Manousiouthakis (1996),

Maciejowski (2002)).

The MPC problem (2.33-2.34) considered in this thesis uses both a terminal cost

function and a terminal set constraint, and is the version which attracts most of the

attention in the MPC literature. It generally offers better performance when com-

pared with other MPC versions and allows a wider range of control problems to be

handled.

Closed-loop stability for the MPC problem (2.33-2.34) is guaranteed by the follow-

ing theorem.

Theorem 1. The origin of the system (2.1) in closed-loop with the MPC given by
(2.33-2.34) is exponentially stable with domain of attraction the feasible set (2.35).

Proof. The proof, which can be found in Mayne et al. (2000), demonstrates that

the terminal cost function xT
NPxN , P defined by (2.26), and the terminal constraint

xN ∈ Ω, Ω chosen as the maximal output admissible set for the system (2.1) in

closed-loop with the LQR (2.27) (Gilbert and Tan (1991)), with this LQR as the

local stabilizing controller inside Ω, make the cost function a Lyapunov function,

establishing exponential stability.

2.4.2 Quadratic Program Formulation

The cost function in (2.30) can be written as

J (x(t), u) = xT Q̂x + uT R̂u (2.36)

30 Background

where

x =

⎡
⎢⎣

x0
...

xN

⎤
⎥⎦ , u =

⎡
⎢⎣

u0
...

uN−1

⎤
⎥⎦

and Q̂ = diag(blkdiag (Q,N) , P), R̂ = blkdiag(R,N).

The function blkdiag(Q, n) indicates the n times block diagonal concatenation

of Q, and the function diag(Q,P) indicates the diagonal concatenation of Q and

P .

Repeated use of equation (2.1) gives

x = Âx (t) + B̂u (2.37)

where Â ∈ R
n(N+1)×n, B̂ ∈ R

n(N+1)×rN

Â =

⎡
⎢⎢⎢⎢⎢⎣

I
A
A2

...

AN

⎤
⎥⎥⎥⎥⎥⎦ , B̂ =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0
B 0 · · · 0

AB B
. . .

...
...

...
. . . 0

AN−1B AN−2B · · · B

⎤
⎥⎥⎥⎥⎥⎦ (2.38)

and I is the n× n identity matrix and AN the N -matrix-power of A.

Substituting (2.37) in (2.36) and rearranging gives

J (x(t), u) = uTHu + 2x(t)TFu + x(t)TY x(t) (2.39)

where H = B̂T Q̂B̂ + R̂, F = ÂT Q̂B̂ and Y = ÂT Q̂Â.

Note that H � 0 since R � 0.

Consider the polyhedral output and the input constraints sets

Y =
{
y ∈ R

m|DYy ≤ dY
}

(2.40)

U = {u ∈ R
r|DUu ≤ dU} . (2.41)

where DY ∈ R
nY×m, dY ∈ R

nY , DU ∈ R
nU×r, dU ∈ R

nU , and nY , nU are the

numbers of output and input inequalities, respectively.

Using (2.2), the output constraints along the horizon can be expressed as a function

of the state

D̂Y Ĉx ≤ d̂Y , (2.42)

30 Background

where

x =

⎡
⎢⎣

x0
...

xN

⎤
⎥⎦ , u =

⎡
⎢⎣

u0
...

uN−1

⎤
⎥⎦

and Q̂ = diag(blkdiag (Q,N) , P), R̂ = blkdiag(R,N).

The function blkdiag(Q, n) indicates the n times block diagonal concatenation

of Q, and the function diag(Q,P) indicates the diagonal concatenation of Q and

P .

Repeated use of equation (2.1) gives

x = Âx (t) + B̂u (2.37)

where Â ∈ R
n(N+1)×n, B̂ ∈ R

n(N+1)×rN

Â =

⎡
⎢⎢⎢⎢⎢⎣

I
A
A2

...

AN

⎤
⎥⎥⎥⎥⎥⎦ , B̂ =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0
B 0 · · · 0

AB B
. . .

...
...

...
. . . 0

AN−1B AN−2B · · · B

⎤
⎥⎥⎥⎥⎥⎦ (2.38)

and I is the n× n identity matrix and AN the N -matrix-power of A.

Substituting (2.37) in (2.36) and rearranging gives

J (x(t), u) = uTHu + 2x(t)TFu + x(t)TY x(t) (2.39)

where H = B̂T Q̂B̂ + R̂, F = ÂT Q̂B̂ and Y = ÂT Q̂Â.

Note that H � 0 since R � 0.

Consider the polyhedral output and the input constraints sets

Y =
{
y ∈ R

m|DYy ≤ dY
}

(2.40)

U = {u ∈ R
r|DUu ≤ dU} . (2.41)

where DY ∈ R
nY×m, dY ∈ R

nY , DU ∈ R
nU×r, dU ∈ R

nU , and nY , nU are the

numbers of output and input inequalities, respectively.

Using (2.2), the output constraints along the horizon can be expressed as a function

of the state

D̂Y Ĉx ≤ d̂Y , (2.42)

30 Background

where

x =

⎡
⎢⎣

x0
...

xN

⎤
⎥⎦ , u =

⎡
⎢⎣

u0
...

uN−1

⎤
⎥⎦

and Q̂ = diag(blkdiag (Q,N) , P), R̂ = blkdiag(R,N).

The function blkdiag(Q, n) indicates the n times block diagonal concatenation

of Q, and the function diag(Q,P) indicates the diagonal concatenation of Q and

P .

Repeated use of equation (2.1) gives

x = Âx (t) + B̂u (2.37)

where Â ∈ R
n(N+1)×n, B̂ ∈ R

n(N+1)×rN

Â =

⎡
⎢⎢⎢⎢⎢⎣

I
A
A2

...

AN

⎤
⎥⎥⎥⎥⎥⎦ , B̂ =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0
B 0 · · · 0

AB B
. . .

...
...

...
. . . 0

AN−1B AN−2B · · · B

⎤
⎥⎥⎥⎥⎥⎦ (2.38)

and I is the n× n identity matrix and AN the N -matrix-power of A.

Substituting (2.37) in (2.36) and rearranging gives

J (x(t), u) = uTHu + 2x(t)TFu + x(t)TY x(t) (2.39)

where H = B̂T Q̂B̂ + R̂, F = ÂT Q̂B̂ and Y = ÂT Q̂Â.

Note that H � 0 since R � 0.

Consider the polyhedral output and the input constraints sets

Y =
{
y ∈ R

m|DYy ≤ dY
}

(2.40)

U = {u ∈ R
r|DUu ≤ dU} . (2.41)

where DY ∈ R
nY×m, dY ∈ R

nY , DU ∈ R
nU×r, dU ∈ R

nU , and nY , nU are the

numbers of output and input inequalities, respectively.

Using (2.2), the output constraints along the horizon can be expressed as a function

of the state

D̂Y Ĉx ≤ d̂Y , (2.42)

30 Background

where

x =

⎡
⎢⎣

x0
...

xN

⎤
⎥⎦ , u =

⎡
⎢⎣

u0
...

uN−1

⎤
⎥⎦

and Q̂ = diag(blkdiag (Q,N) , P), R̂ = blkdiag(R,N).

The function blkdiag(Q, n) indicates the n times block diagonal concatenation

of Q, and the function diag(Q,P) indicates the diagonal concatenation of Q and

P .

Repeated use of equation (2.1) gives

x = Âx (t) + B̂u (2.37)

where Â ∈ R
n(N+1)×n, B̂ ∈ R

n(N+1)×rN

Â =

⎡
⎢⎢⎢⎢⎢⎣

I
A
A2

...

AN

⎤
⎥⎥⎥⎥⎥⎦ , B̂ =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0
B 0 · · · 0

AB B
. . .

...
...

...
. . . 0

AN−1B AN−2B · · · B

⎤
⎥⎥⎥⎥⎥⎦ (2.38)

and I is the n× n identity matrix and AN the N -matrix-power of A.

Substituting (2.37) in (2.36) and rearranging gives

J (x(t), u) = uTHu + 2x(t)TFu + x(t)TY x(t) (2.39)

where H = B̂T Q̂B̂ + R̂, F = ÂT Q̂B̂ and Y = ÂT Q̂Â.

Note that H � 0 since R � 0.

Consider the polyhedral output and the input constraints sets

Y =
{
y ∈ R

m|DYy ≤ dY
}

(2.40)

U = {u ∈ R
r|DUu ≤ dU} . (2.41)

where DY ∈ R
nY×m, dY ∈ R

nY , DU ∈ R
nU×r, dU ∈ R

nU , and nY , nU are the

numbers of output and input inequalities, respectively.

Using (2.2), the output constraints along the horizon can be expressed as a function

of the state

D̂Y Ĉx ≤ d̂Y , (2.42)

2.4. Model Predictive Control 31

where Ĉ = blkdiag(C,N + 1),

D̂Y =
[
O(nYN)×m blkdiag(DY , N)

]
, d̂Y =

⎡
⎢⎣

dY
...

dY

⎤
⎥⎦

and the term On×m is the n×m zero matrix.

The input constraints along the horizon can be expressed as

D̂U u ≤ d̂U , (2.43)

where D̂U = blkdiag(DU , N) and

d̂U =

⎡
⎢⎣

dU
...

dU

⎤
⎥⎦ .

Using (2.37) in (2.42), the output constraints can be written as

D̂Y ĈB̂u ≤ d̂Y − D̂Y ĈÂx(t) (2.44)

Combining (2.44) and (2.43) we obtain

G′u ≤ w′ + E ′x (t) (2.45)

where

G′ =
[
D̂Y ĈB̂

D̂U

]
, w′ =

[
d̂Y
d̂U

]
, E ′ =

[
−D̂Y ĈÂ
Om×(nUN)

]
.

As previously mentioned, the terminal constraint can be obtained considering the

closed-loop system

x (t+ 1) = Acx (t) (2.46)

where we indicate Ac = A− BK, K defined in (2.27).

Then, define the set

Ω(t) =
{
x ∈ R

n | DYCAj
cx ≤ dY , −DUKAj

cx ≤ dU ∀j = 0, 1, ..., t
}
. (2.47)

This is a polyhedral set, indeed if we chose for example t = N we can use (2.45) to

express it as

Ω(N) = {x ∈ R
n| (G′Λ− E ′) x ≤ w′} (2.48)

2.4. Model Predictive Control 31

where Ĉ = blkdiag(C,N + 1),

D̂Y =
[
O(nYN)×m blkdiag(DY , N)

]
, d̂Y =

⎡
⎢⎣

dY
...

dY

⎤
⎥⎦

and the term On×m is the n×m zero matrix.

The input constraints along the horizon can be expressed as

D̂U u ≤ d̂U , (2.43)

where D̂U = blkdiag(DU , N) and

d̂U =

⎡
⎢⎣

dU
...

dU

⎤
⎥⎦ .

Using (2.37) in (2.42), the output constraints can be written as

D̂Y ĈB̂u ≤ d̂Y − D̂Y ĈÂx(t) (2.44)

Combining (2.44) and (2.43) we obtain

G′u ≤ w′ + E ′x (t) (2.45)

where

G′ =
[
D̂Y ĈB̂

D̂U

]
, w′ =

[
d̂Y
d̂U

]
, E ′ =

[
−D̂Y ĈÂ
Om×(nUN)

]
.

As previously mentioned, the terminal constraint can be obtained considering the

closed-loop system

x (t+ 1) = Acx (t) (2.46)

where we indicate Ac = A− BK, K defined in (2.27).

Then, define the set

Ω(t) =
{
x ∈ R

n | DYCAj
cx ≤ dY , −DUKAj

cx ≤ dU ∀j = 0, 1, ..., t
}
. (2.47)

This is a polyhedral set, indeed if we chose for example t = N we can use (2.45) to

express it as

Ω(N) = {x ∈ R
n| (G′Λ− E ′) x ≤ w′} (2.48)

2.4. Model Predictive Control 31

where Ĉ = blkdiag(C,N + 1),

D̂Y =
[
O(nYN)×m blkdiag(DY , N)

]
, d̂Y =

⎡
⎢⎣

dY
...

dY

⎤
⎥⎦

and the term On×m is the n×m zero matrix.

The input constraints along the horizon can be expressed as

D̂U u ≤ d̂U , (2.43)

where D̂U = blkdiag(DU , N) and

d̂U =

⎡
⎢⎣

dU
...

dU

⎤
⎥⎦ .

Using (2.37) in (2.42), the output constraints can be written as

D̂Y ĈB̂u ≤ d̂Y − D̂Y ĈÂx(t) (2.44)

Combining (2.44) and (2.43) we obtain

G′u ≤ w′ + E ′x (t) (2.45)

where

G′ =
[
D̂Y ĈB̂

D̂U

]
, w′ =

[
d̂Y
d̂U

]
, E ′ =

[
−D̂Y ĈÂ
Om×(nUN)

]
.

As previously mentioned, the terminal constraint can be obtained considering the

closed-loop system

x (t+ 1) = Acx (t) (2.46)

where we indicate Ac = A− BK, K defined in (2.27).

Then, define the set

Ω(t) =
{
x ∈ R

n | DYCAj
cx ≤ dY , −DUKAj

cx ≤ dU ∀j = 0, 1, ..., t
}
. (2.47)

This is a polyhedral set, indeed if we chose for example t = N we can use (2.45) to

express it as

Ω(N) = {x ∈ R
n| (G′Λ− E ′) x ≤ w′} (2.48)

2.4. Model Predictive Control 31

where Ĉ = blkdiag(C,N + 1),

D̂Y =
[
O(nYN)×m blkdiag(DY , N)

]
, d̂Y =

⎡
⎢⎣

dY
...

dY

⎤
⎥⎦

and the term On×m is the n×m zero matrix.

The input constraints along the horizon can be expressed as

D̂U u ≤ d̂U , (2.43)

where D̂U = blkdiag(DU , N) and

d̂U =

⎡
⎢⎣

dU
...

dU

⎤
⎥⎦ .

Using (2.37) in (2.42), the output constraints can be written as

D̂Y ĈB̂u ≤ d̂Y − D̂Y ĈÂx(t) (2.44)

Combining (2.44) and (2.43) we obtain

G′u ≤ w′ + E ′x (t) (2.45)

where

G′ =
[
D̂Y ĈB̂

D̂U

]
, w′ =

[
d̂Y
d̂U

]
, E ′ =

[
−D̂Y ĈÂ
Om×(nUN)

]
.

As previously mentioned, the terminal constraint can be obtained considering the

closed-loop system

x (t+ 1) = Acx (t) (2.46)

where we indicate Ac = A− BK, K defined in (2.27).

Then, define the set

Ω(t) =
{
x ∈ R

n | DYCAj
cx ≤ dY , −DUKAj

cx ≤ dU ∀j = 0, 1, ..., t
}
. (2.47)

This is a polyhedral set, indeed if we chose for example t = N we can use (2.45) to

express it as

Ω(N) = {x ∈ R
n| (G′Λ− E ′) x ≤ w′} (2.48)

32 Background

where

Λ = −

⎡
⎢⎢⎢⎣

K
KAc

...

KAN
c

⎤
⎥⎥⎥⎦ .

It is known (Gilbert and Tan (1991)) that Ω(t2) ⊆ Ω(t1) ∀ 0 < t1 ≤ t2.

If Ω(t) = Ω(t−1) for some positive t, then Ω(t) = Ω(t+1) = ... = Ω(∞) � Ω is said to

be finitely determined.

By arguments in Gilbert and Tan (1991) it can be proven that the asymptotic stability

of Ac implies the set Ω to be finitely determined. Therefore, Ω can be determined

as described in Algorithm 1.

Algorithm 1: Terminal set

Input: The closed-loop state matrix Ac, the polyhedral output and input

constraints set Y and U .

Output: The maximal output admissible set Ω.

Set t = 0 and express Ω(t) in polyhedral form as for (2.47);1

repeat2

increment t and add the new corresponding constraints;3

until Ω(t) = Ω(t−1) ;4

set Ω = Ω(t−1) and stop.5

Finite determination guarantees that Algorithm 1 terminates in finite time and gives

the polytopic terminal set

Ω = {x ∈ R
n|D

Ω
x ≤ d

Ω
} (2.49)

where D
Ω
∈ R

nΩ×n, d
Ω
∈ R

nΩ , nΩ is the finite number of half-spaces determining

Ω.

Then we can write the terminal constraint as

D
Ω
B̂[n]u ≤ d

Ω
−D

Ω
Â[n]x (t) (2.50)

where Â[n] and B̂[n] indicate the last n rows of Â and B̂ respectively.

With (2.50) we can finally write (2.34) in the matrix form

Gu ≤ w + Ex (2.51)

where we indicate x (t) as simply x for ease of notation, and

32 Background

where

Λ = −

⎡
⎢⎢⎢⎣

K
KAc

...

KAN
c

⎤
⎥⎥⎥⎦ .

It is known (Gilbert and Tan (1991)) that Ω(t2) ⊆ Ω(t1) ∀ 0 < t1 ≤ t2.

If Ω(t) = Ω(t−1) for some positive t, then Ω(t) = Ω(t+1) = ... = Ω(∞) � Ω is said to

be finitely determined.

By arguments in Gilbert and Tan (1991) it can be proven that the asymptotic stability

of Ac implies the set Ω to be finitely determined. Therefore, Ω can be determined

as described in Algorithm 1.

Algorithm 1: Terminal set

Input: The closed-loop state matrix Ac, the polyhedral output and input

constraints set Y and U .

Output: The maximal output admissible set Ω.

Set t = 0 and express Ω(t) in polyhedral form as for (2.47);1

repeat2

increment t and add the new corresponding constraints;3

until Ω(t) = Ω(t−1) ;4

set Ω = Ω(t−1) and stop.5

Finite determination guarantees that Algorithm 1 terminates in finite time and gives

the polytopic terminal set

Ω = {x ∈ R
n|D

Ω
x ≤ d

Ω
} (2.49)

where D
Ω
∈ R

nΩ×n, d
Ω
∈ R

nΩ , nΩ is the finite number of half-spaces determining

Ω.

Then we can write the terminal constraint as

D
Ω
B̂[n]u ≤ d

Ω
−D

Ω
Â[n]x (t) (2.50)

where Â[n] and B̂[n] indicate the last n rows of Â and B̂ respectively.

With (2.50) we can finally write (2.34) in the matrix form

Gu ≤ w + Ex (2.51)

where we indicate x (t) as simply x for ease of notation, and

32 Background

where

Λ = −

⎡
⎢⎢⎢⎣

K
KAc

...

KAN
c

⎤
⎥⎥⎥⎦ .

It is known (Gilbert and Tan (1991)) that Ω(t2) ⊆ Ω(t1) ∀ 0 < t1 ≤ t2.

If Ω(t) = Ω(t−1) for some positive t, then Ω(t) = Ω(t+1) = ... = Ω(∞) � Ω is said to

be finitely determined.

By arguments in Gilbert and Tan (1991) it can be proven that the asymptotic stability

of Ac implies the set Ω to be finitely determined. Therefore, Ω can be determined

as described in Algorithm 1.

Algorithm 1: Terminal set

Input: The closed-loop state matrix Ac, the polyhedral output and input

constraints set Y and U .

Output: The maximal output admissible set Ω.

Set t = 0 and express Ω(t) in polyhedral form as for (2.47);1

repeat2

increment t and add the new corresponding constraints;3

until Ω(t) = Ω(t−1) ;4

set Ω = Ω(t−1) and stop.5

Finite determination guarantees that Algorithm 1 terminates in finite time and gives

the polytopic terminal set

Ω = {x ∈ R
n|D

Ω
x ≤ d

Ω
} (2.49)

where D
Ω
∈ R

nΩ×n, d
Ω
∈ R

nΩ , nΩ is the finite number of half-spaces determining

Ω.

Then we can write the terminal constraint as

D
Ω
B̂[n]u ≤ d

Ω
−D

Ω
Â[n]x (t) (2.50)

where Â[n] and B̂[n] indicate the last n rows of Â and B̂ respectively.

With (2.50) we can finally write (2.34) in the matrix form

Gu ≤ w + Ex (2.51)

where we indicate x (t) as simply x for ease of notation, and

32 Background

where

Λ = −

⎡
⎢⎢⎢⎣

K
KAc

...

KAN
c

⎤
⎥⎥⎥⎦ .

It is known (Gilbert and Tan (1991)) that Ω(t2) ⊆ Ω(t1) ∀ 0 < t1 ≤ t2.

If Ω(t) = Ω(t−1) for some positive t, then Ω(t) = Ω(t+1) = ... = Ω(∞) � Ω is said to

be finitely determined.

By arguments in Gilbert and Tan (1991) it can be proven that the asymptotic stability

of Ac implies the set Ω to be finitely determined. Therefore, Ω can be determined

as described in Algorithm 1.

Algorithm 1: Terminal set

Input: The closed-loop state matrix Ac, the polyhedral output and input

constraints set Y and U .

Output: The maximal output admissible set Ω.

Set t = 0 and express Ω(t) in polyhedral form as for (2.47);1

repeat2

increment t and add the new corresponding constraints;3

until Ω(t) = Ω(t−1) ;4

set Ω = Ω(t−1) and stop.5

Finite determination guarantees that Algorithm 1 terminates in finite time and gives

the polytopic terminal set

Ω = {x ∈ R
n|D

Ω
x ≤ d

Ω
} (2.49)

where D
Ω
∈ R

nΩ×n, d
Ω
∈ R

nΩ , nΩ is the finite number of half-spaces determining

Ω.

Then we can write the terminal constraint as

D
Ω
B̂[n]u ≤ d

Ω
−D

Ω
Â[n]x (t) (2.50)

where Â[n] and B̂[n] indicate the last n rows of Â and B̂ respectively.

With (2.50) we can finally write (2.34) in the matrix form

Gu ≤ w + Ex (2.51)

where we indicate x (t) as simply x for ease of notation, and

2.4. Model Predictive Control 33

G =

[
G′

D
Ω
B̂[n]

]
, w =

[
w′

d
Ω

]
, E =

[
E ′

−D
Ω
Â[n]

]
.

From (2.39) and (2.51) we have the MPC quadratic program (QP) formulation:

V ∗ (x) = minu uTHu + 2xTFu
s.t. Gu ≤ w + Ex

(2.52)

where the term xTY x is removed since it does not influence the optimal argument.

The value of the cost function at optimum is simply obtained from (2.52) as J∗(x) =
V ∗ (x) + xTY x.

2.4.3 Multi-parametric Quadratic Program Formulation

Using the change of variable z � u + H−1F Tx, the QP problem (2.52) can be

transformed into the equivalent problem

V ∗
z (x) = minz zTHz

s.t. Gz ≤ w + Sx
(2.53)

where S � E + GH−1F T , so that the state vector appears only on the right-hand

side of the constraints.

Considering the current state vector x as a vector of parameters, the transformed

problem (2.53) can be seen as a multi-parametric quadratic problem (mp-QP). In

parametric programming, the objective is to obtain the optimal solution z∗(x) as an

explicit function of the parameter x. An explicit solution exists for all the states

belonging to the feasible set

XF =
{
x ∈ R

n|∃z ∈ R
rN s.t. Gz − Sx ≤ w

}
(2.54)

To characterize the explicit solution it is instrumental to introduce the concept of

active constraint.

Definition 16 (Active constraint). An inequality constraint is said to be an active
constraint for some x if it holds with equality at the optimum.

From optimization theory, a necessary condition for solution z to be a global mini-

mizer is for it to satisfy the Karush-Kuhn-Tucker (KKT) conditions. Since V ∗
z (x) is

2.4. Model Predictive Control 33

G =

[
G′

D
Ω
B̂[n]

]
, w =

[
w′

d
Ω

]
, E =

[
E ′

−D
Ω
Â[n]

]
.

From (2.39) and (2.51) we have the MPC quadratic program (QP) formulation:

V ∗ (x) = minu uTHu + 2xTFu
s.t. Gu ≤ w + Ex

(2.52)

where the term xTY x is removed since it does not influence the optimal argument.

The value of the cost function at optimum is simply obtained from (2.52) as J∗(x) =
V ∗ (x) + xTY x.

2.4.3 Multi-parametric Quadratic Program Formulation

Using the change of variable z � u + H−1F Tx, the QP problem (2.52) can be

transformed into the equivalent problem

V ∗
z (x) = minz zTHz

s.t. Gz ≤ w + Sx
(2.53)

where S � E + GH−1F T , so that the state vector appears only on the right-hand

side of the constraints.

Considering the current state vector x as a vector of parameters, the transformed

problem (2.53) can be seen as a multi-parametric quadratic problem (mp-QP). In

parametric programming, the objective is to obtain the optimal solution z∗(x) as an

explicit function of the parameter x. An explicit solution exists for all the states

belonging to the feasible set

XF =
{
x ∈ R

n|∃z ∈ R
rN s.t. Gz − Sx ≤ w

}
(2.54)

To characterize the explicit solution it is instrumental to introduce the concept of

active constraint.

Definition 16 (Active constraint). An inequality constraint is said to be an active
constraint for some x if it holds with equality at the optimum.

From optimization theory, a necessary condition for solution z to be a global mini-

mizer is for it to satisfy the Karush-Kuhn-Tucker (KKT) conditions. Since V ∗
z (x) is

2.4. Model Predictive Control 33

G =

[
G′

D
Ω
B̂[n]

]
, w =

[
w′

d
Ω

]
, E =

[
E ′

−D
Ω
Â[n]

]
.

From (2.39) and (2.51) we have the MPC quadratic program (QP) formulation:

V ∗ (x) = minu uTHu + 2xTFu
s.t. Gu ≤ w + Ex

(2.52)

where the term xTY x is removed since it does not influence the optimal argument.

The value of the cost function at optimum is simply obtained from (2.52) as J∗(x) =
V ∗ (x) + xTY x.

2.4.3 Multi-parametric Quadratic Program Formulation

Using the change of variable z � u + H−1F Tx, the QP problem (2.52) can be

transformed into the equivalent problem

V ∗
z (x) = minz zTHz

s.t. Gz ≤ w + Sx
(2.53)

where S � E + GH−1F T , so that the state vector appears only on the right-hand

side of the constraints.

Considering the current state vector x as a vector of parameters, the transformed

problem (2.53) can be seen as a multi-parametric quadratic problem (mp-QP). In

parametric programming, the objective is to obtain the optimal solution z∗(x) as an

explicit function of the parameter x. An explicit solution exists for all the states

belonging to the feasible set

XF =
{
x ∈ R

n|∃z ∈ R
rN s.t. Gz − Sx ≤ w

}
(2.54)

To characterize the explicit solution it is instrumental to introduce the concept of

active constraint.

Definition 16 (Active constraint). An inequality constraint is said to be an active
constraint for some x if it holds with equality at the optimum.

From optimization theory, a necessary condition for solution z to be a global mini-

mizer is for it to satisfy the Karush-Kuhn-Tucker (KKT) conditions. Since V ∗
z (x) is

2.4. Model Predictive Control 33

G =

[
G′

D
Ω
B̂[n]

]
, w =

[
w′

d
Ω

]
, E =

[
E ′

−D
Ω
Â[n]

]
.

From (2.39) and (2.51) we have the MPC quadratic program (QP) formulation:

V ∗ (x) = minu uTHu + 2xTFu
s.t. Gu ≤ w + Ex

(2.52)

where the term xTY x is removed since it does not influence the optimal argument.

The value of the cost function at optimum is simply obtained from (2.52) as J∗(x) =
V ∗ (x) + xTY x.

2.4.3 Multi-parametric Quadratic Program Formulation

Using the change of variable z � u + H−1F Tx, the QP problem (2.52) can be

transformed into the equivalent problem

V ∗
z (x) = minz zTHz

s.t. Gz ≤ w + Sx
(2.53)

where S � E + GH−1F T , so that the state vector appears only on the right-hand

side of the constraints.

Considering the current state vector x as a vector of parameters, the transformed

problem (2.53) can be seen as a multi-parametric quadratic problem (mp-QP). In

parametric programming, the objective is to obtain the optimal solution z∗(x) as an

explicit function of the parameter x. An explicit solution exists for all the states

belonging to the feasible set

XF =
{
x ∈ R

n|∃z ∈ R
rN s.t. Gz − Sx ≤ w

}
(2.54)

To characterize the explicit solution it is instrumental to introduce the concept of

active constraint.

Definition 16 (Active constraint). An inequality constraint is said to be an active
constraint for some x if it holds with equality at the optimum.

From optimization theory, a necessary condition for solution z to be a global mini-

mizer is for it to satisfy the Karush-Kuhn-Tucker (KKT) conditions. Since V ∗
z (x) is

34 Background

convex, the KKT conditions are also sufficient (Nocedal and Wright (2006), Boyd

and Vandenberghe (2004)).

Consider then a state x0 ∈ XF . The optimal solution z∗ of the mp-QP (5.4) corre-

sponding to x0 will satisfy the KKT conditions

Hz∗ +GTλ = 0, (2.55)

λ (Gz∗ − w − Sx0) = 0, (2.56)

λ ≥ 0, (2.57)

Gz∗ ≤ w + Sx0, (2.58)

where λ ∈ R
nC is the vector of Lagrangian multipliers, nC = (N−1)nY+NnU+nΩ

is the total number of constraints in (2.53)1.

Solving (2.55) for z∗ we have

z∗ = −H−1GTλ (2.59)

that substituted in (2.56) gives

λ
(
−GH−1GTλ− w − Sx0

)
= 0. (2.60)

Conditions (2.56) are called the complementary conditions; they imply that the La-

grange multiplier associated to a constraint can be strictly positive only when the

constraint is active.

Since H � 0, the optimal solution in x0 is unique. Let us indicate with G̃, S̃ and w̃
submatrices containing the corresponding rows of G, S and w of active constraints.

It follows that

G̃z∗ = S̃x0 + w̃. (2.61)

Assume that the rows of G̃ are linearly independent (linear independence constraint

qualification (LICQ) condition). Then, indicating with λ̃ the Lagrange multipliers

corresponding to the active constraints, and with λ̄ the Lagrange multipliers corre-

sponding to the inactive constraints, it follows

λ̄ = 0 (2.62)

λ̃ = −
(
G̃H−1G̃T

)−1 (
w̃ + S̃x0

)
(2.63)

Substituting (2.63) into (2.59) we obtain z∗ as an affine function of x0

z∗ = H−1G̃T
(
G̃H−1G̃T

)−1 (
w̃ + S̃x0

)
. (2.64)

1Constraints on the current output, y0, are usually not considered in the MPC optimization prob-

lem since the control input cannot influence it anymore. However, in some cases, particularly in

explicit MPC, constraints on y0 may be considered as well, meaning that there are constraints on the

initial conditions.

34 Background

convex, the KKT conditions are also sufficient (Nocedal and Wright (2006), Boyd

and Vandenberghe (2004)).

Consider then a state x0 ∈ XF . The optimal solution z∗ of the mp-QP (5.4) corre-

sponding to x0 will satisfy the KKT conditions

Hz∗ +GTλ = 0, (2.55)

λ (Gz∗ − w − Sx0) = 0, (2.56)

λ ≥ 0, (2.57)

Gz∗ ≤ w + Sx0, (2.58)

where λ ∈ R
nC is the vector of Lagrangian multipliers, nC = (N−1)nY+NnU+nΩ

is the total number of constraints in (2.53)1.

Solving (2.55) for z∗ we have

z∗ = −H−1GTλ (2.59)

that substituted in (2.56) gives

λ
(
−GH−1GTλ− w − Sx0

)
= 0. (2.60)

Conditions (2.56) are called the complementary conditions; they imply that the La-

grange multiplier associated to a constraint can be strictly positive only when the

constraint is active.

Since H � 0, the optimal solution in x0 is unique. Let us indicate with G̃, S̃ and w̃
submatrices containing the corresponding rows of G, S and w of active constraints.

It follows that

G̃z∗ = S̃x0 + w̃. (2.61)

Assume that the rows of G̃ are linearly independent (linear independence constraint

qualification (LICQ) condition). Then, indicating with λ̃ the Lagrange multipliers

corresponding to the active constraints, and with λ̄ the Lagrange multipliers corre-

sponding to the inactive constraints, it follows

λ̄ = 0 (2.62)

λ̃ = −
(
G̃H−1G̃T

)−1 (
w̃ + S̃x0

)
(2.63)

Substituting (2.63) into (2.59) we obtain z∗ as an affine function of x0

z∗ = H−1G̃T
(
G̃H−1G̃T

)−1 (
w̃ + S̃x0

)
. (2.64)

1Constraints on the current output, y0, are usually not considered in the MPC optimization prob-

lem since the control input cannot influence it anymore. However, in some cases, particularly in

explicit MPC, constraints on y0 may be considered as well, meaning that there are constraints on the

initial conditions.

34 Background

convex, the KKT conditions are also sufficient (Nocedal and Wright (2006), Boyd

and Vandenberghe (2004)).

Consider then a state x0 ∈ XF . The optimal solution z∗ of the mp-QP (5.4) corre-

sponding to x0 will satisfy the KKT conditions

Hz∗ +GTλ = 0, (2.55)

λ (Gz∗ − w − Sx0) = 0, (2.56)

λ ≥ 0, (2.57)

Gz∗ ≤ w + Sx0, (2.58)

where λ ∈ R
nC is the vector of Lagrangian multipliers, nC = (N−1)nY+NnU+nΩ

is the total number of constraints in (2.53)1.

Solving (2.55) for z∗ we have

z∗ = −H−1GTλ (2.59)

that substituted in (2.56) gives

λ
(
−GH−1GTλ− w − Sx0

)
= 0. (2.60)

Conditions (2.56) are called the complementary conditions; they imply that the La-

grange multiplier associated to a constraint can be strictly positive only when the

constraint is active.

Since H � 0, the optimal solution in x0 is unique. Let us indicate with G̃, S̃ and w̃
submatrices containing the corresponding rows of G, S and w of active constraints.

It follows that

G̃z∗ = S̃x0 + w̃. (2.61)

Assume that the rows of G̃ are linearly independent (linear independence constraint

qualification (LICQ) condition). Then, indicating with λ̃ the Lagrange multipliers

corresponding to the active constraints, and with λ̄ the Lagrange multipliers corre-

sponding to the inactive constraints, it follows

λ̄ = 0 (2.62)

λ̃ = −
(
G̃H−1G̃T

)−1 (
w̃ + S̃x0

)
(2.63)

Substituting (2.63) into (2.59) we obtain z∗ as an affine function of x0

z∗ = H−1G̃T
(
G̃H−1G̃T

)−1 (
w̃ + S̃x0

)
. (2.64)

1Constraints on the current output, y0, are usually not considered in the MPC optimization prob-

lem since the control input cannot influence it anymore. However, in some cases, particularly in

explicit MPC, constraints on y0 may be considered as well, meaning that there are constraints on the

initial conditions.

34 Background

convex, the KKT conditions are also sufficient (Nocedal and Wright (2006), Boyd

and Vandenberghe (2004)).

Consider then a state x0 ∈ XF . The optimal solution z∗ of the mp-QP (5.4) corre-

sponding to x0 will satisfy the KKT conditions

Hz∗ +GTλ = 0, (2.55)

λ (Gz∗ − w − Sx0) = 0, (2.56)

λ ≥ 0, (2.57)

Gz∗ ≤ w + Sx0, (2.58)

where λ ∈ R
nC is the vector of Lagrangian multipliers, nC = (N−1)nY+NnU+nΩ

is the total number of constraints in (2.53)1.

Solving (2.55) for z∗ we have

z∗ = −H−1GTλ (2.59)

that substituted in (2.56) gives

λ
(
−GH−1GTλ− w − Sx0

)
= 0. (2.60)

Conditions (2.56) are called the complementary conditions; they imply that the La-

grange multiplier associated to a constraint can be strictly positive only when the

constraint is active.

Since H � 0, the optimal solution in x0 is unique. Let us indicate with G̃, S̃ and w̃
submatrices containing the corresponding rows of G, S and w of active constraints.

It follows that

G̃z∗ = S̃x0 + w̃. (2.61)

Assume that the rows of G̃ are linearly independent (linear independence constraint

qualification (LICQ) condition). Then, indicating with λ̃ the Lagrange multipliers

corresponding to the active constraints, and with λ̄ the Lagrange multipliers corre-

sponding to the inactive constraints, it follows

λ̄ = 0 (2.62)

λ̃ = −
(
G̃H−1G̃T

)−1 (
w̃ + S̃x0

)
(2.63)

Substituting (2.63) into (2.59) we obtain z∗ as an affine function of x0

z∗ = H−1G̃T
(
G̃H−1G̃T

)−1 (
w̃ + S̃x0

)
. (2.64)

1Constraints on the current output, y0, are usually not considered in the MPC optimization prob-

lem since the control input cannot influence it anymore. However, in some cases, particularly in

explicit MPC, constraints on y0 may be considered as well, meaning that there are constraints on the

initial conditions.

2.4. Model Predictive Control 35

The relation (2.64) remains valid for all the x ∈ CR0, CR0 ⊂ XF , such that the set

of active constraints remains unchanged. The set CR0, called critical region, can be

characterized considering that, if a new state x is considered, z∗ from (2.64) must

satisfy the constraints in (2.53) to remain valid, that is

GH−1G̃T
(
G̃H−1G̃T

)−1 (
w̃ + S̃x

)
≤ w + Sx (2.65)

and by (2.57), the Lagrange multipliers in (2.63) must remain non-negative

−
(
G̃H−1G̃T

)−1 (
w̃ + S̃x

)
≥ 0. (2.66)

From (2.65) and (2.66), we obtain a compact representation of CR0 as

CR0 = {x ∈ R
n|(2.65)− (2.66) are satisfied} . (2.67)

The set CR0 is a polytopic set.

In the literature (Bemporad et al. (2002b), Tøndel et al. (2003a)) procedures are

described for exploring XF and partitioning it into subregions like CR0, such that

XF =
⋃

j=1...nR
CRj , where nR is the number of critical regions generated.

In the same literature also the degenerate case, in which the assumption of linearly

independent active constraints is violated, is also discussed.

The following theorem formalizes the explicit MPC-QP optimal solution.

Theorem 2. The optimal solution z∗ is a continuous and piecewise affine (PWA)
function over the feasible set

z∗ (x) = Ljx+ gj, ∀x ∈ CRj, j = 1, ..., nR (2.68)

and V ∗
z (xk) is continuous, convex and piecewise quadratic (PWQ). Each critical

region CRj has an associated set of (linearly independent) active constraints which
forms the corresponding sub-matrices G̃j , S̃j and w̃j out of the matrices G, S and
w respectively, such that

Lj = H−1G̃T
j

(
G̃jH

−1G̃T
j

)−1

S̃j (2.69)

gj = H−1G̃T
j

(
G̃jH

−1G̃T
j

)−1

w̃j (2.70)

The critical regions CRj are polytopes with mutually disjoint interiors and XF =⋃
j=1...nR

CRj .

Proof. The proof can be found in Bemporad et al. (2002b).

2.4. Model Predictive Control 35

The relation (2.64) remains valid for all the x ∈ CR0, CR0 ⊂ XF , such that the set

of active constraints remains unchanged. The set CR0, called critical region, can be

characterized considering that, if a new state x is considered, z∗ from (2.64) must

satisfy the constraints in (2.53) to remain valid, that is

GH−1G̃T
(
G̃H−1G̃T

)−1 (
w̃ + S̃x

)
≤ w + Sx (2.65)

and by (2.57), the Lagrange multipliers in (2.63) must remain non-negative

−
(
G̃H−1G̃T

)−1 (
w̃ + S̃x

)
≥ 0. (2.66)

From (2.65) and (2.66), we obtain a compact representation of CR0 as

CR0 = {x ∈ R
n|(2.65)− (2.66) are satisfied} . (2.67)

The set CR0 is a polytopic set.

In the literature (Bemporad et al. (2002b), Tøndel et al. (2003a)) procedures are

described for exploring XF and partitioning it into subregions like CR0, such that

XF =
⋃

j=1...nR
CRj , where nR is the number of critical regions generated.

In the same literature also the degenerate case, in which the assumption of linearly

independent active constraints is violated, is also discussed.

The following theorem formalizes the explicit MPC-QP optimal solution.

Theorem 2. The optimal solution z∗ is a continuous and piecewise affine (PWA)
function over the feasible set

z∗ (x) = Ljx+ gj, ∀x ∈ CRj, j = 1, ..., nR (2.68)

and V ∗
z (xk) is continuous, convex and piecewise quadratic (PWQ). Each critical

region CRj has an associated set of (linearly independent) active constraints which
forms the corresponding sub-matrices G̃j , S̃j and w̃j out of the matrices G, S and
w respectively, such that

Lj = H−1G̃T
j

(
G̃jH

−1G̃T
j

)−1

S̃j (2.69)

gj = H−1G̃T
j

(
G̃jH

−1G̃T
j

)−1

w̃j (2.70)

The critical regions CRj are polytopes with mutually disjoint interiors and XF =⋃
j=1...nR

CRj .

Proof. The proof can be found in Bemporad et al. (2002b).

2.4. Model Predictive Control 35

The relation (2.64) remains valid for all the x ∈ CR0, CR0 ⊂ XF , such that the set

of active constraints remains unchanged. The set CR0, called critical region, can be

characterized considering that, if a new state x is considered, z∗ from (2.64) must

satisfy the constraints in (2.53) to remain valid, that is

GH−1G̃T
(
G̃H−1G̃T

)−1 (
w̃ + S̃x

)
≤ w + Sx (2.65)

and by (2.57), the Lagrange multipliers in (2.63) must remain non-negative

−
(
G̃H−1G̃T

)−1 (
w̃ + S̃x

)
≥ 0. (2.66)

From (2.65) and (2.66), we obtain a compact representation of CR0 as

CR0 = {x ∈ R
n|(2.65)− (2.66) are satisfied} . (2.67)

The set CR0 is a polytopic set.

In the literature (Bemporad et al. (2002b), Tøndel et al. (2003a)) procedures are

described for exploring XF and partitioning it into subregions like CR0, such that

XF =
⋃

j=1...nR
CRj , where nR is the number of critical regions generated.

In the same literature also the degenerate case, in which the assumption of linearly

independent active constraints is violated, is also discussed.

The following theorem formalizes the explicit MPC-QP optimal solution.

Theorem 2. The optimal solution z∗ is a continuous and piecewise affine (PWA)
function over the feasible set

z∗ (x) = Ljx+ gj, ∀x ∈ CRj, j = 1, ..., nR (2.68)

and V ∗
z (xk) is continuous, convex and piecewise quadratic (PWQ). Each critical

region CRj has an associated set of (linearly independent) active constraints which
forms the corresponding sub-matrices G̃j , S̃j and w̃j out of the matrices G, S and
w respectively, such that

Lj = H−1G̃T
j

(
G̃jH

−1G̃T
j

)−1

S̃j (2.69)

gj = H−1G̃T
j

(
G̃jH

−1G̃T
j

)−1

w̃j (2.70)

The critical regions CRj are polytopes with mutually disjoint interiors and XF =⋃
j=1...nR

CRj .

Proof. The proof can be found in Bemporad et al. (2002b).

2.4. Model Predictive Control 35

The relation (2.64) remains valid for all the x ∈ CR0, CR0 ⊂ XF , such that the set

of active constraints remains unchanged. The set CR0, called critical region, can be

characterized considering that, if a new state x is considered, z∗ from (2.64) must

satisfy the constraints in (2.53) to remain valid, that is

GH−1G̃T
(
G̃H−1G̃T

)−1 (
w̃ + S̃x

)
≤ w + Sx (2.65)

and by (2.57), the Lagrange multipliers in (2.63) must remain non-negative

−
(
G̃H−1G̃T

)−1 (
w̃ + S̃x

)
≥ 0. (2.66)

From (2.65) and (2.66), we obtain a compact representation of CR0 as

CR0 = {x ∈ R
n|(2.65)− (2.66) are satisfied} . (2.67)

The set CR0 is a polytopic set.

In the literature (Bemporad et al. (2002b), Tøndel et al. (2003a)) procedures are

described for exploring XF and partitioning it into subregions like CR0, such that

XF =
⋃

j=1...nR
CRj , where nR is the number of critical regions generated.

In the same literature also the degenerate case, in which the assumption of linearly

independent active constraints is violated, is also discussed.

The following theorem formalizes the explicit MPC-QP optimal solution.

Theorem 2. The optimal solution z∗ is a continuous and piecewise affine (PWA)
function over the feasible set

z∗ (x) = Ljx+ gj, ∀x ∈ CRj, j = 1, ..., nR (2.68)

and V ∗
z (xk) is continuous, convex and piecewise quadratic (PWQ). Each critical

region CRj has an associated set of (linearly independent) active constraints which
forms the corresponding sub-matrices G̃j , S̃j and w̃j out of the matrices G, S and
w respectively, such that

Lj = H−1G̃T
j

(
G̃jH

−1G̃T
j

)−1

S̃j (2.69)

gj = H−1G̃T
j

(
G̃jH

−1G̃T
j

)−1

w̃j (2.70)

The critical regions CRj are polytopes with mutually disjoint interiors and XF =⋃
j=1...nR

CRj .

Proof. The proof can be found in Bemporad et al. (2002b).

36 Background

2.4.4 Extensions

The control problem considered so far concerns regulation, that is the system is con-

trolled to the origin. As pointed out in Bemporad et al. (2002b), several extensions

to this basic regulation problem can be obtained, which can still be formulated as

quadratic programs and as a multi-parametric quadratic programs.

The problem of tracking a reference trajectory in the presence of certain constraints

can be tackled by extending the parameter vector to contain a reference trajectory

as well.

The feedback nature of the controller must of course handle the unmeasured distur-

bances. However, measured disturbances can easily be taken into account including

those in the prediction model, leading to additional parameters in the parameter

vector.

Softening constraints via slack variables is a common way to deal with the feasi-

bility problems which can arise in MPC. The slack variables can be added to the

optimization variables giving an explicit solution which is still piecewise affine.

The constraints on the control inputs and states may vary depending on the operating

conditions in the system. This can be taken into account by making the constraints

dependent on some external parameters added to the parameter vector.

These issues have received considerable attention from the research community, and

discussions about them can be found, for example, in Rawlings and Mayne (2009),

Mayne et al. (2000) and Maciejowski (2002) and references therein.

36 Background

2.4.4 Extensions

The control problem considered so far concerns regulation, that is the system is con-

trolled to the origin. As pointed out in Bemporad et al. (2002b), several extensions

to this basic regulation problem can be obtained, which can still be formulated as

quadratic programs and as a multi-parametric quadratic programs.

The problem of tracking a reference trajectory in the presence of certain constraints

can be tackled by extending the parameter vector to contain a reference trajectory

as well.

The feedback nature of the controller must of course handle the unmeasured distur-

bances. However, measured disturbances can easily be taken into account including

those in the prediction model, leading to additional parameters in the parameter

vector.

Softening constraints via slack variables is a common way to deal with the feasi-

bility problems which can arise in MPC. The slack variables can be added to the

optimization variables giving an explicit solution which is still piecewise affine.

The constraints on the control inputs and states may vary depending on the operating

conditions in the system. This can be taken into account by making the constraints

dependent on some external parameters added to the parameter vector.

These issues have received considerable attention from the research community, and

discussions about them can be found, for example, in Rawlings and Mayne (2009),

Mayne et al. (2000) and Maciejowski (2002) and references therein.

36 Background

2.4.4 Extensions

The control problem considered so far concerns regulation, that is the system is con-

trolled to the origin. As pointed out in Bemporad et al. (2002b), several extensions

to this basic regulation problem can be obtained, which can still be formulated as

quadratic programs and as a multi-parametric quadratic programs.

The problem of tracking a reference trajectory in the presence of certain constraints

can be tackled by extending the parameter vector to contain a reference trajectory

as well.

The feedback nature of the controller must of course handle the unmeasured distur-

bances. However, measured disturbances can easily be taken into account including

those in the prediction model, leading to additional parameters in the parameter

vector.

Softening constraints via slack variables is a common way to deal with the feasi-

bility problems which can arise in MPC. The slack variables can be added to the

optimization variables giving an explicit solution which is still piecewise affine.

The constraints on the control inputs and states may vary depending on the operating

conditions in the system. This can be taken into account by making the constraints

dependent on some external parameters added to the parameter vector.

These issues have received considerable attention from the research community, and

discussions about them can be found, for example, in Rawlings and Mayne (2009),

Mayne et al. (2000) and Maciejowski (2002) and references therein.

36 Background

2.4.4 Extensions

The control problem considered so far concerns regulation, that is the system is con-

trolled to the origin. As pointed out in Bemporad et al. (2002b), several extensions

to this basic regulation problem can be obtained, which can still be formulated as

quadratic programs and as a multi-parametric quadratic programs.

The problem of tracking a reference trajectory in the presence of certain constraints

can be tackled by extending the parameter vector to contain a reference trajectory

as well.

The feedback nature of the controller must of course handle the unmeasured distur-

bances. However, measured disturbances can easily be taken into account including

those in the prediction model, leading to additional parameters in the parameter

vector.

Softening constraints via slack variables is a common way to deal with the feasi-

bility problems which can arise in MPC. The slack variables can be added to the

optimization variables giving an explicit solution which is still piecewise affine.

The constraints on the control inputs and states may vary depending on the operating

conditions in the system. This can be taken into account by making the constraints

dependent on some external parameters added to the parameter vector.

These issues have received considerable attention from the research community, and

discussions about them can be found, for example, in Rawlings and Mayne (2009),

Mayne et al. (2000) and Maciejowski (2002) and references therein.

Chapter 3

Approximate Explicit MPC via
Delaunay Tessellations

Explicit Model Predictive Control formulations aim to extend the scope of appli-

cability of MPC to situations which cannot be covered effectively with existing

standard MPC schemes. A relevant problem with explicit MPC is that, for large

dimensional problems, coding and implementing the exact explicit solution may be

excessively demanding for the hardware available. In these cases, approximation is

the practical way to make effective implementations. In this chapter a technique is

proposed to compute an approximate PWA control law that is suboptimal only over

the subregion of the feasible set where constraints are active. In this subregion, the

problem of computing a suitable suboptimal PWA control law is related to an im-

portant problem in computer aided geometric design, surface reconstruction. In fact

the technique is based on a fundamental structure in computational geometry the-

ory, Delaunay tessellation, which has been particularly successful in dealing with

the surface reconstruction problem.

3.1 Introduction

Over the last few decades, Model Predictive Control (MPC) has established itself

as the leading industrial control technology for systems with constraints (Rawlings

and Mayne (2009), Mayne et al. (2000), Qin and Badgwell (2003), Maciejowski

(2002)).

Conventional MPC methodology uses a linear model of the plant in order to deter-

mine the optimal control action with respect to a cost function (typically quadratic),

37

Chapter 3

Approximate Explicit MPC via
Delaunay Tessellations

Explicit Model Predictive Control formulations aim to extend the scope of appli-

cability of MPC to situations which cannot be covered effectively with existing

standard MPC schemes. A relevant problem with explicit MPC is that, for large

dimensional problems, coding and implementing the exact explicit solution may be

excessively demanding for the hardware available. In these cases, approximation is

the practical way to make effective implementations. In this chapter a technique is

proposed to compute an approximate PWA control law that is suboptimal only over

the subregion of the feasible set where constraints are active. In this subregion, the

problem of computing a suitable suboptimal PWA control law is related to an im-

portant problem in computer aided geometric design, surface reconstruction. In fact

the technique is based on a fundamental structure in computational geometry the-

ory, Delaunay tessellation, which has been particularly successful in dealing with

the surface reconstruction problem.

3.1 Introduction

Over the last few decades, Model Predictive Control (MPC) has established itself

as the leading industrial control technology for systems with constraints (Rawlings

and Mayne (2009), Mayne et al. (2000), Qin and Badgwell (2003), Maciejowski

(2002)).

Conventional MPC methodology uses a linear model of the plant in order to deter-

mine the optimal control action with respect to a cost function (typically quadratic),

37

Chapter 3

Approximate Explicit MPC via
Delaunay Tessellations

Explicit Model Predictive Control formulations aim to extend the scope of appli-

cability of MPC to situations which cannot be covered effectively with existing

standard MPC schemes. A relevant problem with explicit MPC is that, for large

dimensional problems, coding and implementing the exact explicit solution may be

excessively demanding for the hardware available. In these cases, approximation is

the practical way to make effective implementations. In this chapter a technique is

proposed to compute an approximate PWA control law that is suboptimal only over

the subregion of the feasible set where constraints are active. In this subregion, the

problem of computing a suitable suboptimal PWA control law is related to an im-

portant problem in computer aided geometric design, surface reconstruction. In fact

the technique is based on a fundamental structure in computational geometry the-

ory, Delaunay tessellation, which has been particularly successful in dealing with

the surface reconstruction problem.

3.1 Introduction

Over the last few decades, Model Predictive Control (MPC) has established itself

as the leading industrial control technology for systems with constraints (Rawlings

and Mayne (2009), Mayne et al. (2000), Qin and Badgwell (2003), Maciejowski

(2002)).

Conventional MPC methodology uses a linear model of the plant in order to deter-

mine the optimal control action with respect to a cost function (typically quadratic),

37

Chapter 3

Approximate Explicit MPC via
Delaunay Tessellations

Explicit Model Predictive Control formulations aim to extend the scope of appli-

cability of MPC to situations which cannot be covered effectively with existing

standard MPC schemes. A relevant problem with explicit MPC is that, for large

dimensional problems, coding and implementing the exact explicit solution may be

excessively demanding for the hardware available. In these cases, approximation is

the practical way to make effective implementations. In this chapter a technique is

proposed to compute an approximate PWA control law that is suboptimal only over

the subregion of the feasible set where constraints are active. In this subregion, the

problem of computing a suitable suboptimal PWA control law is related to an im-

portant problem in computer aided geometric design, surface reconstruction. In fact

the technique is based on a fundamental structure in computational geometry the-

ory, Delaunay tessellation, which has been particularly successful in dealing with

the surface reconstruction problem.

3.1 Introduction

Over the last few decades, Model Predictive Control (MPC) has established itself

as the leading industrial control technology for systems with constraints (Rawlings

and Mayne (2009), Mayne et al. (2000), Qin and Badgwell (2003), Maciejowski

(2002)).

Conventional MPC methodology uses a linear model of the plant in order to deter-

mine the optimal control action with respect to a cost function (typically quadratic),

37

38 Approximate Explicit MPC via Delaunay Tessellations

satisfying certain linear constraints. The standard implementation requires the solu-

tion of an open-loop optimal control problem over a finite horizon at each sampling

time, with the current state as the initial condition of the optimization. The first ele-

ment in the optimal control sequence is applied to the system. At the next time step,

the computation is repeated starting from the new state and over the shifted hori-

zon. This means that the implementation of the MPC strategy requires a quadratic

programming (QP) solver for the online optimization (assuming a quadratic cost

function). Although efficient QP solvers have been developed, computing the opti-

mal control sequence at each and every time step may still require prohibitive online

computational efforts, and, moreover, reduces the reliability and verifiability of the

control algorithm.

Explicit MPC formulations (Bemporad et al. (2002b), Tøndel et al. (2003a), Gran-

charova and Johansen (2005)), based on multi-parametric programming (Bemporad

and Filippi (2006), Kvasnica et al. (2006)), allow moving the optimization effort of-

fline and obtain the optimal control as an explicitly defined piecewise affine (PWA)

function with dependence on the current state vector. The domain of the PWA

function is the feasible set, which is partitioned into convex regions. Thus, the on-

line computation reduces to the simple evaluation of the piecewise affine function

(point location problem). Therefore, explicit MPC represents a promising approach

to extend the scope of applicability of MPC to situations where the computations

required for the online optimization are restrictive, and/or where insight into the

control behavior is necessary for performance analysis (like safety verifications).

These are common situations, for example, in the automotive and aerospace indus-

tries (Johansen et al. (2005), Pistikopoulos (2009)).

However, explicit MPC implementations may still be prohibitively costly for large

optimization problems, in fact the offline computation effort needed to solve the

multi-parametric optimization problem increases fast with the dimensions of state

and input, the number of constraints involved in the optimization problem and the

length of the prediction horizon. As the optimization complexity increases, also the

number of linear gains associated with the PWA control law increase enormously,

which may cause serious difficulties on low-cost hardware.

Several approaches have been proposed to address these problems and the following

just mentions a few. The approach used in Geyer et al. (2004) is to post-process the

feasible set partition with the goal of merging regions characterized by the same

feedback law and thereby reduce the complexity of the PWA function. In ap-

proaches like Tøndel et al. (2003b) and Christophersen (2007) the explicit PWA

solution is post-processed to generate search trees that allow efficient online evalu-

ation. In Spjøtvold et al. (2006), reachability analysis is utilized to build a structure

that improves the average time for the online evaluation of PWA controllers. In

Bemporad and Filippi (2003), small slacks in the optimality conditions and modifi-

38 Approximate Explicit MPC via Delaunay Tessellations

satisfying certain linear constraints. The standard implementation requires the solu-

tion of an open-loop optimal control problem over a finite horizon at each sampling

time, with the current state as the initial condition of the optimization. The first ele-

ment in the optimal control sequence is applied to the system. At the next time step,

the computation is repeated starting from the new state and over the shifted hori-

zon. This means that the implementation of the MPC strategy requires a quadratic

programming (QP) solver for the online optimization (assuming a quadratic cost

function). Although efficient QP solvers have been developed, computing the opti-

mal control sequence at each and every time step may still require prohibitive online

computational efforts, and, moreover, reduces the reliability and verifiability of the

control algorithm.

Explicit MPC formulations (Bemporad et al. (2002b), Tøndel et al. (2003a), Gran-

charova and Johansen (2005)), based on multi-parametric programming (Bemporad

and Filippi (2006), Kvasnica et al. (2006)), allow moving the optimization effort of-

fline and obtain the optimal control as an explicitly defined piecewise affine (PWA)

function with dependence on the current state vector. The domain of the PWA

function is the feasible set, which is partitioned into convex regions. Thus, the on-

line computation reduces to the simple evaluation of the piecewise affine function

(point location problem). Therefore, explicit MPC represents a promising approach

to extend the scope of applicability of MPC to situations where the computations

required for the online optimization are restrictive, and/or where insight into the

control behavior is necessary for performance analysis (like safety verifications).

These are common situations, for example, in the automotive and aerospace indus-

tries (Johansen et al. (2005), Pistikopoulos (2009)).

However, explicit MPC implementations may still be prohibitively costly for large

optimization problems, in fact the offline computation effort needed to solve the

multi-parametric optimization problem increases fast with the dimensions of state

and input, the number of constraints involved in the optimization problem and the

length of the prediction horizon. As the optimization complexity increases, also the

number of linear gains associated with the PWA control law increase enormously,

which may cause serious difficulties on low-cost hardware.

Several approaches have been proposed to address these problems and the following

just mentions a few. The approach used in Geyer et al. (2004) is to post-process the

feasible set partition with the goal of merging regions characterized by the same

feedback law and thereby reduce the complexity of the PWA function. In ap-

proaches like Tøndel et al. (2003b) and Christophersen (2007) the explicit PWA

solution is post-processed to generate search trees that allow efficient online evalu-

ation. In Spjøtvold et al. (2006), reachability analysis is utilized to build a structure

that improves the average time for the online evaluation of PWA controllers. In

Bemporad and Filippi (2003), small slacks in the optimality conditions and modifi-

38 Approximate Explicit MPC via Delaunay Tessellations

satisfying certain linear constraints. The standard implementation requires the solu-

tion of an open-loop optimal control problem over a finite horizon at each sampling

time, with the current state as the initial condition of the optimization. The first ele-

ment in the optimal control sequence is applied to the system. At the next time step,

the computation is repeated starting from the new state and over the shifted hori-

zon. This means that the implementation of the MPC strategy requires a quadratic

programming (QP) solver for the online optimization (assuming a quadratic cost

function). Although efficient QP solvers have been developed, computing the opti-

mal control sequence at each and every time step may still require prohibitive online

computational efforts, and, moreover, reduces the reliability and verifiability of the

control algorithm.

Explicit MPC formulations (Bemporad et al. (2002b), Tøndel et al. (2003a), Gran-

charova and Johansen (2005)), based on multi-parametric programming (Bemporad

and Filippi (2006), Kvasnica et al. (2006)), allow moving the optimization effort of-

fline and obtain the optimal control as an explicitly defined piecewise affine (PWA)

function with dependence on the current state vector. The domain of the PWA

function is the feasible set, which is partitioned into convex regions. Thus, the on-

line computation reduces to the simple evaluation of the piecewise affine function

(point location problem). Therefore, explicit MPC represents a promising approach

to extend the scope of applicability of MPC to situations where the computations

required for the online optimization are restrictive, and/or where insight into the

control behavior is necessary for performance analysis (like safety verifications).

These are common situations, for example, in the automotive and aerospace indus-

tries (Johansen et al. (2005), Pistikopoulos (2009)).

However, explicit MPC implementations may still be prohibitively costly for large

optimization problems, in fact the offline computation effort needed to solve the

multi-parametric optimization problem increases fast with the dimensions of state

and input, the number of constraints involved in the optimization problem and the

length of the prediction horizon. As the optimization complexity increases, also the

number of linear gains associated with the PWA control law increase enormously,

which may cause serious difficulties on low-cost hardware.

Several approaches have been proposed to address these problems and the following

just mentions a few. The approach used in Geyer et al. (2004) is to post-process the

feasible set partition with the goal of merging regions characterized by the same

feedback law and thereby reduce the complexity of the PWA function. In ap-

proaches like Tøndel et al. (2003b) and Christophersen (2007) the explicit PWA

solution is post-processed to generate search trees that allow efficient online evalu-

ation. In Spjøtvold et al. (2006), reachability analysis is utilized to build a structure

that improves the average time for the online evaluation of PWA controllers. In

Bemporad and Filippi (2003), small slacks in the optimality conditions and modifi-

38 Approximate Explicit MPC via Delaunay Tessellations

satisfying certain linear constraints. The standard implementation requires the solu-

tion of an open-loop optimal control problem over a finite horizon at each sampling

time, with the current state as the initial condition of the optimization. The first ele-

ment in the optimal control sequence is applied to the system. At the next time step,

the computation is repeated starting from the new state and over the shifted hori-

zon. This means that the implementation of the MPC strategy requires a quadratic

programming (QP) solver for the online optimization (assuming a quadratic cost

function). Although efficient QP solvers have been developed, computing the opti-

mal control sequence at each and every time step may still require prohibitive online

computational efforts, and, moreover, reduces the reliability and verifiability of the

control algorithm.

Explicit MPC formulations (Bemporad et al. (2002b), Tøndel et al. (2003a), Gran-

charova and Johansen (2005)), based on multi-parametric programming (Bemporad

and Filippi (2006), Kvasnica et al. (2006)), allow moving the optimization effort of-

fline and obtain the optimal control as an explicitly defined piecewise affine (PWA)

function with dependence on the current state vector. The domain of the PWA

function is the feasible set, which is partitioned into convex regions. Thus, the on-

line computation reduces to the simple evaluation of the piecewise affine function

(point location problem). Therefore, explicit MPC represents a promising approach

to extend the scope of applicability of MPC to situations where the computations

required for the online optimization are restrictive, and/or where insight into the

control behavior is necessary for performance analysis (like safety verifications).

These are common situations, for example, in the automotive and aerospace indus-

tries (Johansen et al. (2005), Pistikopoulos (2009)).

However, explicit MPC implementations may still be prohibitively costly for large

optimization problems, in fact the offline computation effort needed to solve the

multi-parametric optimization problem increases fast with the dimensions of state

and input, the number of constraints involved in the optimization problem and the

length of the prediction horizon. As the optimization complexity increases, also the

number of linear gains associated with the PWA control law increase enormously,

which may cause serious difficulties on low-cost hardware.

Several approaches have been proposed to address these problems and the following

just mentions a few. The approach used in Geyer et al. (2004) is to post-process the

feasible set partition with the goal of merging regions characterized by the same

feedback law and thereby reduce the complexity of the PWA function. In ap-

proaches like Tøndel et al. (2003b) and Christophersen (2007) the explicit PWA

solution is post-processed to generate search trees that allow efficient online evalu-

ation. In Spjøtvold et al. (2006), reachability analysis is utilized to build a structure

that improves the average time for the online evaluation of PWA controllers. In

Bemporad and Filippi (2003), small slacks in the optimality conditions and modifi-

3.1. Introduction 39

cations on the explicit MPC algorithm lead to the solution of a relaxed problem that

gives a simpler approximate suboptimal solution. In Rossiter and Grieder (2005)

the authors simply remove several regions from the feasible set partition, and use

two interpolations to obtain an online approximated control action for the miss-

ing regions. In Johansen and Grancharova (2003) the feasible set is partitioned

into orthogonal hypercubes, approximate explicit control laws are obtained for each

hypercube, and organized in an orthogonal search tree to allow fast real-time eval-

uation1. In Jones and Morari (2008) the authors propose a suboptimal solution

based on barycentric interpolation when a linear cost function is considered. An ap-

proximate controller can be obtained using the algorithm in Bemporad and Filippi

(2006), where approximate solutions of multi-parametric optimization problems are

expressed as PWA functions over simplicial partitions of subsets of the feasible sets,

and organized to ensure efficient evaluation. Simplices are also used in Grieder et al.

(2004) to reduce the online computational load for standard MPC implementations.

In the approximate explicit MPC approach presented in this chapter (Scibilia et al.

(2009b), Hovd et al. (2009), Scibilia et al. (2010a)) part of the feasible set is par-

titioned using a particular simplicial tessellation known as Delaunay tessellation.

The feasible set is considered composed by two regions: the unconstrained region,

where no constraints are active and, thus, the optimal MPC coincides simply with

the linear quadratic regulator (LQR); the constrained region, where constraints are

active and the prohibitive optimal explicit MPC solution is replaced by a suitable

approximation computed from a finite number of samples of the exact solution.

The constrained region is processed and partitioned into simplices with a procedure

based on Delaunay tessellation. Inside each simplex, the approximate controller is

an affine state feedback law whose gains are given by linear interpolation of the

exact solution at the vertices.

Delaunay tessellations (which in the plane corresponds to triangulations) are funda-

mental structures in computational geometry theory and have many applications in

science and engineering (Hjelle and Dæhlen (2006), de Berg et al. (2008), Mount

(2002), Bern and Plassmann (2000), Gallier (2000)). Delaunay tessellations char-

acterize natural neighbor relations among sets of points distributed in the Euclidean

space, and thus they have been particularly successful in the surface reconstruc-

tion problem (Cazals and Giesen (2006), Dyer et al. (2009), Bern and Plassmann

(2000)), where a model of an unknown surface has to be computed given only a

finite set of samples.

The basic idea behind our approach is then clear: the optimal explicit PWA con-

troller over the state space is considered as the (partially) unknown surface to be

reconstructed. The initial set of samples are the vertices of the unconstrained re-

1It is worth mentioning that a similar approach was used in Johansen (2004) to obtain effective

approximate explicit MPC solutions when nonlinear models are considered in the MPC formulation.

3.1. Introduction 39

cations on the explicit MPC algorithm lead to the solution of a relaxed problem that

gives a simpler approximate suboptimal solution. In Rossiter and Grieder (2005)

the authors simply remove several regions from the feasible set partition, and use

two interpolations to obtain an online approximated control action for the miss-

ing regions. In Johansen and Grancharova (2003) the feasible set is partitioned

into orthogonal hypercubes, approximate explicit control laws are obtained for each

hypercube, and organized in an orthogonal search tree to allow fast real-time eval-

uation1. In Jones and Morari (2008) the authors propose a suboptimal solution

based on barycentric interpolation when a linear cost function is considered. An ap-

proximate controller can be obtained using the algorithm in Bemporad and Filippi

(2006), where approximate solutions of multi-parametric optimization problems are

expressed as PWA functions over simplicial partitions of subsets of the feasible sets,

and organized to ensure efficient evaluation. Simplices are also used in Grieder et al.

(2004) to reduce the online computational load for standard MPC implementations.

In the approximate explicit MPC approach presented in this chapter (Scibilia et al.

(2009b), Hovd et al. (2009), Scibilia et al. (2010a)) part of the feasible set is par-

titioned using a particular simplicial tessellation known as Delaunay tessellation.

The feasible set is considered composed by two regions: the unconstrained region,

where no constraints are active and, thus, the optimal MPC coincides simply with

the linear quadratic regulator (LQR); the constrained region, where constraints are

active and the prohibitive optimal explicit MPC solution is replaced by a suitable

approximation computed from a finite number of samples of the exact solution.

The constrained region is processed and partitioned into simplices with a procedure

based on Delaunay tessellation. Inside each simplex, the approximate controller is

an affine state feedback law whose gains are given by linear interpolation of the

exact solution at the vertices.

Delaunay tessellations (which in the plane corresponds to triangulations) are funda-

mental structures in computational geometry theory and have many applications in

science and engineering (Hjelle and Dæhlen (2006), de Berg et al. (2008), Mount

(2002), Bern and Plassmann (2000), Gallier (2000)). Delaunay tessellations char-

acterize natural neighbor relations among sets of points distributed in the Euclidean

space, and thus they have been particularly successful in the surface reconstruc-

tion problem (Cazals and Giesen (2006), Dyer et al. (2009), Bern and Plassmann

(2000)), where a model of an unknown surface has to be computed given only a

finite set of samples.

The basic idea behind our approach is then clear: the optimal explicit PWA con-

troller over the state space is considered as the (partially) unknown surface to be

reconstructed. The initial set of samples are the vertices of the unconstrained re-

1It is worth mentioning that a similar approach was used in Johansen (2004) to obtain effective

approximate explicit MPC solutions when nonlinear models are considered in the MPC formulation.

3.1. Introduction 39

cations on the explicit MPC algorithm lead to the solution of a relaxed problem that

gives a simpler approximate suboptimal solution. In Rossiter and Grieder (2005)

the authors simply remove several regions from the feasible set partition, and use

two interpolations to obtain an online approximated control action for the miss-

ing regions. In Johansen and Grancharova (2003) the feasible set is partitioned

into orthogonal hypercubes, approximate explicit control laws are obtained for each

hypercube, and organized in an orthogonal search tree to allow fast real-time eval-

uation1. In Jones and Morari (2008) the authors propose a suboptimal solution

based on barycentric interpolation when a linear cost function is considered. An ap-

proximate controller can be obtained using the algorithm in Bemporad and Filippi

(2006), where approximate solutions of multi-parametric optimization problems are

expressed as PWA functions over simplicial partitions of subsets of the feasible sets,

and organized to ensure efficient evaluation. Simplices are also used in Grieder et al.

(2004) to reduce the online computational load for standard MPC implementations.

In the approximate explicit MPC approach presented in this chapter (Scibilia et al.

(2009b), Hovd et al. (2009), Scibilia et al. (2010a)) part of the feasible set is par-

titioned using a particular simplicial tessellation known as Delaunay tessellation.

The feasible set is considered composed by two regions: the unconstrained region,

where no constraints are active and, thus, the optimal MPC coincides simply with

the linear quadratic regulator (LQR); the constrained region, where constraints are

active and the prohibitive optimal explicit MPC solution is replaced by a suitable

approximation computed from a finite number of samples of the exact solution.

The constrained region is processed and partitioned into simplices with a procedure

based on Delaunay tessellation. Inside each simplex, the approximate controller is

an affine state feedback law whose gains are given by linear interpolation of the

exact solution at the vertices.

Delaunay tessellations (which in the plane corresponds to triangulations) are funda-

mental structures in computational geometry theory and have many applications in

science and engineering (Hjelle and Dæhlen (2006), de Berg et al. (2008), Mount

(2002), Bern and Plassmann (2000), Gallier (2000)). Delaunay tessellations char-

acterize natural neighbor relations among sets of points distributed in the Euclidean

space, and thus they have been particularly successful in the surface reconstruc-

tion problem (Cazals and Giesen (2006), Dyer et al. (2009), Bern and Plassmann

(2000)), where a model of an unknown surface has to be computed given only a

finite set of samples.

The basic idea behind our approach is then clear: the optimal explicit PWA con-

troller over the state space is considered as the (partially) unknown surface to be

reconstructed. The initial set of samples are the vertices of the unconstrained re-

1It is worth mentioning that a similar approach was used in Johansen (2004) to obtain effective

approximate explicit MPC solutions when nonlinear models are considered in the MPC formulation.

3.1. Introduction 39

cations on the explicit MPC algorithm lead to the solution of a relaxed problem that

gives a simpler approximate suboptimal solution. In Rossiter and Grieder (2005)

the authors simply remove several regions from the feasible set partition, and use

two interpolations to obtain an online approximated control action for the miss-

ing regions. In Johansen and Grancharova (2003) the feasible set is partitioned

into orthogonal hypercubes, approximate explicit control laws are obtained for each

hypercube, and organized in an orthogonal search tree to allow fast real-time eval-

uation1. In Jones and Morari (2008) the authors propose a suboptimal solution

based on barycentric interpolation when a linear cost function is considered. An ap-

proximate controller can be obtained using the algorithm in Bemporad and Filippi

(2006), where approximate solutions of multi-parametric optimization problems are

expressed as PWA functions over simplicial partitions of subsets of the feasible sets,

and organized to ensure efficient evaluation. Simplices are also used in Grieder et al.

(2004) to reduce the online computational load for standard MPC implementations.

In the approximate explicit MPC approach presented in this chapter (Scibilia et al.

(2009b), Hovd et al. (2009), Scibilia et al. (2010a)) part of the feasible set is par-

titioned using a particular simplicial tessellation known as Delaunay tessellation.

The feasible set is considered composed by two regions: the unconstrained region,

where no constraints are active and, thus, the optimal MPC coincides simply with

the linear quadratic regulator (LQR); the constrained region, where constraints are

active and the prohibitive optimal explicit MPC solution is replaced by a suitable

approximation computed from a finite number of samples of the exact solution.

The constrained region is processed and partitioned into simplices with a procedure

based on Delaunay tessellation. Inside each simplex, the approximate controller is

an affine state feedback law whose gains are given by linear interpolation of the

exact solution at the vertices.

Delaunay tessellations (which in the plane corresponds to triangulations) are funda-

mental structures in computational geometry theory and have many applications in

science and engineering (Hjelle and Dæhlen (2006), de Berg et al. (2008), Mount

(2002), Bern and Plassmann (2000), Gallier (2000)). Delaunay tessellations char-

acterize natural neighbor relations among sets of points distributed in the Euclidean

space, and thus they have been particularly successful in the surface reconstruc-

tion problem (Cazals and Giesen (2006), Dyer et al. (2009), Bern and Plassmann

(2000)), where a model of an unknown surface has to be computed given only a

finite set of samples.

The basic idea behind our approach is then clear: the optimal explicit PWA con-

troller over the state space is considered as the (partially) unknown surface to be

reconstructed. The initial set of samples are the vertices of the unconstrained re-

1It is worth mentioning that a similar approach was used in Johansen (2004) to obtain effective

approximate explicit MPC solutions when nonlinear models are considered in the MPC formulation.

40 Approximate Explicit MPC via Delaunay Tessellations

gion. New samples are accurately added, and then a finer Delaunay tessellation

obtained, if necessary to achieve desired performance. The entire feasible set is

covered, and the whole semi-approximate solution obtained is PWA continuous.

The use of such data structures is motivated by several advantages. Delaunay tes-

sellations are easy to define and construct (Su and Drysdale (1995), Cignoni et al.

(1998), Boissonnat et al. (2009)). An additional important motivation for using De-

launay tessellation is that they allow fast online implementation of the approximate

PWA control law without any additional post-processing and need of additional

memory to store support structures (like search trees). The point location problem

occurs quite frequently in surface reconstruction and mesh generation applications,

and thus numerous high performance algorithms have been proposed in the com-

putational geometry literature (Devroye et al. (2004), Devroye et al. (1999)) which

can be straightforwardly applied in our framework. In particular, a successful sim-

ple algorithm for Delaunay tessellations which needs no pre-processing time and no

additional storage is based on the Jump&Walk technique (Mücke et al. (1999)).

Delaunay tessellations are also used in the approach presented in Bemporad and Fil-

ippi (2006) which, however, differs from the approach presented here for two main

characteristics: in Bemporad and Filippi (2006) the authors propose to tessellate

the entire feasible set, not distinguishing between unconstrained and constrained

regions; the final tessellation derived according to the approach in Bemporad and

Filippi (2006) is not, in general, a Delaunay tessellation, which restricts the applica-

bility of point location algorithms based on Delaunay properties like, for example,

Jump&Walk algorithms.

3.2 Problem Formulation

In this section, the MPC problem introduced in Chapter 2 is recalled.

Consider the problem of regulating the following discrete-time linear time-invariant

system to the origin

x (t+ 1) = Ax (t) + Bu (t) (3.1)

y(t) = Cx(t) (3.2)

while satisfying the output and input constraints

y(t) ∈ Y (3.3)

u(t) ∈ U (3.4)

for all time instants t ≥ 0, where x ∈ R
n is the state vector, u ∈ R

r is the input

vector and y ∈ R
m is the output vector, A ∈ R

n×n, B ∈ R
n×r, Y ⊂ R

m and

40 Approximate Explicit MPC via Delaunay Tessellations

gion. New samples are accurately added, and then a finer Delaunay tessellation

obtained, if necessary to achieve desired performance. The entire feasible set is

covered, and the whole semi-approximate solution obtained is PWA continuous.

The use of such data structures is motivated by several advantages. Delaunay tes-

sellations are easy to define and construct (Su and Drysdale (1995), Cignoni et al.

(1998), Boissonnat et al. (2009)). An additional important motivation for using De-

launay tessellation is that they allow fast online implementation of the approximate

PWA control law without any additional post-processing and need of additional

memory to store support structures (like search trees). The point location problem

occurs quite frequently in surface reconstruction and mesh generation applications,

and thus numerous high performance algorithms have been proposed in the com-

putational geometry literature (Devroye et al. (2004), Devroye et al. (1999)) which

can be straightforwardly applied in our framework. In particular, a successful sim-

ple algorithm for Delaunay tessellations which needs no pre-processing time and no

additional storage is based on the Jump&Walk technique (Mücke et al. (1999)).

Delaunay tessellations are also used in the approach presented in Bemporad and Fil-

ippi (2006) which, however, differs from the approach presented here for two main

characteristics: in Bemporad and Filippi (2006) the authors propose to tessellate

the entire feasible set, not distinguishing between unconstrained and constrained

regions; the final tessellation derived according to the approach in Bemporad and

Filippi (2006) is not, in general, a Delaunay tessellation, which restricts the applica-

bility of point location algorithms based on Delaunay properties like, for example,

Jump&Walk algorithms.

3.2 Problem Formulation

In this section, the MPC problem introduced in Chapter 2 is recalled.

Consider the problem of regulating the following discrete-time linear time-invariant

system to the origin

x (t+ 1) = Ax (t) + Bu (t) (3.1)

y(t) = Cx(t) (3.2)

while satisfying the output and input constraints

y(t) ∈ Y (3.3)

u(t) ∈ U (3.4)

for all time instants t ≥ 0, where x ∈ R
n is the state vector, u ∈ R

r is the input

vector and y ∈ R
m is the output vector, A ∈ R

n×n, B ∈ R
n×r, Y ⊂ R

m and

40 Approximate Explicit MPC via Delaunay Tessellations

gion. New samples are accurately added, and then a finer Delaunay tessellation

obtained, if necessary to achieve desired performance. The entire feasible set is

covered, and the whole semi-approximate solution obtained is PWA continuous.

The use of such data structures is motivated by several advantages. Delaunay tes-

sellations are easy to define and construct (Su and Drysdale (1995), Cignoni et al.

(1998), Boissonnat et al. (2009)). An additional important motivation for using De-

launay tessellation is that they allow fast online implementation of the approximate

PWA control law without any additional post-processing and need of additional

memory to store support structures (like search trees). The point location problem

occurs quite frequently in surface reconstruction and mesh generation applications,

and thus numerous high performance algorithms have been proposed in the com-

putational geometry literature (Devroye et al. (2004), Devroye et al. (1999)) which

can be straightforwardly applied in our framework. In particular, a successful sim-

ple algorithm for Delaunay tessellations which needs no pre-processing time and no

additional storage is based on the Jump&Walk technique (Mücke et al. (1999)).

Delaunay tessellations are also used in the approach presented in Bemporad and Fil-

ippi (2006) which, however, differs from the approach presented here for two main

characteristics: in Bemporad and Filippi (2006) the authors propose to tessellate

the entire feasible set, not distinguishing between unconstrained and constrained

regions; the final tessellation derived according to the approach in Bemporad and

Filippi (2006) is not, in general, a Delaunay tessellation, which restricts the applica-

bility of point location algorithms based on Delaunay properties like, for example,

Jump&Walk algorithms.

3.2 Problem Formulation

In this section, the MPC problem introduced in Chapter 2 is recalled.

Consider the problem of regulating the following discrete-time linear time-invariant

system to the origin

x (t+ 1) = Ax (t) + Bu (t) (3.1)

y(t) = Cx(t) (3.2)

while satisfying the output and input constraints

y(t) ∈ Y (3.3)

u(t) ∈ U (3.4)

for all time instants t ≥ 0, where x ∈ R
n is the state vector, u ∈ R

r is the input

vector and y ∈ R
m is the output vector, A ∈ R

n×n, B ∈ R
n×r, Y ⊂ R

m and

40 Approximate Explicit MPC via Delaunay Tessellations

gion. New samples are accurately added, and then a finer Delaunay tessellation

obtained, if necessary to achieve desired performance. The entire feasible set is

covered, and the whole semi-approximate solution obtained is PWA continuous.

The use of such data structures is motivated by several advantages. Delaunay tes-

sellations are easy to define and construct (Su and Drysdale (1995), Cignoni et al.

(1998), Boissonnat et al. (2009)). An additional important motivation for using De-

launay tessellation is that they allow fast online implementation of the approximate

PWA control law without any additional post-processing and need of additional

memory to store support structures (like search trees). The point location problem

occurs quite frequently in surface reconstruction and mesh generation applications,

and thus numerous high performance algorithms have been proposed in the com-

putational geometry literature (Devroye et al. (2004), Devroye et al. (1999)) which

can be straightforwardly applied in our framework. In particular, a successful sim-

ple algorithm for Delaunay tessellations which needs no pre-processing time and no

additional storage is based on the Jump&Walk technique (Mücke et al. (1999)).

Delaunay tessellations are also used in the approach presented in Bemporad and Fil-

ippi (2006) which, however, differs from the approach presented here for two main

characteristics: in Bemporad and Filippi (2006) the authors propose to tessellate

the entire feasible set, not distinguishing between unconstrained and constrained

regions; the final tessellation derived according to the approach in Bemporad and

Filippi (2006) is not, in general, a Delaunay tessellation, which restricts the applica-

bility of point location algorithms based on Delaunay properties like, for example,

Jump&Walk algorithms.

3.2 Problem Formulation

In this section, the MPC problem introduced in Chapter 2 is recalled.

Consider the problem of regulating the following discrete-time linear time-invariant

system to the origin

x (t+ 1) = Ax (t) + Bu (t) (3.1)

y(t) = Cx(t) (3.2)

while satisfying the output and input constraints

y(t) ∈ Y (3.3)

u(t) ∈ U (3.4)

for all time instants t ≥ 0, where x ∈ R
n is the state vector, u ∈ R

r is the input

vector and y ∈ R
m is the output vector, A ∈ R

n×n, B ∈ R
n×r, Y ⊂ R

m and

3.2. Problem Formulation 41

U ⊂ R
r are polyhedral sets given by linear inequalities

Y =
{
y ∈ R

m| DYy ≤ dY
}

(3.5)

U = {u ∈ R
r| DUu ≤ dU} (3.6)

where DY ∈ R
nY×m, DU ∈ R

nU×r, dY ∈ R
nY , dU ∈ R

nU , and nY and nU are the

number of inequalities on the output and on the input respectively.

It is assumed that the pair (A,B) is stabilizable.

Provided that the state x (t) is available from the measurements, the finite horizon

MPC optimization problem is

min
u�[u0,...,uN−1]

{
J (u, x (t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(3.7)

s.t. x0 = x (t) ,
xk+1 = Axk +Buk

yk = Cxk k = 0, 1, ..., N
yk ∈ Y , k = 1, 2, ..., N
uk ∈ U , k = 0, 1, ..., N − 1
xN ∈ Ω

(3.8)

where xk denotes the predicted state vector at time t + k obtained by applying the

k first elements of the input sequence u0, ..., uN−1; N is the prediction horizon;

Q � 0 (positive semidefinite) and R � 0 (positive definite) are symmetric matrices

corresponding to weights on state and input. It is assumed that 0 ∈ int(Y), 0 ∈
int(U) such that the origin is an interior point in the feasible set:

XF = {x ∈ R
n| ∃ u satisfying(3.8)} (3.9)

The terminal cost matrix P and the terminal constraint xN ∈ Ω are defined to guar-

antee stability of the closed-loop.

Note that XF is a polytope due to the nature of the constraints (Scibilia et al.

(2010b)).

The MPC optimization problem (3.7-3.8) can be formulated as the following QP

J∗(x) = minu uTHu + 2xTFu + xTY x
s.t. Gu ≤ w + Ex

(3.10)

where the matrices H , F , Y , G, w and E are as defined in Chapter 2. Note that the

term xTY x can be removed from the optimization since it does not influence the

optimal argument.

3.2. Problem Formulation 41

U ⊂ R
r are polyhedral sets given by linear inequalities

Y =
{
y ∈ R

m| DYy ≤ dY
}

(3.5)

U = {u ∈ R
r| DUu ≤ dU} (3.6)

where DY ∈ R
nY×m, DU ∈ R

nU×r, dY ∈ R
nY , dU ∈ R

nU , and nY and nU are the

number of inequalities on the output and on the input respectively.

It is assumed that the pair (A,B) is stabilizable.

Provided that the state x (t) is available from the measurements, the finite horizon

MPC optimization problem is

min
u�[u0,...,uN−1]

{
J (u, x (t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(3.7)

s.t. x0 = x (t) ,
xk+1 = Axk +Buk

yk = Cxk k = 0, 1, ..., N
yk ∈ Y , k = 1, 2, ..., N
uk ∈ U , k = 0, 1, ..., N − 1
xN ∈ Ω

(3.8)

where xk denotes the predicted state vector at time t + k obtained by applying the

k first elements of the input sequence u0, ..., uN−1; N is the prediction horizon;

Q � 0 (positive semidefinite) and R � 0 (positive definite) are symmetric matrices

corresponding to weights on state and input. It is assumed that 0 ∈ int(Y), 0 ∈
int(U) such that the origin is an interior point in the feasible set:

XF = {x ∈ R
n| ∃ u satisfying(3.8)} (3.9)

The terminal cost matrix P and the terminal constraint xN ∈ Ω are defined to guar-

antee stability of the closed-loop.

Note that XF is a polytope due to the nature of the constraints (Scibilia et al.

(2010b)).

The MPC optimization problem (3.7-3.8) can be formulated as the following QP

J∗(x) = minu uTHu + 2xTFu + xTY x
s.t. Gu ≤ w + Ex

(3.10)

where the matrices H , F , Y , G, w and E are as defined in Chapter 2. Note that the

term xTY x can be removed from the optimization since it does not influence the

optimal argument.

3.2. Problem Formulation 41

U ⊂ R
r are polyhedral sets given by linear inequalities

Y =
{
y ∈ R

m| DYy ≤ dY
}

(3.5)

U = {u ∈ R
r| DUu ≤ dU} (3.6)

where DY ∈ R
nY×m, DU ∈ R

nU×r, dY ∈ R
nY , dU ∈ R

nU , and nY and nU are the

number of inequalities on the output and on the input respectively.

It is assumed that the pair (A,B) is stabilizable.

Provided that the state x (t) is available from the measurements, the finite horizon

MPC optimization problem is

min
u�[u0,...,uN−1]

{
J (u, x (t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(3.7)

s.t. x0 = x (t) ,
xk+1 = Axk +Buk

yk = Cxk k = 0, 1, ..., N
yk ∈ Y , k = 1, 2, ..., N
uk ∈ U , k = 0, 1, ..., N − 1
xN ∈ Ω

(3.8)

where xk denotes the predicted state vector at time t + k obtained by applying the

k first elements of the input sequence u0, ..., uN−1; N is the prediction horizon;

Q � 0 (positive semidefinite) and R � 0 (positive definite) are symmetric matrices

corresponding to weights on state and input. It is assumed that 0 ∈ int(Y), 0 ∈
int(U) such that the origin is an interior point in the feasible set:

XF = {x ∈ R
n| ∃ u satisfying(3.8)} (3.9)

The terminal cost matrix P and the terminal constraint xN ∈ Ω are defined to guar-

antee stability of the closed-loop.

Note that XF is a polytope due to the nature of the constraints (Scibilia et al.

(2010b)).

The MPC optimization problem (3.7-3.8) can be formulated as the following QP

J∗(x) = minu uTHu + 2xTFu + xTY x
s.t. Gu ≤ w + Ex

(3.10)

where the matrices H , F , Y , G, w and E are as defined in Chapter 2. Note that the

term xTY x can be removed from the optimization since it does not influence the

optimal argument.

3.2. Problem Formulation 41

U ⊂ R
r are polyhedral sets given by linear inequalities

Y =
{
y ∈ R

m| DYy ≤ dY
}

(3.5)

U = {u ∈ R
r| DUu ≤ dU} (3.6)

where DY ∈ R
nY×m, DU ∈ R

nU×r, dY ∈ R
nY , dU ∈ R

nU , and nY and nU are the

number of inequalities on the output and on the input respectively.

It is assumed that the pair (A,B) is stabilizable.

Provided that the state x (t) is available from the measurements, the finite horizon

MPC optimization problem is

min
u�[u0,...,uN−1]

{
J (u, x (t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(3.7)

s.t. x0 = x (t) ,
xk+1 = Axk +Buk

yk = Cxk k = 0, 1, ..., N
yk ∈ Y , k = 1, 2, ..., N
uk ∈ U , k = 0, 1, ..., N − 1
xN ∈ Ω

(3.8)

where xk denotes the predicted state vector at time t + k obtained by applying the

k first elements of the input sequence u0, ..., uN−1; N is the prediction horizon;

Q � 0 (positive semidefinite) and R � 0 (positive definite) are symmetric matrices

corresponding to weights on state and input. It is assumed that 0 ∈ int(Y), 0 ∈
int(U) such that the origin is an interior point in the feasible set:

XF = {x ∈ R
n| ∃ u satisfying(3.8)} (3.9)

The terminal cost matrix P and the terminal constraint xN ∈ Ω are defined to guar-

antee stability of the closed-loop.

Note that XF is a polytope due to the nature of the constraints (Scibilia et al.

(2010b)).

The MPC optimization problem (3.7-3.8) can be formulated as the following QP

J∗(x) = minu uTHu + 2xTFu + xTY x
s.t. Gu ≤ w + Ex

(3.10)

where the matrices H , F , Y , G, w and E are as defined in Chapter 2. Note that the

term xTY x can be removed from the optimization since it does not influence the

optimal argument.

42 Approximate Explicit MPC via Delaunay Tessellations

R
rest

Figure 3.1: An example of partition of a non-convex region Rrest in convex subre-

gions. For some of the subregions the Delaunay triangulation of the points needed

to achieve a given tolerance is also shown. The empty region within Rrest belongs

to the terminal set Ω.

3.3 Approximate Explicit MPC

The feasible set XF is considered to be composed of two regions:

• Ω, the region where no constraints are active and thus the MPC reduces to the

unconstrained LQR;

• Rrest = XF\Ω, the region containing the rest of the feasible set.

The first region of our partition is Ω, and the associated controller is the LQR.

The set Rrest is processed and partitioned into simplices with a procedure based

on Delaunay tessellations. Note that the operation is not trivial since Rrest is non-

convex (Figure 3.1). First, Rrest is appropriately divided into convex subregions.

For each subregion, the Delaunay tessellation of the vertices is computed. Inside

each simplex, the approximate controller is the affine state feedback law whose

gains are obtained simply by linear interpolation of the exact optimal controller at

the vertices of the simplex. If the desired accuracy is not achieved, more points are

opportunely added and a finer Delaunay tessellation of the subregion is derived.

In the following sections the details of the algorithm are given.

42 Approximate Explicit MPC via Delaunay Tessellations

R
rest

Figure 3.1: An example of partition of a non-convex region Rrest in convex subre-

gions. For some of the subregions the Delaunay triangulation of the points needed

to achieve a given tolerance is also shown. The empty region within Rrest belongs

to the terminal set Ω.

3.3 Approximate Explicit MPC

The feasible set XF is considered to be composed of two regions:

• Ω, the region where no constraints are active and thus the MPC reduces to the

unconstrained LQR;

• Rrest = XF\Ω, the region containing the rest of the feasible set.

The first region of our partition is Ω, and the associated controller is the LQR.

The set Rrest is processed and partitioned into simplices with a procedure based

on Delaunay tessellations. Note that the operation is not trivial since Rrest is non-

convex (Figure 3.1). First, Rrest is appropriately divided into convex subregions.

For each subregion, the Delaunay tessellation of the vertices is computed. Inside

each simplex, the approximate controller is the affine state feedback law whose

gains are obtained simply by linear interpolation of the exact optimal controller at

the vertices of the simplex. If the desired accuracy is not achieved, more points are

opportunely added and a finer Delaunay tessellation of the subregion is derived.

In the following sections the details of the algorithm are given.

42 Approximate Explicit MPC via Delaunay Tessellations

R
rest

Figure 3.1: An example of partition of a non-convex region Rrest in convex subre-

gions. For some of the subregions the Delaunay triangulation of the points needed

to achieve a given tolerance is also shown. The empty region within Rrest belongs

to the terminal set Ω.

3.3 Approximate Explicit MPC

The feasible set XF is considered to be composed of two regions:

• Ω, the region where no constraints are active and thus the MPC reduces to the

unconstrained LQR;

• Rrest = XF\Ω, the region containing the rest of the feasible set.

The first region of our partition is Ω, and the associated controller is the LQR.

The set Rrest is processed and partitioned into simplices with a procedure based

on Delaunay tessellations. Note that the operation is not trivial since Rrest is non-

convex (Figure 3.1). First, Rrest is appropriately divided into convex subregions.

For each subregion, the Delaunay tessellation of the vertices is computed. Inside

each simplex, the approximate controller is the affine state feedback law whose

gains are obtained simply by linear interpolation of the exact optimal controller at

the vertices of the simplex. If the desired accuracy is not achieved, more points are

opportunely added and a finer Delaunay tessellation of the subregion is derived.

In the following sections the details of the algorithm are given.

42 Approximate Explicit MPC via Delaunay Tessellations

R
rest

Figure 3.1: An example of partition of a non-convex region Rrest in convex subre-

gions. For some of the subregions the Delaunay triangulation of the points needed

to achieve a given tolerance is also shown. The empty region within Rrest belongs

to the terminal set Ω.

3.3 Approximate Explicit MPC

The feasible set XF is considered to be composed of two regions:

• Ω, the region where no constraints are active and thus the MPC reduces to the

unconstrained LQR;

• Rrest = XF\Ω, the region containing the rest of the feasible set.

The first region of our partition is Ω, and the associated controller is the LQR.

The set Rrest is processed and partitioned into simplices with a procedure based

on Delaunay tessellations. Note that the operation is not trivial since Rrest is non-

convex (Figure 3.1). First, Rrest is appropriately divided into convex subregions.

For each subregion, the Delaunay tessellation of the vertices is computed. Inside

each simplex, the approximate controller is the affine state feedback law whose

gains are obtained simply by linear interpolation of the exact optimal controller at

the vertices of the simplex. If the desired accuracy is not achieved, more points are

opportunely added and a finer Delaunay tessellation of the subregion is derived.

In the following sections the details of the algorithm are given.

3.4. Delaunay Tessellation 43

Figure 3.2: Delaunay triangulation of a set of points.

3.4 Delaunay Tessellation

The importance of Delaunay tessellations (DT) is in their ability to characterize nat-

ural neighbor relations among points distributed in Euclidean space.

Considering the plane, the Delaunay triangulation of a general set of (non-collinear)

points is formally defined as follows by the empty circle condition.

Definition 17. (Delaunay triangulation) The Delaunay triangulation of a set P of

points in R
2 is a triangulation (DT(P)) such that no point in P is inside the circum-

circle of any triangle in DT(P) (Figure 3.2).

The concept can be generalized to the general d-dimensional space as follows.

Definition 18. (Delaunay tessellation) The Delaunay tessellation of a set P of

points in R
d (DT(P)) is a simplicial tessellation such that no vertex in P is inside

the circum-hypersphere of any simplex in DT(P).

Simplicial tessellations/triangulations are a common approach to discretizing sur-

faces or, in general, objects. Taken a suitable set of samples P , these samples are

connected by linear elements (line segments, triangles, tetrahedra, etc.) to form a

covering of the object that provides a convenient framework for interpolation and

numerical computations (Hjelle and Dæhlen (2006), de Berg et al. (2008), Mount

3.4. Delaunay Tessellation 43

Figure 3.2: Delaunay triangulation of a set of points.

3.4 Delaunay Tessellation

The importance of Delaunay tessellations (DT) is in their ability to characterize nat-

ural neighbor relations among points distributed in Euclidean space.

Considering the plane, the Delaunay triangulation of a general set of (non-collinear)

points is formally defined as follows by the empty circle condition.

Definition 17. (Delaunay triangulation) The Delaunay triangulation of a set P of

points in R
2 is a triangulation (DT(P)) such that no point in P is inside the circum-

circle of any triangle in DT(P) (Figure 3.2).

The concept can be generalized to the general d-dimensional space as follows.

Definition 18. (Delaunay tessellation) The Delaunay tessellation of a set P of

points in R
d (DT(P)) is a simplicial tessellation such that no vertex in P is inside

the circum-hypersphere of any simplex in DT(P).

Simplicial tessellations/triangulations are a common approach to discretizing sur-

faces or, in general, objects. Taken a suitable set of samples P , these samples are

connected by linear elements (line segments, triangles, tetrahedra, etc.) to form a

covering of the object that provides a convenient framework for interpolation and

numerical computations (Hjelle and Dæhlen (2006), de Berg et al. (2008), Mount

3.4. Delaunay Tessellation 43

Figure 3.2: Delaunay triangulation of a set of points.

3.4 Delaunay Tessellation

The importance of Delaunay tessellations (DT) is in their ability to characterize nat-

ural neighbor relations among points distributed in Euclidean space.

Considering the plane, the Delaunay triangulation of a general set of (non-collinear)

points is formally defined as follows by the empty circle condition.

Definition 17. (Delaunay triangulation) The Delaunay triangulation of a set P of

points in R
2 is a triangulation (DT(P)) such that no point in P is inside the circum-

circle of any triangle in DT(P) (Figure 3.2).

The concept can be generalized to the general d-dimensional space as follows.

Definition 18. (Delaunay tessellation) The Delaunay tessellation of a set P of

points in R
d (DT(P)) is a simplicial tessellation such that no vertex in P is inside

the circum-hypersphere of any simplex in DT(P).

Simplicial tessellations/triangulations are a common approach to discretizing sur-

faces or, in general, objects. Taken a suitable set of samples P , these samples are

connected by linear elements (line segments, triangles, tetrahedra, etc.) to form a

covering of the object that provides a convenient framework for interpolation and

numerical computations (Hjelle and Dæhlen (2006), de Berg et al. (2008), Mount

3.4. Delaunay Tessellation 43

Figure 3.2: Delaunay triangulation of a set of points.

3.4 Delaunay Tessellation

The importance of Delaunay tessellations (DT) is in their ability to characterize nat-

ural neighbor relations among points distributed in Euclidean space.

Considering the plane, the Delaunay triangulation of a general set of (non-collinear)

points is formally defined as follows by the empty circle condition.

Definition 17. (Delaunay triangulation) The Delaunay triangulation of a set P of

points in R
2 is a triangulation (DT(P)) such that no point in P is inside the circum-

circle of any triangle in DT(P) (Figure 3.2).

The concept can be generalized to the general d-dimensional space as follows.

Definition 18. (Delaunay tessellation) The Delaunay tessellation of a set P of

points in R
d (DT(P)) is a simplicial tessellation such that no vertex in P is inside

the circum-hypersphere of any simplex in DT(P).

Simplicial tessellations/triangulations are a common approach to discretizing sur-

faces or, in general, objects. Taken a suitable set of samples P , these samples are

connected by linear elements (line segments, triangles, tetrahedra, etc.) to form a

covering of the object that provides a convenient framework for interpolation and

numerical computations (Hjelle and Dæhlen (2006), de Berg et al. (2008), Mount

44 Approximate Explicit MPC via Delaunay Tessellations

(2002)).

Delaunay tessellations are structures characterized by several important properties

which constitute the reason for their many applications in science and engineering.

In the plane, DT minimizes the maximum circumradius of the triangles. In the

general d-dimensional space, DT minimizes the radius of the maximum smallest

enclosing hypersphere. Such properties generally mean triangulations/tessellations

composed by “well-shaped" simplices, where the quality of a simplex is here mea-

sured as the ratio of the shortest edge to the circumradius: the larger this number

is, the higher the simplex quality is. Another relevant property is that the union of

all the simplices in the DT tessellation is the convex hull of the points. These are

all desired properties particularly in the context of surface approximation or mesh

generation. DTs also enjoy other features which make these structures particularly

suitable for surface approximation: topological consistency, pointwise approxima-

tion and normal approximation. These features mean that, given a set P of samples

of a surface S, the approximation DT(P) and S are homeomorphic2, and that the ap-

proximation improves with increased sampling density (Cazals and Giesen (2006),

Dyer et al. (2009), Bern and Plassmann (2000)).

The problem of computing the DT of a set of points in the general d-dimensional

space is strictly related to another fundamental problem in computational geometry:

the computation of the convex hull of a set of points. Consider the set of points P in

d-dimension, then DT(P) can be computed by giving each point p ∈ P an extra co-

ordinate equal to ‖p‖2 (the points are lifted onto a paraboloid in d+ 1-dimensional

space), and then taking the projection of the downward-facing facet of the convex

hull of these higher dimensional points (Gallier (2000)). The fastest algorithms for

computing the DT of a set of points use the divide&conquer approach. In the plane,

the Delaunay triangulation of np points can be constructed in O (np log np) runtime;

in the general d-dimensional space, the worst case complexity for constructing the

DT of np points is O
(
np log np + n

�d/2�
p

)
. The simplest algorithms are based on

the incremental approach, where points are added one by one, iteratively updating

the existing DT (Cignoni et al. (1998), Su and Drysdale (1995), Boissonnat et al.

(2009)).

3.5 Approximate Controller

The controller inside each simplex is given by the following theorem (Bemporad

and Filippi (2006)).

2Roughly speaking, the homeomorphism between two geometric objects is a continuous stretch-

ing and bending of one object into the shape of the other.

44 Approximate Explicit MPC via Delaunay Tessellations

(2002)).

Delaunay tessellations are structures characterized by several important properties

which constitute the reason for their many applications in science and engineering.

In the plane, DT minimizes the maximum circumradius of the triangles. In the

general d-dimensional space, DT minimizes the radius of the maximum smallest

enclosing hypersphere. Such properties generally mean triangulations/tessellations

composed by “well-shaped" simplices, where the quality of a simplex is here mea-

sured as the ratio of the shortest edge to the circumradius: the larger this number

is, the higher the simplex quality is. Another relevant property is that the union of

all the simplices in the DT tessellation is the convex hull of the points. These are

all desired properties particularly in the context of surface approximation or mesh

generation. DTs also enjoy other features which make these structures particularly

suitable for surface approximation: topological consistency, pointwise approxima-

tion and normal approximation. These features mean that, given a set P of samples

of a surface S, the approximation DT(P) and S are homeomorphic2, and that the ap-

proximation improves with increased sampling density (Cazals and Giesen (2006),

Dyer et al. (2009), Bern and Plassmann (2000)).

The problem of computing the DT of a set of points in the general d-dimensional

space is strictly related to another fundamental problem in computational geometry:

the computation of the convex hull of a set of points. Consider the set of points P in

d-dimension, then DT(P) can be computed by giving each point p ∈ P an extra co-

ordinate equal to ‖p‖2 (the points are lifted onto a paraboloid in d+ 1-dimensional

space), and then taking the projection of the downward-facing facet of the convex

hull of these higher dimensional points (Gallier (2000)). The fastest algorithms for

computing the DT of a set of points use the divide&conquer approach. In the plane,

the Delaunay triangulation of np points can be constructed in O (np log np) runtime;

in the general d-dimensional space, the worst case complexity for constructing the

DT of np points is O
(
np log np + n

�d/2�
p

)
. The simplest algorithms are based on

the incremental approach, where points are added one by one, iteratively updating

the existing DT (Cignoni et al. (1998), Su and Drysdale (1995), Boissonnat et al.

(2009)).

3.5 Approximate Controller

The controller inside each simplex is given by the following theorem (Bemporad

and Filippi (2006)).

2Roughly speaking, the homeomorphism between two geometric objects is a continuous stretch-

ing and bending of one object into the shape of the other.

44 Approximate Explicit MPC via Delaunay Tessellations

(2002)).

Delaunay tessellations are structures characterized by several important properties

which constitute the reason for their many applications in science and engineering.

In the plane, DT minimizes the maximum circumradius of the triangles. In the

general d-dimensional space, DT minimizes the radius of the maximum smallest

enclosing hypersphere. Such properties generally mean triangulations/tessellations

composed by “well-shaped" simplices, where the quality of a simplex is here mea-

sured as the ratio of the shortest edge to the circumradius: the larger this number

is, the higher the simplex quality is. Another relevant property is that the union of

all the simplices in the DT tessellation is the convex hull of the points. These are

all desired properties particularly in the context of surface approximation or mesh

generation. DTs also enjoy other features which make these structures particularly

suitable for surface approximation: topological consistency, pointwise approxima-

tion and normal approximation. These features mean that, given a set P of samples

of a surface S, the approximation DT(P) and S are homeomorphic2, and that the ap-

proximation improves with increased sampling density (Cazals and Giesen (2006),

Dyer et al. (2009), Bern and Plassmann (2000)).

The problem of computing the DT of a set of points in the general d-dimensional

space is strictly related to another fundamental problem in computational geometry:

the computation of the convex hull of a set of points. Consider the set of points P in

d-dimension, then DT(P) can be computed by giving each point p ∈ P an extra co-

ordinate equal to ‖p‖2 (the points are lifted onto a paraboloid in d+ 1-dimensional

space), and then taking the projection of the downward-facing facet of the convex

hull of these higher dimensional points (Gallier (2000)). The fastest algorithms for

computing the DT of a set of points use the divide&conquer approach. In the plane,

the Delaunay triangulation of np points can be constructed in O (np log np) runtime;

in the general d-dimensional space, the worst case complexity for constructing the

DT of np points is O
(
np log np + n

�d/2�
p

)
. The simplest algorithms are based on

the incremental approach, where points are added one by one, iteratively updating

the existing DT (Cignoni et al. (1998), Su and Drysdale (1995), Boissonnat et al.

(2009)).

3.5 Approximate Controller

The controller inside each simplex is given by the following theorem (Bemporad

and Filippi (2006)).

2Roughly speaking, the homeomorphism between two geometric objects is a continuous stretch-

ing and bending of one object into the shape of the other.

44 Approximate Explicit MPC via Delaunay Tessellations

(2002)).

Delaunay tessellations are structures characterized by several important properties

which constitute the reason for their many applications in science and engineering.

In the plane, DT minimizes the maximum circumradius of the triangles. In the

general d-dimensional space, DT minimizes the radius of the maximum smallest

enclosing hypersphere. Such properties generally mean triangulations/tessellations

composed by “well-shaped" simplices, where the quality of a simplex is here mea-

sured as the ratio of the shortest edge to the circumradius: the larger this number

is, the higher the simplex quality is. Another relevant property is that the union of

all the simplices in the DT tessellation is the convex hull of the points. These are

all desired properties particularly in the context of surface approximation or mesh

generation. DTs also enjoy other features which make these structures particularly

suitable for surface approximation: topological consistency, pointwise approxima-

tion and normal approximation. These features mean that, given a set P of samples

of a surface S, the approximation DT(P) and S are homeomorphic2, and that the ap-

proximation improves with increased sampling density (Cazals and Giesen (2006),

Dyer et al. (2009), Bern and Plassmann (2000)).

The problem of computing the DT of a set of points in the general d-dimensional

space is strictly related to another fundamental problem in computational geometry:

the computation of the convex hull of a set of points. Consider the set of points P in

d-dimension, then DT(P) can be computed by giving each point p ∈ P an extra co-

ordinate equal to ‖p‖2 (the points are lifted onto a paraboloid in d+ 1-dimensional

space), and then taking the projection of the downward-facing facet of the convex

hull of these higher dimensional points (Gallier (2000)). The fastest algorithms for

computing the DT of a set of points use the divide&conquer approach. In the plane,

the Delaunay triangulation of np points can be constructed in O (np log np) runtime;

in the general d-dimensional space, the worst case complexity for constructing the

DT of np points is O
(
np log np + n

�d/2�
p

)
. The simplest algorithms are based on

the incremental approach, where points are added one by one, iteratively updating

the existing DT (Cignoni et al. (1998), Su and Drysdale (1995), Boissonnat et al.

(2009)).

3.5 Approximate Controller

The controller inside each simplex is given by the following theorem (Bemporad

and Filippi (2006)).

2Roughly speaking, the homeomorphism between two geometric objects is a continuous stretch-

ing and bending of one object into the shape of the other.

3.6. Approximation Error 45

Theorem 3. Given a simplex S ⊆ XF whose vertices are
{
v(1), ..., v(n+1)

}
and the

optimal input sequences at the vertices u∗ (v(i)), i = 1, ..., n + 1, then the affine
function

ũS (x) = L̃T
S x+ g̃S (3.11)

where L̃S ∈ R
n×rN and g̃S ∈ R

rN are obtained by linear interpolation

⎡
⎢⎣

v(1)
T

1
...

...
v(n+1)T 1

⎤
⎥⎦
⎡
⎣ L̃S

g̃TS

⎤
⎦ =

⎡
⎢⎣

u∗ (v(1))T
...

u∗ (v(n+1)
)T
⎤
⎥⎦ , (3.12)

gives a feasible input sequence for all x ∈ S .

Proof. It is simple to prove that (GL̃T
S −E)x ≤ w−Gg̃S ∀ x ∈ S . By construction,

it is (GL̃T
S − E)v(i) ≤ w − Gg̃S , i = 1, .., n + 1. Thus, since every x ∈ S can be

expressed as linear convex combination x =
∑n+1

k=1 λkv
(k) where

∑n+1
k=1 λk = 1 and

λk ≥ 0 ∀k, feasibility follows by joint convexity of the constraints and S .

3.6 Approximation Error

Consider a simplex S = {x ∈ XF | DSx ≤ dS} and the approximate controller

(3.11) defined therein. The approximate cost function is given by

J̃S (x) = xT H̃Sx+ F̃ T
S x+ ỸS ∀x ∈ S (3.13)

where H̃S = Y + L̃SHL̃T
S + 2FL̃T

S , F̃S = 2L̃SHg̃S + 2F g̃S and ỸS = g̃TS Hg̃S .

The quadratic function J̃S (x) is our approximation inside S of the optimal cost

function J∗ (x) (Figure 3.4). Note that J̃(x) and J∗(x) are both convex and J̃(x) ≥
J∗(x) ∀x ∈ S (Bemporad and Filippi (2006)).

As a measure of the level of accuracy achieved, the maximum absolute error intro-

duced by the approximation is considered

εmax(S) � max
x∈S

{
J̃S (x)− J∗(x)

}
. (3.14)

The above optimization problem maximizes the difference of two convex functions,

which in general is a hard problem to solve (Bemporad and Filippi (2006)). In this

case it results in an indefinite QP programming problem, since the corresponding

Hessian matrix can be indefinite. However, for problems of modest dimension this

may nevertheless be tractable. Moreover, for indefinite QPs defined over simplices,

3.6. Approximation Error 45

Theorem 3. Given a simplex S ⊆ XF whose vertices are
{
v(1), ..., v(n+1)

}
and the

optimal input sequences at the vertices u∗ (v(i)), i = 1, ..., n + 1, then the affine
function

ũS (x) = L̃T
S x+ g̃S (3.11)

where L̃S ∈ R
n×rN and g̃S ∈ R

rN are obtained by linear interpolation

⎡
⎢⎣

v(1)
T

1
...

...
v(n+1)T 1

⎤
⎥⎦
⎡
⎣ L̃S

g̃TS

⎤
⎦ =

⎡
⎢⎣

u∗ (v(1))T
...

u∗ (v(n+1)
)T
⎤
⎥⎦ , (3.12)

gives a feasible input sequence for all x ∈ S .

Proof. It is simple to prove that (GL̃T
S −E)x ≤ w−Gg̃S ∀ x ∈ S . By construction,

it is (GL̃T
S − E)v(i) ≤ w − Gg̃S , i = 1, .., n + 1. Thus, since every x ∈ S can be

expressed as linear convex combination x =
∑n+1

k=1 λkv
(k) where

∑n+1
k=1 λk = 1 and

λk ≥ 0 ∀k, feasibility follows by joint convexity of the constraints and S .

3.6 Approximation Error

Consider a simplex S = {x ∈ XF | DSx ≤ dS} and the approximate controller

(3.11) defined therein. The approximate cost function is given by

J̃S (x) = xT H̃Sx+ F̃ T
S x+ ỸS ∀x ∈ S (3.13)

where H̃S = Y + L̃SHL̃T
S + 2FL̃T

S , F̃S = 2L̃SHg̃S + 2F g̃S and ỸS = g̃TS Hg̃S .

The quadratic function J̃S (x) is our approximation inside S of the optimal cost

function J∗ (x) (Figure 3.4). Note that J̃(x) and J∗(x) are both convex and J̃(x) ≥
J∗(x) ∀x ∈ S (Bemporad and Filippi (2006)).

As a measure of the level of accuracy achieved, the maximum absolute error intro-

duced by the approximation is considered

εmax(S) � max
x∈S

{
J̃S (x)− J∗(x)

}
. (3.14)

The above optimization problem maximizes the difference of two convex functions,

which in general is a hard problem to solve (Bemporad and Filippi (2006)). In this

case it results in an indefinite QP programming problem, since the corresponding

Hessian matrix can be indefinite. However, for problems of modest dimension this

may nevertheless be tractable. Moreover, for indefinite QPs defined over simplices,

3.6. Approximation Error 45

Theorem 3. Given a simplex S ⊆ XF whose vertices are
{
v(1), ..., v(n+1)

}
and the

optimal input sequences at the vertices u∗ (v(i)), i = 1, ..., n + 1, then the affine
function

ũS (x) = L̃T
S x+ g̃S (3.11)

where L̃S ∈ R
n×rN and g̃S ∈ R

rN are obtained by linear interpolation

⎡
⎢⎣

v(1)
T

1
...

...
v(n+1)T 1

⎤
⎥⎦
⎡
⎣ L̃S

g̃TS

⎤
⎦ =

⎡
⎢⎣

u∗ (v(1))T
...

u∗ (v(n+1)
)T
⎤
⎥⎦ , (3.12)

gives a feasible input sequence for all x ∈ S .

Proof. It is simple to prove that (GL̃T
S −E)x ≤ w−Gg̃S ∀ x ∈ S . By construction,

it is (GL̃T
S − E)v(i) ≤ w − Gg̃S , i = 1, .., n + 1. Thus, since every x ∈ S can be

expressed as linear convex combination x =
∑n+1

k=1 λkv
(k) where

∑n+1
k=1 λk = 1 and

λk ≥ 0 ∀k, feasibility follows by joint convexity of the constraints and S .

3.6 Approximation Error

Consider a simplex S = {x ∈ XF | DSx ≤ dS} and the approximate controller

(3.11) defined therein. The approximate cost function is given by

J̃S (x) = xT H̃Sx+ F̃ T
S x+ ỸS ∀x ∈ S (3.13)

where H̃S = Y + L̃SHL̃T
S + 2FL̃T

S , F̃S = 2L̃SHg̃S + 2F g̃S and ỸS = g̃TS Hg̃S .

The quadratic function J̃S (x) is our approximation inside S of the optimal cost

function J∗ (x) (Figure 3.4). Note that J̃(x) and J∗(x) are both convex and J̃(x) ≥
J∗(x) ∀x ∈ S (Bemporad and Filippi (2006)).

As a measure of the level of accuracy achieved, the maximum absolute error intro-

duced by the approximation is considered

εmax(S) � max
x∈S

{
J̃S (x)− J∗(x)

}
. (3.14)

The above optimization problem maximizes the difference of two convex functions,

which in general is a hard problem to solve (Bemporad and Filippi (2006)). In this

case it results in an indefinite QP programming problem, since the corresponding

Hessian matrix can be indefinite. However, for problems of modest dimension this

may nevertheless be tractable. Moreover, for indefinite QPs defined over simplices,

3.6. Approximation Error 45

Theorem 3. Given a simplex S ⊆ XF whose vertices are
{
v(1), ..., v(n+1)

}
and the

optimal input sequences at the vertices u∗ (v(i)), i = 1, ..., n + 1, then the affine
function

ũS (x) = L̃T
S x+ g̃S (3.11)

where L̃S ∈ R
n×rN and g̃S ∈ R

rN are obtained by linear interpolation

⎡
⎢⎣

v(1)
T

1
...

...
v(n+1)T 1

⎤
⎥⎦
⎡
⎣ L̃S

g̃TS

⎤
⎦ =

⎡
⎢⎣

u∗ (v(1))T
...

u∗ (v(n+1)
)T
⎤
⎥⎦ , (3.12)

gives a feasible input sequence for all x ∈ S .

Proof. It is simple to prove that (GL̃T
S −E)x ≤ w−Gg̃S ∀ x ∈ S . By construction,

it is (GL̃T
S − E)v(i) ≤ w − Gg̃S , i = 1, .., n + 1. Thus, since every x ∈ S can be

expressed as linear convex combination x =
∑n+1

k=1 λkv
(k) where

∑n+1
k=1 λk = 1 and

λk ≥ 0 ∀k, feasibility follows by joint convexity of the constraints and S .

3.6 Approximation Error

Consider a simplex S = {x ∈ XF | DSx ≤ dS} and the approximate controller

(3.11) defined therein. The approximate cost function is given by

J̃S (x) = xT H̃Sx+ F̃ T
S x+ ỸS ∀x ∈ S (3.13)

where H̃S = Y + L̃SHL̃T
S + 2FL̃T

S , F̃S = 2L̃SHg̃S + 2F g̃S and ỸS = g̃TS Hg̃S .

The quadratic function J̃S (x) is our approximation inside S of the optimal cost

function J∗ (x) (Figure 3.4). Note that J̃(x) and J∗(x) are both convex and J̃(x) ≥
J∗(x) ∀x ∈ S (Bemporad and Filippi (2006)).

As a measure of the level of accuracy achieved, the maximum absolute error intro-

duced by the approximation is considered

εmax(S) � max
x∈S

{
J̃S (x)− J∗(x)

}
. (3.14)

The above optimization problem maximizes the difference of two convex functions,

which in general is a hard problem to solve (Bemporad and Filippi (2006)). In this

case it results in an indefinite QP programming problem, since the corresponding

Hessian matrix can be indefinite. However, for problems of modest dimension this

may nevertheless be tractable. Moreover, for indefinite QPs defined over simplices,

46 Approximate Explicit MPC via Delaunay Tessellations

in addition to the piecewise linear lower bounds often used in Branch&Bound based

optimization for indefinite QPs, there are also more accurate convex lower bounds

based on semidefinite programming (Hovd et al. (2009)).

Here we consider easily computable estimates of the maximum error introduced,

which are based on similar ideas as in Bemporad and Filippi (2006). These esti-

mates are upper limits of the exact maximum error (3.14).

3.6.1 Approximation error estimated via a lower bound on the
optimal cost function

Let VS =
{
v(1), ..., v(n+1)

}
be the vertices of the simplex S .

Assume that J∗(v) is differentiable for all v ∈ VS . Let (u∗
i , λ

∗
i), i = 1, ..., n + 1

be the solution of the KKT conditions at the vertices. Then, using the optimal

Lagrange multipliers, the optimal input sequence at each vertex can be expressed as

affine function of the vertex where it is computed (cf. Chapter 2)

u∗
i = Liv

(i) + gi i = 1, ..., n+ 1 (3.15)

Using (3.15) in the cost function of (3.10) and differentiating with respect to x, a

subgradient of J∗(x) in each vertex is given by

∇J∗
i = 2F∇iv

(i) + Y∇i (3.16)

where F∇i = LT
i HLi + 2FLi + Y , Y∇i = 2LT

i Hgi + 2Fgi.
From convexity of J∗(x) it follows that

J∗(x) ≥ J∗(v(i)) +∇J∗T
i (x− v(i)) (3.17)

for all i ∈ {1, 2, ..., n+ 1}. Then, the piecewise linear function

JS (x) = max
i=1,...,n+1

(
J∗(v(i)) +∇J∗T

i (x− v(i))
)

(3.18)

defined for all x ∈ S is a lower bound of J∗(x) inside S (Figures 3.3, 3.5).

By construction it follows that

J̃S (x) ≥ J∗(x) ≥ JS (x) ∀x ∈ S (3.19)

where the three functions coincide at the vertices of S .

Therefore, it follows that

εmax(S) � max
x∈S

{
J̃S (x)− JS (x)

}
(3.20)

46 Approximate Explicit MPC via Delaunay Tessellations

in addition to the piecewise linear lower bounds often used in Branch&Bound based

optimization for indefinite QPs, there are also more accurate convex lower bounds

based on semidefinite programming (Hovd et al. (2009)).

Here we consider easily computable estimates of the maximum error introduced,

which are based on similar ideas as in Bemporad and Filippi (2006). These esti-

mates are upper limits of the exact maximum error (3.14).

3.6.1 Approximation error estimated via a lower bound on the
optimal cost function

Let VS =
{
v(1), ..., v(n+1)

}
be the vertices of the simplex S .

Assume that J∗(v) is differentiable for all v ∈ VS . Let (u∗
i , λ

∗
i), i = 1, ..., n + 1

be the solution of the KKT conditions at the vertices. Then, using the optimal

Lagrange multipliers, the optimal input sequence at each vertex can be expressed as

affine function of the vertex where it is computed (cf. Chapter 2)

u∗
i = Liv

(i) + gi i = 1, ..., n+ 1 (3.15)

Using (3.15) in the cost function of (3.10) and differentiating with respect to x, a

subgradient of J∗(x) in each vertex is given by

∇J∗
i = 2F∇iv

(i) + Y∇i (3.16)

where F∇i = LT
i HLi + 2FLi + Y , Y∇i = 2LT

i Hgi + 2Fgi.
From convexity of J∗(x) it follows that

J∗(x) ≥ J∗(v(i)) +∇J∗T
i (x− v(i)) (3.17)

for all i ∈ {1, 2, ..., n+ 1}. Then, the piecewise linear function

JS (x) = max
i=1,...,n+1

(
J∗(v(i)) +∇J∗T

i (x− v(i))
)

(3.18)

defined for all x ∈ S is a lower bound of J∗(x) inside S (Figures 3.3, 3.5).

By construction it follows that

J̃S (x) ≥ J∗(x) ≥ JS (x) ∀x ∈ S (3.19)

where the three functions coincide at the vertices of S .

Therefore, it follows that

εmax(S) � max
x∈S

{
J̃S (x)− JS (x)

}
(3.20)

46 Approximate Explicit MPC via Delaunay Tessellations

in addition to the piecewise linear lower bounds often used in Branch&Bound based

optimization for indefinite QPs, there are also more accurate convex lower bounds

based on semidefinite programming (Hovd et al. (2009)).

Here we consider easily computable estimates of the maximum error introduced,

which are based on similar ideas as in Bemporad and Filippi (2006). These esti-

mates are upper limits of the exact maximum error (3.14).

3.6.1 Approximation error estimated via a lower bound on the
optimal cost function

Let VS =
{
v(1), ..., v(n+1)

}
be the vertices of the simplex S .

Assume that J∗(v) is differentiable for all v ∈ VS . Let (u∗
i , λ

∗
i), i = 1, ..., n + 1

be the solution of the KKT conditions at the vertices. Then, using the optimal

Lagrange multipliers, the optimal input sequence at each vertex can be expressed as

affine function of the vertex where it is computed (cf. Chapter 2)

u∗
i = Liv

(i) + gi i = 1, ..., n+ 1 (3.15)

Using (3.15) in the cost function of (3.10) and differentiating with respect to x, a

subgradient of J∗(x) in each vertex is given by

∇J∗
i = 2F∇iv

(i) + Y∇i (3.16)

where F∇i = LT
i HLi + 2FLi + Y , Y∇i = 2LT

i Hgi + 2Fgi.
From convexity of J∗(x) it follows that

J∗(x) ≥ J∗(v(i)) +∇J∗T
i (x− v(i)) (3.17)

for all i ∈ {1, 2, ..., n+ 1}. Then, the piecewise linear function

JS (x) = max
i=1,...,n+1

(
J∗(v(i)) +∇J∗T

i (x− v(i))
)

(3.18)

defined for all x ∈ S is a lower bound of J∗(x) inside S (Figures 3.3, 3.5).

By construction it follows that

J̃S (x) ≥ J∗(x) ≥ JS (x) ∀x ∈ S (3.19)

where the three functions coincide at the vertices of S .

Therefore, it follows that

εmax(S) � max
x∈S

{
J̃S (x)− JS (x)

}
(3.20)

46 Approximate Explicit MPC via Delaunay Tessellations

in addition to the piecewise linear lower bounds often used in Branch&Bound based

optimization for indefinite QPs, there are also more accurate convex lower bounds

based on semidefinite programming (Hovd et al. (2009)).

Here we consider easily computable estimates of the maximum error introduced,

which are based on similar ideas as in Bemporad and Filippi (2006). These esti-

mates are upper limits of the exact maximum error (3.14).

3.6.1 Approximation error estimated via a lower bound on the
optimal cost function

Let VS =
{
v(1), ..., v(n+1)

}
be the vertices of the simplex S .

Assume that J∗(v) is differentiable for all v ∈ VS . Let (u∗
i , λ

∗
i), i = 1, ..., n + 1

be the solution of the KKT conditions at the vertices. Then, using the optimal

Lagrange multipliers, the optimal input sequence at each vertex can be expressed as

affine function of the vertex where it is computed (cf. Chapter 2)

u∗
i = Liv

(i) + gi i = 1, ..., n+ 1 (3.15)

Using (3.15) in the cost function of (3.10) and differentiating with respect to x, a

subgradient of J∗(x) in each vertex is given by

∇J∗
i = 2F∇iv

(i) + Y∇i (3.16)

where F∇i = LT
i HLi + 2FLi + Y , Y∇i = 2LT

i Hgi + 2Fgi.
From convexity of J∗(x) it follows that

J∗(x) ≥ J∗(v(i)) +∇J∗T
i (x− v(i)) (3.17)

for all i ∈ {1, 2, ..., n+ 1}. Then, the piecewise linear function

JS (x) = max
i=1,...,n+1

(
J∗(v(i)) +∇J∗T

i (x− v(i))
)

(3.18)

defined for all x ∈ S is a lower bound of J∗(x) inside S (Figures 3.3, 3.5).

By construction it follows that

J̃S (x) ≥ J∗(x) ≥ JS (x) ∀x ∈ S (3.19)

where the three functions coincide at the vertices of S .

Therefore, it follows that

εmax(S) � max
x∈S

{
J̃S (x)− JS (x)

}
(3.20)

3.6. Approximation Error 47

is an upper bound of the maximum error introduced within S (Johansen and Gran-

charova (2003), Bemporad and Filippi (2006)).

The point xε = argmaxx∈S
(
J̃S (x)− JS (x)

)
is the state corresponding to εmax(S).

Note that the problem of finding xε and εmax(S) within the simplex S is made quite

simple by the nature of the lower bounding function JS and by the function J̃S
being convex quadratic within S .

The piecewise linear function JS can be defined by geometric methods. For each

vertex v(i) ∈ VS , the associated subgradient characterizes a half-plane in n + 1-

dimension

hi = J∗(v(i)) +∇J∗T
i (x− v(i)) (3.21)

Projecting the intersections of these half-planes on the state-space produces the par-

tition of the simplex which defines JS (Figure 3.5): each piece of the partition has

associated the corresponding linear function (3.21).

Remark 2. In the definitions of the subgradients (3.16) it has been implicitly as-

sumed that the function J∗(x) is differentiable at the vertices. This assumption,

however, may be violated at some vertex, since the function J∗ is (continuous)

piecewise quadratic over the feasible set, and therefore points exist where it is not

differentiable. This corresponds to the degenerate case described in Bemporad et al.

(2002b). The optimal solution of the QP (3.10) may result in a linearly dependent

set of active constraints for some of the vertices of the simplex considered. This is

the case, for instance, when a vertex is located on a boundary between two or more

critical regions. Therefore, for the degenerate vertex more than one subgradient of

J∗ will exist, particularly one for each critical region containing the vertex. Given

the definition (3.18) of JS , considering all the subgradients associated to a vertex

will deal with the problem. However, this makes more involved defining geomet-

rically JS . For each vertex, several half-planes (3.21) can be determined (some of

those may not be relevant within the simplex under consideration) and the mutual

intersections also need to be considered.

3.6.2 Approximation error estimated via an upper bound on the
suboptimal cost function

Let VS =
{
v(1), ..., v(n+1)

}
be the vertices of S . Define

J̄S (x(t)) = F̄ T
S x(t) + ȲS (3.22)

3.6. Approximation Error 47

is an upper bound of the maximum error introduced within S (Johansen and Gran-

charova (2003), Bemporad and Filippi (2006)).

The point xε = argmaxx∈S
(
J̃S (x)− JS (x)

)
is the state corresponding to εmax(S).

Note that the problem of finding xε and εmax(S) within the simplex S is made quite

simple by the nature of the lower bounding function JS and by the function J̃S
being convex quadratic within S .

The piecewise linear function JS can be defined by geometric methods. For each

vertex v(i) ∈ VS , the associated subgradient characterizes a half-plane in n + 1-

dimension

hi = J∗(v(i)) +∇J∗T
i (x− v(i)) (3.21)

Projecting the intersections of these half-planes on the state-space produces the par-

tition of the simplex which defines JS (Figure 3.5): each piece of the partition has

associated the corresponding linear function (3.21).

Remark 2. In the definitions of the subgradients (3.16) it has been implicitly as-

sumed that the function J∗(x) is differentiable at the vertices. This assumption,

however, may be violated at some vertex, since the function J∗ is (continuous)

piecewise quadratic over the feasible set, and therefore points exist where it is not

differentiable. This corresponds to the degenerate case described in Bemporad et al.

(2002b). The optimal solution of the QP (3.10) may result in a linearly dependent

set of active constraints for some of the vertices of the simplex considered. This is

the case, for instance, when a vertex is located on a boundary between two or more

critical regions. Therefore, for the degenerate vertex more than one subgradient of

J∗ will exist, particularly one for each critical region containing the vertex. Given

the definition (3.18) of JS , considering all the subgradients associated to a vertex

will deal with the problem. However, this makes more involved defining geomet-

rically JS . For each vertex, several half-planes (3.21) can be determined (some of

those may not be relevant within the simplex under consideration) and the mutual

intersections also need to be considered.

3.6.2 Approximation error estimated via an upper bound on the
suboptimal cost function

Let VS =
{
v(1), ..., v(n+1)

}
be the vertices of S . Define

J̄S (x(t)) = F̄ T
S x(t) + ȲS (3.22)

3.6. Approximation Error 47

is an upper bound of the maximum error introduced within S (Johansen and Gran-

charova (2003), Bemporad and Filippi (2006)).

The point xε = argmaxx∈S
(
J̃S (x)− JS (x)

)
is the state corresponding to εmax(S).

Note that the problem of finding xε and εmax(S) within the simplex S is made quite

simple by the nature of the lower bounding function JS and by the function J̃S
being convex quadratic within S .

The piecewise linear function JS can be defined by geometric methods. For each

vertex v(i) ∈ VS , the associated subgradient characterizes a half-plane in n + 1-

dimension

hi = J∗(v(i)) +∇J∗T
i (x− v(i)) (3.21)

Projecting the intersections of these half-planes on the state-space produces the par-

tition of the simplex which defines JS (Figure 3.5): each piece of the partition has

associated the corresponding linear function (3.21).

Remark 2. In the definitions of the subgradients (3.16) it has been implicitly as-

sumed that the function J∗(x) is differentiable at the vertices. This assumption,

however, may be violated at some vertex, since the function J∗ is (continuous)

piecewise quadratic over the feasible set, and therefore points exist where it is not

differentiable. This corresponds to the degenerate case described in Bemporad et al.

(2002b). The optimal solution of the QP (3.10) may result in a linearly dependent

set of active constraints for some of the vertices of the simplex considered. This is

the case, for instance, when a vertex is located on a boundary between two or more

critical regions. Therefore, for the degenerate vertex more than one subgradient of

J∗ will exist, particularly one for each critical region containing the vertex. Given

the definition (3.18) of JS , considering all the subgradients associated to a vertex

will deal with the problem. However, this makes more involved defining geomet-

rically JS . For each vertex, several half-planes (3.21) can be determined (some of

those may not be relevant within the simplex under consideration) and the mutual

intersections also need to be considered.

3.6.2 Approximation error estimated via an upper bound on the
suboptimal cost function

Let VS =
{
v(1), ..., v(n+1)

}
be the vertices of S . Define

J̄S (x(t)) = F̄ T
S x(t) + ȲS (3.22)

3.6. Approximation Error 47

is an upper bound of the maximum error introduced within S (Johansen and Gran-

charova (2003), Bemporad and Filippi (2006)).

The point xε = argmaxx∈S
(
J̃S (x)− JS (x)

)
is the state corresponding to εmax(S).

Note that the problem of finding xε and εmax(S) within the simplex S is made quite

simple by the nature of the lower bounding function JS and by the function J̃S
being convex quadratic within S .

The piecewise linear function JS can be defined by geometric methods. For each

vertex v(i) ∈ VS , the associated subgradient characterizes a half-plane in n + 1-

dimension

hi = J∗(v(i)) +∇J∗T
i (x− v(i)) (3.21)

Projecting the intersections of these half-planes on the state-space produces the par-

tition of the simplex which defines JS (Figure 3.5): each piece of the partition has

associated the corresponding linear function (3.21).

Remark 2. In the definitions of the subgradients (3.16) it has been implicitly as-

sumed that the function J∗(x) is differentiable at the vertices. This assumption,

however, may be violated at some vertex, since the function J∗ is (continuous)

piecewise quadratic over the feasible set, and therefore points exist where it is not

differentiable. This corresponds to the degenerate case described in Bemporad et al.

(2002b). The optimal solution of the QP (3.10) may result in a linearly dependent

set of active constraints for some of the vertices of the simplex considered. This is

the case, for instance, when a vertex is located on a boundary between two or more

critical regions. Therefore, for the degenerate vertex more than one subgradient of

J∗ will exist, particularly one for each critical region containing the vertex. Given

the definition (3.18) of JS , considering all the subgradients associated to a vertex

will deal with the problem. However, this makes more involved defining geomet-

rically JS . For each vertex, several half-planes (3.21) can be determined (some of

those may not be relevant within the simplex under consideration) and the mutual

intersections also need to be considered.

3.6.2 Approximation error estimated via an upper bound on the
suboptimal cost function

Let VS =
{
v(1), ..., v(n+1)

}
be the vertices of S . Define

J̄S (x(t)) = F̄ T
S x(t) + ȲS (3.22)

48 Approximate Explicit MPC via Delaunay Tessellations

where F̄S and ȲS are obtained by⎡
⎢⎣

v(1)
T

1
...

...

v(n+1)T 1

⎤
⎥⎦
⎡
⎣ F̄S

ȲS

⎤
⎦ =

⎡
⎢⎣

J∗ (v(1))
...

J∗ (v(n+1)
)
⎤
⎥⎦ . (3.23)

From convexity of J̃S(x) and J∗(x) it is immediate to show that (Bemporad and

Filippi (2006)):

J̄S (x) ≥ J̃S (x) ≥ J∗(x) ∀x ∈ S (3.24)

(Figure 3.4).

Then it follows that

ε̄max(S) � max
x∈S
{
J̄S (x)− J∗(x)

}
(3.25)

is an upper bound of the maximum error introduced within S . Considering the

initial state x as an optimization variable, we can define

θ �
[
x
u

]

and rewrite the cost function of (3.10) as

J(θ) = θTHbθ (3.26)

where Hb =
[
Â B̂

]T
Q̂
[
Â B̂

]
+ diag

(
On×n, R̂

)
, and Â, B̂, Q̂, R̂ as defined in

Chapter 2. The constraints can also be rewritten accordingly as

Gbθ ≤ w (3.27)

where Gb = [−E G].

Theorem 4. The upper bound ε̄max(S) on the maximum absolute error inside S is
given by the optimal value of the QP

ε̄max(S) = −minθ θTHε̄θ + F T
ε̄ θ + Yε̄

s.t. Gbθ ≤ w,
[
DS O(n+1)×(rN)

]
θ ≤ dS

(3.28)

where

Hε̄ = Hb, Fε̄ =

[
−F̄S
0

]
, Yε̄ = −ȲS .

Moreover, if

θ∗ =
[
x∗

u∗

]
is the optimal solution of (3.28), then u∗ is the optimal solution of (3.10) at x∗.

48 Approximate Explicit MPC via Delaunay Tessellations

where F̄S and ȲS are obtained by⎡
⎢⎣

v(1)
T

1
...

...

v(n+1)T 1

⎤
⎥⎦
⎡
⎣ F̄S

ȲS

⎤
⎦ =

⎡
⎢⎣

J∗ (v(1))
...

J∗ (v(n+1)
)
⎤
⎥⎦ . (3.23)

From convexity of J̃S(x) and J∗(x) it is immediate to show that (Bemporad and

Filippi (2006)):

J̄S (x) ≥ J̃S (x) ≥ J∗(x) ∀x ∈ S (3.24)

(Figure 3.4).

Then it follows that

ε̄max(S) � max
x∈S
{
J̄S (x)− J∗(x)

}
(3.25)

is an upper bound of the maximum error introduced within S . Considering the

initial state x as an optimization variable, we can define

θ �
[
x
u

]

and rewrite the cost function of (3.10) as

J(θ) = θTHbθ (3.26)

where Hb =
[
Â B̂

]T
Q̂
[
Â B̂

]
+ diag

(
On×n, R̂

)
, and Â, B̂, Q̂, R̂ as defined in

Chapter 2. The constraints can also be rewritten accordingly as

Gbθ ≤ w (3.27)

where Gb = [−E G].

Theorem 4. The upper bound ε̄max(S) on the maximum absolute error inside S is
given by the optimal value of the QP

ε̄max(S) = −minθ θTHε̄θ + F T
ε̄ θ + Yε̄

s.t. Gbθ ≤ w,
[
DS O(n+1)×(rN)

]
θ ≤ dS

(3.28)

where

Hε̄ = Hb, Fε̄ =

[
−F̄S
0

]
, Yε̄ = −ȲS .

Moreover, if

θ∗ =
[
x∗

u∗

]
is the optimal solution of (3.28), then u∗ is the optimal solution of (3.10) at x∗.

48 Approximate Explicit MPC via Delaunay Tessellations

where F̄S and ȲS are obtained by⎡
⎢⎣

v(1)
T

1
...

...

v(n+1)T 1

⎤
⎥⎦
⎡
⎣ F̄S

ȲS

⎤
⎦ =

⎡
⎢⎣

J∗ (v(1))
...

J∗ (v(n+1)
)
⎤
⎥⎦ . (3.23)

From convexity of J̃S(x) and J∗(x) it is immediate to show that (Bemporad and

Filippi (2006)):

J̄S (x) ≥ J̃S (x) ≥ J∗(x) ∀x ∈ S (3.24)

(Figure 3.4).

Then it follows that

ε̄max(S) � max
x∈S
{
J̄S (x)− J∗(x)

}
(3.25)

is an upper bound of the maximum error introduced within S . Considering the

initial state x as an optimization variable, we can define

θ �
[
x
u

]

and rewrite the cost function of (3.10) as

J(θ) = θTHbθ (3.26)

where Hb =
[
Â B̂

]T
Q̂
[
Â B̂

]
+ diag

(
On×n, R̂

)
, and Â, B̂, Q̂, R̂ as defined in

Chapter 2. The constraints can also be rewritten accordingly as

Gbθ ≤ w (3.27)

where Gb = [−E G].

Theorem 4. The upper bound ε̄max(S) on the maximum absolute error inside S is
given by the optimal value of the QP

ε̄max(S) = −minθ θTHε̄θ + F T
ε̄ θ + Yε̄

s.t. Gbθ ≤ w,
[
DS O(n+1)×(rN)

]
θ ≤ dS

(3.28)

where

Hε̄ = Hb, Fε̄ =

[
−F̄S
0

]
, Yε̄ = −ȲS .

Moreover, if

θ∗ =
[
x∗

u∗

]
is the optimal solution of (3.28), then u∗ is the optimal solution of (3.10) at x∗.

48 Approximate Explicit MPC via Delaunay Tessellations

where F̄S and ȲS are obtained by⎡
⎢⎣

v(1)
T

1
...

...

v(n+1)T 1

⎤
⎥⎦
⎡
⎣ F̄S

ȲS

⎤
⎦ =

⎡
⎢⎣

J∗ (v(1))
...

J∗ (v(n+1)
)
⎤
⎥⎦ . (3.23)

From convexity of J̃S(x) and J∗(x) it is immediate to show that (Bemporad and

Filippi (2006)):

J̄S (x) ≥ J̃S (x) ≥ J∗(x) ∀x ∈ S (3.24)

(Figure 3.4).

Then it follows that

ε̄max(S) � max
x∈S
{
J̄S (x)− J∗(x)

}
(3.25)

is an upper bound of the maximum error introduced within S . Considering the

initial state x as an optimization variable, we can define

θ �
[
x
u

]

and rewrite the cost function of (3.10) as

J(θ) = θTHbθ (3.26)

where Hb =
[
Â B̂

]T
Q̂
[
Â B̂

]
+ diag

(
On×n, R̂

)
, and Â, B̂, Q̂, R̂ as defined in

Chapter 2. The constraints can also be rewritten accordingly as

Gbθ ≤ w (3.27)

where Gb = [−E G].

Theorem 4. The upper bound ε̄max(S) on the maximum absolute error inside S is
given by the optimal value of the QP

ε̄max(S) = −minθ θTHε̄θ + F T
ε̄ θ + Yε̄

s.t. Gbθ ≤ w,
[
DS O(n+1)×(rN)

]
θ ≤ dS

(3.28)

where

Hε̄ = Hb, Fε̄ =

[
−F̄S
0

]
, Yε̄ = −ȲS .

Moreover, if

θ∗ =
[
x∗

u∗

]
is the optimal solution of (3.28), then u∗ is the optimal solution of (3.10) at x∗.

3.7. The Algorithm 49

Figure 3.3: Approximation of the value cost function in convex parametric pro-

gramming: the scalar case.

Proof. From (3.22) and (3.26) we can see that

θTHε̄θ + F T
ε̄ θ + Yε̄ = J(θ)− J̄S (x). (3.29)

Then by (3.25) we have

ε̄max(S) = maxx∈S
{
J̄S (x)− J∗(x)

}
= −minx∈S

{
−J̄S (x) + J∗(x)

}
= −minx∈S

{
−J̄S (x) + minu {J(x, u) : Gu ≤ w + Ex}

}
= −minx,u

{
−J̄S (x) + J(x, u) : Gu ≤ w + Ex, x ∈ S

} (3.30)

and (3.28) follows noting that [
x
u

]
= θ.

The last statement of the theorem can be simply proven by contradiction.

Note that Hε̄ is a positive semidefinite matrix because of the assumptions on Q and

R.

3.7 The Algorithm

Before presenting the algorithm, the concepts of virtual constraints and virtual ver-
tices need to be introduced, which are instrumental to overcome the problem of

3.7. The Algorithm 49

Figure 3.3: Approximation of the value cost function in convex parametric pro-

gramming: the scalar case.

Proof. From (3.22) and (3.26) we can see that

θTHε̄θ + F T
ε̄ θ + Yε̄ = J(θ)− J̄S (x). (3.29)

Then by (3.25) we have

ε̄max(S) = maxx∈S
{
J̄S (x)− J∗(x)

}
= −minx∈S

{
−J̄S (x) + J∗(x)

}
= −minx∈S

{
−J̄S (x) + minu {J(x, u) : Gu ≤ w + Ex}

}
= −minx,u

{
−J̄S (x) + J(x, u) : Gu ≤ w + Ex, x ∈ S

} (3.30)

and (3.28) follows noting that [
x
u

]
= θ.

The last statement of the theorem can be simply proven by contradiction.

Note that Hε̄ is a positive semidefinite matrix because of the assumptions on Q and

R.

3.7 The Algorithm

Before presenting the algorithm, the concepts of virtual constraints and virtual ver-
tices need to be introduced, which are instrumental to overcome the problem of

3.7. The Algorithm 49

Figure 3.3: Approximation of the value cost function in convex parametric pro-

gramming: the scalar case.

Proof. From (3.22) and (3.26) we can see that

θTHε̄θ + F T
ε̄ θ + Yε̄ = J(θ)− J̄S (x). (3.29)

Then by (3.25) we have

ε̄max(S) = maxx∈S
{
J̄S (x)− J∗(x)

}
= −minx∈S

{
−J̄S (x) + J∗(x)

}
= −minx∈S

{
−J̄S (x) + minu {J(x, u) : Gu ≤ w + Ex}

}
= −minx,u

{
−J̄S (x) + J(x, u) : Gu ≤ w + Ex, x ∈ S

} (3.30)

and (3.28) follows noting that [
x
u

]
= θ.

The last statement of the theorem can be simply proven by contradiction.

Note that Hε̄ is a positive semidefinite matrix because of the assumptions on Q and

R.

3.7 The Algorithm

Before presenting the algorithm, the concepts of virtual constraints and virtual ver-
tices need to be introduced, which are instrumental to overcome the problem of

3.7. The Algorithm 49

Figure 3.3: Approximation of the value cost function in convex parametric pro-

gramming: the scalar case.

Proof. From (3.22) and (3.26) we can see that

θTHε̄θ + F T
ε̄ θ + Yε̄ = J(θ)− J̄S (x). (3.29)

Then by (3.25) we have

ε̄max(S) = maxx∈S
{
J̄S (x)− J∗(x)

}
= −minx∈S

{
−J̄S (x) + J∗(x)

}
= −minx∈S

{
−J̄S (x) + minu {J(x, u) : Gu ≤ w + Ex}

}
= −minx,u

{
−J̄S (x) + J(x, u) : Gu ≤ w + Ex, x ∈ S

} (3.30)

and (3.28) follows noting that [
x
u

]
= θ.

The last statement of the theorem can be simply proven by contradiction.

Note that Hε̄ is a positive semidefinite matrix because of the assumptions on Q and

R.

3.7 The Algorithm

Before presenting the algorithm, the concepts of virtual constraints and virtual ver-
tices need to be introduced, which are instrumental to overcome the problem of

50 Approximate Explicit MPC via Delaunay Tessellations

partitioning a non-convex region into convex subregions (Figure 3.1).

Let Pin and Pext be two polytopes such that Pin ⊂ Pext. Consider the half-space

representation of Pin

Pin = {x ∈ R
n|Dx ≤ d} . (3.31)

The facet i is represented as

fi = Pin ∩
{
x ∈ R

n|D(i,·)x = d(i)
}

(3.32)

where D(i,·) indicates the ith row of D and d(i) the ith element of d. Given two facets

of a polyhedral set, they are said to be contiguous if they have a ridge in common.

Denote with Fc(i) the index set of all the facets of Pin contiguous to fi.

Definition 19 (Virtual constraint). For all j ∈ Fc(i) we define the half-spaces

Dijx ≥ dij (3.33)

where

Dij =

⎡
⎢⎢⎣

D(i,1)

ρi
− D(j,1)

ρj
...

D(i,n)

ρi
− D(j,n)

ρj

⎤
⎥⎥⎦ , dij = d(i)

ρi
− d(j)

ρj

and ρi =
√∑n

k=1 D
2
(i,k), ρj =

√∑n
k=1 D

2
(j,k).

We call (3.33) the virtual constraints relative to fi and its contiguous fj .

Definition 20 (Visible vertices from a facet). Consider the polytope

Psect(i) =
{
x ∈ Pext|D(i,·)x ≥ d(i), Dijx ≥ dij ∀j ∈ Fc(i)

}
. (3.34)

The vertices of Pext visible from fi are all the vertices of Psect(i) except the com-

mon vertices with Pin.

The definition just given of “vertices of Pext visible from fi” also includes vertices

that are not real vertices of Pext. These vertices are called virtual vertices.

A geometric interpretation can be given in the 2-dimensional state-spaces, where

a facet is a line and the virtual constraint relative to two facets coincides with the

bisector of the angle between the two lines (Figure 3.1).

50 Approximate Explicit MPC via Delaunay Tessellations

partitioning a non-convex region into convex subregions (Figure 3.1).

Let Pin and Pext be two polytopes such that Pin ⊂ Pext. Consider the half-space

representation of Pin

Pin = {x ∈ R
n|Dx ≤ d} . (3.31)

The facet i is represented as

fi = Pin ∩
{
x ∈ R

n|D(i,·)x = d(i)
}

(3.32)

where D(i,·) indicates the ith row of D and d(i) the ith element of d. Given two facets

of a polyhedral set, they are said to be contiguous if they have a ridge in common.

Denote with Fc(i) the index set of all the facets of Pin contiguous to fi.

Definition 19 (Virtual constraint). For all j ∈ Fc(i) we define the half-spaces

Dijx ≥ dij (3.33)

where

Dij =

⎡
⎢⎢⎣

D(i,1)

ρi
− D(j,1)

ρj
...

D(i,n)

ρi
− D(j,n)

ρj

⎤
⎥⎥⎦ , dij = d(i)

ρi
− d(j)

ρj

and ρi =
√∑n

k=1 D
2
(i,k), ρj =

√∑n
k=1 D

2
(j,k).

We call (3.33) the virtual constraints relative to fi and its contiguous fj .

Definition 20 (Visible vertices from a facet). Consider the polytope

Psect(i) =
{
x ∈ Pext|D(i,·)x ≥ d(i), Dijx ≥ dij ∀j ∈ Fc(i)

}
. (3.34)

The vertices of Pext visible from fi are all the vertices of Psect(i) except the com-

mon vertices with Pin.

The definition just given of “vertices of Pext visible from fi” also includes vertices

that are not real vertices of Pext. These vertices are called virtual vertices.

A geometric interpretation can be given in the 2-dimensional state-spaces, where

a facet is a line and the virtual constraint relative to two facets coincides with the

bisector of the angle between the two lines (Figure 3.1).

50 Approximate Explicit MPC via Delaunay Tessellations

partitioning a non-convex region into convex subregions (Figure 3.1).

Let Pin and Pext be two polytopes such that Pin ⊂ Pext. Consider the half-space

representation of Pin

Pin = {x ∈ R
n|Dx ≤ d} . (3.31)

The facet i is represented as

fi = Pin ∩
{
x ∈ R

n|D(i,·)x = d(i)
}

(3.32)

where D(i,·) indicates the ith row of D and d(i) the ith element of d. Given two facets

of a polyhedral set, they are said to be contiguous if they have a ridge in common.

Denote with Fc(i) the index set of all the facets of Pin contiguous to fi.

Definition 19 (Virtual constraint). For all j ∈ Fc(i) we define the half-spaces

Dijx ≥ dij (3.33)

where

Dij =

⎡
⎢⎢⎣

D(i,1)

ρi
− D(j,1)

ρj
...

D(i,n)

ρi
− D(j,n)

ρj

⎤
⎥⎥⎦ , dij = d(i)

ρi
− d(j)

ρj

and ρi =
√∑n

k=1 D
2
(i,k), ρj =

√∑n
k=1 D

2
(j,k).

We call (3.33) the virtual constraints relative to fi and its contiguous fj .

Definition 20 (Visible vertices from a facet). Consider the polytope

Psect(i) =
{
x ∈ Pext|D(i,·)x ≥ d(i), Dijx ≥ dij ∀j ∈ Fc(i)

}
. (3.34)

The vertices of Pext visible from fi are all the vertices of Psect(i) except the com-

mon vertices with Pin.

The definition just given of “vertices of Pext visible from fi” also includes vertices

that are not real vertices of Pext. These vertices are called virtual vertices.

A geometric interpretation can be given in the 2-dimensional state-spaces, where

a facet is a line and the virtual constraint relative to two facets coincides with the

bisector of the angle between the two lines (Figure 3.1).

50 Approximate Explicit MPC via Delaunay Tessellations

partitioning a non-convex region into convex subregions (Figure 3.1).

Let Pin and Pext be two polytopes such that Pin ⊂ Pext. Consider the half-space

representation of Pin

Pin = {x ∈ R
n|Dx ≤ d} . (3.31)

The facet i is represented as

fi = Pin ∩
{
x ∈ R

n|D(i,·)x = d(i)
}

(3.32)

where D(i,·) indicates the ith row of D and d(i) the ith element of d. Given two facets

of a polyhedral set, they are said to be contiguous if they have a ridge in common.

Denote with Fc(i) the index set of all the facets of Pin contiguous to fi.

Definition 19 (Virtual constraint). For all j ∈ Fc(i) we define the half-spaces

Dijx ≥ dij (3.33)

where

Dij =

⎡
⎢⎢⎣

D(i,1)

ρi
− D(j,1)

ρj
...

D(i,n)

ρi
− D(j,n)

ρj

⎤
⎥⎥⎦ , dij = d(i)

ρi
− d(j)

ρj

and ρi =
√∑n

k=1 D
2
(i,k), ρj =

√∑n
k=1 D

2
(j,k).

We call (3.33) the virtual constraints relative to fi and its contiguous fj .

Definition 20 (Visible vertices from a facet). Consider the polytope

Psect(i) =
{
x ∈ Pext|D(i,·)x ≥ d(i), Dijx ≥ dij ∀j ∈ Fc(i)

}
. (3.34)

The vertices of Pext visible from fi are all the vertices of Psect(i) except the com-

mon vertices with Pin.

The definition just given of “vertices of Pext visible from fi” also includes vertices

that are not real vertices of Pext. These vertices are called virtual vertices.

A geometric interpretation can be given in the 2-dimensional state-spaces, where

a facet is a line and the virtual constraint relative to two facets coincides with the

bisector of the angle between the two lines (Figure 3.1).

3.7. The Algorithm 51

Remark 3. Note that this approach of partitioning the non-convex region Rrest into

convex subregions maintains a natural neighbor relationship of the set of points dis-

tributed among the convex subsets.

The procedure for computing the approximate explicit MPC law can be summarized

in Algorithm 2.

We indicate with Emax(S) a function which measures the level of accuracy achieved

in each simplex S in terms of the maximum absolute error introduced by the cor-

responding suboptimal controller. Without any particular complication, we can as-

sume that the function provides also the state where this error occurs. This function

can be either exactly the maximum error (3.14) or an approximation of it by means

of the upper bounds (3.20) or (3.25).

For each simplex, the suboptimal controller is readily given by (3.11).

Algorithm 2: Approximate explicit MPC

Input: The feasible set to be partitioned Pext = XF . The set where the

optimal solution is the LQR Pin = Ω. The prescribed tolerance

τε > 0 for the cost function error.

Output: The suboptimal PWA controller over the corresponding partition

D
P
=
{
S1, ..., SnD

}
such that Pext =

⋃
j=1...nD

Sj .

Set the first partition of DP to be Pin. The controller is the LQR;1

compute the optimum at the vertices and at the virtual vertices of Pext;2

foreach facet fi of Pin do3

initialize the set Vtess with the vertices of the facet fi and all the vertices4

of Pext visible from fi;
compute the initial DT(Vtess);5

foreach simplex S ∈ DT(Vtess) do6

compute the maximum error Emax(S);7

end8

while maxS∈DT(Vtess) {Emax(S)− τε} > 0 do9

add to Vtess the state xε where max {Emax(S)− τε} is achieved;10

update DT(Vtess);11

compute Emax(S) for the new simplices;12

end13

add DT(Vtess) to D
P

;14

end15

With respect to the MPC optimization problem (3.7-3.8), we have the following

theorem.

3.7. The Algorithm 51

Remark 3. Note that this approach of partitioning the non-convex region Rrest into

convex subregions maintains a natural neighbor relationship of the set of points dis-

tributed among the convex subsets.

The procedure for computing the approximate explicit MPC law can be summarized

in Algorithm 2.

We indicate with Emax(S) a function which measures the level of accuracy achieved

in each simplex S in terms of the maximum absolute error introduced by the cor-

responding suboptimal controller. Without any particular complication, we can as-

sume that the function provides also the state where this error occurs. This function

can be either exactly the maximum error (3.14) or an approximation of it by means

of the upper bounds (3.20) or (3.25).

For each simplex, the suboptimal controller is readily given by (3.11).

Algorithm 2: Approximate explicit MPC

Input: The feasible set to be partitioned Pext = XF . The set where the

optimal solution is the LQR Pin = Ω. The prescribed tolerance

τε > 0 for the cost function error.

Output: The suboptimal PWA controller over the corresponding partition

D
P
=
{
S1, ..., SnD

}
such that Pext =

⋃
j=1...nD

Sj .

Set the first partition of DP to be Pin. The controller is the LQR;1

compute the optimum at the vertices and at the virtual vertices of Pext;2

foreach facet fi of Pin do3

initialize the set Vtess with the vertices of the facet fi and all the vertices4

of Pext visible from fi;
compute the initial DT(Vtess);5

foreach simplex S ∈ DT(Vtess) do6

compute the maximum error Emax(S);7

end8

while maxS∈DT(Vtess) {Emax(S)− τε} > 0 do9

add to Vtess the state xε where max {Emax(S)− τε} is achieved;10

update DT(Vtess);11

compute Emax(S) for the new simplices;12

end13

add DT(Vtess) to D
P

;14

end15

With respect to the MPC optimization problem (3.7-3.8), we have the following

theorem.

3.7. The Algorithm 51

Remark 3. Note that this approach of partitioning the non-convex region Rrest into

convex subregions maintains a natural neighbor relationship of the set of points dis-

tributed among the convex subsets.

The procedure for computing the approximate explicit MPC law can be summarized

in Algorithm 2.

We indicate with Emax(S) a function which measures the level of accuracy achieved

in each simplex S in terms of the maximum absolute error introduced by the cor-

responding suboptimal controller. Without any particular complication, we can as-

sume that the function provides also the state where this error occurs. This function

can be either exactly the maximum error (3.14) or an approximation of it by means

of the upper bounds (3.20) or (3.25).

For each simplex, the suboptimal controller is readily given by (3.11).

Algorithm 2: Approximate explicit MPC

Input: The feasible set to be partitioned Pext = XF . The set where the

optimal solution is the LQR Pin = Ω. The prescribed tolerance

τε > 0 for the cost function error.

Output: The suboptimal PWA controller over the corresponding partition

D
P
=
{
S1, ..., SnD

}
such that Pext =

⋃
j=1...nD

Sj .

Set the first partition of DP to be Pin. The controller is the LQR;1

compute the optimum at the vertices and at the virtual vertices of Pext;2

foreach facet fi of Pin do3

initialize the set Vtess with the vertices of the facet fi and all the vertices4

of Pext visible from fi;
compute the initial DT(Vtess);5

foreach simplex S ∈ DT(Vtess) do6

compute the maximum error Emax(S);7

end8

while maxS∈DT(Vtess) {Emax(S)− τε} > 0 do9

add to Vtess the state xε where max {Emax(S)− τε} is achieved;10

update DT(Vtess);11

compute Emax(S) for the new simplices;12

end13

add DT(Vtess) to D
P

;14

end15

With respect to the MPC optimization problem (3.7-3.8), we have the following

theorem.

3.7. The Algorithm 51

Remark 3. Note that this approach of partitioning the non-convex region Rrest into

convex subregions maintains a natural neighbor relationship of the set of points dis-

tributed among the convex subsets.

The procedure for computing the approximate explicit MPC law can be summarized

in Algorithm 2.

We indicate with Emax(S) a function which measures the level of accuracy achieved

in each simplex S in terms of the maximum absolute error introduced by the cor-

responding suboptimal controller. Without any particular complication, we can as-

sume that the function provides also the state where this error occurs. This function

can be either exactly the maximum error (3.14) or an approximation of it by means

of the upper bounds (3.20) or (3.25).

For each simplex, the suboptimal controller is readily given by (3.11).

Algorithm 2: Approximate explicit MPC

Input: The feasible set to be partitioned Pext = XF . The set where the

optimal solution is the LQR Pin = Ω. The prescribed tolerance

τε > 0 for the cost function error.

Output: The suboptimal PWA controller over the corresponding partition

D
P
=
{
S1, ..., SnD

}
such that Pext =

⋃
j=1...nD

Sj .

Set the first partition of DP to be Pin. The controller is the LQR;1

compute the optimum at the vertices and at the virtual vertices of Pext;2

foreach facet fi of Pin do3

initialize the set Vtess with the vertices of the facet fi and all the vertices4

of Pext visible from fi;
compute the initial DT(Vtess);5

foreach simplex S ∈ DT(Vtess) do6

compute the maximum error Emax(S);7

end8

while maxS∈DT(Vtess) {Emax(S)− τε} > 0 do9

add to Vtess the state xε where max {Emax(S)− τε} is achieved;10

update DT(Vtess);11

compute Emax(S) for the new simplices;12

end13

add DT(Vtess) to D
P

;14

end15

With respect to the MPC optimization problem (3.7-3.8), we have the following

theorem.

52 Approximate Explicit MPC via Delaunay Tessellations

Theorem 5. Algorithm 4.1 terminates in finite time providing a suboptimal PWA
control law over XF which is continuous and feasible.

Proof. The number of facets of Ω is finite, thus the for-loop at step 3 will iterate

for a finite number of times. Since Vtess is a finite set of points, DT(Vtess) contains

a finite number of simplices, and also the for-loop at step 6 will terminate in finite

time. Then, we have to prove that the while-loop at step 9 will terminate in finite

time too. At each iteration of the loop the algorithm adds to the present DT(Vtess)
the state which currently corresponds to the cost function error that most severely

violates the maximum allowed tolerance. This means that at each iteration the finer

DT obtained is characterized by a lower maximum cost function error, thus pro-

viding a monotonic decrease. Considering that the maximum cost function error

converges towards zero (possibly for an infinite number of points) and that the tol-

erance is a value strictly greater than zero, eventually the estimate of the maximum

cost function error will be lower than the tolerance, and the while-loop will termi-

nate. Continuity and feasibility of the PWA solution follows by Theorem 3.

Remark 4. Note that in Algorithm 2, for each facet of Pin the Delaunay tessel-

lation is first computed from the corresponding vertices of Pext and Pin, and then

successively refined adding one by one more points if needed to improve the ap-

proximation. With this way of computing the DT, an efficient computation strategy

would be to use at the first stage a fast algorithm based on branch&bound approach,

and then refine the tessellation with a simple incremental approach algorithm.

3.8 Stability

Using a similar approach as in Bemporad and Filippi (2003) and in Johansen and

Grancharova (2003), it can be proven that under a certain condition on the maxi-

mum tolerance allowed, the exact cost function J∗ is a Lyapunov function for the

system (3.1) in closed-loop with the approximate controller given by Algorithm 2,

and thus the origin is asymptotically stable (Mayne et al. (2000)).

Theorem 6. Let β > 0 be the largest number for which the ellipsoid

E =
{
x ∈ R

n| xTQx ≤ β
}

(3.35)

is contained in the terminal constraint set Ω, where Q is as in (3.7). If the tolerance
is such that τε ≤ β, then the approximate explicit MPC given by Algorithm 2 asymp-
totically stabilizes the system (3.1-3.2) while fulfilling the constraints (3.3-3.4).

52 Approximate Explicit MPC via Delaunay Tessellations

Theorem 5. Algorithm 4.1 terminates in finite time providing a suboptimal PWA
control law over XF which is continuous and feasible.

Proof. The number of facets of Ω is finite, thus the for-loop at step 3 will iterate

for a finite number of times. Since Vtess is a finite set of points, DT(Vtess) contains

a finite number of simplices, and also the for-loop at step 6 will terminate in finite

time. Then, we have to prove that the while-loop at step 9 will terminate in finite

time too. At each iteration of the loop the algorithm adds to the present DT(Vtess)
the state which currently corresponds to the cost function error that most severely

violates the maximum allowed tolerance. This means that at each iteration the finer

DT obtained is characterized by a lower maximum cost function error, thus pro-

viding a monotonic decrease. Considering that the maximum cost function error

converges towards zero (possibly for an infinite number of points) and that the tol-

erance is a value strictly greater than zero, eventually the estimate of the maximum

cost function error will be lower than the tolerance, and the while-loop will termi-

nate. Continuity and feasibility of the PWA solution follows by Theorem 3.

Remark 4. Note that in Algorithm 2, for each facet of Pin the Delaunay tessel-

lation is first computed from the corresponding vertices of Pext and Pin, and then

successively refined adding one by one more points if needed to improve the ap-

proximation. With this way of computing the DT, an efficient computation strategy

would be to use at the first stage a fast algorithm based on branch&bound approach,

and then refine the tessellation with a simple incremental approach algorithm.

3.8 Stability

Using a similar approach as in Bemporad and Filippi (2003) and in Johansen and

Grancharova (2003), it can be proven that under a certain condition on the maxi-

mum tolerance allowed, the exact cost function J∗ is a Lyapunov function for the

system (3.1) in closed-loop with the approximate controller given by Algorithm 2,

and thus the origin is asymptotically stable (Mayne et al. (2000)).

Theorem 6. Let β > 0 be the largest number for which the ellipsoid

E =
{
x ∈ R

n| xTQx ≤ β
}

(3.35)

is contained in the terminal constraint set Ω, where Q is as in (3.7). If the tolerance
is such that τε ≤ β, then the approximate explicit MPC given by Algorithm 2 asymp-
totically stabilizes the system (3.1-3.2) while fulfilling the constraints (3.3-3.4).

52 Approximate Explicit MPC via Delaunay Tessellations

Theorem 5. Algorithm 4.1 terminates in finite time providing a suboptimal PWA
control law over XF which is continuous and feasible.

Proof. The number of facets of Ω is finite, thus the for-loop at step 3 will iterate

for a finite number of times. Since Vtess is a finite set of points, DT(Vtess) contains

a finite number of simplices, and also the for-loop at step 6 will terminate in finite

time. Then, we have to prove that the while-loop at step 9 will terminate in finite

time too. At each iteration of the loop the algorithm adds to the present DT(Vtess)
the state which currently corresponds to the cost function error that most severely

violates the maximum allowed tolerance. This means that at each iteration the finer

DT obtained is characterized by a lower maximum cost function error, thus pro-

viding a monotonic decrease. Considering that the maximum cost function error

converges towards zero (possibly for an infinite number of points) and that the tol-

erance is a value strictly greater than zero, eventually the estimate of the maximum

cost function error will be lower than the tolerance, and the while-loop will termi-

nate. Continuity and feasibility of the PWA solution follows by Theorem 3.

Remark 4. Note that in Algorithm 2, for each facet of Pin the Delaunay tessel-

lation is first computed from the corresponding vertices of Pext and Pin, and then

successively refined adding one by one more points if needed to improve the ap-

proximation. With this way of computing the DT, an efficient computation strategy

would be to use at the first stage a fast algorithm based on branch&bound approach,

and then refine the tessellation with a simple incremental approach algorithm.

3.8 Stability

Using a similar approach as in Bemporad and Filippi (2003) and in Johansen and

Grancharova (2003), it can be proven that under a certain condition on the maxi-

mum tolerance allowed, the exact cost function J∗ is a Lyapunov function for the

system (3.1) in closed-loop with the approximate controller given by Algorithm 2,

and thus the origin is asymptotically stable (Mayne et al. (2000)).

Theorem 6. Let β > 0 be the largest number for which the ellipsoid

E =
{
x ∈ R

n| xTQx ≤ β
}

(3.35)

is contained in the terminal constraint set Ω, where Q is as in (3.7). If the tolerance
is such that τε ≤ β, then the approximate explicit MPC given by Algorithm 2 asymp-
totically stabilizes the system (3.1-3.2) while fulfilling the constraints (3.3-3.4).

52 Approximate Explicit MPC via Delaunay Tessellations

Theorem 5. Algorithm 4.1 terminates in finite time providing a suboptimal PWA
control law over XF which is continuous and feasible.

Proof. The number of facets of Ω is finite, thus the for-loop at step 3 will iterate

for a finite number of times. Since Vtess is a finite set of points, DT(Vtess) contains

a finite number of simplices, and also the for-loop at step 6 will terminate in finite

time. Then, we have to prove that the while-loop at step 9 will terminate in finite

time too. At each iteration of the loop the algorithm adds to the present DT(Vtess)
the state which currently corresponds to the cost function error that most severely

violates the maximum allowed tolerance. This means that at each iteration the finer

DT obtained is characterized by a lower maximum cost function error, thus pro-

viding a monotonic decrease. Considering that the maximum cost function error

converges towards zero (possibly for an infinite number of points) and that the tol-

erance is a value strictly greater than zero, eventually the estimate of the maximum

cost function error will be lower than the tolerance, and the while-loop will termi-

nate. Continuity and feasibility of the PWA solution follows by Theorem 3.

Remark 4. Note that in Algorithm 2, for each facet of Pin the Delaunay tessel-

lation is first computed from the corresponding vertices of Pext and Pin, and then

successively refined adding one by one more points if needed to improve the ap-

proximation. With this way of computing the DT, an efficient computation strategy

would be to use at the first stage a fast algorithm based on branch&bound approach,

and then refine the tessellation with a simple incremental approach algorithm.

3.8 Stability

Using a similar approach as in Bemporad and Filippi (2003) and in Johansen and

Grancharova (2003), it can be proven that under a certain condition on the maxi-

mum tolerance allowed, the exact cost function J∗ is a Lyapunov function for the

system (3.1) in closed-loop with the approximate controller given by Algorithm 2,

and thus the origin is asymptotically stable (Mayne et al. (2000)).

Theorem 6. Let β > 0 be the largest number for which the ellipsoid

E =
{
x ∈ R

n| xTQx ≤ β
}

(3.35)

is contained in the terminal constraint set Ω, where Q is as in (3.7). If the tolerance
is such that τε ≤ β, then the approximate explicit MPC given by Algorithm 2 asymp-
totically stabilizes the system (3.1-3.2) while fulfilling the constraints (3.3-3.4).

3.8. Stability 53

Proof. Let ũ =
[
ũT
0 , ..., ũ

T
T−1

]T
be the approximate controller for an arbitrary

x(t) ∈ XF at time t. Applying the input sequence ũ to (3.1) with initial state

x(t), we obtain the state xN , which is within Ω since ũ is feasible. By the MOAS

properties of Ω, the input u = −KxN is feasible, which makes the the input se-

quence ũ′ =
[
ũT
1 , ..., ũ

T
T−1, (−KxN)

T
]T

feasible for the time t + 1. Since J̃(x) is

an upper bound on J∗(x), as in Bemporad and Filippi (2003) standard arguments

from dynamic programming can be used to show that along the trajectories of the

closed-loop system with the approximate controller we have

J∗(x(t+ 1))− J∗(x(t)) ≤ J̃(x(t+ 1))− J∗(x(t))
= J̃(x(t))− x(t)TQx(t)− ũT

0Rũ0 − J∗(x(t))
(3.36)

For all x(t) ∈ Ω we have J̃(x(t)) = J∗(x(t)) and therefore

J∗(x(t+ 1))− J∗(x(t)) < 0, ∀ x(t) ∈ Ω \ {0} (3.37)

Consider now the case x(t) ∈ Rrest. Because of the while-loop at step 9 in Algo-

rithm 2, we have that

J̃(x(t))− J∗(x(t)) ≤ τε. (3.38)

Then, since x(t)TQx(t) > β for all x(t) /∈ Ω, requiring that τε ≤ β means

J∗(x(t+1))−J∗(x(t)) ≤ J̃(x(t))−J∗(x(t))−x(t)TQx(t)− ũT
0Rũ0 < 0 (3.39)

Since J∗ is positive definite with J∗(0) = 0, and radially unbounded, it is a valid

candidate Lyapunov function. From the invariance principle of LaSalle (Khalil

(2000)), x(t) → Ω as t → ∞, and the origin is asymptotically stable with a re-

gion of attraction equal to XF .

Theorem 6 gives a condition on the allowed tolerance τε. The upper bound β can be

computed a priori from the control specifications, but may be quite conservative.

Less conservative bounds on the maximum allowed tolerance can be given if we

particularize the condition inside each simplex, as explained in the following theo-

rem.

Given a simplex S with approximate input sequence ũS (x) = L̃T
S x + g̃S ∀x ∈ S ,

let us indicate the control law as ũS0(x) = L̃T
S(·,1)x+ g̃S(1), where L̃S(·,1) is the first

column of L̃S and g̃S(1) is the first element of g̃S .

Theorem 7. For each simplex S and relative approximate controller ũS0(x) ∀x ∈
S , if the tolerance is such that τε ≤ β(S), where

β(S) = min
x∈S

xTHβx+ F T
β x+ Yβ (3.40)

3.8. Stability 53

Proof. Let ũ =
[
ũT
0 , ..., ũ

T
T−1

]T
be the approximate controller for an arbitrary

x(t) ∈ XF at time t. Applying the input sequence ũ to (3.1) with initial state

x(t), we obtain the state xN , which is within Ω since ũ is feasible. By the MOAS

properties of Ω, the input u = −KxN is feasible, which makes the the input se-

quence ũ′ =
[
ũT
1 , ..., ũ

T
T−1, (−KxN)

T
]T

feasible for the time t + 1. Since J̃(x) is

an upper bound on J∗(x), as in Bemporad and Filippi (2003) standard arguments

from dynamic programming can be used to show that along the trajectories of the

closed-loop system with the approximate controller we have

J∗(x(t+ 1))− J∗(x(t)) ≤ J̃(x(t+ 1))− J∗(x(t))
= J̃(x(t))− x(t)TQx(t)− ũT

0Rũ0 − J∗(x(t))
(3.36)

For all x(t) ∈ Ω we have J̃(x(t)) = J∗(x(t)) and therefore

J∗(x(t+ 1))− J∗(x(t)) < 0, ∀ x(t) ∈ Ω \ {0} (3.37)

Consider now the case x(t) ∈ Rrest. Because of the while-loop at step 9 in Algo-

rithm 2, we have that

J̃(x(t))− J∗(x(t)) ≤ τε. (3.38)

Then, since x(t)TQx(t) > β for all x(t) /∈ Ω, requiring that τε ≤ β means

J∗(x(t+1))−J∗(x(t)) ≤ J̃(x(t))−J∗(x(t))−x(t)TQx(t)− ũT
0Rũ0 < 0 (3.39)

Since J∗ is positive definite with J∗(0) = 0, and radially unbounded, it is a valid

candidate Lyapunov function. From the invariance principle of LaSalle (Khalil

(2000)), x(t) → Ω as t → ∞, and the origin is asymptotically stable with a re-

gion of attraction equal to XF .

Theorem 6 gives a condition on the allowed tolerance τε. The upper bound β can be

computed a priori from the control specifications, but may be quite conservative.

Less conservative bounds on the maximum allowed tolerance can be given if we

particularize the condition inside each simplex, as explained in the following theo-

rem.

Given a simplex S with approximate input sequence ũS (x) = L̃T
S x + g̃S ∀x ∈ S ,

let us indicate the control law as ũS0(x) = L̃T
S(·,1)x+ g̃S(1), where L̃S(·,1) is the first

column of L̃S and g̃S(1) is the first element of g̃S .

Theorem 7. For each simplex S and relative approximate controller ũS0(x) ∀x ∈
S , if the tolerance is such that τε ≤ β(S), where

β(S) = min
x∈S

xTHβx+ F T
β x+ Yβ (3.40)

3.8. Stability 53

Proof. Let ũ =
[
ũT
0 , ..., ũ

T
T−1

]T
be the approximate controller for an arbitrary

x(t) ∈ XF at time t. Applying the input sequence ũ to (3.1) with initial state

x(t), we obtain the state xN , which is within Ω since ũ is feasible. By the MOAS

properties of Ω, the input u = −KxN is feasible, which makes the the input se-

quence ũ′ =
[
ũT
1 , ..., ũ

T
T−1, (−KxN)

T
]T

feasible for the time t + 1. Since J̃(x) is

an upper bound on J∗(x), as in Bemporad and Filippi (2003) standard arguments

from dynamic programming can be used to show that along the trajectories of the

closed-loop system with the approximate controller we have

J∗(x(t+ 1))− J∗(x(t)) ≤ J̃(x(t+ 1))− J∗(x(t))
= J̃(x(t))− x(t)TQx(t)− ũT

0Rũ0 − J∗(x(t))
(3.36)

For all x(t) ∈ Ω we have J̃(x(t)) = J∗(x(t)) and therefore

J∗(x(t+ 1))− J∗(x(t)) < 0, ∀ x(t) ∈ Ω \ {0} (3.37)

Consider now the case x(t) ∈ Rrest. Because of the while-loop at step 9 in Algo-

rithm 2, we have that

J̃(x(t))− J∗(x(t)) ≤ τε. (3.38)

Then, since x(t)TQx(t) > β for all x(t) /∈ Ω, requiring that τε ≤ β means

J∗(x(t+1))−J∗(x(t)) ≤ J̃(x(t))−J∗(x(t))−x(t)TQx(t)− ũT
0Rũ0 < 0 (3.39)

Since J∗ is positive definite with J∗(0) = 0, and radially unbounded, it is a valid

candidate Lyapunov function. From the invariance principle of LaSalle (Khalil

(2000)), x(t) → Ω as t → ∞, and the origin is asymptotically stable with a re-

gion of attraction equal to XF .

Theorem 6 gives a condition on the allowed tolerance τε. The upper bound β can be

computed a priori from the control specifications, but may be quite conservative.

Less conservative bounds on the maximum allowed tolerance can be given if we

particularize the condition inside each simplex, as explained in the following theo-

rem.

Given a simplex S with approximate input sequence ũS (x) = L̃T
S x + g̃S ∀x ∈ S ,

let us indicate the control law as ũS0(x) = L̃T
S(·,1)x+ g̃S(1), where L̃S(·,1) is the first

column of L̃S and g̃S(1) is the first element of g̃S .

Theorem 7. For each simplex S and relative approximate controller ũS0(x) ∀x ∈
S , if the tolerance is such that τε ≤ β(S), where

β(S) = min
x∈S

xTHβx+ F T
β x+ Yβ (3.40)

3.8. Stability 53

Proof. Let ũ =
[
ũT
0 , ..., ũ

T
T−1

]T
be the approximate controller for an arbitrary

x(t) ∈ XF at time t. Applying the input sequence ũ to (3.1) with initial state

x(t), we obtain the state xN , which is within Ω since ũ is feasible. By the MOAS

properties of Ω, the input u = −KxN is feasible, which makes the the input se-

quence ũ′ =
[
ũT
1 , ..., ũ

T
T−1, (−KxN)

T
]T

feasible for the time t + 1. Since J̃(x) is

an upper bound on J∗(x), as in Bemporad and Filippi (2003) standard arguments

from dynamic programming can be used to show that along the trajectories of the

closed-loop system with the approximate controller we have

J∗(x(t+ 1))− J∗(x(t)) ≤ J̃(x(t+ 1))− J∗(x(t))
= J̃(x(t))− x(t)TQx(t)− ũT

0Rũ0 − J∗(x(t))
(3.36)

For all x(t) ∈ Ω we have J̃(x(t)) = J∗(x(t)) and therefore

J∗(x(t+ 1))− J∗(x(t)) < 0, ∀ x(t) ∈ Ω \ {0} (3.37)

Consider now the case x(t) ∈ Rrest. Because of the while-loop at step 9 in Algo-

rithm 2, we have that

J̃(x(t))− J∗(x(t)) ≤ τε. (3.38)

Then, since x(t)TQx(t) > β for all x(t) /∈ Ω, requiring that τε ≤ β means

J∗(x(t+1))−J∗(x(t)) ≤ J̃(x(t))−J∗(x(t))−x(t)TQx(t)− ũT
0Rũ0 < 0 (3.39)

Since J∗ is positive definite with J∗(0) = 0, and radially unbounded, it is a valid

candidate Lyapunov function. From the invariance principle of LaSalle (Khalil

(2000)), x(t) → Ω as t → ∞, and the origin is asymptotically stable with a re-

gion of attraction equal to XF .

Theorem 6 gives a condition on the allowed tolerance τε. The upper bound β can be

computed a priori from the control specifications, but may be quite conservative.

Less conservative bounds on the maximum allowed tolerance can be given if we

particularize the condition inside each simplex, as explained in the following theo-

rem.

Given a simplex S with approximate input sequence ũS (x) = L̃T
S x + g̃S ∀x ∈ S ,

let us indicate the control law as ũS0(x) = L̃T
S(·,1)x+ g̃S(1), where L̃S(·,1) is the first

column of L̃S and g̃S(1) is the first element of g̃S .

Theorem 7. For each simplex S and relative approximate controller ũS0(x) ∀x ∈
S , if the tolerance is such that τε ≤ β(S), where

β(S) = min
x∈S

xTHβx+ F T
β x+ Yβ (3.40)

54 Approximate Explicit MPC via Delaunay Tessellations

Hβ = Q + L̃S(·,1)RL̃T
S(·,1), Lβ = 2L̃S(·,1)Rg̃S(1) and Yβ = g̃TS(1)Rg̃S(1), then the

approximate explicit MPC given by Algorithm 2 asymptotically stabilizes the system
(3.1-3.2) while fulfilling the constraints (3.3-3.4).

Proof. Noticing that

xTHβx+ F T
β x+ Yβ = x(t)TQx(t) + ũT

S0RũS0, (3.41)

then analogously to the proof for Theorem 6 it is possible to show that the origin is

asymptotically stable with a region of attraction equal to XF .

Note that to check the condition given by Theorem 7, Algorithm 2 needs to be

slightly modified at step 9 in the while-loop condition as following

max {Emax(S)− τ̂ε} > 0, where τ̂ε = min {τε, β(S)} (3.42)

Remark 5. Closed-loop stability with the approximate controller is guaranteed by

ensuring that the approximate cost function is within a certain bound around the

optimal cost function, such that the optimal cost function is a Lyapunov function.

Most of the existing approaches for designing approximate explicit MPC bind the

stability issue analogously with a maximum allowed loss of performance. Although

this is nevertheless reasonable, a different approach is presented in Hovd et al.

(2009), where the quality of the approximation is gradually increased by refining

the Delaunay tessellation until it can be shown that the approximate cost function

is itself a Lyapunov function. Thus, a stable approximate explicit MPC law can

be obtained removing the need for estimating the loss relative to the optimal cost

function. However, the approach results in the solution of indefinite QP problems

which are in general computationally demanding. A discussion of this issue, and

more details about the approach can be found in Hovd et al. (2009).

3.9 Complexity

Usually, with the complexity of explicit MPC one refers to the number of pieces

forming the corresponding PWA controller. A higher number of pieces means in

general higher computational complexity for online implementation. However, the

offline computational complexity to obtain the PWA controller and, possibly, to

compute suitable support structure for efficient online implementation (like search

54 Approximate Explicit MPC via Delaunay Tessellations

Hβ = Q + L̃S(·,1)RL̃T
S(·,1), Lβ = 2L̃S(·,1)Rg̃S(1) and Yβ = g̃TS(1)Rg̃S(1), then the

approximate explicit MPC given by Algorithm 2 asymptotically stabilizes the system
(3.1-3.2) while fulfilling the constraints (3.3-3.4).

Proof. Noticing that

xTHβx+ F T
β x+ Yβ = x(t)TQx(t) + ũT

S0RũS0, (3.41)

then analogously to the proof for Theorem 6 it is possible to show that the origin is

asymptotically stable with a region of attraction equal to XF .

Note that to check the condition given by Theorem 7, Algorithm 2 needs to be

slightly modified at step 9 in the while-loop condition as following

max {Emax(S)− τ̂ε} > 0, where τ̂ε = min {τε, β(S)} (3.42)

Remark 5. Closed-loop stability with the approximate controller is guaranteed by

ensuring that the approximate cost function is within a certain bound around the

optimal cost function, such that the optimal cost function is a Lyapunov function.

Most of the existing approaches for designing approximate explicit MPC bind the

stability issue analogously with a maximum allowed loss of performance. Although

this is nevertheless reasonable, a different approach is presented in Hovd et al.

(2009), where the quality of the approximation is gradually increased by refining

the Delaunay tessellation until it can be shown that the approximate cost function

is itself a Lyapunov function. Thus, a stable approximate explicit MPC law can

be obtained removing the need for estimating the loss relative to the optimal cost

function. However, the approach results in the solution of indefinite QP problems

which are in general computationally demanding. A discussion of this issue, and

more details about the approach can be found in Hovd et al. (2009).

3.9 Complexity

Usually, with the complexity of explicit MPC one refers to the number of pieces

forming the corresponding PWA controller. A higher number of pieces means in

general higher computational complexity for online implementation. However, the

offline computational complexity to obtain the PWA controller and, possibly, to

compute suitable support structure for efficient online implementation (like search

54 Approximate Explicit MPC via Delaunay Tessellations

Hβ = Q + L̃S(·,1)RL̃T
S(·,1), Lβ = 2L̃S(·,1)Rg̃S(1) and Yβ = g̃TS(1)Rg̃S(1), then the

approximate explicit MPC given by Algorithm 2 asymptotically stabilizes the system
(3.1-3.2) while fulfilling the constraints (3.3-3.4).

Proof. Noticing that

xTHβx+ F T
β x+ Yβ = x(t)TQx(t) + ũT

S0RũS0, (3.41)

then analogously to the proof for Theorem 6 it is possible to show that the origin is

asymptotically stable with a region of attraction equal to XF .

Note that to check the condition given by Theorem 7, Algorithm 2 needs to be

slightly modified at step 9 in the while-loop condition as following

max {Emax(S)− τ̂ε} > 0, where τ̂ε = min {τε, β(S)} (3.42)

Remark 5. Closed-loop stability with the approximate controller is guaranteed by

ensuring that the approximate cost function is within a certain bound around the

optimal cost function, such that the optimal cost function is a Lyapunov function.

Most of the existing approaches for designing approximate explicit MPC bind the

stability issue analogously with a maximum allowed loss of performance. Although

this is nevertheless reasonable, a different approach is presented in Hovd et al.

(2009), where the quality of the approximation is gradually increased by refining

the Delaunay tessellation until it can be shown that the approximate cost function

is itself a Lyapunov function. Thus, a stable approximate explicit MPC law can

be obtained removing the need for estimating the loss relative to the optimal cost

function. However, the approach results in the solution of indefinite QP problems

which are in general computationally demanding. A discussion of this issue, and

more details about the approach can be found in Hovd et al. (2009).

3.9 Complexity

Usually, with the complexity of explicit MPC one refers to the number of pieces

forming the corresponding PWA controller. A higher number of pieces means in

general higher computational complexity for online implementation. However, the

offline computational complexity to obtain the PWA controller and, possibly, to

compute suitable support structure for efficient online implementation (like search

54 Approximate Explicit MPC via Delaunay Tessellations

Hβ = Q + L̃S(·,1)RL̃T
S(·,1), Lβ = 2L̃S(·,1)Rg̃S(1) and Yβ = g̃TS(1)Rg̃S(1), then the

approximate explicit MPC given by Algorithm 2 asymptotically stabilizes the system
(3.1-3.2) while fulfilling the constraints (3.3-3.4).

Proof. Noticing that

xTHβx+ F T
β x+ Yβ = x(t)TQx(t) + ũT

S0RũS0, (3.41)

then analogously to the proof for Theorem 6 it is possible to show that the origin is

asymptotically stable with a region of attraction equal to XF .

Note that to check the condition given by Theorem 7, Algorithm 2 needs to be

slightly modified at step 9 in the while-loop condition as following

max {Emax(S)− τ̂ε} > 0, where τ̂ε = min {τε, β(S)} (3.42)

Remark 5. Closed-loop stability with the approximate controller is guaranteed by

ensuring that the approximate cost function is within a certain bound around the

optimal cost function, such that the optimal cost function is a Lyapunov function.

Most of the existing approaches for designing approximate explicit MPC bind the

stability issue analogously with a maximum allowed loss of performance. Although

this is nevertheless reasonable, a different approach is presented in Hovd et al.

(2009), where the quality of the approximation is gradually increased by refining

the Delaunay tessellation until it can be shown that the approximate cost function

is itself a Lyapunov function. Thus, a stable approximate explicit MPC law can

be obtained removing the need for estimating the loss relative to the optimal cost

function. However, the approach results in the solution of indefinite QP problems

which are in general computationally demanding. A discussion of this issue, and

more details about the approach can be found in Hovd et al. (2009).

3.9 Complexity

Usually, with the complexity of explicit MPC one refers to the number of pieces

forming the corresponding PWA controller. A higher number of pieces means in

general higher computational complexity for online implementation. However, the

offline computational complexity to obtain the PWA controller and, possibly, to

compute suitable support structure for efficient online implementation (like search

3.9. Complexity 55

trees) needs to be considered for effectiveness assessments. Issues with the com-

plexity of explicit MPC approaches may come before the concern of how to deal

with a complex PWA controller. This controller may not be available at all because

of prohibitive offline computations. The approximate explicit MPC proposed in this

chapter aims to address the complexity problem considering both offline and online

computations. When the offline computation needed for computing the optimal

explicit MPC solution is prohibitive, an approximate solution computed using just

samples of the optimal one may be an effective way to deal with the problem. The

Delaunay tessellation structures give properties to this approximate PWA controller

which allow fast online implementation without the need for any additional sup-

port structure (this is further discussed in the next section). Though the number of

pieces of the approximate PWA controller cannot be guaranteed to be smaller than

the number of pieces of the optimal PWA controller (especially when many samples

are added to achieve a certain tolerance), it is believed that this geometric approach

may be nevertheless successful in several situations. In fact, the approach takes ad-

vantage of existing solutions to relevant problems in computational geometry. This

is a branch of computer science which focuses heavily on computational complexity

since the algorithms are intended to be used on large data-sets containing millions

of geometrical objects (e.g. points, half-spaces, polyhedra). Effective and efficient

algorithms are present in the literature to generate Delaunay tessellations, store the

relative data and point locate a query point.

An approach to reduce the number of pieces of the approximate PWA solution may

be to reduce the initial set of vertices to be tessellated. The number of simplices

in the DT of a set of points depends on the number of points considered. In the

worst case, it is known that the DT of np points in the d-dimensional space contains

O
(
n
�d/2�
p

)
simplices.

The partition D
P

comprises a number of simplices which depends on the number

of vertices of the feasible set (together with the virtual vertices), the number of

vertices of the terminal set and the number of possible points added to improve the

approximation and achieve the desired accuracy. It follows that a way to obtain a

smaller number of simplices in D
P

is to consider suitable (inner) approximations of

the feasible set characterized by a reduced number of vertices.

The problem of computing such approximations of the feasible set is considered

in Scibilia et al. (2010b) and is one of the issues addressed in Chapter 4. The

proposed solution is based on an existing approach for the computation of polytope

approximations: given a polytope P , the approximating polytope P̃ is obtained by

consecutively removing chosen vertices from P .

The number of simplices in D
P

can be further reduced if a simpler terminal set

is also considered such that it results in a reduced number of virtual constraints

3.9. Complexity 55

trees) needs to be considered for effectiveness assessments. Issues with the com-

plexity of explicit MPC approaches may come before the concern of how to deal

with a complex PWA controller. This controller may not be available at all because

of prohibitive offline computations. The approximate explicit MPC proposed in this

chapter aims to address the complexity problem considering both offline and online

computations. When the offline computation needed for computing the optimal

explicit MPC solution is prohibitive, an approximate solution computed using just

samples of the optimal one may be an effective way to deal with the problem. The

Delaunay tessellation structures give properties to this approximate PWA controller

which allow fast online implementation without the need for any additional sup-

port structure (this is further discussed in the next section). Though the number of

pieces of the approximate PWA controller cannot be guaranteed to be smaller than

the number of pieces of the optimal PWA controller (especially when many samples

are added to achieve a certain tolerance), it is believed that this geometric approach

may be nevertheless successful in several situations. In fact, the approach takes ad-

vantage of existing solutions to relevant problems in computational geometry. This

is a branch of computer science which focuses heavily on computational complexity

since the algorithms are intended to be used on large data-sets containing millions

of geometrical objects (e.g. points, half-spaces, polyhedra). Effective and efficient

algorithms are present in the literature to generate Delaunay tessellations, store the

relative data and point locate a query point.

An approach to reduce the number of pieces of the approximate PWA solution may

be to reduce the initial set of vertices to be tessellated. The number of simplices

in the DT of a set of points depends on the number of points considered. In the

worst case, it is known that the DT of np points in the d-dimensional space contains

O
(
n
�d/2�
p

)
simplices.

The partition D
P

comprises a number of simplices which depends on the number

of vertices of the feasible set (together with the virtual vertices), the number of

vertices of the terminal set and the number of possible points added to improve the

approximation and achieve the desired accuracy. It follows that a way to obtain a

smaller number of simplices in D
P

is to consider suitable (inner) approximations of

the feasible set characterized by a reduced number of vertices.

The problem of computing such approximations of the feasible set is considered

in Scibilia et al. (2010b) and is one of the issues addressed in Chapter 4. The

proposed solution is based on an existing approach for the computation of polytope

approximations: given a polytope P , the approximating polytope P̃ is obtained by

consecutively removing chosen vertices from P .

The number of simplices in D
P

can be further reduced if a simpler terminal set

is also considered such that it results in a reduced number of virtual constraints

3.9. Complexity 55

trees) needs to be considered for effectiveness assessments. Issues with the com-

plexity of explicit MPC approaches may come before the concern of how to deal

with a complex PWA controller. This controller may not be available at all because

of prohibitive offline computations. The approximate explicit MPC proposed in this

chapter aims to address the complexity problem considering both offline and online

computations. When the offline computation needed for computing the optimal

explicit MPC solution is prohibitive, an approximate solution computed using just

samples of the optimal one may be an effective way to deal with the problem. The

Delaunay tessellation structures give properties to this approximate PWA controller

which allow fast online implementation without the need for any additional sup-

port structure (this is further discussed in the next section). Though the number of

pieces of the approximate PWA controller cannot be guaranteed to be smaller than

the number of pieces of the optimal PWA controller (especially when many samples

are added to achieve a certain tolerance), it is believed that this geometric approach

may be nevertheless successful in several situations. In fact, the approach takes ad-

vantage of existing solutions to relevant problems in computational geometry. This

is a branch of computer science which focuses heavily on computational complexity

since the algorithms are intended to be used on large data-sets containing millions

of geometrical objects (e.g. points, half-spaces, polyhedra). Effective and efficient

algorithms are present in the literature to generate Delaunay tessellations, store the

relative data and point locate a query point.

An approach to reduce the number of pieces of the approximate PWA solution may

be to reduce the initial set of vertices to be tessellated. The number of simplices

in the DT of a set of points depends on the number of points considered. In the

worst case, it is known that the DT of np points in the d-dimensional space contains

O
(
n
�d/2�
p

)
simplices.

The partition D
P

comprises a number of simplices which depends on the number

of vertices of the feasible set (together with the virtual vertices), the number of

vertices of the terminal set and the number of possible points added to improve the

approximation and achieve the desired accuracy. It follows that a way to obtain a

smaller number of simplices in D
P

is to consider suitable (inner) approximations of

the feasible set characterized by a reduced number of vertices.

The problem of computing such approximations of the feasible set is considered

in Scibilia et al. (2010b) and is one of the issues addressed in Chapter 4. The

proposed solution is based on an existing approach for the computation of polytope

approximations: given a polytope P , the approximating polytope P̃ is obtained by

consecutively removing chosen vertices from P .

The number of simplices in D
P

can be further reduced if a simpler terminal set

is also considered such that it results in a reduced number of virtual constraints

3.9. Complexity 55

trees) needs to be considered for effectiveness assessments. Issues with the com-

plexity of explicit MPC approaches may come before the concern of how to deal

with a complex PWA controller. This controller may not be available at all because

of prohibitive offline computations. The approximate explicit MPC proposed in this

chapter aims to address the complexity problem considering both offline and online

computations. When the offline computation needed for computing the optimal

explicit MPC solution is prohibitive, an approximate solution computed using just

samples of the optimal one may be an effective way to deal with the problem. The

Delaunay tessellation structures give properties to this approximate PWA controller

which allow fast online implementation without the need for any additional sup-

port structure (this is further discussed in the next section). Though the number of

pieces of the approximate PWA controller cannot be guaranteed to be smaller than

the number of pieces of the optimal PWA controller (especially when many samples

are added to achieve a certain tolerance), it is believed that this geometric approach

may be nevertheless successful in several situations. In fact, the approach takes ad-

vantage of existing solutions to relevant problems in computational geometry. This

is a branch of computer science which focuses heavily on computational complexity

since the algorithms are intended to be used on large data-sets containing millions

of geometrical objects (e.g. points, half-spaces, polyhedra). Effective and efficient

algorithms are present in the literature to generate Delaunay tessellations, store the

relative data and point locate a query point.

An approach to reduce the number of pieces of the approximate PWA solution may

be to reduce the initial set of vertices to be tessellated. The number of simplices

in the DT of a set of points depends on the number of points considered. In the

worst case, it is known that the DT of np points in the d-dimensional space contains

O
(
n
�d/2�
p

)
simplices.

The partition D
P

comprises a number of simplices which depends on the number

of vertices of the feasible set (together with the virtual vertices), the number of

vertices of the terminal set and the number of possible points added to improve the

approximation and achieve the desired accuracy. It follows that a way to obtain a

smaller number of simplices in D
P

is to consider suitable (inner) approximations of

the feasible set characterized by a reduced number of vertices.

The problem of computing such approximations of the feasible set is considered

in Scibilia et al. (2010b) and is one of the issues addressed in Chapter 4. The

proposed solution is based on an existing approach for the computation of polytope

approximations: given a polytope P , the approximating polytope P̃ is obtained by

consecutively removing chosen vertices from P .

The number of simplices in D
P

can be further reduced if a simpler terminal set

is also considered such that it results in a reduced number of virtual constraints

56 Approximate Explicit MPC via Delaunay Tessellations

introduced (which implies less virtual vertices in the feasible set and less vertices in

the terminal set). This can be obtained considering an inner approximating polytope

Ω̃ ⊂ Ω, 0 ∈ Ω̃, characterized by fewer half-spaces. However, this reduces the

region where the approximate controller coincides with the optimal controller, thus

a suitable compromise between the simplicity of the approximating polytope and

the accuracy of the approximation must be considered (Bronstein (2008)).

3.10 Online Implementation

As previously observed, explicit MPC approaches result in piecewise affine control

laws, thus the online computational effort reduces to the evaluation of these piece-

wise affine functions. Naturally, the rate at which this problem can be solved deter-

mines the minimal sampling time of the system. Many approaches have been pro-

posed to efficiently solve this problem, and in general they require post-processing

the PWA solution to generate suitable support structures (like search trees) for fast

evaluation, which also means the use of additional memory to store the correspond-

ing data (Tøndel et al. (2003b), Spjøtvold et al. (2006), Christophersen (2007)).

The problem of evaluating piecewise affine function corresponds to a fundamental

problem in computational geometry, the point location problem: given a partition

of the space into non-overlapping regions, determine the region where a query point

lies (de Berg et al. (2008)). In particular, the point location problem has received

considerable attention in the context of Delaunay tessellations, motivated by the

implications it has in many applications like computer graphics, geographic infor-

mation systems, motion planning, and computer aided design. Several methods

which use simple data structures have been proposed to efficiently locate a point in

DTs (Devroye et al. (2004), Devroye et al. (1999)).

One of the most interesting approaches for point location in DTs is the Jump&Walk.

This approach uses a very simple algorithm to find the simplex containing the query

point. The algorithm is structured in two parts. The first part selects a starting point

in the DT (jump). The second part locates the simplex containing the query point by

traversing all simplices intersected by the line segment from the starting point to the

query point (walk). Given the simplex containing the starting point, the procedure

chooses one of the n + 1 neighboring simplices computing the dot products of the

normal vectors of the bounding facets and the vector from the starting point to the

query point. This is repeated until the simplex containing the query point is located

(see also Figure 1.4 in Chapter 1).

The great advantage of this approach is that it does not require any pre-processing

of the partition and no additional storage memory. The only underlying assumption

is that the DT is given by an internal representation such that constant time access

56 Approximate Explicit MPC via Delaunay Tessellations

introduced (which implies less virtual vertices in the feasible set and less vertices in

the terminal set). This can be obtained considering an inner approximating polytope

Ω̃ ⊂ Ω, 0 ∈ Ω̃, characterized by fewer half-spaces. However, this reduces the

region where the approximate controller coincides with the optimal controller, thus

a suitable compromise between the simplicity of the approximating polytope and

the accuracy of the approximation must be considered (Bronstein (2008)).

3.10 Online Implementation

As previously observed, explicit MPC approaches result in piecewise affine control

laws, thus the online computational effort reduces to the evaluation of these piece-

wise affine functions. Naturally, the rate at which this problem can be solved deter-

mines the minimal sampling time of the system. Many approaches have been pro-

posed to efficiently solve this problem, and in general they require post-processing

the PWA solution to generate suitable support structures (like search trees) for fast

evaluation, which also means the use of additional memory to store the correspond-

ing data (Tøndel et al. (2003b), Spjøtvold et al. (2006), Christophersen (2007)).

The problem of evaluating piecewise affine function corresponds to a fundamental

problem in computational geometry, the point location problem: given a partition

of the space into non-overlapping regions, determine the region where a query point

lies (de Berg et al. (2008)). In particular, the point location problem has received

considerable attention in the context of Delaunay tessellations, motivated by the

implications it has in many applications like computer graphics, geographic infor-

mation systems, motion planning, and computer aided design. Several methods

which use simple data structures have been proposed to efficiently locate a point in

DTs (Devroye et al. (2004), Devroye et al. (1999)).

One of the most interesting approaches for point location in DTs is the Jump&Walk.

This approach uses a very simple algorithm to find the simplex containing the query

point. The algorithm is structured in two parts. The first part selects a starting point

in the DT (jump). The second part locates the simplex containing the query point by

traversing all simplices intersected by the line segment from the starting point to the

query point (walk). Given the simplex containing the starting point, the procedure

chooses one of the n + 1 neighboring simplices computing the dot products of the

normal vectors of the bounding facets and the vector from the starting point to the

query point. This is repeated until the simplex containing the query point is located

(see also Figure 1.4 in Chapter 1).

The great advantage of this approach is that it does not require any pre-processing

of the partition and no additional storage memory. The only underlying assumption

is that the DT is given by an internal representation such that constant time access

56 Approximate Explicit MPC via Delaunay Tessellations

introduced (which implies less virtual vertices in the feasible set and less vertices in

the terminal set). This can be obtained considering an inner approximating polytope

Ω̃ ⊂ Ω, 0 ∈ Ω̃, characterized by fewer half-spaces. However, this reduces the

region where the approximate controller coincides with the optimal controller, thus

a suitable compromise between the simplicity of the approximating polytope and

the accuracy of the approximation must be considered (Bronstein (2008)).

3.10 Online Implementation

As previously observed, explicit MPC approaches result in piecewise affine control

laws, thus the online computational effort reduces to the evaluation of these piece-

wise affine functions. Naturally, the rate at which this problem can be solved deter-

mines the minimal sampling time of the system. Many approaches have been pro-

posed to efficiently solve this problem, and in general they require post-processing

the PWA solution to generate suitable support structures (like search trees) for fast

evaluation, which also means the use of additional memory to store the correspond-

ing data (Tøndel et al. (2003b), Spjøtvold et al. (2006), Christophersen (2007)).

The problem of evaluating piecewise affine function corresponds to a fundamental

problem in computational geometry, the point location problem: given a partition

of the space into non-overlapping regions, determine the region where a query point

lies (de Berg et al. (2008)). In particular, the point location problem has received

considerable attention in the context of Delaunay tessellations, motivated by the

implications it has in many applications like computer graphics, geographic infor-

mation systems, motion planning, and computer aided design. Several methods

which use simple data structures have been proposed to efficiently locate a point in

DTs (Devroye et al. (2004), Devroye et al. (1999)).

One of the most interesting approaches for point location in DTs is the Jump&Walk.

This approach uses a very simple algorithm to find the simplex containing the query

point. The algorithm is structured in two parts. The first part selects a starting point

in the DT (jump). The second part locates the simplex containing the query point by

traversing all simplices intersected by the line segment from the starting point to the

query point (walk). Given the simplex containing the starting point, the procedure

chooses one of the n + 1 neighboring simplices computing the dot products of the

normal vectors of the bounding facets and the vector from the starting point to the

query point. This is repeated until the simplex containing the query point is located

(see also Figure 1.4 in Chapter 1).

The great advantage of this approach is that it does not require any pre-processing

of the partition and no additional storage memory. The only underlying assumption

is that the DT is given by an internal representation such that constant time access

56 Approximate Explicit MPC via Delaunay Tessellations

introduced (which implies less virtual vertices in the feasible set and less vertices in

the terminal set). This can be obtained considering an inner approximating polytope

Ω̃ ⊂ Ω, 0 ∈ Ω̃, characterized by fewer half-spaces. However, this reduces the

region where the approximate controller coincides with the optimal controller, thus

a suitable compromise between the simplicity of the approximating polytope and

the accuracy of the approximation must be considered (Bronstein (2008)).

3.10 Online Implementation

As previously observed, explicit MPC approaches result in piecewise affine control

laws, thus the online computational effort reduces to the evaluation of these piece-

wise affine functions. Naturally, the rate at which this problem can be solved deter-

mines the minimal sampling time of the system. Many approaches have been pro-

posed to efficiently solve this problem, and in general they require post-processing

the PWA solution to generate suitable support structures (like search trees) for fast

evaluation, which also means the use of additional memory to store the correspond-

ing data (Tøndel et al. (2003b), Spjøtvold et al. (2006), Christophersen (2007)).

The problem of evaluating piecewise affine function corresponds to a fundamental

problem in computational geometry, the point location problem: given a partition

of the space into non-overlapping regions, determine the region where a query point

lies (de Berg et al. (2008)). In particular, the point location problem has received

considerable attention in the context of Delaunay tessellations, motivated by the

implications it has in many applications like computer graphics, geographic infor-

mation systems, motion planning, and computer aided design. Several methods

which use simple data structures have been proposed to efficiently locate a point in

DTs (Devroye et al. (2004), Devroye et al. (1999)).

One of the most interesting approaches for point location in DTs is the Jump&Walk.

This approach uses a very simple algorithm to find the simplex containing the query

point. The algorithm is structured in two parts. The first part selects a starting point

in the DT (jump). The second part locates the simplex containing the query point by

traversing all simplices intersected by the line segment from the starting point to the

query point (walk). Given the simplex containing the starting point, the procedure

chooses one of the n + 1 neighboring simplices computing the dot products of the

normal vectors of the bounding facets and the vector from the starting point to the

query point. This is repeated until the simplex containing the query point is located

(see also Figure 1.4 in Chapter 1).

The great advantage of this approach is that it does not require any pre-processing

of the partition and no additional storage memory. The only underlying assumption

is that the DT is given by an internal representation such that constant time access

3.11. Numerical Illustrations 57

between neighboring simplices is possible. This can be achieved, for example, by

using edge-facet data structures for storing the tessellations (Brisson (1993), Nien-

huys and van der Stappen (2003), Celes et al. (2005), Blandford et al. (2005)).

The performance of Jump&Walk depends on the selection of the starting point. Sev-

eral algorithms to select such an element were proposed. A simple approach is to

chose at random a number of starting points in the DT and all the time select the

one characterized by the shortest distance to the query point. Other approaches ex-

ploit the possible relations between the locations. In our case an algorithm based

on the latter approach3 reasonably seems to be the most efficient way to choose

starting points. In fact, at each time step relevant information about the current

state location in the partition D
P

can be obtained by the pervious state location: one

possibility could be to choose the last state location as the current starting point; an-

other possibility could be to use the last state value to compute the one-step-ahead

state prediction and use this as the current starting point.

In the literature the performance of Jump&Walk algorithms on a DT composed by

n randomly distributed points in the d-dimensional space is given as being pro-

portional to n1/d. Because of its exceptional simplicity, Jump&Walk algorithms

have been successfully used in several popular software packages like Triangle,

QHULL, CGAL and X3D Grid Generation System (Devroye et al. (2004), Mücke

et al. (1999), Zhu (2006)).

3.11 Numerical Illustrations

In this section we consider the double integrator with input and state constraints to

illustrate the results presented in the previous sections.

The model of the double integrator is one of the most important in control appli-

cations, representing single degree-of-freedom translational and rotational motion.

Thus it can be used to model for instance low-friction, free rigid-body motion,

such as single-axis spacecraft rotation and rotary crane motion (Rao and Bernstein

(2001)).

The double integrator is given by the continuous-time linear system

ẋ = Ax+Bu (3.43)

y = Cx (3.44)

3We assume that such an algorithm handles that D
P

, in general, is not itself a DT of points but

is formed by subregions which are individually DTs of points (cf. Section 3.7). It is easy to see that

this does not represent a real issue.

3.11. Numerical Illustrations 57

between neighboring simplices is possible. This can be achieved, for example, by

using edge-facet data structures for storing the tessellations (Brisson (1993), Nien-

huys and van der Stappen (2003), Celes et al. (2005), Blandford et al. (2005)).

The performance of Jump&Walk depends on the selection of the starting point. Sev-

eral algorithms to select such an element were proposed. A simple approach is to

chose at random a number of starting points in the DT and all the time select the

one characterized by the shortest distance to the query point. Other approaches ex-

ploit the possible relations between the locations. In our case an algorithm based

on the latter approach3 reasonably seems to be the most efficient way to choose

starting points. In fact, at each time step relevant information about the current

state location in the partition D
P

can be obtained by the pervious state location: one

possibility could be to choose the last state location as the current starting point; an-

other possibility could be to use the last state value to compute the one-step-ahead

state prediction and use this as the current starting point.

In the literature the performance of Jump&Walk algorithms on a DT composed by

n randomly distributed points in the d-dimensional space is given as being pro-

portional to n1/d. Because of its exceptional simplicity, Jump&Walk algorithms

have been successfully used in several popular software packages like Triangle,

QHULL, CGAL and X3D Grid Generation System (Devroye et al. (2004), Mücke

et al. (1999), Zhu (2006)).

3.11 Numerical Illustrations

In this section we consider the double integrator with input and state constraints to

illustrate the results presented in the previous sections.

The model of the double integrator is one of the most important in control appli-

cations, representing single degree-of-freedom translational and rotational motion.

Thus it can be used to model for instance low-friction, free rigid-body motion,

such as single-axis spacecraft rotation and rotary crane motion (Rao and Bernstein

(2001)).

The double integrator is given by the continuous-time linear system

ẋ = Ax+Bu (3.43)

y = Cx (3.44)

3We assume that such an algorithm handles that D
P

, in general, is not itself a DT of points but

is formed by subregions which are individually DTs of points (cf. Section 3.7). It is easy to see that

this does not represent a real issue.

3.11. Numerical Illustrations 57

between neighboring simplices is possible. This can be achieved, for example, by

using edge-facet data structures for storing the tessellations (Brisson (1993), Nien-

huys and van der Stappen (2003), Celes et al. (2005), Blandford et al. (2005)).

The performance of Jump&Walk depends on the selection of the starting point. Sev-

eral algorithms to select such an element were proposed. A simple approach is to

chose at random a number of starting points in the DT and all the time select the

one characterized by the shortest distance to the query point. Other approaches ex-

ploit the possible relations between the locations. In our case an algorithm based

on the latter approach3 reasonably seems to be the most efficient way to choose

starting points. In fact, at each time step relevant information about the current

state location in the partition D
P

can be obtained by the pervious state location: one

possibility could be to choose the last state location as the current starting point; an-

other possibility could be to use the last state value to compute the one-step-ahead

state prediction and use this as the current starting point.

In the literature the performance of Jump&Walk algorithms on a DT composed by

n randomly distributed points in the d-dimensional space is given as being pro-

portional to n1/d. Because of its exceptional simplicity, Jump&Walk algorithms

have been successfully used in several popular software packages like Triangle,

QHULL, CGAL and X3D Grid Generation System (Devroye et al. (2004), Mücke

et al. (1999), Zhu (2006)).

3.11 Numerical Illustrations

In this section we consider the double integrator with input and state constraints to

illustrate the results presented in the previous sections.

The model of the double integrator is one of the most important in control appli-

cations, representing single degree-of-freedom translational and rotational motion.

Thus it can be used to model for instance low-friction, free rigid-body motion,

such as single-axis spacecraft rotation and rotary crane motion (Rao and Bernstein

(2001)).

The double integrator is given by the continuous-time linear system

ẋ = Ax+Bu (3.43)

y = Cx (3.44)

3We assume that such an algorithm handles that D
P

, in general, is not itself a DT of points but

is formed by subregions which are individually DTs of points (cf. Section 3.7). It is easy to see that

this does not represent a real issue.

3.11. Numerical Illustrations 57

between neighboring simplices is possible. This can be achieved, for example, by

using edge-facet data structures for storing the tessellations (Brisson (1993), Nien-

huys and van der Stappen (2003), Celes et al. (2005), Blandford et al. (2005)).

The performance of Jump&Walk depends on the selection of the starting point. Sev-

eral algorithms to select such an element were proposed. A simple approach is to

chose at random a number of starting points in the DT and all the time select the

one characterized by the shortest distance to the query point. Other approaches ex-

ploit the possible relations between the locations. In our case an algorithm based

on the latter approach3 reasonably seems to be the most efficient way to choose

starting points. In fact, at each time step relevant information about the current

state location in the partition D
P

can be obtained by the pervious state location: one

possibility could be to choose the last state location as the current starting point; an-

other possibility could be to use the last state value to compute the one-step-ahead

state prediction and use this as the current starting point.

In the literature the performance of Jump&Walk algorithms on a DT composed by

n randomly distributed points in the d-dimensional space is given as being pro-

portional to n1/d. Because of its exceptional simplicity, Jump&Walk algorithms

have been successfully used in several popular software packages like Triangle,

QHULL, CGAL and X3D Grid Generation System (Devroye et al. (2004), Mücke

et al. (1999), Zhu (2006)).

3.11 Numerical Illustrations

In this section we consider the double integrator with input and state constraints to

illustrate the results presented in the previous sections.

The model of the double integrator is one of the most important in control appli-

cations, representing single degree-of-freedom translational and rotational motion.

Thus it can be used to model for instance low-friction, free rigid-body motion,

such as single-axis spacecraft rotation and rotary crane motion (Rao and Bernstein

(2001)).

The double integrator is given by the continuous-time linear system

ẋ = Ax+Bu (3.43)

y = Cx (3.44)

3We assume that such an algorithm handles that D
P

, in general, is not itself a DT of points but

is formed by subregions which are individually DTs of points (cf. Section 3.7). It is easy to see that

this does not represent a real issue.

58 Approximate Explicit MPC via Delaunay Tessellations

�������
�	��

	

�		

�		

�		

�		

�		

�		

�		

		

�
�

�
�

�
��
��
��
��
�
�

�

��

�
�

Figure 3.4: Optimal cost function J∗, approximate cost function J̃ and linear upper

bound on the cost function J̄ over a simplex.

where x ≡ y ∈ R
2, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0
0 1

]
(3.45)

The state components x1 and x2 can represent for instance the position and velocity,

respectively, of a body having mass 1. Discretizing the system (3.43-3.44) with

sampling time 0.3 the following discrete-time double integrator system matrices are

obtained

A =

[
1 0.3
0 1

]
, B =

[
0.04
0.3

]
, C =

[
1 0
0 1

]
. (3.46)

The system is subject to the input constraints −1 ≤ u ≤ 1, and to the velocity

constraints −3 ≤ x2 ≤ 3. The MPC problem is tuned with weight matrices Q = I ,

R = 1 and horizon N = 11.

Figure 3.6 shows the partitions of the feasible set for the optimal PWA control law.

The same figure also depicts the partitions for two suboptimal PWA control laws for

58 Approximate Explicit MPC via Delaunay Tessellations

�������
�	��

	

�		

�		

�		

�		

�		

�		

�		

		

�
�

�
�

�
��
��
��
��
�
�

�

��

�
�

Figure 3.4: Optimal cost function J∗, approximate cost function J̃ and linear upper

bound on the cost function J̄ over a simplex.

where x ≡ y ∈ R
2, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0
0 1

]
(3.45)

The state components x1 and x2 can represent for instance the position and velocity,

respectively, of a body having mass 1. Discretizing the system (3.43-3.44) with

sampling time 0.3 the following discrete-time double integrator system matrices are

obtained

A =

[
1 0.3
0 1

]
, B =

[
0.04
0.3

]
, C =

[
1 0
0 1

]
. (3.46)

The system is subject to the input constraints −1 ≤ u ≤ 1, and to the velocity

constraints −3 ≤ x2 ≤ 3. The MPC problem is tuned with weight matrices Q = I ,

R = 1 and horizon N = 11.

Figure 3.6 shows the partitions of the feasible set for the optimal PWA control law.

The same figure also depicts the partitions for two suboptimal PWA control laws for

58 Approximate Explicit MPC via Delaunay Tessellations

�������
�	��

	

�		

�		

�		

�		

�		

�		

�		

		

�
�

�
�

�
��
��
��
��
�
�

�

��

�
�

Figure 3.4: Optimal cost function J∗, approximate cost function J̃ and linear upper

bound on the cost function J̄ over a simplex.

where x ≡ y ∈ R
2, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0
0 1

]
(3.45)

The state components x1 and x2 can represent for instance the position and velocity,

respectively, of a body having mass 1. Discretizing the system (3.43-3.44) with

sampling time 0.3 the following discrete-time double integrator system matrices are

obtained

A =

[
1 0.3
0 1

]
, B =

[
0.04
0.3

]
, C =

[
1 0
0 1

]
. (3.46)

The system is subject to the input constraints −1 ≤ u ≤ 1, and to the velocity

constraints −3 ≤ x2 ≤ 3. The MPC problem is tuned with weight matrices Q = I ,

R = 1 and horizon N = 11.

Figure 3.6 shows the partitions of the feasible set for the optimal PWA control law.

The same figure also depicts the partitions for two suboptimal PWA control laws for

58 Approximate Explicit MPC via Delaunay Tessellations

�������
�	��

	

�		

�		

�		

�		

�		

�		

�		

		

�
�

�
�

�
��
��
��
��
�
�

�

��

�
�

Figure 3.4: Optimal cost function J∗, approximate cost function J̃ and linear upper

bound on the cost function J̄ over a simplex.

where x ≡ y ∈ R
2, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0
0 1

]
(3.45)

The state components x1 and x2 can represent for instance the position and velocity,

respectively, of a body having mass 1. Discretizing the system (3.43-3.44) with

sampling time 0.3 the following discrete-time double integrator system matrices are

obtained

A =

[
1 0.3
0 1

]
, B =

[
0.04
0.3

]
, C =

[
1 0
0 1

]
. (3.46)

The system is subject to the input constraints −1 ≤ u ≤ 1, and to the velocity

constraints −3 ≤ x2 ≤ 3. The MPC problem is tuned with weight matrices Q = I ,

R = 1 and horizon N = 11.

Figure 3.6 shows the partitions of the feasible set for the optimal PWA control law.

The same figure also depicts the partitions for two suboptimal PWA control laws for

3.11. Numerical Illustrations 59

� � � � � �
�

	

�

�

	

�	

�		

��	

�		

�
�

�
�

��
��
��
�	
��

�
	

J*

J

Figure 3.5: Optimal cost function J∗ and piecewise linear lower bound J over a

simplex.

3.11. Numerical Illustrations 59

� � � � � �
�

	

�

�

	

�	

�		

��	

�		

�
�

�
�

��
��
��
�	
��

�
	

J*

J

Figure 3.5: Optimal cost function J∗ and piecewise linear lower bound J over a

simplex.

3.11. Numerical Illustrations 59

� � � � � �
�

	

�

�

	

�	

�		

��	

�		

�
�

�
�

��
��
��
�	
��

�
	

J*

J

Figure 3.5: Optimal cost function J∗ and piecewise linear lower bound J over a

simplex.

3.11. Numerical Illustrations 59

� � � � � �
�

	

�

�

	

�	

�		

��	

�		

�
�

�
�

��
��
��
�	
��

�
	

J*

J

Figure 3.5: Optimal cost function J∗ and piecewise linear lower bound J over a

simplex.

60 Approximate Explicit MPC via Delaunay Tessellations

different tolerance settings . The tolerance is measured in percentile difference and

is set to 30% in one case and 100% in the other, i.e. the suboptimal cost function

must not be greater than 30% and 100% of the optimal cost function, respectively.

The upper bound (3.25) on the cost function error is used (Figure 3.4). Note that

unnecessary vertices may have been added due to the conservative estimate (3.22).

The partition obtained by considering only the vertices of the feasible set (together

with the virtual vertices) and the vertices of the terminal set is also depicted in Fig-

ure 3.6. This corresponds to the partition before any extra point is added for improv-

ing the approximation, and comprises the minimum number of regions (simplices

and terminal set) needed by Algorithm 2 to cover the feasible set.

Table 3.2 lists the number of regions generated by Algorithm 2 as function of the

tolerance, for different tolerance settings. It also indicates the number of regions

needed for theoretically guaranteed stability according to Theorem 7. However,

Theorem 7 is quite conservative. Indeed, post-processing the approximate solutions

according with the methods described in Hovd and Olaru (2010), it is simple to

prove stability also for the approximate controller with 63 regions.

Note that the conservativeness of Theorem 7 is increased by the conservativeness

of the estimate (3.22).

The last row in the table states the minimum number of regions needed to cover the

feasible set (obtained by ignoring the tolerance).

Table 3.1: Number of simplices generated as function of the tolerance

Tolerance Number of regions

100% 63
50% 107
30% 171
10% 341
for stability 369
not considered 51

Figures 3.7 illustrates the optimal PWA control law and the suboptimal PWA con-

trol law characterized by 63 regions.

The performance of the simple approximate controller characterized by 63 regions

is illustrated in Figures 3.8 and 3.9, where starting from position/velocity x0 =
[10 0]T the corresponding optimal and suboptimal state trajectories and control in-

puts are shown.

The approach has been tested in numerical simulations for several systems with dif-

ferent state (n) and input (r) dimensions. The systems are random continuous-time

linear systems all discretized with sampling time 0.1. The common MPC setting

used are: horizon N = 5, Q = I and R = I , where I is the identity matrix; state

60 Approximate Explicit MPC via Delaunay Tessellations

different tolerance settings . The tolerance is measured in percentile difference and

is set to 30% in one case and 100% in the other, i.e. the suboptimal cost function

must not be greater than 30% and 100% of the optimal cost function, respectively.

The upper bound (3.25) on the cost function error is used (Figure 3.4). Note that

unnecessary vertices may have been added due to the conservative estimate (3.22).

The partition obtained by considering only the vertices of the feasible set (together

with the virtual vertices) and the vertices of the terminal set is also depicted in Fig-

ure 3.6. This corresponds to the partition before any extra point is added for improv-

ing the approximation, and comprises the minimum number of regions (simplices

and terminal set) needed by Algorithm 2 to cover the feasible set.

Table 3.2 lists the number of regions generated by Algorithm 2 as function of the

tolerance, for different tolerance settings. It also indicates the number of regions

needed for theoretically guaranteed stability according to Theorem 7. However,

Theorem 7 is quite conservative. Indeed, post-processing the approximate solutions

according with the methods described in Hovd and Olaru (2010), it is simple to

prove stability also for the approximate controller with 63 regions.

Note that the conservativeness of Theorem 7 is increased by the conservativeness

of the estimate (3.22).

The last row in the table states the minimum number of regions needed to cover the

feasible set (obtained by ignoring the tolerance).

Table 3.1: Number of simplices generated as function of the tolerance

Tolerance Number of regions

100% 63
50% 107
30% 171
10% 341
for stability 369
not considered 51

Figures 3.7 illustrates the optimal PWA control law and the suboptimal PWA con-

trol law characterized by 63 regions.

The performance of the simple approximate controller characterized by 63 regions

is illustrated in Figures 3.8 and 3.9, where starting from position/velocity x0 =
[10 0]T the corresponding optimal and suboptimal state trajectories and control in-

puts are shown.

The approach has been tested in numerical simulations for several systems with dif-

ferent state (n) and input (r) dimensions. The systems are random continuous-time

linear systems all discretized with sampling time 0.1. The common MPC setting

used are: horizon N = 5, Q = I and R = I , where I is the identity matrix; state

60 Approximate Explicit MPC via Delaunay Tessellations

different tolerance settings . The tolerance is measured in percentile difference and

is set to 30% in one case and 100% in the other, i.e. the suboptimal cost function

must not be greater than 30% and 100% of the optimal cost function, respectively.

The upper bound (3.25) on the cost function error is used (Figure 3.4). Note that

unnecessary vertices may have been added due to the conservative estimate (3.22).

The partition obtained by considering only the vertices of the feasible set (together

with the virtual vertices) and the vertices of the terminal set is also depicted in Fig-

ure 3.6. This corresponds to the partition before any extra point is added for improv-

ing the approximation, and comprises the minimum number of regions (simplices

and terminal set) needed by Algorithm 2 to cover the feasible set.

Table 3.2 lists the number of regions generated by Algorithm 2 as function of the

tolerance, for different tolerance settings. It also indicates the number of regions

needed for theoretically guaranteed stability according to Theorem 7. However,

Theorem 7 is quite conservative. Indeed, post-processing the approximate solutions

according with the methods described in Hovd and Olaru (2010), it is simple to

prove stability also for the approximate controller with 63 regions.

Note that the conservativeness of Theorem 7 is increased by the conservativeness

of the estimate (3.22).

The last row in the table states the minimum number of regions needed to cover the

feasible set (obtained by ignoring the tolerance).

Table 3.1: Number of simplices generated as function of the tolerance

Tolerance Number of regions

100% 63
50% 107
30% 171
10% 341
for stability 369
not considered 51

Figures 3.7 illustrates the optimal PWA control law and the suboptimal PWA con-

trol law characterized by 63 regions.

The performance of the simple approximate controller characterized by 63 regions

is illustrated in Figures 3.8 and 3.9, where starting from position/velocity x0 =
[10 0]T the corresponding optimal and suboptimal state trajectories and control in-

puts are shown.

The approach has been tested in numerical simulations for several systems with dif-

ferent state (n) and input (r) dimensions. The systems are random continuous-time

linear systems all discretized with sampling time 0.1. The common MPC setting

used are: horizon N = 5, Q = I and R = I , where I is the identity matrix; state

60 Approximate Explicit MPC via Delaunay Tessellations

different tolerance settings . The tolerance is measured in percentile difference and

is set to 30% in one case and 100% in the other, i.e. the suboptimal cost function

must not be greater than 30% and 100% of the optimal cost function, respectively.

The upper bound (3.25) on the cost function error is used (Figure 3.4). Note that

unnecessary vertices may have been added due to the conservative estimate (3.22).

The partition obtained by considering only the vertices of the feasible set (together

with the virtual vertices) and the vertices of the terminal set is also depicted in Fig-

ure 3.6. This corresponds to the partition before any extra point is added for improv-

ing the approximation, and comprises the minimum number of regions (simplices

and terminal set) needed by Algorithm 2 to cover the feasible set.

Table 3.2 lists the number of regions generated by Algorithm 2 as function of the

tolerance, for different tolerance settings. It also indicates the number of regions

needed for theoretically guaranteed stability according to Theorem 7. However,

Theorem 7 is quite conservative. Indeed, post-processing the approximate solutions

according with the methods described in Hovd and Olaru (2010), it is simple to

prove stability also for the approximate controller with 63 regions.

Note that the conservativeness of Theorem 7 is increased by the conservativeness

of the estimate (3.22).

The last row in the table states the minimum number of regions needed to cover the

feasible set (obtained by ignoring the tolerance).

Table 3.1: Number of simplices generated as function of the tolerance

Tolerance Number of regions

100% 63
50% 107
30% 171
10% 341
for stability 369
not considered 51

Figures 3.7 illustrates the optimal PWA control law and the suboptimal PWA con-

trol law characterized by 63 regions.

The performance of the simple approximate controller characterized by 63 regions

is illustrated in Figures 3.8 and 3.9, where starting from position/velocity x0 =
[10 0]T the corresponding optimal and suboptimal state trajectories and control in-

puts are shown.

The approach has been tested in numerical simulations for several systems with dif-

ferent state (n) and input (r) dimensions. The systems are random continuous-time

linear systems all discretized with sampling time 0.1. The common MPC setting

used are: horizon N = 5, Q = I and R = I , where I is the identity matrix; state

3.11. Numerical Illustrations 61

�� � � � � ��

�

�

� �

�� � � � � ��

�

�

� �

�� � � � � ��

�

�

� �

�� � � � � ��

�

�

�
�

� �

Figure 3.6: From the top, partition of the feasible set for the optimal PWA control

law, number of regions: 551; partitions of the feasible set for the suboptimal PWA

control laws generated by Algorithm 2, number of regions (maximum tolerance

allowed): 171 (30%), 63 (100%), 51 (tolerance not considered), respectively.

3.11. Numerical Illustrations 61

�� � � � � ��

�

�

� �

�� � � � � ��

�

�

� �

�� � � � � ��

�

�

� �

�� � � � � ��

�

�

�
�

� �

Figure 3.6: From the top, partition of the feasible set for the optimal PWA control

law, number of regions: 551; partitions of the feasible set for the suboptimal PWA

control laws generated by Algorithm 2, number of regions (maximum tolerance

allowed): 171 (30%), 63 (100%), 51 (tolerance not considered), respectively.

3.11. Numerical Illustrations 61

�� � � � � ��

�

�

� �

�� � � � � ��

�

�

� �

�� � � � � ��

�

�

� �

�� � � � � ��

�

�

�
�

� �

Figure 3.6: From the top, partition of the feasible set for the optimal PWA control

law, number of regions: 551; partitions of the feasible set for the suboptimal PWA

control laws generated by Algorithm 2, number of regions (maximum tolerance

allowed): 171 (30%), 63 (100%), 51 (tolerance not considered), respectively.

3.11. Numerical Illustrations 61

�� � � � � ��

�

�

� �

�� � � � � ��

�

�

� �

�� � � � � ��

�

�

� �

�� � � � � ��

�

�

�
�

� �

Figure 3.6: From the top, partition of the feasible set for the optimal PWA control

law, number of regions: 551; partitions of the feasible set for the suboptimal PWA

control laws generated by Algorithm 2, number of regions (maximum tolerance

allowed): 171 (30%), 63 (100%), 51 (tolerance not considered), respectively.

62 Approximate Explicit MPC via Delaunay Tessellations

Figure 3.7: The figure on top depicts the optimal PWA control law over the partition

of the feasible set. The figure below depicts the approximate PWA control law over

the partition of the feasible set characterized by 63 regions.

62 Approximate Explicit MPC via Delaunay Tessellations

Figure 3.7: The figure on top depicts the optimal PWA control law over the partition

of the feasible set. The figure below depicts the approximate PWA control law over

the partition of the feasible set characterized by 63 regions.

62 Approximate Explicit MPC via Delaunay Tessellations

Figure 3.7: The figure on top depicts the optimal PWA control law over the partition

of the feasible set. The figure below depicts the approximate PWA control law over

the partition of the feasible set characterized by 63 regions.

62 Approximate Explicit MPC via Delaunay Tessellations

Figure 3.7: The figure on top depicts the optimal PWA control law over the partition

of the feasible set. The figure below depicts the approximate PWA control law over

the partition of the feasible set characterized by 63 regions.

3.11. Numerical Illustrations 63

�� � � � � ��
�

�

�

�

�

�

�

�

�

�
�

� �

Figure 3.8: The paths of the circles (blue) and stars (red) represent the state tra-

jectories corresponding to the exact and the approximate controller (approximate

controller in Table 3.2 characterized by 63 regions), respectively, starting from po-

sition/velocity x0 = [10 0]T .

3.11. Numerical Illustrations 63

�� �� � � � �� ��
�

�

�

�

�

�

�

�

�

�
�

� �

Figure 3.8: The paths of the circles (blue) and stars (red) represent the state tra-

jectories corresponding to the exact and the approximate controller (approximate

controller in Table 3.2 characterized by 63 regions), respectively, starting from po-

sition/velocity x0 = [10 0]T .

3.11. Numerical Illustrations 63

�� �� � � � �� ��
�

�

�

�

�

�

�

�

�

�
�

� �

Figure 3.8: The paths of the circles (blue) and stars (red) represent the state tra-

jectories corresponding to the exact and the approximate controller (approximate

controller in Table 3.2 characterized by 63 regions), respectively, starting from po-

sition/velocity x0 = [10 0]T .

3.11. Numerical Illustrations 63

�� �� � � � �� ��
�

�

�

�

�

�

�

�

�

�
�

� �

Figure 3.8: The paths of the circles (blue) and stars (red) represent the state tra-

jectories corresponding to the exact and the approximate controller (approximate

controller in Table 3.2 characterized by 63 regions), respectively, starting from po-

sition/velocity x0 = [10 0]T .

64 Approximate Explicit MPC via Delaunay Tessellations

� � �� �� �� �� �� �� ��

�

�

�

�

�

	

��

x(
t)

� � �� �� �� �� �� �� ��
�
�

�

�
�

�

�
�

�

�
�

t

u(
t)

x
2

x
1

Figure 3.9: On the top graph, the solid (blue) and dashed (red) lines show the state

trajectories corresponding to the exact and the approximate controller (approximate

controller in Table 3.2 characterized by 63 regions), respectively. Below, the optimal

control input is represented by the solid (blue) line and the approximate control

input by the dashed (red) line.

64 Approximate Explicit MPC via Delaunay Tessellations

� � �� �� �� �� �� �� ��

�

�

�

�

�

	

��

x(
t)

� � �� �� �� �� �� �� ��
�
�

�

�
�

�

�
�

�

�
�

t

u(
t)

x
2

x
1

Figure 3.9: On the top graph, the solid (blue) and dashed (red) lines show the state

trajectories corresponding to the exact and the approximate controller (approximate

controller in Table 3.2 characterized by 63 regions), respectively. Below, the optimal

control input is represented by the solid (blue) line and the approximate control

input by the dashed (red) line.

64 Approximate Explicit MPC via Delaunay Tessellations

� � �� �� �� �� �� �� ��

�

�

�

�

�

	

��

x(
t)

� � �� �� �� �� �� �� ��
�
�

�

�
�

�

�
�

�

�
�

t

u(
t)

x
2

x
1

Figure 3.9: On the top graph, the solid (blue) and dashed (red) lines show the state

trajectories corresponding to the exact and the approximate controller (approximate

controller in Table 3.2 characterized by 63 regions), respectively. Below, the optimal

control input is represented by the solid (blue) line and the approximate control

input by the dashed (red) line.

64 Approximate Explicit MPC via Delaunay Tessellations

� � �� �� �� �� �� �� ��

�

�

�

�

�

	

��

x(
t)

� � �� �� �� �� �� �� ��
�
�

�

�
�

�

�
�

�

�
�

t

u(
t)

x
2

x
1

Figure 3.9: On the top graph, the solid (blue) and dashed (red) lines show the state

trajectories corresponding to the exact and the approximate controller (approximate

controller in Table 3.2 characterized by 63 regions), respectively. Below, the optimal

control input is represented by the solid (blue) line and the approximate control

input by the dashed (red) line.

3.11. Numerical Illustrations 65

constraints −10 ∗ 1 ≤ x ≤ 10 ∗ 1, input constraints −1 ≤ u ≤ 1, where 1 is a

suitably dimensioned vector with all elements equal to 1.

The approximate controllers do not consider extra points so to achieve a given tol-

erance. The conservativeness of the bounds (3.20) and (3.25) (and of Theorem 7)

could have led to misleading results about the potential of the approach. In fact, the

simulations carried out have showed often that the partition did not need any further

refinement in order to achieve stability and good performance (Figure 3.10). Of

course a means to guarantee stability is always desirable, but this may be achieved

also without the need for accurately approximating the exact objective function (for

instance using PWQ Lyapunov functions).

Table 3.2 lists some of the results obtained in the simulations. As expected from

the discussion in Section 3.9, the approximate controller is not always character-

ized by fewer regions than the optimal controller. It is interesting to note that the

simulations seem to suggest that the approach is more effective when multiple in-

puts are considered. The table also lists an extreme case where the computations for

obtaining the optimal controller had to be stopped because the number of regions

was bursting (17000 is the number of regions computed when the simulation was

stopped). Contrarily, for the same system obtaining the approximate controller was

not an issue.

Table 3.2: Optimal PWA controller vs approximate PWA controller for several ran-

dom systems. The case marked with (*) is illustrated in Figure 3.10.

Rand. sys. Optimal PWA controller Approximate PWA controller

(n, r) number of regions number of regions

(3, 1) 449 447
487 691
615 453

(3, 2) 309 155
597 437

(*) 3391 1995
(3, 3) 8217 2411

4105 553
> 17000 4447

(4, 2) 7738 5476
4445 6591

3.11. Numerical Illustrations 65

constraints −10 ∗ 1 ≤ x ≤ 10 ∗ 1, input constraints −1 ≤ u ≤ 1, where 1 is a

suitably dimensioned vector with all elements equal to 1.

The approximate controllers do not consider extra points so to achieve a given tol-

erance. The conservativeness of the bounds (3.20) and (3.25) (and of Theorem 7)

could have led to misleading results about the potential of the approach. In fact, the

simulations carried out have showed often that the partition did not need any further

refinement in order to achieve stability and good performance (Figure 3.10). Of

course a means to guarantee stability is always desirable, but this may be achieved

also without the need for accurately approximating the exact objective function (for

instance using PWQ Lyapunov functions).

Table 3.2 lists some of the results obtained in the simulations. As expected from

the discussion in Section 3.9, the approximate controller is not always character-

ized by fewer regions than the optimal controller. It is interesting to note that the

simulations seem to suggest that the approach is more effective when multiple in-

puts are considered. The table also lists an extreme case where the computations for

obtaining the optimal controller had to be stopped because the number of regions

was bursting (17000 is the number of regions computed when the simulation was

stopped). Contrarily, for the same system obtaining the approximate controller was

not an issue.

Table 3.2: Optimal PWA controller vs approximate PWA controller for several ran-

dom systems. The case marked with (*) is illustrated in Figure 3.10.

Rand. sys. Optimal PWA controller Approximate PWA controller

(n, r) number of regions number of regions

(3, 1) 449 447
487 691
615 453

(3, 2) 309 155
597 437

(*) 3391 1995
(3, 3) 8217 2411

4105 553
> 17000 4447

(4, 2) 7738 5476
4445 6591

3.11. Numerical Illustrations 65

constraints −10 ∗ 1 ≤ x ≤ 10 ∗ 1, input constraints −1 ≤ u ≤ 1, where 1 is a

suitably dimensioned vector with all elements equal to 1.

The approximate controllers do not consider extra points so to achieve a given tol-

erance. The conservativeness of the bounds (3.20) and (3.25) (and of Theorem 7)

could have led to misleading results about the potential of the approach. In fact, the

simulations carried out have showed often that the partition did not need any further

refinement in order to achieve stability and good performance (Figure 3.10). Of

course a means to guarantee stability is always desirable, but this may be achieved

also without the need for accurately approximating the exact objective function (for

instance using PWQ Lyapunov functions).

Table 3.2 lists some of the results obtained in the simulations. As expected from

the discussion in Section 3.9, the approximate controller is not always character-

ized by fewer regions than the optimal controller. It is interesting to note that the

simulations seem to suggest that the approach is more effective when multiple in-

puts are considered. The table also lists an extreme case where the computations for

obtaining the optimal controller had to be stopped because the number of regions

was bursting (17000 is the number of regions computed when the simulation was

stopped). Contrarily, for the same system obtaining the approximate controller was

not an issue.

Table 3.2: Optimal PWA controller vs approximate PWA controller for several ran-

dom systems. The case marked with (*) is illustrated in Figure 3.10.

Rand. sys. Optimal PWA controller Approximate PWA controller

(n, r) number of regions number of regions

(3, 1) 449 447
487 691
615 453

(3, 2) 309 155
597 437

(*) 3391 1995
(3, 3) 8217 2411

4105 553
> 17000 4447

(4, 2) 7738 5476
4445 6591

3.11. Numerical Illustrations 65

constraints −10 ∗ 1 ≤ x ≤ 10 ∗ 1, input constraints −1 ≤ u ≤ 1, where 1 is a

suitably dimensioned vector with all elements equal to 1.

The approximate controllers do not consider extra points so to achieve a given tol-

erance. The conservativeness of the bounds (3.20) and (3.25) (and of Theorem 7)

could have led to misleading results about the potential of the approach. In fact, the

simulations carried out have showed often that the partition did not need any further

refinement in order to achieve stability and good performance (Figure 3.10). Of

course a means to guarantee stability is always desirable, but this may be achieved

also without the need for accurately approximating the exact objective function (for

instance using PWQ Lyapunov functions).

Table 3.2 lists some of the results obtained in the simulations. As expected from

the discussion in Section 3.9, the approximate controller is not always character-

ized by fewer regions than the optimal controller. It is interesting to note that the

simulations seem to suggest that the approach is more effective when multiple in-

puts are considered. The table also lists an extreme case where the computations for

obtaining the optimal controller had to be stopped because the number of regions

was bursting (17000 is the number of regions computed when the simulation was

stopped). Contrarily, for the same system obtaining the approximate controller was

not an issue.

Table 3.2: Optimal PWA controller vs approximate PWA controller for several ran-

dom systems. The case marked with (*) is illustrated in Figure 3.10.

Rand. sys. Optimal PWA controller Approximate PWA controller

(n, r) number of regions number of regions

(3, 1) 449 447
487 691
615 453

(3, 2) 309 155
597 437

(*) 3391 1995
(3, 3) 8217 2411

4105 553
> 17000 4447

(4, 2) 7738 5476
4445 6591

66 Approximate Explicit MPC via Delaunay Tessellations

Figure 3.10: Feasible set and state trajectory corresponding to the approximate con-

troller starting from the vertex v = [0.24 − 2.79 − 2.62]T for one of the random

systems in Table 3.2.

66 Approximate Explicit MPC via Delaunay Tessellations

Figure 3.10: Feasible set and state trajectory corresponding to the approximate con-

troller starting from the vertex v = [0.24 − 2.79 − 2.62]T for one of the random

systems in Table 3.2.

66 Approximate Explicit MPC via Delaunay Tessellations

Figure 3.10: Feasible set and state trajectory corresponding to the approximate con-

troller starting from the vertex v = [0.24 − 2.79 − 2.62]T for one of the random

systems in Table 3.2.

66 Approximate Explicit MPC via Delaunay Tessellations

Figure 3.10: Feasible set and state trajectory corresponding to the approximate con-

troller starting from the vertex v = [0.24 − 2.79 − 2.62]T for one of the random

systems in Table 3.2.

3.12. Conclusion 67

3.12 Conclusion

The chapter has presented a geometric approach for deriving an approximate ex-

plicit solution to linear constrained MPC problems. The solution is optimal for the

portion of the feasible set where constraints are not active, on the remaining part

of the feasible set the prohibitive optimal explicit MPC solution is replaced by an

approximation based on Delaunay tessellations and computed from a finite number

of samples of the exact solution. Finer tessellations can be obtained so as to achieve

a desired tolerance on the cost function approximation error.

The proposed approach suggests an answer to the cases where explicit MPC imple-

mentations are desired but impractical both due to the offline computational effort

needed to compute the explicit optimal solution and due to their complexity for

online evaluations. The approach is based on computational geometry, a branch

of computer science which focuses heavily on computational complexity since the

algorithms are intended to be used on large data-sets containing millions of ge-

ometrical objects. Effective and efficient algorithms are present in the literature

to generate Delaunay tessellations, store the relative data and point locate a query

point.

The approach uses the cost function approximation error to decide whether a finer

tessellation is needed or not. Since computing this error is in general computation-

ally demanding, the approach proposes the use of easily computable upper bounds

as estimates. However, these bounds may be quite conservative, resulting in finer

tessellations even if they are not really needed. A future research direction would

be to find easily computable less conservative bounds.

Rigorous stability proofs were given when the maximum cost function approxi-

mation error is less than a certain tolerance. However, the conditions given are

quite conservative. In fact, stability was proven post-analyzing approximate PWA

controllers with cost function values that did not satisfy the theoretical maximum

allowed tolerance. A further research direction would be to derive less conserva-

tive stability conditions to use in the algorithm for generating guaranteed stabilizing

suboptimal PWA controllers.

3.12. Conclusion 67

3.12 Conclusion

The chapter has presented a geometric approach for deriving an approximate ex-

plicit solution to linear constrained MPC problems. The solution is optimal for the

portion of the feasible set where constraints are not active, on the remaining part

of the feasible set the prohibitive optimal explicit MPC solution is replaced by an

approximation based on Delaunay tessellations and computed from a finite number

of samples of the exact solution. Finer tessellations can be obtained so as to achieve

a desired tolerance on the cost function approximation error.

The proposed approach suggests an answer to the cases where explicit MPC imple-

mentations are desired but impractical both due to the offline computational effort

needed to compute the explicit optimal solution and due to their complexity for

online evaluations. The approach is based on computational geometry, a branch

of computer science which focuses heavily on computational complexity since the

algorithms are intended to be used on large data-sets containing millions of ge-

ometrical objects. Effective and efficient algorithms are present in the literature

to generate Delaunay tessellations, store the relative data and point locate a query

point.

The approach uses the cost function approximation error to decide whether a finer

tessellation is needed or not. Since computing this error is in general computation-

ally demanding, the approach proposes the use of easily computable upper bounds

as estimates. However, these bounds may be quite conservative, resulting in finer

tessellations even if they are not really needed. A future research direction would

be to find easily computable less conservative bounds.

Rigorous stability proofs were given when the maximum cost function approxi-

mation error is less than a certain tolerance. However, the conditions given are

quite conservative. In fact, stability was proven post-analyzing approximate PWA

controllers with cost function values that did not satisfy the theoretical maximum

allowed tolerance. A further research direction would be to derive less conserva-

tive stability conditions to use in the algorithm for generating guaranteed stabilizing

suboptimal PWA controllers.

3.12. Conclusion 67

3.12 Conclusion

The chapter has presented a geometric approach for deriving an approximate ex-

plicit solution to linear constrained MPC problems. The solution is optimal for the

portion of the feasible set where constraints are not active, on the remaining part

of the feasible set the prohibitive optimal explicit MPC solution is replaced by an

approximation based on Delaunay tessellations and computed from a finite number

of samples of the exact solution. Finer tessellations can be obtained so as to achieve

a desired tolerance on the cost function approximation error.

The proposed approach suggests an answer to the cases where explicit MPC imple-

mentations are desired but impractical both due to the offline computational effort

needed to compute the explicit optimal solution and due to their complexity for

online evaluations. The approach is based on computational geometry, a branch

of computer science which focuses heavily on computational complexity since the

algorithms are intended to be used on large data-sets containing millions of ge-

ometrical objects. Effective and efficient algorithms are present in the literature

to generate Delaunay tessellations, store the relative data and point locate a query

point.

The approach uses the cost function approximation error to decide whether a finer

tessellation is needed or not. Since computing this error is in general computation-

ally demanding, the approach proposes the use of easily computable upper bounds

as estimates. However, these bounds may be quite conservative, resulting in finer

tessellations even if they are not really needed. A future research direction would

be to find easily computable less conservative bounds.

Rigorous stability proofs were given when the maximum cost function approxi-

mation error is less than a certain tolerance. However, the conditions given are

quite conservative. In fact, stability was proven post-analyzing approximate PWA

controllers with cost function values that did not satisfy the theoretical maximum

allowed tolerance. A further research direction would be to derive less conserva-

tive stability conditions to use in the algorithm for generating guaranteed stabilizing

suboptimal PWA controllers.

3.12. Conclusion 67

3.12 Conclusion

The chapter has presented a geometric approach for deriving an approximate ex-

plicit solution to linear constrained MPC problems. The solution is optimal for the

portion of the feasible set where constraints are not active, on the remaining part

of the feasible set the prohibitive optimal explicit MPC solution is replaced by an

approximation based on Delaunay tessellations and computed from a finite number

of samples of the exact solution. Finer tessellations can be obtained so as to achieve

a desired tolerance on the cost function approximation error.

The proposed approach suggests an answer to the cases where explicit MPC imple-

mentations are desired but impractical both due to the offline computational effort

needed to compute the explicit optimal solution and due to their complexity for

online evaluations. The approach is based on computational geometry, a branch

of computer science which focuses heavily on computational complexity since the

algorithms are intended to be used on large data-sets containing millions of ge-

ometrical objects. Effective and efficient algorithms are present in the literature

to generate Delaunay tessellations, store the relative data and point locate a query

point.

The approach uses the cost function approximation error to decide whether a finer

tessellation is needed or not. Since computing this error is in general computation-

ally demanding, the approach proposes the use of easily computable upper bounds

as estimates. However, these bounds may be quite conservative, resulting in finer

tessellations even if they are not really needed. A future research direction would

be to find easily computable less conservative bounds.

Rigorous stability proofs were given when the maximum cost function approxi-

mation error is less than a certain tolerance. However, the conditions given are

quite conservative. In fact, stability was proven post-analyzing approximate PWA

controllers with cost function values that did not satisfy the theoretical maximum

allowed tolerance. A further research direction would be to derive less conserva-

tive stability conditions to use in the algorithm for generating guaranteed stabilizing

suboptimal PWA controllers.

68 Approximate Explicit MPC via Delaunay Tessellations 68 Approximate Explicit MPC via Delaunay Tessellations

68 Approximate Explicit MPC via Delaunay Tessellations 68 Approximate Explicit MPC via Delaunay Tessellations

Chapter 4

Feasible Sets for MPC and their
Approximations

This chapter considers the problem of computing inner approximations for the fea-

sible set for linear Model Predictive Control techniques. An alternative approach for

computing the feasible set is presented, based on set relations instead of the con-

ventional orthogonal projection. The approach can be implemented incrementally

on the length of the prediction horizon. This is exploited to design an algorithm to

compute suitable inner approximations. Such approximations are characterized by

simpler representations and preserve the essential properties of the feasible set such

as convexity, positive invariance and inclusion of the set of expected initial states.

This is important when in order to avoid the online optimization, the optimal MPC

solution is precomputed offline in an explicit form as a piecewise affine state feed-

back control law over the feasible set. Particularly in the context of finding simpler

suboptimal explicit solutions the complexity of the feasible set plays a decisive role.

4.1 Introduction

Within the theoretical framework for MPC, a key role is played by the so-called

feasible set, i.e. the largest subset of the state space such that there exists a con-

trol action satisfying all the constraints. The feasible set is closely related to the

prediction horizon considered. Generally longer horizons result in larger feasible

sets, but this is at the cost of a larger MPC optimization problem. Provided that the

MPC optimization problem is formulated so that closed-loop stability is ensured

(Mayne et al. (2000)), an optimal control action is guaranteed to exist at each sam-

69

Chapter 4

Feasible Sets for MPC and their
Approximations

This chapter considers the problem of computing inner approximations for the fea-

sible set for linear Model Predictive Control techniques. An alternative approach for

computing the feasible set is presented, based on set relations instead of the con-

ventional orthogonal projection. The approach can be implemented incrementally

on the length of the prediction horizon. This is exploited to design an algorithm to

compute suitable inner approximations. Such approximations are characterized by

simpler representations and preserve the essential properties of the feasible set such

as convexity, positive invariance and inclusion of the set of expected initial states.

This is important when in order to avoid the online optimization, the optimal MPC

solution is precomputed offline in an explicit form as a piecewise affine state feed-

back control law over the feasible set. Particularly in the context of finding simpler

suboptimal explicit solutions the complexity of the feasible set plays a decisive role.

4.1 Introduction

Within the theoretical framework for MPC, a key role is played by the so-called

feasible set, i.e. the largest subset of the state space such that there exists a con-

trol action satisfying all the constraints. The feasible set is closely related to the

prediction horizon considered. Generally longer horizons result in larger feasible

sets, but this is at the cost of a larger MPC optimization problem. Provided that the

MPC optimization problem is formulated so that closed-loop stability is ensured

(Mayne et al. (2000)), an optimal control action is guaranteed to exist at each sam-

69

Chapter 4

Feasible Sets for MPC and their
Approximations

This chapter considers the problem of computing inner approximations for the fea-

sible set for linear Model Predictive Control techniques. An alternative approach for

computing the feasible set is presented, based on set relations instead of the con-

ventional orthogonal projection. The approach can be implemented incrementally

on the length of the prediction horizon. This is exploited to design an algorithm to

compute suitable inner approximations. Such approximations are characterized by

simpler representations and preserve the essential properties of the feasible set such

as convexity, positive invariance and inclusion of the set of expected initial states.

This is important when in order to avoid the online optimization, the optimal MPC

solution is precomputed offline in an explicit form as a piecewise affine state feed-

back control law over the feasible set. Particularly in the context of finding simpler

suboptimal explicit solutions the complexity of the feasible set plays a decisive role.

4.1 Introduction

Within the theoretical framework for MPC, a key role is played by the so-called

feasible set, i.e. the largest subset of the state space such that there exists a con-

trol action satisfying all the constraints. The feasible set is closely related to the

prediction horizon considered. Generally longer horizons result in larger feasible

sets, but this is at the cost of a larger MPC optimization problem. Provided that the

MPC optimization problem is formulated so that closed-loop stability is ensured

(Mayne et al. (2000)), an optimal control action is guaranteed to exist at each sam-

69

Chapter 4

Feasible Sets for MPC and their
Approximations

This chapter considers the problem of computing inner approximations for the fea-

sible set for linear Model Predictive Control techniques. An alternative approach for

computing the feasible set is presented, based on set relations instead of the con-

ventional orthogonal projection. The approach can be implemented incrementally

on the length of the prediction horizon. This is exploited to design an algorithm to

compute suitable inner approximations. Such approximations are characterized by

simpler representations and preserve the essential properties of the feasible set such

as convexity, positive invariance and inclusion of the set of expected initial states.

This is important when in order to avoid the online optimization, the optimal MPC

solution is precomputed offline in an explicit form as a piecewise affine state feed-

back control law over the feasible set. Particularly in the context of finding simpler

suboptimal explicit solutions the complexity of the feasible set plays a decisive role.

4.1 Introduction

Within the theoretical framework for MPC, a key role is played by the so-called

feasible set, i.e. the largest subset of the state space such that there exists a con-

trol action satisfying all the constraints. The feasible set is closely related to the

prediction horizon considered. Generally longer horizons result in larger feasible

sets, but this is at the cost of a larger MPC optimization problem. Provided that the

MPC optimization problem is formulated so that closed-loop stability is ensured

(Mayne et al. (2000)), an optimal control action is guaranteed to exist at each sam-

69

70 Feasible Sets for MPC and their Approximations

pling time, for any initial state chosen in the feasible set. This also means that when

explicit MPC formulations (Bemporad et al. (2002b), Tøndel et al. (2003a)) are em-

ployed, the feasible set is the domain where the optimal piecewise affine control

function is defined. A well-known problem in the explicit MPC area is that finding

and deploying the optimal explicit solution may be impractical in several relevant

situations. This problem has been extensively tackled by the research community,

which has proposed many approaches to approximate explicit MPC (see the litera-

ture overview in Chapter 3). The availability of the feasible set and furthermore its

shape description play key roles in the effectiveness of many of these approaches,

particularly for the ones based on feasible set discretizations (Scibilia et al. (2009b)

and Scibilia et al. (2010a), Nam et al. (2010), Bemporad and Filippi (2006), Jo-

hansen and Grancharova (2003), Jones and Morari (2009)).

An important characteristic of the feasible set is the convexity, in fact the feasible

set is completely described by the linear constraints involved in the MPC optimiza-

tion problem, which places it in the specific class of convex sets called polyhedra

(more precisely, polytopes). The standard approach to compute the feasible set uses

an important operation in polyhedral set theory, the orthogonal projection (Burger

et al. (1996), Jones et al. (2004), Mount (2002)). However, the orthogonal projec-

tion often turns out to be a computationally demanding operation in high spatial

dimensions (Jones et al. (2008)). This is the case, for example, when the feasible

set is computed for MPC with long prediction horizons.

The crucial property of the feasible set in the MPC context is the positive invari-
ance with respect to the closed-loop system, i.e. for any initial state contained in

the feasible set, the state evolution of the closed-loop system is also contained in the

feasible set for all future times. In general, polyhedral sets represent an important

family of candidate positively invariant sets and have been particularly successful in

the solution of many control engineering problems thanks to their flexibility (Blan-

chini (1999), Kerrigan and Maciejowski (2000), Gilbert and Tan (1991)). However,

the appurtenant disadvantage of this flexibility is the complexity of representation

which may be extremely high since it is not fixed by the space dimension consid-

ered (Blanchini and Miani (2008)).

Approximating polytopes by simpler sets is a well-known problem in many research

areas related to optimization, system identification and control. With any simpler

representation a certain loss of information is associated in principle. Thus, in gen-

eral, the ideal solution is always a right balance between simplicity and accuracy

(Dabbene et al. (2003), Bronstein (2008), Gritzmann and Klee (1994b)).

This chapter, based on results in Scibilia et al. (2010b), proposes two contribu-

tions: first it suggests an alternative approach for computing the feasible set which

uses set relations instead of orthogonal projection. Set relations of similar nature

have also been used in Kolmanovsky and Gilbert (1995). The proposed approach

70 Feasible Sets for MPC and their Approximations

pling time, for any initial state chosen in the feasible set. This also means that when

explicit MPC formulations (Bemporad et al. (2002b), Tøndel et al. (2003a)) are em-

ployed, the feasible set is the domain where the optimal piecewise affine control

function is defined. A well-known problem in the explicit MPC area is that finding

and deploying the optimal explicit solution may be impractical in several relevant

situations. This problem has been extensively tackled by the research community,

which has proposed many approaches to approximate explicit MPC (see the litera-

ture overview in Chapter 3). The availability of the feasible set and furthermore its

shape description play key roles in the effectiveness of many of these approaches,

particularly for the ones based on feasible set discretizations (Scibilia et al. (2009b)

and Scibilia et al. (2010a), Nam et al. (2010), Bemporad and Filippi (2006), Jo-

hansen and Grancharova (2003), Jones and Morari (2009)).

An important characteristic of the feasible set is the convexity, in fact the feasible

set is completely described by the linear constraints involved in the MPC optimiza-

tion problem, which places it in the specific class of convex sets called polyhedra

(more precisely, polytopes). The standard approach to compute the feasible set uses

an important operation in polyhedral set theory, the orthogonal projection (Burger

et al. (1996), Jones et al. (2004), Mount (2002)). However, the orthogonal projec-

tion often turns out to be a computationally demanding operation in high spatial

dimensions (Jones et al. (2008)). This is the case, for example, when the feasible

set is computed for MPC with long prediction horizons.

The crucial property of the feasible set in the MPC context is the positive invari-
ance with respect to the closed-loop system, i.e. for any initial state contained in

the feasible set, the state evolution of the closed-loop system is also contained in the

feasible set for all future times. In general, polyhedral sets represent an important

family of candidate positively invariant sets and have been particularly successful in

the solution of many control engineering problems thanks to their flexibility (Blan-

chini (1999), Kerrigan and Maciejowski (2000), Gilbert and Tan (1991)). However,

the appurtenant disadvantage of this flexibility is the complexity of representation

which may be extremely high since it is not fixed by the space dimension consid-

ered (Blanchini and Miani (2008)).

Approximating polytopes by simpler sets is a well-known problem in many research

areas related to optimization, system identification and control. With any simpler

representation a certain loss of information is associated in principle. Thus, in gen-

eral, the ideal solution is always a right balance between simplicity and accuracy

(Dabbene et al. (2003), Bronstein (2008), Gritzmann and Klee (1994b)).

This chapter, based on results in Scibilia et al. (2010b), proposes two contribu-

tions: first it suggests an alternative approach for computing the feasible set which

uses set relations instead of orthogonal projection. Set relations of similar nature

have also been used in Kolmanovsky and Gilbert (1995). The proposed approach

70 Feasible Sets for MPC and their Approximations

pling time, for any initial state chosen in the feasible set. This also means that when

explicit MPC formulations (Bemporad et al. (2002b), Tøndel et al. (2003a)) are em-

ployed, the feasible set is the domain where the optimal piecewise affine control

function is defined. A well-known problem in the explicit MPC area is that finding

and deploying the optimal explicit solution may be impractical in several relevant

situations. This problem has been extensively tackled by the research community,

which has proposed many approaches to approximate explicit MPC (see the litera-

ture overview in Chapter 3). The availability of the feasible set and furthermore its

shape description play key roles in the effectiveness of many of these approaches,

particularly for the ones based on feasible set discretizations (Scibilia et al. (2009b)

and Scibilia et al. (2010a), Nam et al. (2010), Bemporad and Filippi (2006), Jo-

hansen and Grancharova (2003), Jones and Morari (2009)).

An important characteristic of the feasible set is the convexity, in fact the feasible

set is completely described by the linear constraints involved in the MPC optimiza-

tion problem, which places it in the specific class of convex sets called polyhedra

(more precisely, polytopes). The standard approach to compute the feasible set uses

an important operation in polyhedral set theory, the orthogonal projection (Burger

et al. (1996), Jones et al. (2004), Mount (2002)). However, the orthogonal projec-

tion often turns out to be a computationally demanding operation in high spatial

dimensions (Jones et al. (2008)). This is the case, for example, when the feasible

set is computed for MPC with long prediction horizons.

The crucial property of the feasible set in the MPC context is the positive invari-
ance with respect to the closed-loop system, i.e. for any initial state contained in

the feasible set, the state evolution of the closed-loop system is also contained in the

feasible set for all future times. In general, polyhedral sets represent an important

family of candidate positively invariant sets and have been particularly successful in

the solution of many control engineering problems thanks to their flexibility (Blan-

chini (1999), Kerrigan and Maciejowski (2000), Gilbert and Tan (1991)). However,

the appurtenant disadvantage of this flexibility is the complexity of representation

which may be extremely high since it is not fixed by the space dimension consid-

ered (Blanchini and Miani (2008)).

Approximating polytopes by simpler sets is a well-known problem in many research

areas related to optimization, system identification and control. With any simpler

representation a certain loss of information is associated in principle. Thus, in gen-

eral, the ideal solution is always a right balance between simplicity and accuracy

(Dabbene et al. (2003), Bronstein (2008), Gritzmann and Klee (1994b)).

This chapter, based on results in Scibilia et al. (2010b), proposes two contribu-

tions: first it suggests an alternative approach for computing the feasible set which

uses set relations instead of orthogonal projection. Set relations of similar nature

have also been used in Kolmanovsky and Gilbert (1995). The proposed approach

70 Feasible Sets for MPC and their Approximations

pling time, for any initial state chosen in the feasible set. This also means that when

explicit MPC formulations (Bemporad et al. (2002b), Tøndel et al. (2003a)) are em-

ployed, the feasible set is the domain where the optimal piecewise affine control

function is defined. A well-known problem in the explicit MPC area is that finding

and deploying the optimal explicit solution may be impractical in several relevant

situations. This problem has been extensively tackled by the research community,

which has proposed many approaches to approximate explicit MPC (see the litera-

ture overview in Chapter 3). The availability of the feasible set and furthermore its

shape description play key roles in the effectiveness of many of these approaches,

particularly for the ones based on feasible set discretizations (Scibilia et al. (2009b)

and Scibilia et al. (2010a), Nam et al. (2010), Bemporad and Filippi (2006), Jo-

hansen and Grancharova (2003), Jones and Morari (2009)).

An important characteristic of the feasible set is the convexity, in fact the feasible

set is completely described by the linear constraints involved in the MPC optimiza-

tion problem, which places it in the specific class of convex sets called polyhedra

(more precisely, polytopes). The standard approach to compute the feasible set uses

an important operation in polyhedral set theory, the orthogonal projection (Burger

et al. (1996), Jones et al. (2004), Mount (2002)). However, the orthogonal projec-

tion often turns out to be a computationally demanding operation in high spatial

dimensions (Jones et al. (2008)). This is the case, for example, when the feasible

set is computed for MPC with long prediction horizons.

The crucial property of the feasible set in the MPC context is the positive invari-
ance with respect to the closed-loop system, i.e. for any initial state contained in

the feasible set, the state evolution of the closed-loop system is also contained in the

feasible set for all future times. In general, polyhedral sets represent an important

family of candidate positively invariant sets and have been particularly successful in

the solution of many control engineering problems thanks to their flexibility (Blan-

chini (1999), Kerrigan and Maciejowski (2000), Gilbert and Tan (1991)). However,

the appurtenant disadvantage of this flexibility is the complexity of representation

which may be extremely high since it is not fixed by the space dimension consid-

ered (Blanchini and Miani (2008)).

Approximating polytopes by simpler sets is a well-known problem in many research

areas related to optimization, system identification and control. With any simpler

representation a certain loss of information is associated in principle. Thus, in gen-

eral, the ideal solution is always a right balance between simplicity and accuracy

(Dabbene et al. (2003), Bronstein (2008), Gritzmann and Klee (1994b)).

This chapter, based on results in Scibilia et al. (2010b), proposes two contribu-

tions: first it suggests an alternative approach for computing the feasible set which

uses set relations instead of orthogonal projection. Set relations of similar nature

have also been used in Kolmanovsky and Gilbert (1995). The proposed approach

4.2. Model Predictive Control 71

can be implemented incrementally over the length of the horizon, and proves to

be computationally less demanding than the standard approach. Thereafter a solu-

tion is proposed to the problem of finding (inner) approximations of the feasible set

characterized by simpler representations, which constitutes the main contribution

of the chapter. When approximation approaches of polytopes are considered, while

convexity is easily maintained by the family of sets we are dealing with, positive

invariance is generally lost. Thus the primary issue is to compute approximations

while preserving both convexity and positive invariance. Furthermore, at the design

stage, one of the requirements of the controller is that it has to be able to regulate

the system for a given set of initial states representing the expected initial operation

conditions. Assuming that the MPC fulfills the design specifications, this set, here

called the operating set, is contained within the feasible set. To maintain the ef-

fectiveness of the MPC, an additional issue is then to compute approximations that

do not result in a loss of information which will prevent the MPC from performing

acceptably for states in the operating set.

4.2 Model Predictive Control

Consider the following discrete-time linear time-invariant system:

x(t+ 1) = Ax(t) + Bu(t) (4.1)

y(t) = Cx(t) (4.2)

where x ∈ R
n is the state vector, u ∈ R

r is the control input and y ∈ R
m is

the output vector, A ∈ R
n×n, B ∈ R

n×r and C ∈ R
m×n, and the pair (A,B) is

stabilizable. Full state measurement and no disturbances or model uncertainty are

assumed.

The system is assumed to be subject to the following state and input constraints:

x(t) ∈ X ⊂ R
n (4.3)

u(t) ∈ U ⊂ R
r (4.4)

for all future times. The sets X , U are considered to be described by linear inequal-

ities on the respective variables. The origin is assumed to be an interior point for

both sets.

Consider the problem of regulating the system (4.1) to the origin, such that con-

straints like (4.3-4.4) are satisfied.

4.2. Model Predictive Control 71

can be implemented incrementally over the length of the horizon, and proves to

be computationally less demanding than the standard approach. Thereafter a solu-

tion is proposed to the problem of finding (inner) approximations of the feasible set

characterized by simpler representations, which constitutes the main contribution

of the chapter. When approximation approaches of polytopes are considered, while

convexity is easily maintained by the family of sets we are dealing with, positive

invariance is generally lost. Thus the primary issue is to compute approximations

while preserving both convexity and positive invariance. Furthermore, at the design

stage, one of the requirements of the controller is that it has to be able to regulate

the system for a given set of initial states representing the expected initial operation

conditions. Assuming that the MPC fulfills the design specifications, this set, here

called the operating set, is contained within the feasible set. To maintain the ef-

fectiveness of the MPC, an additional issue is then to compute approximations that

do not result in a loss of information which will prevent the MPC from performing

acceptably for states in the operating set.

4.2 Model Predictive Control

Consider the following discrete-time linear time-invariant system:

x(t+ 1) = Ax(t) + Bu(t) (4.1)

y(t) = Cx(t) (4.2)

where x ∈ R
n is the state vector, u ∈ R

r is the control input and y ∈ R
m is

the output vector, A ∈ R
n×n, B ∈ R

n×r and C ∈ R
m×n, and the pair (A,B) is

stabilizable. Full state measurement and no disturbances or model uncertainty are

assumed.

The system is assumed to be subject to the following state and input constraints:

x(t) ∈ X ⊂ R
n (4.3)

u(t) ∈ U ⊂ R
r (4.4)

for all future times. The sets X , U are considered to be described by linear inequal-

ities on the respective variables. The origin is assumed to be an interior point for

both sets.

Consider the problem of regulating the system (4.1) to the origin, such that con-

straints like (4.3-4.4) are satisfied.

4.2. Model Predictive Control 71

can be implemented incrementally over the length of the horizon, and proves to

be computationally less demanding than the standard approach. Thereafter a solu-

tion is proposed to the problem of finding (inner) approximations of the feasible set

characterized by simpler representations, which constitutes the main contribution

of the chapter. When approximation approaches of polytopes are considered, while

convexity is easily maintained by the family of sets we are dealing with, positive

invariance is generally lost. Thus the primary issue is to compute approximations

while preserving both convexity and positive invariance. Furthermore, at the design

stage, one of the requirements of the controller is that it has to be able to regulate

the system for a given set of initial states representing the expected initial operation

conditions. Assuming that the MPC fulfills the design specifications, this set, here

called the operating set, is contained within the feasible set. To maintain the ef-

fectiveness of the MPC, an additional issue is then to compute approximations that

do not result in a loss of information which will prevent the MPC from performing

acceptably for states in the operating set.

4.2 Model Predictive Control

Consider the following discrete-time linear time-invariant system:

x(t+ 1) = Ax(t) + Bu(t) (4.1)

y(t) = Cx(t) (4.2)

where x ∈ R
n is the state vector, u ∈ R

r is the control input and y ∈ R
m is

the output vector, A ∈ R
n×n, B ∈ R

n×r and C ∈ R
m×n, and the pair (A,B) is

stabilizable. Full state measurement and no disturbances or model uncertainty are

assumed.

The system is assumed to be subject to the following state and input constraints:

x(t) ∈ X ⊂ R
n (4.3)

u(t) ∈ U ⊂ R
r (4.4)

for all future times. The sets X , U are considered to be described by linear inequal-

ities on the respective variables. The origin is assumed to be an interior point for

both sets.

Consider the problem of regulating the system (4.1) to the origin, such that con-

straints like (4.3-4.4) are satisfied.

4.2. Model Predictive Control 71

can be implemented incrementally over the length of the horizon, and proves to

be computationally less demanding than the standard approach. Thereafter a solu-

tion is proposed to the problem of finding (inner) approximations of the feasible set

characterized by simpler representations, which constitutes the main contribution

of the chapter. When approximation approaches of polytopes are considered, while

convexity is easily maintained by the family of sets we are dealing with, positive

invariance is generally lost. Thus the primary issue is to compute approximations

while preserving both convexity and positive invariance. Furthermore, at the design

stage, one of the requirements of the controller is that it has to be able to regulate

the system for a given set of initial states representing the expected initial operation

conditions. Assuming that the MPC fulfills the design specifications, this set, here

called the operating set, is contained within the feasible set. To maintain the ef-

fectiveness of the MPC, an additional issue is then to compute approximations that

do not result in a loss of information which will prevent the MPC from performing

acceptably for states in the operating set.

4.2 Model Predictive Control

Consider the following discrete-time linear time-invariant system:

x(t+ 1) = Ax(t) + Bu(t) (4.1)

y(t) = Cx(t) (4.2)

where x ∈ R
n is the state vector, u ∈ R

r is the control input and y ∈ R
m is

the output vector, A ∈ R
n×n, B ∈ R

n×r and C ∈ R
m×n, and the pair (A,B) is

stabilizable. Full state measurement and no disturbances or model uncertainty are

assumed.

The system is assumed to be subject to the following state and input constraints:

x(t) ∈ X ⊂ R
n (4.3)

u(t) ∈ U ⊂ R
r (4.4)

for all future times. The sets X , U are considered to be described by linear inequal-

ities on the respective variables. The origin is assumed to be an interior point for

both sets.

Consider the problem of regulating the system (4.1) to the origin, such that con-

straints like (4.3-4.4) are satisfied.

72 Feasible Sets for MPC and their Approximations

Note that considering equation (4.2), the case of output regulation would be an

immediate extension. Constraints on the output may be easily cast in terms of con-

straints on the state and taken into account in (4.3).

The regulation problem is solved by the finite horizon MPC

min
u

{
J (u, x(t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(4.5)

s.t. x0 = x (t) , (a)
xk+1 = Axk +Buk, k = 0, 1, ..., N − 1, (b)
xk ∈ X , k = 1, 2, ..., N − 1, (c)
uk ∈ U , k = 0, 1, ..., N − 1, (d)
xN ∈ Ω, (e)

(4.6)

where xk denotes the predicted state vector at time t + k obtained by applying the

k first elements of the input sequence u � [u0, ..., uN−1]; N is the prediction hori-

zon; Q � 0 (positive semidefinite) and R � 0 (positive definite) are symmetric

matrices corresponding to weights on state and input; P is the terminal cost matrix

and xN ∈ Ω the terminal constraint, which are defined to guarantee stability. The

matrix P � 0 is the solution of the algebraic Riccati equation resulting from the

corresponding unconstrained LQR problem. The terminal set Ω is chosen to be fea-

sible and positively invariant for the closed-loop system with this LQR (see Chapter

2 for details).

The MPC optimization problem (4.5-4.6) can be formulated as the following QP

minu uTHu + 2xTFu + xTY x
s.t. Gu ≤ w + Ex

(4.7)

where the matrices H , F , Y , G, w and E are as defined in Chapter 2. Note that the

term xTY x can be removed from the optimization since it does not influence the

optimal argument.

4.3 The Feasible Set

The MPC regulates the state to the origin for all the initial conditions contained in

the feasible set. The feasible set is defined as

XF = {x ∈ R
n| ∃ u satisfying (4.6)} (4.8)

72 Feasible Sets for MPC and their Approximations

Note that considering equation (4.2), the case of output regulation would be an

immediate extension. Constraints on the output may be easily cast in terms of con-

straints on the state and taken into account in (4.3).

The regulation problem is solved by the finite horizon MPC

min
u

{
J (u, x(t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(4.5)

s.t. x0 = x (t) , (a)
xk+1 = Axk +Buk, k = 0, 1, ..., N − 1, (b)
xk ∈ X , k = 1, 2, ..., N − 1, (c)
uk ∈ U , k = 0, 1, ..., N − 1, (d)
xN ∈ Ω, (e)

(4.6)

where xk denotes the predicted state vector at time t + k obtained by applying the

k first elements of the input sequence u � [u0, ..., uN−1]; N is the prediction hori-

zon; Q � 0 (positive semidefinite) and R � 0 (positive definite) are symmetric

matrices corresponding to weights on state and input; P is the terminal cost matrix

and xN ∈ Ω the terminal constraint, which are defined to guarantee stability. The

matrix P � 0 is the solution of the algebraic Riccati equation resulting from the

corresponding unconstrained LQR problem. The terminal set Ω is chosen to be fea-

sible and positively invariant for the closed-loop system with this LQR (see Chapter

2 for details).

The MPC optimization problem (4.5-4.6) can be formulated as the following QP

minu uTHu + 2xTFu + xTY x
s.t. Gu ≤ w + Ex

(4.7)

where the matrices H , F , Y , G, w and E are as defined in Chapter 2. Note that the

term xTY x can be removed from the optimization since it does not influence the

optimal argument.

4.3 The Feasible Set

The MPC regulates the state to the origin for all the initial conditions contained in

the feasible set. The feasible set is defined as

XF = {x ∈ R
n| ∃ u satisfying (4.6)} (4.8)

72 Feasible Sets for MPC and their Approximations

Note that considering equation (4.2), the case of output regulation would be an

immediate extension. Constraints on the output may be easily cast in terms of con-

straints on the state and taken into account in (4.3).

The regulation problem is solved by the finite horizon MPC

min
u

{
J (u, x(t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(4.5)

s.t. x0 = x (t) , (a)
xk+1 = Axk +Buk, k = 0, 1, ..., N − 1, (b)
xk ∈ X , k = 1, 2, ..., N − 1, (c)
uk ∈ U , k = 0, 1, ..., N − 1, (d)
xN ∈ Ω, (e)

(4.6)

where xk denotes the predicted state vector at time t + k obtained by applying the

k first elements of the input sequence u � [u0, ..., uN−1]; N is the prediction hori-

zon; Q � 0 (positive semidefinite) and R � 0 (positive definite) are symmetric

matrices corresponding to weights on state and input; P is the terminal cost matrix

and xN ∈ Ω the terminal constraint, which are defined to guarantee stability. The

matrix P � 0 is the solution of the algebraic Riccati equation resulting from the

corresponding unconstrained LQR problem. The terminal set Ω is chosen to be fea-

sible and positively invariant for the closed-loop system with this LQR (see Chapter

2 for details).

The MPC optimization problem (4.5-4.6) can be formulated as the following QP

minu uTHu + 2xTFu + xTY x
s.t. Gu ≤ w + Ex

(4.7)

where the matrices H , F , Y , G, w and E are as defined in Chapter 2. Note that the

term xTY x can be removed from the optimization since it does not influence the

optimal argument.

4.3 The Feasible Set

The MPC regulates the state to the origin for all the initial conditions contained in

the feasible set. The feasible set is defined as

XF = {x ∈ R
n| ∃ u satisfying (4.6)} (4.8)

72 Feasible Sets for MPC and their Approximations

Note that considering equation (4.2), the case of output regulation would be an

immediate extension. Constraints on the output may be easily cast in terms of con-

straints on the state and taken into account in (4.3).

The regulation problem is solved by the finite horizon MPC

min
u

{
J (u, x(t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(4.5)

s.t. x0 = x (t) , (a)
xk+1 = Axk +Buk, k = 0, 1, ..., N − 1, (b)
xk ∈ X , k = 1, 2, ..., N − 1, (c)
uk ∈ U , k = 0, 1, ..., N − 1, (d)
xN ∈ Ω, (e)

(4.6)

where xk denotes the predicted state vector at time t + k obtained by applying the

k first elements of the input sequence u � [u0, ..., uN−1]; N is the prediction hori-

zon; Q � 0 (positive semidefinite) and R � 0 (positive definite) are symmetric

matrices corresponding to weights on state and input; P is the terminal cost matrix

and xN ∈ Ω the terminal constraint, which are defined to guarantee stability. The

matrix P � 0 is the solution of the algebraic Riccati equation resulting from the

corresponding unconstrained LQR problem. The terminal set Ω is chosen to be fea-

sible and positively invariant for the closed-loop system with this LQR (see Chapter

2 for details).

The MPC optimization problem (4.5-4.6) can be formulated as the following QP

minu uTHu + 2xTFu + xTY x
s.t. Gu ≤ w + Ex

(4.7)

where the matrices H , F , Y , G, w and E are as defined in Chapter 2. Note that the

term xTY x can be removed from the optimization since it does not influence the

optimal argument.

4.3 The Feasible Set

The MPC regulates the state to the origin for all the initial conditions contained in

the feasible set. The feasible set is defined as

XF = {x ∈ R
n| ∃ u satisfying (4.6)} (4.8)

4.3. The Feasible Set 73

and can be interpreted as the maximal controlled invariant set by means of the MPC

with prediction horizon N and terminal set Ω.

When explicit solutions are considered, the feasible set is the domain where the

piecewise affine controller is defined.

4.3.1 Computing the Feasible Set: Standard Approach

The feasible set can be completely characterized by the constraints involved in the

optimization problem. As seen in the QP formulation (4.7), the constraints (4.6)

can be expressed in terms of the input sequence u and the initial state x(t):

Gu − Ex(t) ≤ w (4.9)

where G and E are matrices and w a vector of suitable dimensions (cf. Chapter 2).

The linear inequalities (4.9) define a polytope in the space R
n+rN

Q =
{[

x(t)T uT
]T ∈ R

n+rN | Gu − Ex(t) ≤ w
}

(4.10)

Then, the feasible set XF is given as orthogonal projection of Q onto the state

coordinates

XF = Πn (Q) (4.11)

With this approach the computation of the feasible set relies essentially on the

efficiency of projection algorithms. However, the orthogonal projection is intrin-

sically a computationally demanding operation (NP-hard), becoming increasingly

prohibitive as the dimension of the projecting polytope increases (Tiwary (2008a)).

This affects the computation of feasible sets for MPC, especially when long predic-

tion horizons are considered.

4.3.2 Computing the Feasible Set: Alternative Approach

This section considers a different approach for computing the feasible set, which

will be also useful for the results in the following sections and provides an alterna-

tive for the case of long prediction horizons.

Consider the optimization problem (4.5) subject to the constraints (4.6- a, b, d, e),

i.e. ignoring the state constraints xk ∈ X , k = 1, 2, ..., N − 1.

For this relaxed optimization problem, indicate with X̃F the corresponding relaxed

feasible set.

Note that the only constraints on the state are the equality constraints (4.6- a, b), and

the terminal constraint (4.6- e): the terminal state must be contained in the terminal

4.3. The Feasible Set 73

and can be interpreted as the maximal controlled invariant set by means of the MPC

with prediction horizon N and terminal set Ω.

When explicit solutions are considered, the feasible set is the domain where the

piecewise affine controller is defined.

4.3.1 Computing the Feasible Set: Standard Approach

The feasible set can be completely characterized by the constraints involved in the

optimization problem. As seen in the QP formulation (4.7), the constraints (4.6)

can be expressed in terms of the input sequence u and the initial state x(t):

Gu − Ex(t) ≤ w (4.9)

where G and E are matrices and w a vector of suitable dimensions (cf. Chapter 2).

The linear inequalities (4.9) define a polytope in the space R
n+rN

Q =
{[

x(t)T uT
]T ∈ R

n+rN | Gu − Ex(t) ≤ w
}

(4.10)

Then, the feasible set XF is given as orthogonal projection of Q onto the state

coordinates

XF = Πn (Q) (4.11)

With this approach the computation of the feasible set relies essentially on the

efficiency of projection algorithms. However, the orthogonal projection is intrin-

sically a computationally demanding operation (NP-hard), becoming increasingly

prohibitive as the dimension of the projecting polytope increases (Tiwary (2008a)).

This affects the computation of feasible sets for MPC, especially when long predic-

tion horizons are considered.

4.3.2 Computing the Feasible Set: Alternative Approach

This section considers a different approach for computing the feasible set, which

will be also useful for the results in the following sections and provides an alterna-

tive for the case of long prediction horizons.

Consider the optimization problem (4.5) subject to the constraints (4.6- a, b, d, e),

i.e. ignoring the state constraints xk ∈ X , k = 1, 2, ..., N − 1.

For this relaxed optimization problem, indicate with X̃F the corresponding relaxed

feasible set.

Note that the only constraints on the state are the equality constraints (4.6- a, b), and

the terminal constraint (4.6- e): the terminal state must be contained in the terminal

4.3. The Feasible Set 73

and can be interpreted as the maximal controlled invariant set by means of the MPC

with prediction horizon N and terminal set Ω.

When explicit solutions are considered, the feasible set is the domain where the

piecewise affine controller is defined.

4.3.1 Computing the Feasible Set: Standard Approach

The feasible set can be completely characterized by the constraints involved in the

optimization problem. As seen in the QP formulation (4.7), the constraints (4.6)

can be expressed in terms of the input sequence u and the initial state x(t):

Gu − Ex(t) ≤ w (4.9)

where G and E are matrices and w a vector of suitable dimensions (cf. Chapter 2).

The linear inequalities (4.9) define a polytope in the space R
n+rN

Q =
{[

x(t)T uT
]T ∈ R

n+rN | Gu − Ex(t) ≤ w
}

(4.10)

Then, the feasible set XF is given as orthogonal projection of Q onto the state

coordinates

XF = Πn (Q) (4.11)

With this approach the computation of the feasible set relies essentially on the

efficiency of projection algorithms. However, the orthogonal projection is intrin-

sically a computationally demanding operation (NP-hard), becoming increasingly

prohibitive as the dimension of the projecting polytope increases (Tiwary (2008a)).

This affects the computation of feasible sets for MPC, especially when long predic-

tion horizons are considered.

4.3.2 Computing the Feasible Set: Alternative Approach

This section considers a different approach for computing the feasible set, which

will be also useful for the results in the following sections and provides an alterna-

tive for the case of long prediction horizons.

Consider the optimization problem (4.5) subject to the constraints (4.6- a, b, d, e),

i.e. ignoring the state constraints xk ∈ X , k = 1, 2, ..., N − 1.

For this relaxed optimization problem, indicate with X̃F the corresponding relaxed

feasible set.

Note that the only constraints on the state are the equality constraints (4.6- a, b), and

the terminal constraint (4.6- e): the terminal state must be contained in the terminal

4.3. The Feasible Set 73

and can be interpreted as the maximal controlled invariant set by means of the MPC

with prediction horizon N and terminal set Ω.

When explicit solutions are considered, the feasible set is the domain where the

piecewise affine controller is defined.

4.3.1 Computing the Feasible Set: Standard Approach

The feasible set can be completely characterized by the constraints involved in the

optimization problem. As seen in the QP formulation (4.7), the constraints (4.6)

can be expressed in terms of the input sequence u and the initial state x(t):

Gu − Ex(t) ≤ w (4.9)

where G and E are matrices and w a vector of suitable dimensions (cf. Chapter 2).

The linear inequalities (4.9) define a polytope in the space R
n+rN

Q =
{[

x(t)T uT
]T ∈ R

n+rN | Gu − Ex(t) ≤ w
}

(4.10)

Then, the feasible set XF is given as orthogonal projection of Q onto the state

coordinates

XF = Πn (Q) (4.11)

With this approach the computation of the feasible set relies essentially on the

efficiency of projection algorithms. However, the orthogonal projection is intrin-

sically a computationally demanding operation (NP-hard), becoming increasingly

prohibitive as the dimension of the projecting polytope increases (Tiwary (2008a)).

This affects the computation of feasible sets for MPC, especially when long predic-

tion horizons are considered.

4.3.2 Computing the Feasible Set: Alternative Approach

This section considers a different approach for computing the feasible set, which

will be also useful for the results in the following sections and provides an alterna-

tive for the case of long prediction horizons.

Consider the optimization problem (4.5) subject to the constraints (4.6- a, b, d, e),

i.e. ignoring the state constraints xk ∈ X , k = 1, 2, ..., N − 1.

For this relaxed optimization problem, indicate with X̃F the corresponding relaxed

feasible set.

Note that the only constraints on the state are the equality constraints (4.6- a, b), and

the terminal constraint (4.6- e): the terminal state must be contained in the terminal

74 Feasible Sets for MPC and their Approximations

set.

Using the equality constraints, the terminal state equation can be written as:

xN = ANx(t) + B̂u (4.12)

where AN is the N -matrix-power of A and B̂ =
[
AN−1B AN−2B ... B

]
.

Equation (4.12) suggests the existence of a relation in terms of the sets involved in

the relaxed MPC optimization problem considered. Set relations of similar nature

have been also used in Kolmanovsky and Gilbert (1995) in the context of finding

admissible sets for discrete-time systems subject to bounded input disturbances.

Before formally stating the set relation, we need to introduce the set of admissible

input sequences:

U (N) =
{

u ∈ R
rN | uj ∈ U , j = 0, ..., N − 1

}
. (4.13)

Theorem 8. Consider the optimization problem (4.5) subject to the constraints (4.6-
a, b, d, e). Then the terminal set, Ω, the corresponding feasible set, X̃F , and the set
of admissible sequence input, U (N), satisfy the following set relation

Ω = AN X̃F � B̂(−U (N)) (4.14)

where AN : Rn �→ R
n and B̂ : RrN �→ R

n represent linear maps applied respec-
tively to X̃F and to U (N).

Proof. According to (4.8), the relaxed feasible set can be written as:

X̃F =
{
x ∈ R

n|∃u ∈ U (N) : ANx+ B̂u ∈ Ω
}

(4.15)

Using the linear maps AN and B̂ we can define the sets:

AN X̃F =
{
xe ∈ R

n|xe = ANx, x ∈ X̃F

}
(4.16)

B̂U (N) =
{
xu ∈ R

n|xu = B̂u, u ∈ U (N)
}

(4.17)

From (4.15) we can write the equivalence:

AN X̃F =
{
xe|∃xu ∈ B̂U (N) : xe + xu ∈ Ω

}
(4.18)

which subsequently implies that X̃F is the collection of all the states that can be

obtained as a combination of points in Ω and B̂(−U (N)). This leads to the equiva-

lence:

Ω =
{
xΩ| xΩ − xu ∈ AN X̃F , ∀xu ∈ B̂U (N)

}
(4.19)

By the definition of the erosion operator (cf. Chapter 2), (4.19) corresponds to

(4.14).

74 Feasible Sets for MPC and their Approximations

set.

Using the equality constraints, the terminal state equation can be written as:

xN = ANx(t) + B̂u (4.12)

where AN is the N -matrix-power of A and B̂ =
[
AN−1B AN−2B ... B

]
.

Equation (4.12) suggests the existence of a relation in terms of the sets involved in

the relaxed MPC optimization problem considered. Set relations of similar nature

have been also used in Kolmanovsky and Gilbert (1995) in the context of finding

admissible sets for discrete-time systems subject to bounded input disturbances.

Before formally stating the set relation, we need to introduce the set of admissible

input sequences:

U (N) =
{

u ∈ R
rN | uj ∈ U , j = 0, ..., N − 1

}
. (4.13)

Theorem 8. Consider the optimization problem (4.5) subject to the constraints (4.6-
a, b, d, e). Then the terminal set, Ω, the corresponding feasible set, X̃F , and the set
of admissible sequence input, U (N), satisfy the following set relation

Ω = AN X̃F � B̂(−U (N)) (4.14)

where AN : Rn �→ R
n and B̂ : RrN �→ R

n represent linear maps applied respec-
tively to X̃F and to U (N).

Proof. According to (4.8), the relaxed feasible set can be written as:

X̃F =
{
x ∈ R

n|∃u ∈ U (N) : ANx+ B̂u ∈ Ω
}

(4.15)

Using the linear maps AN and B̂ we can define the sets:

AN X̃F =
{
xe ∈ R

n|xe = ANx, x ∈ X̃F

}
(4.16)

B̂U (N) =
{
xu ∈ R

n|xu = B̂u, u ∈ U (N)
}

(4.17)

From (4.15) we can write the equivalence:

AN X̃F =
{
xe|∃xu ∈ B̂U (N) : xe + xu ∈ Ω

}
(4.18)

which subsequently implies that X̃F is the collection of all the states that can be

obtained as a combination of points in Ω and B̂(−U (N)). This leads to the equiva-

lence:

Ω =
{
xΩ| xΩ − xu ∈ AN X̃F , ∀xu ∈ B̂U (N)

}
(4.19)

By the definition of the erosion operator (cf. Chapter 2), (4.19) corresponds to

(4.14).

74 Feasible Sets for MPC and their Approximations

set.

Using the equality constraints, the terminal state equation can be written as:

xN = ANx(t) + B̂u (4.12)

where AN is the N -matrix-power of A and B̂ =
[
AN−1B AN−2B ... B

]
.

Equation (4.12) suggests the existence of a relation in terms of the sets involved in

the relaxed MPC optimization problem considered. Set relations of similar nature

have been also used in Kolmanovsky and Gilbert (1995) in the context of finding

admissible sets for discrete-time systems subject to bounded input disturbances.

Before formally stating the set relation, we need to introduce the set of admissible

input sequences:

U (N) =
{

u ∈ R
rN | uj ∈ U , j = 0, ..., N − 1

}
. (4.13)

Theorem 8. Consider the optimization problem (4.5) subject to the constraints (4.6-
a, b, d, e). Then the terminal set, Ω, the corresponding feasible set, X̃F , and the set
of admissible sequence input, U (N), satisfy the following set relation

Ω = AN X̃F � B̂(−U (N)) (4.14)

where AN : Rn �→ R
n and B̂ : RrN �→ R

n represent linear maps applied respec-
tively to X̃F and to U (N).

Proof. According to (4.8), the relaxed feasible set can be written as:

X̃F =
{
x ∈ R

n|∃u ∈ U (N) : ANx+ B̂u ∈ Ω
}

(4.15)

Using the linear maps AN and B̂ we can define the sets:

AN X̃F =
{
xe ∈ R

n|xe = ANx, x ∈ X̃F

}
(4.16)

B̂U (N) =
{
xu ∈ R

n|xu = B̂u, u ∈ U (N)
}

(4.17)

From (4.15) we can write the equivalence:

AN X̃F =
{
xe|∃xu ∈ B̂U (N) : xe + xu ∈ Ω

}
(4.18)

which subsequently implies that X̃F is the collection of all the states that can be

obtained as a combination of points in Ω and B̂(−U (N)). This leads to the equiva-

lence:

Ω =
{
xΩ| xΩ − xu ∈ AN X̃F , ∀xu ∈ B̂U (N)

}
(4.19)

By the definition of the erosion operator (cf. Chapter 2), (4.19) corresponds to

(4.14).

74 Feasible Sets for MPC and their Approximations

set.

Using the equality constraints, the terminal state equation can be written as:

xN = ANx(t) + B̂u (4.12)

where AN is the N -matrix-power of A and B̂ =
[
AN−1B AN−2B ... B

]
.

Equation (4.12) suggests the existence of a relation in terms of the sets involved in

the relaxed MPC optimization problem considered. Set relations of similar nature

have been also used in Kolmanovsky and Gilbert (1995) in the context of finding

admissible sets for discrete-time systems subject to bounded input disturbances.

Before formally stating the set relation, we need to introduce the set of admissible

input sequences:

U (N) =
{

u ∈ R
rN | uj ∈ U , j = 0, ..., N − 1

}
. (4.13)

Theorem 8. Consider the optimization problem (4.5) subject to the constraints (4.6-
a, b, d, e). Then the terminal set, Ω, the corresponding feasible set, X̃F , and the set
of admissible sequence input, U (N), satisfy the following set relation

Ω = AN X̃F � B̂(−U (N)) (4.14)

where AN : Rn �→ R
n and B̂ : RrN �→ R

n represent linear maps applied respec-
tively to X̃F and to U (N).

Proof. According to (4.8), the relaxed feasible set can be written as:

X̃F =
{
x ∈ R

n|∃u ∈ U (N) : ANx+ B̂u ∈ Ω
}

(4.15)

Using the linear maps AN and B̂ we can define the sets:

AN X̃F =
{
xe ∈ R

n|xe = ANx, x ∈ X̃F

}
(4.16)

B̂U (N) =
{
xu ∈ R

n|xu = B̂u, u ∈ U (N)
}

(4.17)

From (4.15) we can write the equivalence:

AN X̃F =
{
xe|∃xu ∈ B̂U (N) : xe + xu ∈ Ω

}
(4.18)

which subsequently implies that X̃F is the collection of all the states that can be

obtained as a combination of points in Ω and B̂(−U (N)). This leads to the equiva-

lence:

Ω =
{
xΩ| xΩ − xu ∈ AN X̃F , ∀xu ∈ B̂U (N)

}
(4.19)

By the definition of the erosion operator (cf. Chapter 2), (4.19) corresponds to

(4.14).

4.3. The Feasible Set 75

In the following we assume that the matrix A of (4.1) is invertible. Notice that zero

eigenvalues of A mean that there are modes which are pure delays of the inputs.

This is clear by taking the Jordan form of A, which also gives linearly transformed

constraint sets X ′ and U ′ (the constraints on the state corresponding to delayed

inputs must then be compatible with U ′). Then, the assumption is motivated by

considering that the Jordan blocks of A with zero eigenvalue can then be excluded,

meaning that constraints involving linear combinations of past inputs and current

states corresponding to the remaining Jordan blocks are not allowed. However, we

also note that the assumption is always satisfied by discretized (finite dimensional)

continuous-time systems.

Therefore, by (4.14) the relaxed feasible set can be computed as:

X̃F :=
(
AN
)−1
[
Ω⊕ B̂(−U (N))

]
(4.20)

Note that the computation of the feasible set via the formula (4.20) basically costs a

Minkowski sum in R
n, given the polytopes Ω and U (N), which is an operation that

can be done in polynomial time (Gritzmann and Sturmfels (1993)). This is gener-

ally more convenient than using (4.11) which requires handling polytopes in higher

dimensions, Rn+rN .

Inspecting (4.14), an incremental approach for computing X̃F can be derived, which

with a simple modification is extendable for also computing XF .

Let us explicitly express the dependence of the feasible set from the length of the

horizon as X (k)
F , which indicates the feasible set for a horizon of length k. Accord-

ing to this notation, the feasible set we are interested in is XF = X (N)
F .

For the case k = 1, relation (4.14) becomes

Ω = AX̃F
(1) � B(−U) (4.21)

which leads to the set1 of all the initial states that in one time-step move inside Ω

X̃ (1)
F = (A)−1 [Ω⊕ B(−U)] (4.22)

At this point, introducing the constraint on the state is straightforward, and thus the

feasible set X (1)
F is simply computed from X̃ (1)

F as

X (1)
F = X̃ (1)

F ∩ X (4.23)

The feasible set X̃ (2)
F is determined by X̃ (1)

F considering an analogous relations to

(4.21):

X̃ (1)
F = AX̃ (2)

F �B(−U) (4.24)

1This set is also called the one-step controllability set to Ω (Blanchini (1994)).

4.3. The Feasible Set 75

In the following we assume that the matrix A of (4.1) is invertible. Notice that zero

eigenvalues of A mean that there are modes which are pure delays of the inputs.

This is clear by taking the Jordan form of A, which also gives linearly transformed

constraint sets X ′ and U ′ (the constraints on the state corresponding to delayed

inputs must then be compatible with U ′). Then, the assumption is motivated by

considering that the Jordan blocks of A with zero eigenvalue can then be excluded,

meaning that constraints involving linear combinations of past inputs and current

states corresponding to the remaining Jordan blocks are not allowed. However, we

also note that the assumption is always satisfied by discretized (finite dimensional)

continuous-time systems.

Therefore, by (4.14) the relaxed feasible set can be computed as:

X̃F :=
(
AN
)−1
[
Ω⊕ B̂(−U (N))

]
(4.20)

Note that the computation of the feasible set via the formula (4.20) basically costs a

Minkowski sum in R
n, given the polytopes Ω and U (N), which is an operation that

can be done in polynomial time (Gritzmann and Sturmfels (1993)). This is gener-

ally more convenient than using (4.11) which requires handling polytopes in higher

dimensions, Rn+rN .

Inspecting (4.14), an incremental approach for computing X̃F can be derived, which

with a simple modification is extendable for also computing XF .

Let us explicitly express the dependence of the feasible set from the length of the

horizon as X (k)
F , which indicates the feasible set for a horizon of length k. Accord-

ing to this notation, the feasible set we are interested in is XF = X (N)
F .

For the case k = 1, relation (4.14) becomes

Ω = AX̃F
(1) � B(−U) (4.21)

which leads to the set1 of all the initial states that in one time-step move inside Ω

X̃ (1)
F = (A)−1 [Ω⊕ B(−U)] (4.22)

At this point, introducing the constraint on the state is straightforward, and thus the

feasible set X (1)
F is simply computed from X̃ (1)

F as

X (1)
F = X̃ (1)

F ∩ X (4.23)

The feasible set X̃ (2)
F is determined by X̃ (1)

F considering an analogous relations to

(4.21):

X̃ (1)
F = AX̃ (2)

F �B(−U) (4.24)

1This set is also called the one-step controllability set to Ω (Blanchini (1994)).

4.3. The Feasible Set 75

In the following we assume that the matrix A of (4.1) is invertible. Notice that zero

eigenvalues of A mean that there are modes which are pure delays of the inputs.

This is clear by taking the Jordan form of A, which also gives linearly transformed

constraint sets X ′ and U ′ (the constraints on the state corresponding to delayed

inputs must then be compatible with U ′). Then, the assumption is motivated by

considering that the Jordan blocks of A with zero eigenvalue can then be excluded,

meaning that constraints involving linear combinations of past inputs and current

states corresponding to the remaining Jordan blocks are not allowed. However, we

also note that the assumption is always satisfied by discretized (finite dimensional)

continuous-time systems.

Therefore, by (4.14) the relaxed feasible set can be computed as:

X̃F :=
(
AN
)−1
[
Ω⊕ B̂(−U (N))

]
(4.20)

Note that the computation of the feasible set via the formula (4.20) basically costs a

Minkowski sum in R
n, given the polytopes Ω and U (N), which is an operation that

can be done in polynomial time (Gritzmann and Sturmfels (1993)). This is gener-

ally more convenient than using (4.11) which requires handling polytopes in higher

dimensions, Rn+rN .

Inspecting (4.14), an incremental approach for computing X̃F can be derived, which

with a simple modification is extendable for also computing XF .

Let us explicitly express the dependence of the feasible set from the length of the

horizon as X (k)
F , which indicates the feasible set for a horizon of length k. Accord-

ing to this notation, the feasible set we are interested in is XF = X (N)
F .

For the case k = 1, relation (4.14) becomes

Ω = AX̃F
(1) � B(−U) (4.21)

which leads to the set1 of all the initial states that in one time-step move inside Ω

X̃ (1)
F = (A)−1 [Ω⊕ B(−U)] (4.22)

At this point, introducing the constraint on the state is straightforward, and thus the

feasible set X (1)
F is simply computed from X̃ (1)

F as

X (1)
F = X̃ (1)

F ∩ X (4.23)

The feasible set X̃ (2)
F is determined by X̃ (1)

F considering an analogous relations to

(4.21):

X̃ (1)
F = AX̃ (2)

F �B(−U) (4.24)

1This set is also called the one-step controllability set to Ω (Blanchini (1994)).

4.3. The Feasible Set 75

In the following we assume that the matrix A of (4.1) is invertible. Notice that zero

eigenvalues of A mean that there are modes which are pure delays of the inputs.

This is clear by taking the Jordan form of A, which also gives linearly transformed

constraint sets X ′ and U ′ (the constraints on the state corresponding to delayed

inputs must then be compatible with U ′). Then, the assumption is motivated by

considering that the Jordan blocks of A with zero eigenvalue can then be excluded,

meaning that constraints involving linear combinations of past inputs and current

states corresponding to the remaining Jordan blocks are not allowed. However, we

also note that the assumption is always satisfied by discretized (finite dimensional)

continuous-time systems.

Therefore, by (4.14) the relaxed feasible set can be computed as:

X̃F :=
(
AN
)−1
[
Ω⊕ B̂(−U (N))

]
(4.20)

Note that the computation of the feasible set via the formula (4.20) basically costs a

Minkowski sum in R
n, given the polytopes Ω and U (N), which is an operation that

can be done in polynomial time (Gritzmann and Sturmfels (1993)). This is gener-

ally more convenient than using (4.11) which requires handling polytopes in higher

dimensions, Rn+rN .

Inspecting (4.14), an incremental approach for computing X̃F can be derived, which

with a simple modification is extendable for also computing XF .

Let us explicitly express the dependence of the feasible set from the length of the

horizon as X (k)
F , which indicates the feasible set for a horizon of length k. Accord-

ing to this notation, the feasible set we are interested in is XF = X (N)
F .

For the case k = 1, relation (4.14) becomes

Ω = AX̃F
(1) � B(−U) (4.21)

which leads to the set1 of all the initial states that in one time-step move inside Ω

X̃ (1)
F = (A)−1 [Ω⊕ B(−U)] (4.22)

At this point, introducing the constraint on the state is straightforward, and thus the

feasible set X (1)
F is simply computed from X̃ (1)

F as

X (1)
F = X̃ (1)

F ∩ X (4.23)

The feasible set X̃ (2)
F is determined by X̃ (1)

F considering an analogous relations to

(4.21):

X̃ (1)
F = AX̃ (2)

F �B(−U) (4.24)

1This set is also called the one-step controllability set to Ω (Blanchini (1994)).

76 Feasible Sets for MPC and their Approximations

which gives

X̃ (2)
F = (A)−1

[
X̃ (1)

F ⊕ B(−U)
]

(4.25)

and thus also X (2)
F can be determined analogously to (4.23).

In general, the feasible set with horizon k can be computed in this incremental

fashion from the feasible set with horizon k − 1. This leads to Algorithm 3 for

computing the feasible set for the MPC (4.5-4.6).

Algorithm 3: Feasible set

Input: The system state and input matrices A and B. The terminal set

Ω. The state and input constraints sets X and U . The length of

the horizon N .

Output: The feasible set XF

Initialize the set T = Ω;1

for k = 1 to N do2

Compute X̃ (k)
F = A−1 [T ⊕ B(−U)];3

Compute X (k)
F = X̃ (k)

F ∩ X ;4

Set T = X (k)
F5

end6

Set XF = X (k)
F .7

In addition to giving the possibility to include the state constraints, the advantage

of the incremental approach is that it avoids the necessity of handling the polytope

U (N) which, especially for long horizons, may be undesirable.

4.3.3 The Operating Set

Reasonably, we can assume that the MPC (4.5)-(4.6) is designed to regulate the sys-

tem for a given set of initial states which represents the expected initial operating

conditions. Without any particular restriction, we can consider this set expressed as

linear inequalities, and thus represented by a polytope Xo. We call Xo the operating
set, and assuming the MPC meets the design specifications, we have Xo ⊂ XF .

Naturally, the origin is an interior point of the operating set.

76 Feasible Sets for MPC and their Approximations

which gives

X̃ (2)
F = (A)−1

[
X̃ (1)

F ⊕ B(−U)
]

(4.25)

and thus also X (2)
F can be determined analogously to (4.23).

In general, the feasible set with horizon k can be computed in this incremental

fashion from the feasible set with horizon k − 1. This leads to Algorithm 3 for

computing the feasible set for the MPC (4.5-4.6).

Algorithm 3: Feasible set

Input: The system state and input matrices A and B. The terminal set

Ω. The state and input constraints sets X and U . The length of

the horizon N .

Output: The feasible set XF

Initialize the set T = Ω;1

for k = 1 to N do2

Compute X̃ (k)
F = A−1 [T ⊕ B(−U)];3

Compute X (k)
F = X̃ (k)

F ∩ X ;4

Set T = X (k)
F5

end6

Set XF = X (k)
F .7

In addition to giving the possibility to include the state constraints, the advantage

of the incremental approach is that it avoids the necessity of handling the polytope

U (N) which, especially for long horizons, may be undesirable.

4.3.3 The Operating Set

Reasonably, we can assume that the MPC (4.5)-(4.6) is designed to regulate the sys-

tem for a given set of initial states which represents the expected initial operating

conditions. Without any particular restriction, we can consider this set expressed as

linear inequalities, and thus represented by a polytope Xo. We call Xo the operating
set, and assuming the MPC meets the design specifications, we have Xo ⊂ XF .

Naturally, the origin is an interior point of the operating set.

76 Feasible Sets for MPC and their Approximations

which gives

X̃ (2)
F = (A)−1

[
X̃ (1)

F ⊕ B(−U)
]

(4.25)

and thus also X (2)
F can be determined analogously to (4.23).

In general, the feasible set with horizon k can be computed in this incremental

fashion from the feasible set with horizon k − 1. This leads to Algorithm 3 for

computing the feasible set for the MPC (4.5-4.6).

Algorithm 3: Feasible set

Input: The system state and input matrices A and B. The terminal set

Ω. The state and input constraints sets X and U . The length of

the horizon N .

Output: The feasible set XF

Initialize the set T = Ω;1

for k = 1 to N do2

Compute X̃ (k)
F = A−1 [T ⊕ B(−U)];3

Compute X (k)
F = X̃ (k)

F ∩ X ;4

Set T = X (k)
F5

end6

Set XF = X (k)
F .7

In addition to giving the possibility to include the state constraints, the advantage

of the incremental approach is that it avoids the necessity of handling the polytope

U (N) which, especially for long horizons, may be undesirable.

4.3.3 The Operating Set

Reasonably, we can assume that the MPC (4.5)-(4.6) is designed to regulate the sys-

tem for a given set of initial states which represents the expected initial operating

conditions. Without any particular restriction, we can consider this set expressed as

linear inequalities, and thus represented by a polytope Xo. We call Xo the operating
set, and assuming the MPC meets the design specifications, we have Xo ⊂ XF .

Naturally, the origin is an interior point of the operating set.

76 Feasible Sets for MPC and their Approximations

which gives

X̃ (2)
F = (A)−1

[
X̃ (1)

F ⊕ B(−U)
]

(4.25)

and thus also X (2)
F can be determined analogously to (4.23).

In general, the feasible set with horizon k can be computed in this incremental

fashion from the feasible set with horizon k − 1. This leads to Algorithm 3 for

computing the feasible set for the MPC (4.5-4.6).

Algorithm 3: Feasible set

Input: The system state and input matrices A and B. The terminal set

Ω. The state and input constraints sets X and U . The length of

the horizon N .

Output: The feasible set XF

Initialize the set T = Ω;1

for k = 1 to N do2

Compute X̃ (k)
F = A−1 [T ⊕ B(−U)];3

Compute X (k)
F = X̃ (k)

F ∩ X ;4

Set T = X (k)
F5

end6

Set XF = X (k)
F .7

In addition to giving the possibility to include the state constraints, the advantage

of the incremental approach is that it avoids the necessity of handling the polytope

U (N) which, especially for long horizons, may be undesirable.

4.3.3 The Operating Set

Reasonably, we can assume that the MPC (4.5)-(4.6) is designed to regulate the sys-

tem for a given set of initial states which represents the expected initial operating

conditions. Without any particular restriction, we can consider this set expressed as

linear inequalities, and thus represented by a polytope Xo. We call Xo the operating
set, and assuming the MPC meets the design specifications, we have Xo ⊂ XF .

Naturally, the origin is an interior point of the operating set.

4.4. Approximation of Feasible Sets 77

4.4 Approximation of Feasible Sets

The feasible set is represented by a polytope in the state space. The problem of

finding polytope approximations by means of simpler convex bodies arises in many

research areas related to optimization, system identification and control. In general,

the solution is a balance between the simplicity of the representation and the accu-
racy of the approximation, where the accuracy can be measured using different met-

rics, depending on the particular approach used to solve the problem. An example

is the work in Dabbene et al. (2003), where the authors provide algorithms for com-

puting inner approximations in terms of the largest ellipsoids inscribed. However,

more often it is required that the approximating convex body is itself a polytope. In

this direction, different approaches have been proposed in the literature, and refer-

ence is made to Bronstein (2008) and Gritzmann and Klee (1994b) (and references

therein) for surveys on the subject.

The common representation complexity indexes of a polytope are the number of

half-spaces (or facets) for the H-representation, and the number of vertices for the

V-representation. Since a polytope is characterized by unique minimal H- and V-

representations, any lower complexity representation must correspond either to an

inner or to an outer approximation of the polytope.

In this section, the scope is to approximate the feasible set by means of a simpler

polytope. Since the feasible set corresponds to the maximal feasible controlled in-

variant set by means of the MPC, no feasible outer approximations can exist, and

therefore attention is restricted only to the search for inner approximations. Note

that the task is more involved than finding simpler representations maintaining a

prescribed accuracy in the approximation. For control purposes it is of prime im-

portance that the approximating polytope preserves the positive invariance property

and contains the operating set.

A natural approach for computing inner approximations is based on the fact that,

for any polytope, the omission of any of the vertices from the V-representation

changes the polytope by reducing it2. Typically (but not necessarily), the approx-

imations thus obtained also result in lower complexity H-representations, as will

be discussed later. Furthermore, several situations can be recognized where a sim-

pler feasible set characterized by fewer vertices would provide immediate improve-

ments. This is the case for example in approaches to explicit MPC such as Scibilia

et al. (2009b), Hovd et al. (2009), Nam et al. (2010) and Jones and Morari (2009),

in approaches to multi-parametric convex programming such as Bemporad and Fil-

ippi (2006)), or also in control approaches as Gutman and Cwikel (1986), where

the solution depends strictly on the complexity of the feasible set in terms of the

2Dually, the omission of any of the half-spaces from the H-representation changes the polytope

by enlarging it.

4.4. Approximation of Feasible Sets 77

4.4 Approximation of Feasible Sets

The feasible set is represented by a polytope in the state space. The problem of

finding polytope approximations by means of simpler convex bodies arises in many

research areas related to optimization, system identification and control. In general,

the solution is a balance between the simplicity of the representation and the accu-
racy of the approximation, where the accuracy can be measured using different met-

rics, depending on the particular approach used to solve the problem. An example

is the work in Dabbene et al. (2003), where the authors provide algorithms for com-

puting inner approximations in terms of the largest ellipsoids inscribed. However,

more often it is required that the approximating convex body is itself a polytope. In

this direction, different approaches have been proposed in the literature, and refer-

ence is made to Bronstein (2008) and Gritzmann and Klee (1994b) (and references

therein) for surveys on the subject.

The common representation complexity indexes of a polytope are the number of

half-spaces (or facets) for the H-representation, and the number of vertices for the

V-representation. Since a polytope is characterized by unique minimal H- and V-

representations, any lower complexity representation must correspond either to an

inner or to an outer approximation of the polytope.

In this section, the scope is to approximate the feasible set by means of a simpler

polytope. Since the feasible set corresponds to the maximal feasible controlled in-

variant set by means of the MPC, no feasible outer approximations can exist, and

therefore attention is restricted only to the search for inner approximations. Note

that the task is more involved than finding simpler representations maintaining a

prescribed accuracy in the approximation. For control purposes it is of prime im-

portance that the approximating polytope preserves the positive invariance property

and contains the operating set.

A natural approach for computing inner approximations is based on the fact that,

for any polytope, the omission of any of the vertices from the V-representation

changes the polytope by reducing it2. Typically (but not necessarily), the approx-

imations thus obtained also result in lower complexity H-representations, as will

be discussed later. Furthermore, several situations can be recognized where a sim-

pler feasible set characterized by fewer vertices would provide immediate improve-

ments. This is the case for example in approaches to explicit MPC such as Scibilia

et al. (2009b), Hovd et al. (2009), Nam et al. (2010) and Jones and Morari (2009),

in approaches to multi-parametric convex programming such as Bemporad and Fil-

ippi (2006)), or also in control approaches as Gutman and Cwikel (1986), where

the solution depends strictly on the complexity of the feasible set in terms of the

2Dually, the omission of any of the half-spaces from the H-representation changes the polytope

by enlarging it.

4.4. Approximation of Feasible Sets 77

4.4 Approximation of Feasible Sets

The feasible set is represented by a polytope in the state space. The problem of

finding polytope approximations by means of simpler convex bodies arises in many

research areas related to optimization, system identification and control. In general,

the solution is a balance between the simplicity of the representation and the accu-
racy of the approximation, where the accuracy can be measured using different met-

rics, depending on the particular approach used to solve the problem. An example

is the work in Dabbene et al. (2003), where the authors provide algorithms for com-

puting inner approximations in terms of the largest ellipsoids inscribed. However,

more often it is required that the approximating convex body is itself a polytope. In

this direction, different approaches have been proposed in the literature, and refer-

ence is made to Bronstein (2008) and Gritzmann and Klee (1994b) (and references

therein) for surveys on the subject.

The common representation complexity indexes of a polytope are the number of

half-spaces (or facets) for the H-representation, and the number of vertices for the

V-representation. Since a polytope is characterized by unique minimal H- and V-

representations, any lower complexity representation must correspond either to an

inner or to an outer approximation of the polytope.

In this section, the scope is to approximate the feasible set by means of a simpler

polytope. Since the feasible set corresponds to the maximal feasible controlled in-

variant set by means of the MPC, no feasible outer approximations can exist, and

therefore attention is restricted only to the search for inner approximations. Note

that the task is more involved than finding simpler representations maintaining a

prescribed accuracy in the approximation. For control purposes it is of prime im-

portance that the approximating polytope preserves the positive invariance property

and contains the operating set.

A natural approach for computing inner approximations is based on the fact that,

for any polytope, the omission of any of the vertices from the V-representation

changes the polytope by reducing it2. Typically (but not necessarily), the approx-

imations thus obtained also result in lower complexity H-representations, as will

be discussed later. Furthermore, several situations can be recognized where a sim-

pler feasible set characterized by fewer vertices would provide immediate improve-

ments. This is the case for example in approaches to explicit MPC such as Scibilia

et al. (2009b), Hovd et al. (2009), Nam et al. (2010) and Jones and Morari (2009),

in approaches to multi-parametric convex programming such as Bemporad and Fil-

ippi (2006)), or also in control approaches as Gutman and Cwikel (1986), where

the solution depends strictly on the complexity of the feasible set in terms of the

2Dually, the omission of any of the half-spaces from the H-representation changes the polytope

by enlarging it.

4.4. Approximation of Feasible Sets 77

4.4 Approximation of Feasible Sets

The feasible set is represented by a polytope in the state space. The problem of

finding polytope approximations by means of simpler convex bodies arises in many

research areas related to optimization, system identification and control. In general,

the solution is a balance between the simplicity of the representation and the accu-
racy of the approximation, where the accuracy can be measured using different met-

rics, depending on the particular approach used to solve the problem. An example

is the work in Dabbene et al. (2003), where the authors provide algorithms for com-

puting inner approximations in terms of the largest ellipsoids inscribed. However,

more often it is required that the approximating convex body is itself a polytope. In

this direction, different approaches have been proposed in the literature, and refer-

ence is made to Bronstein (2008) and Gritzmann and Klee (1994b) (and references

therein) for surveys on the subject.

The common representation complexity indexes of a polytope are the number of

half-spaces (or facets) for the H-representation, and the number of vertices for the

V-representation. Since a polytope is characterized by unique minimal H- and V-

representations, any lower complexity representation must correspond either to an

inner or to an outer approximation of the polytope.

In this section, the scope is to approximate the feasible set by means of a simpler

polytope. Since the feasible set corresponds to the maximal feasible controlled in-

variant set by means of the MPC, no feasible outer approximations can exist, and

therefore attention is restricted only to the search for inner approximations. Note

that the task is more involved than finding simpler representations maintaining a

prescribed accuracy in the approximation. For control purposes it is of prime im-

portance that the approximating polytope preserves the positive invariance property

and contains the operating set.

A natural approach for computing inner approximations is based on the fact that,

for any polytope, the omission of any of the vertices from the V-representation

changes the polytope by reducing it2. Typically (but not necessarily), the approx-

imations thus obtained also result in lower complexity H-representations, as will

be discussed later. Furthermore, several situations can be recognized where a sim-

pler feasible set characterized by fewer vertices would provide immediate improve-

ments. This is the case for example in approaches to explicit MPC such as Scibilia

et al. (2009b), Hovd et al. (2009), Nam et al. (2010) and Jones and Morari (2009),

in approaches to multi-parametric convex programming such as Bemporad and Fil-

ippi (2006)), or also in control approaches as Gutman and Cwikel (1986), where

the solution depends strictly on the complexity of the feasible set in terms of the

2Dually, the omission of any of the half-spaces from the H-representation changes the polytope

by enlarging it.

78 Feasible Sets for MPC and their Approximations

number of vertices.

Therefore, interest is focused on finding appropriate inner approximations charac-

terized by a reduced number of vertices.

An algorithm for computing inner approximations of polytopes based on the re-

moval of vertices is proposed in Reisner et al. (2001) (in Lopez and Reisner (2002)

if only 3D polytopes are considered). The fundamental result is the following.

Proposition 1. Given a polytope P ∈ R
n characterized by nV vertices VP ={

v(1), ..., v(nV)
}

, P = conv(VP), there exists a vertex v ∈ VP such that the poly-
tope Q = conv(VP \ {v}) satisfies

vol(P)− vol(Q)

vol(P)
≤ α(n)n

−n+1
n−1

V . (4.26)

The factor α(n) is a constant depending only on the space dimension (details about

how to estimate this constant can be found in Reisner et al. (2001) and Lopez and

Reisner (2002)).

This result is the best possible in general, for the dependence on the numbers of

vertices of the approximating polytope.

The main idea of the algorithm is thus the consecutive removal of the chosen ver-

tices. Taking an appropriate number k < nV , it can be identified a successive

minimizing choice of vertices of P , i.e. a sequence
{
v(r1), ..., v(rnV−k)

}
of different

vertices in VP such that for all i = 1, ..., nV − k

vol
(
conv

(
VP \

{
v(r1), ..., v(ri−1)

}))
− vol

(
conv

(
VP \

{
v(r1), ..., v(ri)

}))
(4.27)

is minimal over all choices of v(ri) ∈ VP \
{
v(r1), ..., v(ri−1)

}
. The polytope

Q = conv(VP \
{
v(r1), ..., v(rnV−k)

}
), (4.28)

characterized by k vertices, is an inner approximation of P . The accuracy of the

approximation obtained is measured by the difference of volume between P and Q
and, in general, it is the best possible obtainable by any polytope with k vertices (up

to the dimension dependent constants involved).

More details about the implementation of the algorithm can be found in Reisner

et al. (2001) and Lopez and Reisner (2002).

The following presents an approach to extend algorithms like the one found in Reis-

ner et al. (2001) in order to meet the primary objective of maintaining the funda-

mental properties of the feasible set.

78 Feasible Sets for MPC and their Approximations

number of vertices.

Therefore, interest is focused on finding appropriate inner approximations charac-

terized by a reduced number of vertices.

An algorithm for computing inner approximations of polytopes based on the re-

moval of vertices is proposed in Reisner et al. (2001) (in Lopez and Reisner (2002)

if only 3D polytopes are considered). The fundamental result is the following.

Proposition 1. Given a polytope P ∈ R
n characterized by nV vertices VP ={

v(1), ..., v(nV)
}

, P = conv(VP), there exists a vertex v ∈ VP such that the poly-
tope Q = conv(VP \ {v}) satisfies

vol(P)− vol(Q)

vol(P)
≤ α(n)n

−n+1
n−1

V . (4.26)

The factor α(n) is a constant depending only on the space dimension (details about

how to estimate this constant can be found in Reisner et al. (2001) and Lopez and

Reisner (2002)).

This result is the best possible in general, for the dependence on the numbers of

vertices of the approximating polytope.

The main idea of the algorithm is thus the consecutive removal of the chosen ver-

tices. Taking an appropriate number k < nV , it can be identified a successive

minimizing choice of vertices of P , i.e. a sequence
{
v(r1), ..., v(rnV−k)

}
of different

vertices in VP such that for all i = 1, ..., nV − k

vol
(
conv

(
VP \

{
v(r1), ..., v(ri−1)

}))
− vol

(
conv

(
VP \

{
v(r1), ..., v(ri)

}))
(4.27)

is minimal over all choices of v(ri) ∈ VP \
{
v(r1), ..., v(ri−1)

}
. The polytope

Q = conv(VP \
{
v(r1), ..., v(rnV−k)

}
), (4.28)

characterized by k vertices, is an inner approximation of P . The accuracy of the

approximation obtained is measured by the difference of volume between P and Q
and, in general, it is the best possible obtainable by any polytope with k vertices (up

to the dimension dependent constants involved).

More details about the implementation of the algorithm can be found in Reisner

et al. (2001) and Lopez and Reisner (2002).

The following presents an approach to extend algorithms like the one found in Reis-

ner et al. (2001) in order to meet the primary objective of maintaining the funda-

mental properties of the feasible set.

78 Feasible Sets for MPC and their Approximations

number of vertices.

Therefore, interest is focused on finding appropriate inner approximations charac-

terized by a reduced number of vertices.

An algorithm for computing inner approximations of polytopes based on the re-

moval of vertices is proposed in Reisner et al. (2001) (in Lopez and Reisner (2002)

if only 3D polytopes are considered). The fundamental result is the following.

Proposition 1. Given a polytope P ∈ R
n characterized by nV vertices VP ={

v(1), ..., v(nV)
}

, P = conv(VP), there exists a vertex v ∈ VP such that the poly-
tope Q = conv(VP \ {v}) satisfies

vol(P)− vol(Q)

vol(P)
≤ α(n)n

−n+1
n−1

V . (4.26)

The factor α(n) is a constant depending only on the space dimension (details about

how to estimate this constant can be found in Reisner et al. (2001) and Lopez and

Reisner (2002)).

This result is the best possible in general, for the dependence on the numbers of

vertices of the approximating polytope.

The main idea of the algorithm is thus the consecutive removal of the chosen ver-

tices. Taking an appropriate number k < nV , it can be identified a successive

minimizing choice of vertices of P , i.e. a sequence
{
v(r1), ..., v(rnV−k)

}
of different

vertices in VP such that for all i = 1, ..., nV − k

vol
(
conv

(
VP \

{
v(r1), ..., v(ri−1)

}))
− vol

(
conv

(
VP \

{
v(r1), ..., v(ri)

}))
(4.27)

is minimal over all choices of v(ri) ∈ VP \
{
v(r1), ..., v(ri−1)

}
. The polytope

Q = conv(VP \
{
v(r1), ..., v(rnV−k)

}
), (4.28)

characterized by k vertices, is an inner approximation of P . The accuracy of the

approximation obtained is measured by the difference of volume between P and Q
and, in general, it is the best possible obtainable by any polytope with k vertices (up

to the dimension dependent constants involved).

More details about the implementation of the algorithm can be found in Reisner

et al. (2001) and Lopez and Reisner (2002).

The following presents an approach to extend algorithms like the one found in Reis-

ner et al. (2001) in order to meet the primary objective of maintaining the funda-

mental properties of the feasible set.

78 Feasible Sets for MPC and their Approximations

number of vertices.

Therefore, interest is focused on finding appropriate inner approximations charac-

terized by a reduced number of vertices.

An algorithm for computing inner approximations of polytopes based on the re-

moval of vertices is proposed in Reisner et al. (2001) (in Lopez and Reisner (2002)

if only 3D polytopes are considered). The fundamental result is the following.

Proposition 1. Given a polytope P ∈ R
n characterized by nV vertices VP ={

v(1), ..., v(nV)
}

, P = conv(VP), there exists a vertex v ∈ VP such that the poly-
tope Q = conv(VP \ {v}) satisfies

vol(P)− vol(Q)

vol(P)
≤ α(n)n

−n+1
n−1

V . (4.26)

The factor α(n) is a constant depending only on the space dimension (details about

how to estimate this constant can be found in Reisner et al. (2001) and Lopez and

Reisner (2002)).

This result is the best possible in general, for the dependence on the numbers of

vertices of the approximating polytope.

The main idea of the algorithm is thus the consecutive removal of the chosen ver-

tices. Taking an appropriate number k < nV , it can be identified a successive

minimizing choice of vertices of P , i.e. a sequence
{
v(r1), ..., v(rnV−k)

}
of different

vertices in VP such that for all i = 1, ..., nV − k

vol
(
conv

(
VP \

{
v(r1), ..., v(ri−1)

}))
− vol

(
conv

(
VP \

{
v(r1), ..., v(ri)

}))
(4.27)

is minimal over all choices of v(ri) ∈ VP \
{
v(r1), ..., v(ri−1)

}
. The polytope

Q = conv(VP \
{
v(r1), ..., v(rnV−k)

}
), (4.28)

characterized by k vertices, is an inner approximation of P . The accuracy of the

approximation obtained is measured by the difference of volume between P and Q
and, in general, it is the best possible obtainable by any polytope with k vertices (up

to the dimension dependent constants involved).

More details about the implementation of the algorithm can be found in Reisner

et al. (2001) and Lopez and Reisner (2002).

The following presents an approach to extend algorithms like the one found in Reis-

ner et al. (2001) in order to meet the primary objective of maintaining the funda-

mental properties of the feasible set.

4.4. Approximation of Feasible Sets 79

Given a vertex v of P , indicate with adj(v) all the vertices adjacent to v, i.e. all

the vertices of P which share a facet with v.

Proposition 2. The region excluded from P when the vertex v is omitted from its
V-representation is given by

Lv = conv ({v,adj(v)}) \ conv ({adj(v)}) . (4.29)

Proof. Naturally, Lv is characterized only by the facets of P incident in v. These

facets comprise a region given by the convex hull of v and all its adjacent ver-

tices. Since the adjacent vertices of v still remain vertices of P , the prospec-

tive region identified solely by these vertices needs to be removed from the de-

scription of Lv. The remaining vertices of P , i.e. the vertices of the polytope

P \ conv ({v,adj(v)}), are not affected by the omission of v.

In general, Lv is non-convex, but can be represented as a finite collection of poly-

topes.

Let us now consider the polytope P as our feasible set XF , i.e. P ≡ XF . Since the

convexity property is simply maintained by removing a vertex, attention is turned to

the problems of how to preserve positive invariance and how to maintain the states

comprising the operating set.

4.4.1 Preserving Positive Invariance

The difficulty in preserving positive invariance comes from the fact that we have to

take into consideration the nonlinear dynamics of the closed-loop system with the

MPC.

The next time-step feasible set X+
F is defined as follows

X+
F =

{
x+|x+ = Ax+Bu∗

0, x ∈ XF

}
(4.30)

where u∗
0 is the first element of the MPC optimal control sequence at x.

The asymptotic (exponential) stability of the MPC guarantees that X+
F ⊂ XF and

that X+
F is positively invariant for the closed-loop system. We can now define the

set XN = XF \X+
F , which has the interesting property to contain only points of the

feasible set that are exclusively initial states of state evolutions starting inside the

feasible set. In other words, considering any possible state evolution in XF , each

state in XN can only be a starting point of it.

4.4. Approximation of Feasible Sets 79

Given a vertex v of P , indicate with adj(v) all the vertices adjacent to v, i.e. all

the vertices of P which share a facet with v.

Proposition 2. The region excluded from P when the vertex v is omitted from its
V-representation is given by

Lv = conv ({v,adj(v)}) \ conv ({adj(v)}) . (4.29)

Proof. Naturally, Lv is characterized only by the facets of P incident in v. These

facets comprise a region given by the convex hull of v and all its adjacent ver-

tices. Since the adjacent vertices of v still remain vertices of P , the prospec-

tive region identified solely by these vertices needs to be removed from the de-

scription of Lv. The remaining vertices of P , i.e. the vertices of the polytope

P \ conv ({v,adj(v)}), are not affected by the omission of v.

In general, Lv is non-convex, but can be represented as a finite collection of poly-

topes.

Let us now consider the polytope P as our feasible set XF , i.e. P ≡ XF . Since the

convexity property is simply maintained by removing a vertex, attention is turned to

the problems of how to preserve positive invariance and how to maintain the states

comprising the operating set.

4.4.1 Preserving Positive Invariance

The difficulty in preserving positive invariance comes from the fact that we have to

take into consideration the nonlinear dynamics of the closed-loop system with the

MPC.

The next time-step feasible set X+
F is defined as follows

X+
F =

{
x+|x+ = Ax+Bu∗

0, x ∈ XF

}
(4.30)

where u∗
0 is the first element of the MPC optimal control sequence at x.

The asymptotic (exponential) stability of the MPC guarantees that X+
F ⊂ XF and

that X+
F is positively invariant for the closed-loop system. We can now define the

set XN = XF \X+
F , which has the interesting property to contain only points of the

feasible set that are exclusively initial states of state evolutions starting inside the

feasible set. In other words, considering any possible state evolution in XF , each

state in XN can only be a starting point of it.

4.4. Approximation of Feasible Sets 79

Given a vertex v of P , indicate with adj(v) all the vertices adjacent to v, i.e. all

the vertices of P which share a facet with v.

Proposition 2. The region excluded from P when the vertex v is omitted from its
V-representation is given by

Lv = conv ({v,adj(v)}) \ conv ({adj(v)}) . (4.29)

Proof. Naturally, Lv is characterized only by the facets of P incident in v. These

facets comprise a region given by the convex hull of v and all its adjacent ver-

tices. Since the adjacent vertices of v still remain vertices of P , the prospec-

tive region identified solely by these vertices needs to be removed from the de-

scription of Lv. The remaining vertices of P , i.e. the vertices of the polytope

P \ conv ({v,adj(v)}), are not affected by the omission of v.

In general, Lv is non-convex, but can be represented as a finite collection of poly-

topes.

Let us now consider the polytope P as our feasible set XF , i.e. P ≡ XF . Since the

convexity property is simply maintained by removing a vertex, attention is turned to

the problems of how to preserve positive invariance and how to maintain the states

comprising the operating set.

4.4.1 Preserving Positive Invariance

The difficulty in preserving positive invariance comes from the fact that we have to

take into consideration the nonlinear dynamics of the closed-loop system with the

MPC.

The next time-step feasible set X+
F is defined as follows

X+
F =

{
x+|x+ = Ax+Bu∗

0, x ∈ XF

}
(4.30)

where u∗
0 is the first element of the MPC optimal control sequence at x.

The asymptotic (exponential) stability of the MPC guarantees that X+
F ⊂ XF and

that X+
F is positively invariant for the closed-loop system. We can now define the

set XN = XF \X+
F , which has the interesting property to contain only points of the

feasible set that are exclusively initial states of state evolutions starting inside the

feasible set. In other words, considering any possible state evolution in XF , each

state in XN can only be a starting point of it.

4.4. Approximation of Feasible Sets 79

Given a vertex v of P , indicate with adj(v) all the vertices adjacent to v, i.e. all

the vertices of P which share a facet with v.

Proposition 2. The region excluded from P when the vertex v is omitted from its
V-representation is given by

Lv = conv ({v,adj(v)}) \ conv ({adj(v)}) . (4.29)

Proof. Naturally, Lv is characterized only by the facets of P incident in v. These

facets comprise a region given by the convex hull of v and all its adjacent ver-

tices. Since the adjacent vertices of v still remain vertices of P , the prospec-

tive region identified solely by these vertices needs to be removed from the de-

scription of Lv. The remaining vertices of P , i.e. the vertices of the polytope

P \ conv ({v,adj(v)}), are not affected by the omission of v.

In general, Lv is non-convex, but can be represented as a finite collection of poly-

topes.

Let us now consider the polytope P as our feasible set XF , i.e. P ≡ XF . Since the

convexity property is simply maintained by removing a vertex, attention is turned to

the problems of how to preserve positive invariance and how to maintain the states

comprising the operating set.

4.4.1 Preserving Positive Invariance

The difficulty in preserving positive invariance comes from the fact that we have to

take into consideration the nonlinear dynamics of the closed-loop system with the

MPC.

The next time-step feasible set X+
F is defined as follows

X+
F =

{
x+|x+ = Ax+Bu∗

0, x ∈ XF

}
(4.30)

where u∗
0 is the first element of the MPC optimal control sequence at x.

The asymptotic (exponential) stability of the MPC guarantees that X+
F ⊂ XF and

that X+
F is positively invariant for the closed-loop system. We can now define the

set XN = XF \X+
F , which has the interesting property to contain only points of the

feasible set that are exclusively initial states of state evolutions starting inside the

feasible set. In other words, considering any possible state evolution in XF , each

state in XN can only be a starting point of it.

80 Feasible Sets for MPC and their Approximations

Theorem 9. Any inner approximation of the feasible set obtained as convex hull of
vertices inside XN , such that also all the facets are inside XN , preserves the positive
invariance.

Proof. Consider a set of points VN inside XN , such that conv(VN) has all the

facets within XN . It follows that X+
F ⊂ conv(VN). Therefore, for any starting

point inside such a polytope, the state evolution either moves in one step inside X+
F

or is already inside X+
F , which shows positively invariance of conv(VN).

The property of positive invariance could then be preserved if for every vertex v(r)

removed from XF , the condition Lv(r) ⊂ XN is satisfied. In fact, this ensures that

the remaining vertices satisfy the requirements of Theorem 9.

However, because of the set X+
F , computing the set XN in general involves a sub-

stantial computational effort, which drastically reduces the applicability of the ap-

proach. Indeed, note from (4.30) that the definition of the next time-step feasible

set implies the knowledge of the optimal input for the states in the feasible set. In

particular, since the feasible set is a convex set, only the knowledge of the optimal

control input on the border of XF is needed for the computation of the next time-

step feasible set. Nevertheless, this still comports a computational burden which

may compromise the effectiveness of the overall approach. A further undesirable

aspect of using the next time-step feasible set is that X+
F is, in general, non-convex

(Blanchini (1994))(Figure 4.2). This results in more difficulties in the computation

of XN as the intersection between non-convex sets is more involved than the inter-

section between polytopes, even if the possible resulting non-convex set can still be

expressed as a collection of polytopes.

This issue can be easily overcome considering the following relation

X+
F ⊆ X (N−1)

F ⊂ XF (4.31)

Note that X (N−1)
F is easily available using an incremental procedure such as Al-

gorithm 3 for computing the feasible set. Moreover it is always convex and it is

positively invariant for the closed-loop system. Then, the proposed solution is to

use X (N−1)
F in place of X+

F . The conservativeness introduced is not severe for the

purpose here considered, XF (N−1) being a tight outer approximation of X+
F (Blan-

chini (1994)). Defining the set X̄N = XF \ X (N−1)
F , the property of positive invari-

ance is preserved if for every vertex v(r) removed from XF , the following condition

is satisfied

Lv(r) ⊂ X̄N . (4.32)

In fact, condition (4.32) ensures that the remaining vertices satisfy the requirements

of Theorem 9, whose results are valid if X̄N is considered instead of XN .

80 Feasible Sets for MPC and their Approximations

Theorem 9. Any inner approximation of the feasible set obtained as convex hull of
vertices inside XN , such that also all the facets are inside XN , preserves the positive
invariance.

Proof. Consider a set of points VN inside XN , such that conv(VN) has all the

facets within XN . It follows that X+
F ⊂ conv(VN). Therefore, for any starting

point inside such a polytope, the state evolution either moves in one step inside X+
F

or is already inside X+
F , which shows positively invariance of conv(VN).

The property of positive invariance could then be preserved if for every vertex v(r)

removed from XF , the condition Lv(r) ⊂ XN is satisfied. In fact, this ensures that

the remaining vertices satisfy the requirements of Theorem 9.

However, because of the set X+
F , computing the set XN in general involves a sub-

stantial computational effort, which drastically reduces the applicability of the ap-

proach. Indeed, note from (4.30) that the definition of the next time-step feasible

set implies the knowledge of the optimal input for the states in the feasible set. In

particular, since the feasible set is a convex set, only the knowledge of the optimal

control input on the border of XF is needed for the computation of the next time-

step feasible set. Nevertheless, this still comports a computational burden which

may compromise the effectiveness of the overall approach. A further undesirable

aspect of using the next time-step feasible set is that X+
F is, in general, non-convex

(Blanchini (1994))(Figure 4.2). This results in more difficulties in the computation

of XN as the intersection between non-convex sets is more involved than the inter-

section between polytopes, even if the possible resulting non-convex set can still be

expressed as a collection of polytopes.

This issue can be easily overcome considering the following relation

X+
F ⊆ X (N−1)

F ⊂ XF (4.31)

Note that X (N−1)
F is easily available using an incremental procedure such as Al-

gorithm 3 for computing the feasible set. Moreover it is always convex and it is

positively invariant for the closed-loop system. Then, the proposed solution is to

use X (N−1)
F in place of X+

F . The conservativeness introduced is not severe for the

purpose here considered, XF (N−1) being a tight outer approximation of X+
F (Blan-

chini (1994)). Defining the set X̄N = XF \ X (N−1)
F , the property of positive invari-

ance is preserved if for every vertex v(r) removed from XF , the following condition

is satisfied

Lv(r) ⊂ X̄N . (4.32)

In fact, condition (4.32) ensures that the remaining vertices satisfy the requirements

of Theorem 9, whose results are valid if X̄N is considered instead of XN .

80 Feasible Sets for MPC and their Approximations

Theorem 9. Any inner approximation of the feasible set obtained as convex hull of
vertices inside XN , such that also all the facets are inside XN , preserves the positive
invariance.

Proof. Consider a set of points VN inside XN , such that conv(VN) has all the

facets within XN . It follows that X+
F ⊂ conv(VN). Therefore, for any starting

point inside such a polytope, the state evolution either moves in one step inside X+
F

or is already inside X+
F , which shows positively invariance of conv(VN).

The property of positive invariance could then be preserved if for every vertex v(r)

removed from XF , the condition Lv(r) ⊂ XN is satisfied. In fact, this ensures that

the remaining vertices satisfy the requirements of Theorem 9.

However, because of the set X+
F , computing the set XN in general involves a sub-

stantial computational effort, which drastically reduces the applicability of the ap-

proach. Indeed, note from (4.30) that the definition of the next time-step feasible

set implies the knowledge of the optimal input for the states in the feasible set. In

particular, since the feasible set is a convex set, only the knowledge of the optimal

control input on the border of XF is needed for the computation of the next time-

step feasible set. Nevertheless, this still comports a computational burden which

may compromise the effectiveness of the overall approach. A further undesirable

aspect of using the next time-step feasible set is that X+
F is, in general, non-convex

(Blanchini (1994))(Figure 4.2). This results in more difficulties in the computation

of XN as the intersection between non-convex sets is more involved than the inter-

section between polytopes, even if the possible resulting non-convex set can still be

expressed as a collection of polytopes.

This issue can be easily overcome considering the following relation

X+
F ⊆ X (N−1)

F ⊂ XF (4.31)

Note that X (N−1)
F is easily available using an incremental procedure such as Al-

gorithm 3 for computing the feasible set. Moreover it is always convex and it is

positively invariant for the closed-loop system. Then, the proposed solution is to

use X (N−1)
F in place of X+

F . The conservativeness introduced is not severe for the

purpose here considered, XF (N−1) being a tight outer approximation of X+
F (Blan-

chini (1994)). Defining the set X̄N = XF \ X (N−1)
F , the property of positive invari-

ance is preserved if for every vertex v(r) removed from XF , the following condition

is satisfied

Lv(r) ⊂ X̄N . (4.32)

In fact, condition (4.32) ensures that the remaining vertices satisfy the requirements

of Theorem 9, whose results are valid if X̄N is considered instead of XN .

80 Feasible Sets for MPC and their Approximations

Theorem 9. Any inner approximation of the feasible set obtained as convex hull of
vertices inside XN , such that also all the facets are inside XN , preserves the positive
invariance.

Proof. Consider a set of points VN inside XN , such that conv(VN) has all the

facets within XN . It follows that X+
F ⊂ conv(VN). Therefore, for any starting

point inside such a polytope, the state evolution either moves in one step inside X+
F

or is already inside X+
F , which shows positively invariance of conv(VN).

The property of positive invariance could then be preserved if for every vertex v(r)

removed from XF , the condition Lv(r) ⊂ XN is satisfied. In fact, this ensures that

the remaining vertices satisfy the requirements of Theorem 9.

However, because of the set X+
F , computing the set XN in general involves a sub-

stantial computational effort, which drastically reduces the applicability of the ap-

proach. Indeed, note from (4.30) that the definition of the next time-step feasible

set implies the knowledge of the optimal input for the states in the feasible set. In

particular, since the feasible set is a convex set, only the knowledge of the optimal

control input on the border of XF is needed for the computation of the next time-

step feasible set. Nevertheless, this still comports a computational burden which

may compromise the effectiveness of the overall approach. A further undesirable

aspect of using the next time-step feasible set is that X+
F is, in general, non-convex

(Blanchini (1994))(Figure 4.2). This results in more difficulties in the computation

of XN as the intersection between non-convex sets is more involved than the inter-

section between polytopes, even if the possible resulting non-convex set can still be

expressed as a collection of polytopes.

This issue can be easily overcome considering the following relation

X+
F ⊆ X (N−1)

F ⊂ XF (4.31)

Note that X (N−1)
F is easily available using an incremental procedure such as Al-

gorithm 3 for computing the feasible set. Moreover it is always convex and it is

positively invariant for the closed-loop system. Then, the proposed solution is to

use X (N−1)
F in place of X+

F . The conservativeness introduced is not severe for the

purpose here considered, XF (N−1) being a tight outer approximation of X+
F (Blan-

chini (1994)). Defining the set X̄N = XF \ X (N−1)
F , the property of positive invari-

ance is preserved if for every vertex v(r) removed from XF , the following condition

is satisfied

Lv(r) ⊂ X̄N . (4.32)

In fact, condition (4.32) ensures that the remaining vertices satisfy the requirements

of Theorem 9, whose results are valid if X̄N is considered instead of XN .

4.4. Approximation of Feasible Sets 81

4.4.2 The Operating Set Condition

The goal of algorithms like the one developed in Reisner et al. (2001) is to find

the polytope Q characterized by k vertices that best approximate the polytope P
(characterized by nV > k vertices). The accuracy of the approximation is given by

the difference of volume between P and Q. The introduction of condition (4.32)

(invariance) changes the degrees of freedom in the minimization of the difference

of volume. Generally, not all the vertices in the successive minimizing choice of

vertices of P satisfy the necessary condition (4.32) and, therefore, not all can be

removed.

When the focus is on feasible sets, the loss of volume may not necessarily be a

critical issue in itself, since practically it would be more of interest that the ap-

proximating feasible set still contains the operating set Xo. This objective can be

achieved simply by checking that every time a vertex v(r) is removed from XF , the

corresponding excluded region does not comprise any part of the operating set,

Xo ∩ Lv(r) = ∅. (4.33)

If a certain vertex does not satisfy (4.33), then it is not removed and the next vertex

is considered.

4.4.3 Removing Vertices

Suppose that the interest is to remove as many vertices as possible as long as condi-

tions (4.32) (invariance) and (4.33) (operating set inclusion) are satisfied. This can

be done iteratively: at each iteration, among all the current vertices which makes

(4.32) and (4.33) satisfied, remove the one that results in the lowest loss in terms of

volume.

Note that for any vertex v(r), conditions (4.32) and (4.33) and the volume loss can

be evaluated locally, i.e. only v(r) and adj(v(r)) are involved in the computation of

Lv(r) , as can be seen from Proposition 2.

An efficient way to implement the algorithm is to use structures similar to pointers.

Given the list of vertices VXF
characterizing the feasible set, where each element on

the list is identified by the position number, two structures can be defined:

1. Index, a list containing numbers referring to vertices in VXF
(list of point-

ers).

2. Adj, a structure containing the adjacency information. Adj(Index(i)) gives

the list of pointers to the vertices in VXF
adjacent to the vertex with pointer

Index(i).

4.4. Approximation of Feasible Sets 81

4.4.2 The Operating Set Condition

The goal of algorithms like the one developed in Reisner et al. (2001) is to find

the polytope Q characterized by k vertices that best approximate the polytope P
(characterized by nV > k vertices). The accuracy of the approximation is given by

the difference of volume between P and Q. The introduction of condition (4.32)

(invariance) changes the degrees of freedom in the minimization of the difference

of volume. Generally, not all the vertices in the successive minimizing choice of

vertices of P satisfy the necessary condition (4.32) and, therefore, not all can be

removed.

When the focus is on feasible sets, the loss of volume may not necessarily be a

critical issue in itself, since practically it would be more of interest that the ap-

proximating feasible set still contains the operating set Xo. This objective can be

achieved simply by checking that every time a vertex v(r) is removed from XF , the

corresponding excluded region does not comprise any part of the operating set,

Xo ∩ Lv(r) = ∅. (4.33)

If a certain vertex does not satisfy (4.33), then it is not removed and the next vertex

is considered.

4.4.3 Removing Vertices

Suppose that the interest is to remove as many vertices as possible as long as condi-

tions (4.32) (invariance) and (4.33) (operating set inclusion) are satisfied. This can

be done iteratively: at each iteration, among all the current vertices which makes

(4.32) and (4.33) satisfied, remove the one that results in the lowest loss in terms of

volume.

Note that for any vertex v(r), conditions (4.32) and (4.33) and the volume loss can

be evaluated locally, i.e. only v(r) and adj(v(r)) are involved in the computation of

Lv(r) , as can be seen from Proposition 2.

An efficient way to implement the algorithm is to use structures similar to pointers.

Given the list of vertices VXF
characterizing the feasible set, where each element on

the list is identified by the position number, two structures can be defined:

1. Index, a list containing numbers referring to vertices in VXF
(list of point-

ers).

2. Adj, a structure containing the adjacency information. Adj(Index(i)) gives

the list of pointers to the vertices in VXF
adjacent to the vertex with pointer

Index(i).

4.4. Approximation of Feasible Sets 81

4.4.2 The Operating Set Condition

The goal of algorithms like the one developed in Reisner et al. (2001) is to find

the polytope Q characterized by k vertices that best approximate the polytope P
(characterized by nV > k vertices). The accuracy of the approximation is given by

the difference of volume between P and Q. The introduction of condition (4.32)

(invariance) changes the degrees of freedom in the minimization of the difference

of volume. Generally, not all the vertices in the successive minimizing choice of

vertices of P satisfy the necessary condition (4.32) and, therefore, not all can be

removed.

When the focus is on feasible sets, the loss of volume may not necessarily be a

critical issue in itself, since practically it would be more of interest that the ap-

proximating feasible set still contains the operating set Xo. This objective can be

achieved simply by checking that every time a vertex v(r) is removed from XF , the

corresponding excluded region does not comprise any part of the operating set,

Xo ∩ Lv(r) = ∅. (4.33)

If a certain vertex does not satisfy (4.33), then it is not removed and the next vertex

is considered.

4.4.3 Removing Vertices

Suppose that the interest is to remove as many vertices as possible as long as condi-

tions (4.32) (invariance) and (4.33) (operating set inclusion) are satisfied. This can

be done iteratively: at each iteration, among all the current vertices which makes

(4.32) and (4.33) satisfied, remove the one that results in the lowest loss in terms of

volume.

Note that for any vertex v(r), conditions (4.32) and (4.33) and the volume loss can

be evaluated locally, i.e. only v(r) and adj(v(r)) are involved in the computation of

Lv(r) , as can be seen from Proposition 2.

An efficient way to implement the algorithm is to use structures similar to pointers.

Given the list of vertices VXF
characterizing the feasible set, where each element on

the list is identified by the position number, two structures can be defined:

1. Index, a list containing numbers referring to vertices in VXF
(list of point-

ers).

2. Adj, a structure containing the adjacency information. Adj(Index(i)) gives

the list of pointers to the vertices in VXF
adjacent to the vertex with pointer

Index(i).

4.4. Approximation of Feasible Sets 81

4.4.2 The Operating Set Condition

The goal of algorithms like the one developed in Reisner et al. (2001) is to find

the polytope Q characterized by k vertices that best approximate the polytope P
(characterized by nV > k vertices). The accuracy of the approximation is given by

the difference of volume between P and Q. The introduction of condition (4.32)

(invariance) changes the degrees of freedom in the minimization of the difference

of volume. Generally, not all the vertices in the successive minimizing choice of

vertices of P satisfy the necessary condition (4.32) and, therefore, not all can be

removed.

When the focus is on feasible sets, the loss of volume may not necessarily be a

critical issue in itself, since practically it would be more of interest that the ap-

proximating feasible set still contains the operating set Xo. This objective can be

achieved simply by checking that every time a vertex v(r) is removed from XF , the

corresponding excluded region does not comprise any part of the operating set,

Xo ∩ Lv(r) = ∅. (4.33)

If a certain vertex does not satisfy (4.33), then it is not removed and the next vertex

is considered.

4.4.3 Removing Vertices

Suppose that the interest is to remove as many vertices as possible as long as condi-

tions (4.32) (invariance) and (4.33) (operating set inclusion) are satisfied. This can

be done iteratively: at each iteration, among all the current vertices which makes

(4.32) and (4.33) satisfied, remove the one that results in the lowest loss in terms of

volume.

Note that for any vertex v(r), conditions (4.32) and (4.33) and the volume loss can

be evaluated locally, i.e. only v(r) and adj(v(r)) are involved in the computation of

Lv(r) , as can be seen from Proposition 2.

An efficient way to implement the algorithm is to use structures similar to pointers.

Given the list of vertices VXF
characterizing the feasible set, where each element on

the list is identified by the position number, two structures can be defined:

1. Index, a list containing numbers referring to vertices in VXF
(list of point-

ers).

2. Adj, a structure containing the adjacency information. Adj(Index(i)) gives

the list of pointers to the vertices in VXF
adjacent to the vertex with pointer

Index(i).

82 Feasible Sets for MPC and their Approximations

Then the operation of removing a vertex v(r) ∈ VXF
with pointer, say, Index(i),

can be done removing the i-th element from Index, after having removed the

Index(i)-th element from Adj and updated the elements Adj(j), for all j ∈
Adj(Index(i)). The update is done as follows. Each vertex j is also vertex of

the polytope R = conv(Adj(Index(i))), then for each list Adj(j) the reference

Index(i) is removed and the adjacencies resulting from R are added.

The advantage of using the pointer structures is to allow each iteration to simply

update only the data affected by the current vertex removal.

4.4.4 Discussion on the Complexity Indexes

In general, the number of half-spaces may be much higher than the number of ver-

tices, and vice versa. Thus, a natural question would be how will the reduction of the

complexity in the V-representation affect the complexity in the H-representation.

While in 2 and 3 dimensions there exist simple relations between the two com-

plexity indexes, in higher dimension analytical relations are very difficult to define

(Matousek (2002)). Thus, giving an exact answer to the question is a hard problem.

However, a well-known achievement in the theory of convex polytopes allows giv-

ing an answer in terms of upper bounds: a polytope in the n-dimensional space with

nV vertices has at most 2
(

nV
�n/2	
)

half-spaces. Thus, for a fixed space dimension n the

number of half-spaces has an order of magnitude of n
�n/2	
V (“upper bound” theorem

Matousek (2002)). The upper bound theorem refers to worst case scenarios. Cer-

tainly, not all polytopes exhibit this extreme behavior, for example it is known that

if np points are chosen uniformly at random in the unit n-dimensional ball, then the

expected number of half-spaces of their convex hull is only of order of magnitude of

np (Matousek (2002)). Thus, even if there exist cases where the omission of a vertex

causes an increase in the number of half-spaces, it is reasonable to expect that typi-

cally a certain reduction of complexity in terms of number of vertices also provides

a fairly relevant reduction of the complexity in terms of number of half-spaces, in

the sense that the upper bound on the number of half-spaces decreases.

4.5 Discussion on Computational Complexity

Both Algorithm 3 for computing feasible sets and the approach proposed in Sec-

tion 4.4 for computing simplifications of feasible sets are based on basic geometric

82 Feasible Sets for MPC and their Approximations

Then the operation of removing a vertex v(r) ∈ VXF
with pointer, say, Index(i),

can be done removing the i-th element from Index, after having removed the

Index(i)-th element from Adj and updated the elements Adj(j), for all j ∈
Adj(Index(i)). The update is done as follows. Each vertex j is also vertex of

the polytope R = conv(Adj(Index(i))), then for each list Adj(j) the reference

Index(i) is removed and the adjacencies resulting from R are added.

The advantage of using the pointer structures is to allow each iteration to simply

update only the data affected by the current vertex removal.

4.4.4 Discussion on the Complexity Indexes

In general, the number of half-spaces may be much higher than the number of ver-

tices, and vice versa. Thus, a natural question would be how will the reduction of the

complexity in the V-representation affect the complexity in the H-representation.

While in 2 and 3 dimensions there exist simple relations between the two com-

plexity indexes, in higher dimension analytical relations are very difficult to define

(Matousek (2002)). Thus, giving an exact answer to the question is a hard problem.

However, a well-known achievement in the theory of convex polytopes allows giv-

ing an answer in terms of upper bounds: a polytope in the n-dimensional space with

nV vertices has at most 2
(

nV
�n/2	
)

half-spaces. Thus, for a fixed space dimension n the

number of half-spaces has an order of magnitude of n
�n/2	
V (“upper bound” theorem

Matousek (2002)). The upper bound theorem refers to worst case scenarios. Cer-

tainly, not all polytopes exhibit this extreme behavior, for example it is known that

if np points are chosen uniformly at random in the unit n-dimensional ball, then the

expected number of half-spaces of their convex hull is only of order of magnitude of

np (Matousek (2002)). Thus, even if there exist cases where the omission of a vertex

causes an increase in the number of half-spaces, it is reasonable to expect that typi-

cally a certain reduction of complexity in terms of number of vertices also provides

a fairly relevant reduction of the complexity in terms of number of half-spaces, in

the sense that the upper bound on the number of half-spaces decreases.

4.5 Discussion on Computational Complexity

Both Algorithm 3 for computing feasible sets and the approach proposed in Sec-

tion 4.4 for computing simplifications of feasible sets are based on basic geometric

82 Feasible Sets for MPC and their Approximations

Then the operation of removing a vertex v(r) ∈ VXF
with pointer, say, Index(i),

can be done removing the i-th element from Index, after having removed the

Index(i)-th element from Adj and updated the elements Adj(j), for all j ∈
Adj(Index(i)). The update is done as follows. Each vertex j is also vertex of

the polytope R = conv(Adj(Index(i))), then for each list Adj(j) the reference

Index(i) is removed and the adjacencies resulting from R are added.

The advantage of using the pointer structures is to allow each iteration to simply

update only the data affected by the current vertex removal.

4.4.4 Discussion on the Complexity Indexes

In general, the number of half-spaces may be much higher than the number of ver-

tices, and vice versa. Thus, a natural question would be how will the reduction of the

complexity in the V-representation affect the complexity in the H-representation.

While in 2 and 3 dimensions there exist simple relations between the two com-

plexity indexes, in higher dimension analytical relations are very difficult to define

(Matousek (2002)). Thus, giving an exact answer to the question is a hard problem.

However, a well-known achievement in the theory of convex polytopes allows giv-

ing an answer in terms of upper bounds: a polytope in the n-dimensional space with

nV vertices has at most 2
(

nV
�n/2	
)

half-spaces. Thus, for a fixed space dimension n the

number of half-spaces has an order of magnitude of n
�n/2	
V (“upper bound” theorem

Matousek (2002)). The upper bound theorem refers to worst case scenarios. Cer-

tainly, not all polytopes exhibit this extreme behavior, for example it is known that

if np points are chosen uniformly at random in the unit n-dimensional ball, then the

expected number of half-spaces of their convex hull is only of order of magnitude of

np (Matousek (2002)). Thus, even if there exist cases where the omission of a vertex

causes an increase in the number of half-spaces, it is reasonable to expect that typi-

cally a certain reduction of complexity in terms of number of vertices also provides

a fairly relevant reduction of the complexity in terms of number of half-spaces, in

the sense that the upper bound on the number of half-spaces decreases.

4.5 Discussion on Computational Complexity

Both Algorithm 3 for computing feasible sets and the approach proposed in Sec-

tion 4.4 for computing simplifications of feasible sets are based on basic geometric

82 Feasible Sets for MPC and their Approximations

Then the operation of removing a vertex v(r) ∈ VXF
with pointer, say, Index(i),

can be done removing the i-th element from Index, after having removed the

Index(i)-th element from Adj and updated the elements Adj(j), for all j ∈
Adj(Index(i)). The update is done as follows. Each vertex j is also vertex of

the polytope R = conv(Adj(Index(i))), then for each list Adj(j) the reference

Index(i) is removed and the adjacencies resulting from R are added.

The advantage of using the pointer structures is to allow each iteration to simply

update only the data affected by the current vertex removal.

4.4.4 Discussion on the Complexity Indexes

In general, the number of half-spaces may be much higher than the number of ver-

tices, and vice versa. Thus, a natural question would be how will the reduction of the

complexity in the V-representation affect the complexity in the H-representation.

While in 2 and 3 dimensions there exist simple relations between the two com-

plexity indexes, in higher dimension analytical relations are very difficult to define

(Matousek (2002)). Thus, giving an exact answer to the question is a hard problem.

However, a well-known achievement in the theory of convex polytopes allows giv-

ing an answer in terms of upper bounds: a polytope in the n-dimensional space with

nV vertices has at most 2
(

nV
�n/2	
)

half-spaces. Thus, for a fixed space dimension n the

number of half-spaces has an order of magnitude of n
�n/2	
V (“upper bound” theorem

Matousek (2002)). The upper bound theorem refers to worst case scenarios. Cer-

tainly, not all polytopes exhibit this extreme behavior, for example it is known that

if np points are chosen uniformly at random in the unit n-dimensional ball, then the

expected number of half-spaces of their convex hull is only of order of magnitude of

np (Matousek (2002)). Thus, even if there exist cases where the omission of a vertex

causes an increase in the number of half-spaces, it is reasonable to expect that typi-

cally a certain reduction of complexity in terms of number of vertices also provides

a fairly relevant reduction of the complexity in terms of number of half-spaces, in

the sense that the upper bound on the number of half-spaces decreases.

4.5 Discussion on Computational Complexity

Both Algorithm 3 for computing feasible sets and the approach proposed in Sec-

tion 4.4 for computing simplifications of feasible sets are based on basic geometric

4.5. Discussion on Computational Complexity 83

operations on polytopes3: Minkowski sum, intersection, convex hull and volume

computation. Therefore, it is interesting to discuss some aspects connected with

the computational complexity of these operations so to provide with additional in-

sight into the algorithmic behavior of the approaches presented. It should be noted,

though, that the scope of this section is not to give a comprehensive discussion on

the computational complexity of each operation.

Every polytope admits two equivalent representation forms (cf. Chapter 2): the

V-representation (using vertices) and the H-representation (using half-spaces). For

polytopes, the representation conversion from H- to V-representation (vertex enu-

meration) and the conversion from V- to H-representation (facet enumeration or

convex hull computation) are computationally equivalent and, in general, are dif-

ficult operations (NP-hard). The computational complexity increases fast with the

number of half-spaces and/or the number of vertices involved (Khachiyan et al.

(2008), Fukuda (2004)).

Often, operations on polytopes that are easy to perform in one representation be-

come difficult if the polytopes are instead in the other representation. The Minkowski

sum of two polytopes is a computationally easy operation (polynomial time) when

the two polytopes are in V-representation while becomes a difficult operation (NP-

hard) when they are in H-representation (Gritzmann and Sturmfels (1993), Tiwary

(2008b)). This means that the known Minkowski sum algorithms operating on poly-

topes in the H-representation show a computational complexity which increases fast

with the number of half-spaces of the operands.

On the other hand, the intersection of two polytopes given in the H-representation

is an easy operation while becomes a difficult operation (NP-hard) with polytopes

in the V-representation (Tiwary (2008b)).

Resorting to a representation conversion is often not a solution to reduce complexity

since the operation is itself hard.

Let us consider Algorithm 3. At each iteration the computational complexity is

basically determined by a Minkowski sum and an intersection operation. Let us

assume that the interest is to obtain a feasible set in the V-representation (which

here may be motivated by the procedure for computing simplified feasible sets dis-

cussed in Section 4.4). Therefore, the computational complexity of Algorithm 3

would increase fast with the number of vertices considered due to the intersection

operation. Note that if the interest is in a feasible set in the H-representation, then

the Minkowski sum would be computationally costly. This suggests that computing

the feasible set is intrinsically a hard problem. Given that polytopes, in general, are

far more complex in terms of number of vertices and facets in higher dimensions

3A polytope is a bounded polyhedral set. Strictly speaking, here the operations are on general

polyhedral sets defined by state and input constraints. However, in practice these sets are always

bounded.

4.5. Discussion on Computational Complexity 83

operations on polytopes3: Minkowski sum, intersection, convex hull and volume

computation. Therefore, it is interesting to discuss some aspects connected with

the computational complexity of these operations so to provide with additional in-

sight into the algorithmic behavior of the approaches presented. It should be noted,

though, that the scope of this section is not to give a comprehensive discussion on

the computational complexity of each operation.

Every polytope admits two equivalent representation forms (cf. Chapter 2): the

V-representation (using vertices) and the H-representation (using half-spaces). For

polytopes, the representation conversion from H- to V-representation (vertex enu-

meration) and the conversion from V- to H-representation (facet enumeration or

convex hull computation) are computationally equivalent and, in general, are dif-

ficult operations (NP-hard). The computational complexity increases fast with the

number of half-spaces and/or the number of vertices involved (Khachiyan et al.

(2008), Fukuda (2004)).

Often, operations on polytopes that are easy to perform in one representation be-

come difficult if the polytopes are instead in the other representation. The Minkowski

sum of two polytopes is a computationally easy operation (polynomial time) when

the two polytopes are in V-representation while becomes a difficult operation (NP-

hard) when they are in H-representation (Gritzmann and Sturmfels (1993), Tiwary

(2008b)). This means that the known Minkowski sum algorithms operating on poly-

topes in the H-representation show a computational complexity which increases fast

with the number of half-spaces of the operands.

On the other hand, the intersection of two polytopes given in the H-representation

is an easy operation while becomes a difficult operation (NP-hard) with polytopes

in the V-representation (Tiwary (2008b)).

Resorting to a representation conversion is often not a solution to reduce complexity

since the operation is itself hard.

Let us consider Algorithm 3. At each iteration the computational complexity is

basically determined by a Minkowski sum and an intersection operation. Let us

assume that the interest is to obtain a feasible set in the V-representation (which

here may be motivated by the procedure for computing simplified feasible sets dis-

cussed in Section 4.4). Therefore, the computational complexity of Algorithm 3

would increase fast with the number of vertices considered due to the intersection

operation. Note that if the interest is in a feasible set in the H-representation, then

the Minkowski sum would be computationally costly. This suggests that computing

the feasible set is intrinsically a hard problem. Given that polytopes, in general, are

far more complex in terms of number of vertices and facets in higher dimensions

3A polytope is a bounded polyhedral set. Strictly speaking, here the operations are on general

polyhedral sets defined by state and input constraints. However, in practice these sets are always

bounded.

4.5. Discussion on Computational Complexity 83

operations on polytopes3: Minkowski sum, intersection, convex hull and volume

computation. Therefore, it is interesting to discuss some aspects connected with

the computational complexity of these operations so to provide with additional in-

sight into the algorithmic behavior of the approaches presented. It should be noted,

though, that the scope of this section is not to give a comprehensive discussion on

the computational complexity of each operation.

Every polytope admits two equivalent representation forms (cf. Chapter 2): the

V-representation (using vertices) and the H-representation (using half-spaces). For

polytopes, the representation conversion from H- to V-representation (vertex enu-

meration) and the conversion from V- to H-representation (facet enumeration or

convex hull computation) are computationally equivalent and, in general, are dif-

ficult operations (NP-hard). The computational complexity increases fast with the

number of half-spaces and/or the number of vertices involved (Khachiyan et al.

(2008), Fukuda (2004)).

Often, operations on polytopes that are easy to perform in one representation be-

come difficult if the polytopes are instead in the other representation. The Minkowski

sum of two polytopes is a computationally easy operation (polynomial time) when

the two polytopes are in V-representation while becomes a difficult operation (NP-

hard) when they are in H-representation (Gritzmann and Sturmfels (1993), Tiwary

(2008b)). This means that the known Minkowski sum algorithms operating on poly-

topes in the H-representation show a computational complexity which increases fast

with the number of half-spaces of the operands.

On the other hand, the intersection of two polytopes given in the H-representation

is an easy operation while becomes a difficult operation (NP-hard) with polytopes

in the V-representation (Tiwary (2008b)).

Resorting to a representation conversion is often not a solution to reduce complexity

since the operation is itself hard.

Let us consider Algorithm 3. At each iteration the computational complexity is

basically determined by a Minkowski sum and an intersection operation. Let us

assume that the interest is to obtain a feasible set in the V-representation (which

here may be motivated by the procedure for computing simplified feasible sets dis-

cussed in Section 4.4). Therefore, the computational complexity of Algorithm 3

would increase fast with the number of vertices considered due to the intersection

operation. Note that if the interest is in a feasible set in the H-representation, then

the Minkowski sum would be computationally costly. This suggests that computing

the feasible set is intrinsically a hard problem. Given that polytopes, in general, are

far more complex in terms of number of vertices and facets in higher dimensions

3A polytope is a bounded polyhedral set. Strictly speaking, here the operations are on general

polyhedral sets defined by state and input constraints. However, in practice these sets are always

bounded.

4.5. Discussion on Computational Complexity 83

operations on polytopes3: Minkowski sum, intersection, convex hull and volume

computation. Therefore, it is interesting to discuss some aspects connected with

the computational complexity of these operations so to provide with additional in-

sight into the algorithmic behavior of the approaches presented. It should be noted,

though, that the scope of this section is not to give a comprehensive discussion on

the computational complexity of each operation.

Every polytope admits two equivalent representation forms (cf. Chapter 2): the

V-representation (using vertices) and the H-representation (using half-spaces). For

polytopes, the representation conversion from H- to V-representation (vertex enu-

meration) and the conversion from V- to H-representation (facet enumeration or

convex hull computation) are computationally equivalent and, in general, are dif-

ficult operations (NP-hard). The computational complexity increases fast with the

number of half-spaces and/or the number of vertices involved (Khachiyan et al.

(2008), Fukuda (2004)).

Often, operations on polytopes that are easy to perform in one representation be-

come difficult if the polytopes are instead in the other representation. The Minkowski

sum of two polytopes is a computationally easy operation (polynomial time) when

the two polytopes are in V-representation while becomes a difficult operation (NP-

hard) when they are in H-representation (Gritzmann and Sturmfels (1993), Tiwary

(2008b)). This means that the known Minkowski sum algorithms operating on poly-

topes in the H-representation show a computational complexity which increases fast

with the number of half-spaces of the operands.

On the other hand, the intersection of two polytopes given in the H-representation

is an easy operation while becomes a difficult operation (NP-hard) with polytopes

in the V-representation (Tiwary (2008b)).

Resorting to a representation conversion is often not a solution to reduce complexity

since the operation is itself hard.

Let us consider Algorithm 3. At each iteration the computational complexity is

basically determined by a Minkowski sum and an intersection operation. Let us

assume that the interest is to obtain a feasible set in the V-representation (which

here may be motivated by the procedure for computing simplified feasible sets dis-

cussed in Section 4.4). Therefore, the computational complexity of Algorithm 3

would increase fast with the number of vertices considered due to the intersection

operation. Note that if the interest is in a feasible set in the H-representation, then

the Minkowski sum would be computationally costly. This suggests that computing

the feasible set is intrinsically a hard problem. Given that polytopes, in general, are

far more complex in terms of number of vertices and facets in higher dimensions

3A polytope is a bounded polyhedral set. Strictly speaking, here the operations are on general

polyhedral sets defined by state and input constraints. However, in practice these sets are always

bounded.

84 Feasible Sets for MPC and their Approximations

(cf. Section 4.4.4), it is reasonable to expect that the computational complexity for

computing the feasible set increases fast with the dimension of the state space, n.

The computational advantage of the proposed approach in respect to the traditional

one is that at each iteration the operands are polytopes of dimension n. Instead,

the traditional approach requires the projection of a polytope of dimension n+Nr
(cf. Section 4.3.1) which is easily a prohibitive operation even for small n since

the polytope dimension depends also from the horizon length N and the input di-

mension r. Also, when the standard approach is implemented incrementally on the

horizon length, at each iteration the projection of a polytope of dimension n + r is

required, which may still be prohibitive.

This is illustrated in the next section, where the results from several numerical tests

are reported. The proposed approach started to require considerable computations

for n > 4, while the standard approach (implemented incrementally) started to be

prohibitive already for n > 3 (and r > 1).

Analogous considerations can be made for the approach proposed in Section 4.4 for

computing simplifications of feasible sets. Assume that the interest is to remove

as many vertices as possible as long as conditions (4.32) (invariance) and (4.33)

(operating set inclusion) are satisfied (cf. Section 4.4.3). The algorithm requires

initially the computation of the volume loss associated with each vertex removal.

The polytope volume computation, either in the V- or the H-representation, is not a

difficult operation (polynomial time) (Gritzmann and Klee (1994a)). Then, at each

iteration the intersection operation is used to check the conditions (4.32) and (4.33):

the conditions are first inspected on the vertex which currently means the lowest

loss of volume, continuing with the vertex causing the second lowest loss if the for-

mer does not satisfy the conditions, and so on until a suitable vertex is identified for

removal (or none, in which case the algorithm terminates). The use of pointer struc-

tures allows easily updating just the volumes affected by the current vertex removal.

At each iteration the intersections are the most expensive operations to perform, and

although they are done on relatively simple polytopes, these may require relevant

computation especially when n increases (since this typically means high number

of vertices with a complex map of adjacency). Note, however, that here the opera-

tion may be implemented in a more efficient way since it is not needed to actually

compute the intersection polytope, but rather to decide whether the two polytope

operands intersect or not.

In the numerical tests discussed in the next section the computations have started to

become considerable for n > 4.

84 Feasible Sets for MPC and their Approximations

(cf. Section 4.4.4), it is reasonable to expect that the computational complexity for

computing the feasible set increases fast with the dimension of the state space, n.

The computational advantage of the proposed approach in respect to the traditional

one is that at each iteration the operands are polytopes of dimension n. Instead,

the traditional approach requires the projection of a polytope of dimension n+Nr
(cf. Section 4.3.1) which is easily a prohibitive operation even for small n since

the polytope dimension depends also from the horizon length N and the input di-

mension r. Also, when the standard approach is implemented incrementally on the

horizon length, at each iteration the projection of a polytope of dimension n + r is

required, which may still be prohibitive.

This is illustrated in the next section, where the results from several numerical tests

are reported. The proposed approach started to require considerable computations

for n > 4, while the standard approach (implemented incrementally) started to be

prohibitive already for n > 3 (and r > 1).

Analogous considerations can be made for the approach proposed in Section 4.4 for

computing simplifications of feasible sets. Assume that the interest is to remove

as many vertices as possible as long as conditions (4.32) (invariance) and (4.33)

(operating set inclusion) are satisfied (cf. Section 4.4.3). The algorithm requires

initially the computation of the volume loss associated with each vertex removal.

The polytope volume computation, either in the V- or the H-representation, is not a

difficult operation (polynomial time) (Gritzmann and Klee (1994a)). Then, at each

iteration the intersection operation is used to check the conditions (4.32) and (4.33):

the conditions are first inspected on the vertex which currently means the lowest

loss of volume, continuing with the vertex causing the second lowest loss if the for-

mer does not satisfy the conditions, and so on until a suitable vertex is identified for

removal (or none, in which case the algorithm terminates). The use of pointer struc-

tures allows easily updating just the volumes affected by the current vertex removal.

At each iteration the intersections are the most expensive operations to perform, and

although they are done on relatively simple polytopes, these may require relevant

computation especially when n increases (since this typically means high number

of vertices with a complex map of adjacency). Note, however, that here the opera-

tion may be implemented in a more efficient way since it is not needed to actually

compute the intersection polytope, but rather to decide whether the two polytope

operands intersect or not.

In the numerical tests discussed in the next section the computations have started to

become considerable for n > 4.

84 Feasible Sets for MPC and their Approximations

(cf. Section 4.4.4), it is reasonable to expect that the computational complexity for

computing the feasible set increases fast with the dimension of the state space, n.

The computational advantage of the proposed approach in respect to the traditional

one is that at each iteration the operands are polytopes of dimension n. Instead,

the traditional approach requires the projection of a polytope of dimension n+Nr
(cf. Section 4.3.1) which is easily a prohibitive operation even for small n since

the polytope dimension depends also from the horizon length N and the input di-

mension r. Also, when the standard approach is implemented incrementally on the

horizon length, at each iteration the projection of a polytope of dimension n + r is

required, which may still be prohibitive.

This is illustrated in the next section, where the results from several numerical tests

are reported. The proposed approach started to require considerable computations

for n > 4, while the standard approach (implemented incrementally) started to be

prohibitive already for n > 3 (and r > 1).

Analogous considerations can be made for the approach proposed in Section 4.4 for

computing simplifications of feasible sets. Assume that the interest is to remove

as many vertices as possible as long as conditions (4.32) (invariance) and (4.33)

(operating set inclusion) are satisfied (cf. Section 4.4.3). The algorithm requires

initially the computation of the volume loss associated with each vertex removal.

The polytope volume computation, either in the V- or the H-representation, is not a

difficult operation (polynomial time) (Gritzmann and Klee (1994a)). Then, at each

iteration the intersection operation is used to check the conditions (4.32) and (4.33):

the conditions are first inspected on the vertex which currently means the lowest

loss of volume, continuing with the vertex causing the second lowest loss if the for-

mer does not satisfy the conditions, and so on until a suitable vertex is identified for

removal (or none, in which case the algorithm terminates). The use of pointer struc-

tures allows easily updating just the volumes affected by the current vertex removal.

At each iteration the intersections are the most expensive operations to perform, and

although they are done on relatively simple polytopes, these may require relevant

computation especially when n increases (since this typically means high number

of vertices with a complex map of adjacency). Note, however, that here the opera-

tion may be implemented in a more efficient way since it is not needed to actually

compute the intersection polytope, but rather to decide whether the two polytope

operands intersect or not.

In the numerical tests discussed in the next section the computations have started to

become considerable for n > 4.

84 Feasible Sets for MPC and their Approximations

(cf. Section 4.4.4), it is reasonable to expect that the computational complexity for

computing the feasible set increases fast with the dimension of the state space, n.

The computational advantage of the proposed approach in respect to the traditional

one is that at each iteration the operands are polytopes of dimension n. Instead,

the traditional approach requires the projection of a polytope of dimension n+Nr
(cf. Section 4.3.1) which is easily a prohibitive operation even for small n since

the polytope dimension depends also from the horizon length N and the input di-

mension r. Also, when the standard approach is implemented incrementally on the

horizon length, at each iteration the projection of a polytope of dimension n + r is

required, which may still be prohibitive.

This is illustrated in the next section, where the results from several numerical tests

are reported. The proposed approach started to require considerable computations

for n > 4, while the standard approach (implemented incrementally) started to be

prohibitive already for n > 3 (and r > 1).

Analogous considerations can be made for the approach proposed in Section 4.4 for

computing simplifications of feasible sets. Assume that the interest is to remove

as many vertices as possible as long as conditions (4.32) (invariance) and (4.33)

(operating set inclusion) are satisfied (cf. Section 4.4.3). The algorithm requires

initially the computation of the volume loss associated with each vertex removal.

The polytope volume computation, either in the V- or the H-representation, is not a

difficult operation (polynomial time) (Gritzmann and Klee (1994a)). Then, at each

iteration the intersection operation is used to check the conditions (4.32) and (4.33):

the conditions are first inspected on the vertex which currently means the lowest

loss of volume, continuing with the vertex causing the second lowest loss if the for-

mer does not satisfy the conditions, and so on until a suitable vertex is identified for

removal (or none, in which case the algorithm terminates). The use of pointer struc-

tures allows easily updating just the volumes affected by the current vertex removal.

At each iteration the intersections are the most expensive operations to perform, and

although they are done on relatively simple polytopes, these may require relevant

computation especially when n increases (since this typically means high number

of vertices with a complex map of adjacency). Note, however, that here the opera-

tion may be implemented in a more efficient way since it is not needed to actually

compute the intersection polytope, but rather to decide whether the two polytope

operands intersect or not.

In the numerical tests discussed in the next section the computations have started to

become considerable for n > 4.

4.6. Numerical Illustrations 85

4.6 Numerical Illustrations

This section provides some examples in order to illustrate the results presented in

the previous sections. It also presents an application of the results to the computa-

tion of approximate explicit MPC according to the approach presented in Chapter

3.

4.6.1 Feasible Set Computation

The computation time efficiency of the proposed approach based on set relations

(SR) has been compared with the standard approach based on projection (P) in Mat-

lab by using the Multi-Parametric Toolbox (MPT)4 (Kvasnica et al. (2006)). Both

the algorithms have been implemented incrementally on the horizon length. The in-

cremental implementation is inherent in the set relation-based approach, while for

the traditional projection-based approach it may speed up the calculation in many

situations.

Extensive simulations have been carried out on several random systems for different

state (n) and input (r) dimensions. The common MPC settings used are: Q = I and

R = I where I represents the identity matrix; state constraints −10∗1 ≤ x ≤ 10∗1,

input constraints −1 ≤ u ≤ 1, where 1 is a suitably dimensioned vector with all

elements equal to 1.

Table 4.1 reports some of the results obtained during the simulations to give a pic-

ture of the typical performance from both approaches. In general the proposed

approach has performed significantly more efficiently than the standard approach.

Furthermore, the projection approach led several times to unsatisfactory results such

as no result after one hour of computation or numerical errors.

Remark 6. It must be noted that the proposed approach also led numerical errors,

though in a considerably lower number of cases than the projection approach. This

happened mainly when high-dimension state spaces (n > 4) were involved in the

computations. The explanation lies in the dependence on the MPT routines used

for computing the Minkowski sum and the intersection which, although they have

demonstrated to be algorithmically more robust than the MPT projection routines

used, they may fail for particularly complex high dimensional polytopes. It is rea-

sonable to believe that the numerical issues faced could be removed by a careful

4MPT for Matlab offers several algorithms for computing the projection of a polytope (vertex

enumeration/convex hull-based method, Fourier-Motzkin elimination, iterative hull, block elimi-

nation, equality set projection). In the simulations, the MPT projection function has been set to

automatically select the best method.

4.6. Numerical Illustrations 85

4.6 Numerical Illustrations

This section provides some examples in order to illustrate the results presented in

the previous sections. It also presents an application of the results to the computa-

tion of approximate explicit MPC according to the approach presented in Chapter

3.

4.6.1 Feasible Set Computation

The computation time efficiency of the proposed approach based on set relations

(SR) has been compared with the standard approach based on projection (P) in Mat-

lab by using the Multi-Parametric Toolbox (MPT)4 (Kvasnica et al. (2006)). Both

the algorithms have been implemented incrementally on the horizon length. The in-

cremental implementation is inherent in the set relation-based approach, while for

the traditional projection-based approach it may speed up the calculation in many

situations.

Extensive simulations have been carried out on several random systems for different

state (n) and input (r) dimensions. The common MPC settings used are: Q = I and

R = I where I represents the identity matrix; state constraints −10∗1 ≤ x ≤ 10∗1,

input constraints −1 ≤ u ≤ 1, where 1 is a suitably dimensioned vector with all

elements equal to 1.

Table 4.1 reports some of the results obtained during the simulations to give a pic-

ture of the typical performance from both approaches. In general the proposed

approach has performed significantly more efficiently than the standard approach.

Furthermore, the projection approach led several times to unsatisfactory results such

as no result after one hour of computation or numerical errors.

Remark 6. It must be noted that the proposed approach also led numerical errors,

though in a considerably lower number of cases than the projection approach. This

happened mainly when high-dimension state spaces (n > 4) were involved in the

computations. The explanation lies in the dependence on the MPT routines used

for computing the Minkowski sum and the intersection which, although they have

demonstrated to be algorithmically more robust than the MPT projection routines

used, they may fail for particularly complex high dimensional polytopes. It is rea-

sonable to believe that the numerical issues faced could be removed by a careful

4MPT for Matlab offers several algorithms for computing the projection of a polytope (vertex

enumeration/convex hull-based method, Fourier-Motzkin elimination, iterative hull, block elimi-

nation, equality set projection). In the simulations, the MPT projection function has been set to

automatically select the best method.

4.6. Numerical Illustrations 85

4.6 Numerical Illustrations

This section provides some examples in order to illustrate the results presented in

the previous sections. It also presents an application of the results to the computa-

tion of approximate explicit MPC according to the approach presented in Chapter

3.

4.6.1 Feasible Set Computation

The computation time efficiency of the proposed approach based on set relations

(SR) has been compared with the standard approach based on projection (P) in Mat-

lab by using the Multi-Parametric Toolbox (MPT)4 (Kvasnica et al. (2006)). Both

the algorithms have been implemented incrementally on the horizon length. The in-

cremental implementation is inherent in the set relation-based approach, while for

the traditional projection-based approach it may speed up the calculation in many

situations.

Extensive simulations have been carried out on several random systems for different

state (n) and input (r) dimensions. The common MPC settings used are: Q = I and

R = I where I represents the identity matrix; state constraints −10∗1 ≤ x ≤ 10∗1,

input constraints −1 ≤ u ≤ 1, where 1 is a suitably dimensioned vector with all

elements equal to 1.

Table 4.1 reports some of the results obtained during the simulations to give a pic-

ture of the typical performance from both approaches. In general the proposed

approach has performed significantly more efficiently than the standard approach.

Furthermore, the projection approach led several times to unsatisfactory results such

as no result after one hour of computation or numerical errors.

Remark 6. It must be noted that the proposed approach also led numerical errors,

though in a considerably lower number of cases than the projection approach. This

happened mainly when high-dimension state spaces (n > 4) were involved in the

computations. The explanation lies in the dependence on the MPT routines used

for computing the Minkowski sum and the intersection which, although they have

demonstrated to be algorithmically more robust than the MPT projection routines

used, they may fail for particularly complex high dimensional polytopes. It is rea-

sonable to believe that the numerical issues faced could be removed by a careful

4MPT for Matlab offers several algorithms for computing the projection of a polytope (vertex

enumeration/convex hull-based method, Fourier-Motzkin elimination, iterative hull, block elimi-

nation, equality set projection). In the simulations, the MPT projection function has been set to

automatically select the best method.

4.6. Numerical Illustrations 85

4.6 Numerical Illustrations

This section provides some examples in order to illustrate the results presented in

the previous sections. It also presents an application of the results to the computa-

tion of approximate explicit MPC according to the approach presented in Chapter

3.

4.6.1 Feasible Set Computation

The computation time efficiency of the proposed approach based on set relations

(SR) has been compared with the standard approach based on projection (P) in Mat-

lab by using the Multi-Parametric Toolbox (MPT)4 (Kvasnica et al. (2006)). Both

the algorithms have been implemented incrementally on the horizon length. The in-

cremental implementation is inherent in the set relation-based approach, while for

the traditional projection-based approach it may speed up the calculation in many

situations.

Extensive simulations have been carried out on several random systems for different

state (n) and input (r) dimensions. The common MPC settings used are: Q = I and

R = I where I represents the identity matrix; state constraints −10∗1 ≤ x ≤ 10∗1,

input constraints −1 ≤ u ≤ 1, where 1 is a suitably dimensioned vector with all

elements equal to 1.

Table 4.1 reports some of the results obtained during the simulations to give a pic-

ture of the typical performance from both approaches. In general the proposed

approach has performed significantly more efficiently than the standard approach.

Furthermore, the projection approach led several times to unsatisfactory results such

as no result after one hour of computation or numerical errors.

Remark 6. It must be noted that the proposed approach also led numerical errors,

though in a considerably lower number of cases than the projection approach. This

happened mainly when high-dimension state spaces (n > 4) were involved in the

computations. The explanation lies in the dependence on the MPT routines used

for computing the Minkowski sum and the intersection which, although they have

demonstrated to be algorithmically more robust than the MPT projection routines

used, they may fail for particularly complex high dimensional polytopes. It is rea-

sonable to believe that the numerical issues faced could be removed by a careful

4MPT for Matlab offers several algorithms for computing the projection of a polytope (vertex

enumeration/convex hull-based method, Fourier-Motzkin elimination, iterative hull, block elimi-

nation, equality set projection). In the simulations, the MPT projection function has been set to

automatically select the best method.

86 Feasible Sets for MPC and their Approximations

re-implementation of these routines. Also, Minkowski sum and intersection are

operations which are, in practice, most often used on 2/3-dimensional polytopes

(several algorithmic implementations optimized for these dimensions exist). An

optimized code for higher dimensional polytopes may give better computational

performance (cf. Section 4.5).

Table 4.1: Set relation-based approach vs. projection-based approach. Time com-

putation measured in seconds. † indicates no result after 1 hour computation. ‡
indicates simulation terminated by Matlab errors.

Rand. sys. N=5 N=7 N=10

(n, r) SR−P SR−P SR−P

(3, 1) 0.14− 0.40 0.55− 2.70 2.01− 19.33
0.20− 0.52 0.26− 0.30 1.91− 1.72

(3, 2) 0.73− 5.53 4.92− 12.10 3.72− 19.06
4.18− 12.72 2.20− 4.79 9.21− 96.64

(4, 1) 4.76− 25.63 21.30− 32.67 59.21− †
8.82− 45.81 6.89− 15.81 26.61− 475.24

(4, 2) 34.85− 291.7 121.5− ‡ 47.09− 1067
38.59− 88.10 147.4− † 998.09− ‡

4.6.2 Feasible Set Approximation

To show the validity of the idea for computing simpler approximate feasible sets for

MPC, the following considers the double integrator system introduced in Chapter

3.

The goal of the algorithm here is to reduce the complexity in terms of number of

vertices (nV) as much as possible while satisfying conditions (4.32) and (4.33) (as

discussed in Section 4.4.3).

The double integrator is represented by the continuous-time linear system

ẋ = Ax+Bu (4.34)

where x ∈ R
2, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0
1

]
(4.35)

The problem formulation includes a state constraint −3 ≤ x2 ≤ 3 and an input

constraint −1 ≤ u ≤ 1.

The state components x1 and x2 can represent, for example, the position and veloc-

ity, respectively, of a body having mass 1.

86 Feasible Sets for MPC and their Approximations

re-implementation of these routines. Also, Minkowski sum and intersection are

operations which are, in practice, most often used on 2/3-dimensional polytopes

(several algorithmic implementations optimized for these dimensions exist). An

optimized code for higher dimensional polytopes may give better computational

performance (cf. Section 4.5).

Table 4.1: Set relation-based approach vs. projection-based approach. Time com-

putation measured in seconds. † indicates no result after 1 hour computation. ‡
indicates simulation terminated by Matlab errors.

Rand. sys. N=5 N=7 N=10

(n, r) SR−P SR−P SR−P

(3, 1) 0.14− 0.40 0.55− 2.70 2.01− 19.33
0.20− 0.52 0.26− 0.30 1.91− 1.72

(3, 2) 0.73− 5.53 4.92− 12.10 3.72− 19.06
4.18− 12.72 2.20− 4.79 9.21− 96.64

(4, 1) 4.76− 25.63 21.30− 32.67 59.21− †
8.82− 45.81 6.89− 15.81 26.61− 475.24

(4, 2) 34.85− 291.7 121.5− ‡ 47.09− 1067
38.59− 88.10 147.4− † 998.09− ‡

4.6.2 Feasible Set Approximation

To show the validity of the idea for computing simpler approximate feasible sets for

MPC, the following considers the double integrator system introduced in Chapter

3.

The goal of the algorithm here is to reduce the complexity in terms of number of

vertices (nV) as much as possible while satisfying conditions (4.32) and (4.33) (as

discussed in Section 4.4.3).

The double integrator is represented by the continuous-time linear system

ẋ = Ax+Bu (4.34)

where x ∈ R
2, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0
1

]
(4.35)

The problem formulation includes a state constraint −3 ≤ x2 ≤ 3 and an input

constraint −1 ≤ u ≤ 1.

The state components x1 and x2 can represent, for example, the position and veloc-

ity, respectively, of a body having mass 1.

86 Feasible Sets for MPC and their Approximations

re-implementation of these routines. Also, Minkowski sum and intersection are

operations which are, in practice, most often used on 2/3-dimensional polytopes

(several algorithmic implementations optimized for these dimensions exist). An

optimized code for higher dimensional polytopes may give better computational

performance (cf. Section 4.5).

Table 4.1: Set relation-based approach vs. projection-based approach. Time com-

putation measured in seconds. † indicates no result after 1 hour computation. ‡
indicates simulation terminated by Matlab errors.

Rand. sys. N=5 N=7 N=10

(n, r) SR−P SR−P SR−P

(3, 1) 0.14− 0.40 0.55− 2.70 2.01− 19.33
0.20− 0.52 0.26− 0.30 1.91− 1.72

(3, 2) 0.73− 5.53 4.92− 12.10 3.72− 19.06
4.18− 12.72 2.20− 4.79 9.21− 96.64

(4, 1) 4.76− 25.63 21.30− 32.67 59.21− †
8.82− 45.81 6.89− 15.81 26.61− 475.24

(4, 2) 34.85− 291.7 121.5− ‡ 47.09− 1067
38.59− 88.10 147.4− † 998.09− ‡

4.6.2 Feasible Set Approximation

To show the validity of the idea for computing simpler approximate feasible sets for

MPC, the following considers the double integrator system introduced in Chapter

3.

The goal of the algorithm here is to reduce the complexity in terms of number of

vertices (nV) as much as possible while satisfying conditions (4.32) and (4.33) (as

discussed in Section 4.4.3).

The double integrator is represented by the continuous-time linear system

ẋ = Ax+Bu (4.34)

where x ∈ R
2, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0
1

]
(4.35)

The problem formulation includes a state constraint −3 ≤ x2 ≤ 3 and an input

constraint −1 ≤ u ≤ 1.

The state components x1 and x2 can represent, for example, the position and veloc-

ity, respectively, of a body having mass 1.

86 Feasible Sets for MPC and their Approximations

re-implementation of these routines. Also, Minkowski sum and intersection are

operations which are, in practice, most often used on 2/3-dimensional polytopes

(several algorithmic implementations optimized for these dimensions exist). An

optimized code for higher dimensional polytopes may give better computational

performance (cf. Section 4.5).

Table 4.1: Set relation-based approach vs. projection-based approach. Time com-

putation measured in seconds. † indicates no result after 1 hour computation. ‡
indicates simulation terminated by Matlab errors.

Rand. sys. N=5 N=7 N=10

(n, r) SR−P SR−P SR−P

(3, 1) 0.14− 0.40 0.55− 2.70 2.01− 19.33
0.20− 0.52 0.26− 0.30 1.91− 1.72

(3, 2) 0.73− 5.53 4.92− 12.10 3.72− 19.06
4.18− 12.72 2.20− 4.79 9.21− 96.64

(4, 1) 4.76− 25.63 21.30− 32.67 59.21− †
8.82− 45.81 6.89− 15.81 26.61− 475.24

(4, 2) 34.85− 291.7 121.5− ‡ 47.09− 1067
38.59− 88.10 147.4− † 998.09− ‡

4.6.2 Feasible Set Approximation

To show the validity of the idea for computing simpler approximate feasible sets for

MPC, the following considers the double integrator system introduced in Chapter

3.

The goal of the algorithm here is to reduce the complexity in terms of number of

vertices (nV) as much as possible while satisfying conditions (4.32) and (4.33) (as

discussed in Section 4.4.3).

The double integrator is represented by the continuous-time linear system

ẋ = Ax+Bu (4.34)

where x ∈ R
2, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0
1

]
(4.35)

The problem formulation includes a state constraint −3 ≤ x2 ≤ 3 and an input

constraint −1 ≤ u ≤ 1.

The state components x1 and x2 can represent, for example, the position and veloc-

ity, respectively, of a body having mass 1.

4.6. Numerical Illustrations 87

In Table 4.2 the discrete counterpart of system (4.34) is considered for several sam-

pling times. For faster sampling times in general the polyhedral borders of the

feasible sets approximate ellipsoidal shapes, which therefore imply complex V-

representations. Many of the vertices can be removed with a minimal loss in terms

of volume. Moreover, faster sampling time means generally a more complex ex-

plicit MPC solution, which more likely may require the use of simpler feasible

sets to use in approximate explicit MPC approaches. In the table, nV indicates the

number of vertices of the feasible set, ñV indicates the number of vertices of the

approximate feasible set.

Figures 4.1, 4.2 and 4.3 graphically illustrate the idea for sampling time 0.3 and

N = 10. As operating set we assume that the system has to operate in a range of

positions −10 ≤ x1 ≤ 10, for any feasible x2 (Figure 4.1). Analogously chosen

operating sets have been used for the results in Table 4.2.

Note that the feasible set, characterized by 24 vertices, is approximated by a less

complex feasible set characterized by 10 vertices (Figure 4.3). The loss of volume

introduced by the approximate feasible set is less than 3%.

To compute the set X+
F in Figure 4.2, the explicit solution of the MPC is obtained

and then each region comprising the feasible set is propagated one step forward.

Table 4.2: Complexity reduction by approximate feasible sets.

Samp. time N=7 N=10

seconds nV - ñV - loss% nV - ñV - loss%

0.3 18 - 6 - 0.04% 24 - 10 - 0.03%

0.1 34 - 12 - 0.01% 28 - 8 - 0.01%

0.01 56 - 30 - 0.00% 66 - 34 - 0.00%

Extensive simulations have been carried out on several random systems for different

state (n) and input (r) dimensions. The common MPC settings used are: horizon

N = 5, Q = I and R = I; state constraints −20∗1 ≤ x ≤ 20∗1, input constraints

−1 ≤ u ≤ 1.

Table 4.3 lists some of the results obtained in the simulations. As expected from

the discussion in Section 4.4.4, in most of the cases the reduction in the number of

vertices also led to a reduction in the number of half-spaces. However, a few cases

where this did not happen are reported to illustrate that the upper bound theorem

guarantees only that a reduction of vertices will not cause an extreme increase in

the number of half-space.

Remark 7. In some cases the algorithmic implementation of the approach faced

numerical errors, particularly with feasible sets of dimension higher than 3. Analo-

4.6. Numerical Illustrations 87

In Table 4.2 the discrete counterpart of system (4.34) is considered for several sam-

pling times. For faster sampling times in general the polyhedral borders of the

feasible sets approximate ellipsoidal shapes, which therefore imply complex V-

representations. Many of the vertices can be removed with a minimal loss in terms

of volume. Moreover, faster sampling time means generally a more complex ex-

plicit MPC solution, which more likely may require the use of simpler feasible

sets to use in approximate explicit MPC approaches. In the table, nV indicates the

number of vertices of the feasible set, ñV indicates the number of vertices of the

approximate feasible set.

Figures 4.1, 4.2 and 4.3 graphically illustrate the idea for sampling time 0.3 and

N = 10. As operating set we assume that the system has to operate in a range of

positions −10 ≤ x1 ≤ 10, for any feasible x2 (Figure 4.1). Analogously chosen

operating sets have been used for the results in Table 4.2.

Note that the feasible set, characterized by 24 vertices, is approximated by a less

complex feasible set characterized by 10 vertices (Figure 4.3). The loss of volume

introduced by the approximate feasible set is less than 3%.

To compute the set X+
F in Figure 4.2, the explicit solution of the MPC is obtained

and then each region comprising the feasible set is propagated one step forward.

Table 4.2: Complexity reduction by approximate feasible sets.

Samp. time N=7 N=10

seconds nV - ñV - loss% nV - ñV - loss%

0.3 18 - 6 - 0.04% 24 - 10 - 0.03%

0.1 34 - 12 - 0.01% 28 - 8 - 0.01%

0.01 56 - 30 - 0.00% 66 - 34 - 0.00%

Extensive simulations have been carried out on several random systems for different

state (n) and input (r) dimensions. The common MPC settings used are: horizon

N = 5, Q = I and R = I; state constraints −20∗1 ≤ x ≤ 20∗1, input constraints

−1 ≤ u ≤ 1.

Table 4.3 lists some of the results obtained in the simulations. As expected from

the discussion in Section 4.4.4, in most of the cases the reduction in the number of

vertices also led to a reduction in the number of half-spaces. However, a few cases

where this did not happen are reported to illustrate that the upper bound theorem

guarantees only that a reduction of vertices will not cause an extreme increase in

the number of half-space.

Remark 7. In some cases the algorithmic implementation of the approach faced

numerical errors, particularly with feasible sets of dimension higher than 3. Analo-

4.6. Numerical Illustrations 87

In Table 4.2 the discrete counterpart of system (4.34) is considered for several sam-

pling times. For faster sampling times in general the polyhedral borders of the

feasible sets approximate ellipsoidal shapes, which therefore imply complex V-

representations. Many of the vertices can be removed with a minimal loss in terms

of volume. Moreover, faster sampling time means generally a more complex ex-

plicit MPC solution, which more likely may require the use of simpler feasible

sets to use in approximate explicit MPC approaches. In the table, nV indicates the

number of vertices of the feasible set, ñV indicates the number of vertices of the

approximate feasible set.

Figures 4.1, 4.2 and 4.3 graphically illustrate the idea for sampling time 0.3 and

N = 10. As operating set we assume that the system has to operate in a range of

positions −10 ≤ x1 ≤ 10, for any feasible x2 (Figure 4.1). Analogously chosen

operating sets have been used for the results in Table 4.2.

Note that the feasible set, characterized by 24 vertices, is approximated by a less

complex feasible set characterized by 10 vertices (Figure 4.3). The loss of volume

introduced by the approximate feasible set is less than 3%.

To compute the set X+
F in Figure 4.2, the explicit solution of the MPC is obtained

and then each region comprising the feasible set is propagated one step forward.

Table 4.2: Complexity reduction by approximate feasible sets.

Samp. time N=7 N=10

seconds nV - ñV - loss% nV - ñV - loss%

0.3 18 - 6 - 0.04% 24 - 10 - 0.03%

0.1 34 - 12 - 0.01% 28 - 8 - 0.01%

0.01 56 - 30 - 0.00% 66 - 34 - 0.00%

Extensive simulations have been carried out on several random systems for different

state (n) and input (r) dimensions. The common MPC settings used are: horizon

N = 5, Q = I and R = I; state constraints −20∗1 ≤ x ≤ 20∗1, input constraints

−1 ≤ u ≤ 1.

Table 4.3 lists some of the results obtained in the simulations. As expected from

the discussion in Section 4.4.4, in most of the cases the reduction in the number of

vertices also led to a reduction in the number of half-spaces. However, a few cases

where this did not happen are reported to illustrate that the upper bound theorem

guarantees only that a reduction of vertices will not cause an extreme increase in

the number of half-space.

Remark 7. In some cases the algorithmic implementation of the approach faced

numerical errors, particularly with feasible sets of dimension higher than 3. Analo-

4.6. Numerical Illustrations 87

In Table 4.2 the discrete counterpart of system (4.34) is considered for several sam-

pling times. For faster sampling times in general the polyhedral borders of the

feasible sets approximate ellipsoidal shapes, which therefore imply complex V-

representations. Many of the vertices can be removed with a minimal loss in terms

of volume. Moreover, faster sampling time means generally a more complex ex-

plicit MPC solution, which more likely may require the use of simpler feasible

sets to use in approximate explicit MPC approaches. In the table, nV indicates the

number of vertices of the feasible set, ñV indicates the number of vertices of the

approximate feasible set.

Figures 4.1, 4.2 and 4.3 graphically illustrate the idea for sampling time 0.3 and

N = 10. As operating set we assume that the system has to operate in a range of

positions −10 ≤ x1 ≤ 10, for any feasible x2 (Figure 4.1). Analogously chosen

operating sets have been used for the results in Table 4.2.

Note that the feasible set, characterized by 24 vertices, is approximated by a less

complex feasible set characterized by 10 vertices (Figure 4.3). The loss of volume

introduced by the approximate feasible set is less than 3%.

To compute the set X+
F in Figure 4.2, the explicit solution of the MPC is obtained

and then each region comprising the feasible set is propagated one step forward.

Table 4.2: Complexity reduction by approximate feasible sets.

Samp. time N=7 N=10

seconds nV - ñV - loss% nV - ñV - loss%

0.3 18 - 6 - 0.04% 24 - 10 - 0.03%

0.1 34 - 12 - 0.01% 28 - 8 - 0.01%

0.01 56 - 30 - 0.00% 66 - 34 - 0.00%

Extensive simulations have been carried out on several random systems for different

state (n) and input (r) dimensions. The common MPC settings used are: horizon

N = 5, Q = I and R = I; state constraints −20∗1 ≤ x ≤ 20∗1, input constraints

−1 ≤ u ≤ 1.

Table 4.3 lists some of the results obtained in the simulations. As expected from

the discussion in Section 4.4.4, in most of the cases the reduction in the number of

vertices also led to a reduction in the number of half-spaces. However, a few cases

where this did not happen are reported to illustrate that the upper bound theorem

guarantees only that a reduction of vertices will not cause an extreme increase in

the number of half-space.

Remark 7. In some cases the algorithmic implementation of the approach faced

numerical errors, particularly with feasible sets of dimension higher than 3. Analo-

88 Feasible Sets for MPC and their Approximations

�� �� � � � �� ��
�

�

�

�

�

�
�

� �

Figure 4.1: The largest polytope is the feasible set XF (green). The set marked with

the wide dashed line represents the operating set (red), contained in the feasible set.

�� �� � � � �� ��
�

�

�

�

�

�
�

� �

Figure 4.2: The largest polytope represents the feasible set XF (green). The set

marked with wide dashed line represents the set X (N−1)
F (red and yellow), which

corresponds with the feasible set for an horizon length N − 1. The internal regions

(in yellow) marked with thin lines comprise the next time-step feasible set X+
F . Note

that X+
F ⊂ X (N−1)

F ⊂ XF and that X+
F is non-convex.

88 Feasible Sets for MPC and their Approximations

�� �� � � � �� ��
�

�

�

�

�

�
�

� �

Figure 4.1: The largest polytope is the feasible set XF (green). The set marked with

the wide dashed line represents the operating set (red), contained in the feasible set.

�� �� � � � �� ��
�

�

�

�

�

�
�

� �

Figure 4.2: The largest polytope represents the feasible set XF (green). The set

marked with wide dashed line represents the set X (N−1)
F (red and yellow), which

corresponds with the feasible set for an horizon length N − 1. The internal regions

(in yellow) marked with thin lines comprise the next time-step feasible set X+
F . Note

that X+
F ⊂ X (N−1)

F ⊂ XF and that X+
F is non-convex.

88 Feasible Sets for MPC and their Approximations

�� �� � � � �� ��
�

�

�

�

�

�
�

� �

Figure 4.1: The largest polytope is the feasible set XF (green). The set marked with

the wide dashed line represents the operating set (red), contained in the feasible set.

�� �� � � � �� ��
�

�

�

�

�

�
�

� �

Figure 4.2: The largest polytope represents the feasible set XF (green). The set

marked with wide dashed line represents the set X (N−1)
F (red and yellow), which

corresponds with the feasible set for an horizon length N − 1. The internal regions

(in yellow) marked with thin lines comprise the next time-step feasible set X+
F . Note

that X+
F ⊂ X (N−1)

F ⊂ XF and that X+
F is non-convex.

88 Feasible Sets for MPC and their Approximations

�� �� � � � �� ��
�

�

�

�

�

�
�

� �

Figure 4.1: The largest polytope is the feasible set XF (green). The set marked with

the wide dashed line represents the operating set (red), contained in the feasible set.

�� �� � � � �� ��
�

�

�

�

�

�
�

� �

Figure 4.2: The largest polytope represents the feasible set XF (green). The set

marked with wide dashed line represents the set X (N−1)
F (red and yellow), which

corresponds with the feasible set for an horizon length N − 1. The internal regions

(in yellow) marked with thin lines comprise the next time-step feasible set X+
F . Note

that X+
F ⊂ X (N−1)

F ⊂ XF and that X+
F is non-convex.

4.6. Numerical Illustrations 89

�� �� � � � �� ��
�

�

�

�

�

�
�

� �

Figure 4.3: The largest polytope represents the feasible set XF . The internal set

marked with wide solid line represents the reduced feasible set.

gously to the remark in Section 4.6.1, the explanation seems to lie in the dependence

on the MPT routines implementing the basic operations on polytopes. It must also

be said that, apart from the use of pointers to make computations more efficient,

no particular emphasis has been put in coding an efficient implementation of the

approach. The scope here was primarily to provide evidence of its effectiveness.

Careful re-implementations of the routines for the basic polytope operations and

re-implementation of the approach would reasonably remove most of the numerical

issues and improve the computational performance (c.f. Section 4.5).

Table 4.3: Feasible set vs approximate feasible set for several random systems. The

case marked with (*) is illustrated in Figure 4.4.

Rand. sys. Feasible set Approximate feasible set

(n, r) nV − nH ñV − ñH
(3, 1) 28− 16 16− 10

58− 56 35− 46
(*) 82− 78 54− 64

(3, 2) 74− 44 41− 38
64− 34 25− 28
52− 28 30− 29

(4, 1) 124− 38 87− 57
116− 58 92− 56
108− 34 84− 40

4.6. Numerical Illustrations 89

�� �� � � � �� ��
�

�

�

�

�

�
�

� �

Figure 4.3: The largest polytope represents the feasible set XF . The internal set

marked with wide solid line represents the reduced feasible set.

gously to the remark in Section 4.6.1, the explanation seems to lie in the dependence

on the MPT routines implementing the basic operations on polytopes. It must also

be said that, apart from the use of pointers to make computations more efficient,

no particular emphasis has been put in coding an efficient implementation of the

approach. The scope here was primarily to provide evidence of its effectiveness.

Careful re-implementations of the routines for the basic polytope operations and

re-implementation of the approach would reasonably remove most of the numerical

issues and improve the computational performance (c.f. Section 4.5).

Table 4.3: Feasible set vs approximate feasible set for several random systems. The

case marked with (*) is illustrated in Figure 4.4.

Rand. sys. Feasible set Approximate feasible set

(n, r) nV − nH ñV − ñH
(3, 1) 28− 16 16− 10

58− 56 35− 46
(*) 82− 78 54− 64

(3, 2) 74− 44 41− 38
64− 34 25− 28
52− 28 30− 29

(4, 1) 124− 38 87− 57
116− 58 92− 56
108− 34 84− 40

4.6. Numerical Illustrations 89

�� �� � � � �� ��
�

�

�

�

�

�
�

� �

Figure 4.3: The largest polytope represents the feasible set XF . The internal set

marked with wide solid line represents the reduced feasible set.

gously to the remark in Section 4.6.1, the explanation seems to lie in the dependence

on the MPT routines implementing the basic operations on polytopes. It must also

be said that, apart from the use of pointers to make computations more efficient,

no particular emphasis has been put in coding an efficient implementation of the

approach. The scope here was primarily to provide evidence of its effectiveness.

Careful re-implementations of the routines for the basic polytope operations and

re-implementation of the approach would reasonably remove most of the numerical

issues and improve the computational performance (c.f. Section 4.5).

Table 4.3: Feasible set vs approximate feasible set for several random systems. The

case marked with (*) is illustrated in Figure 4.4.

Rand. sys. Feasible set Approximate feasible set

(n, r) nV − nH ñV − ñH
(3, 1) 28− 16 16− 10

58− 56 35− 46
(*) 82− 78 54− 64

(3, 2) 74− 44 41− 38
64− 34 25− 28
52− 28 30− 29

(4, 1) 124− 38 87− 57
116− 58 92− 56
108− 34 84− 40

4.6. Numerical Illustrations 89

�� �� � � � �� ��
�

�

�

�

�

�
�

� �

Figure 4.3: The largest polytope represents the feasible set XF . The internal set

marked with wide solid line represents the reduced feasible set.

gously to the remark in Section 4.6.1, the explanation seems to lie in the dependence

on the MPT routines implementing the basic operations on polytopes. It must also

be said that, apart from the use of pointers to make computations more efficient,

no particular emphasis has been put in coding an efficient implementation of the

approach. The scope here was primarily to provide evidence of its effectiveness.

Careful re-implementations of the routines for the basic polytope operations and

re-implementation of the approach would reasonably remove most of the numerical

issues and improve the computational performance (c.f. Section 4.5).

Table 4.3: Feasible set vs approximate feasible set for several random systems. The

case marked with (*) is illustrated in Figure 4.4.

Rand. sys. Feasible set Approximate feasible set

(n, r) nV − nH ñV − ñH
(3, 1) 28− 16 16− 10

58− 56 35− 46
(*) 82− 78 54− 64

(3, 2) 74− 44 41− 38
64− 34 25− 28
52− 28 30− 29

(4, 1) 124− 38 87− 57
116− 58 92− 56
108− 34 84− 40

90 Feasible Sets for MPC and their Approximations

Figure 4.4: The upper graph shows the feasible set in the 3-dimensional state space

for a system in Table 4.3. The graph below shows the corresponding approximate

feasible set.

90 Feasible Sets for MPC and their Approximations

Figure 4.4: The upper graph shows the feasible set in the 3-dimensional state space

for a system in Table 4.3. The graph below shows the corresponding approximate

feasible set.

90 Feasible Sets for MPC and their Approximations

Figure 4.4: The upper graph shows the feasible set in the 3-dimensional state space

for a system in Table 4.3. The graph below shows the corresponding approximate

feasible set.

90 Feasible Sets for MPC and their Approximations

Figure 4.4: The upper graph shows the feasible set in the 3-dimensional state space

for a system in Table 4.3. The graph below shows the corresponding approximate

feasible set.

4.7. Discussion and Conclusions 91

4.6.3 Application to Approximate Explicit MPC

Consider the approach for deriving a suboptimal explicit MPC solution discussed

in Chapter 3. For this approach, the number of components of the resulting PWA

control law depends on the complexity of the feasible set in terms of number of

vertices.

The system is the double integrator (4.34) discretized with the sampling time 0.1.

The MPC settings are: horizon N = 10, Q = I and R = I; state constraints

−5 ≤ x2 ≤ 5, input constraints −1 ≤ u ≤ 1; tolerance set to 50%.

For simplicity, the operating set is assumed to be within the set X (N−1)
F so that only

the positive invariance condition (4.32) needs to be verified.

Figure 4.5 illustrates the feasible set and its partitions for the optimal explicit MPC

(characterized by 359 regions) and for the suboptimal explicit MPC (characterized

by 97 regions).

Figure 4.6 shows the reduced feasible set. It also illustrates that the use of the

approximate feasible set allows a reduction in the total number of regions (77 re-

gions). In fact, the regions needed to cope with the curve-like shapes of the feasible

set borders are removed.

4.7 Discussion and Conclusions

The chapter has presented an alternative approach for computing feasible sets when

MPC techniques are used. The proposed approach uses set relations instead of the

conventional projection, which then unfolds to a procedure based on Minkowski

sum and intersection routines. This proves to be computationally more efficient

and algorithmically more robust than using projection routines, particularly when

high dimensional polytopic sets are involved (i.e. for long prediction horizons, high

dimensional state and/or input).

However, some numerical issue suggested the need of future work to improve the

algorithmic robustness of the routines for the needed polytopic operations.

When the feasible set is characterized by a critical complexity of representation in

terms of number of vertices, an approach to compute a simplified feasible set with a

reduced number of vertices has been given. The approach is based on the introduc-

tion of certain conditions which extend existing approaches for the computation of

polytope approximations, so that the approximating polytope maintains all the fun-

damental properties of the feasible set required for MPC applications like positive

invariance and inclusion of the set of expected operating conditions.

Preserving the positive invariance property in the feasible set approximation is cru-

4.7. Discussion and Conclusions 91

4.6.3 Application to Approximate Explicit MPC

Consider the approach for deriving a suboptimal explicit MPC solution discussed

in Chapter 3. For this approach, the number of components of the resulting PWA

control law depends on the complexity of the feasible set in terms of number of

vertices.

The system is the double integrator (4.34) discretized with the sampling time 0.1.

The MPC settings are: horizon N = 10, Q = I and R = I; state constraints

−5 ≤ x2 ≤ 5, input constraints −1 ≤ u ≤ 1; tolerance set to 50%.

For simplicity, the operating set is assumed to be within the set X (N−1)
F so that only

the positive invariance condition (4.32) needs to be verified.

Figure 4.5 illustrates the feasible set and its partitions for the optimal explicit MPC

(characterized by 359 regions) and for the suboptimal explicit MPC (characterized

by 97 regions).

Figure 4.6 shows the reduced feasible set. It also illustrates that the use of the

approximate feasible set allows a reduction in the total number of regions (77 re-

gions). In fact, the regions needed to cope with the curve-like shapes of the feasible

set borders are removed.

4.7 Discussion and Conclusions

The chapter has presented an alternative approach for computing feasible sets when

MPC techniques are used. The proposed approach uses set relations instead of the

conventional projection, which then unfolds to a procedure based on Minkowski

sum and intersection routines. This proves to be computationally more efficient

and algorithmically more robust than using projection routines, particularly when

high dimensional polytopic sets are involved (i.e. for long prediction horizons, high

dimensional state and/or input).

However, some numerical issue suggested the need of future work to improve the

algorithmic robustness of the routines for the needed polytopic operations.

When the feasible set is characterized by a critical complexity of representation in

terms of number of vertices, an approach to compute a simplified feasible set with a

reduced number of vertices has been given. The approach is based on the introduc-

tion of certain conditions which extend existing approaches for the computation of

polytope approximations, so that the approximating polytope maintains all the fun-

damental properties of the feasible set required for MPC applications like positive

invariance and inclusion of the set of expected operating conditions.

Preserving the positive invariance property in the feasible set approximation is cru-

4.7. Discussion and Conclusions 91

4.6.3 Application to Approximate Explicit MPC

Consider the approach for deriving a suboptimal explicit MPC solution discussed

in Chapter 3. For this approach, the number of components of the resulting PWA

control law depends on the complexity of the feasible set in terms of number of

vertices.

The system is the double integrator (4.34) discretized with the sampling time 0.1.

The MPC settings are: horizon N = 10, Q = I and R = I; state constraints

−5 ≤ x2 ≤ 5, input constraints −1 ≤ u ≤ 1; tolerance set to 50%.

For simplicity, the operating set is assumed to be within the set X (N−1)
F so that only

the positive invariance condition (4.32) needs to be verified.

Figure 4.5 illustrates the feasible set and its partitions for the optimal explicit MPC

(characterized by 359 regions) and for the suboptimal explicit MPC (characterized

by 97 regions).

Figure 4.6 shows the reduced feasible set. It also illustrates that the use of the

approximate feasible set allows a reduction in the total number of regions (77 re-

gions). In fact, the regions needed to cope with the curve-like shapes of the feasible

set borders are removed.

4.7 Discussion and Conclusions

The chapter has presented an alternative approach for computing feasible sets when

MPC techniques are used. The proposed approach uses set relations instead of the

conventional projection, which then unfolds to a procedure based on Minkowski

sum and intersection routines. This proves to be computationally more efficient

and algorithmically more robust than using projection routines, particularly when

high dimensional polytopic sets are involved (i.e. for long prediction horizons, high

dimensional state and/or input).

However, some numerical issue suggested the need of future work to improve the

algorithmic robustness of the routines for the needed polytopic operations.

When the feasible set is characterized by a critical complexity of representation in

terms of number of vertices, an approach to compute a simplified feasible set with a

reduced number of vertices has been given. The approach is based on the introduc-

tion of certain conditions which extend existing approaches for the computation of

polytope approximations, so that the approximating polytope maintains all the fun-

damental properties of the feasible set required for MPC applications like positive

invariance and inclusion of the set of expected operating conditions.

Preserving the positive invariance property in the feasible set approximation is cru-

4.7. Discussion and Conclusions 91

4.6.3 Application to Approximate Explicit MPC

Consider the approach for deriving a suboptimal explicit MPC solution discussed

in Chapter 3. For this approach, the number of components of the resulting PWA

control law depends on the complexity of the feasible set in terms of number of

vertices.

The system is the double integrator (4.34) discretized with the sampling time 0.1.

The MPC settings are: horizon N = 10, Q = I and R = I; state constraints

−5 ≤ x2 ≤ 5, input constraints −1 ≤ u ≤ 1; tolerance set to 50%.

For simplicity, the operating set is assumed to be within the set X (N−1)
F so that only

the positive invariance condition (4.32) needs to be verified.

Figure 4.5 illustrates the feasible set and its partitions for the optimal explicit MPC

(characterized by 359 regions) and for the suboptimal explicit MPC (characterized

by 97 regions).

Figure 4.6 shows the reduced feasible set. It also illustrates that the use of the

approximate feasible set allows a reduction in the total number of regions (77 re-

gions). In fact, the regions needed to cope with the curve-like shapes of the feasible

set borders are removed.

4.7 Discussion and Conclusions

The chapter has presented an alternative approach for computing feasible sets when

MPC techniques are used. The proposed approach uses set relations instead of the

conventional projection, which then unfolds to a procedure based on Minkowski

sum and intersection routines. This proves to be computationally more efficient

and algorithmically more robust than using projection routines, particularly when

high dimensional polytopic sets are involved (i.e. for long prediction horizons, high

dimensional state and/or input).

However, some numerical issue suggested the need of future work to improve the

algorithmic robustness of the routines for the needed polytopic operations.

When the feasible set is characterized by a critical complexity of representation in

terms of number of vertices, an approach to compute a simplified feasible set with a

reduced number of vertices has been given. The approach is based on the introduc-

tion of certain conditions which extend existing approaches for the computation of

polytope approximations, so that the approximating polytope maintains all the fun-

damental properties of the feasible set required for MPC applications like positive

invariance and inclusion of the set of expected operating conditions.

Preserving the positive invariance property in the feasible set approximation is cru-

92 Feasible Sets for MPC and their Approximations

�� �� �� � � � �� �� ��
�

�

�

�
�

� �

�� �� �� � � � �� �� ��
�

�

�

x
1

x 2

Figure 4.5: On top, the figure shows the the feasible set and its optimal partition

for the optimal explicit MPC; number of regions: 359. The figure below shows the

approximate explicit MPC generated by Algorithm 2 in Chapter 3 for a tolerance

set to 50%; number of regions: 97.

92 Feasible Sets for MPC and their Approximations

�� �� �� � � � �� �� ��
�

�

�

�
�

� �

�� �� �� � � � �� �� ��
�

�

�

x
1

x 2

Figure 4.5: On top, the figure shows the the feasible set and its optimal partition

for the optimal explicit MPC; number of regions: 359. The figure below shows the

approximate explicit MPC generated by Algorithm 2 in Chapter 3 for a tolerance

set to 50%; number of regions: 97.

92 Feasible Sets for MPC and their Approximations

�� �� �� � � � �� �� ��
�

�

�

�
�

� �

�� �� �� � � � �� �� ��
�

�

�

x
1

x 2

Figure 4.5: On top, the figure shows the the feasible set and its optimal partition

for the optimal explicit MPC; number of regions: 359. The figure below shows the

approximate explicit MPC generated by Algorithm 2 in Chapter 3 for a tolerance

set to 50%; number of regions: 97.

92 Feasible Sets for MPC and their Approximations

�� �� �� � � � �� �� ��
�

�

�

�
�

� �

�� �� �� � � � �� �� ��
�

�

�

x
1

x 2

Figure 4.5: On top, the figure shows the the feasible set and its optimal partition

for the optimal explicit MPC; number of regions: 359. The figure below shows the

approximate explicit MPC generated by Algorithm 2 in Chapter 3 for a tolerance

set to 50%; number of regions: 97.

4.7. Discussion and Conclusions 93

�� �� �� � � � �� �� ��
�

�

�

�
�

� �

�� �� �� � � � �� �� ��
�

�

�

�
�

� �

Figure 4.6: On top, the figure shows the feasible set (red and green) with nV = 28
and the approximate feasible set (green) with ñV = 8. The figure below shows the

approximate explicit MPC generated by Algorithm 2 in Chapter 3 for a tolerance

set to 50% and using the approximate feasible set; number of regions: 77.

4.7. Discussion and Conclusions 93

�� �� �� � � � �� �� ��
�

�

�

�
�

� �

�� �� �� � � � �� �� ��
�

�

�

�
�

� �

Figure 4.6: On top, the figure shows the feasible set (red and green) with nV = 28
and the approximate feasible set (green) with ñV = 8. The figure below shows the

approximate explicit MPC generated by Algorithm 2 in Chapter 3 for a tolerance

set to 50% and using the approximate feasible set; number of regions: 77.

4.7. Discussion and Conclusions 93

�� �� �� � � � �� �� ��
�

�

�

�
�

� �

�� �� �� � � � �� �� ��
�

�

�

�
�

� �

Figure 4.6: On top, the figure shows the feasible set (red and green) with nV = 28
and the approximate feasible set (green) with ñV = 8. The figure below shows the

approximate explicit MPC generated by Algorithm 2 in Chapter 3 for a tolerance

set to 50% and using the approximate feasible set; number of regions: 77.

4.7. Discussion and Conclusions 93

�� �� �� � � � �� �� ��
�

�

�

�
�

� �

�� �� �� � � � �� �� ��
�

�

�

�
�

� �

Figure 4.6: On top, the figure shows the feasible set (red and green) with nV = 28
and the approximate feasible set (green) with ñV = 8. The figure below shows the

approximate explicit MPC generated by Algorithm 2 in Chapter 3 for a tolerance

set to 50% and using the approximate feasible set; number of regions: 77.

94 Feasible Sets for MPC and their Approximations

cial. This issue is inherently difficult to handle since it is concerned with the non-

linear dynamics of the closed-loop system. The proposed approach typically allows

a considerable decrease in the V-representation complexity by removing most of

the vertices needed to deal with feasible set borders which approximate ellipsoids

(according to the operating set considered). However, this approach does not allow

to consider possible even simpler feasible set approximations which, while includ-

ing the operating set, may have borders within X (N−1)
F . A potential future research

direction could be to search for different approaches which would give more flexi-

bility. One could for example look at solutions which use level surfaces of Lyapunov

functions (Alessio et al. (2006)) to find different vertices than the original ones from

the feasible set.

The conditions introduced constrain the goal of minimizing the loss of volume in

the approximation. Finding suitable approximating polytopes characterized by the

minimum loss of volume is a well known problem. Requiring that the approxi-

mation minimizes the loss of volume while satisfying conditions related to system

dynamics remains challenge. Here the minimization of the loss of volume was not

considered critical, since in the context of the present work the interest often is to

preserve given crucial parts of the feasible set, which can be done via the operating

set condition. In fact, the algorithm proposed tends to minimize the loss of volume

in the sense that at each iteration the suitable vertex which results in the lowest

loss of volume in the current approximating polytope is removed. Pointer struc-

tures were used to enhance the implementation efficiency, though it may be further

improved by a careful re-implementation of the approach. Simulations proved the

effectiveness of the results presented.

94 Feasible Sets for MPC and their Approximations

cial. This issue is inherently difficult to handle since it is concerned with the non-

linear dynamics of the closed-loop system. The proposed approach typically allows

a considerable decrease in the V-representation complexity by removing most of

the vertices needed to deal with feasible set borders which approximate ellipsoids

(according to the operating set considered). However, this approach does not allow

to consider possible even simpler feasible set approximations which, while includ-

ing the operating set, may have borders within X (N−1)
F . A potential future research

direction could be to search for different approaches which would give more flexi-

bility. One could for example look at solutions which use level surfaces of Lyapunov

functions (Alessio et al. (2006)) to find different vertices than the original ones from

the feasible set.

The conditions introduced constrain the goal of minimizing the loss of volume in

the approximation. Finding suitable approximating polytopes characterized by the

minimum loss of volume is a well known problem. Requiring that the approxi-

mation minimizes the loss of volume while satisfying conditions related to system

dynamics remains challenge. Here the minimization of the loss of volume was not

considered critical, since in the context of the present work the interest often is to

preserve given crucial parts of the feasible set, which can be done via the operating

set condition. In fact, the algorithm proposed tends to minimize the loss of volume

in the sense that at each iteration the suitable vertex which results in the lowest

loss of volume in the current approximating polytope is removed. Pointer struc-

tures were used to enhance the implementation efficiency, though it may be further

improved by a careful re-implementation of the approach. Simulations proved the

effectiveness of the results presented.

94 Feasible Sets for MPC and their Approximations

cial. This issue is inherently difficult to handle since it is concerned with the non-

linear dynamics of the closed-loop system. The proposed approach typically allows

a considerable decrease in the V-representation complexity by removing most of

the vertices needed to deal with feasible set borders which approximate ellipsoids

(according to the operating set considered). However, this approach does not allow

to consider possible even simpler feasible set approximations which, while includ-

ing the operating set, may have borders within X (N−1)
F . A potential future research

direction could be to search for different approaches which would give more flexi-

bility. One could for example look at solutions which use level surfaces of Lyapunov

functions (Alessio et al. (2006)) to find different vertices than the original ones from

the feasible set.

The conditions introduced constrain the goal of minimizing the loss of volume in

the approximation. Finding suitable approximating polytopes characterized by the

minimum loss of volume is a well known problem. Requiring that the approxi-

mation minimizes the loss of volume while satisfying conditions related to system

dynamics remains challenge. Here the minimization of the loss of volume was not

considered critical, since in the context of the present work the interest often is to

preserve given crucial parts of the feasible set, which can be done via the operating

set condition. In fact, the algorithm proposed tends to minimize the loss of volume

in the sense that at each iteration the suitable vertex which results in the lowest

loss of volume in the current approximating polytope is removed. Pointer struc-

tures were used to enhance the implementation efficiency, though it may be further

improved by a careful re-implementation of the approach. Simulations proved the

effectiveness of the results presented.

94 Feasible Sets for MPC and their Approximations

cial. This issue is inherently difficult to handle since it is concerned with the non-

linear dynamics of the closed-loop system. The proposed approach typically allows

a considerable decrease in the V-representation complexity by removing most of

the vertices needed to deal with feasible set borders which approximate ellipsoids

(according to the operating set considered). However, this approach does not allow

to consider possible even simpler feasible set approximations which, while includ-

ing the operating set, may have borders within X (N−1)
F . A potential future research

direction could be to search for different approaches which would give more flexi-

bility. One could for example look at solutions which use level surfaces of Lyapunov

functions (Alessio et al. (2006)) to find different vertices than the original ones from

the feasible set.

The conditions introduced constrain the goal of minimizing the loss of volume in

the approximation. Finding suitable approximating polytopes characterized by the

minimum loss of volume is a well known problem. Requiring that the approxi-

mation minimizes the loss of volume while satisfying conditions related to system

dynamics remains challenge. Here the minimization of the loss of volume was not

considered critical, since in the context of the present work the interest often is to

preserve given crucial parts of the feasible set, which can be done via the operating

set condition. In fact, the algorithm proposed tends to minimize the loss of volume

in the sense that at each iteration the suitable vertex which results in the lowest

loss of volume in the current approximating polytope is removed. Pointer struc-

tures were used to enhance the implementation efficiency, though it may be further

improved by a careful re-implementation of the approach. Simulations proved the

effectiveness of the results presented.

Chapter 5

Robust Feasibility for Constrained
Linear Systems with PWA
Controllers

Piecewise affine (PWA) feedback control laws represent an important class of con-

troller for linear systems subject to linear constraints, with explicit Model Predictive

Control approaches being probably the most popular techniques to obtain such con-

trol laws. These controllers are usually defined within a polyhedral set of initial

states called the feasible set. In the presence of model mismatch, when the con-

troller designed using the nominal model is applied to the real plant, the feasible set

may lose its invariance property, resulting violation of constraints. Since the con-

troller is only designed over the feasible set, there is also the technical problem that

the control action is undefined if the state moves outside of the feasible set. This

chapter proposes a tool to analyze how uncertainty in the model affects the piece-

wise affine control law computed using a nominal model. Given the linear system

describing the plant and the piecewise affine control law, the algorithm that is pre-

sented considers a polytopic model uncertainty defined by the user and constructs

the maximal robust feasible set, i.e. the largest subset of the feasible set which is

guaranteed to be feasible for any model in the family of models described by the

polytopic uncertainty.

95

Chapter 5

Robust Feasibility for Constrained
Linear Systems with PWA
Controllers

Piecewise affine (PWA) feedback control laws represent an important class of con-

troller for linear systems subject to linear constraints, with explicit Model Predictive

Control approaches being probably the most popular techniques to obtain such con-

trol laws. These controllers are usually defined within a polyhedral set of initial

states called the feasible set. In the presence of model mismatch, when the con-

troller designed using the nominal model is applied to the real plant, the feasible set

may lose its invariance property, resulting violation of constraints. Since the con-

troller is only designed over the feasible set, there is also the technical problem that

the control action is undefined if the state moves outside of the feasible set. This

chapter proposes a tool to analyze how uncertainty in the model affects the piece-

wise affine control law computed using a nominal model. Given the linear system

describing the plant and the piecewise affine control law, the algorithm that is pre-

sented considers a polytopic model uncertainty defined by the user and constructs

the maximal robust feasible set, i.e. the largest subset of the feasible set which is

guaranteed to be feasible for any model in the family of models described by the

polytopic uncertainty.

95

Chapter 5

Robust Feasibility for Constrained
Linear Systems with PWA
Controllers

Piecewise affine (PWA) feedback control laws represent an important class of con-

troller for linear systems subject to linear constraints, with explicit Model Predictive

Control approaches being probably the most popular techniques to obtain such con-

trol laws. These controllers are usually defined within a polyhedral set of initial

states called the feasible set. In the presence of model mismatch, when the con-

troller designed using the nominal model is applied to the real plant, the feasible set

may lose its invariance property, resulting violation of constraints. Since the con-

troller is only designed over the feasible set, there is also the technical problem that

the control action is undefined if the state moves outside of the feasible set. This

chapter proposes a tool to analyze how uncertainty in the model affects the piece-

wise affine control law computed using a nominal model. Given the linear system

describing the plant and the piecewise affine control law, the algorithm that is pre-

sented considers a polytopic model uncertainty defined by the user and constructs

the maximal robust feasible set, i.e. the largest subset of the feasible set which is

guaranteed to be feasible for any model in the family of models described by the

polytopic uncertainty.

95

Chapter 5

Robust Feasibility for Constrained
Linear Systems with PWA
Controllers

Piecewise affine (PWA) feedback control laws represent an important class of con-

troller for linear systems subject to linear constraints, with explicit Model Predictive

Control approaches being probably the most popular techniques to obtain such con-

trol laws. These controllers are usually defined within a polyhedral set of initial

states called the feasible set. In the presence of model mismatch, when the con-

troller designed using the nominal model is applied to the real plant, the feasible set

may lose its invariance property, resulting violation of constraints. Since the con-

troller is only designed over the feasible set, there is also the technical problem that

the control action is undefined if the state moves outside of the feasible set. This

chapter proposes a tool to analyze how uncertainty in the model affects the piece-

wise affine control law computed using a nominal model. Given the linear system

describing the plant and the piecewise affine control law, the algorithm that is pre-

sented considers a polytopic model uncertainty defined by the user and constructs

the maximal robust feasible set, i.e. the largest subset of the feasible set which is

guaranteed to be feasible for any model in the family of models described by the

polytopic uncertainty.

95

96 Robust Feasibility for Constrained Linear Systems with PWA Controllers

5.1 Introduction

The concept of invariant sets has been shown to play an important role in the control

and analysis of constrained systems (Blanchini (1999), Kerrigan and Maciejowski

(2000), Gilbert and Tan (1991)). Given an autonomous dynamic system, a subset

of the state space is said to be positively invariant if it has the property that, if

it contains the system state at some time, then it will also contain it at all future

times. The presence of constraints on the state variables defines an admissible set

in the state space, i.e., the set of states that satisfies the constraints at the present

time. Due to the system dynamics, in general, not all the trajectories originating

from admissible initial states will remain in such a set. Conversely, for any initial

condition which belongs to a positively invariant subset of the admissible domain,

constraint violations are avoided at future times.

Such characterizations have relevant control applications. Consider the discrete-

time linear time-invariant system

x (t+ 1) = Ax (t) + Bu (t) (5.1)

y (t) = Cx (t) , (5.2)

and a linear state feedback control law that regulates the system to the origin

u (t) = Kx (t) , (5.3)

where x ∈ R
n is the state vector, y ∈ R

m is the output vector and u ∈ R
r is the

input vector, A ∈ R
n×n, B ∈ R

n×r, C ∈ R
m×n, K is a constant matrix gain.

Suppose that it is required that the closed-loop system satisfies the output and input

constraints

umin ≤ u (t) ≤ umax, (5.4)

ymin ≤ y (t) ≤ ymax, (5.5)

for all time instants t ≥ 0, where ymin, ymax and umin, umax are constant vectors of

suitable dimension. The closed-loop system represents an autonomous system, and

the constraints can be easily rewritten as constraints on the state variables, giving

the admissible domain in the state space. Then, starting from any initial condition

inside a positively invariant subset of the admissible domain will guarantee conver-

gence to the origin without violation of the constraints.

Among the families of positively invariant sets, the polyhedral sets are of particular

importance because of their flexibility and the fact that they are often natural ex-

pressions of physical constraints. The analysis of feasible positively invariant sets

for linear autonomous systems was considered in Gilbert and Tan (1991), where the

authors provide a systematic way to construct polyhedral invariant sets.

96 Robust Feasibility for Constrained Linear Systems with PWA Controllers

5.1 Introduction

The concept of invariant sets has been shown to play an important role in the control

and analysis of constrained systems (Blanchini (1999), Kerrigan and Maciejowski

(2000), Gilbert and Tan (1991)). Given an autonomous dynamic system, a subset

of the state space is said to be positively invariant if it has the property that, if

it contains the system state at some time, then it will also contain it at all future

times. The presence of constraints on the state variables defines an admissible set

in the state space, i.e., the set of states that satisfies the constraints at the present

time. Due to the system dynamics, in general, not all the trajectories originating

from admissible initial states will remain in such a set. Conversely, for any initial

condition which belongs to a positively invariant subset of the admissible domain,

constraint violations are avoided at future times.

Such characterizations have relevant control applications. Consider the discrete-

time linear time-invariant system

x (t+ 1) = Ax (t) + Bu (t) (5.1)

y (t) = Cx (t) , (5.2)

and a linear state feedback control law that regulates the system to the origin

u (t) = Kx (t) , (5.3)

where x ∈ R
n is the state vector, y ∈ R

m is the output vector and u ∈ R
r is the

input vector, A ∈ R
n×n, B ∈ R

n×r, C ∈ R
m×n, K is a constant matrix gain.

Suppose that it is required that the closed-loop system satisfies the output and input

constraints

umin ≤ u (t) ≤ umax, (5.4)

ymin ≤ y (t) ≤ ymax, (5.5)

for all time instants t ≥ 0, where ymin, ymax and umin, umax are constant vectors of

suitable dimension. The closed-loop system represents an autonomous system, and

the constraints can be easily rewritten as constraints on the state variables, giving

the admissible domain in the state space. Then, starting from any initial condition

inside a positively invariant subset of the admissible domain will guarantee conver-

gence to the origin without violation of the constraints.

Among the families of positively invariant sets, the polyhedral sets are of particular

importance because of their flexibility and the fact that they are often natural ex-

pressions of physical constraints. The analysis of feasible positively invariant sets

for linear autonomous systems was considered in Gilbert and Tan (1991), where the

authors provide a systematic way to construct polyhedral invariant sets.

96 Robust Feasibility for Constrained Linear Systems with PWA Controllers

5.1 Introduction

The concept of invariant sets has been shown to play an important role in the control

and analysis of constrained systems (Blanchini (1999), Kerrigan and Maciejowski

(2000), Gilbert and Tan (1991)). Given an autonomous dynamic system, a subset

of the state space is said to be positively invariant if it has the property that, if

it contains the system state at some time, then it will also contain it at all future

times. The presence of constraints on the state variables defines an admissible set

in the state space, i.e., the set of states that satisfies the constraints at the present

time. Due to the system dynamics, in general, not all the trajectories originating

from admissible initial states will remain in such a set. Conversely, for any initial

condition which belongs to a positively invariant subset of the admissible domain,

constraint violations are avoided at future times.

Such characterizations have relevant control applications. Consider the discrete-

time linear time-invariant system

x (t+ 1) = Ax (t) + Bu (t) (5.1)

y (t) = Cx (t) , (5.2)

and a linear state feedback control law that regulates the system to the origin

u (t) = Kx (t) , (5.3)

where x ∈ R
n is the state vector, y ∈ R

m is the output vector and u ∈ R
r is the

input vector, A ∈ R
n×n, B ∈ R

n×r, C ∈ R
m×n, K is a constant matrix gain.

Suppose that it is required that the closed-loop system satisfies the output and input

constraints

umin ≤ u (t) ≤ umax, (5.4)

ymin ≤ y (t) ≤ ymax, (5.5)

for all time instants t ≥ 0, where ymin, ymax and umin, umax are constant vectors of

suitable dimension. The closed-loop system represents an autonomous system, and

the constraints can be easily rewritten as constraints on the state variables, giving

the admissible domain in the state space. Then, starting from any initial condition

inside a positively invariant subset of the admissible domain will guarantee conver-

gence to the origin without violation of the constraints.

Among the families of positively invariant sets, the polyhedral sets are of particular

importance because of their flexibility and the fact that they are often natural ex-

pressions of physical constraints. The analysis of feasible positively invariant sets

for linear autonomous systems was considered in Gilbert and Tan (1991), where the

authors provide a systematic way to construct polyhedral invariant sets.

96 Robust Feasibility for Constrained Linear Systems with PWA Controllers

5.1 Introduction

The concept of invariant sets has been shown to play an important role in the control

and analysis of constrained systems (Blanchini (1999), Kerrigan and Maciejowski

(2000), Gilbert and Tan (1991)). Given an autonomous dynamic system, a subset

of the state space is said to be positively invariant if it has the property that, if

it contains the system state at some time, then it will also contain it at all future

times. The presence of constraints on the state variables defines an admissible set

in the state space, i.e., the set of states that satisfies the constraints at the present

time. Due to the system dynamics, in general, not all the trajectories originating

from admissible initial states will remain in such a set. Conversely, for any initial

condition which belongs to a positively invariant subset of the admissible domain,

constraint violations are avoided at future times.

Such characterizations have relevant control applications. Consider the discrete-

time linear time-invariant system

x (t+ 1) = Ax (t) + Bu (t) (5.1)

y (t) = Cx (t) , (5.2)

and a linear state feedback control law that regulates the system to the origin

u (t) = Kx (t) , (5.3)

where x ∈ R
n is the state vector, y ∈ R

m is the output vector and u ∈ R
r is the

input vector, A ∈ R
n×n, B ∈ R

n×r, C ∈ R
m×n, K is a constant matrix gain.

Suppose that it is required that the closed-loop system satisfies the output and input

constraints

umin ≤ u (t) ≤ umax, (5.4)

ymin ≤ y (t) ≤ ymax, (5.5)

for all time instants t ≥ 0, where ymin, ymax and umin, umax are constant vectors of

suitable dimension. The closed-loop system represents an autonomous system, and

the constraints can be easily rewritten as constraints on the state variables, giving

the admissible domain in the state space. Then, starting from any initial condition

inside a positively invariant subset of the admissible domain will guarantee conver-

gence to the origin without violation of the constraints.

Among the families of positively invariant sets, the polyhedral sets are of particular

importance because of their flexibility and the fact that they are often natural ex-

pressions of physical constraints. The analysis of feasible positively invariant sets

for linear autonomous systems was considered in Gilbert and Tan (1991), where the

authors provide a systematic way to construct polyhedral invariant sets.

5.1. Introduction 97

The concept of invariant sets extends naturally when a control input is present: a set

is said control invariant if, for any initial state in the set, it is possible to keep the tra-

jectory inside the set by means of an admissible feedback control law. Invariant sets

are central in Model Predictive Control (MPC), the predominant control approach

for systems subject to constraints. When linear models and linear constraints are

considered, the stability of the nominal closed-loop system can be guaranteed by

imposing positively invariant terminal set constraints (Mayne et al. (2000)). The

constrained optimization in the MPC problem also characterizes the relative maxi-

mal feasible control invariant set (feasible set for short), i.e. the largest set of initial

conditions such that the objective of the control is obtained without violating the

constraints.

Posing the MPC problem as a (multi-)parametric optimization problem, the con-

troller can be given as an explicitly defined continuous PWA function of the state

over the feasible set (cf. Chapter 2). Many solutions have also been proposed to

obtain PWA controllers as approximations of the optimal explicit MPC controller

when this is impractical (cf. Chapter 3). This explains the importance of PWA

feedback state laws in the control of constrained linear systems. Indeed, in the fol-

lowing we will assume that the PWA controller considered is the result of some

(approximate) explicit MPC approach, since this is probably the most common way

to obtain such controllers.

Linear models always involve approximations since all real plants are, to some ex-

tent, nonlinear, time-varying and distributed (Ikonen and Najim (2002), van den

Boom and Haverkamp (2000)). Thus, any controller obtained by model-based de-

sign has to deal with the inherent model uncertainty. Model errors can also be

introduced when the available model is of prohibitive order for real-time control

and model reduction techniques are adopted to obtain a suitable low order model

(Hovland et al. (2008), Johansen (2003)). Naturally, the ultimate goal of the control

is to meet the performance requirements when implemented in the real plant. In

order to meet such a goal, the control law should guarantee acceptable performance

not only for the nominal plant model but also for a family of models which includes,

by assumption, the real plant.

A popular paradigm used to cope with model uncertainty is polytopic model un-

certainty. Polytopic model uncertainty constitutes a flexible and powerful tool to

describe families of models and therefore also model uncertainties, and has been

studied for many years (Boyd et al. (1994), van den Boom and Haverkamp (2000)).

Robustness to model uncertainties in the MPC context has attracted great attention

in the literature (Mayne et al. (2000)). An exhaustive review is out of the scope

of this chapter, it is instead interesting to focus on some relevant previous work.

Polytopic uncertainties have been taken explicitly into consideration in the control

design, resulting in robust MPC formulations where the constrained optimization

5.1. Introduction 97

The concept of invariant sets extends naturally when a control input is present: a set

is said control invariant if, for any initial state in the set, it is possible to keep the tra-

jectory inside the set by means of an admissible feedback control law. Invariant sets

are central in Model Predictive Control (MPC), the predominant control approach

for systems subject to constraints. When linear models and linear constraints are

considered, the stability of the nominal closed-loop system can be guaranteed by

imposing positively invariant terminal set constraints (Mayne et al. (2000)). The

constrained optimization in the MPC problem also characterizes the relative maxi-

mal feasible control invariant set (feasible set for short), i.e. the largest set of initial

conditions such that the objective of the control is obtained without violating the

constraints.

Posing the MPC problem as a (multi-)parametric optimization problem, the con-

troller can be given as an explicitly defined continuous PWA function of the state

over the feasible set (cf. Chapter 2). Many solutions have also been proposed to

obtain PWA controllers as approximations of the optimal explicit MPC controller

when this is impractical (cf. Chapter 3). This explains the importance of PWA

feedback state laws in the control of constrained linear systems. Indeed, in the fol-

lowing we will assume that the PWA controller considered is the result of some

(approximate) explicit MPC approach, since this is probably the most common way

to obtain such controllers.

Linear models always involve approximations since all real plants are, to some ex-

tent, nonlinear, time-varying and distributed (Ikonen and Najim (2002), van den

Boom and Haverkamp (2000)). Thus, any controller obtained by model-based de-

sign has to deal with the inherent model uncertainty. Model errors can also be

introduced when the available model is of prohibitive order for real-time control

and model reduction techniques are adopted to obtain a suitable low order model

(Hovland et al. (2008), Johansen (2003)). Naturally, the ultimate goal of the control

is to meet the performance requirements when implemented in the real plant. In

order to meet such a goal, the control law should guarantee acceptable performance

not only for the nominal plant model but also for a family of models which includes,

by assumption, the real plant.

A popular paradigm used to cope with model uncertainty is polytopic model un-

certainty. Polytopic model uncertainty constitutes a flexible and powerful tool to

describe families of models and therefore also model uncertainties, and has been

studied for many years (Boyd et al. (1994), van den Boom and Haverkamp (2000)).

Robustness to model uncertainties in the MPC context has attracted great attention

in the literature (Mayne et al. (2000)). An exhaustive review is out of the scope

of this chapter, it is instead interesting to focus on some relevant previous work.

Polytopic uncertainties have been taken explicitly into consideration in the control

design, resulting in robust MPC formulations where the constrained optimization

5.1. Introduction 97

The concept of invariant sets extends naturally when a control input is present: a set

is said control invariant if, for any initial state in the set, it is possible to keep the tra-

jectory inside the set by means of an admissible feedback control law. Invariant sets

are central in Model Predictive Control (MPC), the predominant control approach

for systems subject to constraints. When linear models and linear constraints are

considered, the stability of the nominal closed-loop system can be guaranteed by

imposing positively invariant terminal set constraints (Mayne et al. (2000)). The

constrained optimization in the MPC problem also characterizes the relative maxi-

mal feasible control invariant set (feasible set for short), i.e. the largest set of initial

conditions such that the objective of the control is obtained without violating the

constraints.

Posing the MPC problem as a (multi-)parametric optimization problem, the con-

troller can be given as an explicitly defined continuous PWA function of the state

over the feasible set (cf. Chapter 2). Many solutions have also been proposed to

obtain PWA controllers as approximations of the optimal explicit MPC controller

when this is impractical (cf. Chapter 3). This explains the importance of PWA

feedback state laws in the control of constrained linear systems. Indeed, in the fol-

lowing we will assume that the PWA controller considered is the result of some

(approximate) explicit MPC approach, since this is probably the most common way

to obtain such controllers.

Linear models always involve approximations since all real plants are, to some ex-

tent, nonlinear, time-varying and distributed (Ikonen and Najim (2002), van den

Boom and Haverkamp (2000)). Thus, any controller obtained by model-based de-

sign has to deal with the inherent model uncertainty. Model errors can also be

introduced when the available model is of prohibitive order for real-time control

and model reduction techniques are adopted to obtain a suitable low order model

(Hovland et al. (2008), Johansen (2003)). Naturally, the ultimate goal of the control

is to meet the performance requirements when implemented in the real plant. In

order to meet such a goal, the control law should guarantee acceptable performance

not only for the nominal plant model but also for a family of models which includes,

by assumption, the real plant.

A popular paradigm used to cope with model uncertainty is polytopic model un-

certainty. Polytopic model uncertainty constitutes a flexible and powerful tool to

describe families of models and therefore also model uncertainties, and has been

studied for many years (Boyd et al. (1994), van den Boom and Haverkamp (2000)).

Robustness to model uncertainties in the MPC context has attracted great attention

in the literature (Mayne et al. (2000)). An exhaustive review is out of the scope

of this chapter, it is instead interesting to focus on some relevant previous work.

Polytopic uncertainties have been taken explicitly into consideration in the control

design, resulting in robust MPC formulations where the constrained optimization

5.1. Introduction 97

The concept of invariant sets extends naturally when a control input is present: a set

is said control invariant if, for any initial state in the set, it is possible to keep the tra-

jectory inside the set by means of an admissible feedback control law. Invariant sets

are central in Model Predictive Control (MPC), the predominant control approach

for systems subject to constraints. When linear models and linear constraints are

considered, the stability of the nominal closed-loop system can be guaranteed by

imposing positively invariant terminal set constraints (Mayne et al. (2000)). The

constrained optimization in the MPC problem also characterizes the relative maxi-

mal feasible control invariant set (feasible set for short), i.e. the largest set of initial

conditions such that the objective of the control is obtained without violating the

constraints.

Posing the MPC problem as a (multi-)parametric optimization problem, the con-

troller can be given as an explicitly defined continuous PWA function of the state

over the feasible set (cf. Chapter 2). Many solutions have also been proposed to

obtain PWA controllers as approximations of the optimal explicit MPC controller

when this is impractical (cf. Chapter 3). This explains the importance of PWA

feedback state laws in the control of constrained linear systems. Indeed, in the fol-

lowing we will assume that the PWA controller considered is the result of some

(approximate) explicit MPC approach, since this is probably the most common way

to obtain such controllers.

Linear models always involve approximations since all real plants are, to some ex-

tent, nonlinear, time-varying and distributed (Ikonen and Najim (2002), van den

Boom and Haverkamp (2000)). Thus, any controller obtained by model-based de-

sign has to deal with the inherent model uncertainty. Model errors can also be

introduced when the available model is of prohibitive order for real-time control

and model reduction techniques are adopted to obtain a suitable low order model

(Hovland et al. (2008), Johansen (2003)). Naturally, the ultimate goal of the control

is to meet the performance requirements when implemented in the real plant. In

order to meet such a goal, the control law should guarantee acceptable performance

not only for the nominal plant model but also for a family of models which includes,

by assumption, the real plant.

A popular paradigm used to cope with model uncertainty is polytopic model un-

certainty. Polytopic model uncertainty constitutes a flexible and powerful tool to

describe families of models and therefore also model uncertainties, and has been

studied for many years (Boyd et al. (1994), van den Boom and Haverkamp (2000)).

Robustness to model uncertainties in the MPC context has attracted great attention

in the literature (Mayne et al. (2000)). An exhaustive review is out of the scope

of this chapter, it is instead interesting to focus on some relevant previous work.

Polytopic uncertainties have been taken explicitly into consideration in the control

design, resulting in robust MPC formulations where the constrained optimization

98 Robust Feasibility for Constrained Linear Systems with PWA Controllers

problem is modified to a min-max problem which minimizes the worst-case value

of the cost function, where the worst-case is taken over the set of uncertain mod-

els (Kothare et al. (1996), Kouvaritakis et al. (2000), Cuzzola et al. (2002), Mayne

et al. (2000)). The same min-max approach has also been considered in explicit

MPC (de la Peña et al. (2004), Grieder et al. (2003), Cychowski et al. (2005)).

However, the solutions obtained are in general rather complex and conservative. In

Pluymers et al. (2005a) a simpler and less conservative approach was proposed. The

nominal MPC formulation is used, and robustness is defined in terms of satisfaction

of input and output constraints for all possible uncertainty realization. An explicit

implementation based on this approach was proposed in Rossiter et al. (2005).

Polytopic uncertainties are also useful in performance analysis of nominal controller

with respect to possible model uncertainties. The work in Pluymers et al. (2005b)

considers linear systems controlled by linear feedback controllers and subject to

linear state and input constraints, and proposes an algorithm for constructing the

largest set of initial condition which is guaranteed to be positively invariant for all

possible models in a given polytopic uncertainty set.

This chapter proposes a tool to analyze how uncertainty on the model affects the

(approximate) explicit MPC solution computed using the nominal model. In fact,

it has been shown that MPC approaches possess a remarkable level of inherent ro-

bustness, and stability and good performance are maintained for sufficiently small

uncertainties (Nicolao et al. (1996), Mayne et al. (2000)). However, when con-

strains are present, it is also necessary to ensure that the uncertainty does not cause

any violation of constraints. Given a nominal linear system describing the plant and

a PWA feedback control law designed accordingly, the algorithm that is presented

considers a polytopic model uncertainty defined by the user and constructs the max-
imal robust feasible set1. This is the largest subset of the nominal feasible set which

is guaranteed to generate feasible state trajectories for any model in the family of

models described by the polytopic uncertainty. Therefore, for any initial condition

within the maximal robust feasible set, the closed-loop system is guaranteed to be

feasibly stable.

This can be useful, for example, in the case of control systems for plants which are

time-varying due to wear, and subject to state and input constraints. In this case,

designing a controller which accounts explicitly for the model mismatch may be

unnecessarily conservative, decreasing the performance. Instead, a control design

based on the nominal model may represent a better choice, resorting to the intrin-

sic robustness of the nominal controller to deal with the slowly progressive plant

variation. Then, the results here presented can be used to investigate whether the

constraints may be violated over time.

1This notation may be in contrast with some work in the literature where a robust feasible set

results from using a robust MPC design.

98 Robust Feasibility for Constrained Linear Systems with PWA Controllers

problem is modified to a min-max problem which minimizes the worst-case value

of the cost function, where the worst-case is taken over the set of uncertain mod-

els (Kothare et al. (1996), Kouvaritakis et al. (2000), Cuzzola et al. (2002), Mayne

et al. (2000)). The same min-max approach has also been considered in explicit

MPC (de la Peña et al. (2004), Grieder et al. (2003), Cychowski et al. (2005)).

However, the solutions obtained are in general rather complex and conservative. In

Pluymers et al. (2005a) a simpler and less conservative approach was proposed. The

nominal MPC formulation is used, and robustness is defined in terms of satisfaction

of input and output constraints for all possible uncertainty realization. An explicit

implementation based on this approach was proposed in Rossiter et al. (2005).

Polytopic uncertainties are also useful in performance analysis of nominal controller

with respect to possible model uncertainties. The work in Pluymers et al. (2005b)

considers linear systems controlled by linear feedback controllers and subject to

linear state and input constraints, and proposes an algorithm for constructing the

largest set of initial condition which is guaranteed to be positively invariant for all

possible models in a given polytopic uncertainty set.

This chapter proposes a tool to analyze how uncertainty on the model affects the

(approximate) explicit MPC solution computed using the nominal model. In fact,

it has been shown that MPC approaches possess a remarkable level of inherent ro-

bustness, and stability and good performance are maintained for sufficiently small

uncertainties (Nicolao et al. (1996), Mayne et al. (2000)). However, when con-

strains are present, it is also necessary to ensure that the uncertainty does not cause

any violation of constraints. Given a nominal linear system describing the plant and

a PWA feedback control law designed accordingly, the algorithm that is presented

considers a polytopic model uncertainty defined by the user and constructs the max-
imal robust feasible set1. This is the largest subset of the nominal feasible set which

is guaranteed to generate feasible state trajectories for any model in the family of

models described by the polytopic uncertainty. Therefore, for any initial condition

within the maximal robust feasible set, the closed-loop system is guaranteed to be

feasibly stable.

This can be useful, for example, in the case of control systems for plants which are

time-varying due to wear, and subject to state and input constraints. In this case,

designing a controller which accounts explicitly for the model mismatch may be

unnecessarily conservative, decreasing the performance. Instead, a control design

based on the nominal model may represent a better choice, resorting to the intrin-

sic robustness of the nominal controller to deal with the slowly progressive plant

variation. Then, the results here presented can be used to investigate whether the

constraints may be violated over time.

1This notation may be in contrast with some work in the literature where a robust feasible set

results from using a robust MPC design.

98 Robust Feasibility for Constrained Linear Systems with PWA Controllers

problem is modified to a min-max problem which minimizes the worst-case value

of the cost function, where the worst-case is taken over the set of uncertain mod-

els (Kothare et al. (1996), Kouvaritakis et al. (2000), Cuzzola et al. (2002), Mayne

et al. (2000)). The same min-max approach has also been considered in explicit

MPC (de la Peña et al. (2004), Grieder et al. (2003), Cychowski et al. (2005)).

However, the solutions obtained are in general rather complex and conservative. In

Pluymers et al. (2005a) a simpler and less conservative approach was proposed. The

nominal MPC formulation is used, and robustness is defined in terms of satisfaction

of input and output constraints for all possible uncertainty realization. An explicit

implementation based on this approach was proposed in Rossiter et al. (2005).

Polytopic uncertainties are also useful in performance analysis of nominal controller

with respect to possible model uncertainties. The work in Pluymers et al. (2005b)

considers linear systems controlled by linear feedback controllers and subject to

linear state and input constraints, and proposes an algorithm for constructing the

largest set of initial condition which is guaranteed to be positively invariant for all

possible models in a given polytopic uncertainty set.

This chapter proposes a tool to analyze how uncertainty on the model affects the

(approximate) explicit MPC solution computed using the nominal model. In fact,

it has been shown that MPC approaches possess a remarkable level of inherent ro-

bustness, and stability and good performance are maintained for sufficiently small

uncertainties (Nicolao et al. (1996), Mayne et al. (2000)). However, when con-

strains are present, it is also necessary to ensure that the uncertainty does not cause

any violation of constraints. Given a nominal linear system describing the plant and

a PWA feedback control law designed accordingly, the algorithm that is presented

considers a polytopic model uncertainty defined by the user and constructs the max-
imal robust feasible set1. This is the largest subset of the nominal feasible set which

is guaranteed to generate feasible state trajectories for any model in the family of

models described by the polytopic uncertainty. Therefore, for any initial condition

within the maximal robust feasible set, the closed-loop system is guaranteed to be

feasibly stable.

This can be useful, for example, in the case of control systems for plants which are

time-varying due to wear, and subject to state and input constraints. In this case,

designing a controller which accounts explicitly for the model mismatch may be

unnecessarily conservative, decreasing the performance. Instead, a control design

based on the nominal model may represent a better choice, resorting to the intrin-

sic robustness of the nominal controller to deal with the slowly progressive plant

variation. Then, the results here presented can be used to investigate whether the

constraints may be violated over time.

1This notation may be in contrast with some work in the literature where a robust feasible set

results from using a robust MPC design.

98 Robust Feasibility for Constrained Linear Systems with PWA Controllers

problem is modified to a min-max problem which minimizes the worst-case value

of the cost function, where the worst-case is taken over the set of uncertain mod-

els (Kothare et al. (1996), Kouvaritakis et al. (2000), Cuzzola et al. (2002), Mayne

et al. (2000)). The same min-max approach has also been considered in explicit

MPC (de la Peña et al. (2004), Grieder et al. (2003), Cychowski et al. (2005)).

However, the solutions obtained are in general rather complex and conservative. In

Pluymers et al. (2005a) a simpler and less conservative approach was proposed. The

nominal MPC formulation is used, and robustness is defined in terms of satisfaction

of input and output constraints for all possible uncertainty realization. An explicit

implementation based on this approach was proposed in Rossiter et al. (2005).

Polytopic uncertainties are also useful in performance analysis of nominal controller

with respect to possible model uncertainties. The work in Pluymers et al. (2005b)

considers linear systems controlled by linear feedback controllers and subject to

linear state and input constraints, and proposes an algorithm for constructing the

largest set of initial condition which is guaranteed to be positively invariant for all

possible models in a given polytopic uncertainty set.

This chapter proposes a tool to analyze how uncertainty on the model affects the

(approximate) explicit MPC solution computed using the nominal model. In fact,

it has been shown that MPC approaches possess a remarkable level of inherent ro-

bustness, and stability and good performance are maintained for sufficiently small

uncertainties (Nicolao et al. (1996), Mayne et al. (2000)). However, when con-

strains are present, it is also necessary to ensure that the uncertainty does not cause

any violation of constraints. Given a nominal linear system describing the plant and

a PWA feedback control law designed accordingly, the algorithm that is presented

considers a polytopic model uncertainty defined by the user and constructs the max-
imal robust feasible set1. This is the largest subset of the nominal feasible set which

is guaranteed to generate feasible state trajectories for any model in the family of

models described by the polytopic uncertainty. Therefore, for any initial condition

within the maximal robust feasible set, the closed-loop system is guaranteed to be

feasibly stable.

This can be useful, for example, in the case of control systems for plants which are

time-varying due to wear, and subject to state and input constraints. In this case,

designing a controller which accounts explicitly for the model mismatch may be

unnecessarily conservative, decreasing the performance. Instead, a control design

based on the nominal model may represent a better choice, resorting to the intrin-

sic robustness of the nominal controller to deal with the slowly progressive plant

variation. Then, the results here presented can be used to investigate whether the

constraints may be violated over time.

1This notation may be in contrast with some work in the literature where a robust feasible set

results from using a robust MPC design.

5.2. Basic Notions 99

5.2 Basic Notions

5.2.1 Polytopic Uncertainty

Consider a linear system of the form (5.1). Model uncertainty can be expressed by

saying that

[A|B] ∈ M, (5.6)

where M is a polytope in the parameter space defined by its vertices{[
A(1)|B(1)

]
, ...,
[
A(L)|B(L)

]}
, (5.7)

L is the number of vertices, as

M � conv
({[

A(1)|B(1)
]
, ...,
[
A(L)|B(L)

]})
. (5.8)

The function conv () refers to the convex hull (cf. Chapter 2).

This is equivalent to say that there exist L non-negative coefficients λl, l = 1, ..., L,∑L
l=1 λl = 1, such that

[A|B] =
L∑
l=1

λl

[
A(l)|B(l)

]
. (5.9)

The case L = 1 corresponds to the case of no model uncertainty.

Polytopic model uncertainty is a flexible tool to describe uncertainties. Consider

for example A ∈ R
1×1 and B = 0. If the nominal value A = an is known to

describe the real value, ar, with an accuracy ε: an − ε ≤ ar ≤ an + ε, then

M = conv ({an − ε, an + ε}).

5.2.2 Definitions

Consider the polyhedral convex sets U ⊂ R
r and Y ⊂ R

m given as

U = {u ∈ R
r|DUu ≤ dU} (5.10)

Y =
{
y ∈ R

m|DYy ≤ dY
}
. (5.11)

The input and output constraints are of the form

u(t) ∈ U (5.12)

5.2. Basic Notions 99

5.2 Basic Notions

5.2.1 Polytopic Uncertainty

Consider a linear system of the form (5.1). Model uncertainty can be expressed by

saying that

[A|B] ∈ M, (5.6)

where M is a polytope in the parameter space defined by its vertices{[
A(1)|B(1)

]
, ...,
[
A(L)|B(L)

]}
, (5.7)

L is the number of vertices, as

M � conv
({[

A(1)|B(1)
]
, ...,
[
A(L)|B(L)

]})
. (5.8)

The function conv () refers to the convex hull (cf. Chapter 2).

This is equivalent to say that there exist L non-negative coefficients λl, l = 1, ..., L,∑L
l=1 λl = 1, such that

[A|B] =
L∑
l=1

λl

[
A(l)|B(l)

]
. (5.9)

The case L = 1 corresponds to the case of no model uncertainty.

Polytopic model uncertainty is a flexible tool to describe uncertainties. Consider

for example A ∈ R
1×1 and B = 0. If the nominal value A = an is known to

describe the real value, ar, with an accuracy ε: an − ε ≤ ar ≤ an + ε, then

M = conv ({an − ε, an + ε}).

5.2.2 Definitions

Consider the polyhedral convex sets U ⊂ R
r and Y ⊂ R

m given as

U = {u ∈ R
r|DUu ≤ dU} (5.10)

Y =
{
y ∈ R

m|DYy ≤ dY
}
. (5.11)

The input and output constraints are of the form

u(t) ∈ U (5.12)

5.2. Basic Notions 99

5.2 Basic Notions

5.2.1 Polytopic Uncertainty

Consider a linear system of the form (5.1). Model uncertainty can be expressed by

saying that

[A|B] ∈ M, (5.6)

where M is a polytope in the parameter space defined by its vertices{[
A(1)|B(1)

]
, ...,
[
A(L)|B(L)

]}
, (5.7)

L is the number of vertices, as

M � conv
({[

A(1)|B(1)
]
, ...,
[
A(L)|B(L)

]})
. (5.8)

The function conv () refers to the convex hull (cf. Chapter 2).

This is equivalent to say that there exist L non-negative coefficients λl, l = 1, ..., L,∑L
l=1 λl = 1, such that

[A|B] =
L∑
l=1

λl

[
A(l)|B(l)

]
. (5.9)

The case L = 1 corresponds to the case of no model uncertainty.

Polytopic model uncertainty is a flexible tool to describe uncertainties. Consider

for example A ∈ R
1×1 and B = 0. If the nominal value A = an is known to

describe the real value, ar, with an accuracy ε: an − ε ≤ ar ≤ an + ε, then

M = conv ({an − ε, an + ε}).

5.2.2 Definitions

Consider the polyhedral convex sets U ⊂ R
r and Y ⊂ R

m given as

U = {u ∈ R
r|DUu ≤ dU} (5.10)

Y =
{
y ∈ R

m|DYy ≤ dY
}
. (5.11)

The input and output constraints are of the form

u(t) ∈ U (5.12)

5.2. Basic Notions 99

5.2 Basic Notions

5.2.1 Polytopic Uncertainty

Consider a linear system of the form (5.1). Model uncertainty can be expressed by

saying that

[A|B] ∈ M, (5.6)

where M is a polytope in the parameter space defined by its vertices{[
A(1)|B(1)

]
, ...,
[
A(L)|B(L)

]}
, (5.7)

L is the number of vertices, as

M � conv
({[

A(1)|B(1)
]
, ...,
[
A(L)|B(L)

]})
. (5.8)

The function conv () refers to the convex hull (cf. Chapter 2).

This is equivalent to say that there exist L non-negative coefficients λl, l = 1, ..., L,∑L
l=1 λl = 1, such that

[A|B] =
L∑
l=1

λl

[
A(l)|B(l)

]
. (5.9)

The case L = 1 corresponds to the case of no model uncertainty.

Polytopic model uncertainty is a flexible tool to describe uncertainties. Consider

for example A ∈ R
1×1 and B = 0. If the nominal value A = an is known to

describe the real value, ar, with an accuracy ε: an − ε ≤ ar ≤ an + ε, then

M = conv ({an − ε, an + ε}).

5.2.2 Definitions

Consider the polyhedral convex sets U ⊂ R
r and Y ⊂ R

m given as

U = {u ∈ R
r|DUu ≤ dU} (5.10)

Y =
{
y ∈ R

m|DYy ≤ dY
}
. (5.11)

The input and output constraints are of the form

u(t) ∈ U (5.12)

100 Robust Feasibility for Constrained Linear Systems with PWA Controllers

y(t) ∈ Y , (5.13)

for all t > 0. We will assume also that the origin is an interior point of the sets U
and Y .

Note that the constraints (5.4, 5.5) are special cases of (5.12-5.13).

Let us now particularize the definitions of “controlled positive invariance” and “fea-

sible controlled positive invariance” given in Chapter 2 for the case where a partic-

ular control law is considered.

Definition 21. (Feasible positive invariance) A positively invariant set S for a sys-

tem of the form (5.1-5.2) in closed-loop with a particular feedback control law

u(t) = Φ(x(t)) is termed feasible with respect to constraints (5.12-5.13) if

∀x(0) ∈ S : u(t) ∈ U , y(t) ∈ Y for t ≥ 0 (5.14)

Definition 22. (Robustly feasible positive invariance) Given a positively invariant

set S for a system of the form (5.1-5.2) in closed-loop with a particular feedback

control law, u(t) = Φ(x(t)), feasible with respect to constraints (5.12-5.13), a sub-

set SR ⊆ S is said to be robustly feasible for the family of dynamics in an uncertainty

set of form (5.8) if

∀x(0) ∈ SR : u(t) ∈ U , y(t) ∈ Y for t ≥ 0, ∀ [A|B] ∈ M (5.15)

The set SR is maximal if it also contains all the other robustly feasible sets.

Note that definition 22 implies that for all x(0) ∈ SR ⊆ S, the state evolution x(t),
for all t > 0, is contained within S for any time invariant [A|B] ∈ M.

5.3 Problem Formulation

Consider the problem of regulating to the origin a plant with a given nominal model

of the form (5.1-5.2), such that constraints like (5.12-5.13) are satisfied. Assuming

that the state is available for measurement, the regulation problem is solved by the

finite horizon MPC

min
u�[u0,...,uN−1]

{
J (u, x (t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(5.16)

100 Robust Feasibility for Constrained Linear Systems with PWA Controllers

y(t) ∈ Y , (5.13)

for all t > 0. We will assume also that the origin is an interior point of the sets U
and Y .

Note that the constraints (5.4, 5.5) are special cases of (5.12-5.13).

Let us now particularize the definitions of “controlled positive invariance” and “fea-

sible controlled positive invariance” given in Chapter 2 for the case where a partic-

ular control law is considered.

Definition 21. (Feasible positive invariance) A positively invariant set S for a sys-

tem of the form (5.1-5.2) in closed-loop with a particular feedback control law

u(t) = Φ(x(t)) is termed feasible with respect to constraints (5.12-5.13) if

∀x(0) ∈ S : u(t) ∈ U , y(t) ∈ Y for t ≥ 0 (5.14)

Definition 22. (Robustly feasible positive invariance) Given a positively invariant

set S for a system of the form (5.1-5.2) in closed-loop with a particular feedback

control law, u(t) = Φ(x(t)), feasible with respect to constraints (5.12-5.13), a sub-

set SR ⊆ S is said to be robustly feasible for the family of dynamics in an uncertainty

set of form (5.8) if

∀x(0) ∈ SR : u(t) ∈ U , y(t) ∈ Y for t ≥ 0, ∀ [A|B] ∈ M (5.15)

The set SR is maximal if it also contains all the other robustly feasible sets.

Note that definition 22 implies that for all x(0) ∈ SR ⊆ S, the state evolution x(t),
for all t > 0, is contained within S for any time invariant [A|B] ∈ M.

5.3 Problem Formulation

Consider the problem of regulating to the origin a plant with a given nominal model

of the form (5.1-5.2), such that constraints like (5.12-5.13) are satisfied. Assuming

that the state is available for measurement, the regulation problem is solved by the

finite horizon MPC

min
u�[u0,...,uN−1]

{
J (u, x (t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(5.16)

100 Robust Feasibility for Constrained Linear Systems with PWA Controllers

y(t) ∈ Y , (5.13)

for all t > 0. We will assume also that the origin is an interior point of the sets U
and Y .

Note that the constraints (5.4, 5.5) are special cases of (5.12-5.13).

Let us now particularize the definitions of “controlled positive invariance” and “fea-

sible controlled positive invariance” given in Chapter 2 for the case where a partic-

ular control law is considered.

Definition 21. (Feasible positive invariance) A positively invariant set S for a sys-

tem of the form (5.1-5.2) in closed-loop with a particular feedback control law

u(t) = Φ(x(t)) is termed feasible with respect to constraints (5.12-5.13) if

∀x(0) ∈ S : u(t) ∈ U , y(t) ∈ Y for t ≥ 0 (5.14)

Definition 22. (Robustly feasible positive invariance) Given a positively invariant

set S for a system of the form (5.1-5.2) in closed-loop with a particular feedback

control law, u(t) = Φ(x(t)), feasible with respect to constraints (5.12-5.13), a sub-

set SR ⊆ S is said to be robustly feasible for the family of dynamics in an uncertainty

set of form (5.8) if

∀x(0) ∈ SR : u(t) ∈ U , y(t) ∈ Y for t ≥ 0, ∀ [A|B] ∈ M (5.15)

The set SR is maximal if it also contains all the other robustly feasible sets.

Note that definition 22 implies that for all x(0) ∈ SR ⊆ S, the state evolution x(t),
for all t > 0, is contained within S for any time invariant [A|B] ∈ M.

5.3 Problem Formulation

Consider the problem of regulating to the origin a plant with a given nominal model

of the form (5.1-5.2), such that constraints like (5.12-5.13) are satisfied. Assuming

that the state is available for measurement, the regulation problem is solved by the

finite horizon MPC

min
u�[u0,...,uN−1]

{
J (u, x (t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(5.16)

100 Robust Feasibility for Constrained Linear Systems with PWA Controllers

y(t) ∈ Y , (5.13)

for all t > 0. We will assume also that the origin is an interior point of the sets U
and Y .

Note that the constraints (5.4, 5.5) are special cases of (5.12-5.13).

Let us now particularize the definitions of “controlled positive invariance” and “fea-

sible controlled positive invariance” given in Chapter 2 for the case where a partic-

ular control law is considered.

Definition 21. (Feasible positive invariance) A positively invariant set S for a sys-

tem of the form (5.1-5.2) in closed-loop with a particular feedback control law

u(t) = Φ(x(t)) is termed feasible with respect to constraints (5.12-5.13) if

∀x(0) ∈ S : u(t) ∈ U , y(t) ∈ Y for t ≥ 0 (5.14)

Definition 22. (Robustly feasible positive invariance) Given a positively invariant

set S for a system of the form (5.1-5.2) in closed-loop with a particular feedback

control law, u(t) = Φ(x(t)), feasible with respect to constraints (5.12-5.13), a sub-

set SR ⊆ S is said to be robustly feasible for the family of dynamics in an uncertainty

set of form (5.8) if

∀x(0) ∈ SR : u(t) ∈ U , y(t) ∈ Y for t ≥ 0, ∀ [A|B] ∈ M (5.15)

The set SR is maximal if it also contains all the other robustly feasible sets.

Note that definition 22 implies that for all x(0) ∈ SR ⊆ S, the state evolution x(t),
for all t > 0, is contained within S for any time invariant [A|B] ∈ M.

5.3 Problem Formulation

Consider the problem of regulating to the origin a plant with a given nominal model

of the form (5.1-5.2), such that constraints like (5.12-5.13) are satisfied. Assuming

that the state is available for measurement, the regulation problem is solved by the

finite horizon MPC

min
u�[u0,...,uN−1]

{
J (u, x (t)) = xT

NPxN +
N−1∑
k=0

xT
kQxk + uT

kRuk

}
(5.16)

5.3. Problem Formulation 101

s.t. x0 = x (t) ,
xk+1 = Axk +Buk

yk = Cxk k = 0, 1, ..., N
yk ∈ Y , k = 1, 2, ..., N
uk ∈ U , k = 0, 1, ..., N − 1
xN ∈ Ω

(5.17)

where xk denotes the predicted state vector at time t+ k obtained by applying the k
first elements of the input sequence u � [u0, ..., uN−1]; N is the prediction horizon;

Q � 0 (positive semidefinite) and R � 0 (positive definite) are symmetric matri-

ces corresponding to weights on state and input; P is the terminal cost matrix and

xN ∈ Θ the terminal constraint, which are defined to guarantee stability (cf. Chap-

ter 2). The matrix P � 0 is the solution of the algebraic Riccati equation resulting

from the corresponding unconstrained LQR problem. The terminal set Ω is chosen

to be feasible and positively invariant for the closed-loop system with this LQR.

The MPC will regulate the system to the origin for all the initial conditions con-

tained in the feasible set

XF = {x ∈ R
n|∃ u satisfying (5.17)} . (5.18)

Note that XF is a convex polyhedron due to the nature of the constraints (cf. Chap-

ter 4). The feasible set is positively invariant with respect to the closed-loop system,

i.e. for any initial state contained in the feasible set, the state evolution of the closed-

loop system is also contained in the feasible set for all future times.

There are two ways to implement the constrained optimization problem (5.16)-

(5.17). The first is to formulate the MPC as a quadratic program (QP) and solve

it online at each sampling time. Only the first element of the optimal control se-

quence is applied to the system, and at the next time step, the computation is re-

peated starting from the new state and over a shifted horizon. The second way is

to formulate the MPC as a multi-parametric QP (mp-QP) which can be solved of-

fline. In this case, the optimal control is given as an explicitly defined continuous

piecewise affine (PWA) function depending on the current state, and defined over

XF . The online computation reduces to the simple evaluation of the piecewise affine

function. Details about how to obtain the QP and the mp-QP formulations can be

found in Chapter 2.

For the cases where the explicit optimal PWA controller is so complex as to be

impractical, several approaches have been proposed to obtain an approximate con-

tinuous PWA controller (cf. Chapter 3).

The following considers a continuous PWA feedback control law

u (x) = Ljx+ gj, ∀ x ∈ CRj, (5.19)

5.3. Problem Formulation 101

s.t. x0 = x (t) ,
xk+1 = Axk +Buk

yk = Cxk k = 0, 1, ..., N
yk ∈ Y , k = 1, 2, ..., N
uk ∈ U , k = 0, 1, ..., N − 1
xN ∈ Ω

(5.17)

where xk denotes the predicted state vector at time t+ k obtained by applying the k
first elements of the input sequence u � [u0, ..., uN−1]; N is the prediction horizon;

Q � 0 (positive semidefinite) and R � 0 (positive definite) are symmetric matri-

ces corresponding to weights on state and input; P is the terminal cost matrix and

xN ∈ Θ the terminal constraint, which are defined to guarantee stability (cf. Chap-

ter 2). The matrix P � 0 is the solution of the algebraic Riccati equation resulting

from the corresponding unconstrained LQR problem. The terminal set Ω is chosen

to be feasible and positively invariant for the closed-loop system with this LQR.

The MPC will regulate the system to the origin for all the initial conditions con-

tained in the feasible set

XF = {x ∈ R
n|∃ u satisfying (5.17)} . (5.18)

Note that XF is a convex polyhedron due to the nature of the constraints (cf. Chap-

ter 4). The feasible set is positively invariant with respect to the closed-loop system,

i.e. for any initial state contained in the feasible set, the state evolution of the closed-

loop system is also contained in the feasible set for all future times.

There are two ways to implement the constrained optimization problem (5.16)-

(5.17). The first is to formulate the MPC as a quadratic program (QP) and solve

it online at each sampling time. Only the first element of the optimal control se-

quence is applied to the system, and at the next time step, the computation is re-

peated starting from the new state and over a shifted horizon. The second way is

to formulate the MPC as a multi-parametric QP (mp-QP) which can be solved of-

fline. In this case, the optimal control is given as an explicitly defined continuous

piecewise affine (PWA) function depending on the current state, and defined over

XF . The online computation reduces to the simple evaluation of the piecewise affine

function. Details about how to obtain the QP and the mp-QP formulations can be

found in Chapter 2.

For the cases where the explicit optimal PWA controller is so complex as to be

impractical, several approaches have been proposed to obtain an approximate con-

tinuous PWA controller (cf. Chapter 3).

The following considers a continuous PWA feedback control law

u (x) = Ljx+ gj, ∀ x ∈ CRj, (5.19)

5.3. Problem Formulation 101

s.t. x0 = x (t) ,
xk+1 = Axk +Buk

yk = Cxk k = 0, 1, ..., N
yk ∈ Y , k = 1, 2, ..., N
uk ∈ U , k = 0, 1, ..., N − 1
xN ∈ Ω

(5.17)

where xk denotes the predicted state vector at time t+ k obtained by applying the k
first elements of the input sequence u � [u0, ..., uN−1]; N is the prediction horizon;

Q � 0 (positive semidefinite) and R � 0 (positive definite) are symmetric matri-

ces corresponding to weights on state and input; P is the terminal cost matrix and

xN ∈ Θ the terminal constraint, which are defined to guarantee stability (cf. Chap-

ter 2). The matrix P � 0 is the solution of the algebraic Riccati equation resulting

from the corresponding unconstrained LQR problem. The terminal set Ω is chosen

to be feasible and positively invariant for the closed-loop system with this LQR.

The MPC will regulate the system to the origin for all the initial conditions con-

tained in the feasible set

XF = {x ∈ R
n|∃ u satisfying (5.17)} . (5.18)

Note that XF is a convex polyhedron due to the nature of the constraints (cf. Chap-

ter 4). The feasible set is positively invariant with respect to the closed-loop system,

i.e. for any initial state contained in the feasible set, the state evolution of the closed-

loop system is also contained in the feasible set for all future times.

There are two ways to implement the constrained optimization problem (5.16)-

(5.17). The first is to formulate the MPC as a quadratic program (QP) and solve

it online at each sampling time. Only the first element of the optimal control se-

quence is applied to the system, and at the next time step, the computation is re-

peated starting from the new state and over a shifted horizon. The second way is

to formulate the MPC as a multi-parametric QP (mp-QP) which can be solved of-

fline. In this case, the optimal control is given as an explicitly defined continuous

piecewise affine (PWA) function depending on the current state, and defined over

XF . The online computation reduces to the simple evaluation of the piecewise affine

function. Details about how to obtain the QP and the mp-QP formulations can be

found in Chapter 2.

For the cases where the explicit optimal PWA controller is so complex as to be

impractical, several approaches have been proposed to obtain an approximate con-

tinuous PWA controller (cf. Chapter 3).

The following considers a continuous PWA feedback control law

u (x) = Ljx+ gj, ∀ x ∈ CRj, (5.19)

5.3. Problem Formulation 101

s.t. x0 = x (t) ,
xk+1 = Axk +Buk

yk = Cxk k = 0, 1, ..., N
yk ∈ Y , k = 1, 2, ..., N
uk ∈ U , k = 0, 1, ..., N − 1
xN ∈ Ω

(5.17)

where xk denotes the predicted state vector at time t+ k obtained by applying the k
first elements of the input sequence u � [u0, ..., uN−1]; N is the prediction horizon;

Q � 0 (positive semidefinite) and R � 0 (positive definite) are symmetric matri-

ces corresponding to weights on state and input; P is the terminal cost matrix and

xN ∈ Θ the terminal constraint, which are defined to guarantee stability (cf. Chap-

ter 2). The matrix P � 0 is the solution of the algebraic Riccati equation resulting

from the corresponding unconstrained LQR problem. The terminal set Ω is chosen

to be feasible and positively invariant for the closed-loop system with this LQR.

The MPC will regulate the system to the origin for all the initial conditions con-

tained in the feasible set

XF = {x ∈ R
n|∃ u satisfying (5.17)} . (5.18)

Note that XF is a convex polyhedron due to the nature of the constraints (cf. Chap-

ter 4). The feasible set is positively invariant with respect to the closed-loop system,

i.e. for any initial state contained in the feasible set, the state evolution of the closed-

loop system is also contained in the feasible set for all future times.

There are two ways to implement the constrained optimization problem (5.16)-

(5.17). The first is to formulate the MPC as a quadratic program (QP) and solve

it online at each sampling time. Only the first element of the optimal control se-

quence is applied to the system, and at the next time step, the computation is re-

peated starting from the new state and over a shifted horizon. The second way is

to formulate the MPC as a multi-parametric QP (mp-QP) which can be solved of-

fline. In this case, the optimal control is given as an explicitly defined continuous

piecewise affine (PWA) function depending on the current state, and defined over

XF . The online computation reduces to the simple evaluation of the piecewise affine

function. Details about how to obtain the QP and the mp-QP formulations can be

found in Chapter 2.

For the cases where the explicit optimal PWA controller is so complex as to be

impractical, several approaches have been proposed to obtain an approximate con-

tinuous PWA controller (cf. Chapter 3).

The following considers a continuous PWA feedback control law

u (x) = Ljx+ gj, ∀ x ∈ CRj, (5.19)

102 Robust Feasibility for Constrained Linear Systems with PWA Controllers

defined over the partition of the feasible set

XF =
⋃

j=1...nr

CRj, (5.20)

where P
N

= {CR1, ..., CRnr} is the collection of polytopic disjoint regions into

which XF is partitioned.

The controller (5.19) can represent either the optimal MPC solution or any suitable

approximation thereof.

Apart from the natural assumption that the uncertainty set M contains both the

nominal model and the real model, we will make the following assumptions.

A1 Assume that there exists a subset Xin ⊂ XF containing the origin, in which

the controller (5.19) asymptotically stabilizes the system (5.1) for any time-

invariant [A|B] ∈ M.

A2 Assume that for all initial states x0 ∈ XF , for any [A|B] ∈ M, if the closed-

loop trajectory remains inside XF for all future time, then it converges to the

origin asymptotically.

Then, the problem tackled in this chapter is as follows:

• Given a controller of the form (5.19) computed for a nominal system of the

form (5.1-5.2). Given an uncertainty set M of the form (5.6). Find the max-
imal robust feasible set, i.e. the set of initial conditions XFR ⊆ XF such that

for any possible time-invariant [A|B] ∈ M, the closed-loop system remains

feasible at all times.

Assumption A1 guarantees that XFR will not be an empty set. This assumption is

easy to confirm, e.g. the results in Pluymers et al. (2005b) can be used to find a

robust positively invariant polyhedral set for the closed-loop system with the LQR.

Assumption A2 is needed to exclude that some system dynamics in the uncertainty

set can lead to limit cycles or chaotic behavior in the feasible set. This assumption

can be checked by means of a radially unbounded Lyapunov function (possibly

dependent on the dynamics). Finding such a function may be difficult. A more

immediate, but also conservative, approach is to check that in each region CRj ∈

102 Robust Feasibility for Constrained Linear Systems with PWA Controllers

defined over the partition of the feasible set

XF =
⋃

j=1...nr

CRj, (5.20)

where P
N

= {CR1, ..., CRnr} is the collection of polytopic disjoint regions into

which XF is partitioned.

The controller (5.19) can represent either the optimal MPC solution or any suitable

approximation thereof.

Apart from the natural assumption that the uncertainty set M contains both the

nominal model and the real model, we will make the following assumptions.

A1 Assume that there exists a subset Xin ⊂ XF containing the origin, in which

the controller (5.19) asymptotically stabilizes the system (5.1) for any time-

invariant [A|B] ∈ M.

A2 Assume that for all initial states x0 ∈ XF , for any [A|B] ∈ M, if the closed-

loop trajectory remains inside XF for all future time, then it converges to the

origin asymptotically.

Then, the problem tackled in this chapter is as follows:

• Given a controller of the form (5.19) computed for a nominal system of the

form (5.1-5.2). Given an uncertainty set M of the form (5.6). Find the max-
imal robust feasible set, i.e. the set of initial conditions XFR ⊆ XF such that

for any possible time-invariant [A|B] ∈ M, the closed-loop system remains

feasible at all times.

Assumption A1 guarantees that XFR will not be an empty set. This assumption is

easy to confirm, e.g. the results in Pluymers et al. (2005b) can be used to find a

robust positively invariant polyhedral set for the closed-loop system with the LQR.

Assumption A2 is needed to exclude that some system dynamics in the uncertainty

set can lead to limit cycles or chaotic behavior in the feasible set. This assumption

can be checked by means of a radially unbounded Lyapunov function (possibly

dependent on the dynamics). Finding such a function may be difficult. A more

immediate, but also conservative, approach is to check that in each region CRj ∈

102 Robust Feasibility for Constrained Linear Systems with PWA Controllers

defined over the partition of the feasible set

XF =
⋃

j=1...nr

CRj, (5.20)

where P
N

= {CR1, ..., CRnr} is the collection of polytopic disjoint regions into

which XF is partitioned.

The controller (5.19) can represent either the optimal MPC solution or any suitable

approximation thereof.

Apart from the natural assumption that the uncertainty set M contains both the

nominal model and the real model, we will make the following assumptions.

A1 Assume that there exists a subset Xin ⊂ XF containing the origin, in which

the controller (5.19) asymptotically stabilizes the system (5.1) for any time-

invariant [A|B] ∈ M.

A2 Assume that for all initial states x0 ∈ XF , for any [A|B] ∈ M, if the closed-

loop trajectory remains inside XF for all future time, then it converges to the

origin asymptotically.

Then, the problem tackled in this chapter is as follows:

• Given a controller of the form (5.19) computed for a nominal system of the

form (5.1-5.2). Given an uncertainty set M of the form (5.6). Find the max-
imal robust feasible set, i.e. the set of initial conditions XFR ⊆ XF such that

for any possible time-invariant [A|B] ∈ M, the closed-loop system remains

feasible at all times.

Assumption A1 guarantees that XFR will not be an empty set. This assumption is

easy to confirm, e.g. the results in Pluymers et al. (2005b) can be used to find a

robust positively invariant polyhedral set for the closed-loop system with the LQR.

Assumption A2 is needed to exclude that some system dynamics in the uncertainty

set can lead to limit cycles or chaotic behavior in the feasible set. This assumption

can be checked by means of a radially unbounded Lyapunov function (possibly

dependent on the dynamics). Finding such a function may be difficult. A more

immediate, but also conservative, approach is to check that in each region CRj ∈

102 Robust Feasibility for Constrained Linear Systems with PWA Controllers

defined over the partition of the feasible set

XF =
⋃

j=1...nr

CRj, (5.20)

where P
N

= {CR1, ..., CRnr} is the collection of polytopic disjoint regions into

which XF is partitioned.

The controller (5.19) can represent either the optimal MPC solution or any suitable

approximation thereof.

Apart from the natural assumption that the uncertainty set M contains both the

nominal model and the real model, we will make the following assumptions.

A1 Assume that there exists a subset Xin ⊂ XF containing the origin, in which

the controller (5.19) asymptotically stabilizes the system (5.1) for any time-

invariant [A|B] ∈ M.

A2 Assume that for all initial states x0 ∈ XF , for any [A|B] ∈ M, if the closed-

loop trajectory remains inside XF for all future time, then it converges to the

origin asymptotically.

Then, the problem tackled in this chapter is as follows:

• Given a controller of the form (5.19) computed for a nominal system of the

form (5.1-5.2). Given an uncertainty set M of the form (5.6). Find the max-
imal robust feasible set, i.e. the set of initial conditions XFR ⊆ XF such that

for any possible time-invariant [A|B] ∈ M, the closed-loop system remains

feasible at all times.

Assumption A1 guarantees that XFR will not be an empty set. This assumption is

easy to confirm, e.g. the results in Pluymers et al. (2005b) can be used to find a

robust positively invariant polyhedral set for the closed-loop system with the LQR.

Assumption A2 is needed to exclude that some system dynamics in the uncertainty

set can lead to limit cycles or chaotic behavior in the feasible set. This assumption

can be checked by means of a radially unbounded Lyapunov function (possibly

dependent on the dynamics). Finding such a function may be difficult. A more

immediate, but also conservative, approach is to check that in each region CRj ∈

5.3. Problem Formulation 103

P
N

the following inequality holds for all the vertices
[
A(i)|B(i)

]
of M

‖x‖ >
‖B(i)gj‖

1− ‖A(i) +B(i)Lj‖
∀x ∈ CRj. (5.21)

‖ · ‖ is a norm or the corresponding induced (matrix) norm, depending on the ar-

gument. Due to convexity, (5.21) needs to be checked only on the vertices of each

CRj .

Proposition 3. If condition (5.21) is satisfied for all regions CRj ∈ P
N

, then the
closed-loop evolutions satisfy

‖x(t)‖ > ‖x(t+ 1)‖ ∀x(t) ∈ XF \ {0} (5.22)

for any system dynamics in the uncertainty set M.

Proof. Inside each region CRj ∈ P
N

, the closed-loop system is an affine system of

the form

x(t+ 1) = Φjx(t) + ϕj (5.23)

where Φj = A + BLj and ϕj = Bgj . Then, using (5.23) in (5.22) the inequality

can be written as

‖x(t)‖ > ‖Φjx(t) + ϕj‖ (5.24)

The triangle inequality implies that

‖Φjx(t) + ϕj‖ ≤ ‖Φjx(t)‖+ ‖ϕj‖ (5.25)

Thus, requiring that

‖x(t)‖ > ‖Φjx(t)‖+ ‖ϕj‖ (5.26)

implies that also (5.24) is satisfied.

By a property of the induced norm it is

‖Φjx(t)‖ ≤ ‖Φj‖‖x(t)‖ ∀ x(t) (5.27)

Thus, if

‖x(t)‖ > ‖Φj‖‖x(t)‖+ ‖ϕj‖ (5.28)

is satisfied then also (5.24) is satisfied. So it can be finally seen that if the inequality

‖x(t)‖ >
‖ϕj‖

1− ‖Φj‖
(5.29)

holds, then ‖x(t)‖ > ‖x(t+ 1)‖.

5.3. Problem Formulation 103

P
N

the following inequality holds for all the vertices
[
A(i)|B(i)

]
of M

‖x‖ >
‖B(i)gj‖

1− ‖A(i) +B(i)Lj‖
∀x ∈ CRj. (5.21)

‖ · ‖ is a norm or the corresponding induced (matrix) norm, depending on the ar-

gument. Due to convexity, (5.21) needs to be checked only on the vertices of each

CRj .

Proposition 3. If condition (5.21) is satisfied for all regions CRj ∈ P
N

, then the
closed-loop evolutions satisfy

‖x(t)‖ > ‖x(t+ 1)‖ ∀x(t) ∈ XF \ {0} (5.22)

for any system dynamics in the uncertainty set M.

Proof. Inside each region CRj ∈ P
N

, the closed-loop system is an affine system of

the form

x(t+ 1) = Φjx(t) + ϕj (5.23)

where Φj = A + BLj and ϕj = Bgj . Then, using (5.23) in (5.22) the inequality

can be written as

‖x(t)‖ > ‖Φjx(t) + ϕj‖ (5.24)

The triangle inequality implies that

‖Φjx(t) + ϕj‖ ≤ ‖Φjx(t)‖+ ‖ϕj‖ (5.25)

Thus, requiring that

‖x(t)‖ > ‖Φjx(t)‖+ ‖ϕj‖ (5.26)

implies that also (5.24) is satisfied.

By a property of the induced norm it is

‖Φjx(t)‖ ≤ ‖Φj‖‖x(t)‖ ∀ x(t) (5.27)

Thus, if

‖x(t)‖ > ‖Φj‖‖x(t)‖+ ‖ϕj‖ (5.28)

is satisfied then also (5.24) is satisfied. So it can be finally seen that if the inequality

‖x(t)‖ >
‖ϕj‖

1− ‖Φj‖
(5.29)

holds, then ‖x(t)‖ > ‖x(t+ 1)‖.

5.3. Problem Formulation 103

P
N

the following inequality holds for all the vertices
[
A(i)|B(i)

]
of M

‖x‖ >
‖B(i)gj‖

1− ‖A(i) +B(i)Lj‖
∀x ∈ CRj. (5.21)

‖ · ‖ is a norm or the corresponding induced (matrix) norm, depending on the ar-

gument. Due to convexity, (5.21) needs to be checked only on the vertices of each

CRj .

Proposition 3. If condition (5.21) is satisfied for all regions CRj ∈ P
N

, then the
closed-loop evolutions satisfy

‖x(t)‖ > ‖x(t+ 1)‖ ∀x(t) ∈ XF \ {0} (5.22)

for any system dynamics in the uncertainty set M.

Proof. Inside each region CRj ∈ P
N

, the closed-loop system is an affine system of

the form

x(t+ 1) = Φjx(t) + ϕj (5.23)

where Φj = A + BLj and ϕj = Bgj . Then, using (5.23) in (5.22) the inequality

can be written as

‖x(t)‖ > ‖Φjx(t) + ϕj‖ (5.24)

The triangle inequality implies that

‖Φjx(t) + ϕj‖ ≤ ‖Φjx(t)‖+ ‖ϕj‖ (5.25)

Thus, requiring that

‖x(t)‖ > ‖Φjx(t)‖+ ‖ϕj‖ (5.26)

implies that also (5.24) is satisfied.

By a property of the induced norm it is

‖Φjx(t)‖ ≤ ‖Φj‖‖x(t)‖ ∀ x(t) (5.27)

Thus, if

‖x(t)‖ > ‖Φj‖‖x(t)‖+ ‖ϕj‖ (5.28)

is satisfied then also (5.24) is satisfied. So it can be finally seen that if the inequality

‖x(t)‖ >
‖ϕj‖

1− ‖Φj‖
(5.29)

holds, then ‖x(t)‖ > ‖x(t+ 1)‖.

5.3. Problem Formulation 103

P
N

the following inequality holds for all the vertices
[
A(i)|B(i)

]
of M

‖x‖ >
‖B(i)gj‖

1− ‖A(i) +B(i)Lj‖
∀x ∈ CRj. (5.21)

‖ · ‖ is a norm or the corresponding induced (matrix) norm, depending on the ar-

gument. Due to convexity, (5.21) needs to be checked only on the vertices of each

CRj .

Proposition 3. If condition (5.21) is satisfied for all regions CRj ∈ P
N

, then the
closed-loop evolutions satisfy

‖x(t)‖ > ‖x(t+ 1)‖ ∀x(t) ∈ XF \ {0} (5.22)

for any system dynamics in the uncertainty set M.

Proof. Inside each region CRj ∈ P
N

, the closed-loop system is an affine system of

the form

x(t+ 1) = Φjx(t) + ϕj (5.23)

where Φj = A + BLj and ϕj = Bgj . Then, using (5.23) in (5.22) the inequality

can be written as

‖x(t)‖ > ‖Φjx(t) + ϕj‖ (5.24)

The triangle inequality implies that

‖Φjx(t) + ϕj‖ ≤ ‖Φjx(t)‖+ ‖ϕj‖ (5.25)

Thus, requiring that

‖x(t)‖ > ‖Φjx(t)‖+ ‖ϕj‖ (5.26)

implies that also (5.24) is satisfied.

By a property of the induced norm it is

‖Φjx(t)‖ ≤ ‖Φj‖‖x(t)‖ ∀ x(t) (5.27)

Thus, if

‖x(t)‖ > ‖Φj‖‖x(t)‖+ ‖ϕj‖ (5.28)

is satisfied then also (5.24) is satisfied. So it can be finally seen that if the inequality

‖x(t)‖ >
‖ϕj‖

1− ‖Φj‖
(5.29)

holds, then ‖x(t)‖ > ‖x(t+ 1)‖.

104 Robust Feasibility for Constrained Linear Systems with PWA Controllers

5.4 Algorithm

This approach follows a simple idea: remove from the feasible set all the initial

states which, for any of the uncertain dynamics, lead to an infeasible closed-loop

trajectory. Uncertain dynamics here means that the system is described by some

time-invariant dynamics contained in the uncertainty set (5.8). Due to linearity, we

need to consider only the vertices of the uncertainty set, which corresponds to con-

sidering the worst case dynamics. If the feasible set is robust for the worst case

system dynamics, then it will be robust for all the system dynamics in the uncer-

tainty set.

The complication with control laws of the form (5.19) is that the evolution of the

closed-loop system changes depending on where the current state is in the feasible

set.

We can now consider how the algorithm explores the feasible set by searching

and removing all the initial states that may lead to infeasibility. For each vertex[
A(i)|B(i)

]
in the uncertainty set M, the algorithm works in two phases.

In the first phase, each region CRj ∈ P
N

forming the partition (5.20) is moved

one time step forward, according to the control law associated with the region, to

compute the next time-step region. The next time-step region is defined as follows.

Definition 23. (Successor set) The successor set of all states which can be reached

in one time step from Rj , given system dynamics [A|B], is defined as

succ (CRj, [A|B]) =
{
x+ ∈ R

n|x+ = (A+BLj) x+Bgj, x ∈ CRj

}
. (5.30)

Remark 8. The successor region can be computed simply by applying the control

at the vertices of the region and taking the convex hull of the next time-step vertices.

This phase allows the identification of all the (sub)regions in XF that in one time

step would lead to infeasibility (Figure 5.1). It allows also the formation of a map
of reachability, i.e. for each region CRj ∈ P

N
to identify all the regions in P

N

containing states from which it is possible to reach the current region in one time

step.

Certainly, all the states in the (sub)regions that in one time step would lead to in-

feasibility have to be removed from the feasible set. However, this is clearly not

enough, also all the initial states whose closed-loop trajectory moves through these

104 Robust Feasibility for Constrained Linear Systems with PWA Controllers

5.4 Algorithm

This approach follows a simple idea: remove from the feasible set all the initial

states which, for any of the uncertain dynamics, lead to an infeasible closed-loop

trajectory. Uncertain dynamics here means that the system is described by some

time-invariant dynamics contained in the uncertainty set (5.8). Due to linearity, we

need to consider only the vertices of the uncertainty set, which corresponds to con-

sidering the worst case dynamics. If the feasible set is robust for the worst case

system dynamics, then it will be robust for all the system dynamics in the uncer-

tainty set.

The complication with control laws of the form (5.19) is that the evolution of the

closed-loop system changes depending on where the current state is in the feasible

set.

We can now consider how the algorithm explores the feasible set by searching

and removing all the initial states that may lead to infeasibility. For each vertex[
A(i)|B(i)

]
in the uncertainty set M, the algorithm works in two phases.

In the first phase, each region CRj ∈ P
N

forming the partition (5.20) is moved

one time step forward, according to the control law associated with the region, to

compute the next time-step region. The next time-step region is defined as follows.

Definition 23. (Successor set) The successor set of all states which can be reached

in one time step from Rj , given system dynamics [A|B], is defined as

succ (CRj, [A|B]) =
{
x+ ∈ R

n|x+ = (A+BLj) x+Bgj, x ∈ CRj

}
. (5.30)

Remark 8. The successor region can be computed simply by applying the control

at the vertices of the region and taking the convex hull of the next time-step vertices.

This phase allows the identification of all the (sub)regions in XF that in one time

step would lead to infeasibility (Figure 5.1). It allows also the formation of a map
of reachability, i.e. for each region CRj ∈ P

N
to identify all the regions in P

N

containing states from which it is possible to reach the current region in one time

step.

Certainly, all the states in the (sub)regions that in one time step would lead to in-

feasibility have to be removed from the feasible set. However, this is clearly not

enough, also all the initial states whose closed-loop trajectory moves through these

104 Robust Feasibility for Constrained Linear Systems with PWA Controllers

5.4 Algorithm

This approach follows a simple idea: remove from the feasible set all the initial

states which, for any of the uncertain dynamics, lead to an infeasible closed-loop

trajectory. Uncertain dynamics here means that the system is described by some

time-invariant dynamics contained in the uncertainty set (5.8). Due to linearity, we

need to consider only the vertices of the uncertainty set, which corresponds to con-

sidering the worst case dynamics. If the feasible set is robust for the worst case

system dynamics, then it will be robust for all the system dynamics in the uncer-

tainty set.

The complication with control laws of the form (5.19) is that the evolution of the

closed-loop system changes depending on where the current state is in the feasible

set.

We can now consider how the algorithm explores the feasible set by searching

and removing all the initial states that may lead to infeasibility. For each vertex[
A(i)|B(i)

]
in the uncertainty set M, the algorithm works in two phases.

In the first phase, each region CRj ∈ P
N

forming the partition (5.20) is moved

one time step forward, according to the control law associated with the region, to

compute the next time-step region. The next time-step region is defined as follows.

Definition 23. (Successor set) The successor set of all states which can be reached

in one time step from Rj , given system dynamics [A|B], is defined as

succ (CRj, [A|B]) =
{
x+ ∈ R

n|x+ = (A+BLj) x+Bgj, x ∈ CRj

}
. (5.30)

Remark 8. The successor region can be computed simply by applying the control

at the vertices of the region and taking the convex hull of the next time-step vertices.

This phase allows the identification of all the (sub)regions in XF that in one time

step would lead to infeasibility (Figure 5.1). It allows also the formation of a map
of reachability, i.e. for each region CRj ∈ P

N
to identify all the regions in P

N

containing states from which it is possible to reach the current region in one time

step.

Certainly, all the states in the (sub)regions that in one time step would lead to in-

feasibility have to be removed from the feasible set. However, this is clearly not

enough, also all the initial states whose closed-loop trajectory moves through these

104 Robust Feasibility for Constrained Linear Systems with PWA Controllers

5.4 Algorithm

This approach follows a simple idea: remove from the feasible set all the initial

states which, for any of the uncertain dynamics, lead to an infeasible closed-loop

trajectory. Uncertain dynamics here means that the system is described by some

time-invariant dynamics contained in the uncertainty set (5.8). Due to linearity, we

need to consider only the vertices of the uncertainty set, which corresponds to con-

sidering the worst case dynamics. If the feasible set is robust for the worst case

system dynamics, then it will be robust for all the system dynamics in the uncer-

tainty set.

The complication with control laws of the form (5.19) is that the evolution of the

closed-loop system changes depending on where the current state is in the feasible

set.

We can now consider how the algorithm explores the feasible set by searching

and removing all the initial states that may lead to infeasibility. For each vertex[
A(i)|B(i)

]
in the uncertainty set M, the algorithm works in two phases.

In the first phase, each region CRj ∈ P
N

forming the partition (5.20) is moved

one time step forward, according to the control law associated with the region, to

compute the next time-step region. The next time-step region is defined as follows.

Definition 23. (Successor set) The successor set of all states which can be reached

in one time step from Rj , given system dynamics [A|B], is defined as

succ (CRj, [A|B]) =
{
x+ ∈ R

n|x+ = (A+BLj) x+Bgj, x ∈ CRj

}
. (5.30)

Remark 8. The successor region can be computed simply by applying the control

at the vertices of the region and taking the convex hull of the next time-step vertices.

This phase allows the identification of all the (sub)regions in XF that in one time

step would lead to infeasibility (Figure 5.1). It allows also the formation of a map
of reachability, i.e. for each region CRj ∈ P

N
to identify all the regions in P

N

containing states from which it is possible to reach the current region in one time

step.

Certainly, all the states in the (sub)regions that in one time step would lead to in-

feasibility have to be removed from the feasible set. However, this is clearly not

enough, also all the initial states whose closed-loop trajectory moves through these

5.4. Algorithm 105

�� �� �� �� 	 � � � �
����

��

����

��

�	��

	

	��

�

���

�

���

�
�

� �

����������������	��

�� ���� �� ���� �� ���� �� �	�� 	
���

���

���

�

���

�
�

� �

��������������������

�� ���� �� ���� �� ���� �� �	�� 	
���

���

���

�

���

�
�

� �

����������������������������������

��������

Figure 5.1: An example of nominal feasible set partitioned in regions CRj . In the

close-up on the left, the next time-step region is computed. In the close-up on the

right the subregion of the feasible set leading to infeasibility is identified.

5.4. Algorithm 105

�� �� �� �� 	 � � � �
����

��

����

��

�	��

	

	��

�

���

�

���

�
�

� �

�������	��������
��

�� ���� �� ���� �� ���� �� �	�� 	
���

���

���

�

���

�
�

� �

��������������������

�� ���� �� ���� �� ���� �� �	�� 	
���

���

���

�

���

�
�

� �

����������������������������������

��������

Figure 5.1: An example of nominal feasible set partitioned in regions CRj . In the

close-up on the left, the next time-step region is computed. In the close-up on the

right the subregion of the feasible set leading to infeasibility is identified.

5.4. Algorithm 105

�� �� �� �� 	 � � � �
����

��

����

��

�	��

	

	��

�

���

�

���

�
�

� �

�������	��������
��

�� ���� �� ���� �� ���� �� �	�� 	
���

���

���

�

���

�
�

� �

��������������������

�� ���� �� ���� �� ���� �� �	�� 	
���

���

���

�

���

�
�

� �

����������������������������������

��������

Figure 5.1: An example of nominal feasible set partitioned in regions CRj . In the

close-up on the left, the next time-step region is computed. In the close-up on the

right the subregion of the feasible set leading to infeasibility is identified.

5.4. Algorithm 105

�� �� �� �� 	 � � � �
����

��

����

��

�	��

	

	��

�

���

�

���

�
�

� �

�������	��������
��

�� ���� �� ���� �� ���� �� �	�� 	
���

���

���

�

���

�
�

� �

��������������������

�� ���� �� ���� �� ���� �� �	�� 	
���

���

���

�

���

�
�

� �

����������������������������������

��������

Figure 5.1: An example of nominal feasible set partitioned in regions CRj . In the

close-up on the left, the next time-step region is computed. In the close-up on the

right the subregion of the feasible set leading to infeasibility is identified.

106 Robust Feasibility for Constrained Linear Systems with PWA Controllers

�� �� �� �� �� �� �	 �
 �
�

���

��

	

	��

�

� 	

Propagation of the infeasibility

���������������������������

Figure 5.2: The subregion not robustly feasible identified in Figure 5.1 is propa-

gated backwards in the feasible set, finding all the initial states which would lead to

infeasibility.

(sub)regions need to be removed. This is done in the second phase of the algorithm,

with a mechanism of propagation based on the following definition.

Definition 24. (Predecessor set) Given a region S ⊆ CRj ∈ P
N

, a region CRk ∈
P

N
(CRj and CRk may coincide) and system dynamics [A|B], all the states in CRk

for which the next time-step state is in S define the set (the “predecessor" states)

pred (S,CRk, [A|B]) = {x ∈ CRk| (A+BLk) x+Bgk ∈ S} . (5.31)

Remark 9. S and CRk can be represented as

S = {x ∈ R
n|DSx ≤ dS} , CRk =

{
x ∈ R

n|D
CRk

x ≤ d
CRk

}
. (5.32)

Then, we can compute the predecessor set as the intersection of a finite number of

half-spaces

pred (S,CRk, [A|B]) = {x ∈ R
n|Dpredx ≤ dpred} ,

where

Dpred =

[
D

CRk

DS (A+BLk)

]
, dpred =

[
d

CRk

dS −DSBgk

]
,

Using definition 24, all the infeasible (sub)regions in XF identified during the first

phase of the algorithm are propagated backwards in the feasible set, according to

106 Robust Feasibility for Constrained Linear Systems with PWA Controllers

�� �� �� �� �� �� �	 �
 �
�

���

��

	

	��

�

� 	

Propagation of the infeasibility

���������������������������

Figure 5.2: The subregion not robustly feasible identified in Figure 5.1 is propa-

gated backwards in the feasible set, finding all the initial states which would lead to

infeasibility.

(sub)regions need to be removed. This is done in the second phase of the algorithm,

with a mechanism of propagation based on the following definition.

Definition 24. (Predecessor set) Given a region S ⊆ CRj ∈ P
N

, a region CRk ∈
P

N
(CRj and CRk may coincide) and system dynamics [A|B], all the states in CRk

for which the next time-step state is in S define the set (the “predecessor" states)

pred (S,CRk, [A|B]) = {x ∈ CRk| (A+BLk) x+Bgk ∈ S} . (5.31)

Remark 9. S and CRk can be represented as

S = {x ∈ R
n|DSx ≤ dS} , CRk =

{
x ∈ R

n|D
CRk

x ≤ d
CRk

}
. (5.32)

Then, we can compute the predecessor set as the intersection of a finite number of

half-spaces

pred (S,CRk, [A|B]) = {x ∈ R
n|Dpredx ≤ dpred} ,

where

Dpred =

[
D

CRk

DS (A+BLk)

]
, dpred =

[
d

CRk

dS −DSBgk

]
,

Using definition 24, all the infeasible (sub)regions in XF identified during the first

phase of the algorithm are propagated backwards in the feasible set, according to

106 Robust Feasibility for Constrained Linear Systems with PWA Controllers

�� �� �� �� �� �� �	 �
 �
�

���

��

	

	��

�

� 	

Propagation of the infeasibility

���������������������������

Figure 5.2: The subregion not robustly feasible identified in Figure 5.1 is propa-

gated backwards in the feasible set, finding all the initial states which would lead to

infeasibility.

(sub)regions need to be removed. This is done in the second phase of the algorithm,

with a mechanism of propagation based on the following definition.

Definition 24. (Predecessor set) Given a region S ⊆ CRj ∈ P
N

, a region CRk ∈
P

N
(CRj and CRk may coincide) and system dynamics [A|B], all the states in CRk

for which the next time-step state is in S define the set (the “predecessor" states)

pred (S,CRk, [A|B]) = {x ∈ CRk| (A+BLk) x+Bgk ∈ S} . (5.31)

Remark 9. S and CRk can be represented as

S = {x ∈ R
n|DSx ≤ dS} , CRk =

{
x ∈ R

n|D
CRk

x ≤ d
CRk

}
. (5.32)

Then, we can compute the predecessor set as the intersection of a finite number of

half-spaces

pred (S,CRk, [A|B]) = {x ∈ R
n|Dpredx ≤ dpred} ,

where

Dpred =

[
D

CRk

DS (A+BLk)

]
, dpred =

[
d

CRk

dS −DSBgk

]
,

Using definition 24, all the infeasible (sub)regions in XF identified during the first

phase of the algorithm are propagated backwards in the feasible set, according to

106 Robust Feasibility for Constrained Linear Systems with PWA Controllers

�� �� �� �� �� �� �	 �
 �
�

���

��

	

	��

�

� 	

Propagation of the infeasibility

���������������������������

Figure 5.2: The subregion not robustly feasible identified in Figure 5.1 is propa-

gated backwards in the feasible set, finding all the initial states which would lead to

infeasibility.

(sub)regions need to be removed. This is done in the second phase of the algorithm,

with a mechanism of propagation based on the following definition.

Definition 24. (Predecessor set) Given a region S ⊆ CRj ∈ P
N

, a region CRk ∈
P

N
(CRj and CRk may coincide) and system dynamics [A|B], all the states in CRk

for which the next time-step state is in S define the set (the “predecessor" states)

pred (S,CRk, [A|B]) = {x ∈ CRk| (A+BLk) x+Bgk ∈ S} . (5.31)

Remark 9. S and CRk can be represented as

S = {x ∈ R
n|DSx ≤ dS} , CRk =

{
x ∈ R

n|D
CRk

x ≤ d
CRk

}
. (5.32)

Then, we can compute the predecessor set as the intersection of a finite number of

half-spaces

pred (S,CRk, [A|B]) = {x ∈ R
n|Dpredx ≤ dpred} ,

where

Dpred =

[
D

CRk

DS (A+BLk)

]
, dpred =

[
d

CRk

dS −DSBgk

]
,

Using definition 24, all the infeasible (sub)regions in XF identified during the first

phase of the algorithm are propagated backwards in the feasible set, according to

5.4. Algorithm 107

the map of reachability (Figure 5.2).

The procedure based on these two phases can be formalized as in Algorithm 4. Ini-

tially the maximal robust feasible set is initialized as the nominal feasible set. Then,

for each vertex of the polytopic uncertainty set (for-loop 2 − 21) the two phases

(phase A: for-loop 3− 7; phase B: for-loop 8− 20) are iterated in sequence.

In general, XFR is not robustly positively invariant. The set XFR has the property of

containing all and only the states in XF which, when used as initial conditions, are

guaranteed to have feasible closed-loop trajectories for any possible time-invariant

dynamics in the uncertainty set. An initial state x which is not in XFR does not pos-

sess a feasible closed-loop trajectory for all the possible system dynamics. How-

ever, this does not mean that x cannot be part of the feasible closed-loop trajectory

starting from some state in XFR. (This is discussed further in Section 5.5).

On the other hand, requiring the positive invariance property of XFR would have

been too conservative and unnecessary. In fact, it follows that any set with guaran-

teed positive invariance despite model uncertainty is a subset of XFR. This would

unnecessarily limit the possible initial conditions, since we are only interested in

guaranteeing that any closed-loop trajectory stays in the feasible set XF despite

model uncertainty. Moreover, the algorithm for constructing such a positively in-

variant set would be much more computationally complex than that presented here.

As can also be seen from the numerical examples in Section 5.5, in general XFR is

not a convex set, though it can be expressed as a finite union of polytopes. This is

expected since the piecewise affine control law is a nonlinear controller.

Correctness and convergence of the algorithm are proven by the following theorems.

Theorem 10. The robust feasible set XFR ⊆ XF contains all and only the initial
states such that, for any [A|B] ∈ M, the closed-loop trajectory is feasible.

Proof. To prove the theorem, we show first that if a state x ∈ XF has a closed-loop

trajectory that moves outside the feasible set for some [A|B] ∈ M, then x /∈ XFR.

Since [A|B] are inside the polytopic uncertainty set, they can be expressed as a

convex linear combination of the vertices of M as in (5.9). Thus, there is at least a

vertex
[
A(i)|B(i)

]
, i ∈ {1, ..., L}, such that, when used as system dynamics, causes

the trajectory starting from x to exit the feasible set, which means that x cannot be

in XFR because it is removed by Algorithm 4 during iteration i of the for-loop at

step 2.

It remains to prove that if a state x ∈ XF has feasible closed-loop trajectories for all

5.4. Algorithm 107

the map of reachability (Figure 5.2).

The procedure based on these two phases can be formalized as in Algorithm 4. Ini-

tially the maximal robust feasible set is initialized as the nominal feasible set. Then,

for each vertex of the polytopic uncertainty set (for-loop 2 − 21) the two phases

(phase A: for-loop 3− 7; phase B: for-loop 8− 20) are iterated in sequence.

In general, XFR is not robustly positively invariant. The set XFR has the property of

containing all and only the states in XF which, when used as initial conditions, are

guaranteed to have feasible closed-loop trajectories for any possible time-invariant

dynamics in the uncertainty set. An initial state x which is not in XFR does not pos-

sess a feasible closed-loop trajectory for all the possible system dynamics. How-

ever, this does not mean that x cannot be part of the feasible closed-loop trajectory

starting from some state in XFR. (This is discussed further in Section 5.5).

On the other hand, requiring the positive invariance property of XFR would have

been too conservative and unnecessary. In fact, it follows that any set with guaran-

teed positive invariance despite model uncertainty is a subset of XFR. This would

unnecessarily limit the possible initial conditions, since we are only interested in

guaranteeing that any closed-loop trajectory stays in the feasible set XF despite

model uncertainty. Moreover, the algorithm for constructing such a positively in-

variant set would be much more computationally complex than that presented here.

As can also be seen from the numerical examples in Section 5.5, in general XFR is

not a convex set, though it can be expressed as a finite union of polytopes. This is

expected since the piecewise affine control law is a nonlinear controller.

Correctness and convergence of the algorithm are proven by the following theorems.

Theorem 10. The robust feasible set XFR ⊆ XF contains all and only the initial
states such that, for any [A|B] ∈ M, the closed-loop trajectory is feasible.

Proof. To prove the theorem, we show first that if a state x ∈ XF has a closed-loop

trajectory that moves outside the feasible set for some [A|B] ∈ M, then x /∈ XFR.

Since [A|B] are inside the polytopic uncertainty set, they can be expressed as a

convex linear combination of the vertices of M as in (5.9). Thus, there is at least a

vertex
[
A(i)|B(i)

]
, i ∈ {1, ..., L}, such that, when used as system dynamics, causes

the trajectory starting from x to exit the feasible set, which means that x cannot be

in XFR because it is removed by Algorithm 4 during iteration i of the for-loop at

step 2.

It remains to prove that if a state x ∈ XF has feasible closed-loop trajectories for all

5.4. Algorithm 107

the map of reachability (Figure 5.2).

The procedure based on these two phases can be formalized as in Algorithm 4. Ini-

tially the maximal robust feasible set is initialized as the nominal feasible set. Then,

for each vertex of the polytopic uncertainty set (for-loop 2 − 21) the two phases

(phase A: for-loop 3− 7; phase B: for-loop 8− 20) are iterated in sequence.

In general, XFR is not robustly positively invariant. The set XFR has the property of

containing all and only the states in XF which, when used as initial conditions, are

guaranteed to have feasible closed-loop trajectories for any possible time-invariant

dynamics in the uncertainty set. An initial state x which is not in XFR does not pos-

sess a feasible closed-loop trajectory for all the possible system dynamics. How-

ever, this does not mean that x cannot be part of the feasible closed-loop trajectory

starting from some state in XFR. (This is discussed further in Section 5.5).

On the other hand, requiring the positive invariance property of XFR would have

been too conservative and unnecessary. In fact, it follows that any set with guaran-

teed positive invariance despite model uncertainty is a subset of XFR. This would

unnecessarily limit the possible initial conditions, since we are only interested in

guaranteeing that any closed-loop trajectory stays in the feasible set XF despite

model uncertainty. Moreover, the algorithm for constructing such a positively in-

variant set would be much more computationally complex than that presented here.

As can also be seen from the numerical examples in Section 5.5, in general XFR is

not a convex set, though it can be expressed as a finite union of polytopes. This is

expected since the piecewise affine control law is a nonlinear controller.

Correctness and convergence of the algorithm are proven by the following theorems.

Theorem 10. The robust feasible set XFR ⊆ XF contains all and only the initial
states such that, for any [A|B] ∈ M, the closed-loop trajectory is feasible.

Proof. To prove the theorem, we show first that if a state x ∈ XF has a closed-loop

trajectory that moves outside the feasible set for some [A|B] ∈ M, then x /∈ XFR.

Since [A|B] are inside the polytopic uncertainty set, they can be expressed as a

convex linear combination of the vertices of M as in (5.9). Thus, there is at least a

vertex
[
A(i)|B(i)

]
, i ∈ {1, ..., L}, such that, when used as system dynamics, causes

the trajectory starting from x to exit the feasible set, which means that x cannot be

in XFR because it is removed by Algorithm 4 during iteration i of the for-loop at

step 2.

It remains to prove that if a state x ∈ XF has feasible closed-loop trajectories for all

5.4. Algorithm 107

the map of reachability (Figure 5.2).

The procedure based on these two phases can be formalized as in Algorithm 4. Ini-

tially the maximal robust feasible set is initialized as the nominal feasible set. Then,

for each vertex of the polytopic uncertainty set (for-loop 2 − 21) the two phases

(phase A: for-loop 3− 7; phase B: for-loop 8− 20) are iterated in sequence.

In general, XFR is not robustly positively invariant. The set XFR has the property of

containing all and only the states in XF which, when used as initial conditions, are

guaranteed to have feasible closed-loop trajectories for any possible time-invariant

dynamics in the uncertainty set. An initial state x which is not in XFR does not pos-

sess a feasible closed-loop trajectory for all the possible system dynamics. How-

ever, this does not mean that x cannot be part of the feasible closed-loop trajectory

starting from some state in XFR. (This is discussed further in Section 5.5).

On the other hand, requiring the positive invariance property of XFR would have

been too conservative and unnecessary. In fact, it follows that any set with guaran-

teed positive invariance despite model uncertainty is a subset of XFR. This would

unnecessarily limit the possible initial conditions, since we are only interested in

guaranteeing that any closed-loop trajectory stays in the feasible set XF despite

model uncertainty. Moreover, the algorithm for constructing such a positively in-

variant set would be much more computationally complex than that presented here.

As can also be seen from the numerical examples in Section 5.5, in general XFR is

not a convex set, though it can be expressed as a finite union of polytopes. This is

expected since the piecewise affine control law is a nonlinear controller.

Correctness and convergence of the algorithm are proven by the following theorems.

Theorem 10. The robust feasible set XFR ⊆ XF contains all and only the initial
states such that, for any [A|B] ∈ M, the closed-loop trajectory is feasible.

Proof. To prove the theorem, we show first that if a state x ∈ XF has a closed-loop

trajectory that moves outside the feasible set for some [A|B] ∈ M, then x /∈ XFR.

Since [A|B] are inside the polytopic uncertainty set, they can be expressed as a

convex linear combination of the vertices of M as in (5.9). Thus, there is at least a

vertex
[
A(i)|B(i)

]
, i ∈ {1, ..., L}, such that, when used as system dynamics, causes

the trajectory starting from x to exit the feasible set, which means that x cannot be

in XFR because it is removed by Algorithm 4 during iteration i of the for-loop at

step 2.

It remains to prove that if a state x ∈ XF has feasible closed-loop trajectories for all

108 Robust Feasibility for Constrained Linear Systems with PWA Controllers

Algorithm 4: Robust feasible set

Input: The nominal feasible set XF . The nominal PWA controller

and the corresponding feasible set partition P
N

. The

uncertainty set M.

Output: The maximal robust feasible set XFR ⊆ XF .

Initialize the robust feasible set as XFR = XF ;1

foreach
[
A(i), B(i)

]
of M do2

foreach CRj ∈ P
N

do3

compute Si,j = succ
(
Rj ∩ XFR,

[
A(i)|B(i)

])
, the4

successor region for the remaining points in each region

CRj of the nr such regions comprising XF ;

define Zi,j = Si,j −XFR ∩ Si,j and the union of all these5

sets Zi =
⋃

j Zi,j, which represents the set of infeasible

states reachable in one step from any point in XFR for this

[A(i)|B(i)];
build the function rchi (CRj), that gives all the regions6

containing states from which it is possible to reach CRj in

one time step;
end7

foreach CRr ∈ P
N

do8

compute Pi,r = pred
(
Zi, CRr,

[
A(i)|B(i)

])
∩ XFR;9

define Pi =
⋃

r Pi,r, the admissible predecessor set of Zi;10

define Prch
N

= rchi (Pi) the set of all the regions containing11

states which in one time step can reach Pi;

replace XFR = XFR − Pi12

repeat13

foreach CRk ∈ Prch
N

do14

compute Pi,k = pred
(
Pi, Rk,

[
A(i)|B(i)

])
∩ XFR;15

replace Pi =
⋃

k Pi,k and P rch
n = rchi (Pi);16

replace XFR = XFR − Pi.17

end18

until Pi = ∅ ;19

end20

end21

108 Robust Feasibility for Constrained Linear Systems with PWA Controllers

Algorithm 4: Robust feasible set

Input: The nominal feasible set XF . The nominal PWA controller

and the corresponding feasible set partition P
N

. The

uncertainty set M.

Output: The maximal robust feasible set XFR ⊆ XF .

Initialize the robust feasible set as XFR = XF ;1

foreach
[
A(i), B(i)

]
of M do2

foreach CRj ∈ P
N

do3

compute Si,j = succ
(
Rj ∩ XFR,

[
A(i)|B(i)

])
, the4

successor region for the remaining points in each region

CRj of the nr such regions comprising XF ;

define Zi,j = Si,j −XFR ∩ Si,j and the union of all these5

sets Zi =
⋃

j Zi,j, which represents the set of infeasible

states reachable in one step from any point in XFR for this

[A(i)|B(i)];
build the function rchi (CRj), that gives all the regions6

containing states from which it is possible to reach CRj in

one time step;
end7

foreach CRr ∈ P
N

do8

compute Pi,r = pred
(
Zi, CRr,

[
A(i)|B(i)

])
∩ XFR;9

define Pi =
⋃

r Pi,r, the admissible predecessor set of Zi;10

define Prch
N

= rchi (Pi) the set of all the regions containing11

states which in one time step can reach Pi;

replace XFR = XFR − Pi12

repeat13

foreach CRk ∈ Prch
N

do14

compute Pi,k = pred
(
Pi, Rk,

[
A(i)|B(i)

])
∩ XFR;15

replace Pi =
⋃

k Pi,k and P rch
n = rchi (Pi);16

replace XFR = XFR − Pi.17

end18

until Pi = ∅ ;19

end20

end21

108 Robust Feasibility for Constrained Linear Systems with PWA Controllers

Algorithm 4: Robust feasible set

Input: The nominal feasible set XF . The nominal PWA controller

and the corresponding feasible set partition P
N

. The

uncertainty set M.

Output: The maximal robust feasible set XFR ⊆ XF .

Initialize the robust feasible set as XFR = XF ;1

foreach
[
A(i), B(i)

]
of M do2

foreach CRj ∈ P
N

do3

compute Si,j = succ
(
Rj ∩ XFR,

[
A(i)|B(i)

])
, the4

successor region for the remaining points in each region

CRj of the nr such regions comprising XF ;

define Zi,j = Si,j −XFR ∩ Si,j and the union of all these5

sets Zi =
⋃

j Zi,j, which represents the set of infeasible

states reachable in one step from any point in XFR for this

[A(i)|B(i)];
build the function rchi (CRj), that gives all the regions6

containing states from which it is possible to reach CRj in

one time step;
end7

foreach CRr ∈ P
N

do8

compute Pi,r = pred
(
Zi, CRr,

[
A(i)|B(i)

])
∩ XFR;9

define Pi =
⋃

r Pi,r, the admissible predecessor set of Zi;10

define Prch
N

= rchi (Pi) the set of all the regions containing11

states which in one time step can reach Pi;

replace XFR = XFR − Pi12

repeat13

foreach CRk ∈ Prch
N

do14

compute Pi,k = pred
(
Pi, Rk,

[
A(i)|B(i)

])
∩ XFR;15

replace Pi =
⋃

k Pi,k and P rch
n = rchi (Pi);16

replace XFR = XFR − Pi.17

end18

until Pi = ∅ ;19

end20

end21

108 Robust Feasibility for Constrained Linear Systems with PWA Controllers

Algorithm 4: Robust feasible set

Input: The nominal feasible set XF . The nominal PWA controller

and the corresponding feasible set partition P
N

. The

uncertainty set M.

Output: The maximal robust feasible set XFR ⊆ XF .

Initialize the robust feasible set as XFR = XF ;1

foreach
[
A(i), B(i)

]
of M do2

foreach CRj ∈ P
N

do3

compute Si,j = succ
(
Rj ∩ XFR,

[
A(i)|B(i)

])
, the4

successor region for the remaining points in each region

CRj of the nr such regions comprising XF ;

define Zi,j = Si,j −XFR ∩ Si,j and the union of all these5

sets Zi =
⋃

j Zi,j, which represents the set of infeasible

states reachable in one step from any point in XFR for this

[A(i)|B(i)];
build the function rchi (CRj), that gives all the regions6

containing states from which it is possible to reach CRj in

one time step;
end7

foreach CRr ∈ P
N

do8

compute Pi,r = pred
(
Zi, CRr,

[
A(i)|B(i)

])
∩ XFR;9

define Pi =
⋃

r Pi,r, the admissible predecessor set of Zi;10

define Prch
N

= rchi (Pi) the set of all the regions containing11

states which in one time step can reach Pi;

replace XFR = XFR − Pi12

repeat13

foreach CRk ∈ Prch
N

do14

compute Pi,k = pred
(
Pi, Rk,

[
A(i)|B(i)

])
∩ XFR;15

replace Pi =
⋃

k Pi,k and P rch
n = rchi (Pi);16

replace XFR = XFR − Pi.17

end18

until Pi = ∅ ;19

end20

end21

5.5. Numerical Illustrations 109

[A|B] ∈ M, then x ∈ XFR. Suppose by contradiction that x /∈ XFR. Then there

exist some vertex of M such that the closed-loop trajectory exits the feasible set,

which contradicts the assumption that the closed-loop trajectory is feasible for all

the dynamics in M. Thus x ∈ XRF .

Theorem 11. Given the assumptions in Section 5.3 hold, the algorithm will ter-
minate in a finite number of iterations providing a non-empty robust feasible set
XFR ⊆ XF .

Proof. The algorithm iterates the two phases A (for-loop 3 − 7) and B (for-loop

8 − 20) L times, where L is a finite number. Thus, we have to prove that phases A

and B execute in finite time. Since XF is assumed partitioned into a finite number

of polytopes, it is immediate to see that phase A is executed in finite time, and that

at each iteration the set of infeasible states Zi is described as the union of a finite

number of polytopic regions. During phase B, Zi is propagated backwards in XF

according to definition 24. Pi is initialized as the admissible predecessor set of Zi,

and then iteratively updated in the repeat-until loop at step 13. Since Zi is the union

of a finite number of polytopes, Pi will also have this property for all the iterations.

At each iteration, the states comprising Pi are removed from the current XFR, and

once removed they are not considered again in the future iterations. Thus, since

XFR is bounded, eventually Pi will be an empty set comporting the termination of

phase B.

Assumption A1 guarantees that there exist a non-empty region, containing the ori-

gin, that will never be in Zi, thus XFR will not be empty, and since at all iterations

Pi is the union of a finite number of polytopes, XFR will be represented as union of

polytopic regions.

Assumption A2 guarantees that for any initial state x ∈ XFR, for any time-invariant

[A|B] ∈ M, the closed-loop system is (feasibly) asymptotically stable.

5.5 Numerical Illustrations

This section provides examples in order to illustrate the results presented in the pre-

vious sections. Here an example is also used to discuss how the presented analysis

approach can be related to existing robust control design approaches.

5.5. Numerical Illustrations 109

[A|B] ∈ M, then x ∈ XFR. Suppose by contradiction that x /∈ XFR. Then there

exist some vertex of M such that the closed-loop trajectory exits the feasible set,

which contradicts the assumption that the closed-loop trajectory is feasible for all

the dynamics in M. Thus x ∈ XRF .

Theorem 11. Given the assumptions in Section 5.3 hold, the algorithm will ter-
minate in a finite number of iterations providing a non-empty robust feasible set
XFR ⊆ XF .

Proof. The algorithm iterates the two phases A (for-loop 3 − 7) and B (for-loop

8 − 20) L times, where L is a finite number. Thus, we have to prove that phases A

and B execute in finite time. Since XF is assumed partitioned into a finite number

of polytopes, it is immediate to see that phase A is executed in finite time, and that

at each iteration the set of infeasible states Zi is described as the union of a finite

number of polytopic regions. During phase B, Zi is propagated backwards in XF

according to definition 24. Pi is initialized as the admissible predecessor set of Zi,

and then iteratively updated in the repeat-until loop at step 13. Since Zi is the union

of a finite number of polytopes, Pi will also have this property for all the iterations.

At each iteration, the states comprising Pi are removed from the current XFR, and

once removed they are not considered again in the future iterations. Thus, since

XFR is bounded, eventually Pi will be an empty set comporting the termination of

phase B.

Assumption A1 guarantees that there exist a non-empty region, containing the ori-

gin, that will never be in Zi, thus XFR will not be empty, and since at all iterations

Pi is the union of a finite number of polytopes, XFR will be represented as union of

polytopic regions.

Assumption A2 guarantees that for any initial state x ∈ XFR, for any time-invariant

[A|B] ∈ M, the closed-loop system is (feasibly) asymptotically stable.

5.5 Numerical Illustrations

This section provides examples in order to illustrate the results presented in the pre-

vious sections. Here an example is also used to discuss how the presented analysis

approach can be related to existing robust control design approaches.

5.5. Numerical Illustrations 109

[A|B] ∈ M, then x ∈ XFR. Suppose by contradiction that x /∈ XFR. Then there

exist some vertex of M such that the closed-loop trajectory exits the feasible set,

which contradicts the assumption that the closed-loop trajectory is feasible for all

the dynamics in M. Thus x ∈ XRF .

Theorem 11. Given the assumptions in Section 5.3 hold, the algorithm will ter-
minate in a finite number of iterations providing a non-empty robust feasible set
XFR ⊆ XF .

Proof. The algorithm iterates the two phases A (for-loop 3 − 7) and B (for-loop

8 − 20) L times, where L is a finite number. Thus, we have to prove that phases A

and B execute in finite time. Since XF is assumed partitioned into a finite number

of polytopes, it is immediate to see that phase A is executed in finite time, and that

at each iteration the set of infeasible states Zi is described as the union of a finite

number of polytopic regions. During phase B, Zi is propagated backwards in XF

according to definition 24. Pi is initialized as the admissible predecessor set of Zi,

and then iteratively updated in the repeat-until loop at step 13. Since Zi is the union

of a finite number of polytopes, Pi will also have this property for all the iterations.

At each iteration, the states comprising Pi are removed from the current XFR, and

once removed they are not considered again in the future iterations. Thus, since

XFR is bounded, eventually Pi will be an empty set comporting the termination of

phase B.

Assumption A1 guarantees that there exist a non-empty region, containing the ori-

gin, that will never be in Zi, thus XFR will not be empty, and since at all iterations

Pi is the union of a finite number of polytopes, XFR will be represented as union of

polytopic regions.

Assumption A2 guarantees that for any initial state x ∈ XFR, for any time-invariant

[A|B] ∈ M, the closed-loop system is (feasibly) asymptotically stable.

5.5 Numerical Illustrations

This section provides examples in order to illustrate the results presented in the pre-

vious sections. Here an example is also used to discuss how the presented analysis

approach can be related to existing robust control design approaches.

5.5. Numerical Illustrations 109

[A|B] ∈ M, then x ∈ XFR. Suppose by contradiction that x /∈ XFR. Then there

exist some vertex of M such that the closed-loop trajectory exits the feasible set,

which contradicts the assumption that the closed-loop trajectory is feasible for all

the dynamics in M. Thus x ∈ XRF .

Theorem 11. Given the assumptions in Section 5.3 hold, the algorithm will ter-
minate in a finite number of iterations providing a non-empty robust feasible set
XFR ⊆ XF .

Proof. The algorithm iterates the two phases A (for-loop 3 − 7) and B (for-loop

8 − 20) L times, where L is a finite number. Thus, we have to prove that phases A

and B execute in finite time. Since XF is assumed partitioned into a finite number

of polytopes, it is immediate to see that phase A is executed in finite time, and that

at each iteration the set of infeasible states Zi is described as the union of a finite

number of polytopic regions. During phase B, Zi is propagated backwards in XF

according to definition 24. Pi is initialized as the admissible predecessor set of Zi,

and then iteratively updated in the repeat-until loop at step 13. Since Zi is the union

of a finite number of polytopes, Pi will also have this property for all the iterations.

At each iteration, the states comprising Pi are removed from the current XFR, and

once removed they are not considered again in the future iterations. Thus, since

XFR is bounded, eventually Pi will be an empty set comporting the termination of

phase B.

Assumption A1 guarantees that there exist a non-empty region, containing the ori-

gin, that will never be in Zi, thus XFR will not be empty, and since at all iterations

Pi is the union of a finite number of polytopes, XFR will be represented as union of

polytopic regions.

Assumption A2 guarantees that for any initial state x ∈ XFR, for any time-invariant

[A|B] ∈ M, the closed-loop system is (feasibly) asymptotically stable.

5.5 Numerical Illustrations

This section provides examples in order to illustrate the results presented in the pre-

vious sections. Here an example is also used to discuss how the presented analysis

approach can be related to existing robust control design approaches.

110 Robust Feasibility for Constrained Linear Systems with PWA Controllers

5.5.1 Robust Feasibility for Optimal Explicit MPC

Consider the double integrator system with input and state constraints, already in-

troduced in the previous chapters. As mentioned, the model of the double integrator

is one of the most important in control applications, representing single-degree-of-

freedom translational or rotational motion. Thus it can be used to model for instance

low-friction, free rigid-body motion, such as single-axis spacecraft rotation and ro-

tary crane motion (Rao and Bernstein (2001)).

The double integrator is given by the continuous-time system

ẋ = Ax+Bu (5.33)

y = Cx (5.34)

where x ≡ y ∈ R
2, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0

1/m

]
, C =

[
1 0
0 1

]
(5.35)

The state components x1 and x2 can represent for instance the position and velocity,

respectively, of a body having mass m. Considering a mass m = 1, and discretiz-

ing with sampling time 0.3 we obtain the following discrete-time double integrator

system matrices

A =

[
1 0.3
0 1

]
, B =

[
0.04
0.3

]
, C =

[
1 0
0 1

]
. (5.36)

The system is subject to the input constraints −1 ≤ u ≤ 1, and to the velocity

constraints −3 ≤ x2 ≤ 3.

We consider the uncertainty set M defined by the following vertices

A(1) =

[
1 0.3
0 1

]
, B(1) =

[
0.06
0.37

]
, (5.37)

A(2) =

[
1 0.3
0 1

]
, B(2) =

[
0.04
0.25

]
. (5.38)

which correspond to the mass being known with an uncertainty of ε = 0.2, i.e. the

real mass value is m = 1± ε.

Consider a PWA state feedback controller which represents the optimal solution of

the MPC problem (cf. Chapter 2). The weight matrices are chosen as Q = I , R = 1

110 Robust Feasibility for Constrained Linear Systems with PWA Controllers

5.5.1 Robust Feasibility for Optimal Explicit MPC

Consider the double integrator system with input and state constraints, already in-

troduced in the previous chapters. As mentioned, the model of the double integrator

is one of the most important in control applications, representing single-degree-of-

freedom translational or rotational motion. Thus it can be used to model for instance

low-friction, free rigid-body motion, such as single-axis spacecraft rotation and ro-

tary crane motion (Rao and Bernstein (2001)).

The double integrator is given by the continuous-time system

ẋ = Ax+Bu (5.33)

y = Cx (5.34)

where x ≡ y ∈ R
2, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0

1/m

]
, C =

[
1 0
0 1

]
(5.35)

The state components x1 and x2 can represent for instance the position and velocity,

respectively, of a body having mass m. Considering a mass m = 1, and discretiz-

ing with sampling time 0.3 we obtain the following discrete-time double integrator

system matrices

A =

[
1 0.3
0 1

]
, B =

[
0.04
0.3

]
, C =

[
1 0
0 1

]
. (5.36)

The system is subject to the input constraints −1 ≤ u ≤ 1, and to the velocity

constraints −3 ≤ x2 ≤ 3.

We consider the uncertainty set M defined by the following vertices

A(1) =

[
1 0.3
0 1

]
, B(1) =

[
0.06
0.37

]
, (5.37)

A(2) =

[
1 0.3
0 1

]
, B(2) =

[
0.04
0.25

]
. (5.38)

which correspond to the mass being known with an uncertainty of ε = 0.2, i.e. the

real mass value is m = 1± ε.

Consider a PWA state feedback controller which represents the optimal solution of

the MPC problem (cf. Chapter 2). The weight matrices are chosen as Q = I , R = 1

110 Robust Feasibility for Constrained Linear Systems with PWA Controllers

5.5.1 Robust Feasibility for Optimal Explicit MPC

Consider the double integrator system with input and state constraints, already in-

troduced in the previous chapters. As mentioned, the model of the double integrator

is one of the most important in control applications, representing single-degree-of-

freedom translational or rotational motion. Thus it can be used to model for instance

low-friction, free rigid-body motion, such as single-axis spacecraft rotation and ro-

tary crane motion (Rao and Bernstein (2001)).

The double integrator is given by the continuous-time system

ẋ = Ax+Bu (5.33)

y = Cx (5.34)

where x ≡ y ∈ R
2, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0

1/m

]
, C =

[
1 0
0 1

]
(5.35)

The state components x1 and x2 can represent for instance the position and velocity,

respectively, of a body having mass m. Considering a mass m = 1, and discretiz-

ing with sampling time 0.3 we obtain the following discrete-time double integrator

system matrices

A =

[
1 0.3
0 1

]
, B =

[
0.04
0.3

]
, C =

[
1 0
0 1

]
. (5.36)

The system is subject to the input constraints −1 ≤ u ≤ 1, and to the velocity

constraints −3 ≤ x2 ≤ 3.

We consider the uncertainty set M defined by the following vertices

A(1) =

[
1 0.3
0 1

]
, B(1) =

[
0.06
0.37

]
, (5.37)

A(2) =

[
1 0.3
0 1

]
, B(2) =

[
0.04
0.25

]
. (5.38)

which correspond to the mass being known with an uncertainty of ε = 0.2, i.e. the

real mass value is m = 1± ε.

Consider a PWA state feedback controller which represents the optimal solution of

the MPC problem (cf. Chapter 2). The weight matrices are chosen as Q = I , R = 1

110 Robust Feasibility for Constrained Linear Systems with PWA Controllers

5.5.1 Robust Feasibility for Optimal Explicit MPC

Consider the double integrator system with input and state constraints, already in-

troduced in the previous chapters. As mentioned, the model of the double integrator

is one of the most important in control applications, representing single-degree-of-

freedom translational or rotational motion. Thus it can be used to model for instance

low-friction, free rigid-body motion, such as single-axis spacecraft rotation and ro-

tary crane motion (Rao and Bernstein (2001)).

The double integrator is given by the continuous-time system

ẋ = Ax+Bu (5.33)

y = Cx (5.34)

where x ≡ y ∈ R
2, u ∈ R,

A =

[
0 1
0 0

]
, B =

[
0

1/m

]
, C =

[
1 0
0 1

]
(5.35)

The state components x1 and x2 can represent for instance the position and velocity,

respectively, of a body having mass m. Considering a mass m = 1, and discretiz-

ing with sampling time 0.3 we obtain the following discrete-time double integrator

system matrices

A =

[
1 0.3
0 1

]
, B =

[
0.04
0.3

]
, C =

[
1 0
0 1

]
. (5.36)

The system is subject to the input constraints −1 ≤ u ≤ 1, and to the velocity

constraints −3 ≤ x2 ≤ 3.

We consider the uncertainty set M defined by the following vertices

A(1) =

[
1 0.3
0 1

]
, B(1) =

[
0.06
0.37

]
, (5.37)

A(2) =

[
1 0.3
0 1

]
, B(2) =

[
0.04
0.25

]
. (5.38)

which correspond to the mass being known with an uncertainty of ε = 0.2, i.e. the

real mass value is m = 1± ε.

Consider a PWA state feedback controller which represents the optimal solution of

the MPC problem (cf. Chapter 2). The weight matrices are chosen as Q = I , R = 1

5.5. Numerical Illustrations 111

�� � � � 	 � 	 � � � ��

	

�

�

�

	

x
1

x 2

�� � � � 	 � 	 � � � ��

	

�

�

�

	

�

�
�

� 	

Figure 5.3: The upper graph shows the nominal feasible set and its partition for

the optimal explicit MPC. The graph below shows the maximal robust feasible

set within the feasible set. The feasible state trajectories for different system dy-

namics in the uncertainty set (blue solid lines) all start from initial position/speed

x0 = [−8 1.2]T . The infeasible state trajectory (red dot line) starts from initial

position/speed x0 = [−8 2]T and is given by the system dynamics
[
A(1)|B(1)

]
.

and the horizon is N = 5.

Figure 5.3 shows the nominal feasible set, partitioned into 161 regions, and the

portion of the nominal feasible set which is robustly feasible for the uncertainty

considered. An initial state in the maximal robust feasible set is shown to generate

feasible trajectories for different system dynamics within the uncertainty set. Con-

trarily, an initial state not in the maximal robust feasible set is shown to originate an

infeasible trajectory: when the trajectory exits the feasible set, the control input is

undefined.

Remark 10. Some of the feasible trajectories originating inside XFR may contain

states which are not in the set XFR (but still in XF). This at first may seem non-

sense, but it is perfectly reasonable if one considers that the real system is assumed

5.5. Numerical Illustrations 111

�� � � � 	 � 	 � � � ��

	

�

�

�

	

x
1

x 2

�� � � � 	 � 	 � � � ��

	

�

�

�

	

�

�
�

� 	

Figure 5.3: The upper graph shows the nominal feasible set and its partition for

the optimal explicit MPC. The graph below shows the maximal robust feasible

set within the feasible set. The feasible state trajectories for different system dy-

namics in the uncertainty set (blue solid lines) all start from initial position/speed

x0 = [−8 1.2]T . The infeasible state trajectory (red dot line) starts from initial

position/speed x0 = [−8 2]T and is given by the system dynamics
[
A(1)|B(1)

]
.

and the horizon is N = 5.

Figure 5.3 shows the nominal feasible set, partitioned into 161 regions, and the

portion of the nominal feasible set which is robustly feasible for the uncertainty

considered. An initial state in the maximal robust feasible set is shown to generate

feasible trajectories for different system dynamics within the uncertainty set. Con-

trarily, an initial state not in the maximal robust feasible set is shown to originate an

infeasible trajectory: when the trajectory exits the feasible set, the control input is

undefined.

Remark 10. Some of the feasible trajectories originating inside XFR may contain

states which are not in the set XFR (but still in XF). This at first may seem non-

sense, but it is perfectly reasonable if one considers that the real system is assumed

5.5. Numerical Illustrations 111

�� � � � 	 � 	 � � � ��

	

�

�

�

	

x
1

x 2

�� � � � 	 � 	 � � � ��

	

�

�

�

	

�

�
�

� 	

Figure 5.3: The upper graph shows the nominal feasible set and its partition for

the optimal explicit MPC. The graph below shows the maximal robust feasible

set within the feasible set. The feasible state trajectories for different system dy-

namics in the uncertainty set (blue solid lines) all start from initial position/speed

x0 = [−8 1.2]T . The infeasible state trajectory (red dot line) starts from initial

position/speed x0 = [−8 2]T and is given by the system dynamics
[
A(1)|B(1)

]
.

and the horizon is N = 5.

Figure 5.3 shows the nominal feasible set, partitioned into 161 regions, and the

portion of the nominal feasible set which is robustly feasible for the uncertainty

considered. An initial state in the maximal robust feasible set is shown to generate

feasible trajectories for different system dynamics within the uncertainty set. Con-

trarily, an initial state not in the maximal robust feasible set is shown to originate an

infeasible trajectory: when the trajectory exits the feasible set, the control input is

undefined.

Remark 10. Some of the feasible trajectories originating inside XFR may contain

states which are not in the set XFR (but still in XF). This at first may seem non-

sense, but it is perfectly reasonable if one considers that the real system is assumed

5.5. Numerical Illustrations 111

�� � � � 	 � 	 � � � ��

	

�

�

�

	

x
1

x 2

�� � � � 	 � 	 � � � ��

	

�

�

�

	

�

�
�

� 	

Figure 5.3: The upper graph shows the nominal feasible set and its partition for

the optimal explicit MPC. The graph below shows the maximal robust feasible

set within the feasible set. The feasible state trajectories for different system dy-

namics in the uncertainty set (blue solid lines) all start from initial position/speed

x0 = [−8 1.2]T . The infeasible state trajectory (red dot line) starts from initial

position/speed x0 = [−8 2]T and is given by the system dynamics
[
A(1)|B(1)

]
.

and the horizon is N = 5.

Figure 5.3 shows the nominal feasible set, partitioned into 161 regions, and the

portion of the nominal feasible set which is robustly feasible for the uncertainty

considered. An initial state in the maximal robust feasible set is shown to generate

feasible trajectories for different system dynamics within the uncertainty set. Con-

trarily, an initial state not in the maximal robust feasible set is shown to originate an

infeasible trajectory: when the trajectory exits the feasible set, the control input is

undefined.

Remark 10. Some of the feasible trajectories originating inside XFR may contain

states which are not in the set XFR (but still in XF). This at first may seem non-

sense, but it is perfectly reasonable if one considers that the real system is assumed

112 Robust Feasibility for Constrained Linear Systems with PWA Controllers

uncertain but still time invariant: a state x̃ /∈ XFR belonging to the closed-loop

trajectory starting from x ∈ XFR for certain system dynamics
[
Ã|B̃

]
means that

x̃ is a robustly feasible initial condition for a part of the uncertainty set including[
Ã|B̃

]
, but this is not true for all the possible system dynamics and thus x̃ cannot

be included in the set of allowed initial condition XFR.

5.5.2 Robust Feasibility for Approximate Explicit MPC

Consider the same double integrator system and polytopic uncertainty of the previ-

ous section, and a PWA state feedback controller which represents the approximate

solution of the MPC problem computed according to the results in Chapter 3. The

weight matrices are Q = I , R = 1 and the horizon is N = 5. For this simple exam-

ple no extra vertices have been introduced to reduce the approximation error in the

cost function, in fact both stability and good performance can be easily proven by

post processing the PWA controller.

Figure 5.4 presents the feasible set with its partition into 41 regions and the maxi-

mal robust feasible set. As can be noted from the close-up, only a minimal part of

the nominal feasible set is removed, almost the entire feasible set remains feasible

under the uncertainty considered.

It is interesting to note from the simulations that for the case of the double integra-

tor, the closed-loop system with the approximate explicit MPC is characterized by

more robust feasibility to model uncertainty than the closed-loop system with the

optimal MPC. This can also be seen from Figure 5.5, where the mass uncertainty

ε = 0.5 is considered.

5.5.3 Relation to Existing Robust MPC Approaches

The approach proposed in this chapter represents a tool to analyze the feasibility ro-

bustness of nominal explicit MPC approaches (or in general, PWA feedback control

laws) with respect to model uncertainty. This section discusses how this relates to a

robust MPC design instead, illustrating it by a simple example.

The robust MPC design considered is the one presented in Pluymers et al. (2005a)

(Rossiter et al. (2005)), which is based on a nominal MPC formulation where ro-

bustness is defined in terms of satisfaction of input and output constraints for all

possible uncertainty realization. Given the connection with the nominal MPC de-

sign, it is reasonable to believe that this approach represents a better comparison

than other robust MPC approaches based on min-max optimization problems.

The robust MPC can be summarized as follows. At each time step, the algorithm

112 Robust Feasibility for Constrained Linear Systems with PWA Controllers

uncertain but still time invariant: a state x̃ /∈ XFR belonging to the closed-loop

trajectory starting from x ∈ XFR for certain system dynamics
[
Ã|B̃

]
means that

x̃ is a robustly feasible initial condition for a part of the uncertainty set including[
Ã|B̃

]
, but this is not true for all the possible system dynamics and thus x̃ cannot

be included in the set of allowed initial condition XFR.

5.5.2 Robust Feasibility for Approximate Explicit MPC

Consider the same double integrator system and polytopic uncertainty of the previ-

ous section, and a PWA state feedback controller which represents the approximate

solution of the MPC problem computed according to the results in Chapter 3. The

weight matrices are Q = I , R = 1 and the horizon is N = 5. For this simple exam-

ple no extra vertices have been introduced to reduce the approximation error in the

cost function, in fact both stability and good performance can be easily proven by

post processing the PWA controller.

Figure 5.4 presents the feasible set with its partition into 41 regions and the maxi-

mal robust feasible set. As can be noted from the close-up, only a minimal part of

the nominal feasible set is removed, almost the entire feasible set remains feasible

under the uncertainty considered.

It is interesting to note from the simulations that for the case of the double integra-

tor, the closed-loop system with the approximate explicit MPC is characterized by

more robust feasibility to model uncertainty than the closed-loop system with the

optimal MPC. This can also be seen from Figure 5.5, where the mass uncertainty

ε = 0.5 is considered.

5.5.3 Relation to Existing Robust MPC Approaches

The approach proposed in this chapter represents a tool to analyze the feasibility ro-

bustness of nominal explicit MPC approaches (or in general, PWA feedback control

laws) with respect to model uncertainty. This section discusses how this relates to a

robust MPC design instead, illustrating it by a simple example.

The robust MPC design considered is the one presented in Pluymers et al. (2005a)

(Rossiter et al. (2005)), which is based on a nominal MPC formulation where ro-

bustness is defined in terms of satisfaction of input and output constraints for all

possible uncertainty realization. Given the connection with the nominal MPC de-

sign, it is reasonable to believe that this approach represents a better comparison

than other robust MPC approaches based on min-max optimization problems.

The robust MPC can be summarized as follows. At each time step, the algorithm

112 Robust Feasibility for Constrained Linear Systems with PWA Controllers

uncertain but still time invariant: a state x̃ /∈ XFR belonging to the closed-loop

trajectory starting from x ∈ XFR for certain system dynamics
[
Ã|B̃

]
means that

x̃ is a robustly feasible initial condition for a part of the uncertainty set including[
Ã|B̃

]
, but this is not true for all the possible system dynamics and thus x̃ cannot

be included in the set of allowed initial condition XFR.

5.5.2 Robust Feasibility for Approximate Explicit MPC

Consider the same double integrator system and polytopic uncertainty of the previ-

ous section, and a PWA state feedback controller which represents the approximate

solution of the MPC problem computed according to the results in Chapter 3. The

weight matrices are Q = I , R = 1 and the horizon is N = 5. For this simple exam-

ple no extra vertices have been introduced to reduce the approximation error in the

cost function, in fact both stability and good performance can be easily proven by

post processing the PWA controller.

Figure 5.4 presents the feasible set with its partition into 41 regions and the maxi-

mal robust feasible set. As can be noted from the close-up, only a minimal part of

the nominal feasible set is removed, almost the entire feasible set remains feasible

under the uncertainty considered.

It is interesting to note from the simulations that for the case of the double integra-

tor, the closed-loop system with the approximate explicit MPC is characterized by

more robust feasibility to model uncertainty than the closed-loop system with the

optimal MPC. This can also be seen from Figure 5.5, where the mass uncertainty

ε = 0.5 is considered.

5.5.3 Relation to Existing Robust MPC Approaches

The approach proposed in this chapter represents a tool to analyze the feasibility ro-

bustness of nominal explicit MPC approaches (or in general, PWA feedback control

laws) with respect to model uncertainty. This section discusses how this relates to a

robust MPC design instead, illustrating it by a simple example.

The robust MPC design considered is the one presented in Pluymers et al. (2005a)

(Rossiter et al. (2005)), which is based on a nominal MPC formulation where ro-

bustness is defined in terms of satisfaction of input and output constraints for all

possible uncertainty realization. Given the connection with the nominal MPC de-

sign, it is reasonable to believe that this approach represents a better comparison

than other robust MPC approaches based on min-max optimization problems.

The robust MPC can be summarized as follows. At each time step, the algorithm

112 Robust Feasibility for Constrained Linear Systems with PWA Controllers

uncertain but still time invariant: a state x̃ /∈ XFR belonging to the closed-loop

trajectory starting from x ∈ XFR for certain system dynamics
[
Ã|B̃

]
means that

x̃ is a robustly feasible initial condition for a part of the uncertainty set including[
Ã|B̃

]
, but this is not true for all the possible system dynamics and thus x̃ cannot

be included in the set of allowed initial condition XFR.

5.5.2 Robust Feasibility for Approximate Explicit MPC

Consider the same double integrator system and polytopic uncertainty of the previ-

ous section, and a PWA state feedback controller which represents the approximate

solution of the MPC problem computed according to the results in Chapter 3. The

weight matrices are Q = I , R = 1 and the horizon is N = 5. For this simple exam-

ple no extra vertices have been introduced to reduce the approximation error in the

cost function, in fact both stability and good performance can be easily proven by

post processing the PWA controller.

Figure 5.4 presents the feasible set with its partition into 41 regions and the maxi-

mal robust feasible set. As can be noted from the close-up, only a minimal part of

the nominal feasible set is removed, almost the entire feasible set remains feasible

under the uncertainty considered.

It is interesting to note from the simulations that for the case of the double integra-

tor, the closed-loop system with the approximate explicit MPC is characterized by

more robust feasibility to model uncertainty than the closed-loop system with the

optimal MPC. This can also be seen from Figure 5.5, where the mass uncertainty

ε = 0.5 is considered.

5.5.3 Relation to Existing Robust MPC Approaches

The approach proposed in this chapter represents a tool to analyze the feasibility ro-

bustness of nominal explicit MPC approaches (or in general, PWA feedback control

laws) with respect to model uncertainty. This section discusses how this relates to a

robust MPC design instead, illustrating it by a simple example.

The robust MPC design considered is the one presented in Pluymers et al. (2005a)

(Rossiter et al. (2005)), which is based on a nominal MPC formulation where ro-

bustness is defined in terms of satisfaction of input and output constraints for all

possible uncertainty realization. Given the connection with the nominal MPC de-

sign, it is reasonable to believe that this approach represents a better comparison

than other robust MPC approaches based on min-max optimization problems.

The robust MPC can be summarized as follows. At each time step, the algorithm

5.5. Numerical Illustrations 113

�	
 � � � 	 � � �
 �	
�

�

�

	

�

�

�

�
�

� �

��� �� ���

����

����

����

���

���

����

����

�
�

� �

�	
 � � � 	 � � �
 �	
�

�

	

�

�

�
�

� �

Figure 5.4: The upper graph shows the nominal feasible set and its partition for

the approximate explicit MPC. The graph below shows the maximal robust fea-

sible set within the nominal feasible set (emphasized in the close-up) for a mass

uncertainty ε = 0.2. The feasible state trajectories for different system dynam-

ics in the uncertainty set (blue solid lines) all start from initial position/speed

x0 = [−8 1.2]T . The infeasible state trajectory (red dot line) starts from initial po-

sition/speed x0 = [9.52 − 2.7]T and is given by the system dynamics
[
A(1)|B(1)

]
.

5.5. Numerical Illustrations 113

�	
 � � � 	 � � �
 �	
�

�

�

	

�

�

�

�
�

� �

��� �� ���

����

����

����

���

���

����

����

�
�

� �

�	
 � � � 	 � � �
 �	
�

�

	

�

�

�
�

� �

Figure 5.4: The upper graph shows the nominal feasible set and its partition for

the approximate explicit MPC. The graph below shows the maximal robust fea-

sible set within the nominal feasible set (emphasized in the close-up) for a mass

uncertainty ε = 0.2. The feasible state trajectories for different system dynam-

ics in the uncertainty set (blue solid lines) all start from initial position/speed

x0 = [−8 1.2]T . The infeasible state trajectory (red dot line) starts from initial po-

sition/speed x0 = [9.52 − 2.7]T and is given by the system dynamics
[
A(1)|B(1)

]
.

5.5. Numerical Illustrations 113

�	
 � � � 	 � � �
 �	
�

�

�

	

�

�

�

�
�

� �

��� �� ���

����

����

����

���

���

����

����

�
�

� �

�	
 � � � 	 � � �
 �	
�

�

	

�

�

�
�

� �

Figure 5.4: The upper graph shows the nominal feasible set and its partition for

the approximate explicit MPC. The graph below shows the maximal robust fea-

sible set within the nominal feasible set (emphasized in the close-up) for a mass

uncertainty ε = 0.2. The feasible state trajectories for different system dynam-

ics in the uncertainty set (blue solid lines) all start from initial position/speed

x0 = [−8 1.2]T . The infeasible state trajectory (red dot line) starts from initial po-

sition/speed x0 = [9.52 − 2.7]T and is given by the system dynamics
[
A(1)|B(1)

]
.

5.5. Numerical Illustrations 113

�	
 � � � 	 � � �
 �	
�

�

�

	

�

�

�

�
�

� �

��� �� ���

����

����

����

���

���

����

����

�
�

� �

�	
 � � � 	 � � �
 �	
�

�

	

�

�

�
�

� �

Figure 5.4: The upper graph shows the nominal feasible set and its partition for

the approximate explicit MPC. The graph below shows the maximal robust fea-

sible set within the nominal feasible set (emphasized in the close-up) for a mass

uncertainty ε = 0.2. The feasible state trajectories for different system dynam-

ics in the uncertainty set (blue solid lines) all start from initial position/speed

x0 = [−8 1.2]T . The infeasible state trajectory (red dot line) starts from initial po-

sition/speed x0 = [9.52 − 2.7]T and is given by the system dynamics
[
A(1)|B(1)

]
.

114 Robust Feasibility for Constrained Linear Systems with PWA Controllers

�� � � � 	 � 	 � � � ��

	

�

�

�

	

x
1

x 2

�� � � � 	 � 	 � � � ��

	

�

�

�

	

�
�

� 	

Figure 5.5: The upper graph shows the nominal feasible set and its partition for

the approximate explicit MPC. The graph below shows the maximal robust feasi-

ble set within the nominal feasible set for a mass uncertainty ε = 0.5. The state

trajectories for different system dynamics in the uncertainty set all start from initial

position/speed x0 = [9 − 2.5]T . Since x0 is outside the robust feasible set, only for

some of the system dynamics the trajectories are feasible (blue solid lines). There

are system dynamics in the uncertainty set which lead to infeasible trajectories (red

dot line).

114 Robust Feasibility for Constrained Linear Systems with PWA Controllers

�� � � � 	 � 	 � � � ��

	

�

�

�

	

x
1

x 2

�� � � � 	 � 	 � � � ��

	

�

�

�

	

�
�

� 	

Figure 5.5: The upper graph shows the nominal feasible set and its partition for

the approximate explicit MPC. The graph below shows the maximal robust feasi-

ble set within the nominal feasible set for a mass uncertainty ε = 0.5. The state

trajectories for different system dynamics in the uncertainty set all start from initial

position/speed x0 = [9 − 2.5]T . Since x0 is outside the robust feasible set, only for

some of the system dynamics the trajectories are feasible (blue solid lines). There

are system dynamics in the uncertainty set which lead to infeasible trajectories (red

dot line).

114 Robust Feasibility for Constrained Linear Systems with PWA Controllers

�� � � � 	 � 	 � � � ��

	

�

�

�

	

x
1

x 2

�� � � � 	 � 	 � � � ��

	

�

�

�

	

�
�

� 	

Figure 5.5: The upper graph shows the nominal feasible set and its partition for

the approximate explicit MPC. The graph below shows the maximal robust feasi-

ble set within the nominal feasible set for a mass uncertainty ε = 0.5. The state

trajectories for different system dynamics in the uncertainty set all start from initial

position/speed x0 = [9 − 2.5]T . Since x0 is outside the robust feasible set, only for

some of the system dynamics the trajectories are feasible (blue solid lines). There

are system dynamics in the uncertainty set which lead to infeasible trajectories (red

dot line).

114 Robust Feasibility for Constrained Linear Systems with PWA Controllers

�� � � � 	 � 	 � � � ��

	

�

�

�

	

x
1

x 2

�� � � � 	 � 	 � � � ��

	

�

�

�

	

�
�

� 	

Figure 5.5: The upper graph shows the nominal feasible set and its partition for

the approximate explicit MPC. The graph below shows the maximal robust feasi-

ble set within the nominal feasible set for a mass uncertainty ε = 0.5. The state

trajectories for different system dynamics in the uncertainty set all start from initial

position/speed x0 = [9 − 2.5]T . Since x0 is outside the robust feasible set, only for

some of the system dynamics the trajectories are feasible (blue solid lines). There

are system dynamics in the uncertainty set which lead to infeasible trajectories (red

dot line).

5.5. Numerical Illustrations 115

minimizes a cost function like (5.16), where the nominal model is used for the future

predictions along the horizon. The minimization is subject to constraints like (5.12-

5.13) which, for robust constraints handling, are applied to all possible predictions

according to the following k-step ahead prediction

xk =
k−1∏
i=0

Aix0 +
k−1∑
j=0

k−1∏
l=j+1

AlBjuj (5.39)

where [Ai, Bi] ∈ M. A terminal constraint is imposed, where the (robust) ter-

minal set is chosen as the largest set of initial condition which is guaranteed to be

positively invariant for all possible models in M, assuming the nominal LQR as

controller (Pluymers et al. (2005b)). The resulting optimization problem remark-

ably remains a QP, even if, with respect to the QP resulting from the nominal MPC,

more complexity in terms of number of constraints is needed in order to achieve ro-

bustness. A multi-parametric QP solution to this robust MPC is proposed in Rossiter

et al. (2005). For more details the reader is referred to Pluymers et al. (2005a) and

Rossiter et al. (2005).

Note that this robust MPC design is able to deal with linear parameter varying (LPV)

systems, while the approach presented here considers uncertain linear parameter in-

variant systems.

Consider the simple example used in Pluymers et al. (2005a) which has polytopic

uncertainty set defined by

A(1) =

[
1 0.1
0 1

]
, B(1) =

[
0
1

]
, (5.40)

A(2) =

[
1 0.2
0 1

]
, B(2) =

[
0
1.5

]
. (5.41)

and the nominal model defined as

A =
1

2
(A(1) + A(2)), B =

1

2
(B(1) +B(2)), C =

[
1 0
0 1

]
. (5.42)

The system is subject to the input constraint −1 ≤ u ≤ 1, and to the state constraints

[−10 − 10]T ≤ x ≤ [10 10]T . For this system, the robust MPC and the nominal

MPC are formulated both with weight matrices chosen as

Q =

[
1 0
0 0.01

]
, R = 3. (5.43)

and horizon N = 3.

Figure 5.6 illustrates the feasible set resulting from the robust MPC. The same fig-

ure also shows the portion of the nominal feasible set which is robustly feasible with

5.5. Numerical Illustrations 115

minimizes a cost function like (5.16), where the nominal model is used for the future

predictions along the horizon. The minimization is subject to constraints like (5.12-

5.13) which, for robust constraints handling, are applied to all possible predictions

according to the following k-step ahead prediction

xk =
k−1∏
i=0

Aix0 +
k−1∑
j=0

k−1∏
l=j+1

AlBjuj (5.39)

where [Ai, Bi] ∈ M. A terminal constraint is imposed, where the (robust) ter-

minal set is chosen as the largest set of initial condition which is guaranteed to be

positively invariant for all possible models in M, assuming the nominal LQR as

controller (Pluymers et al. (2005b)). The resulting optimization problem remark-

ably remains a QP, even if, with respect to the QP resulting from the nominal MPC,

more complexity in terms of number of constraints is needed in order to achieve ro-

bustness. A multi-parametric QP solution to this robust MPC is proposed in Rossiter

et al. (2005). For more details the reader is referred to Pluymers et al. (2005a) and

Rossiter et al. (2005).

Note that this robust MPC design is able to deal with linear parameter varying (LPV)

systems, while the approach presented here considers uncertain linear parameter in-

variant systems.

Consider the simple example used in Pluymers et al. (2005a) which has polytopic

uncertainty set defined by

A(1) =

[
1 0.1
0 1

]
, B(1) =

[
0
1

]
, (5.40)

A(2) =

[
1 0.2
0 1

]
, B(2) =

[
0
1.5

]
. (5.41)

and the nominal model defined as

A =
1

2
(A(1) + A(2)), B =

1

2
(B(1) +B(2)), C =

[
1 0
0 1

]
. (5.42)

The system is subject to the input constraint −1 ≤ u ≤ 1, and to the state constraints

[−10 − 10]T ≤ x ≤ [10 10]T . For this system, the robust MPC and the nominal

MPC are formulated both with weight matrices chosen as

Q =

[
1 0
0 0.01

]
, R = 3. (5.43)

and horizon N = 3.

Figure 5.6 illustrates the feasible set resulting from the robust MPC. The same fig-

ure also shows the portion of the nominal feasible set which is robustly feasible with

5.5. Numerical Illustrations 115

minimizes a cost function like (5.16), where the nominal model is used for the future

predictions along the horizon. The minimization is subject to constraints like (5.12-

5.13) which, for robust constraints handling, are applied to all possible predictions

according to the following k-step ahead prediction

xk =
k−1∏
i=0

Aix0 +
k−1∑
j=0

k−1∏
l=j+1

AlBjuj (5.39)

where [Ai, Bi] ∈ M. A terminal constraint is imposed, where the (robust) ter-

minal set is chosen as the largest set of initial condition which is guaranteed to be

positively invariant for all possible models in M, assuming the nominal LQR as

controller (Pluymers et al. (2005b)). The resulting optimization problem remark-

ably remains a QP, even if, with respect to the QP resulting from the nominal MPC,

more complexity in terms of number of constraints is needed in order to achieve ro-

bustness. A multi-parametric QP solution to this robust MPC is proposed in Rossiter

et al. (2005). For more details the reader is referred to Pluymers et al. (2005a) and

Rossiter et al. (2005).

Note that this robust MPC design is able to deal with linear parameter varying (LPV)

systems, while the approach presented here considers uncertain linear parameter in-

variant systems.

Consider the simple example used in Pluymers et al. (2005a) which has polytopic

uncertainty set defined by

A(1) =

[
1 0.1
0 1

]
, B(1) =

[
0
1

]
, (5.40)

A(2) =

[
1 0.2
0 1

]
, B(2) =

[
0
1.5

]
. (5.41)

and the nominal model defined as

A =
1

2
(A(1) + A(2)), B =

1

2
(B(1) +B(2)), C =

[
1 0
0 1

]
. (5.42)

The system is subject to the input constraint −1 ≤ u ≤ 1, and to the state constraints

[−10 − 10]T ≤ x ≤ [10 10]T . For this system, the robust MPC and the nominal

MPC are formulated both with weight matrices chosen as

Q =

[
1 0
0 0.01

]
, R = 3. (5.43)

and horizon N = 3.

Figure 5.6 illustrates the feasible set resulting from the robust MPC. The same fig-

ure also shows the portion of the nominal feasible set which is robustly feasible with

5.5. Numerical Illustrations 115

minimizes a cost function like (5.16), where the nominal model is used for the future

predictions along the horizon. The minimization is subject to constraints like (5.12-

5.13) which, for robust constraints handling, are applied to all possible predictions

according to the following k-step ahead prediction

xk =
k−1∏
i=0

Aix0 +
k−1∑
j=0

k−1∏
l=j+1

AlBjuj (5.39)

where [Ai, Bi] ∈ M. A terminal constraint is imposed, where the (robust) ter-

minal set is chosen as the largest set of initial condition which is guaranteed to be

positively invariant for all possible models in M, assuming the nominal LQR as

controller (Pluymers et al. (2005b)). The resulting optimization problem remark-

ably remains a QP, even if, with respect to the QP resulting from the nominal MPC,

more complexity in terms of number of constraints is needed in order to achieve ro-

bustness. A multi-parametric QP solution to this robust MPC is proposed in Rossiter

et al. (2005). For more details the reader is referred to Pluymers et al. (2005a) and

Rossiter et al. (2005).

Note that this robust MPC design is able to deal with linear parameter varying (LPV)

systems, while the approach presented here considers uncertain linear parameter in-

variant systems.

Consider the simple example used in Pluymers et al. (2005a) which has polytopic

uncertainty set defined by

A(1) =

[
1 0.1
0 1

]
, B(1) =

[
0
1

]
, (5.40)

A(2) =

[
1 0.2
0 1

]
, B(2) =

[
0
1.5

]
. (5.41)

and the nominal model defined as

A =
1

2
(A(1) + A(2)), B =

1

2
(B(1) +B(2)), C =

[
1 0
0 1

]
. (5.42)

The system is subject to the input constraint −1 ≤ u ≤ 1, and to the state constraints

[−10 − 10]T ≤ x ≤ [10 10]T . For this system, the robust MPC and the nominal

MPC are formulated both with weight matrices chosen as

Q =

[
1 0
0 0.01

]
, R = 3. (5.43)

and horizon N = 3.

Figure 5.6 illustrates the feasible set resulting from the robust MPC. The same fig-

ure also shows the portion of the nominal feasible set which is robustly feasible with

116 Robust Feasibility for Constrained Linear Systems with PWA Controllers

the nominal MPC. Both robust and nominal MPC give the same performance, as it

can be qualitatively seen from the closed-loop trajectories obtained for the same set

of different time-invarying dynamics.

It is not hard to identify regions of initial states for which the nominal MPC would

not be sufficient, while instead the robust MPC would be. However, it is also im-

mediate to identify considerably larger regions of initial states which would be sat-

isfactorily controlled by the nominal MPC and which are instead excluded by the

feasible set with the robust MPC. Then, assuming that the set of initial conditions

of interest is within the maximal robust feasible set from the nominal MPC, the

analysis method presented in this chapter can be used to decide that the nominal

controller is enough and therefore there is no need for the supplementary complex-

ity associated with the robust control design. Of course, this does not exclude a

number of cases where the robust design is instead necessary.

The analysis tool presented in this chapter may be useful, for example, in the prac-

tical case of a crane which has to move objects whose weight may be within a given

range, satisfying constraints on position and speed. Reasonably, the parameters of

the crane model can be expected to change for each possible weight (cf. Section

5.5.1). However, once the object has been fixed, from the point of view of the con-

troller the model remains time invariant for the whole operation (until a new object

is considered). In this case, a controller design based on a nominal model (for exam-

ple one which considers the average weight) may be considered satisfactory, after

the associated maximal robust feasible set has guaranteed that constraints will not

be violated for any possible weight.

5.6 Conclusions

This chapter has proposed a tool for analyzing how uncertainty in the real plant af-

fects the piecewise affine feedback law computed using the nominal model, thereby

providing the maximal subset of the state space which contains safe initial condi-

tions under the model uncertainty considered. This is a fundamental step towards

any successful practical implementation of the controller.

The maximal robust feasible set thus obtained is, in general, non-convex. It is not

required to be robustly positive invariant, and is computed in finite time. Moreover,

any subset, and thus any convex subset, still preserves the property of being robustly

feasible.

These results should not be seen as a competitor to robust MPC design. They are

instead a tool to decide whether a nominal design can be used without resorting to

a more complex robust design. On the other hand, the results can also be seen as an

116 Robust Feasibility for Constrained Linear Systems with PWA Controllers

the nominal MPC. Both robust and nominal MPC give the same performance, as it

can be qualitatively seen from the closed-loop trajectories obtained for the same set

of different time-invarying dynamics.

It is not hard to identify regions of initial states for which the nominal MPC would

not be sufficient, while instead the robust MPC would be. However, it is also im-

mediate to identify considerably larger regions of initial states which would be sat-

isfactorily controlled by the nominal MPC and which are instead excluded by the

feasible set with the robust MPC. Then, assuming that the set of initial conditions

of interest is within the maximal robust feasible set from the nominal MPC, the

analysis method presented in this chapter can be used to decide that the nominal

controller is enough and therefore there is no need for the supplementary complex-

ity associated with the robust control design. Of course, this does not exclude a

number of cases where the robust design is instead necessary.

The analysis tool presented in this chapter may be useful, for example, in the prac-

tical case of a crane which has to move objects whose weight may be within a given

range, satisfying constraints on position and speed. Reasonably, the parameters of

the crane model can be expected to change for each possible weight (cf. Section

5.5.1). However, once the object has been fixed, from the point of view of the con-

troller the model remains time invariant for the whole operation (until a new object

is considered). In this case, a controller design based on a nominal model (for exam-

ple one which considers the average weight) may be considered satisfactory, after

the associated maximal robust feasible set has guaranteed that constraints will not

be violated for any possible weight.

5.6 Conclusions

This chapter has proposed a tool for analyzing how uncertainty in the real plant af-

fects the piecewise affine feedback law computed using the nominal model, thereby

providing the maximal subset of the state space which contains safe initial condi-

tions under the model uncertainty considered. This is a fundamental step towards

any successful practical implementation of the controller.

The maximal robust feasible set thus obtained is, in general, non-convex. It is not

required to be robustly positive invariant, and is computed in finite time. Moreover,

any subset, and thus any convex subset, still preserves the property of being robustly

feasible.

These results should not be seen as a competitor to robust MPC design. They are

instead a tool to decide whether a nominal design can be used without resorting to

a more complex robust design. On the other hand, the results can also be seen as an

116 Robust Feasibility for Constrained Linear Systems with PWA Controllers

the nominal MPC. Both robust and nominal MPC give the same performance, as it

can be qualitatively seen from the closed-loop trajectories obtained for the same set

of different time-invarying dynamics.

It is not hard to identify regions of initial states for which the nominal MPC would

not be sufficient, while instead the robust MPC would be. However, it is also im-

mediate to identify considerably larger regions of initial states which would be sat-

isfactorily controlled by the nominal MPC and which are instead excluded by the

feasible set with the robust MPC. Then, assuming that the set of initial conditions

of interest is within the maximal robust feasible set from the nominal MPC, the

analysis method presented in this chapter can be used to decide that the nominal

controller is enough and therefore there is no need for the supplementary complex-

ity associated with the robust control design. Of course, this does not exclude a

number of cases where the robust design is instead necessary.

The analysis tool presented in this chapter may be useful, for example, in the prac-

tical case of a crane which has to move objects whose weight may be within a given

range, satisfying constraints on position and speed. Reasonably, the parameters of

the crane model can be expected to change for each possible weight (cf. Section

5.5.1). However, once the object has been fixed, from the point of view of the con-

troller the model remains time invariant for the whole operation (until a new object

is considered). In this case, a controller design based on a nominal model (for exam-

ple one which considers the average weight) may be considered satisfactory, after

the associated maximal robust feasible set has guaranteed that constraints will not

be violated for any possible weight.

5.6 Conclusions

This chapter has proposed a tool for analyzing how uncertainty in the real plant af-

fects the piecewise affine feedback law computed using the nominal model, thereby

providing the maximal subset of the state space which contains safe initial condi-

tions under the model uncertainty considered. This is a fundamental step towards

any successful practical implementation of the controller.

The maximal robust feasible set thus obtained is, in general, non-convex. It is not

required to be robustly positive invariant, and is computed in finite time. Moreover,

any subset, and thus any convex subset, still preserves the property of being robustly

feasible.

These results should not be seen as a competitor to robust MPC design. They are

instead a tool to decide whether a nominal design can be used without resorting to

a more complex robust design. On the other hand, the results can also be seen as an

116 Robust Feasibility for Constrained Linear Systems with PWA Controllers

the nominal MPC. Both robust and nominal MPC give the same performance, as it

can be qualitatively seen from the closed-loop trajectories obtained for the same set

of different time-invarying dynamics.

It is not hard to identify regions of initial states for which the nominal MPC would

not be sufficient, while instead the robust MPC would be. However, it is also im-

mediate to identify considerably larger regions of initial states which would be sat-

isfactorily controlled by the nominal MPC and which are instead excluded by the

feasible set with the robust MPC. Then, assuming that the set of initial conditions

of interest is within the maximal robust feasible set from the nominal MPC, the

analysis method presented in this chapter can be used to decide that the nominal

controller is enough and therefore there is no need for the supplementary complex-

ity associated with the robust control design. Of course, this does not exclude a

number of cases where the robust design is instead necessary.

The analysis tool presented in this chapter may be useful, for example, in the prac-

tical case of a crane which has to move objects whose weight may be within a given

range, satisfying constraints on position and speed. Reasonably, the parameters of

the crane model can be expected to change for each possible weight (cf. Section

5.5.1). However, once the object has been fixed, from the point of view of the con-

troller the model remains time invariant for the whole operation (until a new object

is considered). In this case, a controller design based on a nominal model (for exam-

ple one which considers the average weight) may be considered satisfactory, after

the associated maximal robust feasible set has guaranteed that constraints will not

be violated for any possible weight.

5.6 Conclusions

This chapter has proposed a tool for analyzing how uncertainty in the real plant af-

fects the piecewise affine feedback law computed using the nominal model, thereby

providing the maximal subset of the state space which contains safe initial condi-

tions under the model uncertainty considered. This is a fundamental step towards

any successful practical implementation of the controller.

The maximal robust feasible set thus obtained is, in general, non-convex. It is not

required to be robustly positive invariant, and is computed in finite time. Moreover,

any subset, and thus any convex subset, still preserves the property of being robustly

feasible.

These results should not be seen as a competitor to robust MPC design. They are

instead a tool to decide whether a nominal design can be used without resorting to

a more complex robust design. On the other hand, the results can also be seen as an

5.6. Conclusions 117

� � 	 � 	 � � � ��

��

�

�

�

�
�

� 	

� � 	 � 	 � � � ��

��

�

�

�

�
�

� 	

Figure 5.6: The upper graph shows the feasible set for the nominal MPC (yellow)

and the feasible set for the robust MPC (magenta) with depicted in its interior the

robust terminal set. The graph below shows the feasible set for the nominal MPC

(yellow), the maximal robust feasible set (green) and the nominal terminal set. In

both graphs, several state trajectories are plotted starting all from the initial state

x0 = [8 − 5]T , for the same different system dynamics.

5.6. Conclusions 117

� � 	 � 	 � � � ��

��

�

�

�

�
�

� 	

� � 	 � 	 � � � ��

��

�

�

�

�
�

� 	

Figure 5.6: The upper graph shows the feasible set for the nominal MPC (yellow)

and the feasible set for the robust MPC (magenta) with depicted in its interior the

robust terminal set. The graph below shows the feasible set for the nominal MPC

(yellow), the maximal robust feasible set (green) and the nominal terminal set. In

both graphs, several state trajectories are plotted starting all from the initial state

x0 = [8 − 5]T , for the same different system dynamics.

5.6. Conclusions 117

� � 	 � 	 � � � ��

��

�

�

�

�
�

� 	

� � 	 � 	 � � � ��

��

�

�

�

�
�

� 	

Figure 5.6: The upper graph shows the feasible set for the nominal MPC (yellow)

and the feasible set for the robust MPC (magenta) with depicted in its interior the

robust terminal set. The graph below shows the feasible set for the nominal MPC

(yellow), the maximal robust feasible set (green) and the nominal terminal set. In

both graphs, several state trajectories are plotted starting all from the initial state

x0 = [8 − 5]T , for the same different system dynamics.

5.6. Conclusions 117

� � 	 � 	 � � � ��

��

�

�

�

�
�

� 	

� � 	 � 	 � � � ��

��

�

�

�

�
�

� 	

Figure 5.6: The upper graph shows the feasible set for the nominal MPC (yellow)

and the feasible set for the robust MPC (magenta) with depicted in its interior the

robust terminal set. The graph below shows the feasible set for the nominal MPC

(yellow), the maximal robust feasible set (green) and the nominal terminal set. In

both graphs, several state trajectories are plotted starting all from the initial state

x0 = [8 − 5]T , for the same different system dynamics.

118 Robust Feasibility for Constrained Linear Systems with PWA Controllers

enabling technology for several future approaches to the problem of enhancing the

robustness of (approximate) explicit MPC solutions towards model uncertainty. If

the maximal robust feasible set does not cover the portion of state space of interest,

the next step could be to consider just the regions that do not satisfy the robust feasi-

bility condition, and search for suitable controllers for those regions. One approach

could be to define and solve a new explicit MPC problem for each infeasible region,

with proper constraints ensuring robust feasibility, and the maximal robust feasible

set as the new terminal set.

Assumption A2 is needed to exclude the possibility of limit cycles or chaotic behav-

ior of the uncertain system in closed-loop with the controller, originally designed

for the nominal system. The assumption is easy to check, but rather conservative.

Future research can be directed to reduce this conservativeness.

An interesting future work would be the extension to LPV systems. This could be

achieved propagating back the infeasible regions from the phase A of the algorithm

for all the possible uncertain realizations in the polytopic uncertainty set. This how-

ever would reasonably result in heavier computational loads.

The inclusion of robustness with respect to disturbances represents another future

work of interest.

118 Robust Feasibility for Constrained Linear Systems with PWA Controllers

enabling technology for several future approaches to the problem of enhancing the

robustness of (approximate) explicit MPC solutions towards model uncertainty. If

the maximal robust feasible set does not cover the portion of state space of interest,

the next step could be to consider just the regions that do not satisfy the robust feasi-

bility condition, and search for suitable controllers for those regions. One approach

could be to define and solve a new explicit MPC problem for each infeasible region,

with proper constraints ensuring robust feasibility, and the maximal robust feasible

set as the new terminal set.

Assumption A2 is needed to exclude the possibility of limit cycles or chaotic behav-

ior of the uncertain system in closed-loop with the controller, originally designed

for the nominal system. The assumption is easy to check, but rather conservative.

Future research can be directed to reduce this conservativeness.

An interesting future work would be the extension to LPV systems. This could be

achieved propagating back the infeasible regions from the phase A of the algorithm

for all the possible uncertain realizations in the polytopic uncertainty set. This how-

ever would reasonably result in heavier computational loads.

The inclusion of robustness with respect to disturbances represents another future

work of interest.

118 Robust Feasibility for Constrained Linear Systems with PWA Controllers

enabling technology for several future approaches to the problem of enhancing the

robustness of (approximate) explicit MPC solutions towards model uncertainty. If

the maximal robust feasible set does not cover the portion of state space of interest,

the next step could be to consider just the regions that do not satisfy the robust feasi-

bility condition, and search for suitable controllers for those regions. One approach

could be to define and solve a new explicit MPC problem for each infeasible region,

with proper constraints ensuring robust feasibility, and the maximal robust feasible

set as the new terminal set.

Assumption A2 is needed to exclude the possibility of limit cycles or chaotic behav-

ior of the uncertain system in closed-loop with the controller, originally designed

for the nominal system. The assumption is easy to check, but rather conservative.

Future research can be directed to reduce this conservativeness.

An interesting future work would be the extension to LPV systems. This could be

achieved propagating back the infeasible regions from the phase A of the algorithm

for all the possible uncertain realizations in the polytopic uncertainty set. This how-

ever would reasonably result in heavier computational loads.

The inclusion of robustness with respect to disturbances represents another future

work of interest.

118 Robust Feasibility for Constrained Linear Systems with PWA Controllers

enabling technology for several future approaches to the problem of enhancing the

robustness of (approximate) explicit MPC solutions towards model uncertainty. If

the maximal robust feasible set does not cover the portion of state space of interest,

the next step could be to consider just the regions that do not satisfy the robust feasi-

bility condition, and search for suitable controllers for those regions. One approach

could be to define and solve a new explicit MPC problem for each infeasible region,

with proper constraints ensuring robust feasibility, and the maximal robust feasible

set as the new terminal set.

Assumption A2 is needed to exclude the possibility of limit cycles or chaotic behav-

ior of the uncertain system in closed-loop with the controller, originally designed

for the nominal system. The assumption is easy to check, but rather conservative.

Future research can be directed to reduce this conservativeness.

An interesting future work would be the extension to LPV systems. This could be

achieved propagating back the infeasible regions from the phase A of the algorithm

for all the possible uncertain realizations in the polytopic uncertainty set. This how-

ever would reasonably result in heavier computational loads.

The inclusion of robustness with respect to disturbances represents another future

work of interest.

Chapter 6

Conclusions and Recommendation
for Further Work

This thesis has been concerned with explicit MPC solutions. The geometric nature

of the problem has been exploited to propose approaches for dealing with important

issues entailed with this MPC implementation strategy.

This chapter briefly recalls the initial motivations, provides a summary of the results

achieved and concludes with possible directions for future work.

6.1 Final Remarks and Possible Future Research Di-
rections

Different problematics arising in explicit MPC have been considered in the thesis.

Explicit MPC formulations represent a promising approach to extend the scope of

applicability of MPC approaches to situations where the online computations re-

quired for the conventional MPC implementations are prohibitive for technical or

cost reasons. Formulating the MPC problem as a multi-parametric programming

problem, the undesired online optimization effort is moved offline, and the optimal

control is given as an explicitly defined PWA function with dependence on the cur-

rent state. The domain of the PWA function is the feasible set, which is partitioned

into convex regions. The online computation reduces to the simple evaluation of

the PWA function. Thus, explicit solutions enable the implementation of MPC ap-

proaches using simple hardware with fast sampling rates, and provide insight of the

controller behavior that is useful for performance analysis.

119

Chapter 6

Conclusions and Recommendation
for Further Work

This thesis has been concerned with explicit MPC solutions. The geometric nature

of the problem has been exploited to propose approaches for dealing with important

issues entailed with this MPC implementation strategy.

This chapter briefly recalls the initial motivations, provides a summary of the results

achieved and concludes with possible directions for future work.

6.1 Final Remarks and Possible Future Research Di-
rections

Different problematics arising in explicit MPC have been considered in the thesis.

Explicit MPC formulations represent a promising approach to extend the scope of

applicability of MPC approaches to situations where the online computations re-

quired for the conventional MPC implementations are prohibitive for technical or

cost reasons. Formulating the MPC problem as a multi-parametric programming

problem, the undesired online optimization effort is moved offline, and the optimal

control is given as an explicitly defined PWA function with dependence on the cur-

rent state. The domain of the PWA function is the feasible set, which is partitioned

into convex regions. The online computation reduces to the simple evaluation of

the PWA function. Thus, explicit solutions enable the implementation of MPC ap-

proaches using simple hardware with fast sampling rates, and provide insight of the

controller behavior that is useful for performance analysis.

119

Chapter 6

Conclusions and Recommendation
for Further Work

This thesis has been concerned with explicit MPC solutions. The geometric nature

of the problem has been exploited to propose approaches for dealing with important

issues entailed with this MPC implementation strategy.

This chapter briefly recalls the initial motivations, provides a summary of the results

achieved and concludes with possible directions for future work.

6.1 Final Remarks and Possible Future Research Di-
rections

Different problematics arising in explicit MPC have been considered in the thesis.

Explicit MPC formulations represent a promising approach to extend the scope of

applicability of MPC approaches to situations where the online computations re-

quired for the conventional MPC implementations are prohibitive for technical or

cost reasons. Formulating the MPC problem as a multi-parametric programming

problem, the undesired online optimization effort is moved offline, and the optimal

control is given as an explicitly defined PWA function with dependence on the cur-

rent state. The domain of the PWA function is the feasible set, which is partitioned

into convex regions. The online computation reduces to the simple evaluation of

the PWA function. Thus, explicit solutions enable the implementation of MPC ap-

proaches using simple hardware with fast sampling rates, and provide insight of the

controller behavior that is useful for performance analysis.

119

Chapter 6

Conclusions and Recommendation
for Further Work

This thesis has been concerned with explicit MPC solutions. The geometric nature

of the problem has been exploited to propose approaches for dealing with important

issues entailed with this MPC implementation strategy.

This chapter briefly recalls the initial motivations, provides a summary of the results

achieved and concludes with possible directions for future work.

6.1 Final Remarks and Possible Future Research Di-
rections

Different problematics arising in explicit MPC have been considered in the thesis.

Explicit MPC formulations represent a promising approach to extend the scope of

applicability of MPC approaches to situations where the online computations re-

quired for the conventional MPC implementations are prohibitive for technical or

cost reasons. Formulating the MPC problem as a multi-parametric programming

problem, the undesired online optimization effort is moved offline, and the optimal

control is given as an explicitly defined PWA function with dependence on the cur-

rent state. The domain of the PWA function is the feasible set, which is partitioned

into convex regions. The online computation reduces to the simple evaluation of

the PWA function. Thus, explicit solutions enable the implementation of MPC ap-

proaches using simple hardware with fast sampling rates, and provide insight of the

controller behavior that is useful for performance analysis.

119

120 Conclusions and Recommendation for Further Work

However, explicit MPC implementations may still be prohibitively costly for large

optimization problems, in fact the offline computation effort needed to solve the

multi-parametric optimization problem increases quickly with the dimensions of

state and input, the number of constraints involved in the optimization problem

and the length of the prediction horizon. Moreover, as the optimization complexity

increases, the number of linear gains associated with the PWA control law also in-

creases enormously, which may cause serious difficulties on low-cost hardware.

The interest in deriving effective MPC solutions for a wide range of situations has

driven the research community to study and propose answers to the issues entailed

with explicit MPC approaches.

This thesis has addressed the following three issues connected with explicit MPC

approaches.

• Approximation in explicit MPC approaches via Delaunay tessellations.

• Computation of feasible sets for MPC and of their suitable approximations.

• Maximal robust feasible sets for PWA controllers under polytopic model un-

certainty.

The proposed results look into the geometric nature that is intrinsic to explicit MPC

solutions.

6.1.1 Approximate Explicit MPC via Dealunay Tessellations

A geometric approach was presented for deriving an approximate explicit solution

to linear constrained MPC problems. The solution is optimal for the portion of the

feasible set where constraints are not active, on the remaining part of the feasible

set the prohibitive optimal explicit MPC solution is replaced by an approximation

based on Delaunay tessellations and computed from a finite number of samples of

the exact solution. Finer tessellations can be obtained so as to achieve desired tol-

erance with the cost function approximation error.

The proposed approach suggests an answer to the cases where explicit MPC imple-

mentations are desired but impractical both due to the offline computational effort

needed to compute the explicit optimal solution and due to its complexity for on-

line evaluations. The approach draws its methods from computational geometry,

a branch of computer science which focuses heavily on computational complexity

since the algorithms are intended to be used on large data sets containing millions

120 Conclusions and Recommendation for Further Work

However, explicit MPC implementations may still be prohibitively costly for large

optimization problems, in fact the offline computation effort needed to solve the

multi-parametric optimization problem increases quickly with the dimensions of

state and input, the number of constraints involved in the optimization problem

and the length of the prediction horizon. Moreover, as the optimization complexity

increases, the number of linear gains associated with the PWA control law also in-

creases enormously, which may cause serious difficulties on low-cost hardware.

The interest in deriving effective MPC solutions for a wide range of situations has

driven the research community to study and propose answers to the issues entailed

with explicit MPC approaches.

This thesis has addressed the following three issues connected with explicit MPC

approaches.

• Approximation in explicit MPC approaches via Delaunay tessellations.

• Computation of feasible sets for MPC and of their suitable approximations.

• Maximal robust feasible sets for PWA controllers under polytopic model un-

certainty.

The proposed results look into the geometric nature that is intrinsic to explicit MPC

solutions.

6.1.1 Approximate Explicit MPC via Dealunay Tessellations

A geometric approach was presented for deriving an approximate explicit solution

to linear constrained MPC problems. The solution is optimal for the portion of the

feasible set where constraints are not active, on the remaining part of the feasible

set the prohibitive optimal explicit MPC solution is replaced by an approximation

based on Delaunay tessellations and computed from a finite number of samples of

the exact solution. Finer tessellations can be obtained so as to achieve desired tol-

erance with the cost function approximation error.

The proposed approach suggests an answer to the cases where explicit MPC imple-

mentations are desired but impractical both due to the offline computational effort

needed to compute the explicit optimal solution and due to its complexity for on-

line evaluations. The approach draws its methods from computational geometry,

a branch of computer science which focuses heavily on computational complexity

since the algorithms are intended to be used on large data sets containing millions

120 Conclusions and Recommendation for Further Work

However, explicit MPC implementations may still be prohibitively costly for large

optimization problems, in fact the offline computation effort needed to solve the

multi-parametric optimization problem increases quickly with the dimensions of

state and input, the number of constraints involved in the optimization problem

and the length of the prediction horizon. Moreover, as the optimization complexity

increases, the number of linear gains associated with the PWA control law also in-

creases enormously, which may cause serious difficulties on low-cost hardware.

The interest in deriving effective MPC solutions for a wide range of situations has

driven the research community to study and propose answers to the issues entailed

with explicit MPC approaches.

This thesis has addressed the following three issues connected with explicit MPC

approaches.

• Approximation in explicit MPC approaches via Delaunay tessellations.

• Computation of feasible sets for MPC and of their suitable approximations.

• Maximal robust feasible sets for PWA controllers under polytopic model un-

certainty.

The proposed results look into the geometric nature that is intrinsic to explicit MPC

solutions.

6.1.1 Approximate Explicit MPC via Dealunay Tessellations

A geometric approach was presented for deriving an approximate explicit solution

to linear constrained MPC problems. The solution is optimal for the portion of the

feasible set where constraints are not active, on the remaining part of the feasible

set the prohibitive optimal explicit MPC solution is replaced by an approximation

based on Delaunay tessellations and computed from a finite number of samples of

the exact solution. Finer tessellations can be obtained so as to achieve desired tol-

erance with the cost function approximation error.

The proposed approach suggests an answer to the cases where explicit MPC imple-

mentations are desired but impractical both due to the offline computational effort

needed to compute the explicit optimal solution and due to its complexity for on-

line evaluations. The approach draws its methods from computational geometry,

a branch of computer science which focuses heavily on computational complexity

since the algorithms are intended to be used on large data sets containing millions

120 Conclusions and Recommendation for Further Work

However, explicit MPC implementations may still be prohibitively costly for large

optimization problems, in fact the offline computation effort needed to solve the

multi-parametric optimization problem increases quickly with the dimensions of

state and input, the number of constraints involved in the optimization problem

and the length of the prediction horizon. Moreover, as the optimization complexity

increases, the number of linear gains associated with the PWA control law also in-

creases enormously, which may cause serious difficulties on low-cost hardware.

The interest in deriving effective MPC solutions for a wide range of situations has

driven the research community to study and propose answers to the issues entailed

with explicit MPC approaches.

This thesis has addressed the following three issues connected with explicit MPC

approaches.

• Approximation in explicit MPC approaches via Delaunay tessellations.

• Computation of feasible sets for MPC and of their suitable approximations.

• Maximal robust feasible sets for PWA controllers under polytopic model un-

certainty.

The proposed results look into the geometric nature that is intrinsic to explicit MPC

solutions.

6.1.1 Approximate Explicit MPC via Dealunay Tessellations

A geometric approach was presented for deriving an approximate explicit solution

to linear constrained MPC problems. The solution is optimal for the portion of the

feasible set where constraints are not active, on the remaining part of the feasible

set the prohibitive optimal explicit MPC solution is replaced by an approximation

based on Delaunay tessellations and computed from a finite number of samples of

the exact solution. Finer tessellations can be obtained so as to achieve desired tol-

erance with the cost function approximation error.

The proposed approach suggests an answer to the cases where explicit MPC imple-

mentations are desired but impractical both due to the offline computational effort

needed to compute the explicit optimal solution and due to its complexity for on-

line evaluations. The approach draws its methods from computational geometry,

a branch of computer science which focuses heavily on computational complexity

since the algorithms are intended to be used on large data sets containing millions

6.1. Final Remarks and Possible Future Research Directions 121

of geometrical objects. The effectiveness of the approximate explicit MPC solution

proposed is connected with the effective and efficient algorithms found in the com-

putational geometry literature to generate Delaunay tessellations, store the relative

data and point locate a query point.

The approach uses the cost function approximation error to decide whether a finer

tessellation is needed or not. Since computing this error is in general computation-

ally demanding, the approach proposes the use of easily computable over estimates.

However, these bounds may be quite conservative, resulting in finer tessellations

even if not really needed. This has been observed in the simulations section.

A future research direction would be to find less conservative, yet easily com-

putable, estimates of the cost function approximation error.

Another possible research direction could try to decide whether or not a finer tes-

sellation is needed looking at the optimal control values rather than the optimal cost

function values. This has been recognized to be an hard problem, as discussed in

Bemporad and Filippi (2006). An approximate explicit MPC approach following

this line has been proposed in Jones and Morari (2009) using bilevel optimization.

Rigorous stability proofs were given when the approximate cost function is within a

certain bound around the optimal cost function, such that the optimal cost function

is a Lyapunov function. This is the idea followed by several approaches to approxi-

mate explicit MPC strategies. However, the conditions given are quite conservative.

In fact, stability was proven post-analyzing approximate PWA controllers with cost

functions values that did not satisfy the theoretic maximum allowed tolerance.

A research direction in this aspect would be to derive less conservative stability con-

ditions to use within the algorithm for generating guaranteed stabilizing suboptimal

PWA controllers.

Research effort could be put also on different stability approaches like the one pre-

sented in Hovd et al. (2009), where the quality of the approximation is gradually

increased by refining the Delaunay tessellation until it can be shown that the ap-

proximate cost function is itself a Lyapunov function.

The approach introduced the concept of virtual constraints and virtual vertices to

deal with the non-convexity of the portion of feasible set for which an approximate

controller is needed. However the virtual vertices have the disadvantage to add a

certain level of complexity to the approximate explicit solution.

A further research direction would be to investigate the possibility to use con-
strained Delaunay tessellations to deal with the non-convex region. Given a set

of vertices with a set of non-crossing edges, the constrained Delaunay tessella-

6.1. Final Remarks and Possible Future Research Directions 121

of geometrical objects. The effectiveness of the approximate explicit MPC solution

proposed is connected with the effective and efficient algorithms found in the com-

putational geometry literature to generate Delaunay tessellations, store the relative

data and point locate a query point.

The approach uses the cost function approximation error to decide whether a finer

tessellation is needed or not. Since computing this error is in general computation-

ally demanding, the approach proposes the use of easily computable over estimates.

However, these bounds may be quite conservative, resulting in finer tessellations

even if not really needed. This has been observed in the simulations section.

A future research direction would be to find less conservative, yet easily com-

putable, estimates of the cost function approximation error.

Another possible research direction could try to decide whether or not a finer tes-

sellation is needed looking at the optimal control values rather than the optimal cost

function values. This has been recognized to be an hard problem, as discussed in

Bemporad and Filippi (2006). An approximate explicit MPC approach following

this line has been proposed in Jones and Morari (2009) using bilevel optimization.

Rigorous stability proofs were given when the approximate cost function is within a

certain bound around the optimal cost function, such that the optimal cost function

is a Lyapunov function. This is the idea followed by several approaches to approxi-

mate explicit MPC strategies. However, the conditions given are quite conservative.

In fact, stability was proven post-analyzing approximate PWA controllers with cost

functions values that did not satisfy the theoretic maximum allowed tolerance.

A research direction in this aspect would be to derive less conservative stability con-

ditions to use within the algorithm for generating guaranteed stabilizing suboptimal

PWA controllers.

Research effort could be put also on different stability approaches like the one pre-

sented in Hovd et al. (2009), where the quality of the approximation is gradually

increased by refining the Delaunay tessellation until it can be shown that the ap-

proximate cost function is itself a Lyapunov function.

The approach introduced the concept of virtual constraints and virtual vertices to

deal with the non-convexity of the portion of feasible set for which an approximate

controller is needed. However the virtual vertices have the disadvantage to add a

certain level of complexity to the approximate explicit solution.

A further research direction would be to investigate the possibility to use con-
strained Delaunay tessellations to deal with the non-convex region. Given a set

of vertices with a set of non-crossing edges, the constrained Delaunay tessella-

6.1. Final Remarks and Possible Future Research Directions 121

of geometrical objects. The effectiveness of the approximate explicit MPC solution

proposed is connected with the effective and efficient algorithms found in the com-

putational geometry literature to generate Delaunay tessellations, store the relative

data and point locate a query point.

The approach uses the cost function approximation error to decide whether a finer

tessellation is needed or not. Since computing this error is in general computation-

ally demanding, the approach proposes the use of easily computable over estimates.

However, these bounds may be quite conservative, resulting in finer tessellations

even if not really needed. This has been observed in the simulations section.

A future research direction would be to find less conservative, yet easily com-

putable, estimates of the cost function approximation error.

Another possible research direction could try to decide whether or not a finer tes-

sellation is needed looking at the optimal control values rather than the optimal cost

function values. This has been recognized to be an hard problem, as discussed in

Bemporad and Filippi (2006). An approximate explicit MPC approach following

this line has been proposed in Jones and Morari (2009) using bilevel optimization.

Rigorous stability proofs were given when the approximate cost function is within a

certain bound around the optimal cost function, such that the optimal cost function

is a Lyapunov function. This is the idea followed by several approaches to approxi-

mate explicit MPC strategies. However, the conditions given are quite conservative.

In fact, stability was proven post-analyzing approximate PWA controllers with cost

functions values that did not satisfy the theoretic maximum allowed tolerance.

A research direction in this aspect would be to derive less conservative stability con-

ditions to use within the algorithm for generating guaranteed stabilizing suboptimal

PWA controllers.

Research effort could be put also on different stability approaches like the one pre-

sented in Hovd et al. (2009), where the quality of the approximation is gradually

increased by refining the Delaunay tessellation until it can be shown that the ap-

proximate cost function is itself a Lyapunov function.

The approach introduced the concept of virtual constraints and virtual vertices to

deal with the non-convexity of the portion of feasible set for which an approximate

controller is needed. However the virtual vertices have the disadvantage to add a

certain level of complexity to the approximate explicit solution.

A further research direction would be to investigate the possibility to use con-
strained Delaunay tessellations to deal with the non-convex region. Given a set

of vertices with a set of non-crossing edges, the constrained Delaunay tessella-

6.1. Final Remarks and Possible Future Research Directions 121

of geometrical objects. The effectiveness of the approximate explicit MPC solution

proposed is connected with the effective and efficient algorithms found in the com-

putational geometry literature to generate Delaunay tessellations, store the relative

data and point locate a query point.

The approach uses the cost function approximation error to decide whether a finer

tessellation is needed or not. Since computing this error is in general computation-

ally demanding, the approach proposes the use of easily computable over estimates.

However, these bounds may be quite conservative, resulting in finer tessellations

even if not really needed. This has been observed in the simulations section.

A future research direction would be to find less conservative, yet easily com-

putable, estimates of the cost function approximation error.

Another possible research direction could try to decide whether or not a finer tes-

sellation is needed looking at the optimal control values rather than the optimal cost

function values. This has been recognized to be an hard problem, as discussed in

Bemporad and Filippi (2006). An approximate explicit MPC approach following

this line has been proposed in Jones and Morari (2009) using bilevel optimization.

Rigorous stability proofs were given when the approximate cost function is within a

certain bound around the optimal cost function, such that the optimal cost function

is a Lyapunov function. This is the idea followed by several approaches to approxi-

mate explicit MPC strategies. However, the conditions given are quite conservative.

In fact, stability was proven post-analyzing approximate PWA controllers with cost

functions values that did not satisfy the theoretic maximum allowed tolerance.

A research direction in this aspect would be to derive less conservative stability con-

ditions to use within the algorithm for generating guaranteed stabilizing suboptimal

PWA controllers.

Research effort could be put also on different stability approaches like the one pre-

sented in Hovd et al. (2009), where the quality of the approximation is gradually

increased by refining the Delaunay tessellation until it can be shown that the ap-

proximate cost function is itself a Lyapunov function.

The approach introduced the concept of virtual constraints and virtual vertices to

deal with the non-convexity of the portion of feasible set for which an approximate

controller is needed. However the virtual vertices have the disadvantage to add a

certain level of complexity to the approximate explicit solution.

A further research direction would be to investigate the possibility to use con-
strained Delaunay tessellations to deal with the non-convex region. Given a set

of vertices with a set of non-crossing edges, the constrained Delaunay tessella-

122 Conclusions and Recommendation for Further Work

tion is the simplicial tessellation of the vertices such that the prespecified edges

are included in the tessellation and it is as close as possible to the “unconstrained”

Delaunay tessellation (Seidel (1988), Bern and Plassmann (2000)).

6.1.2 Computation of Feasible Sets and of Suitable Approxima-
tions

An alternative approach was suggested for computing feasible sets when MPC tech-

niques are used. The approach uses set relations instead of the conventional or-

thogonal projection, which then unfolds to a procedure based on Minkowski sum

and intersection routines. This proves to be computationally more efficient and al-

gorithmically more robust than using projection routines, particularly when high

dimensional polytopic sets are involved (i.e. for long prediction horizons, high di-

mensional state and/or input).

However, some numerical issue suggested the need of future work to improve the

algorithmic robustness of the routines for the needed polytopic operations.

When the feasible set is characterized by a critical complexity of representation in

terms of number of vertices, an approach to compute a simplified feasible set with

a reduced number of vertices was given. The approach is based on the introduc-

tion of certain conditions which extend existing approaches for the computation

of polytope approximations, such that the approximating polytope maintains the

fundamental properties of the feasible set required for MPC applications: positive

invariance and inclusion of the operating set.

Preserving the positive invariance property in the feasible set approximation is cru-

cial. This issue is inherently difficult to handle since it is concerned with the non-

linear dynamics of the closed-loop system. The proposed approach typically allows

a considerable decrease in the V-representation complexity by removing most of

the vertices needed to deal with the feasible set borders which approximate ellip-

soids (according with the operating set considered). However, this approach does

not allow to consider possible simpler feasible set approximations which, while

including the operating set, may have borders within X (N−1)
F . A potential future re-

search direction could be to search for different approaches which would give more

flexibility. One could for example look at solutions which use level surfaces of Lya-

punov functions (Alessio et al. (2006)) to find different vertices than the original

ones from the feasible set.

The positive invariance and operating set inclusion conditions constrain the goal

122 Conclusions and Recommendation for Further Work

tion is the simplicial tessellation of the vertices such that the prespecified edges

are included in the tessellation and it is as close as possible to the “unconstrained”

Delaunay tessellation (Seidel (1988), Bern and Plassmann (2000)).

6.1.2 Computation of Feasible Sets and of Suitable Approxima-
tions

An alternative approach was suggested for computing feasible sets when MPC tech-

niques are used. The approach uses set relations instead of the conventional or-

thogonal projection, which then unfolds to a procedure based on Minkowski sum

and intersection routines. This proves to be computationally more efficient and al-

gorithmically more robust than using projection routines, particularly when high

dimensional polytopic sets are involved (i.e. for long prediction horizons, high di-

mensional state and/or input).

However, some numerical issue suggested the need of future work to improve the

algorithmic robustness of the routines for the needed polytopic operations.

When the feasible set is characterized by a critical complexity of representation in

terms of number of vertices, an approach to compute a simplified feasible set with

a reduced number of vertices was given. The approach is based on the introduc-

tion of certain conditions which extend existing approaches for the computation

of polytope approximations, such that the approximating polytope maintains the

fundamental properties of the feasible set required for MPC applications: positive

invariance and inclusion of the operating set.

Preserving the positive invariance property in the feasible set approximation is cru-

cial. This issue is inherently difficult to handle since it is concerned with the non-

linear dynamics of the closed-loop system. The proposed approach typically allows

a considerable decrease in the V-representation complexity by removing most of

the vertices needed to deal with the feasible set borders which approximate ellip-

soids (according with the operating set considered). However, this approach does

not allow to consider possible simpler feasible set approximations which, while

including the operating set, may have borders within X (N−1)
F . A potential future re-

search direction could be to search for different approaches which would give more

flexibility. One could for example look at solutions which use level surfaces of Lya-

punov functions (Alessio et al. (2006)) to find different vertices than the original

ones from the feasible set.

The positive invariance and operating set inclusion conditions constrain the goal

122 Conclusions and Recommendation for Further Work

tion is the simplicial tessellation of the vertices such that the prespecified edges

are included in the tessellation and it is as close as possible to the “unconstrained”

Delaunay tessellation (Seidel (1988), Bern and Plassmann (2000)).

6.1.2 Computation of Feasible Sets and of Suitable Approxima-
tions

An alternative approach was suggested for computing feasible sets when MPC tech-

niques are used. The approach uses set relations instead of the conventional or-

thogonal projection, which then unfolds to a procedure based on Minkowski sum

and intersection routines. This proves to be computationally more efficient and al-

gorithmically more robust than using projection routines, particularly when high

dimensional polytopic sets are involved (i.e. for long prediction horizons, high di-

mensional state and/or input).

However, some numerical issue suggested the need of future work to improve the

algorithmic robustness of the routines for the needed polytopic operations.

When the feasible set is characterized by a critical complexity of representation in

terms of number of vertices, an approach to compute a simplified feasible set with

a reduced number of vertices was given. The approach is based on the introduc-

tion of certain conditions which extend existing approaches for the computation

of polytope approximations, such that the approximating polytope maintains the

fundamental properties of the feasible set required for MPC applications: positive

invariance and inclusion of the operating set.

Preserving the positive invariance property in the feasible set approximation is cru-

cial. This issue is inherently difficult to handle since it is concerned with the non-

linear dynamics of the closed-loop system. The proposed approach typically allows

a considerable decrease in the V-representation complexity by removing most of

the vertices needed to deal with the feasible set borders which approximate ellip-

soids (according with the operating set considered). However, this approach does

not allow to consider possible simpler feasible set approximations which, while

including the operating set, may have borders within X (N−1)
F . A potential future re-

search direction could be to search for different approaches which would give more

flexibility. One could for example look at solutions which use level surfaces of Lya-

punov functions (Alessio et al. (2006)) to find different vertices than the original

ones from the feasible set.

The positive invariance and operating set inclusion conditions constrain the goal

122 Conclusions and Recommendation for Further Work

tion is the simplicial tessellation of the vertices such that the prespecified edges

are included in the tessellation and it is as close as possible to the “unconstrained”

Delaunay tessellation (Seidel (1988), Bern and Plassmann (2000)).

6.1.2 Computation of Feasible Sets and of Suitable Approxima-
tions

An alternative approach was suggested for computing feasible sets when MPC tech-

niques are used. The approach uses set relations instead of the conventional or-

thogonal projection, which then unfolds to a procedure based on Minkowski sum

and intersection routines. This proves to be computationally more efficient and al-

gorithmically more robust than using projection routines, particularly when high

dimensional polytopic sets are involved (i.e. for long prediction horizons, high di-

mensional state and/or input).

However, some numerical issue suggested the need of future work to improve the

algorithmic robustness of the routines for the needed polytopic operations.

When the feasible set is characterized by a critical complexity of representation in

terms of number of vertices, an approach to compute a simplified feasible set with

a reduced number of vertices was given. The approach is based on the introduc-

tion of certain conditions which extend existing approaches for the computation

of polytope approximations, such that the approximating polytope maintains the

fundamental properties of the feasible set required for MPC applications: positive

invariance and inclusion of the operating set.

Preserving the positive invariance property in the feasible set approximation is cru-

cial. This issue is inherently difficult to handle since it is concerned with the non-

linear dynamics of the closed-loop system. The proposed approach typically allows

a considerable decrease in the V-representation complexity by removing most of

the vertices needed to deal with the feasible set borders which approximate ellip-

soids (according with the operating set considered). However, this approach does

not allow to consider possible simpler feasible set approximations which, while

including the operating set, may have borders within X (N−1)
F . A potential future re-

search direction could be to search for different approaches which would give more

flexibility. One could for example look at solutions which use level surfaces of Lya-

punov functions (Alessio et al. (2006)) to find different vertices than the original

ones from the feasible set.

The positive invariance and operating set inclusion conditions constrain the goal

6.1. Final Remarks and Possible Future Research Directions 123

of minimizing the loss of volume in the approximation. In general, finding suit-

able approximating polytopes characterized by the minimum loss of volume is a

well known problem. Requiring that the approximation minimizes the loss of vol-

ume while satisfying conditions related to system dynamics represents a continuous

challenge which could be an interesting topic for future work. Here the minimiza-

tion of the loss of volume was not considered critical, since in the context of the

present work the interest often is to preserve given crucial parts of the feasible set,

which can be done via the operating set condition. Indeed, the algorithm proposed

tends to minimize the loss of volume in the sense that at each iteration the suit-

able vertex which results in the lowest loss of volume in the current approximating

polytope is removed. Pointer structures were used to enhance the implementation

efficiency, though it may be further improved by a careful re-implementation of the

approach.

6.1.3 Maximal Robust Feasible Sets for PWA controllers under
Polytopic Model Uncertainty

An algorithm was presented which, given a nominal model with an associated poly-

topic uncertainty and a continuous PWA controller, identifies the largest subset of

the state space which is guaranteed to contain all and only the initial conditions fea-

sible for the entire family of models described by the polytopic uncertainty.

This can be used as a tool for analyzing how uncertainty in the real system affects

the PWA feedback law computed using the nominal model (e.g. by means of some

explicit MPC approach), thereby providing the maximal subset of the state space

which contains safe initial conditions under the model uncertainty considered. This

is a fundamental step towards any successful practical implementation of the con-

troller.

The maximal robust feasible set thus obtained is, in general, non-convex. It is not

required to be robustly positive invariant, and is computed in finite time. Moreover,

any subset, and thus also any convex subset, still preserves the property of being

robustly feasible.

This result may be used to decide whether or not a nominal design can be used

without resorting to a more complex robust design. On the other hand, it can also

be seen as an enabling technology for several future approaches to the problem of

enhancing the robustness of (approximate) explicit MPC solutions towards model

uncertainty. If the maximal robust feasible set does not cover the portion of state

space of interest, the next step could be to consider just the regions not satisfying

the robust feasibility condition, and search for suitable controllers for those regions.

6.1. Final Remarks and Possible Future Research Directions 123

of minimizing the loss of volume in the approximation. In general, finding suit-

able approximating polytopes characterized by the minimum loss of volume is a

well known problem. Requiring that the approximation minimizes the loss of vol-

ume while satisfying conditions related to system dynamics represents a continuous

challenge which could be an interesting topic for future work. Here the minimiza-

tion of the loss of volume was not considered critical, since in the context of the

present work the interest often is to preserve given crucial parts of the feasible set,

which can be done via the operating set condition. Indeed, the algorithm proposed

tends to minimize the loss of volume in the sense that at each iteration the suit-

able vertex which results in the lowest loss of volume in the current approximating

polytope is removed. Pointer structures were used to enhance the implementation

efficiency, though it may be further improved by a careful re-implementation of the

approach.

6.1.3 Maximal Robust Feasible Sets for PWA controllers under
Polytopic Model Uncertainty

An algorithm was presented which, given a nominal model with an associated poly-

topic uncertainty and a continuous PWA controller, identifies the largest subset of

the state space which is guaranteed to contain all and only the initial conditions fea-

sible for the entire family of models described by the polytopic uncertainty.

This can be used as a tool for analyzing how uncertainty in the real system affects

the PWA feedback law computed using the nominal model (e.g. by means of some

explicit MPC approach), thereby providing the maximal subset of the state space

which contains safe initial conditions under the model uncertainty considered. This

is a fundamental step towards any successful practical implementation of the con-

troller.

The maximal robust feasible set thus obtained is, in general, non-convex. It is not

required to be robustly positive invariant, and is computed in finite time. Moreover,

any subset, and thus also any convex subset, still preserves the property of being

robustly feasible.

This result may be used to decide whether or not a nominal design can be used

without resorting to a more complex robust design. On the other hand, it can also

be seen as an enabling technology for several future approaches to the problem of

enhancing the robustness of (approximate) explicit MPC solutions towards model

uncertainty. If the maximal robust feasible set does not cover the portion of state

space of interest, the next step could be to consider just the regions not satisfying

the robust feasibility condition, and search for suitable controllers for those regions.

6.1. Final Remarks and Possible Future Research Directions 123

of minimizing the loss of volume in the approximation. In general, finding suit-

able approximating polytopes characterized by the minimum loss of volume is a

well known problem. Requiring that the approximation minimizes the loss of vol-

ume while satisfying conditions related to system dynamics represents a continuous

challenge which could be an interesting topic for future work. Here the minimiza-

tion of the loss of volume was not considered critical, since in the context of the

present work the interest often is to preserve given crucial parts of the feasible set,

which can be done via the operating set condition. Indeed, the algorithm proposed

tends to minimize the loss of volume in the sense that at each iteration the suit-

able vertex which results in the lowest loss of volume in the current approximating

polytope is removed. Pointer structures were used to enhance the implementation

efficiency, though it may be further improved by a careful re-implementation of the

approach.

6.1.3 Maximal Robust Feasible Sets for PWA controllers under
Polytopic Model Uncertainty

An algorithm was presented which, given a nominal model with an associated poly-

topic uncertainty and a continuous PWA controller, identifies the largest subset of

the state space which is guaranteed to contain all and only the initial conditions fea-

sible for the entire family of models described by the polytopic uncertainty.

This can be used as a tool for analyzing how uncertainty in the real system affects

the PWA feedback law computed using the nominal model (e.g. by means of some

explicit MPC approach), thereby providing the maximal subset of the state space

which contains safe initial conditions under the model uncertainty considered. This

is a fundamental step towards any successful practical implementation of the con-

troller.

The maximal robust feasible set thus obtained is, in general, non-convex. It is not

required to be robustly positive invariant, and is computed in finite time. Moreover,

any subset, and thus also any convex subset, still preserves the property of being

robustly feasible.

This result may be used to decide whether or not a nominal design can be used

without resorting to a more complex robust design. On the other hand, it can also

be seen as an enabling technology for several future approaches to the problem of

enhancing the robustness of (approximate) explicit MPC solutions towards model

uncertainty. If the maximal robust feasible set does not cover the portion of state

space of interest, the next step could be to consider just the regions not satisfying

the robust feasibility condition, and search for suitable controllers for those regions.

6.1. Final Remarks and Possible Future Research Directions 123

of minimizing the loss of volume in the approximation. In general, finding suit-

able approximating polytopes characterized by the minimum loss of volume is a

well known problem. Requiring that the approximation minimizes the loss of vol-

ume while satisfying conditions related to system dynamics represents a continuous

challenge which could be an interesting topic for future work. Here the minimiza-

tion of the loss of volume was not considered critical, since in the context of the

present work the interest often is to preserve given crucial parts of the feasible set,

which can be done via the operating set condition. Indeed, the algorithm proposed

tends to minimize the loss of volume in the sense that at each iteration the suit-

able vertex which results in the lowest loss of volume in the current approximating

polytope is removed. Pointer structures were used to enhance the implementation

efficiency, though it may be further improved by a careful re-implementation of the

approach.

6.1.3 Maximal Robust Feasible Sets for PWA controllers under
Polytopic Model Uncertainty

An algorithm was presented which, given a nominal model with an associated poly-

topic uncertainty and a continuous PWA controller, identifies the largest subset of

the state space which is guaranteed to contain all and only the initial conditions fea-

sible for the entire family of models described by the polytopic uncertainty.

This can be used as a tool for analyzing how uncertainty in the real system affects

the PWA feedback law computed using the nominal model (e.g. by means of some

explicit MPC approach), thereby providing the maximal subset of the state space

which contains safe initial conditions under the model uncertainty considered. This

is a fundamental step towards any successful practical implementation of the con-

troller.

The maximal robust feasible set thus obtained is, in general, non-convex. It is not

required to be robustly positive invariant, and is computed in finite time. Moreover,

any subset, and thus also any convex subset, still preserves the property of being

robustly feasible.

This result may be used to decide whether or not a nominal design can be used

without resorting to a more complex robust design. On the other hand, it can also

be seen as an enabling technology for several future approaches to the problem of

enhancing the robustness of (approximate) explicit MPC solutions towards model

uncertainty. If the maximal robust feasible set does not cover the portion of state

space of interest, the next step could be to consider just the regions not satisfying

the robust feasibility condition, and search for suitable controllers for those regions.

124 Conclusions and Recommendation for Further Work

One approach could be to define and solve a new explicit MPC problem for each

infeasible region, with proper constraints ensuring robust feasibility, and the maxi-

mal robust feasible set as the new terminal set.

The possibility of limit cycles or chaotic behavior of the uncertain system in closed-

loop with the controller, originally designed for the nominal system, is excluded

when a particular condition is verified (assumption A2). This condition is easy to

check, but it is also quite conservative. Future research can be directed to reduce

this conservativeness.

An interesting future work would be the extension to LPV systems. This could be

achieved propagating back the infeasible regions from the phase A of the algorithm

for all the possible uncertain realizations in the polytopic uncertainty set. This how-

ever would reasonably result in heavier computational loads.

Research effort could also be directed to the inclusion of robustness with respect to

disturbances.

124 Conclusions and Recommendation for Further Work

One approach could be to define and solve a new explicit MPC problem for each

infeasible region, with proper constraints ensuring robust feasibility, and the maxi-

mal robust feasible set as the new terminal set.

The possibility of limit cycles or chaotic behavior of the uncertain system in closed-

loop with the controller, originally designed for the nominal system, is excluded

when a particular condition is verified (assumption A2). This condition is easy to

check, but it is also quite conservative. Future research can be directed to reduce

this conservativeness.

An interesting future work would be the extension to LPV systems. This could be

achieved propagating back the infeasible regions from the phase A of the algorithm

for all the possible uncertain realizations in the polytopic uncertainty set. This how-

ever would reasonably result in heavier computational loads.

Research effort could also be directed to the inclusion of robustness with respect to

disturbances.

124 Conclusions and Recommendation for Further Work

One approach could be to define and solve a new explicit MPC problem for each

infeasible region, with proper constraints ensuring robust feasibility, and the maxi-

mal robust feasible set as the new terminal set.

The possibility of limit cycles or chaotic behavior of the uncertain system in closed-

loop with the controller, originally designed for the nominal system, is excluded

when a particular condition is verified (assumption A2). This condition is easy to

check, but it is also quite conservative. Future research can be directed to reduce

this conservativeness.

An interesting future work would be the extension to LPV systems. This could be

achieved propagating back the infeasible regions from the phase A of the algorithm

for all the possible uncertain realizations in the polytopic uncertainty set. This how-

ever would reasonably result in heavier computational loads.

Research effort could also be directed to the inclusion of robustness with respect to

disturbances.

124 Conclusions and Recommendation for Further Work

One approach could be to define and solve a new explicit MPC problem for each

infeasible region, with proper constraints ensuring robust feasibility, and the maxi-

mal robust feasible set as the new terminal set.

The possibility of limit cycles or chaotic behavior of the uncertain system in closed-

loop with the controller, originally designed for the nominal system, is excluded

when a particular condition is verified (assumption A2). This condition is easy to

check, but it is also quite conservative. Future research can be directed to reduce

this conservativeness.

An interesting future work would be the extension to LPV systems. This could be

achieved propagating back the infeasible regions from the phase A of the algorithm

for all the possible uncertain realizations in the polytopic uncertainty set. This how-

ever would reasonably result in heavier computational loads.

Research effort could also be directed to the inclusion of robustness with respect to

disturbances.

References

Alessio, A., Bemporad, A., Lazar, M., and Heemels, W. P. M. H. (2006). Convex

polyhedral invariant sets for closed-loop linear MPC systems. In Proceedings of
the 45th IEEE Conference on Decision and Control, pages 4532–4537.

Anderson, B. D. O. and Moore, J. B. (1979). Optimal filtering. Prentice-Hall.

Bemporad, A., Borrelli, F., and Morari, M. (2002a). Model predictive control based

on linear programming - the explicit solution. IEEE Transactions on Automatic
Control, 47(12):1974–1985.

Bemporad, A. and Filippi, C. (2003). Suboptimal explicit receding horizon control

via approximate multiparametric quadratic progamming. Journal of Optimization
Theory and Applications, 117(1):9–38.

Bemporad, A. and Filippi, C. (2006). An algorithm for approximate multipara-

metric convex programming. Computational Optimization and Applications,

35(1):87–108.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N. (2002b). The explicit

linear quadratic regulator for constrained systems. Automatica, 38(1):3–20.

Bern, M. and Plassmann, P. (2000). Mesh generation. In Handbook of Computa-
tional Geometry. Elsevier Science, pages 291–332.

Blanchini, F. (1994). Ultimate boundedness control for uncertain discrete-time sys-

tems via set-induced Lyapunov functions. IEEE Transactions on Automatic Con-
trol, 39(2):428–433.

Blanchini, F. (1999). Set invariance in control. Automatica, 35:1747–1767.

Blanchini, F. and Miani, S. (2008). Set-Theoretic Methods in Control. Birkhauser.

Blandford, D. K., Blelloch, G. E., Cardoze, D. E., and Kadow, C. (2005). Compact

representations of simplicial meshes in two and three dimensions. International
Journal of Computational Geometry and Applications, 15(1):3–24.

125

References

Alessio, A., Bemporad, A., Lazar, M., and Heemels, W. P. M. H. (2006). Convex

polyhedral invariant sets for closed-loop linear MPC systems. In Proceedings of
the 45th IEEE Conference on Decision and Control, pages 4532–4537.

Anderson, B. D. O. and Moore, J. B. (1979). Optimal filtering. Prentice-Hall.

Bemporad, A., Borrelli, F., and Morari, M. (2002a). Model predictive control based

on linear programming - the explicit solution. IEEE Transactions on Automatic
Control, 47(12):1974–1985.

Bemporad, A. and Filippi, C. (2003). Suboptimal explicit receding horizon control

via approximate multiparametric quadratic progamming. Journal of Optimization
Theory and Applications, 117(1):9–38.

Bemporad, A. and Filippi, C. (2006). An algorithm for approximate multipara-

metric convex programming. Computational Optimization and Applications,

35(1):87–108.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N. (2002b). The explicit

linear quadratic regulator for constrained systems. Automatica, 38(1):3–20.

Bern, M. and Plassmann, P. (2000). Mesh generation. In Handbook of Computa-
tional Geometry. Elsevier Science, pages 291–332.

Blanchini, F. (1994). Ultimate boundedness control for uncertain discrete-time sys-

tems via set-induced Lyapunov functions. IEEE Transactions on Automatic Con-
trol, 39(2):428–433.

Blanchini, F. (1999). Set invariance in control. Automatica, 35:1747–1767.

Blanchini, F. and Miani, S. (2008). Set-Theoretic Methods in Control. Birkhauser.

Blandford, D. K., Blelloch, G. E., Cardoze, D. E., and Kadow, C. (2005). Compact

representations of simplicial meshes in two and three dimensions. International
Journal of Computational Geometry and Applications, 15(1):3–24.

125

References

Alessio, A., Bemporad, A., Lazar, M., and Heemels, W. P. M. H. (2006). Convex

polyhedral invariant sets for closed-loop linear MPC systems. In Proceedings of
the 45th IEEE Conference on Decision and Control, pages 4532–4537.

Anderson, B. D. O. and Moore, J. B. (1979). Optimal filtering. Prentice-Hall.

Bemporad, A., Borrelli, F., and Morari, M. (2002a). Model predictive control based

on linear programming - the explicit solution. IEEE Transactions on Automatic
Control, 47(12):1974–1985.

Bemporad, A. and Filippi, C. (2003). Suboptimal explicit receding horizon control

via approximate multiparametric quadratic progamming. Journal of Optimization
Theory and Applications, 117(1):9–38.

Bemporad, A. and Filippi, C. (2006). An algorithm for approximate multipara-

metric convex programming. Computational Optimization and Applications,

35(1):87–108.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N. (2002b). The explicit

linear quadratic regulator for constrained systems. Automatica, 38(1):3–20.

Bern, M. and Plassmann, P. (2000). Mesh generation. In Handbook of Computa-
tional Geometry. Elsevier Science, pages 291–332.

Blanchini, F. (1994). Ultimate boundedness control for uncertain discrete-time sys-

tems via set-induced Lyapunov functions. IEEE Transactions on Automatic Con-
trol, 39(2):428–433.

Blanchini, F. (1999). Set invariance in control. Automatica, 35:1747–1767.

Blanchini, F. and Miani, S. (2008). Set-Theoretic Methods in Control. Birkhauser.

Blandford, D. K., Blelloch, G. E., Cardoze, D. E., and Kadow, C. (2005). Compact

representations of simplicial meshes in two and three dimensions. International
Journal of Computational Geometry and Applications, 15(1):3–24.

125

References

Alessio, A., Bemporad, A., Lazar, M., and Heemels, W. P. M. H. (2006). Convex

polyhedral invariant sets for closed-loop linear MPC systems. In Proceedings of
the 45th IEEE Conference on Decision and Control, pages 4532–4537.

Anderson, B. D. O. and Moore, J. B. (1979). Optimal filtering. Prentice-Hall.

Bemporad, A., Borrelli, F., and Morari, M. (2002a). Model predictive control based

on linear programming - the explicit solution. IEEE Transactions on Automatic
Control, 47(12):1974–1985.

Bemporad, A. and Filippi, C. (2003). Suboptimal explicit receding horizon control

via approximate multiparametric quadratic progamming. Journal of Optimization
Theory and Applications, 117(1):9–38.

Bemporad, A. and Filippi, C. (2006). An algorithm for approximate multipara-

metric convex programming. Computational Optimization and Applications,

35(1):87–108.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N. (2002b). The explicit

linear quadratic regulator for constrained systems. Automatica, 38(1):3–20.

Bern, M. and Plassmann, P. (2000). Mesh generation. In Handbook of Computa-
tional Geometry. Elsevier Science, pages 291–332.

Blanchini, F. (1994). Ultimate boundedness control for uncertain discrete-time sys-

tems via set-induced Lyapunov functions. IEEE Transactions on Automatic Con-
trol, 39(2):428–433.

Blanchini, F. (1999). Set invariance in control. Automatica, 35:1747–1767.

Blanchini, F. and Miani, S. (2008). Set-Theoretic Methods in Control. Birkhauser.

Blandford, D. K., Blelloch, G. E., Cardoze, D. E., and Kadow, C. (2005). Compact

representations of simplicial meshes in two and three dimensions. International
Journal of Computational Geometry and Applications, 15(1):3–24.

125

126 References

Boissonnat, J.-D., Devillers, O., and Hornus, S. (2009). Incremental construction

of the Delaunay triangulation and Delaunay graph in medium dimension. In 25th
Annual Symposium on Computational Geometry.

Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V. (1994). Linear Matrix
Inequalities in System and Control Theory. SIAM.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge Univer-

sity Press.

Brisson, E. (1993). Representing geometric structures in d dimensions: topology

and order. Discrete and Computational Geometry, 9(4):387–426.

Bronstein, E. M. (2008). Approximation of convex sets by polytopes. Journal of
Mathematical Science, 153(6):727–762.

Burger, T., Gritzmann, P., and Klee, V. (1996). Polytope projection and projection

of polytopes. The American Mathematical Monthly, 103(9):742–755.

Cazals, F. and Giesen, J. (2006). Effective Computational Geometry for Curves and
Surfaces, chapter Delaunay Triangulation Based Surface Reconstruction, pages

231–276. Springer Berlin Heidelberg.

Celes, W., Paulino, G. H., and Espinha, R. (2005). A compact adjacency-based

topological data structure for finite element mesh representation. International
Journal for Numerical Methods in Ingeneering, 64:1529–1556.

Chmielewski, D. and Manousiouthakis, V. (1996). On constrained infinite-horizon

linear quadratic optimal control. Systems Control Lett., 29(3):121–129.

Christophersen, F. J. (2007). Optimal Control of Constrained Piecewise Affine Sys-
tems, volume 359 of Lecture Notes in Control and Information Sciences, chapter

Efficient evaluation of piecewise control laws defined over a large number of

polyhedra, pages 150–165. Springer Berlin Heidelberg.

Cignoni, P., Montani, C., and Scopigno, R. (1998). DeWall: A fast divide and con-

quer Delaunay triangulation algorithm in Ed. Computer-aided design, 30(5):333–

341.

Cuzzola, F. A., Geromel, J. C., and Morari, M. (2002). An improved approach for

constrained robust model predictive control. Automatica, 38:1183–1189.

Cychowski, M. T., Ding, B., and O’Mahony, T. (2005). An orthogonal partitioning

approach to simplify robust model predictive control. In Proceedings of the 13th
Mediterranean Conference on Control and Automation, pages 877–882.

126 References

Boissonnat, J.-D., Devillers, O., and Hornus, S. (2009). Incremental construction

of the Delaunay triangulation and Delaunay graph in medium dimension. In 25th
Annual Symposium on Computational Geometry.

Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V. (1994). Linear Matrix
Inequalities in System and Control Theory. SIAM.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge Univer-

sity Press.

Brisson, E. (1993). Representing geometric structures in d dimensions: topology

and order. Discrete and Computational Geometry, 9(4):387–426.

Bronstein, E. M. (2008). Approximation of convex sets by polytopes. Journal of
Mathematical Science, 153(6):727–762.

Burger, T., Gritzmann, P., and Klee, V. (1996). Polytope projection and projection

of polytopes. The American Mathematical Monthly, 103(9):742–755.

Cazals, F. and Giesen, J. (2006). Effective Computational Geometry for Curves and
Surfaces, chapter Delaunay Triangulation Based Surface Reconstruction, pages

231–276. Springer Berlin Heidelberg.

Celes, W., Paulino, G. H., and Espinha, R. (2005). A compact adjacency-based

topological data structure for finite element mesh representation. International
Journal for Numerical Methods in Ingeneering, 64:1529–1556.

Chmielewski, D. and Manousiouthakis, V. (1996). On constrained infinite-horizon

linear quadratic optimal control. Systems Control Lett., 29(3):121–129.

Christophersen, F. J. (2007). Optimal Control of Constrained Piecewise Affine Sys-
tems, volume 359 of Lecture Notes in Control and Information Sciences, chapter

Efficient evaluation of piecewise control laws defined over a large number of

polyhedra, pages 150–165. Springer Berlin Heidelberg.

Cignoni, P., Montani, C., and Scopigno, R. (1998). DeWall: A fast divide and con-

quer Delaunay triangulation algorithm in Ed. Computer-aided design, 30(5):333–

341.

Cuzzola, F. A., Geromel, J. C., and Morari, M. (2002). An improved approach for

constrained robust model predictive control. Automatica, 38:1183–1189.

Cychowski, M. T., Ding, B., and O’Mahony, T. (2005). An orthogonal partitioning

approach to simplify robust model predictive control. In Proceedings of the 13th
Mediterranean Conference on Control and Automation, pages 877–882.

126 References

Boissonnat, J.-D., Devillers, O., and Hornus, S. (2009). Incremental construction

of the Delaunay triangulation and Delaunay graph in medium dimension. In 25th
Annual Symposium on Computational Geometry.

Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V. (1994). Linear Matrix
Inequalities in System and Control Theory. SIAM.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge Univer-

sity Press.

Brisson, E. (1993). Representing geometric structures in d dimensions: topology

and order. Discrete and Computational Geometry, 9(4):387–426.

Bronstein, E. M. (2008). Approximation of convex sets by polytopes. Journal of
Mathematical Science, 153(6):727–762.

Burger, T., Gritzmann, P., and Klee, V. (1996). Polytope projection and projection

of polytopes. The American Mathematical Monthly, 103(9):742–755.

Cazals, F. and Giesen, J. (2006). Effective Computational Geometry for Curves and
Surfaces, chapter Delaunay Triangulation Based Surface Reconstruction, pages

231–276. Springer Berlin Heidelberg.

Celes, W., Paulino, G. H., and Espinha, R. (2005). A compact adjacency-based

topological data structure for finite element mesh representation. International
Journal for Numerical Methods in Ingeneering, 64:1529–1556.

Chmielewski, D. and Manousiouthakis, V. (1996). On constrained infinite-horizon

linear quadratic optimal control. Systems Control Lett., 29(3):121–129.

Christophersen, F. J. (2007). Optimal Control of Constrained Piecewise Affine Sys-
tems, volume 359 of Lecture Notes in Control and Information Sciences, chapter

Efficient evaluation of piecewise control laws defined over a large number of

polyhedra, pages 150–165. Springer Berlin Heidelberg.

Cignoni, P., Montani, C., and Scopigno, R. (1998). DeWall: A fast divide and con-

quer Delaunay triangulation algorithm in Ed. Computer-aided design, 30(5):333–

341.

Cuzzola, F. A., Geromel, J. C., and Morari, M. (2002). An improved approach for

constrained robust model predictive control. Automatica, 38:1183–1189.

Cychowski, M. T., Ding, B., and O’Mahony, T. (2005). An orthogonal partitioning

approach to simplify robust model predictive control. In Proceedings of the 13th
Mediterranean Conference on Control and Automation, pages 877–882.

126 References

Boissonnat, J.-D., Devillers, O., and Hornus, S. (2009). Incremental construction

of the Delaunay triangulation and Delaunay graph in medium dimension. In 25th
Annual Symposium on Computational Geometry.

Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V. (1994). Linear Matrix
Inequalities in System and Control Theory. SIAM.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge Univer-

sity Press.

Brisson, E. (1993). Representing geometric structures in d dimensions: topology

and order. Discrete and Computational Geometry, 9(4):387–426.

Bronstein, E. M. (2008). Approximation of convex sets by polytopes. Journal of
Mathematical Science, 153(6):727–762.

Burger, T., Gritzmann, P., and Klee, V. (1996). Polytope projection and projection

of polytopes. The American Mathematical Monthly, 103(9):742–755.

Cazals, F. and Giesen, J. (2006). Effective Computational Geometry for Curves and
Surfaces, chapter Delaunay Triangulation Based Surface Reconstruction, pages

231–276. Springer Berlin Heidelberg.

Celes, W., Paulino, G. H., and Espinha, R. (2005). A compact adjacency-based

topological data structure for finite element mesh representation. International
Journal for Numerical Methods in Ingeneering, 64:1529–1556.

Chmielewski, D. and Manousiouthakis, V. (1996). On constrained infinite-horizon

linear quadratic optimal control. Systems Control Lett., 29(3):121–129.

Christophersen, F. J. (2007). Optimal Control of Constrained Piecewise Affine Sys-
tems, volume 359 of Lecture Notes in Control and Information Sciences, chapter

Efficient evaluation of piecewise control laws defined over a large number of

polyhedra, pages 150–165. Springer Berlin Heidelberg.

Cignoni, P., Montani, C., and Scopigno, R. (1998). DeWall: A fast divide and con-

quer Delaunay triangulation algorithm in Ed. Computer-aided design, 30(5):333–

341.

Cuzzola, F. A., Geromel, J. C., and Morari, M. (2002). An improved approach for

constrained robust model predictive control. Automatica, 38:1183–1189.

Cychowski, M. T., Ding, B., and O’Mahony, T. (2005). An orthogonal partitioning

approach to simplify robust model predictive control. In Proceedings of the 13th
Mediterranean Conference on Control and Automation, pages 877–882.

References 127

Dabbene, F., Gay, P., and Polyak, B. T. (2003). Recursive algorithms for inner

ellipsoidal approximation of convex polytopes. Automatica, 39(10):1773–1781.

Darby, M. L. and Nikolaou, M. (2007). A parametric programming approach to

movin-horizon state estimation. Automatica, 43:885–891.

de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2008). Computa-
tional Geometry, Algorithms and Applications. Springer Berlin Heidelberg.

de la Peña, D. M., Bemporad, A., and Filippi, C. (2004). Robust explicit MPC

based on approximate multi-parametric convex programming. In Proceedings of
the 43rd IEEE Conference on Decision and Control.

Devroye, L., Lemaire, C., and Moreau, J. (1999). Fast Delaunay point location with

search structures. In Proceedings of the 11th Canadian Conference on Computa-
tional Geometry, pages 15–18.

Devroye, L., Lemaire, C., and Moreau, J. (2004). Expected time analysis for De-

launay point location. Computational Geometry, 29:61–89.

Dyer, R., Zhang, H., and Möller, T. (2009). A survey of Delaunay structures for

surface representation. Technical Report TR 2009-01, GrUVi Lab, School of

Computing Science.

Fukuda, K. (2004). Frequently asked questions in polyhedral computation. Techni-

cal report, [Online], http://www.ifor.math.ethz.ch/ fukuda/polyfaq/polyfaq.html.

Gallier, J. (2000). Geometric Methods and Applications for Computer Science and
Engineering. Springer-Verlag.

Geyer, T., Torrisi, F. D., and Morari, M. (2004). Optimal complexity reduction of

piecewise affine models based on hyperplane arrangements. In Proceedings of
the American Control Conference, pages 1190–1195.

Gilbert, E. G. and Tan, K. T. (1991). Linear systems with state and control con-

straints: the theory and application of maximal output admissible sets. IEEE
Transactions on Automatic Control, 36(9).

Grancharova, A. and Johansen, T. A. (2005). Survey of Explicit Approaches to Con-
strained Optimal Control. Lecture Notes in Computer Science. Springer Berlin

Heidelberg.

Grieder, P., Parrillo, P. A., and Morari, M. (2003). Robust receding horizon control -

analysis and synthesis. In Proceedings of the 42nd IEEE Conference on Decision
and Control.

References 127

Dabbene, F., Gay, P., and Polyak, B. T. (2003). Recursive algorithms for inner

ellipsoidal approximation of convex polytopes. Automatica, 39(10):1773–1781.

Darby, M. L. and Nikolaou, M. (2007). A parametric programming approach to

movin-horizon state estimation. Automatica, 43:885–891.

de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2008). Computa-
tional Geometry, Algorithms and Applications. Springer Berlin Heidelberg.

de la Peña, D. M., Bemporad, A., and Filippi, C. (2004). Robust explicit MPC

based on approximate multi-parametric convex programming. In Proceedings of
the 43rd IEEE Conference on Decision and Control.

Devroye, L., Lemaire, C., and Moreau, J. (1999). Fast Delaunay point location with

search structures. In Proceedings of the 11th Canadian Conference on Computa-
tional Geometry, pages 15–18.

Devroye, L., Lemaire, C., and Moreau, J. (2004). Expected time analysis for De-

launay point location. Computational Geometry, 29:61–89.

Dyer, R., Zhang, H., and Möller, T. (2009). A survey of Delaunay structures for

surface representation. Technical Report TR 2009-01, GrUVi Lab, School of

Computing Science.

Fukuda, K. (2004). Frequently asked questions in polyhedral computation. Techni-

cal report, [Online], http://www.ifor.math.ethz.ch/ fukuda/polyfaq/polyfaq.html.

Gallier, J. (2000). Geometric Methods and Applications for Computer Science and
Engineering. Springer-Verlag.

Geyer, T., Torrisi, F. D., and Morari, M. (2004). Optimal complexity reduction of

piecewise affine models based on hyperplane arrangements. In Proceedings of
the American Control Conference, pages 1190–1195.

Gilbert, E. G. and Tan, K. T. (1991). Linear systems with state and control con-

straints: the theory and application of maximal output admissible sets. IEEE
Transactions on Automatic Control, 36(9).

Grancharova, A. and Johansen, T. A. (2005). Survey of Explicit Approaches to Con-
strained Optimal Control. Lecture Notes in Computer Science. Springer Berlin

Heidelberg.

Grieder, P., Parrillo, P. A., and Morari, M. (2003). Robust receding horizon control -

analysis and synthesis. In Proceedings of the 42nd IEEE Conference on Decision
and Control.

References 127

Dabbene, F., Gay, P., and Polyak, B. T. (2003). Recursive algorithms for inner

ellipsoidal approximation of convex polytopes. Automatica, 39(10):1773–1781.

Darby, M. L. and Nikolaou, M. (2007). A parametric programming approach to

movin-horizon state estimation. Automatica, 43:885–891.

de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2008). Computa-
tional Geometry, Algorithms and Applications. Springer Berlin Heidelberg.

de la Peña, D. M., Bemporad, A., and Filippi, C. (2004). Robust explicit MPC

based on approximate multi-parametric convex programming. In Proceedings of
the 43rd IEEE Conference on Decision and Control.

Devroye, L., Lemaire, C., and Moreau, J. (1999). Fast Delaunay point location with

search structures. In Proceedings of the 11th Canadian Conference on Computa-
tional Geometry, pages 15–18.

Devroye, L., Lemaire, C., and Moreau, J. (2004). Expected time analysis for De-

launay point location. Computational Geometry, 29:61–89.

Dyer, R., Zhang, H., and Möller, T. (2009). A survey of Delaunay structures for

surface representation. Technical Report TR 2009-01, GrUVi Lab, School of

Computing Science.

Fukuda, K. (2004). Frequently asked questions in polyhedral computation. Techni-

cal report, [Online], http://www.ifor.math.ethz.ch/ fukuda/polyfaq/polyfaq.html.

Gallier, J. (2000). Geometric Methods and Applications for Computer Science and
Engineering. Springer-Verlag.

Geyer, T., Torrisi, F. D., and Morari, M. (2004). Optimal complexity reduction of

piecewise affine models based on hyperplane arrangements. In Proceedings of
the American Control Conference, pages 1190–1195.

Gilbert, E. G. and Tan, K. T. (1991). Linear systems with state and control con-

straints: the theory and application of maximal output admissible sets. IEEE
Transactions on Automatic Control, 36(9).

Grancharova, A. and Johansen, T. A. (2005). Survey of Explicit Approaches to Con-
strained Optimal Control. Lecture Notes in Computer Science. Springer Berlin

Heidelberg.

Grieder, P., Parrillo, P. A., and Morari, M. (2003). Robust receding horizon control -

analysis and synthesis. In Proceedings of the 42nd IEEE Conference on Decision
and Control.

References 127

Dabbene, F., Gay, P., and Polyak, B. T. (2003). Recursive algorithms for inner

ellipsoidal approximation of convex polytopes. Automatica, 39(10):1773–1781.

Darby, M. L. and Nikolaou, M. (2007). A parametric programming approach to

movin-horizon state estimation. Automatica, 43:885–891.

de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2008). Computa-
tional Geometry, Algorithms and Applications. Springer Berlin Heidelberg.

de la Peña, D. M., Bemporad, A., and Filippi, C. (2004). Robust explicit MPC

based on approximate multi-parametric convex programming. In Proceedings of
the 43rd IEEE Conference on Decision and Control.

Devroye, L., Lemaire, C., and Moreau, J. (1999). Fast Delaunay point location with

search structures. In Proceedings of the 11th Canadian Conference on Computa-
tional Geometry, pages 15–18.

Devroye, L., Lemaire, C., and Moreau, J. (2004). Expected time analysis for De-

launay point location. Computational Geometry, 29:61–89.

Dyer, R., Zhang, H., and Möller, T. (2009). A survey of Delaunay structures for

surface representation. Technical Report TR 2009-01, GrUVi Lab, School of

Computing Science.

Fukuda, K. (2004). Frequently asked questions in polyhedral computation. Techni-

cal report, [Online], http://www.ifor.math.ethz.ch/ fukuda/polyfaq/polyfaq.html.

Gallier, J. (2000). Geometric Methods and Applications for Computer Science and
Engineering. Springer-Verlag.

Geyer, T., Torrisi, F. D., and Morari, M. (2004). Optimal complexity reduction of

piecewise affine models based on hyperplane arrangements. In Proceedings of
the American Control Conference, pages 1190–1195.

Gilbert, E. G. and Tan, K. T. (1991). Linear systems with state and control con-

straints: the theory and application of maximal output admissible sets. IEEE
Transactions on Automatic Control, 36(9).

Grancharova, A. and Johansen, T. A. (2005). Survey of Explicit Approaches to Con-
strained Optimal Control. Lecture Notes in Computer Science. Springer Berlin

Heidelberg.

Grieder, P., Parrillo, P. A., and Morari, M. (2003). Robust receding horizon control -

analysis and synthesis. In Proceedings of the 42nd IEEE Conference on Decision
and Control.

128 References

Grieder, P., Wan, Z., Kothare, M., and Morari, M. (2004). Two level model pre-

dictive control for the maximum control invariant set. In Proceedings of the
American Control Conference, pages 1586–1591.

Gritzmann, P. and Klee, V. (1994a). On the complexity of some basic problems

in computational convexity: 2. volume and mixed volumes. Technical report,

DIMACS.

Gritzmann, P. and Klee, V. (1994b). On the complexity of some basic problems in

computational convexity: I. containment problems. Discrete Mathematics.

Gritzmann, P. and Sturmfels, B. (1993). Minkowski addition of polytopes: com-

putational complexity and applications to Göbner bases. SIAM J. Disc. Math.,
6(2):246–269.

Gutman, P. and Cwikel, M. (1986). Admissible sets and feedback control for

discrete-time linear dynamical systems with bounded controls and states. IEEE
Transactions on Automatic Control, AC-31(4).

Hjelle, Ø. and Dæhlen, M. (2006). Triangulations and Applications. Mathematics

and Visualization. Springer.

Hovd, M. and Olaru, S. (2010). Piecewise quadratic Lyapunov functions for sta-

bility verification of approximate explicit MPC. Modeling, Identification and
Control, 31(2):45–53.

Hovd, M., Scibilia, F., Maciejowski, J. M., and Olaru, S. (2009). Verifying stability

of approximate explicit MPC. In Proceedings of the 48th IEEE Conference on
Decision and Control, pages 6345–6350.

Hovland, S., Willcox, K. E., and Gravdhal, J. (2008). Explicit MPC for large-scale

systems via model reduction. AIAA J. Guidance, Control and Dynamics, 31(4).

Ikonen, E. and Najim, K. (2002). Advanced process identification and control.
Control Engineering Series. Marcel Dekker, Inc.

Johansen, T. A. (2003). Reduced explicit constrained linear quadratic regulators.

IEEE Transactions on Automatic Control, 48(5):823–828.

Johansen, T. A. (2004). Approximate explicit receding horizon control of con-

strained nonlinear systems. Automatica, 40:293–300.

Johansen, T. A., Fossen, T. I., and Tøndel, P. (2005). Efficient optimal constrained

control allocation via multi-parametric programming. AIAA J. Guidance, Control
and Dynamics, 28(3):506–515.

128 References

Grieder, P., Wan, Z., Kothare, M., and Morari, M. (2004). Two level model pre-

dictive control for the maximum control invariant set. In Proceedings of the
American Control Conference, pages 1586–1591.

Gritzmann, P. and Klee, V. (1994a). On the complexity of some basic problems

in computational convexity: 2. volume and mixed volumes. Technical report,

DIMACS.

Gritzmann, P. and Klee, V. (1994b). On the complexity of some basic problems in

computational convexity: I. containment problems. Discrete Mathematics.

Gritzmann, P. and Sturmfels, B. (1993). Minkowski addition of polytopes: com-

putational complexity and applications to Göbner bases. SIAM J. Disc. Math.,
6(2):246–269.

Gutman, P. and Cwikel, M. (1986). Admissible sets and feedback control for

discrete-time linear dynamical systems with bounded controls and states. IEEE
Transactions on Automatic Control, AC-31(4).

Hjelle, Ø. and Dæhlen, M. (2006). Triangulations and Applications. Mathematics

and Visualization. Springer.

Hovd, M. and Olaru, S. (2010). Piecewise quadratic Lyapunov functions for sta-

bility verification of approximate explicit MPC. Modeling, Identification and
Control, 31(2):45–53.

Hovd, M., Scibilia, F., Maciejowski, J. M., and Olaru, S. (2009). Verifying stability

of approximate explicit MPC. In Proceedings of the 48th IEEE Conference on
Decision and Control, pages 6345–6350.

Hovland, S., Willcox, K. E., and Gravdhal, J. (2008). Explicit MPC for large-scale

systems via model reduction. AIAA J. Guidance, Control and Dynamics, 31(4).

Ikonen, E. and Najim, K. (2002). Advanced process identification and control.
Control Engineering Series. Marcel Dekker, Inc.

Johansen, T. A. (2003). Reduced explicit constrained linear quadratic regulators.

IEEE Transactions on Automatic Control, 48(5):823–828.

Johansen, T. A. (2004). Approximate explicit receding horizon control of con-

strained nonlinear systems. Automatica, 40:293–300.

Johansen, T. A., Fossen, T. I., and Tøndel, P. (2005). Efficient optimal constrained

control allocation via multi-parametric programming. AIAA J. Guidance, Control
and Dynamics, 28(3):506–515.

128 References

Grieder, P., Wan, Z., Kothare, M., and Morari, M. (2004). Two level model pre-

dictive control for the maximum control invariant set. In Proceedings of the
American Control Conference, pages 1586–1591.

Gritzmann, P. and Klee, V. (1994a). On the complexity of some basic problems

in computational convexity: 2. volume and mixed volumes. Technical report,

DIMACS.

Gritzmann, P. and Klee, V. (1994b). On the complexity of some basic problems in

computational convexity: I. containment problems. Discrete Mathematics.

Gritzmann, P. and Sturmfels, B. (1993). Minkowski addition of polytopes: com-

putational complexity and applications to Göbner bases. SIAM J. Disc. Math.,
6(2):246–269.

Gutman, P. and Cwikel, M. (1986). Admissible sets and feedback control for

discrete-time linear dynamical systems with bounded controls and states. IEEE
Transactions on Automatic Control, AC-31(4).

Hjelle, Ø. and Dæhlen, M. (2006). Triangulations and Applications. Mathematics

and Visualization. Springer.

Hovd, M. and Olaru, S. (2010). Piecewise quadratic Lyapunov functions for sta-

bility verification of approximate explicit MPC. Modeling, Identification and
Control, 31(2):45–53.

Hovd, M., Scibilia, F., Maciejowski, J. M., and Olaru, S. (2009). Verifying stability

of approximate explicit MPC. In Proceedings of the 48th IEEE Conference on
Decision and Control, pages 6345–6350.

Hovland, S., Willcox, K. E., and Gravdhal, J. (2008). Explicit MPC for large-scale

systems via model reduction. AIAA J. Guidance, Control and Dynamics, 31(4).

Ikonen, E. and Najim, K. (2002). Advanced process identification and control.
Control Engineering Series. Marcel Dekker, Inc.

Johansen, T. A. (2003). Reduced explicit constrained linear quadratic regulators.

IEEE Transactions on Automatic Control, 48(5):823–828.

Johansen, T. A. (2004). Approximate explicit receding horizon control of con-

strained nonlinear systems. Automatica, 40:293–300.

Johansen, T. A., Fossen, T. I., and Tøndel, P. (2005). Efficient optimal constrained

control allocation via multi-parametric programming. AIAA J. Guidance, Control
and Dynamics, 28(3):506–515.

128 References

Grieder, P., Wan, Z., Kothare, M., and Morari, M. (2004). Two level model pre-

dictive control for the maximum control invariant set. In Proceedings of the
American Control Conference, pages 1586–1591.

Gritzmann, P. and Klee, V. (1994a). On the complexity of some basic problems

in computational convexity: 2. volume and mixed volumes. Technical report,

DIMACS.

Gritzmann, P. and Klee, V. (1994b). On the complexity of some basic problems in

computational convexity: I. containment problems. Discrete Mathematics.

Gritzmann, P. and Sturmfels, B. (1993). Minkowski addition of polytopes: com-

putational complexity and applications to Göbner bases. SIAM J. Disc. Math.,
6(2):246–269.

Gutman, P. and Cwikel, M. (1986). Admissible sets and feedback control for

discrete-time linear dynamical systems with bounded controls and states. IEEE
Transactions on Automatic Control, AC-31(4).

Hjelle, Ø. and Dæhlen, M. (2006). Triangulations and Applications. Mathematics

and Visualization. Springer.

Hovd, M. and Olaru, S. (2010). Piecewise quadratic Lyapunov functions for sta-

bility verification of approximate explicit MPC. Modeling, Identification and
Control, 31(2):45–53.

Hovd, M., Scibilia, F., Maciejowski, J. M., and Olaru, S. (2009). Verifying stability

of approximate explicit MPC. In Proceedings of the 48th IEEE Conference on
Decision and Control, pages 6345–6350.

Hovland, S., Willcox, K. E., and Gravdhal, J. (2008). Explicit MPC for large-scale

systems via model reduction. AIAA J. Guidance, Control and Dynamics, 31(4).

Ikonen, E. and Najim, K. (2002). Advanced process identification and control.
Control Engineering Series. Marcel Dekker, Inc.

Johansen, T. A. (2003). Reduced explicit constrained linear quadratic regulators.

IEEE Transactions on Automatic Control, 48(5):823–828.

Johansen, T. A. (2004). Approximate explicit receding horizon control of con-

strained nonlinear systems. Automatica, 40:293–300.

Johansen, T. A., Fossen, T. I., and Tøndel, P. (2005). Efficient optimal constrained

control allocation via multi-parametric programming. AIAA J. Guidance, Control
and Dynamics, 28(3):506–515.

References 129

Johansen, T. A. and Grancharova, A. (2003). Approximate explicit constrained

linear model predictive control via orthogonal search tree. IEEE Transactions on
Automatic Control, 48:810–815.

Jones, C. and Morari, M. (2008). The double description method for the approxima-

tion of explicit MPC control laws. In Proceedings of the 47th IEEE Conference
on Decision and Control, pages 4724–4730.

Jones, C. N., Kerrigan, E. C., and Maciejowski, J. M. (2004). Equality set projec-

tion: A new algorithm for the projection of polytopes in halfspace representation.

Technical report, Department of Engineering, Cambridge University.

Jones, C. N., Kerrigan, E. C., and Maciejowski, J. M. (2008). On polyhedral pro-

jection and parametric programming. Journal of Optimization Theory and Appli-
cations, 138:207–220.

Jones, C. N. and Morari, M. (2009). Approximate explicit MPC using bilevel opti-

mization. In Proceedings of the European Control Conference, pages 2396–2401.

Keerthi, S. S. and Gilbert, E. G. (1988). Optimal, infinite horizon feedback laws

for a general class of constrained discrete time systems: Stability and moving-

horizon approximations. Journal of Optimization Theory and Applications,

57:265–293.

Kerrigan, E. C. and Maciejowski, J. M. (2000). Invariant sets for constrained non-

linear discrete-time systems with application to feasibility in model predictive

control. In Proceedings of the 39th IEEE Conference on Decision and Control.

Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., and Gurvich, V. (2008). Gener-

ating all vertices of a polyhedron is hard. Discrete and Computational Geometry,

39((1-3)):174–190.

Khalil, H. (2000). Nonlinear Systems. Prentice Hall, third edition.

Kolmanovsky, I. and Gilbert, E. G. (1995). Maximal output admissible sets for

discrete-time systems with disturbance inputs. In Proceedings of the American
Control Conference, pages 1995–1999.

Kothare, M. V., Balakrishnan, V., and Morari, M. (1996). Robust constrained model

predictive control using linear matrix inequalities. Automatica, 32(10):1361–

1379.

Kouvaritakis, B., Rossiter, J. A., and Schuurmans, J. (2000). Efficient robust pre-

dictive control. IEEE Transactions on Automatic Control, 45(8):1545–1549.

References 129

Johansen, T. A. and Grancharova, A. (2003). Approximate explicit constrained

linear model predictive control via orthogonal search tree. IEEE Transactions on
Automatic Control, 48:810–815.

Jones, C. and Morari, M. (2008). The double description method for the approxima-

tion of explicit MPC control laws. In Proceedings of the 47th IEEE Conference
on Decision and Control, pages 4724–4730.

Jones, C. N., Kerrigan, E. C., and Maciejowski, J. M. (2004). Equality set projec-

tion: A new algorithm for the projection of polytopes in halfspace representation.

Technical report, Department of Engineering, Cambridge University.

Jones, C. N., Kerrigan, E. C., and Maciejowski, J. M. (2008). On polyhedral pro-

jection and parametric programming. Journal of Optimization Theory and Appli-
cations, 138:207–220.

Jones, C. N. and Morari, M. (2009). Approximate explicit MPC using bilevel opti-

mization. In Proceedings of the European Control Conference, pages 2396–2401.

Keerthi, S. S. and Gilbert, E. G. (1988). Optimal, infinite horizon feedback laws

for a general class of constrained discrete time systems: Stability and moving-

horizon approximations. Journal of Optimization Theory and Applications,

57:265–293.

Kerrigan, E. C. and Maciejowski, J. M. (2000). Invariant sets for constrained non-

linear discrete-time systems with application to feasibility in model predictive

control. In Proceedings of the 39th IEEE Conference on Decision and Control.

Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., and Gurvich, V. (2008). Gener-

ating all vertices of a polyhedron is hard. Discrete and Computational Geometry,

39((1-3)):174–190.

Khalil, H. (2000). Nonlinear Systems. Prentice Hall, third edition.

Kolmanovsky, I. and Gilbert, E. G. (1995). Maximal output admissible sets for

discrete-time systems with disturbance inputs. In Proceedings of the American
Control Conference, pages 1995–1999.

Kothare, M. V., Balakrishnan, V., and Morari, M. (1996). Robust constrained model

predictive control using linear matrix inequalities. Automatica, 32(10):1361–

1379.

Kouvaritakis, B., Rossiter, J. A., and Schuurmans, J. (2000). Efficient robust pre-

dictive control. IEEE Transactions on Automatic Control, 45(8):1545–1549.

References 129

Johansen, T. A. and Grancharova, A. (2003). Approximate explicit constrained

linear model predictive control via orthogonal search tree. IEEE Transactions on
Automatic Control, 48:810–815.

Jones, C. and Morari, M. (2008). The double description method for the approxima-

tion of explicit MPC control laws. In Proceedings of the 47th IEEE Conference
on Decision and Control, pages 4724–4730.

Jones, C. N., Kerrigan, E. C., and Maciejowski, J. M. (2004). Equality set projec-

tion: A new algorithm for the projection of polytopes in halfspace representation.

Technical report, Department of Engineering, Cambridge University.

Jones, C. N., Kerrigan, E. C., and Maciejowski, J. M. (2008). On polyhedral pro-

jection and parametric programming. Journal of Optimization Theory and Appli-
cations, 138:207–220.

Jones, C. N. and Morari, M. (2009). Approximate explicit MPC using bilevel opti-

mization. In Proceedings of the European Control Conference, pages 2396–2401.

Keerthi, S. S. and Gilbert, E. G. (1988). Optimal, infinite horizon feedback laws

for a general class of constrained discrete time systems: Stability and moving-

horizon approximations. Journal of Optimization Theory and Applications,

57:265–293.

Kerrigan, E. C. and Maciejowski, J. M. (2000). Invariant sets for constrained non-

linear discrete-time systems with application to feasibility in model predictive

control. In Proceedings of the 39th IEEE Conference on Decision and Control.

Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., and Gurvich, V. (2008). Gener-

ating all vertices of a polyhedron is hard. Discrete and Computational Geometry,

39((1-3)):174–190.

Khalil, H. (2000). Nonlinear Systems. Prentice Hall, third edition.

Kolmanovsky, I. and Gilbert, E. G. (1995). Maximal output admissible sets for

discrete-time systems with disturbance inputs. In Proceedings of the American
Control Conference, pages 1995–1999.

Kothare, M. V., Balakrishnan, V., and Morari, M. (1996). Robust constrained model

predictive control using linear matrix inequalities. Automatica, 32(10):1361–

1379.

Kouvaritakis, B., Rossiter, J. A., and Schuurmans, J. (2000). Efficient robust pre-

dictive control. IEEE Transactions on Automatic Control, 45(8):1545–1549.

References 129

Johansen, T. A. and Grancharova, A. (2003). Approximate explicit constrained

linear model predictive control via orthogonal search tree. IEEE Transactions on
Automatic Control, 48:810–815.

Jones, C. and Morari, M. (2008). The double description method for the approxima-

tion of explicit MPC control laws. In Proceedings of the 47th IEEE Conference
on Decision and Control, pages 4724–4730.

Jones, C. N., Kerrigan, E. C., and Maciejowski, J. M. (2004). Equality set projec-

tion: A new algorithm for the projection of polytopes in halfspace representation.

Technical report, Department of Engineering, Cambridge University.

Jones, C. N., Kerrigan, E. C., and Maciejowski, J. M. (2008). On polyhedral pro-

jection and parametric programming. Journal of Optimization Theory and Appli-
cations, 138:207–220.

Jones, C. N. and Morari, M. (2009). Approximate explicit MPC using bilevel opti-

mization. In Proceedings of the European Control Conference, pages 2396–2401.

Keerthi, S. S. and Gilbert, E. G. (1988). Optimal, infinite horizon feedback laws

for a general class of constrained discrete time systems: Stability and moving-

horizon approximations. Journal of Optimization Theory and Applications,

57:265–293.

Kerrigan, E. C. and Maciejowski, J. M. (2000). Invariant sets for constrained non-

linear discrete-time systems with application to feasibility in model predictive

control. In Proceedings of the 39th IEEE Conference on Decision and Control.

Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., and Gurvich, V. (2008). Gener-

ating all vertices of a polyhedron is hard. Discrete and Computational Geometry,

39((1-3)):174–190.

Khalil, H. (2000). Nonlinear Systems. Prentice Hall, third edition.

Kolmanovsky, I. and Gilbert, E. G. (1995). Maximal output admissible sets for

discrete-time systems with disturbance inputs. In Proceedings of the American
Control Conference, pages 1995–1999.

Kothare, M. V., Balakrishnan, V., and Morari, M. (1996). Robust constrained model

predictive control using linear matrix inequalities. Automatica, 32(10):1361–

1379.

Kouvaritakis, B., Rossiter, J. A., and Schuurmans, J. (2000). Efficient robust pre-

dictive control. IEEE Transactions on Automatic Control, 45(8):1545–1549.

130 References

Kvasnica, M., Grieder, P., and Baoti, M. (2004). Multi-parametric toolbox.

http://control.ee.ethz.ch/∼mpt/.

Kvasnica, M., Grieder, P., Baotic, M., and Christophersen, F. J. (2006). Multi-
Parametric Toolbox (MPT) documentation. Swiss Federal Institute of Technol-

ogy, http://control.ee.ethz.ch/∼mpt/.

Ljung, L. (2006). System Identification: Theory for the User. Prentice Hall Infor-

mation and System Sciences Series, second edition.

Lopez, M. A. and Reisner, S. (2002). Linear time approximation of 3D convex

polytopes. Computational Geometry, 23:291–301.

Maciejowski, J. M. (2002). Predictive control with constraints. Prentice Hall.

Matousek, J. (2002). Lectures on Discrete Geometry, volume 212 of GTM.

Springer.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M. (2000). Con-

strained model predictive control: Stability and optimality. Automatica, 36:789–

814.

Motzkin, T. S., Raiffa, H., Thompson, G. L., and Thrall, R. M. (1953). The double

description method. H.W. Kuhn and A.W.Tucker, editors, Contributions to theory
of games, Princeton University Press, Princeton, RI, 2.

Mount, D. M. (2002). Computational geometry. Lecture Notes. Department of

Computer Science, University of Maryland.

Mücke, E. P., Saias, I., and Zhu, B. (1999). Fast randomized point location without

preprocessing in two- and three-dimensional Delaunay triangulations. Computa-
tional Geometry, 12:63–83.

Muske, K. R. and Rawlings, J. B. (1993). Model predictive control with linear

models. AIChE Journal, 39(2):262–287.

Naidu, D. S. (2003). Optimal Control Systems. CRC Press LLC.

Nam, N. H., Olaru, S., and Hovd, M. (2010). Patchy approximate explicit model

predictive control. In International Conference on Control, Automation and Sys-
tems.

Nicolao, G. D., Magni, L., and Scattolini, R. (1996). On the robustness of receding-

horizon control with terminal constraints. IEEE Transactions on Automatic Con-
trol, 41(3):451–453.

130 References

Kvasnica, M., Grieder, P., and Baoti, M. (2004). Multi-parametric toolbox.

http://control.ee.ethz.ch/∼mpt/.

Kvasnica, M., Grieder, P., Baotic, M., and Christophersen, F. J. (2006). Multi-
Parametric Toolbox (MPT) documentation. Swiss Federal Institute of Technol-

ogy, http://control.ee.ethz.ch/∼mpt/.

Ljung, L. (2006). System Identification: Theory for the User. Prentice Hall Infor-

mation and System Sciences Series, second edition.

Lopez, M. A. and Reisner, S. (2002). Linear time approximation of 3D convex

polytopes. Computational Geometry, 23:291–301.

Maciejowski, J. M. (2002). Predictive control with constraints. Prentice Hall.

Matousek, J. (2002). Lectures on Discrete Geometry, volume 212 of GTM.

Springer.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M. (2000). Con-

strained model predictive control: Stability and optimality. Automatica, 36:789–

814.

Motzkin, T. S., Raiffa, H., Thompson, G. L., and Thrall, R. M. (1953). The double

description method. H.W. Kuhn and A.W.Tucker, editors, Contributions to theory
of games, Princeton University Press, Princeton, RI, 2.

Mount, D. M. (2002). Computational geometry. Lecture Notes. Department of

Computer Science, University of Maryland.

Mücke, E. P., Saias, I., and Zhu, B. (1999). Fast randomized point location without

preprocessing in two- and three-dimensional Delaunay triangulations. Computa-
tional Geometry, 12:63–83.

Muske, K. R. and Rawlings, J. B. (1993). Model predictive control with linear

models. AIChE Journal, 39(2):262–287.

Naidu, D. S. (2003). Optimal Control Systems. CRC Press LLC.

Nam, N. H., Olaru, S., and Hovd, M. (2010). Patchy approximate explicit model

predictive control. In International Conference on Control, Automation and Sys-
tems.

Nicolao, G. D., Magni, L., and Scattolini, R. (1996). On the robustness of receding-

horizon control with terminal constraints. IEEE Transactions on Automatic Con-
trol, 41(3):451–453.

130 References

Kvasnica, M., Grieder, P., and Baoti, M. (2004). Multi-parametric toolbox.

http://control.ee.ethz.ch/∼mpt/.

Kvasnica, M., Grieder, P., Baotic, M., and Christophersen, F. J. (2006). Multi-
Parametric Toolbox (MPT) documentation. Swiss Federal Institute of Technol-

ogy, http://control.ee.ethz.ch/∼mpt/.

Ljung, L. (2006). System Identification: Theory for the User. Prentice Hall Infor-

mation and System Sciences Series, second edition.

Lopez, M. A. and Reisner, S. (2002). Linear time approximation of 3D convex

polytopes. Computational Geometry, 23:291–301.

Maciejowski, J. M. (2002). Predictive control with constraints. Prentice Hall.

Matousek, J. (2002). Lectures on Discrete Geometry, volume 212 of GTM.

Springer.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M. (2000). Con-

strained model predictive control: Stability and optimality. Automatica, 36:789–

814.

Motzkin, T. S., Raiffa, H., Thompson, G. L., and Thrall, R. M. (1953). The double

description method. H.W. Kuhn and A.W.Tucker, editors, Contributions to theory
of games, Princeton University Press, Princeton, RI, 2.

Mount, D. M. (2002). Computational geometry. Lecture Notes. Department of

Computer Science, University of Maryland.

Mücke, E. P., Saias, I., and Zhu, B. (1999). Fast randomized point location without

preprocessing in two- and three-dimensional Delaunay triangulations. Computa-
tional Geometry, 12:63–83.

Muske, K. R. and Rawlings, J. B. (1993). Model predictive control with linear

models. AIChE Journal, 39(2):262–287.

Naidu, D. S. (2003). Optimal Control Systems. CRC Press LLC.

Nam, N. H., Olaru, S., and Hovd, M. (2010). Patchy approximate explicit model

predictive control. In International Conference on Control, Automation and Sys-
tems.

Nicolao, G. D., Magni, L., and Scattolini, R. (1996). On the robustness of receding-

horizon control with terminal constraints. IEEE Transactions on Automatic Con-
trol, 41(3):451–453.

130 References

Kvasnica, M., Grieder, P., and Baoti, M. (2004). Multi-parametric toolbox.

http://control.ee.ethz.ch/∼mpt/.

Kvasnica, M., Grieder, P., Baotic, M., and Christophersen, F. J. (2006). Multi-
Parametric Toolbox (MPT) documentation. Swiss Federal Institute of Technol-

ogy, http://control.ee.ethz.ch/∼mpt/.

Ljung, L. (2006). System Identification: Theory for the User. Prentice Hall Infor-

mation and System Sciences Series, second edition.

Lopez, M. A. and Reisner, S. (2002). Linear time approximation of 3D convex

polytopes. Computational Geometry, 23:291–301.

Maciejowski, J. M. (2002). Predictive control with constraints. Prentice Hall.

Matousek, J. (2002). Lectures on Discrete Geometry, volume 212 of GTM.

Springer.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M. (2000). Con-

strained model predictive control: Stability and optimality. Automatica, 36:789–

814.

Motzkin, T. S., Raiffa, H., Thompson, G. L., and Thrall, R. M. (1953). The double

description method. H.W. Kuhn and A.W.Tucker, editors, Contributions to theory
of games, Princeton University Press, Princeton, RI, 2.

Mount, D. M. (2002). Computational geometry. Lecture Notes. Department of

Computer Science, University of Maryland.

Mücke, E. P., Saias, I., and Zhu, B. (1999). Fast randomized point location without

preprocessing in two- and three-dimensional Delaunay triangulations. Computa-
tional Geometry, 12:63–83.

Muske, K. R. and Rawlings, J. B. (1993). Model predictive control with linear

models. AIChE Journal, 39(2):262–287.

Naidu, D. S. (2003). Optimal Control Systems. CRC Press LLC.

Nam, N. H., Olaru, S., and Hovd, M. (2010). Patchy approximate explicit model

predictive control. In International Conference on Control, Automation and Sys-
tems.

Nicolao, G. D., Magni, L., and Scattolini, R. (1996). On the robustness of receding-

horizon control with terminal constraints. IEEE Transactions on Automatic Con-
trol, 41(3):451–453.

References 131

Nienhuys, H.-W. and van der Stappen, A. F. (2003). Maintaining mesh connec-

tivity using a simplex-based data structure. Technical Report UU-CS-2003-018,

Institute of Information and Computing Sciences, Utrecht University.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer Series in

Operations Research And Financial Engineering. Springer Verlag, second edi-

tion.

Pistikopoulos, E. N. (2009). Perspectives in multiparametric programming and ex-

plicit model predictive control. AIChE Journal, 55(8):1918–1925.

Pluymers, B., Rossiter, J. A., Suykens, J., and Moor, B. D. (2005a). A simple

algorithm for robust MPC. In Proceedings of the 16th IFAC World Congress.

Pluymers, B., Rossiter, J. A., Suykens, J. A. K., and Moor, B. D. (2005b). The ef-

ficient computation of polyhedral invariant sets for linear systems with polytopic

uncertainty. Proceedings of the American Control Conference.

Qin, S. J. and Badgwell, T. A. (2003). A survey of industrial model predictive

control technology. Control Engineering Practice, 11(7):733–764.

Rao, V. G. and Bernstein, D. S. (2001). Naive control of the double integrator. IEEE
Control Systems Magazine, 21:86–97.

Rawlings, J. B. and Mayne, D. Q. (2009). Model predictive control: theory and
design. Nob Hill Publishing, LLC.

Rawlings, J. B. and Muske, K. R. (1993). Stability of constrained receding horizon

control. IEEE Transactions on Automatic Control, 38(10):723–757.

Reisner, S., Schutt, C., and Werner, E. (2001). Dropping a vertex or a facet from a

convex polytope. Forum Math., 13:359–378.

Rossiter, J. A. and Grieder, P. (2005). Using interpolation to improve efficiency of

multiparametric predictive control. Automatica, 41(4):637–643.

Rossiter, J. A., Kouvaritakis, B., and Gossner, J. R. (1995). Mixed objective con-

strained stable generalized predictive control. Control Theory and Applications,
IEE Proceedings, 142(4):286–294.

Rossiter, J. A., Pluymers, B., Suykens, J., and Moor, B. D. (2005). A multi paramet-

ric quadratic programming solution to robust predictive control. In Proceedings
of the 16th IFAC World Congress.

References 131

Nienhuys, H.-W. and van der Stappen, A. F. (2003). Maintaining mesh connec-

tivity using a simplex-based data structure. Technical Report UU-CS-2003-018,

Institute of Information and Computing Sciences, Utrecht University.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer Series in

Operations Research And Financial Engineering. Springer Verlag, second edi-

tion.

Pistikopoulos, E. N. (2009). Perspectives in multiparametric programming and ex-

plicit model predictive control. AIChE Journal, 55(8):1918–1925.

Pluymers, B., Rossiter, J. A., Suykens, J., and Moor, B. D. (2005a). A simple

algorithm for robust MPC. In Proceedings of the 16th IFAC World Congress.

Pluymers, B., Rossiter, J. A., Suykens, J. A. K., and Moor, B. D. (2005b). The ef-

ficient computation of polyhedral invariant sets for linear systems with polytopic

uncertainty. Proceedings of the American Control Conference.

Qin, S. J. and Badgwell, T. A. (2003). A survey of industrial model predictive

control technology. Control Engineering Practice, 11(7):733–764.

Rao, V. G. and Bernstein, D. S. (2001). Naive control of the double integrator. IEEE
Control Systems Magazine, 21:86–97.

Rawlings, J. B. and Mayne, D. Q. (2009). Model predictive control: theory and
design. Nob Hill Publishing, LLC.

Rawlings, J. B. and Muske, K. R. (1993). Stability of constrained receding horizon

control. IEEE Transactions on Automatic Control, 38(10):723–757.

Reisner, S., Schutt, C., and Werner, E. (2001). Dropping a vertex or a facet from a

convex polytope. Forum Math., 13:359–378.

Rossiter, J. A. and Grieder, P. (2005). Using interpolation to improve efficiency of

multiparametric predictive control. Automatica, 41(4):637–643.

Rossiter, J. A., Kouvaritakis, B., and Gossner, J. R. (1995). Mixed objective con-

strained stable generalized predictive control. Control Theory and Applications,
IEE Proceedings, 142(4):286–294.

Rossiter, J. A., Pluymers, B., Suykens, J., and Moor, B. D. (2005). A multi paramet-

ric quadratic programming solution to robust predictive control. In Proceedings
of the 16th IFAC World Congress.

References 131

Nienhuys, H.-W. and van der Stappen, A. F. (2003). Maintaining mesh connec-

tivity using a simplex-based data structure. Technical Report UU-CS-2003-018,

Institute of Information and Computing Sciences, Utrecht University.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer Series in

Operations Research And Financial Engineering. Springer Verlag, second edi-

tion.

Pistikopoulos, E. N. (2009). Perspectives in multiparametric programming and ex-

plicit model predictive control. AIChE Journal, 55(8):1918–1925.

Pluymers, B., Rossiter, J. A., Suykens, J., and Moor, B. D. (2005a). A simple

algorithm for robust MPC. In Proceedings of the 16th IFAC World Congress.

Pluymers, B., Rossiter, J. A., Suykens, J. A. K., and Moor, B. D. (2005b). The ef-

ficient computation of polyhedral invariant sets for linear systems with polytopic

uncertainty. Proceedings of the American Control Conference.

Qin, S. J. and Badgwell, T. A. (2003). A survey of industrial model predictive

control technology. Control Engineering Practice, 11(7):733–764.

Rao, V. G. and Bernstein, D. S. (2001). Naive control of the double integrator. IEEE
Control Systems Magazine, 21:86–97.

Rawlings, J. B. and Mayne, D. Q. (2009). Model predictive control: theory and
design. Nob Hill Publishing, LLC.

Rawlings, J. B. and Muske, K. R. (1993). Stability of constrained receding horizon

control. IEEE Transactions on Automatic Control, 38(10):723–757.

Reisner, S., Schutt, C., and Werner, E. (2001). Dropping a vertex or a facet from a

convex polytope. Forum Math., 13:359–378.

Rossiter, J. A. and Grieder, P. (2005). Using interpolation to improve efficiency of

multiparametric predictive control. Automatica, 41(4):637–643.

Rossiter, J. A., Kouvaritakis, B., and Gossner, J. R. (1995). Mixed objective con-

strained stable generalized predictive control. Control Theory and Applications,
IEE Proceedings, 142(4):286–294.

Rossiter, J. A., Pluymers, B., Suykens, J., and Moor, B. D. (2005). A multi paramet-

ric quadratic programming solution to robust predictive control. In Proceedings
of the 16th IFAC World Congress.

References 131

Nienhuys, H.-W. and van der Stappen, A. F. (2003). Maintaining mesh connec-

tivity using a simplex-based data structure. Technical Report UU-CS-2003-018,

Institute of Information and Computing Sciences, Utrecht University.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer Series in

Operations Research And Financial Engineering. Springer Verlag, second edi-

tion.

Pistikopoulos, E. N. (2009). Perspectives in multiparametric programming and ex-

plicit model predictive control. AIChE Journal, 55(8):1918–1925.

Pluymers, B., Rossiter, J. A., Suykens, J., and Moor, B. D. (2005a). A simple

algorithm for robust MPC. In Proceedings of the 16th IFAC World Congress.

Pluymers, B., Rossiter, J. A., Suykens, J. A. K., and Moor, B. D. (2005b). The ef-

ficient computation of polyhedral invariant sets for linear systems with polytopic

uncertainty. Proceedings of the American Control Conference.

Qin, S. J. and Badgwell, T. A. (2003). A survey of industrial model predictive

control technology. Control Engineering Practice, 11(7):733–764.

Rao, V. G. and Bernstein, D. S. (2001). Naive control of the double integrator. IEEE
Control Systems Magazine, 21:86–97.

Rawlings, J. B. and Mayne, D. Q. (2009). Model predictive control: theory and
design. Nob Hill Publishing, LLC.

Rawlings, J. B. and Muske, K. R. (1993). Stability of constrained receding horizon

control. IEEE Transactions on Automatic Control, 38(10):723–757.

Reisner, S., Schutt, C., and Werner, E. (2001). Dropping a vertex or a facet from a

convex polytope. Forum Math., 13:359–378.

Rossiter, J. A. and Grieder, P. (2005). Using interpolation to improve efficiency of

multiparametric predictive control. Automatica, 41(4):637–643.

Rossiter, J. A., Kouvaritakis, B., and Gossner, J. R. (1995). Mixed objective con-

strained stable generalized predictive control. Control Theory and Applications,
IEE Proceedings, 142(4):286–294.

Rossiter, J. A., Pluymers, B., Suykens, J., and Moor, B. D. (2005). A multi paramet-

ric quadratic programming solution to robust predictive control. In Proceedings
of the 16th IFAC World Congress.

132 References

Scibilia, F., Bitmead, R. R., Olaru, S., and Hovd, M. (2009a). Maximal robust fea-

sible sets for constrained linear systems controlled by piecewise affine feedback

laws. In The 7th IEEE International Conference on Control and Automation.

Scibilia, F. and Hovd, M. (2009). Multi-rate moving horizon estimation with erro-

neous infrequent measurements recovery. In Preprints of the 7th IFAC Sympo-
sium on Fault Detection, Supervision and Safety of Technical Processes.

Scibilia, F., Hovd, M., and Bitmead, R. R. (2008). Stabilization of gas-lift oil wells

using topside measurements. In Proceedings of the 17th IFAC World Congress.

Scibilia, F., Hovd, M., and Olaru, S. (2010a). An algorithm for approximate ex-

plicit model predictive control via Delaunay tessellations. European Journal of
Control, (submitted).

Scibilia, F., Olaru, S., and Hovd, M. (2009b). Approximate explicit linear MPC

via Delaunay tessellation. In Proceedings of the European Control Conference,

pages 2833–2838.

Scibilia, F., Olaru, S., and Hovd, M. (2010b). On feasible sets for MPC and their

approximations. Automatica, (accepted for publication).

Scokaert, P. O. M. and Rawlings, J. B. (1998). Constrained linear quadratic regula-

tion. IEEE Transactions on Automatic Control, 43:1163–1169.

Seidel, R. (1988). Constrained Delaunay triangulation and Voronoi diagrams with

obstacles. Technical Report 260, Inst. for Information Processing, Graz, Austria.

Simon, D. (2006). Optimal state estimation - Kalman, H infinity, and nonlinear
approaches. Wiley-Interscience.

Spjøtvold, J., Rakovic, S. V., Tøndel, P., and Johansen, T. A. (2006). Utilizing

reachability analysis in point location problems. In Proceedings of the 45th IEEE
Conference on Decision and Control.

Su, P. and Drysdale, R. L. S. (1995). A comparison of sequential Delaunay trian-

gulation algorithms. In Proceedings of the 11th Annual Symposium on Computa-
tional Geometry, pages 61–70.

Sznaier, M. and Damborg, M. (1987). Suboptimal control of linear systems with

state and control inequality constraints. In Proceedings of the 26th IEEE Confer-
ence on Decision and Control, pages 761–762.

Tiwary, H. R. (2008a). On computing the shadows and slices of polytopes. CoRR,

abs/0804.4150.

132 References

Scibilia, F., Bitmead, R. R., Olaru, S., and Hovd, M. (2009a). Maximal robust fea-

sible sets for constrained linear systems controlled by piecewise affine feedback

laws. In The 7th IEEE International Conference on Control and Automation.

Scibilia, F. and Hovd, M. (2009). Multi-rate moving horizon estimation with erro-

neous infrequent measurements recovery. In Preprints of the 7th IFAC Sympo-
sium on Fault Detection, Supervision and Safety of Technical Processes.

Scibilia, F., Hovd, M., and Bitmead, R. R. (2008). Stabilization of gas-lift oil wells

using topside measurements. In Proceedings of the 17th IFAC World Congress.

Scibilia, F., Hovd, M., and Olaru, S. (2010a). An algorithm for approximate ex-

plicit model predictive control via Delaunay tessellations. European Journal of
Control, (submitted).

Scibilia, F., Olaru, S., and Hovd, M. (2009b). Approximate explicit linear MPC

via Delaunay tessellation. In Proceedings of the European Control Conference,

pages 2833–2838.

Scibilia, F., Olaru, S., and Hovd, M. (2010b). On feasible sets for MPC and their

approximations. Automatica, (accepted for publication).

Scokaert, P. O. M. and Rawlings, J. B. (1998). Constrained linear quadratic regula-

tion. IEEE Transactions on Automatic Control, 43:1163–1169.

Seidel, R. (1988). Constrained Delaunay triangulation and Voronoi diagrams with

obstacles. Technical Report 260, Inst. for Information Processing, Graz, Austria.

Simon, D. (2006). Optimal state estimation - Kalman, H infinity, and nonlinear
approaches. Wiley-Interscience.

Spjøtvold, J., Rakovic, S. V., Tøndel, P., and Johansen, T. A. (2006). Utilizing

reachability analysis in point location problems. In Proceedings of the 45th IEEE
Conference on Decision and Control.

Su, P. and Drysdale, R. L. S. (1995). A comparison of sequential Delaunay trian-

gulation algorithms. In Proceedings of the 11th Annual Symposium on Computa-
tional Geometry, pages 61–70.

Sznaier, M. and Damborg, M. (1987). Suboptimal control of linear systems with

state and control inequality constraints. In Proceedings of the 26th IEEE Confer-
ence on Decision and Control, pages 761–762.

Tiwary, H. R. (2008a). On computing the shadows and slices of polytopes. CoRR,

abs/0804.4150.

132 References

Scibilia, F., Bitmead, R. R., Olaru, S., and Hovd, M. (2009a). Maximal robust fea-

sible sets for constrained linear systems controlled by piecewise affine feedback

laws. In The 7th IEEE International Conference on Control and Automation.

Scibilia, F. and Hovd, M. (2009). Multi-rate moving horizon estimation with erro-

neous infrequent measurements recovery. In Preprints of the 7th IFAC Sympo-
sium on Fault Detection, Supervision and Safety of Technical Processes.

Scibilia, F., Hovd, M., and Bitmead, R. R. (2008). Stabilization of gas-lift oil wells

using topside measurements. In Proceedings of the 17th IFAC World Congress.

Scibilia, F., Hovd, M., and Olaru, S. (2010a). An algorithm for approximate ex-

plicit model predictive control via Delaunay tessellations. European Journal of
Control, (submitted).

Scibilia, F., Olaru, S., and Hovd, M. (2009b). Approximate explicit linear MPC

via Delaunay tessellation. In Proceedings of the European Control Conference,

pages 2833–2838.

Scibilia, F., Olaru, S., and Hovd, M. (2010b). On feasible sets for MPC and their

approximations. Automatica, (accepted for publication).

Scokaert, P. O. M. and Rawlings, J. B. (1998). Constrained linear quadratic regula-

tion. IEEE Transactions on Automatic Control, 43:1163–1169.

Seidel, R. (1988). Constrained Delaunay triangulation and Voronoi diagrams with

obstacles. Technical Report 260, Inst. for Information Processing, Graz, Austria.

Simon, D. (2006). Optimal state estimation - Kalman, H infinity, and nonlinear
approaches. Wiley-Interscience.

Spjøtvold, J., Rakovic, S. V., Tøndel, P., and Johansen, T. A. (2006). Utilizing

reachability analysis in point location problems. In Proceedings of the 45th IEEE
Conference on Decision and Control.

Su, P. and Drysdale, R. L. S. (1995). A comparison of sequential Delaunay trian-

gulation algorithms. In Proceedings of the 11th Annual Symposium on Computa-
tional Geometry, pages 61–70.

Sznaier, M. and Damborg, M. (1987). Suboptimal control of linear systems with

state and control inequality constraints. In Proceedings of the 26th IEEE Confer-
ence on Decision and Control, pages 761–762.

Tiwary, H. R. (2008a). On computing the shadows and slices of polytopes. CoRR,

abs/0804.4150.

132 References

Scibilia, F., Bitmead, R. R., Olaru, S., and Hovd, M. (2009a). Maximal robust fea-

sible sets for constrained linear systems controlled by piecewise affine feedback

laws. In The 7th IEEE International Conference on Control and Automation.

Scibilia, F. and Hovd, M. (2009). Multi-rate moving horizon estimation with erro-

neous infrequent measurements recovery. In Preprints of the 7th IFAC Sympo-
sium on Fault Detection, Supervision and Safety of Technical Processes.

Scibilia, F., Hovd, M., and Bitmead, R. R. (2008). Stabilization of gas-lift oil wells

using topside measurements. In Proceedings of the 17th IFAC World Congress.

Scibilia, F., Hovd, M., and Olaru, S. (2010a). An algorithm for approximate ex-

plicit model predictive control via Delaunay tessellations. European Journal of
Control, (submitted).

Scibilia, F., Olaru, S., and Hovd, M. (2009b). Approximate explicit linear MPC

via Delaunay tessellation. In Proceedings of the European Control Conference,

pages 2833–2838.

Scibilia, F., Olaru, S., and Hovd, M. (2010b). On feasible sets for MPC and their

approximations. Automatica, (accepted for publication).

Scokaert, P. O. M. and Rawlings, J. B. (1998). Constrained linear quadratic regula-

tion. IEEE Transactions on Automatic Control, 43:1163–1169.

Seidel, R. (1988). Constrained Delaunay triangulation and Voronoi diagrams with

obstacles. Technical Report 260, Inst. for Information Processing, Graz, Austria.

Simon, D. (2006). Optimal state estimation - Kalman, H infinity, and nonlinear
approaches. Wiley-Interscience.

Spjøtvold, J., Rakovic, S. V., Tøndel, P., and Johansen, T. A. (2006). Utilizing

reachability analysis in point location problems. In Proceedings of the 45th IEEE
Conference on Decision and Control.

Su, P. and Drysdale, R. L. S. (1995). A comparison of sequential Delaunay trian-

gulation algorithms. In Proceedings of the 11th Annual Symposium on Computa-
tional Geometry, pages 61–70.

Sznaier, M. and Damborg, M. (1987). Suboptimal control of linear systems with

state and control inequality constraints. In Proceedings of the 26th IEEE Confer-
ence on Decision and Control, pages 761–762.

Tiwary, H. R. (2008a). On computing the shadows and slices of polytopes. CoRR,

abs/0804.4150.

References 133

Tiwary, H. R. (2008b). On the hardness of computing intersection, union and

Minkowski sum of polytopes. Discrete and Computational Geometry, 40:469–

479.

Tøndel, P., Johansen, T. A., and Bemporad, A. (2003a). An algorithm for multi-

parametric quadratic programming and explicit MPC solutions. Automatica,

39(3):489–497.

Tøndel, P., Johansen, T. A., and Bemporad, A. (2003b). Evaluation of piecewise

affine control via binary search tree. Automatica, 39(5):945–950.

van den Boom, T. J. J. and Haverkamp, B. R. J. (2000). Towards a state-space

polytopic uncertainty description using subspace model identification techniques.

In Proceedings of the American Control Conference, pages 1807–1811.

Yan, J. and Bitmead, R. R. (2004). Incorporating state estimation into model pre-

dictive control and its application to network traffic control. Automatica, 41:595–

604.

Zhu, B. (2006). Voronoi diagram and Delaunay triangulation: Applications and

challenges in bioinformatics. In Proceedings of the 3rd International Symposium
on Voronoi Diagrams in Science and Engineering.

References 133

Tiwary, H. R. (2008b). On the hardness of computing intersection, union and

Minkowski sum of polytopes. Discrete and Computational Geometry, 40:469–

479.

Tøndel, P., Johansen, T. A., and Bemporad, A. (2003a). An algorithm for multi-

parametric quadratic programming and explicit MPC solutions. Automatica,

39(3):489–497.

Tøndel, P., Johansen, T. A., and Bemporad, A. (2003b). Evaluation of piecewise

affine control via binary search tree. Automatica, 39(5):945–950.

van den Boom, T. J. J. and Haverkamp, B. R. J. (2000). Towards a state-space

polytopic uncertainty description using subspace model identification techniques.

In Proceedings of the American Control Conference, pages 1807–1811.

Yan, J. and Bitmead, R. R. (2004). Incorporating state estimation into model pre-

dictive control and its application to network traffic control. Automatica, 41:595–

604.

Zhu, B. (2006). Voronoi diagram and Delaunay triangulation: Applications and

challenges in bioinformatics. In Proceedings of the 3rd International Symposium
on Voronoi Diagrams in Science and Engineering.

References 133

Tiwary, H. R. (2008b). On the hardness of computing intersection, union and

Minkowski sum of polytopes. Discrete and Computational Geometry, 40:469–

479.

Tøndel, P., Johansen, T. A., and Bemporad, A. (2003a). An algorithm for multi-

parametric quadratic programming and explicit MPC solutions. Automatica,

39(3):489–497.

Tøndel, P., Johansen, T. A., and Bemporad, A. (2003b). Evaluation of piecewise

affine control via binary search tree. Automatica, 39(5):945–950.

van den Boom, T. J. J. and Haverkamp, B. R. J. (2000). Towards a state-space

polytopic uncertainty description using subspace model identification techniques.

In Proceedings of the American Control Conference, pages 1807–1811.

Yan, J. and Bitmead, R. R. (2004). Incorporating state estimation into model pre-

dictive control and its application to network traffic control. Automatica, 41:595–

604.

Zhu, B. (2006). Voronoi diagram and Delaunay triangulation: Applications and

challenges in bioinformatics. In Proceedings of the 3rd International Symposium
on Voronoi Diagrams in Science and Engineering.

References 133

Tiwary, H. R. (2008b). On the hardness of computing intersection, union and

Minkowski sum of polytopes. Discrete and Computational Geometry, 40:469–

479.

Tøndel, P., Johansen, T. A., and Bemporad, A. (2003a). An algorithm for multi-

parametric quadratic programming and explicit MPC solutions. Automatica,

39(3):489–497.

Tøndel, P., Johansen, T. A., and Bemporad, A. (2003b). Evaluation of piecewise

affine control via binary search tree. Automatica, 39(5):945–950.

van den Boom, T. J. J. and Haverkamp, B. R. J. (2000). Towards a state-space

polytopic uncertainty description using subspace model identification techniques.

In Proceedings of the American Control Conference, pages 1807–1811.

Yan, J. and Bitmead, R. R. (2004). Incorporating state estimation into model pre-

dictive control and its application to network traffic control. Automatica, 41:595–

604.

Zhu, B. (2006). Voronoi diagram and Delaunay triangulation: Applications and

challenges in bioinformatics. In Proceedings of the 3rd International Symposium
on Voronoi Diagrams in Science and Engineering.

134 References 134 References

134 References 134 References

Appendix A

Secondary Papers

This addendum comprises two published papers about two particular problems

treated during the doctoral studies, but only marginally related to the main theme of

the thesis.

The analyses of performance, feasibility and stability of most MPC schemes treat

the controller as a full-state-feedback strategy (Mayne et al. (2000)). However, the

state variables are not always fully measured, and in these cases a state estimation

approach has to be adopted to obtain the state from the measurements.

State estimation is an important subject of research in engineering and mathematics.

For a comprehensive discussion, the interested reader is referred to textbooks like

Simon (2006), or the “classic” Anderson and Moore (1979).

The inclusion of state estimation into the MPC formulation problem has been con-

sidered in the literature, like for example in Yan and Bitmead (2004). For a de-

tailed discussion on the argument the reader is referred for instance to Rawlings

and Mayne (2009), a recent and comprehensive textbook on MPC.

The two works in this chapter deal with state estimation, but not with the explicit

goal to be used in MPC approaches.

The work in Section A.1 regards the moving horizon state estimation (MHE), which

is considered to be the dual problem in the state estimation area of the MPC prob-

lem. MHE is a Bayesian estimator which gives the state estimate as the maximizers

of the conditional probability density function of the state evolution given the mea-

surement evolution. For practical online implementations the whole measurement

evolution cannot be considered explicitly in the optimization problem. The infor-

mation from the measurements not explicitly considered are taken into account by

a function, called the arrival cost, that compresses the measurement data. Many

chemical plants rely on manual laboratory analyses to obtain key measurements.

Such analyses are prone to errors which lead to faulty measurements. Depending

135

Appendix A

Secondary Papers

This addendum comprises two published papers about two particular problems

treated during the doctoral studies, but only marginally related to the main theme of

the thesis.

The analyses of performance, feasibility and stability of most MPC schemes treat

the controller as a full-state-feedback strategy (Mayne et al. (2000)). However, the

state variables are not always fully measured, and in these cases a state estimation

approach has to be adopted to obtain the state from the measurements.

State estimation is an important subject of research in engineering and mathematics.

For a comprehensive discussion, the interested reader is referred to textbooks like

Simon (2006), or the “classic” Anderson and Moore (1979).

The inclusion of state estimation into the MPC formulation problem has been con-

sidered in the literature, like for example in Yan and Bitmead (2004). For a de-

tailed discussion on the argument the reader is referred for instance to Rawlings

and Mayne (2009), a recent and comprehensive textbook on MPC.

The two works in this chapter deal with state estimation, but not with the explicit

goal to be used in MPC approaches.

The work in Section A.1 regards the moving horizon state estimation (MHE), which

is considered to be the dual problem in the state estimation area of the MPC prob-

lem. MHE is a Bayesian estimator which gives the state estimate as the maximizers

of the conditional probability density function of the state evolution given the mea-

surement evolution. For practical online implementations the whole measurement

evolution cannot be considered explicitly in the optimization problem. The infor-

mation from the measurements not explicitly considered are taken into account by

a function, called the arrival cost, that compresses the measurement data. Many

chemical plants rely on manual laboratory analyses to obtain key measurements.

Such analyses are prone to errors which lead to faulty measurements. Depending

135

Appendix A

Secondary Papers

This addendum comprises two published papers about two particular problems

treated during the doctoral studies, but only marginally related to the main theme of

the thesis.

The analyses of performance, feasibility and stability of most MPC schemes treat

the controller as a full-state-feedback strategy (Mayne et al. (2000)). However, the

state variables are not always fully measured, and in these cases a state estimation

approach has to be adopted to obtain the state from the measurements.

State estimation is an important subject of research in engineering and mathematics.

For a comprehensive discussion, the interested reader is referred to textbooks like

Simon (2006), or the “classic” Anderson and Moore (1979).

The inclusion of state estimation into the MPC formulation problem has been con-

sidered in the literature, like for example in Yan and Bitmead (2004). For a de-

tailed discussion on the argument the reader is referred for instance to Rawlings

and Mayne (2009), a recent and comprehensive textbook on MPC.

The two works in this chapter deal with state estimation, but not with the explicit

goal to be used in MPC approaches.

The work in Section A.1 regards the moving horizon state estimation (MHE), which

is considered to be the dual problem in the state estimation area of the MPC prob-

lem. MHE is a Bayesian estimator which gives the state estimate as the maximizers

of the conditional probability density function of the state evolution given the mea-

surement evolution. For practical online implementations the whole measurement

evolution cannot be considered explicitly in the optimization problem. The infor-

mation from the measurements not explicitly considered are taken into account by

a function, called the arrival cost, that compresses the measurement data. Many

chemical plants rely on manual laboratory analyses to obtain key measurements.

Such analyses are prone to errors which lead to faulty measurements. Depending

135

Appendix A

Secondary Papers

This addendum comprises two published papers about two particular problems

treated during the doctoral studies, but only marginally related to the main theme of

the thesis.

The analyses of performance, feasibility and stability of most MPC schemes treat

the controller as a full-state-feedback strategy (Mayne et al. (2000)). However, the

state variables are not always fully measured, and in these cases a state estimation

approach has to be adopted to obtain the state from the measurements.

State estimation is an important subject of research in engineering and mathematics.

For a comprehensive discussion, the interested reader is referred to textbooks like

Simon (2006), or the “classic” Anderson and Moore (1979).

The inclusion of state estimation into the MPC formulation problem has been con-

sidered in the literature, like for example in Yan and Bitmead (2004). For a de-

tailed discussion on the argument the reader is referred for instance to Rawlings

and Mayne (2009), a recent and comprehensive textbook on MPC.

The two works in this chapter deal with state estimation, but not with the explicit

goal to be used in MPC approaches.

The work in Section A.1 regards the moving horizon state estimation (MHE), which

is considered to be the dual problem in the state estimation area of the MPC prob-

lem. MHE is a Bayesian estimator which gives the state estimate as the maximizers

of the conditional probability density function of the state evolution given the mea-

surement evolution. For practical online implementations the whole measurement

evolution cannot be considered explicitly in the optimization problem. The infor-

mation from the measurements not explicitly considered are taken into account by

a function, called the arrival cost, that compresses the measurement data. Many

chemical plants rely on manual laboratory analyses to obtain key measurements.

Such analyses are prone to errors which lead to faulty measurements. Depending

135

136 Secondary Papers

on how the arrival cost is determined, the effect of a faulty measurement on the

MHE may persist even after the faulty value is discovered and corrected. The paper

describes a way for the MHE to quickly recover from such faulty analyses.

The work in Section A.2 considers a particular system in the oil industry: gas-lifted

oil well. Gas-lift is a technique to maintain, or to increase, the production from oil

wells characterized by low reservoir pressure. A negative aspect of this technique

is that it can induce severe production flow oscillations, known as casing-heading
instability. Conventional linear controllers can deal with this instability. However,

these controllers use state variables which are, in general, not available for measure-

ment. Hence, the state needs to be estimated from the available measurements. The

state estimation solution proposed is the use of a nonlinear observer tailored on the

particular system under consideration.

136 Secondary Papers

on how the arrival cost is determined, the effect of a faulty measurement on the

MHE may persist even after the faulty value is discovered and corrected. The paper

describes a way for the MHE to quickly recover from such faulty analyses.

The work in Section A.2 considers a particular system in the oil industry: gas-lifted

oil well. Gas-lift is a technique to maintain, or to increase, the production from oil

wells characterized by low reservoir pressure. A negative aspect of this technique

is that it can induce severe production flow oscillations, known as casing-heading
instability. Conventional linear controllers can deal with this instability. However,

these controllers use state variables which are, in general, not available for measure-

ment. Hence, the state needs to be estimated from the available measurements. The

state estimation solution proposed is the use of a nonlinear observer tailored on the

particular system under consideration.

136 Secondary Papers

on how the arrival cost is determined, the effect of a faulty measurement on the

MHE may persist even after the faulty value is discovered and corrected. The paper

describes a way for the MHE to quickly recover from such faulty analyses.

The work in Section A.2 considers a particular system in the oil industry: gas-lifted

oil well. Gas-lift is a technique to maintain, or to increase, the production from oil

wells characterized by low reservoir pressure. A negative aspect of this technique

is that it can induce severe production flow oscillations, known as casing-heading
instability. Conventional linear controllers can deal with this instability. However,

these controllers use state variables which are, in general, not available for measure-

ment. Hence, the state needs to be estimated from the available measurements. The

state estimation solution proposed is the use of a nonlinear observer tailored on the

particular system under consideration.

136 Secondary Papers

on how the arrival cost is determined, the effect of a faulty measurement on the

MHE may persist even after the faulty value is discovered and corrected. The paper

describes a way for the MHE to quickly recover from such faulty analyses.

The work in Section A.2 considers a particular system in the oil industry: gas-lifted

oil well. Gas-lift is a technique to maintain, or to increase, the production from oil

wells characterized by low reservoir pressure. A negative aspect of this technique

is that it can induce severe production flow oscillations, known as casing-heading
instability. Conventional linear controllers can deal with this instability. However,

these controllers use state variables which are, in general, not available for measure-

ment. Hence, the state needs to be estimated from the available measurements. The

state estimation solution proposed is the use of a nonlinear observer tailored on the

particular system under consideration.

A.1. Multi-Rate MHE with Erroneous Infrequent Measurements Recovery 137

A.1 Multi-Rate MHE with Erroneous Infrequent Mea-
surements Recovery

This section contains the paper “Multi-Rate Moving Horizon Estimation with Er-

roneous Infrequent Measurements Recovery" as it appears in the Preprints of the

7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Pro-

cesses, held in Barcelona, Spain, during the days June 30 to July 3, 2009.

Remark 11. It is interesting to note that explicit solutions to moving horizon state

estimation have also been proposed in the literature (Darby and Nikolaou (2007)).

A.1. Multi-Rate MHE with Erroneous Infrequent Measurements Recovery 137

A.1 Multi-Rate MHE with Erroneous Infrequent Mea-
surements Recovery

This section contains the paper “Multi-Rate Moving Horizon Estimation with Er-

roneous Infrequent Measurements Recovery" as it appears in the Preprints of the

7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Pro-

cesses, held in Barcelona, Spain, during the days June 30 to July 3, 2009.

Remark 11. It is interesting to note that explicit solutions to moving horizon state

estimation have also been proposed in the literature (Darby and Nikolaou (2007)).

A.1. Multi-Rate MHE with Erroneous Infrequent Measurements Recovery 137

A.1 Multi-Rate MHE with Erroneous Infrequent Mea-
surements Recovery

This section contains the paper “Multi-Rate Moving Horizon Estimation with Er-

roneous Infrequent Measurements Recovery" as it appears in the Preprints of the

7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Pro-

cesses, held in Barcelona, Spain, during the days June 30 to July 3, 2009.

Remark 11. It is interesting to note that explicit solutions to moving horizon state

estimation have also been proposed in the literature (Darby and Nikolaou (2007)).

A.1. Multi-Rate MHE with Erroneous Infrequent Measurements Recovery 137

A.1 Multi-Rate MHE with Erroneous Infrequent Mea-
surements Recovery

This section contains the paper “Multi-Rate Moving Horizon Estimation with Er-

roneous Infrequent Measurements Recovery" as it appears in the Preprints of the

7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Pro-

cesses, held in Barcelona, Spain, during the days June 30 to July 3, 2009.

Remark 11. It is interesting to note that explicit solutions to moving horizon state

estimation have also been proposed in the literature (Darby and Nikolaou (2007)).

138 Secondary Papers 138 Secondary Papers

138 Secondary Papers 138 Secondary Papers

Multi-Rate Moving Horizon Estimation
with Erroneous Infrequent Measurements

Recovery

Francesco Scibilia ∗ Morten Hovd ∗

∗ Norwegian University of Science and Technology, Department of
Engineering Cybernetics, N-7491 Trondheim, Norway (e-mail:

[francesco.scibilia][morten.hovd]@itk.ntnu.no).

Abstract: Moving horizon estimation (MHE) represents a desirable approach in processes
monitoring and/or control. MHE allows to take into account model uncertainties and unknown
disturbances, to consider additional insight about the process in form of inequality constraints,
and suggests a straightforward way to include infrequently occurring measurements, as the
process history over a user defined horizon is utilized. The problem addressed in this paper
is relevant in chemical processes, but may be relevant also in other application areas. In such
processes it is common to have measurements at different sampling rates and with time delay.
Often an operator is called to collect some of the infrequent measurements, and to insert them
into the estimator. Industrial practitioners report that it is not rare for a wrong value to be
inserted for such a manual measurement, leading to significant errors in the state and parameter
estimates. Recovering from such errors can take hours. We propose a strategy to recover quickly
from faulty infrequent measurements. Since nonlinear models are considered, to overcome the
non-convex optimization problem resulting from the MHE, in the paper we consider an efficient
formulation based on successive linearization.

1. INTRODUCTION

State estimators are often used to monitor and/or control
important process states that cannot be measured directly.
In many cases the measurements used in the estimation
are available at multiple rates; this is a common situation
in chemical processes where some measurements, such as
temperatures and flowrates, are easily available online;
some measurements, such as concentrations, are measured
infrequently; and other measurements, such as average
molecular weights, are made by using analysis methods
that inherently take some time, and therefore they are
available infrequently and with time delays (Tatiraju and
Soroush [1997]). Moreover, in many real situations an op-
erator is called to collect some of the infrequent measure-
ments, and to insert them into the estimator. Industrial
practitioners report that it is not rare for a wrong value
to be inserted for such a manual measurement, leading
to significant errors in the state and parameter estimates.
Recovering from such errors can take hours. A challenge in
these processes is to design estimators that can use both
online and infrequent measurements effectively, that are
robust against model uncertainties and unknown distur-
bances, and that can provide a way to recover from a faulty
measurement. Different types of multi-rate state estima-
tors have been used, as for examples extended Kalman
filters (KF) (Elicabe et al. [1995]), Nonlinear State Es-
timators (Zambare and Soroush [2002]), Moving Horizon
Estimators (MHE) (Kraemer et al. [2005]). However, the
problem of a faulty infrequent measurement has not been
considered.
MHEs constitute one of the most advanced and interesting
approaches in estimation (Rao [2000], Muske and Rawlings

[1994], Muske et al. [1993], Tenny [2002], Findeisen [1997]).
MHEs allow easily to take into account additional insight
about the process in form of inequality constraints, and
moreover they suggest a straightforward way to include
the infrequently occurring measurements, as the process
history over a user defined horizon is utilized. When a
nonlinear model is considered, the MHE results in a non-
convex program and the implementation gives rise to a
lot of computational difficulties related to the expense
and reliability of solving the non-convex program online.
The same issue arises in the dual control problem, the
Model Predictive Control (known also as moving horizon
control). Model predictive control (MPC) is a model-based
control approach that uses a model of the plant in order
to determine the optimal control actions respecting some
linear constraints (Camacho and Bordons [2003], Tenny
[2002]). At each sampling time, starting from the current
state, an open-loop optimal control problem is solved over
a finite horizon. The first element of the optimal con-
trol sequence is applied to the system. At the next time
step, the computation is repeated starting from the new
state and over the shifted horizon. A simple way to deal
with nonlinear models in MPC is to perform successive
linearization about the predicted trajectories that would
be obtained if the extension to the current time of the
previously computed optimal control sequence were used.
In the paper we show how the same idea can be brought
to MHE.
The paper provides a state-of-the-art of the MHE prob-
lem (sections 2 and 3), and explains exhaustively how
MHE can be efficiently implemented using the successive
linearization approach (section 4). In section 5 the back-
ground given in the previous sections is used to present a

��������	
��
��
��
����
�����	���
��
�����
����������
�������	���
���
������
��
��������
�����		�	
����������
������
 ���
!"
#
 ���
!�
$""%

����

Multi-Rate Moving Horizon Estimation
with Erroneous Infrequent Measurements

Recovery

Francesco Scibilia ∗ Morten Hovd ∗

∗ Norwegian University of Science and Technology, Department of
Engineering Cybernetics, N-7491 Trondheim, Norway (e-mail:

[francesco.scibilia][morten.hovd]@itk.ntnu.no).

Abstract: Moving horizon estimation (MHE) represents a desirable approach in processes
monitoring and/or control. MHE allows to take into account model uncertainties and unknown
disturbances, to consider additional insight about the process in form of inequality constraints,
and suggests a straightforward way to include infrequently occurring measurements, as the
process history over a user defined horizon is utilized. The problem addressed in this paper
is relevant in chemical processes, but may be relevant also in other application areas. In such
processes it is common to have measurements at different sampling rates and with time delay.
Often an operator is called to collect some of the infrequent measurements, and to insert them
into the estimator. Industrial practitioners report that it is not rare for a wrong value to be
inserted for such a manual measurement, leading to significant errors in the state and parameter
estimates. Recovering from such errors can take hours. We propose a strategy to recover quickly
from faulty infrequent measurements. Since nonlinear models are considered, to overcome the
non-convex optimization problem resulting from the MHE, in the paper we consider an efficient
formulation based on successive linearization.

1. INTRODUCTION

State estimators are often used to monitor and/or control
important process states that cannot be measured directly.
In many cases the measurements used in the estimation
are available at multiple rates; this is a common situation
in chemical processes where some measurements, such as
temperatures and flowrates, are easily available online;
some measurements, such as concentrations, are measured
infrequently; and other measurements, such as average
molecular weights, are made by using analysis methods
that inherently take some time, and therefore they are
available infrequently and with time delays (Tatiraju and
Soroush [1997]). Moreover, in many real situations an op-
erator is called to collect some of the infrequent measure-
ments, and to insert them into the estimator. Industrial
practitioners report that it is not rare for a wrong value
to be inserted for such a manual measurement, leading
to significant errors in the state and parameter estimates.
Recovering from such errors can take hours. A challenge in
these processes is to design estimators that can use both
online and infrequent measurements effectively, that are
robust against model uncertainties and unknown distur-
bances, and that can provide a way to recover from a faulty
measurement. Different types of multi-rate state estima-
tors have been used, as for examples extended Kalman
filters (KF) (Elicabe et al. [1995]), Nonlinear State Es-
timators (Zambare and Soroush [2002]), Moving Horizon
Estimators (MHE) (Kraemer et al. [2005]). However, the
problem of a faulty infrequent measurement has not been
considered.
MHEs constitute one of the most advanced and interesting
approaches in estimation (Rao [2000], Muske and Rawlings

[1994], Muske et al. [1993], Tenny [2002], Findeisen [1997]).
MHEs allow easily to take into account additional insight
about the process in form of inequality constraints, and
moreover they suggest a straightforward way to include
the infrequently occurring measurements, as the process
history over a user defined horizon is utilized. When a
nonlinear model is considered, the MHE results in a non-
convex program and the implementation gives rise to a
lot of computational difficulties related to the expense
and reliability of solving the non-convex program online.
The same issue arises in the dual control problem, the
Model Predictive Control (known also as moving horizon
control). Model predictive control (MPC) is a model-based
control approach that uses a model of the plant in order
to determine the optimal control actions respecting some
linear constraints (Camacho and Bordons [2003], Tenny
[2002]). At each sampling time, starting from the current
state, an open-loop optimal control problem is solved over
a finite horizon. The first element of the optimal con-
trol sequence is applied to the system. At the next time
step, the computation is repeated starting from the new
state and over the shifted horizon. A simple way to deal
with nonlinear models in MPC is to perform successive
linearization about the predicted trajectories that would
be obtained if the extension to the current time of the
previously computed optimal control sequence were used.
In the paper we show how the same idea can be brought
to MHE.
The paper provides a state-of-the-art of the MHE prob-
lem (sections 2 and 3), and explains exhaustively how
MHE can be efficiently implemented using the successive
linearization approach (section 4). In section 5 the back-
ground given in the previous sections is used to present a

��������	
��
��
��
����
�����	���
��
�����
����������
�������	���
���
������
��
��������
�����		�	
����������
������
 ���
!"
#
 ���
!�
$""%

����

Multi-Rate Moving Horizon Estimation
with Erroneous Infrequent Measurements

Recovery

Francesco Scibilia ∗ Morten Hovd ∗

∗ Norwegian University of Science and Technology, Department of
Engineering Cybernetics, N-7491 Trondheim, Norway (e-mail:

[francesco.scibilia][morten.hovd]@itk.ntnu.no).

Abstract: Moving horizon estimation (MHE) represents a desirable approach in processes
monitoring and/or control. MHE allows to take into account model uncertainties and unknown
disturbances, to consider additional insight about the process in form of inequality constraints,
and suggests a straightforward way to include infrequently occurring measurements, as the
process history over a user defined horizon is utilized. The problem addressed in this paper
is relevant in chemical processes, but may be relevant also in other application areas. In such
processes it is common to have measurements at different sampling rates and with time delay.
Often an operator is called to collect some of the infrequent measurements, and to insert them
into the estimator. Industrial practitioners report that it is not rare for a wrong value to be
inserted for such a manual measurement, leading to significant errors in the state and parameter
estimates. Recovering from such errors can take hours. We propose a strategy to recover quickly
from faulty infrequent measurements. Since nonlinear models are considered, to overcome the
non-convex optimization problem resulting from the MHE, in the paper we consider an efficient
formulation based on successive linearization.

1. INTRODUCTION

State estimators are often used to monitor and/or control
important process states that cannot be measured directly.
In many cases the measurements used in the estimation
are available at multiple rates; this is a common situation
in chemical processes where some measurements, such as
temperatures and flowrates, are easily available online;
some measurements, such as concentrations, are measured
infrequently; and other measurements, such as average
molecular weights, are made by using analysis methods
that inherently take some time, and therefore they are
available infrequently and with time delays (Tatiraju and
Soroush [1997]). Moreover, in many real situations an op-
erator is called to collect some of the infrequent measure-
ments, and to insert them into the estimator. Industrial
practitioners report that it is not rare for a wrong value
to be inserted for such a manual measurement, leading
to significant errors in the state and parameter estimates.
Recovering from such errors can take hours. A challenge in
these processes is to design estimators that can use both
online and infrequent measurements effectively, that are
robust against model uncertainties and unknown distur-
bances, and that can provide a way to recover from a faulty
measurement. Different types of multi-rate state estima-
tors have been used, as for examples extended Kalman
filters (KF) (Elicabe et al. [1995]), Nonlinear State Es-
timators (Zambare and Soroush [2002]), Moving Horizon
Estimators (MHE) (Kraemer et al. [2005]). However, the
problem of a faulty infrequent measurement has not been
considered.
MHEs constitute one of the most advanced and interesting
approaches in estimation (Rao [2000], Muske and Rawlings

[1994], Muske et al. [1993], Tenny [2002], Findeisen [1997]).
MHEs allow easily to take into account additional insight
about the process in form of inequality constraints, and
moreover they suggest a straightforward way to include
the infrequently occurring measurements, as the process
history over a user defined horizon is utilized. When a
nonlinear model is considered, the MHE results in a non-
convex program and the implementation gives rise to a
lot of computational difficulties related to the expense
and reliability of solving the non-convex program online.
The same issue arises in the dual control problem, the
Model Predictive Control (known also as moving horizon
control). Model predictive control (MPC) is a model-based
control approach that uses a model of the plant in order
to determine the optimal control actions respecting some
linear constraints (Camacho and Bordons [2003], Tenny
[2002]). At each sampling time, starting from the current
state, an open-loop optimal control problem is solved over
a finite horizon. The first element of the optimal con-
trol sequence is applied to the system. At the next time
step, the computation is repeated starting from the new
state and over the shifted horizon. A simple way to deal
with nonlinear models in MPC is to perform successive
linearization about the predicted trajectories that would
be obtained if the extension to the current time of the
previously computed optimal control sequence were used.
In the paper we show how the same idea can be brought
to MHE.
The paper provides a state-of-the-art of the MHE prob-
lem (sections 2 and 3), and explains exhaustively how
MHE can be efficiently implemented using the successive
linearization approach (section 4). In section 5 the back-
ground given in the previous sections is used to present a

��������	
��
��
��
����
�����	���
��
�����
����������
�������	���
���
������
��
��������
�����		�	
����������
������
 ���
!"
#
 ���
!�
$""%

����

Multi-Rate Moving Horizon Estimation
with Erroneous Infrequent Measurements

Recovery

Francesco Scibilia ∗ Morten Hovd ∗

∗ Norwegian University of Science and Technology, Department of
Engineering Cybernetics, N-7491 Trondheim, Norway (e-mail:

[francesco.scibilia][morten.hovd]@itk.ntnu.no).

Abstract: Moving horizon estimation (MHE) represents a desirable approach in processes
monitoring and/or control. MHE allows to take into account model uncertainties and unknown
disturbances, to consider additional insight about the process in form of inequality constraints,
and suggests a straightforward way to include infrequently occurring measurements, as the
process history over a user defined horizon is utilized. The problem addressed in this paper
is relevant in chemical processes, but may be relevant also in other application areas. In such
processes it is common to have measurements at different sampling rates and with time delay.
Often an operator is called to collect some of the infrequent measurements, and to insert them
into the estimator. Industrial practitioners report that it is not rare for a wrong value to be
inserted for such a manual measurement, leading to significant errors in the state and parameter
estimates. Recovering from such errors can take hours. We propose a strategy to recover quickly
from faulty infrequent measurements. Since nonlinear models are considered, to overcome the
non-convex optimization problem resulting from the MHE, in the paper we consider an efficient
formulation based on successive linearization.

1. INTRODUCTION

State estimators are often used to monitor and/or control
important process states that cannot be measured directly.
In many cases the measurements used in the estimation
are available at multiple rates; this is a common situation
in chemical processes where some measurements, such as
temperatures and flowrates, are easily available online;
some measurements, such as concentrations, are measured
infrequently; and other measurements, such as average
molecular weights, are made by using analysis methods
that inherently take some time, and therefore they are
available infrequently and with time delays (Tatiraju and
Soroush [1997]). Moreover, in many real situations an op-
erator is called to collect some of the infrequent measure-
ments, and to insert them into the estimator. Industrial
practitioners report that it is not rare for a wrong value
to be inserted for such a manual measurement, leading
to significant errors in the state and parameter estimates.
Recovering from such errors can take hours. A challenge in
these processes is to design estimators that can use both
online and infrequent measurements effectively, that are
robust against model uncertainties and unknown distur-
bances, and that can provide a way to recover from a faulty
measurement. Different types of multi-rate state estima-
tors have been used, as for examples extended Kalman
filters (KF) (Elicabe et al. [1995]), Nonlinear State Es-
timators (Zambare and Soroush [2002]), Moving Horizon
Estimators (MHE) (Kraemer et al. [2005]). However, the
problem of a faulty infrequent measurement has not been
considered.
MHEs constitute one of the most advanced and interesting
approaches in estimation (Rao [2000], Muske and Rawlings

[1994], Muske et al. [1993], Tenny [2002], Findeisen [1997]).
MHEs allow easily to take into account additional insight
about the process in form of inequality constraints, and
moreover they suggest a straightforward way to include
the infrequently occurring measurements, as the process
history over a user defined horizon is utilized. When a
nonlinear model is considered, the MHE results in a non-
convex program and the implementation gives rise to a
lot of computational difficulties related to the expense
and reliability of solving the non-convex program online.
The same issue arises in the dual control problem, the
Model Predictive Control (known also as moving horizon
control). Model predictive control (MPC) is a model-based
control approach that uses a model of the plant in order
to determine the optimal control actions respecting some
linear constraints (Camacho and Bordons [2003], Tenny
[2002]). At each sampling time, starting from the current
state, an open-loop optimal control problem is solved over
a finite horizon. The first element of the optimal con-
trol sequence is applied to the system. At the next time
step, the computation is repeated starting from the new
state and over the shifted horizon. A simple way to deal
with nonlinear models in MPC is to perform successive
linearization about the predicted trajectories that would
be obtained if the extension to the current time of the
previously computed optimal control sequence were used.
In the paper we show how the same idea can be brought
to MHE.
The paper provides a state-of-the-art of the MHE prob-
lem (sections 2 and 3), and explains exhaustively how
MHE can be efficiently implemented using the successive
linearization approach (section 4). In section 5 the back-
ground given in the previous sections is used to present a

��������	
��
��
��
����
�����	���
��
�����
����������
�������	���
���
������
��
��������
�����		�	
����������
������
 ���
!"
#
 ���
!�
$""%

����

technique to recover from erroneous infrequent measure-
ments, which is the main contribution of the paper. A
Continuous Stirred Tank Reactor (CSTR) is considered
in section 6 to illustrate the proposed strategy. Section 7
concludes the paper.

2. MOVING HORIZON ESTIMATION

Consider the process described by the nonlinear discrete
time system

xt+1 = f (xt, ut) + ωt (1a)

yt = g (xt) + vt (1b)

where xt ∈ R
n is the state vector, ut ∈ R

q is the vector
of inputs, yt ∈ R

m is the process measurements vector,
ωt ∈ R

n represents modeling uncertainties and unmeasur-
able disturbances, vt ∈ R

m is the process measurements
noise and t = 0, 1, 2,
One strategy for solving the state estimation problem for
the system (1) is to formulate it from the perspective of
probability theory. Consider the conditional probability
density function of the state evolution given the process
measurements: p (x0, x1, ..., xT | y0, y1, ..., yT−1). An opti-
mal solution then would be a state sequence that maxi-
mizes the conditional probability density function, that is
the maximum a posteriori Bayesian (MAP) estimate{

x̂0|T−1, x̂1|T−1, ..., x̂T |T−1

}
∈

arg max
x0,x1,...,xT

p (x0, x1, ..., xT | y0, y1, ..., yT−1)
(2)

where x̂k|T−1 is the optimal state estimate at time k given
measurements up to time T − 1.
The first estimator based on the maximization of the
probability density function was the Batch Least Square
Estimator (BLSE) (Jazwinski [1970]), known also as Full
Information problem (FI) (Rao [2000]). Under the common
assumption that the initial state is N

(
P0, x̂0|−1

)
, ω is

N (Q, 0) and v is N (R, 0), where x̂0|−1 is the initial guess
of the state and P0, Q and R are covariance matrices,
the maximization of the density function leads to the
optimization problem

min
x0,{ωk}T−1

k=0

ΦT (x0, {ωk}) (3)

s. t.

xk+1 = f (xk, uk) + ωk (4a)

yk = g (xk) + vk (4b)

xk ∈ X, ωk ∈ W, vk ∈ V (4c)

k = 0, ..., T − 1

where the cost function is

ΦT (x0, {ωk}) =
T−1∑
k=0

‖vk‖2R−1 + ‖ωk‖2Q−1 + ‖x0 − x̂−
0 ‖2P−1

0

(5)

We use the notation ‖x‖2A = x′Ax. The matrices Q and
R are the tuning parameters, and in addition to their
statistical interpretation, the matrix Q can be seen as a
measure of confidence in the model equations, the matrix
R can be seen as a measure of confidence in the process

data. The sets W, X and V are closed and convex, and
usually they are finite dimensional polyhedral sets

X = {xk ∈ R
n|Dxxk ≤ dx}

W = {ωk ∈ R
q|Dωωk ≤ dω}

V = {vk ∈ R
m|Dvvk ≤ dv}

(6)

The ability of imposing the constraints (4c) is the main ad-
vantage of the optimization based estimators. They can be
used to improve the descriptions of the random variables
xk, ωk and vk

1 , taking into account in the estimation
additional insight of the process not expressed in the model
(1).

The solution of (3) at time T is the pair
(
x̂0|T−1, {ω̂k}T−1

k=0

)
,

which, when used as data in (1a), yields the estimation se-
quence

[
x̂0|T−1 x̂1|T−1 ... x̂T |T−1

]
. Note that the estimate

x̂k|T−1, for k = 0, 1, ..., T − 1, are filtered values, whereas
for k = T are predicted values. This because, in the
formulation considered, at time T we have measurements
only up to time T − 1.
Due to the nonlinear model (4a-4b), problem (3) requires
the solution of a nonlinear mathematical program, a quite
computationally demanding problem. Regardless of the
mathematical problem complexity, solving the state esti-
mation problem online is practically impossible because
the size of the problem grows without bound as more
process measurements are collected. For practical online
implementation a fixed size optimization problem is re-
quired, and then a way to compress the measurement
data is needed. The approach proposed in Muske et al.
[1993] is a recursive formulation of the BLSE on a moving
fixed horizon N , where the effect of the data older than
T − N are summarized with a function ZT−N (xT−N).
The estimator so obtained is known as Moving Horizon
Estimator (MHE):

min
xT−N ,{ωk}T−1

k=T−N

ΦT (xT−N , {ωk}) (7)

s.t. (4a-4c) are satisfied for all k = T −N, ..., T − 1,
where

ΦT (xT−N , {ωk}) =
T−1∑

k=T−N

‖ vk‖2R−1 + ‖ωk‖2Q−1

+ZT−N (xT−N) (8)

With the moving horizon approach, only the last N
process measurements are accounted explicitly at each
time step, the remaining process measurements are taken
into account using the function ZT−N (xT−N), known
as arrival cost. The arrival cost summarizes the effect
of the data [y0, ..., yT−N−1] on the state xT−N , thereby
allowing to fix the dimension of the optimization problem.
In probabilistic terms, the arrival cost can be seen as an
equivalent statistic for the probability density function
p(xT−N |y0, ..., yT−N−1).
If we consider a linear process model and unconstrained
estimation, an optimal arrival cost is the Riccati equation
arising from Kalman filtering

ZT−N (xT−N) =

‖xT−N − x̂T−N |T−N−1‖2P−1
T−N|T−N−1

+Φ∗
T−N

(9)

1 The use of constraint on vk should be considered carefully in
practical implementations because it may amplify the effect of
spurious measurements.

����

technique to recover from erroneous infrequent measure-
ments, which is the main contribution of the paper. A
Continuous Stirred Tank Reactor (CSTR) is considered
in section 6 to illustrate the proposed strategy. Section 7
concludes the paper.

2. MOVING HORIZON ESTIMATION

Consider the process described by the nonlinear discrete
time system

xt+1 = f (xt, ut) + ωt (1a)

yt = g (xt) + vt (1b)

where xt ∈ R
n is the state vector, ut ∈ R

q is the vector
of inputs, yt ∈ R

m is the process measurements vector,
ωt ∈ R

n represents modeling uncertainties and unmeasur-
able disturbances, vt ∈ R

m is the process measurements
noise and t = 0, 1, 2,
One strategy for solving the state estimation problem for
the system (1) is to formulate it from the perspective of
probability theory. Consider the conditional probability
density function of the state evolution given the process
measurements: p (x0, x1, ..., xT | y0, y1, ..., yT−1). An opti-
mal solution then would be a state sequence that maxi-
mizes the conditional probability density function, that is
the maximum a posteriori Bayesian (MAP) estimate{

x̂0|T−1, x̂1|T−1, ..., x̂T |T−1

}
∈

arg max
x0,x1,...,xT

p (x0, x1, ..., xT | y0, y1, ..., yT−1)
(2)

where x̂k|T−1 is the optimal state estimate at time k given
measurements up to time T − 1.
The first estimator based on the maximization of the
probability density function was the Batch Least Square
Estimator (BLSE) (Jazwinski [1970]), known also as Full
Information problem (FI) (Rao [2000]). Under the common
assumption that the initial state is N

(
P0, x̂0|−1

)
, ω is

N (Q, 0) and v is N (R, 0), where x̂0|−1 is the initial guess
of the state and P0, Q and R are covariance matrices,
the maximization of the density function leads to the
optimization problem

min
x0,{ωk}T−1

k=0

ΦT (x0, {ωk}) (3)

s. t.

xk+1 = f (xk, uk) + ωk (4a)

yk = g (xk) + vk (4b)

xk ∈ X, ωk ∈ W, vk ∈ V (4c)

k = 0, ..., T − 1

where the cost function is

ΦT (x0, {ωk}) =
T−1∑
k=0

‖vk‖2R−1 + ‖ωk‖2Q−1 + ‖x0 − x̂−
0 ‖2P−1

0

(5)

We use the notation ‖x‖2A = x′Ax. The matrices Q and
R are the tuning parameters, and in addition to their
statistical interpretation, the matrix Q can be seen as a
measure of confidence in the model equations, the matrix
R can be seen as a measure of confidence in the process

data. The sets W, X and V are closed and convex, and
usually they are finite dimensional polyhedral sets

X = {xk ∈ R
n|Dxxk ≤ dx}

W = {ωk ∈ R
q|Dωωk ≤ dω}

V = {vk ∈ R
m|Dvvk ≤ dv}

(6)

The ability of imposing the constraints (4c) is the main ad-
vantage of the optimization based estimators. They can be
used to improve the descriptions of the random variables
xk, ωk and vk

1 , taking into account in the estimation
additional insight of the process not expressed in the model
(1).

The solution of (3) at time T is the pair
(
x̂0|T−1, {ω̂k}T−1

k=0

)
,

which, when used as data in (1a), yields the estimation se-
quence

[
x̂0|T−1 x̂1|T−1 ... x̂T |T−1

]
. Note that the estimate

x̂k|T−1, for k = 0, 1, ..., T − 1, are filtered values, whereas
for k = T are predicted values. This because, in the
formulation considered, at time T we have measurements
only up to time T − 1.
Due to the nonlinear model (4a-4b), problem (3) requires
the solution of a nonlinear mathematical program, a quite
computationally demanding problem. Regardless of the
mathematical problem complexity, solving the state esti-
mation problem online is practically impossible because
the size of the problem grows without bound as more
process measurements are collected. For practical online
implementation a fixed size optimization problem is re-
quired, and then a way to compress the measurement
data is needed. The approach proposed in Muske et al.
[1993] is a recursive formulation of the BLSE on a moving
fixed horizon N , where the effect of the data older than
T − N are summarized with a function ZT−N (xT−N).
The estimator so obtained is known as Moving Horizon
Estimator (MHE):

min
xT−N ,{ωk}T−1

k=T−N

ΦT (xT−N , {ωk}) (7)

s.t. (4a-4c) are satisfied for all k = T −N, ..., T − 1,
where

ΦT (xT−N , {ωk}) =
T−1∑

k=T−N

‖ vk‖2R−1 + ‖ωk‖2Q−1

+ZT−N (xT−N) (8)

With the moving horizon approach, only the last N
process measurements are accounted explicitly at each
time step, the remaining process measurements are taken
into account using the function ZT−N (xT−N), known
as arrival cost. The arrival cost summarizes the effect
of the data [y0, ..., yT−N−1] on the state xT−N , thereby
allowing to fix the dimension of the optimization problem.
In probabilistic terms, the arrival cost can be seen as an
equivalent statistic for the probability density function
p(xT−N |y0, ..., yT−N−1).
If we consider a linear process model and unconstrained
estimation, an optimal arrival cost is the Riccati equation
arising from Kalman filtering

ZT−N (xT−N) =

‖xT−N − x̂T−N |T−N−1‖2P−1
T−N|T−N−1

+Φ∗
T−N

(9)

1 The use of constraint on vk should be considered carefully in
practical implementations because it may amplify the effect of
spurious measurements.

����

technique to recover from erroneous infrequent measure-
ments, which is the main contribution of the paper. A
Continuous Stirred Tank Reactor (CSTR) is considered
in section 6 to illustrate the proposed strategy. Section 7
concludes the paper.

2. MOVING HORIZON ESTIMATION

Consider the process described by the nonlinear discrete
time system

xt+1 = f (xt, ut) + ωt (1a)

yt = g (xt) + vt (1b)

where xt ∈ R
n is the state vector, ut ∈ R

q is the vector
of inputs, yt ∈ R

m is the process measurements vector,
ωt ∈ R

n represents modeling uncertainties and unmeasur-
able disturbances, vt ∈ R

m is the process measurements
noise and t = 0, 1, 2,
One strategy for solving the state estimation problem for
the system (1) is to formulate it from the perspective of
probability theory. Consider the conditional probability
density function of the state evolution given the process
measurements: p (x0, x1, ..., xT | y0, y1, ..., yT−1). An opti-
mal solution then would be a state sequence that maxi-
mizes the conditional probability density function, that is
the maximum a posteriori Bayesian (MAP) estimate{

x̂0|T−1, x̂1|T−1, ..., x̂T |T−1

}
∈

arg max
x0,x1,...,xT

p (x0, x1, ..., xT | y0, y1, ..., yT−1)
(2)

where x̂k|T−1 is the optimal state estimate at time k given
measurements up to time T − 1.
The first estimator based on the maximization of the
probability density function was the Batch Least Square
Estimator (BLSE) (Jazwinski [1970]), known also as Full
Information problem (FI) (Rao [2000]). Under the common
assumption that the initial state is N

(
P0, x̂0|−1

)
, ω is

N (Q, 0) and v is N (R, 0), where x̂0|−1 is the initial guess
of the state and P0, Q and R are covariance matrices,
the maximization of the density function leads to the
optimization problem

min
x0,{ωk}T−1

k=0

ΦT (x0, {ωk}) (3)

s. t.

xk+1 = f (xk, uk) + ωk (4a)

yk = g (xk) + vk (4b)

xk ∈ X, ωk ∈ W, vk ∈ V (4c)

k = 0, ..., T − 1

where the cost function is

ΦT (x0, {ωk}) =
T−1∑
k=0

‖vk‖2R−1 + ‖ωk‖2Q−1 + ‖x0 − x̂−
0 ‖2P−1

0

(5)

We use the notation ‖x‖2A = x′Ax. The matrices Q and
R are the tuning parameters, and in addition to their
statistical interpretation, the matrix Q can be seen as a
measure of confidence in the model equations, the matrix
R can be seen as a measure of confidence in the process

data. The sets W, X and V are closed and convex, and
usually they are finite dimensional polyhedral sets

X = {xk ∈ R
n|Dxxk ≤ dx}

W = {ωk ∈ R
q|Dωωk ≤ dω}

V = {vk ∈ R
m|Dvvk ≤ dv}

(6)

The ability of imposing the constraints (4c) is the main ad-
vantage of the optimization based estimators. They can be
used to improve the descriptions of the random variables
xk, ωk and vk

1 , taking into account in the estimation
additional insight of the process not expressed in the model
(1).

The solution of (3) at time T is the pair
(
x̂0|T−1, {ω̂k}T−1

k=0

)
,

which, when used as data in (1a), yields the estimation se-
quence

[
x̂0|T−1 x̂1|T−1 ... x̂T |T−1

]
. Note that the estimate

x̂k|T−1, for k = 0, 1, ..., T − 1, are filtered values, whereas
for k = T are predicted values. This because, in the
formulation considered, at time T we have measurements
only up to time T − 1.
Due to the nonlinear model (4a-4b), problem (3) requires
the solution of a nonlinear mathematical program, a quite
computationally demanding problem. Regardless of the
mathematical problem complexity, solving the state esti-
mation problem online is practically impossible because
the size of the problem grows without bound as more
process measurements are collected. For practical online
implementation a fixed size optimization problem is re-
quired, and then a way to compress the measurement
data is needed. The approach proposed in Muske et al.
[1993] is a recursive formulation of the BLSE on a moving
fixed horizon N , where the effect of the data older than
T − N are summarized with a function ZT−N (xT−N).
The estimator so obtained is known as Moving Horizon
Estimator (MHE):

min
xT−N ,{ωk}T−1

k=T−N

ΦT (xT−N , {ωk}) (7)

s.t. (4a-4c) are satisfied for all k = T −N, ..., T − 1,
where

ΦT (xT−N , {ωk}) =
T−1∑

k=T−N

‖ vk‖2R−1 + ‖ωk‖2Q−1

+ZT−N (xT−N) (8)

With the moving horizon approach, only the last N
process measurements are accounted explicitly at each
time step, the remaining process measurements are taken
into account using the function ZT−N (xT−N), known
as arrival cost. The arrival cost summarizes the effect
of the data [y0, ..., yT−N−1] on the state xT−N , thereby
allowing to fix the dimension of the optimization problem.
In probabilistic terms, the arrival cost can be seen as an
equivalent statistic for the probability density function
p(xT−N |y0, ..., yT−N−1).
If we consider a linear process model and unconstrained
estimation, an optimal arrival cost is the Riccati equation
arising from Kalman filtering

ZT−N (xT−N) =

‖xT−N − x̂T−N |T−N−1‖2P−1
T−N|T−N−1

+Φ∗
T−N

(9)

1 The use of constraint on vk should be considered carefully in
practical implementations because it may amplify the effect of
spurious measurements.

����

technique to recover from erroneous infrequent measure-
ments, which is the main contribution of the paper. A
Continuous Stirred Tank Reactor (CSTR) is considered
in section 6 to illustrate the proposed strategy. Section 7
concludes the paper.

2. MOVING HORIZON ESTIMATION

Consider the process described by the nonlinear discrete
time system

xt+1 = f (xt, ut) + ωt (1a)

yt = g (xt) + vt (1b)

where xt ∈ R
n is the state vector, ut ∈ R

q is the vector
of inputs, yt ∈ R

m is the process measurements vector,
ωt ∈ R

n represents modeling uncertainties and unmeasur-
able disturbances, vt ∈ R

m is the process measurements
noise and t = 0, 1, 2,
One strategy for solving the state estimation problem for
the system (1) is to formulate it from the perspective of
probability theory. Consider the conditional probability
density function of the state evolution given the process
measurements: p (x0, x1, ..., xT | y0, y1, ..., yT−1). An opti-
mal solution then would be a state sequence that maxi-
mizes the conditional probability density function, that is
the maximum a posteriori Bayesian (MAP) estimate{

x̂0|T−1, x̂1|T−1, ..., x̂T |T−1

}
∈

arg max
x0,x1,...,xT

p (x0, x1, ..., xT | y0, y1, ..., yT−1)
(2)

where x̂k|T−1 is the optimal state estimate at time k given
measurements up to time T − 1.
The first estimator based on the maximization of the
probability density function was the Batch Least Square
Estimator (BLSE) (Jazwinski [1970]), known also as Full
Information problem (FI) (Rao [2000]). Under the common
assumption that the initial state is N

(
P0, x̂0|−1

)
, ω is

N (Q, 0) and v is N (R, 0), where x̂0|−1 is the initial guess
of the state and P0, Q and R are covariance matrices,
the maximization of the density function leads to the
optimization problem

min
x0,{ωk}T−1

k=0

ΦT (x0, {ωk}) (3)

s. t.

xk+1 = f (xk, uk) + ωk (4a)

yk = g (xk) + vk (4b)

xk ∈ X, ωk ∈ W, vk ∈ V (4c)

k = 0, ..., T − 1

where the cost function is

ΦT (x0, {ωk}) =
T−1∑
k=0

‖vk‖2R−1 + ‖ωk‖2Q−1 + ‖x0 − x̂−
0 ‖2P−1

0

(5)

We use the notation ‖x‖2A = x′Ax. The matrices Q and
R are the tuning parameters, and in addition to their
statistical interpretation, the matrix Q can be seen as a
measure of confidence in the model equations, the matrix
R can be seen as a measure of confidence in the process

data. The sets W, X and V are closed and convex, and
usually they are finite dimensional polyhedral sets

X = {xk ∈ R
n|Dxxk ≤ dx}

W = {ωk ∈ R
q|Dωωk ≤ dω}

V = {vk ∈ R
m|Dvvk ≤ dv}

(6)

The ability of imposing the constraints (4c) is the main ad-
vantage of the optimization based estimators. They can be
used to improve the descriptions of the random variables
xk, ωk and vk

1 , taking into account in the estimation
additional insight of the process not expressed in the model
(1).

The solution of (3) at time T is the pair
(
x̂0|T−1, {ω̂k}T−1

k=0

)
,

which, when used as data in (1a), yields the estimation se-
quence

[
x̂0|T−1 x̂1|T−1 ... x̂T |T−1

]
. Note that the estimate

x̂k|T−1, for k = 0, 1, ..., T − 1, are filtered values, whereas
for k = T are predicted values. This because, in the
formulation considered, at time T we have measurements
only up to time T − 1.
Due to the nonlinear model (4a-4b), problem (3) requires
the solution of a nonlinear mathematical program, a quite
computationally demanding problem. Regardless of the
mathematical problem complexity, solving the state esti-
mation problem online is practically impossible because
the size of the problem grows without bound as more
process measurements are collected. For practical online
implementation a fixed size optimization problem is re-
quired, and then a way to compress the measurement
data is needed. The approach proposed in Muske et al.
[1993] is a recursive formulation of the BLSE on a moving
fixed horizon N , where the effect of the data older than
T − N are summarized with a function ZT−N (xT−N).
The estimator so obtained is known as Moving Horizon
Estimator (MHE):

min
xT−N ,{ωk}T−1

k=T−N

ΦT (xT−N , {ωk}) (7)

s.t. (4a-4c) are satisfied for all k = T −N, ..., T − 1,
where

ΦT (xT−N , {ωk}) =
T−1∑

k=T−N

‖ vk‖2R−1 + ‖ωk‖2Q−1

+ZT−N (xT−N) (8)

With the moving horizon approach, only the last N
process measurements are accounted explicitly at each
time step, the remaining process measurements are taken
into account using the function ZT−N (xT−N), known
as arrival cost. The arrival cost summarizes the effect
of the data [y0, ..., yT−N−1] on the state xT−N , thereby
allowing to fix the dimension of the optimization problem.
In probabilistic terms, the arrival cost can be seen as an
equivalent statistic for the probability density function
p(xT−N |y0, ..., yT−N−1).
If we consider a linear process model and unconstrained
estimation, an optimal arrival cost is the Riccati equation
arising from Kalman filtering

ZT−N (xT−N) =

‖xT−N − x̂T−N |T−N−1‖2P−1
T−N|T−N−1

+Φ∗
T−N

(9)

1 The use of constraint on vk should be considered carefully in
practical implementations because it may amplify the effect of
spurious measurements.

����

where x̂T−N |T−N−1 is the optimal estimate at time
T − N given the measurements [y0, ..., yT−N−1], and
PT−N |T−N−1 is the covariance matrix obtained using the
Kalman filter (KF) covairance update formula (Anderson
and Moore [1979]), subject to initial condition P0. The
term Φ∗

T−N denotes the optimal cost at time T − N .
For unconstrained linear estimation, Muske and Rawlings
[1994] showed that MHE and KF are identical for any
horizon N .
Unfortunately, an algebraic expression for the arrival cost
does not exist in a tractable form when either constraints
are present or when the model is nonlinear. In these cases,
an approximate algebraic expression needs to be used
instead.
One approach is to use a first-order Taylor series approxi-
mation of the model around the estimated trajectory and
approximate the arrival cost with an extended Kalman fil-
ter covariance update formula (Muske et al. [1993], Muske
and Rawlings [1994]). This formulation is also known as
filtering MHE.
Findeisen [1997] showed that the filtering formulation
can result in oscillatory or cyclic behavior, which does
not result for the comparable Kalman filter. Then, the
solution proposed was to condition the estimate on the
smoothed value x̂T−N |T−2 rater than on the predicted
value x̂T−N |T−N−1. Since the smoothed value is based
on more information than the predicted value, in the
arrival cost a smoothed covariance matrix update formula
(Anderson and Moore [1979]) needs to be used.
An issue with the smoothing update is that the data
[yT−N , ..., yT−2] are used twice in the optimization, and
this, other than being statistically meaningless, turns N
into a tuning parameter of the problem. To avoid the
estimator to use twice the data, Rao [2000] developed
a smoothing update scheme for linear systems which re-
moves the information of the re-used measurements from
the cost function:
ZT−N (xT−N) = ‖xT−N − x̂T−N |T−2‖2P−1

T−N|T−2

+Φ∗
T−1−

‖yT−1 −ΘT−1xT−N‖2W−1
T−1

− Φ∗
T−N

(10)

where x̂T−N |T−2 is the smoothed estimate, PT−N |T−2

is the smoothed covariance matrix, yT−1 =[
y′T−N y′T−N+1 ... y′T−2

]′
, and the matrices ΘT−1 and

WT−1 follows from properties of linear Gaussian difference
equations.
Tenny [2002] extended the scheme to nonlinear systems
approximating the nonlinear model as a time-varying dis-
crete time system. This formulation is known as smoothing
MHE. It was shown that with linear systems and uncon-
strained estimation, the filtering MHE and the smoothing
MHE are equivalent.

3. MULTIRATE MOVING HORIZON ESTIMATION

The MHE formulation allows for the direct inclusion
of additional infrequent measurements in the considered
horizon (Kraemer et al. [2005]). Infrequent measurements
can be seen as slow rate measurements with time delay.
Considering for clarity only two measurements vectors, one
available at a fast sampling rate and the other at a slow
sampling rate and with delay, the measurement vector can
be written as

yk =

⎧⎨
⎩

gF (xk) if k �= l[
gF (xk)
gS(xk−td)

]
if k = l

(11)

where k indicates the fast sampling rate; l = L�k/L�,
L being the number of steps between two slow sampling
points (a slow sampling point coincides with a fast sam-
pling point) and �.� the nearest smaller integer value; td
the slow measurement delay. The slow sampling rate and
the measurement delay are integer multiplies of the fast
sampling rate.
As discussed in Kraemer et al. [2005], there are two pos-
sible approaches to multirate estimation: fixed structure
estimation, where a zero-order hold is used to extrapolate
the estimation error of the slow measurement at the fast
sample rate, and a variable structure estimation, where the
estimation error is considered according to the availability
of the measurements. It was shown that the fixed structure
appears preferable as it is less susceptible to noise in the
slow measurements.
The multirate MHE with fixed structure is

min
xT−N ,{ωk}T−1

k=T−N

ΦT (xT−N , {ωk}) (12)

s.t.

xk+1 = f (xk, uk) + ωk

yk =

[
gF (xk)
gS(xk̄)

]
+ vk

ωk ∈ W, xk ∈ X, vk ∈ V

k̄ =

{
L(�k/L� − 1)

L�k/L�
if k ≥ �T/L� and T < L�T/L�+ td
otherwise

In the definition of k̄ it is also taken into account the case
N ≤ td, even if it is convenient to have an horizon at least
as long as the measurement delay. The measurement vector
yk has to be considered as composed by two sub-vectors:

yFk ∈ R
mF

relative to the fast measurements, ySk ∈ R
mS

relative to the slow measurements, where m = mS +mF .
Analogously has to be done for vk.

4. IMPLEMENTATION USING SUCCESSIVE
LINEARIZATION

The nonlinear model used in the MHE formulation makes
the resulting optimization problem a nonconvex program,
which gives rise to a lot of computational difficulties re-
lated to the expense and reliability of solving the noncon-
vex program online.
Successive linearization is a successful approach used in
model predictive control to tackle the same problem. In
this section we show how the same approach is applied to
obtain an efficient MHE formulation (Tenny [2002]).
Taylor first order approximation is used to linearize the
nonlinear model. Consider a system xk+1 = f(xk, uk)+ωk

and a point x̄ (since uk is know, it can be considered
as a constant), where f(xk, uk) is a nonlinear function
differentiable in xk. The Taylor first order approximation
of the system about the point x̄ is xk+1 ≈ Ax̄xk + bx̄ +ωk

where Ax̄ = ∂f
∂x |x=x̄ and bx̄ = f(x̄)−Ax̄x̄.

The cost function (8) can be written as

ΦT = ‖vT ‖2R−1
T

+ ‖wT ‖2Q−1
T

+ ZT−N (xT−N) (13)

����

where x̂T−N |T−N−1 is the optimal estimate at time
T − N given the measurements [y0, ..., yT−N−1], and
PT−N |T−N−1 is the covariance matrix obtained using the
Kalman filter (KF) covairance update formula (Anderson
and Moore [1979]), subject to initial condition P0. The
term Φ∗

T−N denotes the optimal cost at time T − N .
For unconstrained linear estimation, Muske and Rawlings
[1994] showed that MHE and KF are identical for any
horizon N .
Unfortunately, an algebraic expression for the arrival cost
does not exist in a tractable form when either constraints
are present or when the model is nonlinear. In these cases,
an approximate algebraic expression needs to be used
instead.
One approach is to use a first-order Taylor series approxi-
mation of the model around the estimated trajectory and
approximate the arrival cost with an extended Kalman fil-
ter covariance update formula (Muske et al. [1993], Muske
and Rawlings [1994]). This formulation is also known as
filtering MHE.
Findeisen [1997] showed that the filtering formulation
can result in oscillatory or cyclic behavior, which does
not result for the comparable Kalman filter. Then, the
solution proposed was to condition the estimate on the
smoothed value x̂T−N |T−2 rater than on the predicted
value x̂T−N |T−N−1. Since the smoothed value is based
on more information than the predicted value, in the
arrival cost a smoothed covariance matrix update formula
(Anderson and Moore [1979]) needs to be used.
An issue with the smoothing update is that the data
[yT−N , ..., yT−2] are used twice in the optimization, and
this, other than being statistically meaningless, turns N
into a tuning parameter of the problem. To avoid the
estimator to use twice the data, Rao [2000] developed
a smoothing update scheme for linear systems which re-
moves the information of the re-used measurements from
the cost function:
ZT−N (xT−N) = ‖xT−N − x̂T−N |T−2‖2P−1

T−N|T−2

+Φ∗
T−1−

‖yT−1 −ΘT−1xT−N‖2W−1
T−1

− Φ∗
T−N

(10)

where x̂T−N |T−2 is the smoothed estimate, PT−N |T−2

is the smoothed covariance matrix, yT−1 =[
y′T−N y′T−N+1 ... y′T−2

]′
, and the matrices ΘT−1 and

WT−1 follows from properties of linear Gaussian difference
equations.
Tenny [2002] extended the scheme to nonlinear systems
approximating the nonlinear model as a time-varying dis-
crete time system. This formulation is known as smoothing
MHE. It was shown that with linear systems and uncon-
strained estimation, the filtering MHE and the smoothing
MHE are equivalent.

3. MULTIRATE MOVING HORIZON ESTIMATION

The MHE formulation allows for the direct inclusion
of additional infrequent measurements in the considered
horizon (Kraemer et al. [2005]). Infrequent measurements
can be seen as slow rate measurements with time delay.
Considering for clarity only two measurements vectors, one
available at a fast sampling rate and the other at a slow
sampling rate and with delay, the measurement vector can
be written as

yk =

⎧⎨
⎩

gF (xk) if k �= l[
gF (xk)
gS(xk−td)

]
if k = l

(11)

where k indicates the fast sampling rate; l = L�k/L�,
L being the number of steps between two slow sampling
points (a slow sampling point coincides with a fast sam-
pling point) and �.� the nearest smaller integer value; td
the slow measurement delay. The slow sampling rate and
the measurement delay are integer multiplies of the fast
sampling rate.
As discussed in Kraemer et al. [2005], there are two pos-
sible approaches to multirate estimation: fixed structure
estimation, where a zero-order hold is used to extrapolate
the estimation error of the slow measurement at the fast
sample rate, and a variable structure estimation, where the
estimation error is considered according to the availability
of the measurements. It was shown that the fixed structure
appears preferable as it is less susceptible to noise in the
slow measurements.
The multirate MHE with fixed structure is

min
xT−N ,{ωk}T−1

k=T−N

ΦT (xT−N , {ωk}) (12)

s.t.

xk+1 = f (xk, uk) + ωk

yk =

[
gF (xk)
gS(xk̄)

]
+ vk

ωk ∈ W, xk ∈ X, vk ∈ V

k̄ =

{
L(�k/L� − 1)

L�k/L�
if k ≥ �T/L� and T < L�T/L�+ td
otherwise

In the definition of k̄ it is also taken into account the case
N ≤ td, even if it is convenient to have an horizon at least
as long as the measurement delay. The measurement vector
yk has to be considered as composed by two sub-vectors:

yFk ∈ R
mF

relative to the fast measurements, ySk ∈ R
mS

relative to the slow measurements, where m = mS +mF .
Analogously has to be done for vk.

4. IMPLEMENTATION USING SUCCESSIVE
LINEARIZATION

The nonlinear model used in the MHE formulation makes
the resulting optimization problem a nonconvex program,
which gives rise to a lot of computational difficulties re-
lated to the expense and reliability of solving the noncon-
vex program online.
Successive linearization is a successful approach used in
model predictive control to tackle the same problem. In
this section we show how the same approach is applied to
obtain an efficient MHE formulation (Tenny [2002]).
Taylor first order approximation is used to linearize the
nonlinear model. Consider a system xk+1 = f(xk, uk)+ωk

and a point x̄ (since uk is know, it can be considered
as a constant), where f(xk, uk) is a nonlinear function
differentiable in xk. The Taylor first order approximation
of the system about the point x̄ is xk+1 ≈ Ax̄xk + bx̄ +ωk

where Ax̄ = ∂f
∂x |x=x̄ and bx̄ = f(x̄)−Ax̄x̄.

The cost function (8) can be written as

ΦT = ‖vT ‖2R−1
T

+ ‖wT ‖2Q−1
T

+ ZT−N (xT−N) (13)

����

where x̂T−N |T−N−1 is the optimal estimate at time
T − N given the measurements [y0, ..., yT−N−1], and
PT−N |T−N−1 is the covariance matrix obtained using the
Kalman filter (KF) covairance update formula (Anderson
and Moore [1979]), subject to initial condition P0. The
term Φ∗

T−N denotes the optimal cost at time T − N .
For unconstrained linear estimation, Muske and Rawlings
[1994] showed that MHE and KF are identical for any
horizon N .
Unfortunately, an algebraic expression for the arrival cost
does not exist in a tractable form when either constraints
are present or when the model is nonlinear. In these cases,
an approximate algebraic expression needs to be used
instead.
One approach is to use a first-order Taylor series approxi-
mation of the model around the estimated trajectory and
approximate the arrival cost with an extended Kalman fil-
ter covariance update formula (Muske et al. [1993], Muske
and Rawlings [1994]). This formulation is also known as
filtering MHE.
Findeisen [1997] showed that the filtering formulation
can result in oscillatory or cyclic behavior, which does
not result for the comparable Kalman filter. Then, the
solution proposed was to condition the estimate on the
smoothed value x̂T−N |T−2 rater than on the predicted
value x̂T−N |T−N−1. Since the smoothed value is based
on more information than the predicted value, in the
arrival cost a smoothed covariance matrix update formula
(Anderson and Moore [1979]) needs to be used.
An issue with the smoothing update is that the data
[yT−N , ..., yT−2] are used twice in the optimization, and
this, other than being statistically meaningless, turns N
into a tuning parameter of the problem. To avoid the
estimator to use twice the data, Rao [2000] developed
a smoothing update scheme for linear systems which re-
moves the information of the re-used measurements from
the cost function:
ZT−N (xT−N) = ‖xT−N − x̂T−N |T−2‖2P−1

T−N|T−2

+Φ∗
T−1−

‖yT−1 −ΘT−1xT−N‖2W−1
T−1

− Φ∗
T−N

(10)

where x̂T−N |T−2 is the smoothed estimate, PT−N |T−2

is the smoothed covariance matrix, yT−1 =[
y′T−N y′T−N+1 ... y′T−2

]′
, and the matrices ΘT−1 and

WT−1 follows from properties of linear Gaussian difference
equations.
Tenny [2002] extended the scheme to nonlinear systems
approximating the nonlinear model as a time-varying dis-
crete time system. This formulation is known as smoothing
MHE. It was shown that with linear systems and uncon-
strained estimation, the filtering MHE and the smoothing
MHE are equivalent.

3. MULTIRATE MOVING HORIZON ESTIMATION

The MHE formulation allows for the direct inclusion
of additional infrequent measurements in the considered
horizon (Kraemer et al. [2005]). Infrequent measurements
can be seen as slow rate measurements with time delay.
Considering for clarity only two measurements vectors, one
available at a fast sampling rate and the other at a slow
sampling rate and with delay, the measurement vector can
be written as

yk =

⎧⎨
⎩

gF (xk) if k �= l[
gF (xk)
gS(xk−td)

]
if k = l

(11)

where k indicates the fast sampling rate; l = L�k/L�,
L being the number of steps between two slow sampling
points (a slow sampling point coincides with a fast sam-
pling point) and �.� the nearest smaller integer value; td
the slow measurement delay. The slow sampling rate and
the measurement delay are integer multiplies of the fast
sampling rate.
As discussed in Kraemer et al. [2005], there are two pos-
sible approaches to multirate estimation: fixed structure
estimation, where a zero-order hold is used to extrapolate
the estimation error of the slow measurement at the fast
sample rate, and a variable structure estimation, where the
estimation error is considered according to the availability
of the measurements. It was shown that the fixed structure
appears preferable as it is less susceptible to noise in the
slow measurements.
The multirate MHE with fixed structure is

min
xT−N ,{ωk}T−1

k=T−N

ΦT (xT−N , {ωk}) (12)

s.t.

xk+1 = f (xk, uk) + ωk

yk =

[
gF (xk)
gS(xk̄)

]
+ vk

ωk ∈ W, xk ∈ X, vk ∈ V

k̄ =

{
L(�k/L� − 1)

L�k/L�
if k ≥ �T/L� and T < L�T/L�+ td
otherwise

In the definition of k̄ it is also taken into account the case
N ≤ td, even if it is convenient to have an horizon at least
as long as the measurement delay. The measurement vector
yk has to be considered as composed by two sub-vectors:

yFk ∈ R
mF

relative to the fast measurements, ySk ∈ R
mS

relative to the slow measurements, where m = mS +mF .
Analogously has to be done for vk.

4. IMPLEMENTATION USING SUCCESSIVE
LINEARIZATION

The nonlinear model used in the MHE formulation makes
the resulting optimization problem a nonconvex program,
which gives rise to a lot of computational difficulties re-
lated to the expense and reliability of solving the noncon-
vex program online.
Successive linearization is a successful approach used in
model predictive control to tackle the same problem. In
this section we show how the same approach is applied to
obtain an efficient MHE formulation (Tenny [2002]).
Taylor first order approximation is used to linearize the
nonlinear model. Consider a system xk+1 = f(xk, uk)+ωk

and a point x̄ (since uk is know, it can be considered
as a constant), where f(xk, uk) is a nonlinear function
differentiable in xk. The Taylor first order approximation
of the system about the point x̄ is xk+1 ≈ Ax̄xk + bx̄ +ωk

where Ax̄ = ∂f
∂x |x=x̄ and bx̄ = f(x̄)−Ax̄x̄.

The cost function (8) can be written as

ΦT = ‖vT ‖2R−1
T

+ ‖wT ‖2Q−1
T

+ ZT−N (xT−N) (13)

����

where x̂T−N |T−N−1 is the optimal estimate at time
T − N given the measurements [y0, ..., yT−N−1], and
PT−N |T−N−1 is the covariance matrix obtained using the
Kalman filter (KF) covairance update formula (Anderson
and Moore [1979]), subject to initial condition P0. The
term Φ∗

T−N denotes the optimal cost at time T − N .
For unconstrained linear estimation, Muske and Rawlings
[1994] showed that MHE and KF are identical for any
horizon N .
Unfortunately, an algebraic expression for the arrival cost
does not exist in a tractable form when either constraints
are present or when the model is nonlinear. In these cases,
an approximate algebraic expression needs to be used
instead.
One approach is to use a first-order Taylor series approxi-
mation of the model around the estimated trajectory and
approximate the arrival cost with an extended Kalman fil-
ter covariance update formula (Muske et al. [1993], Muske
and Rawlings [1994]). This formulation is also known as
filtering MHE.
Findeisen [1997] showed that the filtering formulation
can result in oscillatory or cyclic behavior, which does
not result for the comparable Kalman filter. Then, the
solution proposed was to condition the estimate on the
smoothed value x̂T−N |T−2 rater than on the predicted
value x̂T−N |T−N−1. Since the smoothed value is based
on more information than the predicted value, in the
arrival cost a smoothed covariance matrix update formula
(Anderson and Moore [1979]) needs to be used.
An issue with the smoothing update is that the data
[yT−N , ..., yT−2] are used twice in the optimization, and
this, other than being statistically meaningless, turns N
into a tuning parameter of the problem. To avoid the
estimator to use twice the data, Rao [2000] developed
a smoothing update scheme for linear systems which re-
moves the information of the re-used measurements from
the cost function:
ZT−N (xT−N) = ‖xT−N − x̂T−N |T−2‖2P−1

T−N|T−2

+Φ∗
T−1−

‖yT−1 −ΘT−1xT−N‖2W−1
T−1

− Φ∗
T−N

(10)

where x̂T−N |T−2 is the smoothed estimate, PT−N |T−2

is the smoothed covariance matrix, yT−1 =[
y′T−N y′T−N+1 ... y′T−2

]′
, and the matrices ΘT−1 and

WT−1 follows from properties of linear Gaussian difference
equations.
Tenny [2002] extended the scheme to nonlinear systems
approximating the nonlinear model as a time-varying dis-
crete time system. This formulation is known as smoothing
MHE. It was shown that with linear systems and uncon-
strained estimation, the filtering MHE and the smoothing
MHE are equivalent.

3. MULTIRATE MOVING HORIZON ESTIMATION

The MHE formulation allows for the direct inclusion
of additional infrequent measurements in the considered
horizon (Kraemer et al. [2005]). Infrequent measurements
can be seen as slow rate measurements with time delay.
Considering for clarity only two measurements vectors, one
available at a fast sampling rate and the other at a slow
sampling rate and with delay, the measurement vector can
be written as

yk =

⎧⎨
⎩

gF (xk) if k �= l[
gF (xk)
gS(xk−td)

]
if k = l

(11)

where k indicates the fast sampling rate; l = L�k/L�,
L being the number of steps between two slow sampling
points (a slow sampling point coincides with a fast sam-
pling point) and �.� the nearest smaller integer value; td
the slow measurement delay. The slow sampling rate and
the measurement delay are integer multiplies of the fast
sampling rate.
As discussed in Kraemer et al. [2005], there are two pos-
sible approaches to multirate estimation: fixed structure
estimation, where a zero-order hold is used to extrapolate
the estimation error of the slow measurement at the fast
sample rate, and a variable structure estimation, where the
estimation error is considered according to the availability
of the measurements. It was shown that the fixed structure
appears preferable as it is less susceptible to noise in the
slow measurements.
The multirate MHE with fixed structure is

min
xT−N ,{ωk}T−1

k=T−N

ΦT (xT−N , {ωk}) (12)

s.t.

xk+1 = f (xk, uk) + ωk

yk =

[
gF (xk)
gS(xk̄)

]
+ vk

ωk ∈ W, xk ∈ X, vk ∈ V

k̄ =

{
L(�k/L� − 1)

L�k/L�
if k ≥ �T/L� and T < L�T/L�+ td
otherwise

In the definition of k̄ it is also taken into account the case
N ≤ td, even if it is convenient to have an horizon at least
as long as the measurement delay. The measurement vector
yk has to be considered as composed by two sub-vectors:

yFk ∈ R
mF

relative to the fast measurements, ySk ∈ R
mS

relative to the slow measurements, where m = mS +mF .
Analogously has to be done for vk.

4. IMPLEMENTATION USING SUCCESSIVE
LINEARIZATION

The nonlinear model used in the MHE formulation makes
the resulting optimization problem a nonconvex program,
which gives rise to a lot of computational difficulties re-
lated to the expense and reliability of solving the noncon-
vex program online.
Successive linearization is a successful approach used in
model predictive control to tackle the same problem. In
this section we show how the same approach is applied to
obtain an efficient MHE formulation (Tenny [2002]).
Taylor first order approximation is used to linearize the
nonlinear model. Consider a system xk+1 = f(xk, uk)+ωk

and a point x̄ (since uk is know, it can be considered
as a constant), where f(xk, uk) is a nonlinear function
differentiable in xk. The Taylor first order approximation
of the system about the point x̄ is xk+1 ≈ Ax̄xk + bx̄ +ωk

where Ax̄ = ∂f
∂x |x=x̄ and bx̄ = f(x̄)−Ax̄x̄.

The cost function (8) can be written as

ΦT = ‖vT ‖2R−1
T

+ ‖wT ‖2Q−1
T

+ ZT−N (xT−N) (13)

����

where vT =
[
v′T−N ... v′T−1

]′
, wT =

[
ω′
T−N ... ω′

T−1

]′
,

R−1
T = blkdiag(R−1, N) 2 and Q−1

T = blkdiag(Q−1, N).
From the measurement equation we have vk = yk − g(xk),
where in the case of multirate measurement g has to be
interpreted as the composition of gF and gS . For simplicity
of explanation, suppose g is linear, i.e., vk = yk − Cxk,
C ∈ R

m×n. This is not restrictive since the case of a
nonlinear function g can be brought to the linear case using
Taylor approximation.
Then we have

‖vT ‖2R−1
T

= ‖yT − CTxT ‖2R−1
T

(14)

where yT =
[
y′T−N ... y′T−1

]′
, xT =

[
x′
T−N ... x′

T−1

]′
and

CT = blkdiag(C,N).
Consider now the estimation sequence from the previ-
ous time step, i.e.,

[
x̂T−N−1|T−2 x̂T−N |T−2 ... x̂T−1|T−2

]
.

Then the nonlinear state evolution of the system (1a) can
be approximated by the time-varing linear system

xk+1 ≈ Akxk + bk + ωk (15)

where Ak = ∂f
∂x |x=x̂k|T−2

, bk = f(x̂k|T−2) − Akx̂k|T−2, for
all k = T −N − 1, ..., T − 1.
Repeated use of (15) and organizing so to write all
the optimization variables in the vector zT =[
x′
T−N ω′

T−N ω′
T−N+1 ... ω′

T−1

]′
, gives

xT = AT zT + bT (16)

where
AT =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 · · · 0
AT−N I 0 0 · · · 0

AT−N+1AT−N AT−N+1 I 0 · · · 0
...

...
...

. . .
...

T−2∏
k=T−N

Ak

T−2∏
k=T−N+1

Ak

T−2∏
k=T−N+2

Ak · · · I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

bT = AT

[
0 b′T−N b′T−N+1 ... b′T−2 0

]′
We indicate with I the identity matrix and with 0 the zero
matrix of dimension suitable to where it is used.
Using the linearized model (15), we can write an algebraic
approximation of the arrival cost using the smoothing
update formula (10)

ZT−N (xT−N) = ‖xT−N − x̂T−N |T−2‖2P−1
T−N|T−2

−

‖yT−1 −ΘT−1xT−N − FT−1‖2W−1
T−1

(17)

where the terms Φ∗
T−1 and Φ∗

T−N are removed be-
cause they do not influence the optimization. The value
x̂T−N |T−2 is the smoothed estimate from the previous
step. PT−N |T−2 is the smoothed covariance matrix and
it is obtained first propagating forward the covariance
PT−N |T−N−1 using the well known Kalman filter formulas

Pk|k−1 = Q+Ak−1Pk−1|k−1A
′
k−1

Pk|k = Pk|k−1 − Pk|k−1C
′ (R+ C ′Pk|k−1C

)−1
CPk|k−1

and then using the backward Riccati equation to compute
the smoothed covariance

Pk|j = Pk|k+Pk|kA′
kPk+1|k

(
Pk+1|j − Pk+1|k

)
P−1
k+1|kAkPk|k

2 blkdiag(A,n) indicates the n times block diagonal concatenation
of a matrix A.

starting from PT−2|T−2.
The second term in (17) avoids to reuse twice the in-
formation relative to [yT−N yT−N+1 ... yT−2], and it is
characterized by

FT−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
CbT−N

C (AT−N+1bT−N + bT−N+1)
...

C

T−3∑
j=T−N+1

j∏
k=T−N+1

Akbk−1 + CbT−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ΘT−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

C
CAT−N

...

C

T−3∏
k=T−N

Ak

⎤
⎥⎥⎥⎥⎥⎥⎦

WT−1 = RT−1 + CT−1WT−1C
′
T−1

where RT−1 = blkdiag(R,N − 1), CT−1 = blkdiag(C,N −
1) and

WT−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0 Q · · · Q

T−3∏
k=T−N+1

A′
k

...
...

. . .
...

0

T−3∏
k=T−N+1

AkQ · · · Q+
T−3∑

j=T−N+1

∣∣∣∣∣
∣∣∣∣∣

j∏
k=T−N+1

Ak

∣∣∣∣∣
∣∣∣∣∣
2

Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Considering constraints of the form (6), it is trivial to write
them in terms of the vector zT , obtaining the compact form

DT zT ≤ dT . (18)

Then, an approximate solution of problem (12) can be
obtained solving the quadratic program

min
zT

1

2
z′THT zT + f′T zT

s.t. DT zT ≤ dT

(19)

where

HT = A′
TC

′
TR

−1
T CTAT + Q̄

−1
T + P̄−1

T + Θ̄′
T−1W−1

T−1Θ̄T−1

fT = −2y′TR
−1
T CTAT − 2z̄′T P̄

−1
T + 2b′TC

′
TR

−1
T CTAT−

2y′T−1W−1
T−1Θ̄T−1 + 2F ′

T−1W−1
T−1Θ̄T−1

and the terms not influencing the optimization are ne-

glected. The matrices Q̄
−1
T = diag(0,Q−1

T) 3 , P̄T =
diag(PT−N |T−2, 0) and Θ̄T−1 = [ΘT−1 0] are introduced
to be consistent with the definition of the optimization
vector zT .
The matrices HT , fT , DT and dT in the optimization prob-
lem (19) are time-varying due to the time-varying model
(15), thus at each time step they need to be computed.

Assuming that an algebraic form of ∂f
∂x is available, this

operation amounts to the evaluation of several algebraic
equations, and generally it is far less demanding than
solving a non-convex optimization problem.
3 diag(A,B) indicates the diagonal concatenation of two matrices A
and B.

����

where vT =
[
v′T−N ... v′T−1

]′
, wT =

[
ω′
T−N ... ω′

T−1

]′
,

R−1
T = blkdiag(R−1, N) 2 and Q−1

T = blkdiag(Q−1, N).
From the measurement equation we have vk = yk − g(xk),
where in the case of multirate measurement g has to be
interpreted as the composition of gF and gS . For simplicity
of explanation, suppose g is linear, i.e., vk = yk − Cxk,
C ∈ R

m×n. This is not restrictive since the case of a
nonlinear function g can be brought to the linear case using
Taylor approximation.
Then we have

‖vT ‖2R−1
T

= ‖yT − CTxT ‖2R−1
T

(14)

where yT =
[
y′T−N ... y′T−1

]′
, xT =

[
x′
T−N ... x′

T−1

]′
and

CT = blkdiag(C,N).
Consider now the estimation sequence from the previ-
ous time step, i.e.,

[
x̂T−N−1|T−2 x̂T−N |T−2 ... x̂T−1|T−2

]
.

Then the nonlinear state evolution of the system (1a) can
be approximated by the time-varing linear system

xk+1 ≈ Akxk + bk + ωk (15)

where Ak = ∂f
∂x |x=x̂k|T−2

, bk = f(x̂k|T−2) − Akx̂k|T−2, for
all k = T −N − 1, ..., T − 1.
Repeated use of (15) and organizing so to write all
the optimization variables in the vector zT =[
x′
T−N ω′

T−N ω′
T−N+1 ... ω′

T−1

]′
, gives

xT = AT zT + bT (16)

where
AT =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 · · · 0
AT−N I 0 0 · · · 0

AT−N+1AT−N AT−N+1 I 0 · · · 0
...

...
...

. . .
...

T−2∏
k=T−N

Ak

T−2∏
k=T−N+1

Ak

T−2∏
k=T−N+2

Ak · · · I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

bT = AT

[
0 b′T−N b′T−N+1 ... b′T−2 0

]′
We indicate with I the identity matrix and with 0 the zero
matrix of dimension suitable to where it is used.
Using the linearized model (15), we can write an algebraic
approximation of the arrival cost using the smoothing
update formula (10)

ZT−N (xT−N) = ‖xT−N − x̂T−N |T−2‖2P−1
T−N|T−2

−

‖yT−1 −ΘT−1xT−N − FT−1‖2W−1
T−1

(17)

where the terms Φ∗
T−1 and Φ∗

T−N are removed be-
cause they do not influence the optimization. The value
x̂T−N |T−2 is the smoothed estimate from the previous
step. PT−N |T−2 is the smoothed covariance matrix and
it is obtained first propagating forward the covariance
PT−N |T−N−1 using the well known Kalman filter formulas

Pk|k−1 = Q+Ak−1Pk−1|k−1A
′
k−1

Pk|k = Pk|k−1 − Pk|k−1C
′ (R+ C ′Pk|k−1C

)−1
CPk|k−1

and then using the backward Riccati equation to compute
the smoothed covariance

Pk|j = Pk|k+Pk|kA′
kPk+1|k

(
Pk+1|j − Pk+1|k

)
P−1
k+1|kAkPk|k

2 blkdiag(A,n) indicates the n times block diagonal concatenation
of a matrix A.

starting from PT−2|T−2.
The second term in (17) avoids to reuse twice the in-
formation relative to [yT−N yT−N+1 ... yT−2], and it is
characterized by

FT−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
CbT−N

C (AT−N+1bT−N + bT−N+1)
...

C

T−3∑
j=T−N+1

j∏
k=T−N+1

Akbk−1 + CbT−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ΘT−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

C
CAT−N

...

C

T−3∏
k=T−N

Ak

⎤
⎥⎥⎥⎥⎥⎥⎦

WT−1 = RT−1 + CT−1WT−1C
′
T−1

where RT−1 = blkdiag(R,N − 1), CT−1 = blkdiag(C,N −
1) and

WT−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0 Q · · · Q

T−3∏
k=T−N+1

A′
k

...
...

. . .
...

0

T−3∏
k=T−N+1

AkQ · · · Q+
T−3∑

j=T−N+1

∣∣∣∣∣
∣∣∣∣∣

j∏
k=T−N+1

Ak

∣∣∣∣∣
∣∣∣∣∣
2

Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Considering constraints of the form (6), it is trivial to write
them in terms of the vector zT , obtaining the compact form

DT zT ≤ dT . (18)

Then, an approximate solution of problem (12) can be
obtained solving the quadratic program

min
zT

1

2
z′THT zT + f′T zT

s.t. DT zT ≤ dT

(19)

where

HT = A′
TC

′
TR

−1
T CTAT + Q̄

−1
T + P̄−1

T + Θ̄′
T−1W−1

T−1Θ̄T−1

fT = −2y′TR
−1
T CTAT − 2z̄′T P̄

−1
T + 2b′TC

′
TR

−1
T CTAT−

2y′T−1W−1
T−1Θ̄T−1 + 2F ′

T−1W−1
T−1Θ̄T−1

and the terms not influencing the optimization are ne-

glected. The matrices Q̄
−1
T = diag(0,Q−1

T) 3 , P̄T =
diag(PT−N |T−2, 0) and Θ̄T−1 = [ΘT−1 0] are introduced
to be consistent with the definition of the optimization
vector zT .
The matrices HT , fT , DT and dT in the optimization prob-
lem (19) are time-varying due to the time-varying model
(15), thus at each time step they need to be computed.

Assuming that an algebraic form of ∂f
∂x is available, this

operation amounts to the evaluation of several algebraic
equations, and generally it is far less demanding than
solving a non-convex optimization problem.
3 diag(A,B) indicates the diagonal concatenation of two matrices A
and B.

����

where vT =
[
v′T−N ... v′T−1

]′
, wT =

[
ω′
T−N ... ω′

T−1

]′
,

R−1
T = blkdiag(R−1, N) 2 and Q−1

T = blkdiag(Q−1, N).
From the measurement equation we have vk = yk − g(xk),
where in the case of multirate measurement g has to be
interpreted as the composition of gF and gS . For simplicity
of explanation, suppose g is linear, i.e., vk = yk − Cxk,
C ∈ R

m×n. This is not restrictive since the case of a
nonlinear function g can be brought to the linear case using
Taylor approximation.
Then we have

‖vT ‖2R−1
T

= ‖yT − CTxT ‖2R−1
T

(14)

where yT =
[
y′T−N ... y′T−1

]′
, xT =

[
x′
T−N ... x′

T−1

]′
and

CT = blkdiag(C,N).
Consider now the estimation sequence from the previ-
ous time step, i.e.,

[
x̂T−N−1|T−2 x̂T−N |T−2 ... x̂T−1|T−2

]
.

Then the nonlinear state evolution of the system (1a) can
be approximated by the time-varing linear system

xk+1 ≈ Akxk + bk + ωk (15)

where Ak = ∂f
∂x |x=x̂k|T−2

, bk = f(x̂k|T−2) − Akx̂k|T−2, for
all k = T −N − 1, ..., T − 1.
Repeated use of (15) and organizing so to write all
the optimization variables in the vector zT =[
x′
T−N ω′

T−N ω′
T−N+1 ... ω′

T−1

]′
, gives

xT = AT zT + bT (16)

where
AT =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 · · · 0
AT−N I 0 0 · · · 0

AT−N+1AT−N AT−N+1 I 0 · · · 0
...

...
...

. . .
...

T−2∏
k=T−N

Ak

T−2∏
k=T−N+1

Ak

T−2∏
k=T−N+2

Ak · · · I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

bT = AT

[
0 b′T−N b′T−N+1 ... b′T−2 0

]′
We indicate with I the identity matrix and with 0 the zero
matrix of dimension suitable to where it is used.
Using the linearized model (15), we can write an algebraic
approximation of the arrival cost using the smoothing
update formula (10)

ZT−N (xT−N) = ‖xT−N − x̂T−N |T−2‖2P−1
T−N|T−2

−

‖yT−1 −ΘT−1xT−N − FT−1‖2W−1
T−1

(17)

where the terms Φ∗
T−1 and Φ∗

T−N are removed be-
cause they do not influence the optimization. The value
x̂T−N |T−2 is the smoothed estimate from the previous
step. PT−N |T−2 is the smoothed covariance matrix and
it is obtained first propagating forward the covariance
PT−N |T−N−1 using the well known Kalman filter formulas

Pk|k−1 = Q+Ak−1Pk−1|k−1A
′
k−1

Pk|k = Pk|k−1 − Pk|k−1C
′ (R+ C ′Pk|k−1C

)−1
CPk|k−1

and then using the backward Riccati equation to compute
the smoothed covariance

Pk|j = Pk|k+Pk|kA′
kPk+1|k

(
Pk+1|j − Pk+1|k

)
P−1
k+1|kAkPk|k

2 blkdiag(A,n) indicates the n times block diagonal concatenation
of a matrix A.

starting from PT−2|T−2.
The second term in (17) avoids to reuse twice the in-
formation relative to [yT−N yT−N+1 ... yT−2], and it is
characterized by

FT−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
CbT−N

C (AT−N+1bT−N + bT−N+1)
...

C

T−3∑
j=T−N+1

j∏
k=T−N+1

Akbk−1 + CbT−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ΘT−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

C
CAT−N

...

C

T−3∏
k=T−N

Ak

⎤
⎥⎥⎥⎥⎥⎥⎦

WT−1 = RT−1 + CT−1WT−1C
′
T−1

where RT−1 = blkdiag(R,N − 1), CT−1 = blkdiag(C,N −
1) and

WT−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0 Q · · · Q

T−3∏
k=T−N+1

A′
k

...
...

. . .
...

0

T−3∏
k=T−N+1

AkQ · · · Q+
T−3∑

j=T−N+1

∣∣∣∣∣
∣∣∣∣∣

j∏
k=T−N+1

Ak

∣∣∣∣∣
∣∣∣∣∣
2

Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Considering constraints of the form (6), it is trivial to write
them in terms of the vector zT , obtaining the compact form

DT zT ≤ dT . (18)

Then, an approximate solution of problem (12) can be
obtained solving the quadratic program

min
zT

1

2
z′THT zT + f′T zT

s.t. DT zT ≤ dT

(19)

where

HT = A′
TC

′
TR

−1
T CTAT + Q̄

−1
T + P̄−1

T + Θ̄′
T−1W−1

T−1Θ̄T−1

fT = −2y′TR
−1
T CTAT − 2z̄′T P̄

−1
T + 2b′TC

′
TR

−1
T CTAT−

2y′T−1W−1
T−1Θ̄T−1 + 2F ′

T−1W−1
T−1Θ̄T−1

and the terms not influencing the optimization are ne-

glected. The matrices Q̄
−1
T = diag(0,Q−1

T) 3 , P̄T =
diag(PT−N |T−2, 0) and Θ̄T−1 = [ΘT−1 0] are introduced
to be consistent with the definition of the optimization
vector zT .
The matrices HT , fT , DT and dT in the optimization prob-
lem (19) are time-varying due to the time-varying model
(15), thus at each time step they need to be computed.

Assuming that an algebraic form of ∂f
∂x is available, this

operation amounts to the evaluation of several algebraic
equations, and generally it is far less demanding than
solving a non-convex optimization problem.
3 diag(A,B) indicates the diagonal concatenation of two matrices A
and B.

����

where vT =
[
v′T−N ... v′T−1

]′
, wT =

[
ω′
T−N ... ω′

T−1

]′
,

R−1
T = blkdiag(R−1, N) 2 and Q−1

T = blkdiag(Q−1, N).
From the measurement equation we have vk = yk − g(xk),
where in the case of multirate measurement g has to be
interpreted as the composition of gF and gS . For simplicity
of explanation, suppose g is linear, i.e., vk = yk − Cxk,
C ∈ R

m×n. This is not restrictive since the case of a
nonlinear function g can be brought to the linear case using
Taylor approximation.
Then we have

‖vT ‖2R−1
T

= ‖yT − CTxT ‖2R−1
T

(14)

where yT =
[
y′T−N ... y′T−1

]′
, xT =

[
x′
T−N ... x′

T−1

]′
and

CT = blkdiag(C,N).
Consider now the estimation sequence from the previ-
ous time step, i.e.,

[
x̂T−N−1|T−2 x̂T−N |T−2 ... x̂T−1|T−2

]
.

Then the nonlinear state evolution of the system (1a) can
be approximated by the time-varing linear system

xk+1 ≈ Akxk + bk + ωk (15)

where Ak = ∂f
∂x |x=x̂k|T−2

, bk = f(x̂k|T−2) − Akx̂k|T−2, for
all k = T −N − 1, ..., T − 1.
Repeated use of (15) and organizing so to write all
the optimization variables in the vector zT =[
x′
T−N ω′

T−N ω′
T−N+1 ... ω′

T−1

]′
, gives

xT = AT zT + bT (16)

where
AT =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 · · · 0
AT−N I 0 0 · · · 0

AT−N+1AT−N AT−N+1 I 0 · · · 0
...

...
...

. . .
...

T−2∏
k=T−N

Ak

T−2∏
k=T−N+1

Ak

T−2∏
k=T−N+2

Ak · · · I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

bT = AT

[
0 b′T−N b′T−N+1 ... b′T−2 0

]′
We indicate with I the identity matrix and with 0 the zero
matrix of dimension suitable to where it is used.
Using the linearized model (15), we can write an algebraic
approximation of the arrival cost using the smoothing
update formula (10)

ZT−N (xT−N) = ‖xT−N − x̂T−N |T−2‖2P−1
T−N|T−2

−

‖yT−1 −ΘT−1xT−N − FT−1‖2W−1
T−1

(17)

where the terms Φ∗
T−1 and Φ∗

T−N are removed be-
cause they do not influence the optimization. The value
x̂T−N |T−2 is the smoothed estimate from the previous
step. PT−N |T−2 is the smoothed covariance matrix and
it is obtained first propagating forward the covariance
PT−N |T−N−1 using the well known Kalman filter formulas

Pk|k−1 = Q+Ak−1Pk−1|k−1A
′
k−1

Pk|k = Pk|k−1 − Pk|k−1C
′ (R+ C ′Pk|k−1C

)−1
CPk|k−1

and then using the backward Riccati equation to compute
the smoothed covariance

Pk|j = Pk|k+Pk|kA′
kPk+1|k

(
Pk+1|j − Pk+1|k

)
P−1
k+1|kAkPk|k

2 blkdiag(A,n) indicates the n times block diagonal concatenation
of a matrix A.

starting from PT−2|T−2.
The second term in (17) avoids to reuse twice the in-
formation relative to [yT−N yT−N+1 ... yT−2], and it is
characterized by

FT−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
CbT−N

C (AT−N+1bT−N + bT−N+1)
...

C

T−3∑
j=T−N+1

j∏
k=T−N+1

Akbk−1 + CbT−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ΘT−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

C
CAT−N

...

C

T−3∏
k=T−N

Ak

⎤
⎥⎥⎥⎥⎥⎥⎦

WT−1 = RT−1 + CT−1WT−1C
′
T−1

where RT−1 = blkdiag(R,N − 1), CT−1 = blkdiag(C,N −
1) and

WT−1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0 Q · · · Q

T−3∏
k=T−N+1

A′
k

...
...

. . .
...

0

T−3∏
k=T−N+1

AkQ · · · Q+
T−3∑

j=T−N+1

∣∣∣∣∣
∣∣∣∣∣

j∏
k=T−N+1

Ak

∣∣∣∣∣
∣∣∣∣∣
2

Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Considering constraints of the form (6), it is trivial to write
them in terms of the vector zT , obtaining the compact form

DT zT ≤ dT . (18)

Then, an approximate solution of problem (12) can be
obtained solving the quadratic program

min
zT

1

2
z′THT zT + f′T zT

s.t. DT zT ≤ dT

(19)

where

HT = A′
TC

′
TR

−1
T CTAT + Q̄

−1
T + P̄−1

T + Θ̄′
T−1W−1

T−1Θ̄T−1

fT = −2y′TR
−1
T CTAT − 2z̄′T P̄

−1
T + 2b′TC

′
TR

−1
T CTAT−

2y′T−1W−1
T−1Θ̄T−1 + 2F ′

T−1W−1
T−1Θ̄T−1

and the terms not influencing the optimization are ne-

glected. The matrices Q̄
−1
T = diag(0,Q−1

T) 3 , P̄T =
diag(PT−N |T−2, 0) and Θ̄T−1 = [ΘT−1 0] are introduced
to be consistent with the definition of the optimization
vector zT .
The matrices HT , fT , DT and dT in the optimization prob-
lem (19) are time-varying due to the time-varying model
(15), thus at each time step they need to be computed.

Assuming that an algebraic form of ∂f
∂x is available, this

operation amounts to the evaluation of several algebraic
equations, and generally it is far less demanding than
solving a non-convex optimization problem.
3 diag(A,B) indicates the diagonal concatenation of two matrices A
and B.

����

5. RECOVERY STRATEGY FROM ERRONEOUS
INFREQUENT MEASUREMENTS

Some measurements, such as average molecular weights,
are made by using analysis methods that inherently take
some time, and therefore they are available infrequently
and with time delays. In many real situations, an operator
is called to collect the infrequent measurements, and to
insert them into the estimator. Cases when a wrong
measurement value is inserted by the operator are not
rare, and it constitutes a problem since it affects the
reliability of the state estimate for a certain time (the
time needed by the estimator to compensate the fault with
new correct measurements). The operator often realizes
the error. The aim of this paper is to offer a strategy to
recover from erroneous infrequent measurements once the
error has been discovered.

Let us consider the situation represented in Fig.1. At time
step T = 6 a slow measurement value yS5 becomes available
and is inserted into the MHE (for simplicity we ignore
delays here). Suppose that a wrong value ỹS5 is inserted in-
stead. Consequently, the state estimate

[
x̂0|5 x̂1|5 ... x̂6|5

]
,[

x̂1|6 x̂2|6 ... x̂7|6
]
, ..., are affected by the wrong value, and

without any action, depending from the particular process,
a certain number of new measurements will be needed to
compensate the fault and obtain again reliable estimate.
Suppose now that at time T = 9 the wrong measurement is
realized. Since we are still inside the horizon of the MHE,
it makes sense to replace it with the correct value yS5 .
Unfortunately, this will not result in a reliable estimation
as one may expect, indeed the effect of the erroneous
measurement will still propagate in the current estimation
through the smoothed update 4 . Moreover, since we are
using successive linearization, the effect of the past fault
may be even more severe.
The solution we propose is to use the last reliable estimate
for the smoothed update and the successive linearization.
Reasonably, the last reliable estimate is the estimate com-
puted before the wrong measurement was inserted into the
MHE. Thus, in the case of Fig.1, the smoothed update
will be done using x̂3|4 and the successive linearization

using
[
x̂2|4 x̂3|4 ... x̂8|4

]
. Note that we use predicted values

in place of the missing filtered values for the successive
linearization.
Since we do not know a priori if a certain infrequent
measurement will be faulty, our strategy supposes to store
the last estimate obtained before each new infrequent
measurement is considered. As long as an infrequent mea-
surement, ySk , remains within the estimation horizon, i.e.
k ≤ T − N , in case of recovery action the update of the
arrival cost will be done using a smoothed estimate (in
the case k = T − N the smoothed update will coincide
with the filtered update). For k > T − N the infrequent
measurement is beyond the horizon, and the update will be
a predicted update, i.e. a predicted value and a predicted
covariance will be used in (9). We suggest to discard the
stored estimate associated to an infrequent measurement
once the measurement goes beyond the horizon. We moti-
vate this choice considering that all the data beyond the
horizon are taken into account via the arrival cost, and

4 This does not happen with the filtering formulation.

Fig. 1. Concept of the smoothed moving horizon estima-
tion with recovery strategy for erroneous infrequent
measurement. For clarity delays are ignored.

any erroneous infrequent measurement would fade. Thus,
the amount of data needing to be stored is limited.

6. APPLICATION TO A CSTR

A Continuous Stirred Tank Reactor (CSTR)(Soroush and
Kravaris [1992]) is considered in this section. In the CSTR

the irreversible reactions A
k1→ U1, A

k2→ U2, A
kd→ D

take places, where U1 and U2 are undesired side products,
and D is the desired product. The reaction rate constants

depend on the temperature T c as k1 = Z1 exp
(
− Ea1

RT c

)
,

k2 = Z2 exp
(
− Ea2

RT c

)
and kd = Zd exp

(
− Ead

RT c

)
. Energy

and species mass balances for the reactor, under standard
assumptions, give the reactor model equations

dCa

dt
=Ra +

CAi
− CA

τ
(20a)

dT c

dt
=

RH

ρc
+

T c
i − T c

τ
+

Qr

ρcV
(20b)

dCD

dt
=RD − CD

τ
(20c)

where the rate expressions are RA = −k1C
n1

A − k2C
n2

A −
kdC

nd

A , RH = −ΔH1k1C
n1

A −ΔH2k2C
n2

A −ΔHdkdC
nd

A and
RD = kdC

nd

A .
In Table 1 are given the parameters of the reactor, the
operating conditions considered in the simulations and the
steady state of interest.
The continuous time equations (20) were discretized using
Euler’s method with a sampling period Δt = 10s. The
temperature T c is measured frequently every 10s; the
concentrations CA and CD are measured infrequently. For
simplicity we suppose to not have delay (td = 0). The
horizon chosen for the MHE is N = 300s.
In Fig.2 and Fig.3 we consider the case of an erroneous
value of the concentration CA inserted at time te = 750s:
the correct value is yCA

(te) = 1.42 kmol m−3, the value
inserted erroneously is ỹCA

(te) = 2.42 kmol m−3. At time

����

5. RECOVERY STRATEGY FROM ERRONEOUS
INFREQUENT MEASUREMENTS

Some measurements, such as average molecular weights,
are made by using analysis methods that inherently take
some time, and therefore they are available infrequently
and with time delays. In many real situations, an operator
is called to collect the infrequent measurements, and to
insert them into the estimator. Cases when a wrong
measurement value is inserted by the operator are not
rare, and it constitutes a problem since it affects the
reliability of the state estimate for a certain time (the
time needed by the estimator to compensate the fault with
new correct measurements). The operator often realizes
the error. The aim of this paper is to offer a strategy to
recover from erroneous infrequent measurements once the
error has been discovered.

Let us consider the situation represented in Fig.1. At time
step T = 6 a slow measurement value yS5 becomes available
and is inserted into the MHE (for simplicity we ignore
delays here). Suppose that a wrong value ỹS5 is inserted in-
stead. Consequently, the state estimate

[
x̂0|5 x̂1|5 ... x̂6|5

]
,[

x̂1|6 x̂2|6 ... x̂7|6
]
, ..., are affected by the wrong value, and

without any action, depending from the particular process,
a certain number of new measurements will be needed to
compensate the fault and obtain again reliable estimate.
Suppose now that at time T = 9 the wrong measurement is
realized. Since we are still inside the horizon of the MHE,
it makes sense to replace it with the correct value yS5 .
Unfortunately, this will not result in a reliable estimation
as one may expect, indeed the effect of the erroneous
measurement will still propagate in the current estimation
through the smoothed update 4 . Moreover, since we are
using successive linearization, the effect of the past fault
may be even more severe.
The solution we propose is to use the last reliable estimate
for the smoothed update and the successive linearization.
Reasonably, the last reliable estimate is the estimate com-
puted before the wrong measurement was inserted into the
MHE. Thus, in the case of Fig.1, the smoothed update
will be done using x̂3|4 and the successive linearization

using
[
x̂2|4 x̂3|4 ... x̂8|4

]
. Note that we use predicted values

in place of the missing filtered values for the successive
linearization.
Since we do not know a priori if a certain infrequent
measurement will be faulty, our strategy supposes to store
the last estimate obtained before each new infrequent
measurement is considered. As long as an infrequent mea-
surement, ySk , remains within the estimation horizon, i.e.
k ≤ T − N , in case of recovery action the update of the
arrival cost will be done using a smoothed estimate (in
the case k = T − N the smoothed update will coincide
with the filtered update). For k > T − N the infrequent
measurement is beyond the horizon, and the update will be
a predicted update, i.e. a predicted value and a predicted
covariance will be used in (9). We suggest to discard the
stored estimate associated to an infrequent measurement
once the measurement goes beyond the horizon. We moti-
vate this choice considering that all the data beyond the
horizon are taken into account via the arrival cost, and

4 This does not happen with the filtering formulation.

Fig. 1. Concept of the smoothed moving horizon estima-
tion with recovery strategy for erroneous infrequent
measurement. For clarity delays are ignored.

any erroneous infrequent measurement would fade. Thus,
the amount of data needing to be stored is limited.

6. APPLICATION TO A CSTR

A Continuous Stirred Tank Reactor (CSTR)(Soroush and
Kravaris [1992]) is considered in this section. In the CSTR

the irreversible reactions A
k1→ U1, A

k2→ U2, A
kd→ D

take places, where U1 and U2 are undesired side products,
and D is the desired product. The reaction rate constants

depend on the temperature T c as k1 = Z1 exp
(
− Ea1

RT c

)
,

k2 = Z2 exp
(
− Ea2

RT c

)
and kd = Zd exp

(
− Ead

RT c

)
. Energy

and species mass balances for the reactor, under standard
assumptions, give the reactor model equations

dCa

dt
=Ra +

CAi
− CA

τ
(20a)

dT c

dt
=

RH

ρc
+

T c
i − T c

τ
+

Qr

ρcV
(20b)

dCD

dt
=RD − CD

τ
(20c)

where the rate expressions are RA = −k1C
n1

A − k2C
n2

A −
kdC

nd

A , RH = −ΔH1k1C
n1

A −ΔH2k2C
n2

A −ΔHdkdC
nd

A and
RD = kdC

nd

A .
In Table 1 are given the parameters of the reactor, the
operating conditions considered in the simulations and the
steady state of interest.
The continuous time equations (20) were discretized using
Euler’s method with a sampling period Δt = 10s. The
temperature T c is measured frequently every 10s; the
concentrations CA and CD are measured infrequently. For
simplicity we suppose to not have delay (td = 0). The
horizon chosen for the MHE is N = 300s.
In Fig.2 and Fig.3 we consider the case of an erroneous
value of the concentration CA inserted at time te = 750s:
the correct value is yCA

(te) = 1.42 kmol m−3, the value
inserted erroneously is ỹCA

(te) = 2.42 kmol m−3. At time

����

5. RECOVERY STRATEGY FROM ERRONEOUS
INFREQUENT MEASUREMENTS

Some measurements, such as average molecular weights,
are made by using analysis methods that inherently take
some time, and therefore they are available infrequently
and with time delays. In many real situations, an operator
is called to collect the infrequent measurements, and to
insert them into the estimator. Cases when a wrong
measurement value is inserted by the operator are not
rare, and it constitutes a problem since it affects the
reliability of the state estimate for a certain time (the
time needed by the estimator to compensate the fault with
new correct measurements). The operator often realizes
the error. The aim of this paper is to offer a strategy to
recover from erroneous infrequent measurements once the
error has been discovered.

Let us consider the situation represented in Fig.1. At time
step T = 6 a slow measurement value yS5 becomes available
and is inserted into the MHE (for simplicity we ignore
delays here). Suppose that a wrong value ỹS5 is inserted in-
stead. Consequently, the state estimate

[
x̂0|5 x̂1|5 ... x̂6|5

]
,[

x̂1|6 x̂2|6 ... x̂7|6
]
, ..., are affected by the wrong value, and

without any action, depending from the particular process,
a certain number of new measurements will be needed to
compensate the fault and obtain again reliable estimate.
Suppose now that at time T = 9 the wrong measurement is
realized. Since we are still inside the horizon of the MHE,
it makes sense to replace it with the correct value yS5 .
Unfortunately, this will not result in a reliable estimation
as one may expect, indeed the effect of the erroneous
measurement will still propagate in the current estimation
through the smoothed update 4 . Moreover, since we are
using successive linearization, the effect of the past fault
may be even more severe.
The solution we propose is to use the last reliable estimate
for the smoothed update and the successive linearization.
Reasonably, the last reliable estimate is the estimate com-
puted before the wrong measurement was inserted into the
MHE. Thus, in the case of Fig.1, the smoothed update
will be done using x̂3|4 and the successive linearization

using
[
x̂2|4 x̂3|4 ... x̂8|4

]
. Note that we use predicted values

in place of the missing filtered values for the successive
linearization.
Since we do not know a priori if a certain infrequent
measurement will be faulty, our strategy supposes to store
the last estimate obtained before each new infrequent
measurement is considered. As long as an infrequent mea-
surement, ySk , remains within the estimation horizon, i.e.
k ≤ T − N , in case of recovery action the update of the
arrival cost will be done using a smoothed estimate (in
the case k = T − N the smoothed update will coincide
with the filtered update). For k > T − N the infrequent
measurement is beyond the horizon, and the update will be
a predicted update, i.e. a predicted value and a predicted
covariance will be used in (9). We suggest to discard the
stored estimate associated to an infrequent measurement
once the measurement goes beyond the horizon. We moti-
vate this choice considering that all the data beyond the
horizon are taken into account via the arrival cost, and

4 This does not happen with the filtering formulation.

Fig. 1. Concept of the smoothed moving horizon estima-
tion with recovery strategy for erroneous infrequent
measurement. For clarity delays are ignored.

any erroneous infrequent measurement would fade. Thus,
the amount of data needing to be stored is limited.

6. APPLICATION TO A CSTR

A Continuous Stirred Tank Reactor (CSTR)(Soroush and
Kravaris [1992]) is considered in this section. In the CSTR

the irreversible reactions A
k1→ U1, A

k2→ U2, A
kd→ D

take places, where U1 and U2 are undesired side products,
and D is the desired product. The reaction rate constants

depend on the temperature T c as k1 = Z1 exp
(
− Ea1

RT c

)
,

k2 = Z2 exp
(
− Ea2

RT c

)
and kd = Zd exp

(
− Ead

RT c

)
. Energy

and species mass balances for the reactor, under standard
assumptions, give the reactor model equations

dCa

dt
=Ra +

CAi
− CA

τ
(20a)

dT c

dt
=

RH

ρc
+

T c
i − T c

τ
+

Qr

ρcV
(20b)

dCD

dt
=RD − CD

τ
(20c)

where the rate expressions are RA = −k1C
n1

A − k2C
n2

A −
kdC

nd

A , RH = −ΔH1k1C
n1

A −ΔH2k2C
n2

A −ΔHdkdC
nd

A and
RD = kdC

nd

A .
In Table 1 are given the parameters of the reactor, the
operating conditions considered in the simulations and the
steady state of interest.
The continuous time equations (20) were discretized using
Euler’s method with a sampling period Δt = 10s. The
temperature T c is measured frequently every 10s; the
concentrations CA and CD are measured infrequently. For
simplicity we suppose to not have delay (td = 0). The
horizon chosen for the MHE is N = 300s.
In Fig.2 and Fig.3 we consider the case of an erroneous
value of the concentration CA inserted at time te = 750s:
the correct value is yCA

(te) = 1.42 kmol m−3, the value
inserted erroneously is ỹCA

(te) = 2.42 kmol m−3. At time

����

5. RECOVERY STRATEGY FROM ERRONEOUS
INFREQUENT MEASUREMENTS

Some measurements, such as average molecular weights,
are made by using analysis methods that inherently take
some time, and therefore they are available infrequently
and with time delays. In many real situations, an operator
is called to collect the infrequent measurements, and to
insert them into the estimator. Cases when a wrong
measurement value is inserted by the operator are not
rare, and it constitutes a problem since it affects the
reliability of the state estimate for a certain time (the
time needed by the estimator to compensate the fault with
new correct measurements). The operator often realizes
the error. The aim of this paper is to offer a strategy to
recover from erroneous infrequent measurements once the
error has been discovered.

Let us consider the situation represented in Fig.1. At time
step T = 6 a slow measurement value yS5 becomes available
and is inserted into the MHE (for simplicity we ignore
delays here). Suppose that a wrong value ỹS5 is inserted in-
stead. Consequently, the state estimate

[
x̂0|5 x̂1|5 ... x̂6|5

]
,[

x̂1|6 x̂2|6 ... x̂7|6
]
, ..., are affected by the wrong value, and

without any action, depending from the particular process,
a certain number of new measurements will be needed to
compensate the fault and obtain again reliable estimate.
Suppose now that at time T = 9 the wrong measurement is
realized. Since we are still inside the horizon of the MHE,
it makes sense to replace it with the correct value yS5 .
Unfortunately, this will not result in a reliable estimation
as one may expect, indeed the effect of the erroneous
measurement will still propagate in the current estimation
through the smoothed update 4 . Moreover, since we are
using successive linearization, the effect of the past fault
may be even more severe.
The solution we propose is to use the last reliable estimate
for the smoothed update and the successive linearization.
Reasonably, the last reliable estimate is the estimate com-
puted before the wrong measurement was inserted into the
MHE. Thus, in the case of Fig.1, the smoothed update
will be done using x̂3|4 and the successive linearization

using
[
x̂2|4 x̂3|4 ... x̂8|4

]
. Note that we use predicted values

in place of the missing filtered values for the successive
linearization.
Since we do not know a priori if a certain infrequent
measurement will be faulty, our strategy supposes to store
the last estimate obtained before each new infrequent
measurement is considered. As long as an infrequent mea-
surement, ySk , remains within the estimation horizon, i.e.
k ≤ T − N , in case of recovery action the update of the
arrival cost will be done using a smoothed estimate (in
the case k = T − N the smoothed update will coincide
with the filtered update). For k > T − N the infrequent
measurement is beyond the horizon, and the update will be
a predicted update, i.e. a predicted value and a predicted
covariance will be used in (9). We suggest to discard the
stored estimate associated to an infrequent measurement
once the measurement goes beyond the horizon. We moti-
vate this choice considering that all the data beyond the
horizon are taken into account via the arrival cost, and

4 This does not happen with the filtering formulation.

Fig. 1. Concept of the smoothed moving horizon estima-
tion with recovery strategy for erroneous infrequent
measurement. For clarity delays are ignored.

any erroneous infrequent measurement would fade. Thus,
the amount of data needing to be stored is limited.

6. APPLICATION TO A CSTR

A Continuous Stirred Tank Reactor (CSTR)(Soroush and
Kravaris [1992]) is considered in this section. In the CSTR

the irreversible reactions A
k1→ U1, A

k2→ U2, A
kd→ D

take places, where U1 and U2 are undesired side products,
and D is the desired product. The reaction rate constants

depend on the temperature T c as k1 = Z1 exp
(
− Ea1

RT c

)
,

k2 = Z2 exp
(
− Ea2

RT c

)
and kd = Zd exp

(
− Ead

RT c

)
. Energy

and species mass balances for the reactor, under standard
assumptions, give the reactor model equations

dCa

dt
=Ra +

CAi
− CA

τ
(20a)

dT c

dt
=

RH

ρc
+

T c
i − T c

τ
+

Qr

ρcV
(20b)

dCD

dt
=RD − CD

τ
(20c)

where the rate expressions are RA = −k1C
n1

A − k2C
n2

A −
kdC

nd

A , RH = −ΔH1k1C
n1

A −ΔH2k2C
n2

A −ΔHdkdC
nd

A and
RD = kdC

nd

A .
In Table 1 are given the parameters of the reactor, the
operating conditions considered in the simulations and the
steady state of interest.
The continuous time equations (20) were discretized using
Euler’s method with a sampling period Δt = 10s. The
temperature T c is measured frequently every 10s; the
concentrations CA and CD are measured infrequently. For
simplicity we suppose to not have delay (td = 0). The
horizon chosen for the MHE is N = 300s.
In Fig.2 and Fig.3 we consider the case of an erroneous
value of the concentration CA inserted at time te = 750s:
the correct value is yCA

(te) = 1.42 kmol m−3, the value
inserted erroneously is ỹCA

(te) = 2.42 kmol m−3. At time

����

��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�	

�	�

�	�

�	�

	

	�

������������

���

��
��
��

�
�

�������
����������

���������
��������

�������������������

���������������

Fig. 2. Recovery from the erroneous measurement at t =
750s. The circles represent the infrequent measure-
ments.

t = 820s the error is realized, and the correct value yCA
(te)

is replaced. Fig.2 shows how the estimate is recovered using
the strategy proposed. The entire estimation scenario
simulated is not affected by the erroneous measurement
(Fig.3).

Table 1. Parameters, Operating Conditions
and Steady State of the CSTR

R = 8.345 kJ kmol−1 K−1

Z1 = 2.00 · 103 m6 kmol−2 s−1

Z2 = 3.40 · 106 m−1.5 kmol−0.5 s−1

Zd = 2.63 · 105 s−1

Ea1 = 4.90 · 104 kJ kmol−1

Ea2 = 6.50 · 104 kJ kmol−1

Ead = 5.70 · 104 kJ kmol−1

−ΔH1 = 4.50 · 104 kJ kmol−1

−ΔH2 = 5.00 · 104 kJ kmol−1

−ΔHd = 6.00 · 104 kJ kmol−1

n1 = 3.00 · 100
n2 = 5.00 · 10−1

nd = 1.00 · 100
ρ = 1.00 · 103 kg m−3

c = 4.20 · 100 kJ kg m−1 K−1

V = 1.00 · 10−2 m3

τ = 3.00 · 102 s
T c
i = 2.952 · 102 K

CAi
= 1.00 · 101 kmol m−3

CA0 = 1.00 · 10−1 kmol m−3

CD0 = 0.00 · 100 kmol m−3

T c
0 = 2.952 · 102 K

CASS
= 1.320 · 100 kmol m−3

T c
SS = 4.00 · 102 K

CDSS
= 4.000 · 100 kmol m−3

QrSS = −1.030 · 100 kJ s−1

7. CONCLUSIONS

The paper reviewed the filtering and smoothing MHE
formulations, illustrating explicitly an efficient implemen-
tation of the smoothing MHE based on the successive
linearization approach. A particular smoothing formula-
tion where the last reliable measurements are used for the
smoothing update and the successive linearization was the
basis for the strategy proposed to recover from erroneous
infrequent measurements.
The CSTR considered suited the purpose of exemplifying
the results obtained.

� ���
�� ��� ��� ��� ��� ��� ���
�

�	�

	�

�����!��!�����

��
��
��

�
�

�

�

� ���
�� ��� ��� ��� ��� ��� ���
���

���

���

���
�����!"��

�

�

�

� ���
�� ��� ��� ��� ��� ��� ���
�	�

�	��

�

�	��

�	�

�	��
�����!��!�����

#�

��
��
��

�
�

�

�

��#"���!
#!���!���

�����!������"�!���#"���!
#!���!���
�����"#������"�!���#"���!

�����"�!���#"���!
#!���!���

Fig. 3. Multirate moving horizon state estimation with
recovery from the erroneous infrequent measurement.

REFERENCES

B. D. O. Anderson and J. B. Moore. Optimal Filtering.
Prentice Hall, 1979.

E. F. Camacho and C. Bordons. Model Predictive Control.
Springer, second edition, 2003.

G. E. Elicabe, E. Ozdeger, C. Georgakis, and C. Cordeiro.
On-line estimation of reaction rates in semicontinuous
reactors. Ind. Eng. Chem. Res., 1995.

P. K. Findeisen. Moving horizon state estimation of
discrete time systems. Master’s thesis, University of
Wisconsin-Madison, 1997.

A. H. Jazwinski. Stochastic Process and Filtering Theory.
Academic Press, New York and London, 1970.

S. Kraemer, R. Gesthuisen, and S. Engell. Fixed struc-
ture multirate state estimation. In American Control
Conference, 2005.

K. R. Muske and J. B. Rawlings. Nonlinear moving horizon
state estimation. NATO ASI Series, Kluwer Academic,
293:349–365, 1994.

K. R. Muske, J. B. Rawlings, and J. H. Lee. Receding
horizon recursive state estimation. Proceedings of the
American Control Conference, pages 900–904, 1993.

C. V. Rao. Moving Horizon Strategies for Constrained
Monitoring and Control of Nonlinear Discrete-Time
Systems. PhD thesis, University of Wisconsin-Madison
(USA), 2000.

M. Soroush and C. Kravaris. Discrete-time nonlinear con-
troller synthesis by input/output linearization. AIChE
Journal, 40:980–992, 1992.

S. Tatiraju and M. Soroush. Nonlinear state estimation in
a polymerization reactor. Ind. Eng. Chem. Res., 1997.

M. J. Tenny. Computational Strategies for Nonlinear
Model Predictive Control. PhD thesis, University of
Wisconsin-Madison (USA), 2002.

N. Zambare and M. Soroush. Multi-rate nonlinear state es-
timation in a polymerization reactor: a real-time study.
Proceedings of the American Control Conference, 2002.

���	

��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�	

�	�

�	�

�	�

	

	�

������������

���

��
��
��

�
�

�������
����������

���������
��������

�������������������

���������������

Fig. 2. Recovery from the erroneous measurement at t =
750s. The circles represent the infrequent measure-
ments.

t = 820s the error is realized, and the correct value yCA
(te)

is replaced. Fig.2 shows how the estimate is recovered using
the strategy proposed. The entire estimation scenario
simulated is not affected by the erroneous measurement
(Fig.3).

Table 1. Parameters, Operating Conditions
and Steady State of the CSTR

R = 8.345 kJ kmol−1 K−1

Z1 = 2.00 · 103 m6 kmol−2 s−1

Z2 = 3.40 · 106 m−1.5 kmol−0.5 s−1

Zd = 2.63 · 105 s−1

Ea1 = 4.90 · 104 kJ kmol−1

Ea2 = 6.50 · 104 kJ kmol−1

Ead = 5.70 · 104 kJ kmol−1

−ΔH1 = 4.50 · 104 kJ kmol−1

−ΔH2 = 5.00 · 104 kJ kmol−1

−ΔHd = 6.00 · 104 kJ kmol−1

n1 = 3.00 · 100
n2 = 5.00 · 10−1

nd = 1.00 · 100
ρ = 1.00 · 103 kg m−3

c = 4.20 · 100 kJ kg m−1 K−1

V = 1.00 · 10−2 m3

τ = 3.00 · 102 s
T c
i = 2.952 · 102 K

CAi
= 1.00 · 101 kmol m−3

CA0 = 1.00 · 10−1 kmol m−3

CD0 = 0.00 · 100 kmol m−3

T c
0 = 2.952 · 102 K

CASS
= 1.320 · 100 kmol m−3

T c
SS = 4.00 · 102 K

CDSS
= 4.000 · 100 kmol m−3

QrSS = −1.030 · 100 kJ s−1

7. CONCLUSIONS

The paper reviewed the filtering and smoothing MHE
formulations, illustrating explicitly an efficient implemen-
tation of the smoothing MHE based on the successive
linearization approach. A particular smoothing formula-
tion where the last reliable measurements are used for the
smoothing update and the successive linearization was the
basis for the strategy proposed to recover from erroneous
infrequent measurements.
The CSTR considered suited the purpose of exemplifying
the results obtained.

� ���
�� ��� ��� ��� ��� ��� ���
�

�	�

	�

�����!��!�����

��
��
��

�
�

�

�

� ���
�� ��� ��� ��� ��� ��� ���
���

���

���

���
�����!"��

�

�

�

� ���
�� ��� ��� ��� ��� ��� ���
�	�

�	��

�

�	��

�	�

�	��
�����!��!�����

#�

��
��
��

�
�

�

�

��#"���!
#!���!���

�����!������"�!���#"���!
#!���!���
�����"#������"�!���#"���!

�����"�!���#"���!
#!���!���

Fig. 3. Multirate moving horizon state estimation with
recovery from the erroneous infrequent measurement.

REFERENCES

B. D. O. Anderson and J. B. Moore. Optimal Filtering.
Prentice Hall, 1979.

E. F. Camacho and C. Bordons. Model Predictive Control.
Springer, second edition, 2003.

G. E. Elicabe, E. Ozdeger, C. Georgakis, and C. Cordeiro.
On-line estimation of reaction rates in semicontinuous
reactors. Ind. Eng. Chem. Res., 1995.

P. K. Findeisen. Moving horizon state estimation of
discrete time systems. Master’s thesis, University of
Wisconsin-Madison, 1997.

A. H. Jazwinski. Stochastic Process and Filtering Theory.
Academic Press, New York and London, 1970.

S. Kraemer, R. Gesthuisen, and S. Engell. Fixed struc-
ture multirate state estimation. In American Control
Conference, 2005.

K. R. Muske and J. B. Rawlings. Nonlinear moving horizon
state estimation. NATO ASI Series, Kluwer Academic,
293:349–365, 1994.

K. R. Muske, J. B. Rawlings, and J. H. Lee. Receding
horizon recursive state estimation. Proceedings of the
American Control Conference, pages 900–904, 1993.

C. V. Rao. Moving Horizon Strategies for Constrained
Monitoring and Control of Nonlinear Discrete-Time
Systems. PhD thesis, University of Wisconsin-Madison
(USA), 2000.

M. Soroush and C. Kravaris. Discrete-time nonlinear con-
troller synthesis by input/output linearization. AIChE
Journal, 40:980–992, 1992.

S. Tatiraju and M. Soroush. Nonlinear state estimation in
a polymerization reactor. Ind. Eng. Chem. Res., 1997.

M. J. Tenny. Computational Strategies for Nonlinear
Model Predictive Control. PhD thesis, University of
Wisconsin-Madison (USA), 2002.

N. Zambare and M. Soroush. Multi-rate nonlinear state es-
timation in a polymerization reactor: a real-time study.
Proceedings of the American Control Conference, 2002.

���	

��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�	

�	�

�	�

�	�

	

	�

������������

���

��
��
��

�
�

�������
����������

���������
��������

�������������������

���������������

Fig. 2. Recovery from the erroneous measurement at t =
750s. The circles represent the infrequent measure-
ments.

t = 820s the error is realized, and the correct value yCA
(te)

is replaced. Fig.2 shows how the estimate is recovered using
the strategy proposed. The entire estimation scenario
simulated is not affected by the erroneous measurement
(Fig.3).

Table 1. Parameters, Operating Conditions
and Steady State of the CSTR

R = 8.345 kJ kmol−1 K−1

Z1 = 2.00 · 103 m6 kmol−2 s−1

Z2 = 3.40 · 106 m−1.5 kmol−0.5 s−1

Zd = 2.63 · 105 s−1

Ea1 = 4.90 · 104 kJ kmol−1

Ea2 = 6.50 · 104 kJ kmol−1

Ead = 5.70 · 104 kJ kmol−1

−ΔH1 = 4.50 · 104 kJ kmol−1

−ΔH2 = 5.00 · 104 kJ kmol−1

−ΔHd = 6.00 · 104 kJ kmol−1

n1 = 3.00 · 100
n2 = 5.00 · 10−1

nd = 1.00 · 100
ρ = 1.00 · 103 kg m−3

c = 4.20 · 100 kJ kg m−1 K−1

V = 1.00 · 10−2 m3

τ = 3.00 · 102 s
T c
i = 2.952 · 102 K

CAi
= 1.00 · 101 kmol m−3

CA0 = 1.00 · 10−1 kmol m−3

CD0 = 0.00 · 100 kmol m−3

T c
0 = 2.952 · 102 K

CASS
= 1.320 · 100 kmol m−3

T c
SS = 4.00 · 102 K

CDSS
= 4.000 · 100 kmol m−3

QrSS = −1.030 · 100 kJ s−1

7. CONCLUSIONS

The paper reviewed the filtering and smoothing MHE
formulations, illustrating explicitly an efficient implemen-
tation of the smoothing MHE based on the successive
linearization approach. A particular smoothing formula-
tion where the last reliable measurements are used for the
smoothing update and the successive linearization was the
basis for the strategy proposed to recover from erroneous
infrequent measurements.
The CSTR considered suited the purpose of exemplifying
the results obtained.

� ���
�� ��� ��� ��� ��� ��� ���
�

�	�

	�

�����!��!�����

��
��
��

�
�

�

�

� ���
�� ��� ��� ��� ��� ��� ���
���

���

���

���
�����!"��

�

�

�

� ���
�� ��� ��� ��� ��� ��� ���
�	�

�	��

�

�	��

�	�

�	��
�����!��!�����

#�

��
��
��

�
�

�

�

��#"���!
#!���!���

�����!������"�!���#"���!
#!���!���
�����"#������"�!���#"���!

�����"�!���#"���!
#!���!���

Fig. 3. Multirate moving horizon state estimation with
recovery from the erroneous infrequent measurement.

REFERENCES

B. D. O. Anderson and J. B. Moore. Optimal Filtering.
Prentice Hall, 1979.

E. F. Camacho and C. Bordons. Model Predictive Control.
Springer, second edition, 2003.

G. E. Elicabe, E. Ozdeger, C. Georgakis, and C. Cordeiro.
On-line estimation of reaction rates in semicontinuous
reactors. Ind. Eng. Chem. Res., 1995.

P. K. Findeisen. Moving horizon state estimation of
discrete time systems. Master’s thesis, University of
Wisconsin-Madison, 1997.

A. H. Jazwinski. Stochastic Process and Filtering Theory.
Academic Press, New York and London, 1970.

S. Kraemer, R. Gesthuisen, and S. Engell. Fixed struc-
ture multirate state estimation. In American Control
Conference, 2005.

K. R. Muske and J. B. Rawlings. Nonlinear moving horizon
state estimation. NATO ASI Series, Kluwer Academic,
293:349–365, 1994.

K. R. Muske, J. B. Rawlings, and J. H. Lee. Receding
horizon recursive state estimation. Proceedings of the
American Control Conference, pages 900–904, 1993.

C. V. Rao. Moving Horizon Strategies for Constrained
Monitoring and Control of Nonlinear Discrete-Time
Systems. PhD thesis, University of Wisconsin-Madison
(USA), 2000.

M. Soroush and C. Kravaris. Discrete-time nonlinear con-
troller synthesis by input/output linearization. AIChE
Journal, 40:980–992, 1992.

S. Tatiraju and M. Soroush. Nonlinear state estimation in
a polymerization reactor. Ind. Eng. Chem. Res., 1997.

M. J. Tenny. Computational Strategies for Nonlinear
Model Predictive Control. PhD thesis, University of
Wisconsin-Madison (USA), 2002.

N. Zambare and M. Soroush. Multi-rate nonlinear state es-
timation in a polymerization reactor: a real-time study.
Proceedings of the American Control Conference, 2002.

���	

��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�	

�	�

�	�

�	�

	

	�

������������

���

��
��
��

�
�

�������
����������

���������
��������

�������������������

���������������

Fig. 2. Recovery from the erroneous measurement at t =
750s. The circles represent the infrequent measure-
ments.

t = 820s the error is realized, and the correct value yCA
(te)

is replaced. Fig.2 shows how the estimate is recovered using
the strategy proposed. The entire estimation scenario
simulated is not affected by the erroneous measurement
(Fig.3).

Table 1. Parameters, Operating Conditions
and Steady State of the CSTR

R = 8.345 kJ kmol−1 K−1

Z1 = 2.00 · 103 m6 kmol−2 s−1

Z2 = 3.40 · 106 m−1.5 kmol−0.5 s−1

Zd = 2.63 · 105 s−1

Ea1 = 4.90 · 104 kJ kmol−1

Ea2 = 6.50 · 104 kJ kmol−1

Ead = 5.70 · 104 kJ kmol−1

−ΔH1 = 4.50 · 104 kJ kmol−1

−ΔH2 = 5.00 · 104 kJ kmol−1

−ΔHd = 6.00 · 104 kJ kmol−1

n1 = 3.00 · 100
n2 = 5.00 · 10−1

nd = 1.00 · 100
ρ = 1.00 · 103 kg m−3

c = 4.20 · 100 kJ kg m−1 K−1

V = 1.00 · 10−2 m3

τ = 3.00 · 102 s
T c
i = 2.952 · 102 K

CAi
= 1.00 · 101 kmol m−3

CA0 = 1.00 · 10−1 kmol m−3

CD0 = 0.00 · 100 kmol m−3

T c
0 = 2.952 · 102 K

CASS
= 1.320 · 100 kmol m−3

T c
SS = 4.00 · 102 K

CDSS
= 4.000 · 100 kmol m−3

QrSS = −1.030 · 100 kJ s−1

7. CONCLUSIONS

The paper reviewed the filtering and smoothing MHE
formulations, illustrating explicitly an efficient implemen-
tation of the smoothing MHE based on the successive
linearization approach. A particular smoothing formula-
tion where the last reliable measurements are used for the
smoothing update and the successive linearization was the
basis for the strategy proposed to recover from erroneous
infrequent measurements.
The CSTR considered suited the purpose of exemplifying
the results obtained.

� ���
�� ��� ��� ��� ��� ��� ���
�

�	�

	�

�����!��!�����

��
��
��

�
�

�

�

� ���
�� ��� ��� ��� ��� ��� ���
���

���

���

���
�����!"��

�

�

�

� ���
�� ��� ��� ��� ��� ��� ���
�	�

�	��

�

�	��

�	�

�	��
�����!��!�����

#�

��
��
��

�
�

�

�

��#"���!
#!���!���

�����!������"�!���#"���!
#!���!���
�����"#������"�!���#"���!

�����"�!���#"���!
#!���!���

Fig. 3. Multirate moving horizon state estimation with
recovery from the erroneous infrequent measurement.

REFERENCES

B. D. O. Anderson and J. B. Moore. Optimal Filtering.
Prentice Hall, 1979.

E. F. Camacho and C. Bordons. Model Predictive Control.
Springer, second edition, 2003.

G. E. Elicabe, E. Ozdeger, C. Georgakis, and C. Cordeiro.
On-line estimation of reaction rates in semicontinuous
reactors. Ind. Eng. Chem. Res., 1995.

P. K. Findeisen. Moving horizon state estimation of
discrete time systems. Master’s thesis, University of
Wisconsin-Madison, 1997.

A. H. Jazwinski. Stochastic Process and Filtering Theory.
Academic Press, New York and London, 1970.

S. Kraemer, R. Gesthuisen, and S. Engell. Fixed struc-
ture multirate state estimation. In American Control
Conference, 2005.

K. R. Muske and J. B. Rawlings. Nonlinear moving horizon
state estimation. NATO ASI Series, Kluwer Academic,
293:349–365, 1994.

K. R. Muske, J. B. Rawlings, and J. H. Lee. Receding
horizon recursive state estimation. Proceedings of the
American Control Conference, pages 900–904, 1993.

C. V. Rao. Moving Horizon Strategies for Constrained
Monitoring and Control of Nonlinear Discrete-Time
Systems. PhD thesis, University of Wisconsin-Madison
(USA), 2000.

M. Soroush and C. Kravaris. Discrete-time nonlinear con-
troller synthesis by input/output linearization. AIChE
Journal, 40:980–992, 1992.

S. Tatiraju and M. Soroush. Nonlinear state estimation in
a polymerization reactor. Ind. Eng. Chem. Res., 1997.

M. J. Tenny. Computational Strategies for Nonlinear
Model Predictive Control. PhD thesis, University of
Wisconsin-Madison (USA), 2002.

N. Zambare and M. Soroush. Multi-rate nonlinear state es-
timation in a polymerization reactor: a real-time study.
Proceedings of the American Control Conference, 2002.

���	

A.2. Stabilization of Gas-Lift Oil Wells Using Topside Measurements 145

A.2 Stabilization of Gas-Lift Oil Wells Using Topside
Measurements

This section contains the paper “Stabilization of Gas-Lift Oil Wells Using Topside

Measurements” as it appears in the Proceedings of the 17th World Congress of the

International Federation of Automatic Control (IFAC) held in Seoul, South Korea,

during the days July 6-11, 2008.

A.2. Stabilization of Gas-Lift Oil Wells Using Topside Measurements 145

A.2 Stabilization of Gas-Lift Oil Wells Using Topside
Measurements

This section contains the paper “Stabilization of Gas-Lift Oil Wells Using Topside

Measurements” as it appears in the Proceedings of the 17th World Congress of the

International Federation of Automatic Control (IFAC) held in Seoul, South Korea,

during the days July 6-11, 2008.

A.2. Stabilization of Gas-Lift Oil Wells Using Topside Measurements 145

A.2 Stabilization of Gas-Lift Oil Wells Using Topside
Measurements

This section contains the paper “Stabilization of Gas-Lift Oil Wells Using Topside

Measurements” as it appears in the Proceedings of the 17th World Congress of the

International Federation of Automatic Control (IFAC) held in Seoul, South Korea,

during the days July 6-11, 2008.

A.2. Stabilization of Gas-Lift Oil Wells Using Topside Measurements 145

A.2 Stabilization of Gas-Lift Oil Wells Using Topside
Measurements

This section contains the paper “Stabilization of Gas-Lift Oil Wells Using Topside

Measurements” as it appears in the Proceedings of the 17th World Congress of the

International Federation of Automatic Control (IFAC) held in Seoul, South Korea,

during the days July 6-11, 2008.

146 Secondary Papers 146 Secondary Papers

146 Secondary Papers 146 Secondary Papers

Stabilization of gas-lift oil wells using
topside measurements

Francesco Scibilia ∗ Morten Hovd ∗ Robert R. Bitmead ∗∗

∗ Department of Engineering Cybernetics, Norwegian University of
Science and Technology, N-7491 Trondheim, Norway

(e-mail: [francesco.scibilia],[morten.hovd]@itk.ntnu.no).
∗∗ Department of Mechanical and Aerospace Engineering, University of
California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411,

USA (e-mail: rbitmead@ucsd.edu)

Abstract: Highly oscillatory flow regimes that can occur in gas-lift oil wells have been
successfully treated using conventional linear control. However, these control systems rely on
downhole pressure measurements which are unreliable or even unavailable in some cases. In this
paper we propose a solution based on a high gain observer for the state of the process. The
estimates are used to compute the downhole pressure, that is the controlled variable considered
in the feedback control. Moreover, we propose an estimator to extend a nonlinear observer
already presented in the literature, and then we compare the performances. The key feature of
the solution proposed is its simplicity and that it relies only on measurements easily obtainable
from the top of the single well, and thus it is immediately applicable to multiple-well systems
where, since there is often one common outflow manifold, it would be hard to see from the
outflow measurements which well is operating in an oscillatory regime.

1. INTRODUCTION

Oil wells with highly oscillatory flow constitute a signifi-
cant problem in the petroleum industry. This is the case,
for instance, for oil wells on mature fields, where artificial
lift techniques are used to increase tail-end production.
Gas lift is one of the most widely used technologies to
maintain, or to increase, the production from wells char-
acterized by low reservoir pressure.
With gas lift, gas is injected into the tubing, as close as
possible to the bottom of the well, and mixed with the fluid
from the reservoir (Fig. 1). The gas reduces the density
of the fluid in the tubing, which reduces the downhole
pressure, and thereby increases the production from the
reservoir. The lift gas is routed from the surface into the
annulus, the volume between the casing and the tubing,
and enters the tubing through a unidirectional valve that
does not permit backflows.
A negative aspect of this technique is that gas lift can
induce severe production flow oscillations. The oscillations
caused by the dynamic interaction between injection gas
in the casing and multiphase fluid (oil/gas mixture) in
the tubing are a phenomenon known as casing-heading
instability. This instability can be explained as follows.
Consider a situation where there is no (or low) flow in the
tubing. The bottom well pressure is high due to the weight
of the fluid column in the tubing. Gas is then inserted in
the annulus, but because of the high bottom hole pressure,
initially it does not enter the tubing, the injection valve
stays closed. The gas starts to compress in the annulus,
and after some time it gets enough pressure to open the
injection valve and to start to enter in the tubing. As gas
enters the tubing the density of the fluid, and consequently
the downhole pressure, decreases, accelerating the inflow

of lift gas and increasing the production of oil. As gas
continues to enter the tubing, the pressure in the annulus
falls until the liquid in the tubing causes the injection valve
to close, hence the tubing starts to fill with liquid and
the annulus to fill with gas. Since no gas is injected into
the tubing the production decreases again to the natural
production of the well, which might be zero. A new cycle
starts when the pressure in the annulus becomes high
enough to penetrate the valve.
The fluctuating flow typically has an oscillation period of
a few hours and is distinctively different from short-term
oscillation caused by hydrodynamic slugging.
The casing-heading instability introduces two production-
related challenges: average production is lower compared
to a stable flow regime, and the highly oscillatory flow
puts strain on downstream equipment. Fig. 2 shows a
conceptual gas-lift production curve. The produced oil
rate is a function of the flow rate of the gas injected
into the well. Maximizing the performance of a gas-lifted
well can be summarized as maximizing the oil production
by keeping gas injected in the tubing at a certain level
(decided by topside production limitations) that may be
in the unstable region. In maximizing the oil production
it is desired to keep the flow stable, to mantain a high
processing ability topside and to have higher production
capacities, as can be seen in Fig. 2.
Efforts have been exerted both in academia and industry
to find optimal solutions based on control theory (Eikrem
et al. [2002], Eikrem et al. [2004], Aamo et al. [2004],
Eikrem et al. [2006], Havre and Dalsmo [2002], Skofteland
and Godhavn [2003]).
An extended Kalman filter (Eikrem et al. [2004]) and a
nonlinear observer (Aamo et al. [2004]) have been used to
estimate the state of the system, and then to use them to

��������	
���������������������	
����
�����	���	����	������������	���������������	����
����������������� �!"����#$$%

&�%"�"�#'("�%&$"#)$%)*#$+$$�,�#$$%����� �'&$� �$+'�%#)#$$%$�$!"-"�."�$$�+'#-�

Stabilization of gas-lift oil wells using
topside measurements

Francesco Scibilia ∗ Morten Hovd ∗ Robert R. Bitmead ∗∗

∗ Department of Engineering Cybernetics, Norwegian University of
Science and Technology, N-7491 Trondheim, Norway

(e-mail: [francesco.scibilia],[morten.hovd]@itk.ntnu.no).
∗∗ Department of Mechanical and Aerospace Engineering, University of
California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411,

USA (e-mail: rbitmead@ucsd.edu)

Abstract: Highly oscillatory flow regimes that can occur in gas-lift oil wells have been
successfully treated using conventional linear control. However, these control systems rely on
downhole pressure measurements which are unreliable or even unavailable in some cases. In this
paper we propose a solution based on a high gain observer for the state of the process. The
estimates are used to compute the downhole pressure, that is the controlled variable considered
in the feedback control. Moreover, we propose an estimator to extend a nonlinear observer
already presented in the literature, and then we compare the performances. The key feature of
the solution proposed is its simplicity and that it relies only on measurements easily obtainable
from the top of the single well, and thus it is immediately applicable to multiple-well systems
where, since there is often one common outflow manifold, it would be hard to see from the
outflow measurements which well is operating in an oscillatory regime.

1. INTRODUCTION

Oil wells with highly oscillatory flow constitute a signifi-
cant problem in the petroleum industry. This is the case,
for instance, for oil wells on mature fields, where artificial
lift techniques are used to increase tail-end production.
Gas lift is one of the most widely used technologies to
maintain, or to increase, the production from wells char-
acterized by low reservoir pressure.
With gas lift, gas is injected into the tubing, as close as
possible to the bottom of the well, and mixed with the fluid
from the reservoir (Fig. 1). The gas reduces the density
of the fluid in the tubing, which reduces the downhole
pressure, and thereby increases the production from the
reservoir. The lift gas is routed from the surface into the
annulus, the volume between the casing and the tubing,
and enters the tubing through a unidirectional valve that
does not permit backflows.
A negative aspect of this technique is that gas lift can
induce severe production flow oscillations. The oscillations
caused by the dynamic interaction between injection gas
in the casing and multiphase fluid (oil/gas mixture) in
the tubing are a phenomenon known as casing-heading
instability. This instability can be explained as follows.
Consider a situation where there is no (or low) flow in the
tubing. The bottom well pressure is high due to the weight
of the fluid column in the tubing. Gas is then inserted in
the annulus, but because of the high bottom hole pressure,
initially it does not enter the tubing, the injection valve
stays closed. The gas starts to compress in the annulus,
and after some time it gets enough pressure to open the
injection valve and to start to enter in the tubing. As gas
enters the tubing the density of the fluid, and consequently
the downhole pressure, decreases, accelerating the inflow

of lift gas and increasing the production of oil. As gas
continues to enter the tubing, the pressure in the annulus
falls until the liquid in the tubing causes the injection valve
to close, hence the tubing starts to fill with liquid and
the annulus to fill with gas. Since no gas is injected into
the tubing the production decreases again to the natural
production of the well, which might be zero. A new cycle
starts when the pressure in the annulus becomes high
enough to penetrate the valve.
The fluctuating flow typically has an oscillation period of
a few hours and is distinctively different from short-term
oscillation caused by hydrodynamic slugging.
The casing-heading instability introduces two production-
related challenges: average production is lower compared
to a stable flow regime, and the highly oscillatory flow
puts strain on downstream equipment. Fig. 2 shows a
conceptual gas-lift production curve. The produced oil
rate is a function of the flow rate of the gas injected
into the well. Maximizing the performance of a gas-lifted
well can be summarized as maximizing the oil production
by keeping gas injected in the tubing at a certain level
(decided by topside production limitations) that may be
in the unstable region. In maximizing the oil production
it is desired to keep the flow stable, to mantain a high
processing ability topside and to have higher production
capacities, as can be seen in Fig. 2.
Efforts have been exerted both in academia and industry
to find optimal solutions based on control theory (Eikrem
et al. [2002], Eikrem et al. [2004], Aamo et al. [2004],
Eikrem et al. [2006], Havre and Dalsmo [2002], Skofteland
and Godhavn [2003]).
An extended Kalman filter (Eikrem et al. [2004]) and a
nonlinear observer (Aamo et al. [2004]) have been used to
estimate the state of the system, and then to use them to

��������	
���������������������	
����
�����	���	����	������������	���������������	����
����������������� �!"����#$$%

&�%"�"�#'("�%&$"#)$%)*#$+$$�,�#$$%����� �'&$� �$+'�%#)#$$%$�$!"-"�."�$$�+'#-�

Stabilization of gas-lift oil wells using
topside measurements

Francesco Scibilia ∗ Morten Hovd ∗ Robert R. Bitmead ∗∗

∗ Department of Engineering Cybernetics, Norwegian University of
Science and Technology, N-7491 Trondheim, Norway

(e-mail: [francesco.scibilia],[morten.hovd]@itk.ntnu.no).
∗∗ Department of Mechanical and Aerospace Engineering, University of
California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411,

USA (e-mail: rbitmead@ucsd.edu)

Abstract: Highly oscillatory flow regimes that can occur in gas-lift oil wells have been
successfully treated using conventional linear control. However, these control systems rely on
downhole pressure measurements which are unreliable or even unavailable in some cases. In this
paper we propose a solution based on a high gain observer for the state of the process. The
estimates are used to compute the downhole pressure, that is the controlled variable considered
in the feedback control. Moreover, we propose an estimator to extend a nonlinear observer
already presented in the literature, and then we compare the performances. The key feature of
the solution proposed is its simplicity and that it relies only on measurements easily obtainable
from the top of the single well, and thus it is immediately applicable to multiple-well systems
where, since there is often one common outflow manifold, it would be hard to see from the
outflow measurements which well is operating in an oscillatory regime.

1. INTRODUCTION

Oil wells with highly oscillatory flow constitute a signifi-
cant problem in the petroleum industry. This is the case,
for instance, for oil wells on mature fields, where artificial
lift techniques are used to increase tail-end production.
Gas lift is one of the most widely used technologies to
maintain, or to increase, the production from wells char-
acterized by low reservoir pressure.
With gas lift, gas is injected into the tubing, as close as
possible to the bottom of the well, and mixed with the fluid
from the reservoir (Fig. 1). The gas reduces the density
of the fluid in the tubing, which reduces the downhole
pressure, and thereby increases the production from the
reservoir. The lift gas is routed from the surface into the
annulus, the volume between the casing and the tubing,
and enters the tubing through a unidirectional valve that
does not permit backflows.
A negative aspect of this technique is that gas lift can
induce severe production flow oscillations. The oscillations
caused by the dynamic interaction between injection gas
in the casing and multiphase fluid (oil/gas mixture) in
the tubing are a phenomenon known as casing-heading
instability. This instability can be explained as follows.
Consider a situation where there is no (or low) flow in the
tubing. The bottom well pressure is high due to the weight
of the fluid column in the tubing. Gas is then inserted in
the annulus, but because of the high bottom hole pressure,
initially it does not enter the tubing, the injection valve
stays closed. The gas starts to compress in the annulus,
and after some time it gets enough pressure to open the
injection valve and to start to enter in the tubing. As gas
enters the tubing the density of the fluid, and consequently
the downhole pressure, decreases, accelerating the inflow

of lift gas and increasing the production of oil. As gas
continues to enter the tubing, the pressure in the annulus
falls until the liquid in the tubing causes the injection valve
to close, hence the tubing starts to fill with liquid and
the annulus to fill with gas. Since no gas is injected into
the tubing the production decreases again to the natural
production of the well, which might be zero. A new cycle
starts when the pressure in the annulus becomes high
enough to penetrate the valve.
The fluctuating flow typically has an oscillation period of
a few hours and is distinctively different from short-term
oscillation caused by hydrodynamic slugging.
The casing-heading instability introduces two production-
related challenges: average production is lower compared
to a stable flow regime, and the highly oscillatory flow
puts strain on downstream equipment. Fig. 2 shows a
conceptual gas-lift production curve. The produced oil
rate is a function of the flow rate of the gas injected
into the well. Maximizing the performance of a gas-lifted
well can be summarized as maximizing the oil production
by keeping gas injected in the tubing at a certain level
(decided by topside production limitations) that may be
in the unstable region. In maximizing the oil production
it is desired to keep the flow stable, to mantain a high
processing ability topside and to have higher production
capacities, as can be seen in Fig. 2.
Efforts have been exerted both in academia and industry
to find optimal solutions based on control theory (Eikrem
et al. [2002], Eikrem et al. [2004], Aamo et al. [2004],
Eikrem et al. [2006], Havre and Dalsmo [2002], Skofteland
and Godhavn [2003]).
An extended Kalman filter (Eikrem et al. [2004]) and a
nonlinear observer (Aamo et al. [2004]) have been used to
estimate the state of the system, and then to use them to

��������	
���������������������	
����
�����	���	����	������������	���������������	����
����������������� �!"����#$$%

&�%"�"�#'("�%&$"#)$%)*#$+$$�,�#$$%����� �'&$� �$+'�%#)#$$%$�$!"-"�."�$$�+'#-�

Stabilization of gas-lift oil wells using
topside measurements

Francesco Scibilia ∗ Morten Hovd ∗ Robert R. Bitmead ∗∗

∗ Department of Engineering Cybernetics, Norwegian University of
Science and Technology, N-7491 Trondheim, Norway

(e-mail: [francesco.scibilia],[morten.hovd]@itk.ntnu.no).
∗∗ Department of Mechanical and Aerospace Engineering, University of
California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411,

USA (e-mail: rbitmead@ucsd.edu)

Abstract: Highly oscillatory flow regimes that can occur in gas-lift oil wells have been
successfully treated using conventional linear control. However, these control systems rely on
downhole pressure measurements which are unreliable or even unavailable in some cases. In this
paper we propose a solution based on a high gain observer for the state of the process. The
estimates are used to compute the downhole pressure, that is the controlled variable considered
in the feedback control. Moreover, we propose an estimator to extend a nonlinear observer
already presented in the literature, and then we compare the performances. The key feature of
the solution proposed is its simplicity and that it relies only on measurements easily obtainable
from the top of the single well, and thus it is immediately applicable to multiple-well systems
where, since there is often one common outflow manifold, it would be hard to see from the
outflow measurements which well is operating in an oscillatory regime.

1. INTRODUCTION

Oil wells with highly oscillatory flow constitute a signifi-
cant problem in the petroleum industry. This is the case,
for instance, for oil wells on mature fields, where artificial
lift techniques are used to increase tail-end production.
Gas lift is one of the most widely used technologies to
maintain, or to increase, the production from wells char-
acterized by low reservoir pressure.
With gas lift, gas is injected into the tubing, as close as
possible to the bottom of the well, and mixed with the fluid
from the reservoir (Fig. 1). The gas reduces the density
of the fluid in the tubing, which reduces the downhole
pressure, and thereby increases the production from the
reservoir. The lift gas is routed from the surface into the
annulus, the volume between the casing and the tubing,
and enters the tubing through a unidirectional valve that
does not permit backflows.
A negative aspect of this technique is that gas lift can
induce severe production flow oscillations. The oscillations
caused by the dynamic interaction between injection gas
in the casing and multiphase fluid (oil/gas mixture) in
the tubing are a phenomenon known as casing-heading
instability. This instability can be explained as follows.
Consider a situation where there is no (or low) flow in the
tubing. The bottom well pressure is high due to the weight
of the fluid column in the tubing. Gas is then inserted in
the annulus, but because of the high bottom hole pressure,
initially it does not enter the tubing, the injection valve
stays closed. The gas starts to compress in the annulus,
and after some time it gets enough pressure to open the
injection valve and to start to enter in the tubing. As gas
enters the tubing the density of the fluid, and consequently
the downhole pressure, decreases, accelerating the inflow

of lift gas and increasing the production of oil. As gas
continues to enter the tubing, the pressure in the annulus
falls until the liquid in the tubing causes the injection valve
to close, hence the tubing starts to fill with liquid and
the annulus to fill with gas. Since no gas is injected into
the tubing the production decreases again to the natural
production of the well, which might be zero. A new cycle
starts when the pressure in the annulus becomes high
enough to penetrate the valve.
The fluctuating flow typically has an oscillation period of
a few hours and is distinctively different from short-term
oscillation caused by hydrodynamic slugging.
The casing-heading instability introduces two production-
related challenges: average production is lower compared
to a stable flow regime, and the highly oscillatory flow
puts strain on downstream equipment. Fig. 2 shows a
conceptual gas-lift production curve. The produced oil
rate is a function of the flow rate of the gas injected
into the well. Maximizing the performance of a gas-lifted
well can be summarized as maximizing the oil production
by keeping gas injected in the tubing at a certain level
(decided by topside production limitations) that may be
in the unstable region. In maximizing the oil production
it is desired to keep the flow stable, to mantain a high
processing ability topside and to have higher production
capacities, as can be seen in Fig. 2.
Efforts have been exerted both in academia and industry
to find optimal solutions based on control theory (Eikrem
et al. [2002], Eikrem et al. [2004], Aamo et al. [2004],
Eikrem et al. [2006], Havre and Dalsmo [2002], Skofteland
and Godhavn [2003]).
An extended Kalman filter (Eikrem et al. [2004]) and a
nonlinear observer (Aamo et al. [2004]) have been used to
estimate the state of the system, and then to use them to

��������	
���������������������	
����
�����	���	����	������������	���������������	����
����������������� �!"����#$$%

&�%"�"�#'("�%&$"#)$%)*#$+$$�,�#$$%����� �'&$� �$+'�%#)#$$%$�$!"-"�."�$$�+'#-�

Fig. 1. A gas lifted oil well scheme.

compute the downhole pressure needed to close the control
loop that stabilizes the system.
In this paper we propose a simpler solution based on a
high gain observer (HGO). The measurements used are
only the pressure of gas in the annulus, the pressure of the
fluid at the top of the tubing and the density at the top
of the tubing. The measurement of the flow through the
production choke is not required, so this solution can be
easily applied to multiple-well systems, where usually there
is a common manifold where all the wells are connected.
In these systems in case of slugging, the measurement of
the total flow would not be informative about which well
in the system is operating in the unstable regime.
The nonlinear observer (NLO) designed in Aamo et al.
[2004] was shown to be exponentially fast, but has the
assumption that one of the states is measured. We remove
this assumption using an estimator extracted from the
structure of the HGO. We provide also a stability analysis
of the estimator. Then, the performances of the HGO is
compared with the one of the combination estimator-NLO.
The paper is organized as follows: in Section 2 we present
the mathematical model of the process; in Section 3 we
design the observer, the estimator, and show open-loop
simulation graphs; in Section 4 is presented an output
feedback stabilization scheme combining the observer with
a proportional integral (PI) control of the estimated down-
hole pressure, and; Section 5 presents final remarks.

2. MATHEMATICAL MODEL

Commonly in the petroleum industry, the process de-
scribed in Section 1 is simulated by the transient multi-
phase simulator OLGA 2000 (Scandpower AS), that con-
stitutes the state-of-the-art available nowadays.
The OLGA 2000 model developed for the gas lift well is
highly accurate taking into account many aspects of the
real system, and therefore is complicated and not suitable
for control design purposes. Here we use a simplified model
due to Eikrem et al. [2002].
The process is modelled by three states: x1 the mass of

Fig. 2. Oil production as function of gas injection rate.
The dotted line is the production calculated by steady
state simulations assuming stable operation. The solid
line is generated by dynamic simulations.

gas in the annulus; x2 the mass of gas in the tubing; x3

the mass of oil in the tubing. Looking at Fig. 1, we have
from mass balances

ẋ1 = wgc − wiv, (1)

ẋ2 = wiv − wpg, (2)

ẋ3 = wro − wpo, (3)

where wgc is the mass flow rate of lift gas into the annulus,
considered constant; wiv is the mass flow rate of lift gas
from the annulus into the tubing; wpg is the mass flow rate
of gas through the production choke; wro is the oil mass
flow rate from the reservoir into the tubing; and wpo is
the mass flow rate of produced oil through the production
choke.
The flows are modelled by

wgc = constant, (4)

wiv = Civ

√
ρai max {0, pai − pwi}, (5)

wpc = Cpc

√
ρm max {0, pwh − ps}u, (6)

wpg =
x2

x2 + x3
wpc, (7)

wpo =
x3

x2 + x3
wpc, (8)

wro = Cr (pr − pwb) . (9)

Civ, Cpc and Cr are constants, u is the production choke
opening (u(t) ∈ [0, 1]), ρai is the density of gas in the
annulus at the injection point, ρm is the density of the oil-
gas mixture at the top of the tubing, pai is the pressure in
the annulus at the injection point, pwi is the pressure in
the tubing at the gas injection point, pwh is the pressure
at the well head, ps is the pressure in the separator, pr is
the pressure in the reservoir, and pwb is the pressure at the
well bore.
The separator pressure, ps, is assumed to be held constant
by a control system. The reservoir pressure, pr, is assumed
to be slowly varying and therefore is treated as constant.
Note that the flow rates through the production valve and
the injection valve are restricted to be positive.
The densities are modelled as follows

ρai =
M

RTa
pai, (10)

��������	�
����	������������	����
������������������ ����!���

�'&$%

Fig. 1. A gas lifted oil well scheme.

compute the downhole pressure needed to close the control
loop that stabilizes the system.
In this paper we propose a simpler solution based on a
high gain observer (HGO). The measurements used are
only the pressure of gas in the annulus, the pressure of the
fluid at the top of the tubing and the density at the top
of the tubing. The measurement of the flow through the
production choke is not required, so this solution can be
easily applied to multiple-well systems, where usually there
is a common manifold where all the wells are connected.
In these systems in case of slugging, the measurement of
the total flow would not be informative about which well
in the system is operating in the unstable regime.
The nonlinear observer (NLO) designed in Aamo et al.
[2004] was shown to be exponentially fast, but has the
assumption that one of the states is measured. We remove
this assumption using an estimator extracted from the
structure of the HGO. We provide also a stability analysis
of the estimator. Then, the performances of the HGO is
compared with the one of the combination estimator-NLO.
The paper is organized as follows: in Section 2 we present
the mathematical model of the process; in Section 3 we
design the observer, the estimator, and show open-loop
simulation graphs; in Section 4 is presented an output
feedback stabilization scheme combining the observer with
a proportional integral (PI) control of the estimated down-
hole pressure, and; Section 5 presents final remarks.

2. MATHEMATICAL MODEL

Commonly in the petroleum industry, the process de-
scribed in Section 1 is simulated by the transient multi-
phase simulator OLGA 2000 (Scandpower AS), that con-
stitutes the state-of-the-art available nowadays.
The OLGA 2000 model developed for the gas lift well is
highly accurate taking into account many aspects of the
real system, and therefore is complicated and not suitable
for control design purposes. Here we use a simplified model
due to Eikrem et al. [2002].
The process is modelled by three states: x1 the mass of

Fig. 2. Oil production as function of gas injection rate.
The dotted line is the production calculated by steady
state simulations assuming stable operation. The solid
line is generated by dynamic simulations.

gas in the annulus; x2 the mass of gas in the tubing; x3

the mass of oil in the tubing. Looking at Fig. 1, we have
from mass balances

ẋ1 = wgc − wiv, (1)

ẋ2 = wiv − wpg, (2)

ẋ3 = wro − wpo, (3)

where wgc is the mass flow rate of lift gas into the annulus,
considered constant; wiv is the mass flow rate of lift gas
from the annulus into the tubing; wpg is the mass flow rate
of gas through the production choke; wro is the oil mass
flow rate from the reservoir into the tubing; and wpo is
the mass flow rate of produced oil through the production
choke.
The flows are modelled by

wgc = constant, (4)

wiv = Civ

√
ρai max {0, pai − pwi}, (5)

wpc = Cpc

√
ρm max {0, pwh − ps}u, (6)

wpg =
x2

x2 + x3
wpc, (7)

wpo =
x3

x2 + x3
wpc, (8)

wro = Cr (pr − pwb) . (9)

Civ, Cpc and Cr are constants, u is the production choke
opening (u(t) ∈ [0, 1]), ρai is the density of gas in the
annulus at the injection point, ρm is the density of the oil-
gas mixture at the top of the tubing, pai is the pressure in
the annulus at the injection point, pwi is the pressure in
the tubing at the gas injection point, pwh is the pressure
at the well head, ps is the pressure in the separator, pr is
the pressure in the reservoir, and pwb is the pressure at the
well bore.
The separator pressure, ps, is assumed to be held constant
by a control system. The reservoir pressure, pr, is assumed
to be slowly varying and therefore is treated as constant.
Note that the flow rates through the production valve and
the injection valve are restricted to be positive.
The densities are modelled as follows

ρai =
M

RTa
pai, (10)

��������	�
����	������������	����
������������������ ����!���

�'&$%

Fig. 1. A gas lifted oil well scheme.

compute the downhole pressure needed to close the control
loop that stabilizes the system.
In this paper we propose a simpler solution based on a
high gain observer (HGO). The measurements used are
only the pressure of gas in the annulus, the pressure of the
fluid at the top of the tubing and the density at the top
of the tubing. The measurement of the flow through the
production choke is not required, so this solution can be
easily applied to multiple-well systems, where usually there
is a common manifold where all the wells are connected.
In these systems in case of slugging, the measurement of
the total flow would not be informative about which well
in the system is operating in the unstable regime.
The nonlinear observer (NLO) designed in Aamo et al.
[2004] was shown to be exponentially fast, but has the
assumption that one of the states is measured. We remove
this assumption using an estimator extracted from the
structure of the HGO. We provide also a stability analysis
of the estimator. Then, the performances of the HGO is
compared with the one of the combination estimator-NLO.
The paper is organized as follows: in Section 2 we present
the mathematical model of the process; in Section 3 we
design the observer, the estimator, and show open-loop
simulation graphs; in Section 4 is presented an output
feedback stabilization scheme combining the observer with
a proportional integral (PI) control of the estimated down-
hole pressure, and; Section 5 presents final remarks.

2. MATHEMATICAL MODEL

Commonly in the petroleum industry, the process de-
scribed in Section 1 is simulated by the transient multi-
phase simulator OLGA 2000 (Scandpower AS), that con-
stitutes the state-of-the-art available nowadays.
The OLGA 2000 model developed for the gas lift well is
highly accurate taking into account many aspects of the
real system, and therefore is complicated and not suitable
for control design purposes. Here we use a simplified model
due to Eikrem et al. [2002].
The process is modelled by three states: x1 the mass of

Fig. 2. Oil production as function of gas injection rate.
The dotted line is the production calculated by steady
state simulations assuming stable operation. The solid
line is generated by dynamic simulations.

gas in the annulus; x2 the mass of gas in the tubing; x3

the mass of oil in the tubing. Looking at Fig. 1, we have
from mass balances

ẋ1 = wgc − wiv, (1)

ẋ2 = wiv − wpg, (2)

ẋ3 = wro − wpo, (3)

where wgc is the mass flow rate of lift gas into the annulus,
considered constant; wiv is the mass flow rate of lift gas
from the annulus into the tubing; wpg is the mass flow rate
of gas through the production choke; wro is the oil mass
flow rate from the reservoir into the tubing; and wpo is
the mass flow rate of produced oil through the production
choke.
The flows are modelled by

wgc = constant, (4)

wiv = Civ

√
ρai max {0, pai − pwi}, (5)

wpc = Cpc

√
ρm max {0, pwh − ps}u, (6)

wpg =
x2

x2 + x3
wpc, (7)

wpo =
x3

x2 + x3
wpc, (8)

wro = Cr (pr − pwb) . (9)

Civ, Cpc and Cr are constants, u is the production choke
opening (u(t) ∈ [0, 1]), ρai is the density of gas in the
annulus at the injection point, ρm is the density of the oil-
gas mixture at the top of the tubing, pai is the pressure in
the annulus at the injection point, pwi is the pressure in
the tubing at the gas injection point, pwh is the pressure
at the well head, ps is the pressure in the separator, pr is
the pressure in the reservoir, and pwb is the pressure at the
well bore.
The separator pressure, ps, is assumed to be held constant
by a control system. The reservoir pressure, pr, is assumed
to be slowly varying and therefore is treated as constant.
Note that the flow rates through the production valve and
the injection valve are restricted to be positive.
The densities are modelled as follows

ρai =
M

RTa
pai, (10)

��������	�
����	������������	����
������������������ ����!���

�'&$%

Fig. 1. A gas lifted oil well scheme.

compute the downhole pressure needed to close the control
loop that stabilizes the system.
In this paper we propose a simpler solution based on a
high gain observer (HGO). The measurements used are
only the pressure of gas in the annulus, the pressure of the
fluid at the top of the tubing and the density at the top
of the tubing. The measurement of the flow through the
production choke is not required, so this solution can be
easily applied to multiple-well systems, where usually there
is a common manifold where all the wells are connected.
In these systems in case of slugging, the measurement of
the total flow would not be informative about which well
in the system is operating in the unstable regime.
The nonlinear observer (NLO) designed in Aamo et al.
[2004] was shown to be exponentially fast, but has the
assumption that one of the states is measured. We remove
this assumption using an estimator extracted from the
structure of the HGO. We provide also a stability analysis
of the estimator. Then, the performances of the HGO is
compared with the one of the combination estimator-NLO.
The paper is organized as follows: in Section 2 we present
the mathematical model of the process; in Section 3 we
design the observer, the estimator, and show open-loop
simulation graphs; in Section 4 is presented an output
feedback stabilization scheme combining the observer with
a proportional integral (PI) control of the estimated down-
hole pressure, and; Section 5 presents final remarks.

2. MATHEMATICAL MODEL

Commonly in the petroleum industry, the process de-
scribed in Section 1 is simulated by the transient multi-
phase simulator OLGA 2000 (Scandpower AS), that con-
stitutes the state-of-the-art available nowadays.
The OLGA 2000 model developed for the gas lift well is
highly accurate taking into account many aspects of the
real system, and therefore is complicated and not suitable
for control design purposes. Here we use a simplified model
due to Eikrem et al. [2002].
The process is modelled by three states: x1 the mass of

Fig. 2. Oil production as function of gas injection rate.
The dotted line is the production calculated by steady
state simulations assuming stable operation. The solid
line is generated by dynamic simulations.

gas in the annulus; x2 the mass of gas in the tubing; x3

the mass of oil in the tubing. Looking at Fig. 1, we have
from mass balances

ẋ1 = wgc − wiv, (1)

ẋ2 = wiv − wpg, (2)

ẋ3 = wro − wpo, (3)

where wgc is the mass flow rate of lift gas into the annulus,
considered constant; wiv is the mass flow rate of lift gas
from the annulus into the tubing; wpg is the mass flow rate
of gas through the production choke; wro is the oil mass
flow rate from the reservoir into the tubing; and wpo is
the mass flow rate of produced oil through the production
choke.
The flows are modelled by

wgc = constant, (4)

wiv = Civ

√
ρai max {0, pai − pwi}, (5)

wpc = Cpc

√
ρm max {0, pwh − ps}u, (6)

wpg =
x2

x2 + x3
wpc, (7)

wpo =
x3

x2 + x3
wpc, (8)

wro = Cr (pr − pwb) . (9)

Civ, Cpc and Cr are constants, u is the production choke
opening (u(t) ∈ [0, 1]), ρai is the density of gas in the
annulus at the injection point, ρm is the density of the oil-
gas mixture at the top of the tubing, pai is the pressure in
the annulus at the injection point, pwi is the pressure in
the tubing at the gas injection point, pwh is the pressure
at the well head, ps is the pressure in the separator, pr is
the pressure in the reservoir, and pwb is the pressure at the
well bore.
The separator pressure, ps, is assumed to be held constant
by a control system. The reservoir pressure, pr, is assumed
to be slowly varying and therefore is treated as constant.
Note that the flow rates through the production valve and
the injection valve are restricted to be positive.
The densities are modelled as follows

ρai =
M

RTa
pai, (10)

��������	�
����	������������	����
������������������ ����!���

�'&$%

ρm =
x2 + x3

LwAw
, (11)

and the pressures as follows

pai =

(
RTa

VaM
+

gLa

Va

)
x1, (12)

pwh =
RTw

M

x2

LwAw − vox3
, (13)

pwi = pwh +
g

Aw
(x2 + x3) , (14)

pwb = pwi + ρogLr. (15)

M is the molar weight of the gas, R is the gas constant, Ta

is the temperature in the annulus, Tw is the temperature
in the tubing, Va is the volume of the annulus; La is the
length of the annulus; Lw is the length of the tubing,
Aw is the cross-sectional area of the tubing above the
injection point, Lr is the length from the reservoir to the
gas injection point, Ar is the cross-sectional area of the
tubing below the injection point, g is the gravity constant,
ρo is the density of the oil, and vo is the specific volume of
the oil. The oil is considered incompressible, so ρo = 1/vo.
The molar weight of the gas, M , is assumed constant, and
the temperatures, Ta and Tw, are assumed slowly varying
and therefore treated as constants.

The dynamics of the simplified model has been compared
to those given by the OLGA 2000 multiphase simulator in
Imsland [2002] and found to be in satisfactory agreement.
It should be noted, however, that the aim of the simplified
model is just to capture the casing-heading instability, and
that a number of other instabilities that may occur in
gas-lift oil wells are not captured as well, as for instance
tubing-heading instability, tubing-reservoir interactions,
hydrodynamic slugging.

3. STATE ESTIMATION

In practice, the measurements downhole in the tubing are
to be considered quite unreliable because of the harsh con-
ditions in which the sensors have to operate. Considering
also that the maintenance of those sensors is basically
impossible, sometimes downhole measurements are even
not available at all.
In this paper we assume that only well-top measurements
are available, and in particular the pressure in the annulus,
that gives y1(t) = pai(t), the pressure at the top of the
tubing, y2(t) = pwh(t), and the density at the top of the
tubing, y3(t) = ρm(t).

3.1 Observer

The HGO used has a particularly simple structure since it
is only a copy of the simplified model, together with the
correction terms. The observer uses the available process
measurements for the correction of the state estimates in
the simplified model.
From (12) we obtain

x1 =

(
RTa

VaM
+

gLa

Va

)−1

y1, (16)

from (13)

x2 =
M (LwAw − vox̂3)

RTw
y2 (17)

and from (11)

x3 = LwAwy3 − x̂2 (18)

needed for the correction terms.
The observer equations are then

˙̂x1 = wgc − ŵiv +K1 (x1 − x̂1) (19)

˙̂x2 = ŵiw − ŵpg +K2 (x2 − x̂2) (20)

˙̂x3 = ŵro − ŵpo +K3 (x3 − x̂3) (21)

where K1, K2 and K3 are positive constant gains, and ŵiv,
ŵpg, ŵro and ŵpo have the same structure of (5)-(15) where
instead of the states x1, x2 and x3 we have the estimates
x̂1, x̂2 and x̂3 respectively. Since (13) and (11) contain
both x2 and x3, in (17) and (18) we use the estimates x̂3

and x̂2 instead.
At the time of writing this paper, the stability of the
observer proposed is supported only by simulation results.
Even if the simulations show that the observer is exponen-
tially converging to the real states, the non smoothness of
the state equations (due to the max functions and the
square root terms) does not allow an immediate proof of
stability. In works such as Hammouri et al. [2002], Gautier
et al. [1992] the stability of high gain observers for a class of
nonlinear systems has been analyzed and conditions have
been given. Such results are promising, and efforts are in
train to extend them to classes of nonlinear systems like
the gas-lifted oil well.

3.2 Estimator for the mass of gas in the annulus

The NLO designed and analyzed in Aamo et al. [2004]
estimates the state x2 and x3 under the assumption that
the state x1 is measured. It was shown that the NLO is
exponentially fast. In this paper we use the equation (19)
of the HGO to extend the NLO providing an estimator for
the state x1 based on a well-top measurement.
Considering (1) and (19), the error, x̃1 = x1 − x̂1, is
governed by

˙̃x1 = −wiv + ŵiv −K1x̃1 (22)

Since the mass is an inherently positive quantity and that
the system is modeled by mass balances, we have

wiv(x) ≥ 0 ∀x ≥ 0, (23)

ŵiv ≤ Civ

√
M

RTa

(
RTa

VaM
+

gLa

Va

)
x̂1 ∀x̂ ≥ 0. (24)

Taking the Lyapunov function candidate V = 1
2 x̃

2
1 we have

V̇ = x̃1
˙̃x1 (25)

and using (23), (24) and x̃1 = x1 − x̂1

V̇ ≤ Cx1x̃1 − (C +K1) x̃
2
1 (26)

where C = Civ

√
M
RTa

(
RTa

VaM
+ gLa

Va

)
is a positive constant.

Since x1 is bounded, we can write x1 ≤ δ1, where δ1 is

��������	�
����	������������	����
������������������ ����!���

�'&$&

ρm =
x2 + x3

LwAw
, (11)

and the pressures as follows

pai =

(
RTa

VaM
+

gLa

Va

)
x1, (12)

pwh =
RTw

M

x2

LwAw − vox3
, (13)

pwi = pwh +
g

Aw
(x2 + x3) , (14)

pwb = pwi + ρogLr. (15)

M is the molar weight of the gas, R is the gas constant, Ta

is the temperature in the annulus, Tw is the temperature
in the tubing, Va is the volume of the annulus; La is the
length of the annulus; Lw is the length of the tubing,
Aw is the cross-sectional area of the tubing above the
injection point, Lr is the length from the reservoir to the
gas injection point, Ar is the cross-sectional area of the
tubing below the injection point, g is the gravity constant,
ρo is the density of the oil, and vo is the specific volume of
the oil. The oil is considered incompressible, so ρo = 1/vo.
The molar weight of the gas, M , is assumed constant, and
the temperatures, Ta and Tw, are assumed slowly varying
and therefore treated as constants.

The dynamics of the simplified model has been compared
to those given by the OLGA 2000 multiphase simulator in
Imsland [2002] and found to be in satisfactory agreement.
It should be noted, however, that the aim of the simplified
model is just to capture the casing-heading instability, and
that a number of other instabilities that may occur in
gas-lift oil wells are not captured as well, as for instance
tubing-heading instability, tubing-reservoir interactions,
hydrodynamic slugging.

3. STATE ESTIMATION

In practice, the measurements downhole in the tubing are
to be considered quite unreliable because of the harsh con-
ditions in which the sensors have to operate. Considering
also that the maintenance of those sensors is basically
impossible, sometimes downhole measurements are even
not available at all.
In this paper we assume that only well-top measurements
are available, and in particular the pressure in the annulus,
that gives y1(t) = pai(t), the pressure at the top of the
tubing, y2(t) = pwh(t), and the density at the top of the
tubing, y3(t) = ρm(t).

3.1 Observer

The HGO used has a particularly simple structure since it
is only a copy of the simplified model, together with the
correction terms. The observer uses the available process
measurements for the correction of the state estimates in
the simplified model.
From (12) we obtain

x1 =

(
RTa

VaM
+

gLa

Va

)−1

y1, (16)

from (13)

x2 =
M (LwAw − vox̂3)

RTw
y2 (17)

and from (11)

x3 = LwAwy3 − x̂2 (18)

needed for the correction terms.
The observer equations are then

˙̂x1 = wgc − ŵiv +K1 (x1 − x̂1) (19)

˙̂x2 = ŵiw − ŵpg +K2 (x2 − x̂2) (20)

˙̂x3 = ŵro − ŵpo +K3 (x3 − x̂3) (21)

where K1, K2 and K3 are positive constant gains, and ŵiv,
ŵpg, ŵro and ŵpo have the same structure of (5)-(15) where
instead of the states x1, x2 and x3 we have the estimates
x̂1, x̂2 and x̂3 respectively. Since (13) and (11) contain
both x2 and x3, in (17) and (18) we use the estimates x̂3

and x̂2 instead.
At the time of writing this paper, the stability of the
observer proposed is supported only by simulation results.
Even if the simulations show that the observer is exponen-
tially converging to the real states, the non smoothness of
the state equations (due to the max functions and the
square root terms) does not allow an immediate proof of
stability. In works such as Hammouri et al. [2002], Gautier
et al. [1992] the stability of high gain observers for a class of
nonlinear systems has been analyzed and conditions have
been given. Such results are promising, and efforts are in
train to extend them to classes of nonlinear systems like
the gas-lifted oil well.

3.2 Estimator for the mass of gas in the annulus

The NLO designed and analyzed in Aamo et al. [2004]
estimates the state x2 and x3 under the assumption that
the state x1 is measured. It was shown that the NLO is
exponentially fast. In this paper we use the equation (19)
of the HGO to extend the NLO providing an estimator for
the state x1 based on a well-top measurement.
Considering (1) and (19), the error, x̃1 = x1 − x̂1, is
governed by

˙̃x1 = −wiv + ŵiv −K1x̃1 (22)

Since the mass is an inherently positive quantity and that
the system is modeled by mass balances, we have

wiv(x) ≥ 0 ∀x ≥ 0, (23)

ŵiv ≤ Civ

√
M

RTa

(
RTa

VaM
+

gLa

Va

)
x̂1 ∀x̂ ≥ 0. (24)

Taking the Lyapunov function candidate V = 1
2 x̃

2
1 we have

V̇ = x̃1
˙̃x1 (25)

and using (23), (24) and x̃1 = x1 − x̂1

V̇ ≤ Cx1x̃1 − (C +K1) x̃
2
1 (26)

where C = Civ

√
M
RTa

(
RTa

VaM
+ gLa

Va

)
is a positive constant.

Since x1 is bounded, we can write x1 ≤ δ1, where δ1 is

��������	�
����	������������	����
������������������ ����!���

�'&$&

ρm =
x2 + x3

LwAw
, (11)

and the pressures as follows

pai =

(
RTa

VaM
+

gLa

Va

)
x1, (12)

pwh =
RTw

M

x2

LwAw − vox3
, (13)

pwi = pwh +
g

Aw
(x2 + x3) , (14)

pwb = pwi + ρogLr. (15)

M is the molar weight of the gas, R is the gas constant, Ta

is the temperature in the annulus, Tw is the temperature
in the tubing, Va is the volume of the annulus; La is the
length of the annulus; Lw is the length of the tubing,
Aw is the cross-sectional area of the tubing above the
injection point, Lr is the length from the reservoir to the
gas injection point, Ar is the cross-sectional area of the
tubing below the injection point, g is the gravity constant,
ρo is the density of the oil, and vo is the specific volume of
the oil. The oil is considered incompressible, so ρo = 1/vo.
The molar weight of the gas, M , is assumed constant, and
the temperatures, Ta and Tw, are assumed slowly varying
and therefore treated as constants.

The dynamics of the simplified model has been compared
to those given by the OLGA 2000 multiphase simulator in
Imsland [2002] and found to be in satisfactory agreement.
It should be noted, however, that the aim of the simplified
model is just to capture the casing-heading instability, and
that a number of other instabilities that may occur in
gas-lift oil wells are not captured as well, as for instance
tubing-heading instability, tubing-reservoir interactions,
hydrodynamic slugging.

3. STATE ESTIMATION

In practice, the measurements downhole in the tubing are
to be considered quite unreliable because of the harsh con-
ditions in which the sensors have to operate. Considering
also that the maintenance of those sensors is basically
impossible, sometimes downhole measurements are even
not available at all.
In this paper we assume that only well-top measurements
are available, and in particular the pressure in the annulus,
that gives y1(t) = pai(t), the pressure at the top of the
tubing, y2(t) = pwh(t), and the density at the top of the
tubing, y3(t) = ρm(t).

3.1 Observer

The HGO used has a particularly simple structure since it
is only a copy of the simplified model, together with the
correction terms. The observer uses the available process
measurements for the correction of the state estimates in
the simplified model.
From (12) we obtain

x1 =

(
RTa

VaM
+

gLa

Va

)−1

y1, (16)

from (13)

x2 =
M (LwAw − vox̂3)

RTw
y2 (17)

and from (11)

x3 = LwAwy3 − x̂2 (18)

needed for the correction terms.
The observer equations are then

˙̂x1 = wgc − ŵiv +K1 (x1 − x̂1) (19)

˙̂x2 = ŵiw − ŵpg +K2 (x2 − x̂2) (20)

˙̂x3 = ŵro − ŵpo +K3 (x3 − x̂3) (21)

where K1, K2 and K3 are positive constant gains, and ŵiv,
ŵpg, ŵro and ŵpo have the same structure of (5)-(15) where
instead of the states x1, x2 and x3 we have the estimates
x̂1, x̂2 and x̂3 respectively. Since (13) and (11) contain
both x2 and x3, in (17) and (18) we use the estimates x̂3

and x̂2 instead.
At the time of writing this paper, the stability of the
observer proposed is supported only by simulation results.
Even if the simulations show that the observer is exponen-
tially converging to the real states, the non smoothness of
the state equations (due to the max functions and the
square root terms) does not allow an immediate proof of
stability. In works such as Hammouri et al. [2002], Gautier
et al. [1992] the stability of high gain observers for a class of
nonlinear systems has been analyzed and conditions have
been given. Such results are promising, and efforts are in
train to extend them to classes of nonlinear systems like
the gas-lifted oil well.

3.2 Estimator for the mass of gas in the annulus

The NLO designed and analyzed in Aamo et al. [2004]
estimates the state x2 and x3 under the assumption that
the state x1 is measured. It was shown that the NLO is
exponentially fast. In this paper we use the equation (19)
of the HGO to extend the NLO providing an estimator for
the state x1 based on a well-top measurement.
Considering (1) and (19), the error, x̃1 = x1 − x̂1, is
governed by

˙̃x1 = −wiv + ŵiv −K1x̃1 (22)

Since the mass is an inherently positive quantity and that
the system is modeled by mass balances, we have

wiv(x) ≥ 0 ∀x ≥ 0, (23)

ŵiv ≤ Civ

√
M

RTa

(
RTa

VaM
+

gLa

Va

)
x̂1 ∀x̂ ≥ 0. (24)

Taking the Lyapunov function candidate V = 1
2 x̃

2
1 we have

V̇ = x̃1
˙̃x1 (25)

and using (23), (24) and x̃1 = x1 − x̂1

V̇ ≤ Cx1x̃1 − (C +K1) x̃
2
1 (26)

where C = Civ

√
M
RTa

(
RTa

VaM
+ gLa

Va

)
is a positive constant.

Since x1 is bounded, we can write x1 ≤ δ1, where δ1 is

��������	�
����	������������	����
������������������ ����!���

�'&$&

ρm =
x2 + x3

LwAw
, (11)

and the pressures as follows

pai =

(
RTa

VaM
+

gLa

Va

)
x1, (12)

pwh =
RTw

M

x2

LwAw − vox3
, (13)

pwi = pwh +
g

Aw
(x2 + x3) , (14)

pwb = pwi + ρogLr. (15)

M is the molar weight of the gas, R is the gas constant, Ta

is the temperature in the annulus, Tw is the temperature
in the tubing, Va is the volume of the annulus; La is the
length of the annulus; Lw is the length of the tubing,
Aw is the cross-sectional area of the tubing above the
injection point, Lr is the length from the reservoir to the
gas injection point, Ar is the cross-sectional area of the
tubing below the injection point, g is the gravity constant,
ρo is the density of the oil, and vo is the specific volume of
the oil. The oil is considered incompressible, so ρo = 1/vo.
The molar weight of the gas, M , is assumed constant, and
the temperatures, Ta and Tw, are assumed slowly varying
and therefore treated as constants.

The dynamics of the simplified model has been compared
to those given by the OLGA 2000 multiphase simulator in
Imsland [2002] and found to be in satisfactory agreement.
It should be noted, however, that the aim of the simplified
model is just to capture the casing-heading instability, and
that a number of other instabilities that may occur in
gas-lift oil wells are not captured as well, as for instance
tubing-heading instability, tubing-reservoir interactions,
hydrodynamic slugging.

3. STATE ESTIMATION

In practice, the measurements downhole in the tubing are
to be considered quite unreliable because of the harsh con-
ditions in which the sensors have to operate. Considering
also that the maintenance of those sensors is basically
impossible, sometimes downhole measurements are even
not available at all.
In this paper we assume that only well-top measurements
are available, and in particular the pressure in the annulus,
that gives y1(t) = pai(t), the pressure at the top of the
tubing, y2(t) = pwh(t), and the density at the top of the
tubing, y3(t) = ρm(t).

3.1 Observer

The HGO used has a particularly simple structure since it
is only a copy of the simplified model, together with the
correction terms. The observer uses the available process
measurements for the correction of the state estimates in
the simplified model.
From (12) we obtain

x1 =

(
RTa

VaM
+

gLa

Va

)−1

y1, (16)

from (13)

x2 =
M (LwAw − vox̂3)

RTw
y2 (17)

and from (11)

x3 = LwAwy3 − x̂2 (18)

needed for the correction terms.
The observer equations are then

˙̂x1 = wgc − ŵiv +K1 (x1 − x̂1) (19)

˙̂x2 = ŵiw − ŵpg +K2 (x2 − x̂2) (20)

˙̂x3 = ŵro − ŵpo +K3 (x3 − x̂3) (21)

where K1, K2 and K3 are positive constant gains, and ŵiv,
ŵpg, ŵro and ŵpo have the same structure of (5)-(15) where
instead of the states x1, x2 and x3 we have the estimates
x̂1, x̂2 and x̂3 respectively. Since (13) and (11) contain
both x2 and x3, in (17) and (18) we use the estimates x̂3

and x̂2 instead.
At the time of writing this paper, the stability of the
observer proposed is supported only by simulation results.
Even if the simulations show that the observer is exponen-
tially converging to the real states, the non smoothness of
the state equations (due to the max functions and the
square root terms) does not allow an immediate proof of
stability. In works such as Hammouri et al. [2002], Gautier
et al. [1992] the stability of high gain observers for a class of
nonlinear systems has been analyzed and conditions have
been given. Such results are promising, and efforts are in
train to extend them to classes of nonlinear systems like
the gas-lifted oil well.

3.2 Estimator for the mass of gas in the annulus

The NLO designed and analyzed in Aamo et al. [2004]
estimates the state x2 and x3 under the assumption that
the state x1 is measured. It was shown that the NLO is
exponentially fast. In this paper we use the equation (19)
of the HGO to extend the NLO providing an estimator for
the state x1 based on a well-top measurement.
Considering (1) and (19), the error, x̃1 = x1 − x̂1, is
governed by

˙̃x1 = −wiv + ŵiv −K1x̃1 (22)

Since the mass is an inherently positive quantity and that
the system is modeled by mass balances, we have

wiv(x) ≥ 0 ∀x ≥ 0, (23)

ŵiv ≤ Civ

√
M

RTa

(
RTa

VaM
+

gLa

Va

)
x̂1 ∀x̂ ≥ 0. (24)

Taking the Lyapunov function candidate V = 1
2 x̃

2
1 we have

V̇ = x̃1
˙̃x1 (25)

and using (23), (24) and x̃1 = x1 − x̂1

V̇ ≤ Cx1x̃1 − (C +K1) x̃
2
1 (26)

where C = Civ

√
M
RTa

(
RTa

VaM
+ gLa

Va

)
is a positive constant.

Since x1 is bounded, we can write x1 ≤ δ1, where δ1 is

��������	�
����	������������	����
������������������ ����!���

�'&$&

$2 $1.5 $1 $0.5 0 0.5 1 1.5 2

x 10$3

$1.5

$1

$0.5

0

0.5

1

1.5

x̃2

x̃
3

Fig. 3. Phase portrait (u = 0.4).

a constant. Using input-to-state stability (Khalil [2000]
paragraph 4.9) we have

V̇ ≤ 0 ∀x̃1 ≥ Cδ1
(C +K1) θ

= ρ(δ1). (27)

where 0 < θ < 1 and the function ρ(δ1) belongs to class κ.
This shows that (22) is ISS with respect to x1, that means
it is always possible to make the observer to converge
exponentially fast toward the real state and to keep the
error as small as desired changing the value of the gain K1.
This is a coarse result due to the assumption (23) and (24)
that allowed to make (22) independent from x2, x̂2, x3, x̂3.
Actually the simulations show that the error exponentially
converges to 0. Anyway it gives a stability proof of the
estimator for x1, and using this in connection with the
NLO forms an exponentially fast observer using only well-
top measurements.
Moreover, it is possible to see the HGO as a cascade
interconnection of two systems: the estimator for x1 and
the sub-observer composed by (20)-(21). The error dynam-
ics of the sub-observer are governed by the second order
system ˙̃x2 = ẋ2− ˙̂x2, ˙̃x3 = ẋ3− ˙̂x3. This can be considered
autonomous if we fix the input u and consider x1 given by
the estimator (x1 = x̂1). The qualitative behavior of such
system can be easily visualized by a phase portrait in the
phase plane. Considering several inputs u (u(t) ∈ [0, 1]),
it has been seen that the origin is a locally asymptotically
stable equilibrium point (Fig. 3 shows the case u = 0.4).

3.3 Open-loop simulations

The numerical coefficients used for the simulations are
taken from Eikrem et al. [2006] and refer to a laboratory
installation where compressed air is used as the lift gas and
water as the produced fluid. The production tube measures
18m in height and has an inner diameter of 20mm.
In the simulations in this paper, gas is fed into the annulus
at a constant rate of wgc = 0.1×10−3kg/s. All the simula-
tions are implemented in Matlab. The initial values equal
steady state conditions. Values for the HGO correction
gains that make the estimates converge in 3sec were easily
found after a few tries: K1 = 1, K2 = 1 and K3 = 1.
Fig. 4 shows that the states estimated by the HGO con-
verge exponentially fast to the real states. Fig. 5 shows
the downhole pressure calculated from the states estimates
compared to the value obtained from the simulated sys-
tem.

0 5 10 15
0.05

0.055

0.06

0.065

G
as

 in
 th

e
an

nu
lu

s
[k

g]

0 5 10 15
2

2.5

3

3.5

4
x 10$3

G
as

 in
 th

e
tu

bi
ng

 [k
g]

0 5 10 15
2

2.5

3

3.5

O
il

in
 th

e
tu

bi
ng

 [k
g]

sec

Fig. 4. States of the system. The full line are the states
simulated, the dashed line are the states estimated.

0 5 10 15
2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56
x 105

D
ow

nh
ol

e
pr

es
su

re
 [P

a]

sec

Fig. 5. Downhole pressure. The full line is the pressure
simulated, the dashed line is the pressure estimated.

From Fig. 6 it is possible to see how raising the opening of
the production choke from u = 0.2 to u = 0.8 (switching
at t = 200sec) causes severe slugging in the production.
The HGO was compared with the NLO proposed in Aamo
et al. [2004] in combination with the estimator proposed
in Subsection 3.2. The NLO is an exponentially fast non-
linear observer, but it is characterized by a structure
more complicated than the one of the HGO. In Fig. 7
the two observers are compared, and it can be seen that
the convergence is extremely quick for both (notice the
time scale). The tuning of the HGO gains to obtain this
result was quite straightforward (K1 = 20, K2 = 15 and
K3 = 15), thanks to its simple structure. The same cannot
be said for the NLO, that required quite some time to well
tune its gains.

4. FEEDBACK STABILIZING CONTROL

It can be seen from simulations that a higher rate of
injection gas will stabilize the well, but not at an optimal
operating point. A fixed choke opening will also stabilize
the well, provided the opening of the choke is reduced
until the flow from the well is stable. The reason why
an increased amount of lift gas and/or a reduced choke
opening gives stable flow is that the flow in the tubing
changes from gravitation dominant to friction dominant
flow. An improved production solution is to stabilize the
well system in the unstable region with feedback control.

��������	�
����	������������	����
������������������ ����!���

�'&�$

$2 $1.5 $1 $0.5 0 0.5 1 1.5 2

x 10$3

$1.5

$1

$0.5

0

0.5

1

1.5

x̃2

x̃
3

Fig. 3. Phase portrait (u = 0.4).

a constant. Using input-to-state stability (Khalil [2000]
paragraph 4.9) we have

V̇ ≤ 0 ∀x̃1 ≥ Cδ1
(C +K1) θ

= ρ(δ1). (27)

where 0 < θ < 1 and the function ρ(δ1) belongs to class κ.
This shows that (22) is ISS with respect to x1, that means
it is always possible to make the observer to converge
exponentially fast toward the real state and to keep the
error as small as desired changing the value of the gain K1.
This is a coarse result due to the assumption (23) and (24)
that allowed to make (22) independent from x2, x̂2, x3, x̂3.
Actually the simulations show that the error exponentially
converges to 0. Anyway it gives a stability proof of the
estimator for x1, and using this in connection with the
NLO forms an exponentially fast observer using only well-
top measurements.
Moreover, it is possible to see the HGO as a cascade
interconnection of two systems: the estimator for x1 and
the sub-observer composed by (20)-(21). The error dynam-
ics of the sub-observer are governed by the second order
system ˙̃x2 = ẋ2− ˙̂x2, ˙̃x3 = ẋ3− ˙̂x3. This can be considered
autonomous if we fix the input u and consider x1 given by
the estimator (x1 = x̂1). The qualitative behavior of such
system can be easily visualized by a phase portrait in the
phase plane. Considering several inputs u (u(t) ∈ [0, 1]),
it has been seen that the origin is a locally asymptotically
stable equilibrium point (Fig. 3 shows the case u = 0.4).

3.3 Open-loop simulations

The numerical coefficients used for the simulations are
taken from Eikrem et al. [2006] and refer to a laboratory
installation where compressed air is used as the lift gas and
water as the produced fluid. The production tube measures
18m in height and has an inner diameter of 20mm.
In the simulations in this paper, gas is fed into the annulus
at a constant rate of wgc = 0.1×10−3kg/s. All the simula-
tions are implemented in Matlab. The initial values equal
steady state conditions. Values for the HGO correction
gains that make the estimates converge in 3sec were easily
found after a few tries: K1 = 1, K2 = 1 and K3 = 1.
Fig. 4 shows that the states estimated by the HGO con-
verge exponentially fast to the real states. Fig. 5 shows
the downhole pressure calculated from the states estimates
compared to the value obtained from the simulated sys-
tem.

0 5 10 15
0.05

0.055

0.06

0.065

G
as

 in
 th

e
an

nu
lu

s
[k

g]

0 5 10 15
2

2.5

3

3.5

4
x 10$3

G
as

 in
 th

e
tu

bi
ng

 [k
g]

0 5 10 15
2

2.5

3

3.5

O
il

in
 th

e
tu

bi
ng

 [k
g]

sec

Fig. 4. States of the system. The full line are the states
simulated, the dashed line are the states estimated.

0 5 10 15
2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56
x 105

D
ow

nh
ol

e
pr

es
su

re
 [P

a]

sec

Fig. 5. Downhole pressure. The full line is the pressure
simulated, the dashed line is the pressure estimated.

From Fig. 6 it is possible to see how raising the opening of
the production choke from u = 0.2 to u = 0.8 (switching
at t = 200sec) causes severe slugging in the production.
The HGO was compared with the NLO proposed in Aamo
et al. [2004] in combination with the estimator proposed
in Subsection 3.2. The NLO is an exponentially fast non-
linear observer, but it is characterized by a structure
more complicated than the one of the HGO. In Fig. 7
the two observers are compared, and it can be seen that
the convergence is extremely quick for both (notice the
time scale). The tuning of the HGO gains to obtain this
result was quite straightforward (K1 = 20, K2 = 15 and
K3 = 15), thanks to its simple structure. The same cannot
be said for the NLO, that required quite some time to well
tune its gains.

4. FEEDBACK STABILIZING CONTROL

It can be seen from simulations that a higher rate of
injection gas will stabilize the well, but not at an optimal
operating point. A fixed choke opening will also stabilize
the well, provided the opening of the choke is reduced
until the flow from the well is stable. The reason why
an increased amount of lift gas and/or a reduced choke
opening gives stable flow is that the flow in the tubing
changes from gravitation dominant to friction dominant
flow. An improved production solution is to stabilize the
well system in the unstable region with feedback control.

��������	�
����	������������	����
������������������ ����!���

�'&�$

$2 $1.5 $1 $0.5 0 0.5 1 1.5 2

x 10$3

$1.5

$1

$0.5

0

0.5

1

1.5

x̃2

x̃
3

Fig. 3. Phase portrait (u = 0.4).

a constant. Using input-to-state stability (Khalil [2000]
paragraph 4.9) we have

V̇ ≤ 0 ∀x̃1 ≥ Cδ1
(C +K1) θ

= ρ(δ1). (27)

where 0 < θ < 1 and the function ρ(δ1) belongs to class κ.
This shows that (22) is ISS with respect to x1, that means
it is always possible to make the observer to converge
exponentially fast toward the real state and to keep the
error as small as desired changing the value of the gain K1.
This is a coarse result due to the assumption (23) and (24)
that allowed to make (22) independent from x2, x̂2, x3, x̂3.
Actually the simulations show that the error exponentially
converges to 0. Anyway it gives a stability proof of the
estimator for x1, and using this in connection with the
NLO forms an exponentially fast observer using only well-
top measurements.
Moreover, it is possible to see the HGO as a cascade
interconnection of two systems: the estimator for x1 and
the sub-observer composed by (20)-(21). The error dynam-
ics of the sub-observer are governed by the second order
system ˙̃x2 = ẋ2− ˙̂x2, ˙̃x3 = ẋ3− ˙̂x3. This can be considered
autonomous if we fix the input u and consider x1 given by
the estimator (x1 = x̂1). The qualitative behavior of such
system can be easily visualized by a phase portrait in the
phase plane. Considering several inputs u (u(t) ∈ [0, 1]),
it has been seen that the origin is a locally asymptotically
stable equilibrium point (Fig. 3 shows the case u = 0.4).

3.3 Open-loop simulations

The numerical coefficients used for the simulations are
taken from Eikrem et al. [2006] and refer to a laboratory
installation where compressed air is used as the lift gas and
water as the produced fluid. The production tube measures
18m in height and has an inner diameter of 20mm.
In the simulations in this paper, gas is fed into the annulus
at a constant rate of wgc = 0.1×10−3kg/s. All the simula-
tions are implemented in Matlab. The initial values equal
steady state conditions. Values for the HGO correction
gains that make the estimates converge in 3sec were easily
found after a few tries: K1 = 1, K2 = 1 and K3 = 1.
Fig. 4 shows that the states estimated by the HGO con-
verge exponentially fast to the real states. Fig. 5 shows
the downhole pressure calculated from the states estimates
compared to the value obtained from the simulated sys-
tem.

0 5 10 15
0.05

0.055

0.06

0.065

G
as

 in
 th

e
an

nu
lu

s
[k

g]

0 5 10 15
2

2.5

3

3.5

4
x 10$3

G
as

 in
 th

e
tu

bi
ng

 [k
g]

0 5 10 15
2

2.5

3

3.5

O
il

in
 th

e
tu

bi
ng

 [k
g]

sec

Fig. 4. States of the system. The full line are the states
simulated, the dashed line are the states estimated.

0 5 10 15
2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56
x 105

D
ow

nh
ol

e
pr

es
su

re
 [P

a]

sec

Fig. 5. Downhole pressure. The full line is the pressure
simulated, the dashed line is the pressure estimated.

From Fig. 6 it is possible to see how raising the opening of
the production choke from u = 0.2 to u = 0.8 (switching
at t = 200sec) causes severe slugging in the production.
The HGO was compared with the NLO proposed in Aamo
et al. [2004] in combination with the estimator proposed
in Subsection 3.2. The NLO is an exponentially fast non-
linear observer, but it is characterized by a structure
more complicated than the one of the HGO. In Fig. 7
the two observers are compared, and it can be seen that
the convergence is extremely quick for both (notice the
time scale). The tuning of the HGO gains to obtain this
result was quite straightforward (K1 = 20, K2 = 15 and
K3 = 15), thanks to its simple structure. The same cannot
be said for the NLO, that required quite some time to well
tune its gains.

4. FEEDBACK STABILIZING CONTROL

It can be seen from simulations that a higher rate of
injection gas will stabilize the well, but not at an optimal
operating point. A fixed choke opening will also stabilize
the well, provided the opening of the choke is reduced
until the flow from the well is stable. The reason why
an increased amount of lift gas and/or a reduced choke
opening gives stable flow is that the flow in the tubing
changes from gravitation dominant to friction dominant
flow. An improved production solution is to stabilize the
well system in the unstable region with feedback control.

��������	�
����	������������	����
������������������ ����!���

�'&�$

$2 $1.5 $1 $0.5 0 0.5 1 1.5 2

x 10$3

$1.5

$1

$0.5

0

0.5

1

1.5

x̃2

x̃
3

Fig. 3. Phase portrait (u = 0.4).

a constant. Using input-to-state stability (Khalil [2000]
paragraph 4.9) we have

V̇ ≤ 0 ∀x̃1 ≥ Cδ1
(C +K1) θ

= ρ(δ1). (27)

where 0 < θ < 1 and the function ρ(δ1) belongs to class κ.
This shows that (22) is ISS with respect to x1, that means
it is always possible to make the observer to converge
exponentially fast toward the real state and to keep the
error as small as desired changing the value of the gain K1.
This is a coarse result due to the assumption (23) and (24)
that allowed to make (22) independent from x2, x̂2, x3, x̂3.
Actually the simulations show that the error exponentially
converges to 0. Anyway it gives a stability proof of the
estimator for x1, and using this in connection with the
NLO forms an exponentially fast observer using only well-
top measurements.
Moreover, it is possible to see the HGO as a cascade
interconnection of two systems: the estimator for x1 and
the sub-observer composed by (20)-(21). The error dynam-
ics of the sub-observer are governed by the second order
system ˙̃x2 = ẋ2− ˙̂x2, ˙̃x3 = ẋ3− ˙̂x3. This can be considered
autonomous if we fix the input u and consider x1 given by
the estimator (x1 = x̂1). The qualitative behavior of such
system can be easily visualized by a phase portrait in the
phase plane. Considering several inputs u (u(t) ∈ [0, 1]),
it has been seen that the origin is a locally asymptotically
stable equilibrium point (Fig. 3 shows the case u = 0.4).

3.3 Open-loop simulations

The numerical coefficients used for the simulations are
taken from Eikrem et al. [2006] and refer to a laboratory
installation where compressed air is used as the lift gas and
water as the produced fluid. The production tube measures
18m in height and has an inner diameter of 20mm.
In the simulations in this paper, gas is fed into the annulus
at a constant rate of wgc = 0.1×10−3kg/s. All the simula-
tions are implemented in Matlab. The initial values equal
steady state conditions. Values for the HGO correction
gains that make the estimates converge in 3sec were easily
found after a few tries: K1 = 1, K2 = 1 and K3 = 1.
Fig. 4 shows that the states estimated by the HGO con-
verge exponentially fast to the real states. Fig. 5 shows
the downhole pressure calculated from the states estimates
compared to the value obtained from the simulated sys-
tem.

0 5 10 15
0.05

0.055

0.06

0.065

G
as

 in
 th

e
an

nu
lu

s
[k

g]

0 5 10 15
2

2.5

3

3.5

4
x 10$3

G
as

 in
 th

e
tu

bi
ng

 [k
g]

0 5 10 15
2

2.5

3

3.5

O
il

in
 th

e
tu

bi
ng

 [k
g]

sec

Fig. 4. States of the system. The full line are the states
simulated, the dashed line are the states estimated.

0 5 10 15
2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56
x 105

D
ow

nh
ol

e
pr

es
su

re
 [P

a]

sec

Fig. 5. Downhole pressure. The full line is the pressure
simulated, the dashed line is the pressure estimated.

From Fig. 6 it is possible to see how raising the opening of
the production choke from u = 0.2 to u = 0.8 (switching
at t = 200sec) causes severe slugging in the production.
The HGO was compared with the NLO proposed in Aamo
et al. [2004] in combination with the estimator proposed
in Subsection 3.2. The NLO is an exponentially fast non-
linear observer, but it is characterized by a structure
more complicated than the one of the HGO. In Fig. 7
the two observers are compared, and it can be seen that
the convergence is extremely quick for both (notice the
time scale). The tuning of the HGO gains to obtain this
result was quite straightforward (K1 = 20, K2 = 15 and
K3 = 15), thanks to its simple structure. The same cannot
be said for the NLO, that required quite some time to well
tune its gains.

4. FEEDBACK STABILIZING CONTROL

It can be seen from simulations that a higher rate of
injection gas will stabilize the well, but not at an optimal
operating point. A fixed choke opening will also stabilize
the well, provided the opening of the choke is reduced
until the flow from the well is stable. The reason why
an increased amount of lift gas and/or a reduced choke
opening gives stable flow is that the flow in the tubing
changes from gravitation dominant to friction dominant
flow. An improved production solution is to stabilize the
well system in the unstable region with feedback control.

��������	�
����	������������	����
������������������ ����!���

�'&�$

0 100 200 300 400 500 600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sec

O
il/

ga
s

flo
w

 r
at

e
th

ro
ug

h
th

e
pr

od
uc

tio
n

ch
ok

e
[k

g]

Fig. 6. Mixture oil/gas flow rate through the production
choke.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

O
il

in
 th

e
tu

bi
ng

 [k
g]

sec

Fig. 7. Mass of oil in the tubing. The solid line is the state
simulated, the dashed line is the state estimate with
the HGO proposed, the dashdoted line is the state
estimated with the NLO.

4.1 Controller

In Eikrem et al. [2006] it has been shown that casing-
heading instability can be eliminated by stabilizing the
downhole pressure using a PI control:

u = Kp (pwb − p∗wb) +Ki

∫
(pwb − p∗wb) dt (28)

where pwb is the downhole pressure and p∗wb is its desired
set point, chosen usually by the operator. The means of ac-
tuation is the production choke (u(t) ∈ [0, 1]). However the
downhole pressure is not an easy measurement to obtain,
due to the harsh condition in which the pressure sensor has
to operate. In addition, high failure rate of these sensors is
reported by oil companies, and their maintenance causes
costs and problems with the production of oil.
In this paper we propose an alternative to the downhole
pressure measurement, and that is to replace pwb with its
estimate p̂wb.
The pressure p̂wb can be obtained from (15) by using
the states estimated with the observer described in the
previous Section. The control structure is shown in Fig. 8.

4.2 Closed-loop simulations

The set point is chosen as p∗wb = 2.64Pa. The controller
was tuned using a combination of process knowledge and
iterative simulations, and found Kp = −0.3 · 10−5 and
Ki = −0.006 · 10−5.

Fig. 8. Control structure for stabilization of a gas-lift well,
by controlling the estimated downhole pressure.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4
Production of oil [Kg/s]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8
Opening production choke %

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2.5

2.6

2.7

2.8

2.9
x 105 Downhole pressure [Pa]

sec

Fig. 9. Production of oil. Opening of the production choke.
Downhole pressure.

Fig. 9 represents the following simulated scenario: at the
beginning the gas-lift oil well is simulated in open loop
with a 55% choke opening. The initial values equal steady
state conditions. At time t = 500sec the controller is
connected to the system. After the control loop has been
closed, the oscillations are quickly stabilized, even if it
takes about 50min (3000sec) before the system is brought
to the desired setpoint. This is roughly the time taken to
build up the pressure in the annulus.
It can be seen also how the controller gently opens the
production choke from 55% to 62%, this stabilizes the pro-
duction of oil eliminating the casing-heading instability.
Note that also the production is increased.
The downhole pressure is stabilized to 2.64Pa.

The case of noisy measurements was also considered. Since
the density is the measurement that can be more subject to
uncertainty, we assume to have y3 corrupted by white noise
(zero mean, variance 100kg/m3 corresponding to 10% of
the nominal value, Fig. 10). In Fig. 11 it can be noted
that the controller successfully operates on the production
choke valve so as to eliminate the oscillations in the oil
production.

��������	�
����	������������	����
������������������ ����!���

�'&��

0 100 200 300 400 500 600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sec

O
il/

ga
s

flo
w

 r
at

e
th

ro
ug

h
th

e
pr

od
uc

tio
n

ch
ok

e
[k

g]

Fig. 6. Mixture oil/gas flow rate through the production
choke.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

O
il

in
 th

e
tu

bi
ng

 [k
g]

sec

Fig. 7. Mass of oil in the tubing. The solid line is the state
simulated, the dashed line is the state estimate with
the HGO proposed, the dashdoted line is the state
estimated with the NLO.

4.1 Controller

In Eikrem et al. [2006] it has been shown that casing-
heading instability can be eliminated by stabilizing the
downhole pressure using a PI control:

u = Kp (pwb − p∗wb) +Ki

∫
(pwb − p∗wb) dt (28)

where pwb is the downhole pressure and p∗wb is its desired
set point, chosen usually by the operator. The means of ac-
tuation is the production choke (u(t) ∈ [0, 1]). However the
downhole pressure is not an easy measurement to obtain,
due to the harsh condition in which the pressure sensor has
to operate. In addition, high failure rate of these sensors is
reported by oil companies, and their maintenance causes
costs and problems with the production of oil.
In this paper we propose an alternative to the downhole
pressure measurement, and that is to replace pwb with its
estimate p̂wb.
The pressure p̂wb can be obtained from (15) by using
the states estimated with the observer described in the
previous Section. The control structure is shown in Fig. 8.

4.2 Closed-loop simulations

The set point is chosen as p∗wb = 2.64Pa. The controller
was tuned using a combination of process knowledge and
iterative simulations, and found Kp = −0.3 · 10−5 and
Ki = −0.006 · 10−5.

Fig. 8. Control structure for stabilization of a gas-lift well,
by controlling the estimated downhole pressure.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4
Production of oil [Kg/s]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8
Opening production choke %

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2.5

2.6

2.7

2.8

2.9
x 105 Downhole pressure [Pa]

sec

Fig. 9. Production of oil. Opening of the production choke.
Downhole pressure.

Fig. 9 represents the following simulated scenario: at the
beginning the gas-lift oil well is simulated in open loop
with a 55% choke opening. The initial values equal steady
state conditions. At time t = 500sec the controller is
connected to the system. After the control loop has been
closed, the oscillations are quickly stabilized, even if it
takes about 50min (3000sec) before the system is brought
to the desired setpoint. This is roughly the time taken to
build up the pressure in the annulus.
It can be seen also how the controller gently opens the
production choke from 55% to 62%, this stabilizes the pro-
duction of oil eliminating the casing-heading instability.
Note that also the production is increased.
The downhole pressure is stabilized to 2.64Pa.

The case of noisy measurements was also considered. Since
the density is the measurement that can be more subject to
uncertainty, we assume to have y3 corrupted by white noise
(zero mean, variance 100kg/m3 corresponding to 10% of
the nominal value, Fig. 10). In Fig. 11 it can be noted
that the controller successfully operates on the production
choke valve so as to eliminate the oscillations in the oil
production.

��������	�
����	������������	����
������������������ ����!���

�'&��

0 100 200 300 400 500 600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sec

O
il/

ga
s

flo
w

 r
at

e
th

ro
ug

h
th

e
pr

od
uc

tio
n

ch
ok

e
[k

g]

Fig. 6. Mixture oil/gas flow rate through the production
choke.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

O
il

in
 th

e
tu

bi
ng

 [k
g]

sec

Fig. 7. Mass of oil in the tubing. The solid line is the state
simulated, the dashed line is the state estimate with
the HGO proposed, the dashdoted line is the state
estimated with the NLO.

4.1 Controller

In Eikrem et al. [2006] it has been shown that casing-
heading instability can be eliminated by stabilizing the
downhole pressure using a PI control:

u = Kp (pwb − p∗wb) +Ki

∫
(pwb − p∗wb) dt (28)

where pwb is the downhole pressure and p∗wb is its desired
set point, chosen usually by the operator. The means of ac-
tuation is the production choke (u(t) ∈ [0, 1]). However the
downhole pressure is not an easy measurement to obtain,
due to the harsh condition in which the pressure sensor has
to operate. In addition, high failure rate of these sensors is
reported by oil companies, and their maintenance causes
costs and problems with the production of oil.
In this paper we propose an alternative to the downhole
pressure measurement, and that is to replace pwb with its
estimate p̂wb.
The pressure p̂wb can be obtained from (15) by using
the states estimated with the observer described in the
previous Section. The control structure is shown in Fig. 8.

4.2 Closed-loop simulations

The set point is chosen as p∗wb = 2.64Pa. The controller
was tuned using a combination of process knowledge and
iterative simulations, and found Kp = −0.3 · 10−5 and
Ki = −0.006 · 10−5.

Fig. 8. Control structure for stabilization of a gas-lift well,
by controlling the estimated downhole pressure.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4
Production of oil [Kg/s]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8
Opening production choke %

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2.5

2.6

2.7

2.8

2.9
x 105 Downhole pressure [Pa]

sec

Fig. 9. Production of oil. Opening of the production choke.
Downhole pressure.

Fig. 9 represents the following simulated scenario: at the
beginning the gas-lift oil well is simulated in open loop
with a 55% choke opening. The initial values equal steady
state conditions. At time t = 500sec the controller is
connected to the system. After the control loop has been
closed, the oscillations are quickly stabilized, even if it
takes about 50min (3000sec) before the system is brought
to the desired setpoint. This is roughly the time taken to
build up the pressure in the annulus.
It can be seen also how the controller gently opens the
production choke from 55% to 62%, this stabilizes the pro-
duction of oil eliminating the casing-heading instability.
Note that also the production is increased.
The downhole pressure is stabilized to 2.64Pa.

The case of noisy measurements was also considered. Since
the density is the measurement that can be more subject to
uncertainty, we assume to have y3 corrupted by white noise
(zero mean, variance 100kg/m3 corresponding to 10% of
the nominal value, Fig. 10). In Fig. 11 it can be noted
that the controller successfully operates on the production
choke valve so as to eliminate the oscillations in the oil
production.

��������	�
����	������������	����
������������������ ����!���

�'&��

0 100 200 300 400 500 600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sec

O
il/

ga
s

flo
w

 r
at

e
th

ro
ug

h
th

e
pr

od
uc

tio
n

ch
ok

e
[k

g]

Fig. 6. Mixture oil/gas flow rate through the production
choke.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

O
il

in
 th

e
tu

bi
ng

 [k
g]

sec

Fig. 7. Mass of oil in the tubing. The solid line is the state
simulated, the dashed line is the state estimate with
the HGO proposed, the dashdoted line is the state
estimated with the NLO.

4.1 Controller

In Eikrem et al. [2006] it has been shown that casing-
heading instability can be eliminated by stabilizing the
downhole pressure using a PI control:

u = Kp (pwb − p∗wb) +Ki

∫
(pwb − p∗wb) dt (28)

where pwb is the downhole pressure and p∗wb is its desired
set point, chosen usually by the operator. The means of ac-
tuation is the production choke (u(t) ∈ [0, 1]). However the
downhole pressure is not an easy measurement to obtain,
due to the harsh condition in which the pressure sensor has
to operate. In addition, high failure rate of these sensors is
reported by oil companies, and their maintenance causes
costs and problems with the production of oil.
In this paper we propose an alternative to the downhole
pressure measurement, and that is to replace pwb with its
estimate p̂wb.
The pressure p̂wb can be obtained from (15) by using
the states estimated with the observer described in the
previous Section. The control structure is shown in Fig. 8.

4.2 Closed-loop simulations

The set point is chosen as p∗wb = 2.64Pa. The controller
was tuned using a combination of process knowledge and
iterative simulations, and found Kp = −0.3 · 10−5 and
Ki = −0.006 · 10−5.

Fig. 8. Control structure for stabilization of a gas-lift well,
by controlling the estimated downhole pressure.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4
Production of oil [Kg/s]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8
Opening production choke %

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2.5

2.6

2.7

2.8

2.9
x 105 Downhole pressure [Pa]

sec

Fig. 9. Production of oil. Opening of the production choke.
Downhole pressure.

Fig. 9 represents the following simulated scenario: at the
beginning the gas-lift oil well is simulated in open loop
with a 55% choke opening. The initial values equal steady
state conditions. At time t = 500sec the controller is
connected to the system. After the control loop has been
closed, the oscillations are quickly stabilized, even if it
takes about 50min (3000sec) before the system is brought
to the desired setpoint. This is roughly the time taken to
build up the pressure in the annulus.
It can be seen also how the controller gently opens the
production choke from 55% to 62%, this stabilizes the pro-
duction of oil eliminating the casing-heading instability.
Note that also the production is increased.
The downhole pressure is stabilized to 2.64Pa.

The case of noisy measurements was also considered. Since
the density is the measurement that can be more subject to
uncertainty, we assume to have y3 corrupted by white noise
(zero mean, variance 100kg/m3 corresponding to 10% of
the nominal value, Fig. 10). In Fig. 11 it can be noted
that the controller successfully operates on the production
choke valve so as to eliminate the oscillations in the oil
production.

��������	�
����	������������	����
������������������ ����!���

�'&��

1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800
650

700

750

800

850

900

950

1000

sec

D
en

si
ty

 [k
g/

m
3]

Fig. 10. Density measurement plus the uncertainty on the
measurement.

0 500 1000 1500 2000 2500 3000 3500 4000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sec

P
ro

du
ct

io
n

of
 o

il
[k

g/
s]

Fig. 11. Stabilization of the oil production using the
downhole pressure obtained with noisy measurements.

In industry, gain scheduling is often used to adapt the
gains of the PI controller as the operating point of the
production valve changes. This increases the performance,
but in some cases gain scheduling may also be necessary
to keep the system stable since the gain values computed
for a certain steady state choke opening might not have
sufficient control authority to stabilize the casing-heading
instability for higher steady state choke openings, as was
shown in Eikrem et al. [2006]. Gain scheduling can be
used also with the control structure proposed in this paper
to have a better stabilizing controller in the all ranges
of production choke opening, implementing hysteresis to
prevent frequent change due to noise in the pressure
estimate.

5. CONCLUSION

In this paper the problem of casing-heading instability that
can occur in gas-lifted oil wells was considered. Casing-
heading instability causes highly oscillatory oil flow rate,
leading to lower production and lower processing capacity.
The solution proposed was the use of a closed-loop control.
The control structure presented uses the opening of the
production choke as the manipulated variable and the
downhole pressure as controlled variable.
Since measurements downhole in the tubing are quite
unreliable, we proposed a high gain observer to estimate
the states using only well-top measurements, and then
using these estimates to reconstruct the downhole pressure
needed. Moreover, using part of the HGO we designed an
estimator for the mass of gas in the annulus and used it

to extend the exponentially fast NLO proposed in Aamo
et al. [2004].
The performance of the HGO was demonstrated in simu-
lations and compared with the combination x1estimator-
NLO. It was seen that for basically the same performance,
the HGO presents a simpler tuning capability.
The control structure proposed can also be used in a
straightforward fashion as a backup strategy: it is possible
to switch from a control structure based on the measured
downhole pressure to the structure based on well-top mea-
surements in case of sensor failure.
Even if the simulations showed that the observer converges
exponentially fast, the stability is not yet theoretically
supported. The significant nonlinearity of the model equa-
tions makes the problem nontrivial. The stability of high
gain observers for a class of nonlinear systems has been
analyzed in the literature, and conditions have been given.
An extension of the analysis to classes of nonlinear sys-
tems like the gas-lifted oil well system represents ongoing
research.

ACKNOWLEDGEMENTS

The first author wish to thank O. M. Aamo for his help
with the mathematical model, and H. B. Siahaan for all
the suggestions given.

REFERENCES

O.M. Aamo, G.O. Eikrem, H.B. Siahaan, and B.A. Foss.
Observer design for multiphase flow in vertical pipes
with gas-lift - theory and experiments. Journal of
Process Control, 2004.

G.O. Eikrem, B.A. Foss, L. Imsland, B. Hu, and M. Golan.
Stabilization of gas lifted wells. In Proceedings of the
15th IFAC World Congress, 2002.

G.O. Eikrem, L. Imsland, and B.A. Foss. Stabilization
of gas lifted wells based on state estimation. In IFAC,
2004.

G.O. Eikrem, O.M. Aamo, and B.A. Foss. On instability in
gas-lift wells and schemes for stabilization by automatic
control. SPE paper no. 101502, 2006.

J.P. Gautier, H. Hammouri, and S. Othman. A simple ob-
server for nonlinear systems - application to bioreactors.
In IEEE Transactions on Automatic Control, 1992.

H. Hammouri, B. Targui, and F. Armanet. High gain
observer based on a triangular structure. International
Journal of Robust and Nonlinear Control, 2002.

K. Havre and M. Dalsmo. Active feedback control as the
solution to severe slugging. SPE paper no. 71540, 2002.

L. Imsland. Topics in nonlinear control: Output feedback
stabilization and control of positive systems. PhD thesis,
NTNU, 2002.

H.K. Khalil. Nonlinear Systems. Prentice Hall, third
edition, 2000.

G. Skofteland and J.M. Godhavn. Suppression of slugs
in multiphase flow lines by active use of topside choke -
field experience and experimental results. In Proceedings
of Multiphase’03, 2003.

��������	�
����	������������	����
������������������ ����!���

�'&�#

1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800
650

700

750

800

850

900

950

1000

sec

D
en

si
ty

 [k
g/

m
3]

Fig. 10. Density measurement plus the uncertainty on the
measurement.

0 500 1000 1500 2000 2500 3000 3500 4000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sec

P
ro

du
ct

io
n

of
 o

il
[k

g/
s]

Fig. 11. Stabilization of the oil production using the
downhole pressure obtained with noisy measurements.

In industry, gain scheduling is often used to adapt the
gains of the PI controller as the operating point of the
production valve changes. This increases the performance,
but in some cases gain scheduling may also be necessary
to keep the system stable since the gain values computed
for a certain steady state choke opening might not have
sufficient control authority to stabilize the casing-heading
instability for higher steady state choke openings, as was
shown in Eikrem et al. [2006]. Gain scheduling can be
used also with the control structure proposed in this paper
to have a better stabilizing controller in the all ranges
of production choke opening, implementing hysteresis to
prevent frequent change due to noise in the pressure
estimate.

5. CONCLUSION

In this paper the problem of casing-heading instability that
can occur in gas-lifted oil wells was considered. Casing-
heading instability causes highly oscillatory oil flow rate,
leading to lower production and lower processing capacity.
The solution proposed was the use of a closed-loop control.
The control structure presented uses the opening of the
production choke as the manipulated variable and the
downhole pressure as controlled variable.
Since measurements downhole in the tubing are quite
unreliable, we proposed a high gain observer to estimate
the states using only well-top measurements, and then
using these estimates to reconstruct the downhole pressure
needed. Moreover, using part of the HGO we designed an
estimator for the mass of gas in the annulus and used it

to extend the exponentially fast NLO proposed in Aamo
et al. [2004].
The performance of the HGO was demonstrated in simu-
lations and compared with the combination x1estimator-
NLO. It was seen that for basically the same performance,
the HGO presents a simpler tuning capability.
The control structure proposed can also be used in a
straightforward fashion as a backup strategy: it is possible
to switch from a control structure based on the measured
downhole pressure to the structure based on well-top mea-
surements in case of sensor failure.
Even if the simulations showed that the observer converges
exponentially fast, the stability is not yet theoretically
supported. The significant nonlinearity of the model equa-
tions makes the problem nontrivial. The stability of high
gain observers for a class of nonlinear systems has been
analyzed in the literature, and conditions have been given.
An extension of the analysis to classes of nonlinear sys-
tems like the gas-lifted oil well system represents ongoing
research.

ACKNOWLEDGEMENTS

The first author wish to thank O. M. Aamo for his help
with the mathematical model, and H. B. Siahaan for all
the suggestions given.

REFERENCES

O.M. Aamo, G.O. Eikrem, H.B. Siahaan, and B.A. Foss.
Observer design for multiphase flow in vertical pipes
with gas-lift - theory and experiments. Journal of
Process Control, 2004.

G.O. Eikrem, B.A. Foss, L. Imsland, B. Hu, and M. Golan.
Stabilization of gas lifted wells. In Proceedings of the
15th IFAC World Congress, 2002.

G.O. Eikrem, L. Imsland, and B.A. Foss. Stabilization
of gas lifted wells based on state estimation. In IFAC,
2004.

G.O. Eikrem, O.M. Aamo, and B.A. Foss. On instability in
gas-lift wells and schemes for stabilization by automatic
control. SPE paper no. 101502, 2006.

J.P. Gautier, H. Hammouri, and S. Othman. A simple ob-
server for nonlinear systems - application to bioreactors.
In IEEE Transactions on Automatic Control, 1992.

H. Hammouri, B. Targui, and F. Armanet. High gain
observer based on a triangular structure. International
Journal of Robust and Nonlinear Control, 2002.

K. Havre and M. Dalsmo. Active feedback control as the
solution to severe slugging. SPE paper no. 71540, 2002.

L. Imsland. Topics in nonlinear control: Output feedback
stabilization and control of positive systems. PhD thesis,
NTNU, 2002.

H.K. Khalil. Nonlinear Systems. Prentice Hall, third
edition, 2000.

G. Skofteland and J.M. Godhavn. Suppression of slugs
in multiphase flow lines by active use of topside choke -
field experience and experimental results. In Proceedings
of Multiphase’03, 2003.

��������	�
����	������������	����
������������������ ����!���

�'&�#

1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800
650

700

750

800

850

900

950

1000

sec

D
en

si
ty

 [k
g/

m
3]

Fig. 10. Density measurement plus the uncertainty on the
measurement.

0 500 1000 1500 2000 2500 3000 3500 4000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sec

P
ro

du
ct

io
n

of
 o

il
[k

g/
s]

Fig. 11. Stabilization of the oil production using the
downhole pressure obtained with noisy measurements.

In industry, gain scheduling is often used to adapt the
gains of the PI controller as the operating point of the
production valve changes. This increases the performance,
but in some cases gain scheduling may also be necessary
to keep the system stable since the gain values computed
for a certain steady state choke opening might not have
sufficient control authority to stabilize the casing-heading
instability for higher steady state choke openings, as was
shown in Eikrem et al. [2006]. Gain scheduling can be
used also with the control structure proposed in this paper
to have a better stabilizing controller in the all ranges
of production choke opening, implementing hysteresis to
prevent frequent change due to noise in the pressure
estimate.

5. CONCLUSION

In this paper the problem of casing-heading instability that
can occur in gas-lifted oil wells was considered. Casing-
heading instability causes highly oscillatory oil flow rate,
leading to lower production and lower processing capacity.
The solution proposed was the use of a closed-loop control.
The control structure presented uses the opening of the
production choke as the manipulated variable and the
downhole pressure as controlled variable.
Since measurements downhole in the tubing are quite
unreliable, we proposed a high gain observer to estimate
the states using only well-top measurements, and then
using these estimates to reconstruct the downhole pressure
needed. Moreover, using part of the HGO we designed an
estimator for the mass of gas in the annulus and used it

to extend the exponentially fast NLO proposed in Aamo
et al. [2004].
The performance of the HGO was demonstrated in simu-
lations and compared with the combination x1estimator-
NLO. It was seen that for basically the same performance,
the HGO presents a simpler tuning capability.
The control structure proposed can also be used in a
straightforward fashion as a backup strategy: it is possible
to switch from a control structure based on the measured
downhole pressure to the structure based on well-top mea-
surements in case of sensor failure.
Even if the simulations showed that the observer converges
exponentially fast, the stability is not yet theoretically
supported. The significant nonlinearity of the model equa-
tions makes the problem nontrivial. The stability of high
gain observers for a class of nonlinear systems has been
analyzed in the literature, and conditions have been given.
An extension of the analysis to classes of nonlinear sys-
tems like the gas-lifted oil well system represents ongoing
research.

ACKNOWLEDGEMENTS

The first author wish to thank O. M. Aamo for his help
with the mathematical model, and H. B. Siahaan for all
the suggestions given.

REFERENCES

O.M. Aamo, G.O. Eikrem, H.B. Siahaan, and B.A. Foss.
Observer design for multiphase flow in vertical pipes
with gas-lift - theory and experiments. Journal of
Process Control, 2004.

G.O. Eikrem, B.A. Foss, L. Imsland, B. Hu, and M. Golan.
Stabilization of gas lifted wells. In Proceedings of the
15th IFAC World Congress, 2002.

G.O. Eikrem, L. Imsland, and B.A. Foss. Stabilization
of gas lifted wells based on state estimation. In IFAC,
2004.

G.O. Eikrem, O.M. Aamo, and B.A. Foss. On instability in
gas-lift wells and schemes for stabilization by automatic
control. SPE paper no. 101502, 2006.

J.P. Gautier, H. Hammouri, and S. Othman. A simple ob-
server for nonlinear systems - application to bioreactors.
In IEEE Transactions on Automatic Control, 1992.

H. Hammouri, B. Targui, and F. Armanet. High gain
observer based on a triangular structure. International
Journal of Robust and Nonlinear Control, 2002.

K. Havre and M. Dalsmo. Active feedback control as the
solution to severe slugging. SPE paper no. 71540, 2002.

L. Imsland. Topics in nonlinear control: Output feedback
stabilization and control of positive systems. PhD thesis,
NTNU, 2002.

H.K. Khalil. Nonlinear Systems. Prentice Hall, third
edition, 2000.

G. Skofteland and J.M. Godhavn. Suppression of slugs
in multiphase flow lines by active use of topside choke -
field experience and experimental results. In Proceedings
of Multiphase’03, 2003.

��������	�
����	������������	����
������������������ ����!���

�'&�#

1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800
650

700

750

800

850

900

950

1000

sec

D
en

si
ty

 [k
g/

m
3]

Fig. 10. Density measurement plus the uncertainty on the
measurement.

0 500 1000 1500 2000 2500 3000 3500 4000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sec

P
ro

du
ct

io
n

of
 o

il
[k

g/
s]

Fig. 11. Stabilization of the oil production using the
downhole pressure obtained with noisy measurements.

In industry, gain scheduling is often used to adapt the
gains of the PI controller as the operating point of the
production valve changes. This increases the performance,
but in some cases gain scheduling may also be necessary
to keep the system stable since the gain values computed
for a certain steady state choke opening might not have
sufficient control authority to stabilize the casing-heading
instability for higher steady state choke openings, as was
shown in Eikrem et al. [2006]. Gain scheduling can be
used also with the control structure proposed in this paper
to have a better stabilizing controller in the all ranges
of production choke opening, implementing hysteresis to
prevent frequent change due to noise in the pressure
estimate.

5. CONCLUSION

In this paper the problem of casing-heading instability that
can occur in gas-lifted oil wells was considered. Casing-
heading instability causes highly oscillatory oil flow rate,
leading to lower production and lower processing capacity.
The solution proposed was the use of a closed-loop control.
The control structure presented uses the opening of the
production choke as the manipulated variable and the
downhole pressure as controlled variable.
Since measurements downhole in the tubing are quite
unreliable, we proposed a high gain observer to estimate
the states using only well-top measurements, and then
using these estimates to reconstruct the downhole pressure
needed. Moreover, using part of the HGO we designed an
estimator for the mass of gas in the annulus and used it

to extend the exponentially fast NLO proposed in Aamo
et al. [2004].
The performance of the HGO was demonstrated in simu-
lations and compared with the combination x1estimator-
NLO. It was seen that for basically the same performance,
the HGO presents a simpler tuning capability.
The control structure proposed can also be used in a
straightforward fashion as a backup strategy: it is possible
to switch from a control structure based on the measured
downhole pressure to the structure based on well-top mea-
surements in case of sensor failure.
Even if the simulations showed that the observer converges
exponentially fast, the stability is not yet theoretically
supported. The significant nonlinearity of the model equa-
tions makes the problem nontrivial. The stability of high
gain observers for a class of nonlinear systems has been
analyzed in the literature, and conditions have been given.
An extension of the analysis to classes of nonlinear sys-
tems like the gas-lifted oil well system represents ongoing
research.

ACKNOWLEDGEMENTS

The first author wish to thank O. M. Aamo for his help
with the mathematical model, and H. B. Siahaan for all
the suggestions given.

REFERENCES

O.M. Aamo, G.O. Eikrem, H.B. Siahaan, and B.A. Foss.
Observer design for multiphase flow in vertical pipes
with gas-lift - theory and experiments. Journal of
Process Control, 2004.

G.O. Eikrem, B.A. Foss, L. Imsland, B. Hu, and M. Golan.
Stabilization of gas lifted wells. In Proceedings of the
15th IFAC World Congress, 2002.

G.O. Eikrem, L. Imsland, and B.A. Foss. Stabilization
of gas lifted wells based on state estimation. In IFAC,
2004.

G.O. Eikrem, O.M. Aamo, and B.A. Foss. On instability in
gas-lift wells and schemes for stabilization by automatic
control. SPE paper no. 101502, 2006.

J.P. Gautier, H. Hammouri, and S. Othman. A simple ob-
server for nonlinear systems - application to bioreactors.
In IEEE Transactions on Automatic Control, 1992.

H. Hammouri, B. Targui, and F. Armanet. High gain
observer based on a triangular structure. International
Journal of Robust and Nonlinear Control, 2002.

K. Havre and M. Dalsmo. Active feedback control as the
solution to severe slugging. SPE paper no. 71540, 2002.

L. Imsland. Topics in nonlinear control: Output feedback
stabilization and control of positive systems. PhD thesis,
NTNU, 2002.

H.K. Khalil. Nonlinear Systems. Prentice Hall, third
edition, 2000.

G. Skofteland and J.M. Godhavn. Suppression of slugs
in multiphase flow lines by active use of topside choke -
field experience and experimental results. In Proceedings
of Multiphase’03, 2003.

��������	�
����	������������	����
������������������ ����!���

�'&�#

